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Abstract

A number of recent articles in computational
linguistics venues called for a closer exami-
nation of the type of noise present in anno-
tated datasets used for benchmarking (Rei-
dsma and Carletta, 2008; Beigman Klebanov
and Beigman, 2009). In particular, Beigman
Klebanov and Beigman articulated a type of
noise they call annotation noise and showed
that in worst case such noise can severely
degrade the generalization ability of a linear
classifier (Beigman and Beigman Klebanov,
2009). In this paper, we provide quantita-
tive empirical evidence for the existence of
this type of noise in a recently benchmarked
dataset. The proposed methodology can be
used to zero in on unreliable instances, facili-
tating generation of cleaner gold standards for
benchmarking.

1 Introduction

Traditionally, studies in computational linguistics
use few trained annotators. Lately this might be
changing, as inexpensive annotators are available in
large numbers through projects like Amazon Me-
chanical Turk or through online games where an-
notations are produced as a by-product (Poesio et
al., 2008; von Ahn, 2006), and, at least for certain
tasks, the quality of multiple non-expert annotations
is close to that of a small number of experts (Snow
et al., 2008; Callison-Burch, 2009).

Apart from the reduced costs, mass annotation is
a promising way to get detailed information about
the dataset, such as the level of difficulty of the dif-
ference instances. Such information is important
both from the linguistic and from the machine learn-

ing perspective, as the existence of a group of in-
stances difficult enough to look like they have been
labeled by random guesses can in the worst case
induce the machine learner training on the dataset
to misclassify a constant proportion of easy, non-
controversial instances, as well as produce incor-
rect comparative results in a benchmarking setting
(Beigman Klebanov and Beigman, 2009; Beigman
and Beigman Klebanov, 2009) .

In this article, we employ annotation generation
models to estimate the types of instances in a multi-
ply annotated dataset for a binary classification task.
We provide the first quantitative empirical demon-
stration, to our knowledge, of the existence of what
Beigman Klebanov and Beigman (2009) call “anno-
tation noise” in a benchmarked dataset, that is, for
a case where instances cannot be plausibly assigned
to just two classes, and where instances in the third
class can be plausibly described as having been an-
notated by flips of a nearly fair coin. The ability to
identify such instances helps improve the gold stan-
dard by eliminating them, and allows further empiri-
cal investigation of their impact on machine learning
for the task in question.

2 Generative models of annotation

We present a graphical model for the generation of
annotations. The basic idea is that there are different
types of instances that induce different responses
from annotators. Each instance may have a true la-
bel of “0” or “1”, however, the researcher’s access
to it is mediated by annotators who are guessing the
true label by flipping a coin, where the bias of the
coin depends on the type of the instance. The bias
of the coin essentially models the difficulty of label-
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ing the instance; coins biased close to 0 and 1 cor-
respond to instances that are easy to classify; a fair
coin represents instances that are very difficult if not
impossible to classify correctly with the given pool
of annotators. The model presented in Beigman Kle-
banov and Beigman (2009) is a special case with 3
types (A,B,C) where pA=0, pC=1 (easy cases), and
0<pB<1 represents the hard cases, the harder the
closer pB is to 0.5. Models used here are a type of la-
tent class models (McCutcheon, 1987) widely used
in the Biometrics community (Espeland and Handel-
man, 1989; Yang and Becker, 1997; Albert et al.,
2001; Albert and Dodd, 2004).

The goal of modeling is to determine whether
more than two types of instances need to be postu-
lated, to estimate how difficult each type is, and to
identify the troublemaking instances.

The graphical model is presented in figure 1. We
assume the dataset of size N is a mixture of k dif-
ferent types of instances. The proportion of types is
given by θ = (θ1, . . . , θk), and coin biases for each
type are given by p = (p1, . . . , pk). Each instance is
annotated by n i.i.d coinflips, and random variable
x ∈ {0, . . . , n} counts the number of “1”s in the n
annotations given to an instance. Each instance be-
longs to a type t ∈ {1, ..., k}, characterized by a coin
with the probability pt of annotating with the label
“1”. Conditioned on t, the number of “1”s in n an-
notations has a binomial distribution with parameter
pt: Pr(x = j|t) =

(
n
j

)
pj

t (1− pt)n−j .
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Figure 1: A graphical model of annotation generation.

The probability of observing j “1”s out of n an-
notations for an instance given θ and p is therefore
Pr(x = j|θ, p) =

∑k
t=1 Pr(t|θ) · Pr(x = j|t) =

=
(
n
j

) ∑k
t=1 θtp

j
t (1 − pt)n−j . The annotations are

thus generated by a superposition of k binomials.

3 Data

3.1 Recognizing Textual Entailment -1

For the experiments reported here we use the 800
item test data of the first Recognizing Textual Entail-
ment benchmark (RTE-1) from Dagan et al. (2006).
This task drew a lot of attention in the community,
with a series of benchmarks in 2005-2007.

The task is defined as follows: “... textual entail-
ment is defined as a directional relationship between
pairs of text expressions, denoted by T - the entail-
ing “Text”, and H - the entailed “Hypothesis”. We
say that T entails H if the meaning of H can be in-
ferred from the meaning of T, as would typically be
interpreted by people. This somewhat informal defi-
nition is based on (and assumes) common human
understanding of language as well as common back-
ground knowledge” (Dagan et al., 2006). Further
guidelines included an instruction to disregard tense
differences, to accept cases where the inference is
“very probable (but not completely certain)” and to
avoid cases where the inference “has some positive
probability that is not clearly very high.” An exam-
ple of a true entailment is the pair T-H: (T) Cavern
Club sessions paid the Beatles £15 evenings and £5
lunchtime. (H) The Beatles perform at Cavern.

Although annotated by a small number of experts
for the benchmark, the RTE-1 dataset has been later
transferred to a mass annotation framework by Snow
et al. (2008), who submitted simplified guidelines
to the Amazon Mechanical Turk workplace (hence-
forth, AMT), collected 10 annotations per item from
the total of 164 annotators, and showed that major-
ity vote by Turkers agreed with expert annotation in
89.7% of the cases. We call the Snow et al. (2008)
Turker annotations SRTE dataset, and use it in sec-
tion 6. The instructions, followed by two examples,
read: “Please state whether the second sentence (the
Hypothesis) is implied by the information in the first
sentence (the Text), i.e., please state whether the Hy-
pothesis can be determined to be true given that the
Text is true. Assume that you do not know anything
about the situation except what the Text itself says.
Also, note that every part of the Hypothesis must be
implied by the Text in order for it to be true.” The
guidelines for Turkers are somewhat different from
the original, not mentioning the issue of highly prob-
able though not certain inference or a special treat-
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ment of tense mismatch between H and T, as well as
discouraging reliance on background knowledge.

Using Snow et al. (2008) instructions, we col-
lected 20 annotations for each of the 800 items
through AMT from the total of 441 annotators. Each
annotator did the minimum of 2 items, and was
paid $0.01 for 2 items, for the total annotator cost
of $80. We used only annotators with prior AMT
approval rate of at least 95%, that is, only people
whose performance in previous tasks on AMT was
almost always approved by the requester of the task.
Our design is thus somewhat different from Snow et
al. (2008), as we paid more and selected annotators
with a stake in their AMT reputation.

3.2 Preparing the data for model fitting

We collected the annotations in two separate batches
of 10 annotations per item, using the same set of in-
structions, incentives, and examples. We hypothe-
sized that controlling for these elements, we would
get two random samples from the same distribution
of Turkers, and hence will have two samples to make
sure a model fitted on one sample generalized to
the other. It turned out, however, that a 3-Binomial
model with a good fit on one of the samples was re-
jected with high probability for the other.1 Thus, on
the one hand, the variations between annotators in
each sample were not as high as to preclude a model
that captures only instance variability from fitting
well; on the other hand, evidently, the two samples
did not come from the same annotator distribution,
but differed systematically due to factors we did not
control for.2 In order for our models not to inherit a
systematic bias of any of the two samples, we mixed
the two samples, and constructed two sets, BRTEa
and BRTEb, each with 10 annotations per item, by
randomly splitting the 20 answers per item into two
groups, allowing the same annotator to contribute
to different groups on different instances. Indeed,
after the randomization, a model fitted for BRTEa
produced excellent generalization on BRTEb, as we
will see in section 4.2.

1For details of the model fitting procedure, see section 4.
2Such factors could be the hour and day of assignment, as

the composition of AMT’s global 24/7 workforce could differ
systematically by day and hour.

4 Fitting a model to BRTE data

Using the model template presented in section 2, we
successively attempt to fit a model with k = 2, 3, . . .
until a model with a good fit is found or no degrees
of freedom are left. For a given k, we fit the pa-
rameters θ and p using non-linear least squares trust-
region method as implemented in the default version
of MATLAB’s lsqnonlin function. We then use χ2 to
measure goodness of fit; a model that cannot be re-
jected with 95% confidence (p>0.05) would be con-
sidered a good fit. In all cases N=800, n=10, as we
use 10 annotations for each instance.

4.1 Mixture of 2 Binomials

Suppose k=2, with types t0 and t1. The best fit yields
p0=0.237, p1=0.867, θ0=431

800 , θ1=1-θ0. The model
(shown in figure 2) is a poor fit, with χ2=73.66 well
above the critical value of 14.07 for df=7, p=0.05.3
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Figure 2: Fitting the model B1+B2 to BRTEa data. B1∼
B(10,0.237) on 431 instances, B2∼ B(10,0.867) on 369
instances. The point (x,y) means that there are y in-
stances given label “1” in exactly x out of 10 annotations.

4.2 Model M: Mixture of 3 Binomials

Suppose now k=3. The best fitting model
M=B1+B2+B3 is specified in figure 3; M fits the
data very well. Assuming B1 and B3 reflect items

3For degrees of freedom, we take the number of datapoints
being fitted (11), take one degree of freedom off for knowing in
advance the total number of instances, and take off additional 3
degrees of freedom for estimating p0, p1, and θ0 from the data.
We are therefore left with 7 degrees of freedom in this case.
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with uncontroversial labels “0” and “1”, respec-
tively, the model suggests that detecting “0” (no tex-
tual entailment) is somewhat more difficult for non-
experts than detecting “1” (there is textual entail-
ment) in this dataset, with the rate of incorrect pre-
dictions of about 20% and 10%, respectively.4 The
model also predicts that 159

800 ≈ 20% of the data are
difficult cases, with annotators flipping a close-to-a-
fair coin (p=0.5487).
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Figure 3: Fitting the model M=B1+B2+B3 to BRTEa
data. B1∼ B(10,0.1978) on 343 instances, B2∼
B(10,0.5487) on 159 instances, B3∼ B(10,0.8942) on
298 instances. The binomials are shown in grey lines.
The model M fits with χ2=5.091; for df=5, this corre-
sponds to p=0.4.

We use the dataset BRTEb to test the model de-
veloped on BRTEa. The model fits with χ2=13.13,
which, for df=10,5 corresponds to p=0.2154.

We therefore conclude that, after eliminating sys-
tematic differences between annotators, we were un-
able to fit a model with two types of instances,
whereas a model with three types of instances pro-
vides a good fit both for the dataset on which it is
estimated and for a new dataset. This constitutes
empirical evidence for the existence of a group of
instances with near-random labels in this recently

4We note that any conclusions from the model hold for the
particular 800 item dataset in question, and not for the task of
recognizing textual entailment in general, as the dataset is not
necessarily a representative sample. In fact, we know from Da-
gan et al. (2006) that these 800 items are not a random sam-
ple, but rather what remained after some 400 instances were re-
moved due to disagreements between expert annotators or due
to the judgment of one of organizers of the RTE-1 challenge.

5No parameters are fitted using the BRTEb data.

benchmarked dataset, at least for our pool of more
than 400 non-expert annotators.

5 Could annotator heterogeneity provide
an alternative explanation?

In the previous section, we established that instance
heterogeneity can explain the observations. We
might however ask whether a different model could
provide a similarly fitting explanation. Specifically,
heterogeneity among annotators has been seen as a
major source of noise in the aggregate data and there
are several works attempting to separate high qual-
ity annotators from low quality ones (Raykar et al.,
2009; Donmez et al., 2009; Sheng et al., 2008; Car-
penter, 2008). Could we explain the observed beha-
vior with a model with only two types of instances
that allows for annotator heterogeneity?

In this section we construct such a model. We
show that this model entails an instance distribu-
tion that is a superposition of two normal distribu-
tions. We subsequently show that the best fitting
two-Gaussian model does not provide a good fit.

We use a generation model similar to those in
(Raykar et al., 2009; Carpenter, 2008) but with
weaker parametric assumptions. The graphical
model is given in figure 4.
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Figure 4: Annotation generation model with annotator
heterogeneity.

We assume there are two types of instances t ∈
{0, 1} with the proportions θ = (θ0, θ1). The 2n
probabilities p = (pt1, . . . , ptn) for t = 0, 1 cor-
respond to coins drawn independently from some
distribution with parameter α = (α1, . . . , αn). We
make no assumption on the functional form apart
from a positive probability to draw a value between
0 and 1, this in particular is true for the beta distribu-
tion used in (Raykar et al., 2009; Carpenter, 2008).
As before, the number of “1”s attributed to an in-
stance of type t is a random variable x, determined
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by independent flips of the n coins that correspond
to the value of t. The marginal distribution of x is:

Pr(x = j|θ, α) =

=
∑
t=0,1

Pr(t|θ)
∫

[0,1]n
Pr(pt|α)·Pr(x = j|pt, t, α)dpt

=
∑
t=0,1

θt

∫
[0,1]n

Pr(pt|α)

 ∑
|S|=j

∏
i∈S

pti

∏
i6∈S

(1− pti)

 dpt

Let x1, . . . , xN be the random variables correspond-
ing to the number of “1”s attributed to instances
1, . . . , N . W.l.g we assume instances 1, . . . , N ′ are
all of type t0 (N ′ = θ0 · N ) and the rest of type t1.
Since 0 ≤ xj ≤ n it follows that E(xj), Var(xj) <
∞ for j = 1, . . . , N . If for each instance the coin-
flips are independent, we can think of this as a two
step process where we first draw the coins and then
flip them. Thus, x1, . . . , xN ′ are i.i.d and the cen-
tral limit theorem implies that the average number
of “1”s on t0 instances, namely the random variable
y0 = 1

N ′
∑N ′

j=1 xj has an approximately normal dis-
tribution.6 Making the same argument for the distri-
bution of y1 for instances of type t1, it follows that
the number of “1”s attributed to an instance of any
type y = y0 + y1 would have a distribution that is a
superposition of two Gaussians.

The best least-squares fit of all two-Gaussian
models to BRTEa data is produced by G=N1+N2,
N1∼ N (2.22, 1.73) on 418 instances, N2∼
N (9.07,1.41) on 382 instances; G is shown in
figure 5. G fits with χ2=36.77, much above the crit-
ical value χ2=11.07 for df=5, p=0.05. We can thus
rule out annotator heterogeneity as the only expla-
nation of the observed pattern of responses.

6 Testing M on SRTE data

We further test M on the annotations collected by
Snow et al. (2008) for the same 800 item dataset.
While the instructions and the task were identical in
BRTEa, BRTEb, and BRTE datasets, and in all cases

6It can be shown that y0 ∼ N (µ, σ) for µ = n · EDist(α)(p)

and σ =
p

VarDist(α)(p) · n, using the expectation and variance
of the coin parameter for type t0 instances. For example, for a
beta distribution with parameters α and β these would be µ =

α
α+β

n and σ =
q

αβ
α+β

n.
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Figure 5: Model G’s fit to BRTEa data, G= N1+N2, a
mixture of two Gaussians.

each item was given 10 annotations, the incentive
design was different (see section 3).

Figure 6 shows that model M=B1+B2+B3 does
not fit well, as SRTE dataset exhibits a rather diffe-
rent distribution from both BRTE datasets. In par-
ticular, it is clear that had a model been fitted on
SRTE data, the coin flipping probabilities for the
clear types, B1 and B3, would have to be moved
towards 0.5; that is, an average annotator in SRTE
dataset had worse ability to detect clear 0s and clear
1s than an average BRTE annotator. We note that
BRTEa and BRTEb agreed with expert annotation
in 92.5% and 90.8% of the instances, respectively,
both better than 89.7% in SRTE.7 Since we offered
somewhat better incentives in BRTE, it is tempting
to attribute the observed better quality of BRTE an-
notations to the improved incentives, although it is
possible that some other uncontrolled AMT-related
factor is responsible for the difference between the
datasets, just as we found for our original two col-
lected samples (see section 3.2).

Supposing the main source of misfit is difference
in incentives, we conjecture that the difference be-
tween the 441 BRTE annotators and the 164 SRTE
ones is due to the existence in SRTE of unmotivated,
or “lazy” annotators, that is, people who flipped the
same coin on every instance, no matter what type.
Our hypothesis is that once an annotator is diligent
(and motivated) enough to pay attention to the data,
her annotations can be described by model M, but
some annotators are not sufficiently diligent.

7Turker annotations were aggregated using majority vote, as
in Snow et al. (2008) section 4.3.
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Figure 6: Model M’s fit to SRTE data. BRTEa and
BRTEb are shown in grey lines.

In this model we assume there are three types
of instances as before, and two types of annotators
a ∈ {D,L}, for Diligent and Lazy, with their pro-
portions in the population ξ = (ξD, ξL). The corre-
sponding graphical model is shown in figure 7.

x t ! 
N 

x 

t ! N 

a " 

p 

p 

x 

# 

N 

p 

t ! 

x 

t ! N 

a " p 

c 

Figure 7: Annotation generation with diligent and lazy
annotators.

We assume that diligent annotators flip coins cor-
responding to the types of instances, whereas lazy
annotators always flip the same coin pL.

Let nD and nL=n−nD be the number of diligent
and lazy annotations given to a certain instance, thus
Pr(nD=r|ξ)=

(
n
r

)
ξr
Dξn−r

L , and the probability of ob-
serving j label “1” annotations for an instance of
type t is given by:

Pr(x = j|t, ξ, p) =
n∑

r=1

[(
n

r

)
ξr
Dξn−r

L ×

×
[ ∑

(j1,j2)∈S

(
r

j1

)
pj1

t (1− pt)r−j1 ×

×
(

n− r

j2

)
pj2

L (1− pL)n−r−j2

]]
where S={(j1, j2):j1+j2=j; j1≤r;j2≤n-r}. Finally,
Pr(x=j|θ, ξ, p)=

∑k
t=1 θt Pr(x=j|t, ξ, p).

We assume that model M provides the values for
θ and p for all diligent annotators, and estimate ξ
and pL, the proportion of the lazy annotators and
the coin they flip. The best fitting model yields
ξ=(0.79,0.21), and pL=0.74, predicting that about
one-fifth of SRTE annotators are lazy.8 This model
fits with χ2=14.63, which is below the critical level
of χ2=15.51 for df=8,p=0.05, hence a hypothesis
that model M behavior for the diligent annotators
and flipping a coin with bias 0.74 for the lazy ones
generated the SRTE data cannot be rejected with
high confidence. We note that Carpenter (2008) ar-
rived at a similar conclusion – that there are quite
a few annotators making random guesses in SRTE
dataset – by means of jointly estimating annotator
accuracies.

7 Discussion

To summarize our findings: With systematic dif-
ferences between annotators smoothed out, there
is evidence that non-expert annotators performing
RTE task on RTE-1 test data tend to flip a close-
to-fair coin on about 20% of instances, according
to the best fitting model.9 This constitutes, to our
knowledge, the first empirical evidence for the ex-
istence of the kind of noise termed annotation noise
in Beigman Klebanov and Beigman (2009). Given
Beigman Klebanov and Beigman (2009) warning
against annotation noise in test data and their find-
ing in Beigman and Beigman Klebanov (2009) that
annotation noise in training data can potentially dev-
astate a linear classifier learning from the data, the
immediate usefulness of our result is that instances
of this difficult type can be identified, removed from
the dataset before further benchmarking, and pos-

8A more precise statement is that there are about one-fifth
lazy potential annotators in the SRTE pool for any given item.
It is possible that the length of stay of an annotator in the pool is
not independent of her diligence; for example, Callison-Burch
(2009) found in his AMT experiments with tasks related to ma-
chine translation that lazy annotators tended to stay longer and
do more annotations.

9Beigman Klebanov and Beigman (2009) discuss the con-
nection between noise models and inter-annotator agreement.
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sibly used in a controlled fashion for subsequent
studies of the impact of annotation noise on specific
learning algorithms and feature spaces for this task.

The current literature on generating benchmark-
ing data from AMT annotations overwhelmingly
considers annotator heterogeneity as the source of
observed discrepancies, with instances falling into
two classes only. Our results suggest that, at least in
RTE data, instance heterogeneity cannot be ignored.

It also transpired that small variations in incen-
tives (as between SRTE and BRTE), and even un-
known factors possibly related to differences in the
composition of AMT’s workforce can lead to sys-
tematic differences in the resulting annotator pools,
which results in annotations that are described by
models with somewhat different parameter values.
This can potentially limit the usefulness of our main
finding, because it is not clear how reliable the iden-
tification of hard cases is using any particular group
of Turkers. While this is a valid concern in general,
we show in section 7.1 that many items consistently
found to be hard by different groups of Turkers war-
rant at least an additional examination, as they often
represent borderline cases of highly or not-so-highly
probable inferences, corruption of meaning by un-
grammaticality, or difficulties related to the treat-
ment of time references and background knowledge.

Finally, our findings seem to be at odds with the
fact that the 800 items analyzed here were left af-
ter all items on which two experts disagreed and all
items that looked controversial to the arbiter were
removed (see section 3). One potential explanation
is that things that are hard for Turkers are not nec-
essarily hard for experts. Yet it is possible that two
or three annotators, graduate students or faculty in
computational linguistics, are an especially homoge-
nous and small pool of people to base gold standard
annotations of the way things are “typically inter-
preted by people” upon. Furthermore, there is some
evidence from additional expert re-annotations of
this dataset that some controversies remain; we dis-
cuss relation to expert annotations in section 7.2.

7.1 Hard cases
We examine some of the instances that in all likeli-
hood belong to the difficult type, according to Turk-
ers. We focus on items that received between 4 and
7 class “1” annotations in SRTE and in each of our

two datasets (before randomization).

(1) T: Saudi Arabia, the biggest oil producer in
the world, was once a supporter of Osama bin
Laden and his associates who led attacks against
the United States. H: Saudi Arabia is the
world’s biggest oil exporter.

(2) T: Seiler was reported missing March 27 and
was found four days later in a marsh near her
campus apartment. H: Abducted Audrey Seiler
found four days after missing.

(3) T: The spokesman for the rescue authorities,
Linart Ohlin, said that the accident took place
between 01:00 and dawn today, Friday (00:00
GMT) in a disco behind the theatre, where “hun-
dreds” of young people were present. H: The
fire happened in the early hours of Friday morn-
ing, and hundreds of young people were present.

(4) T: William Leonard Jennings sobbed loudly as
was charged with killing his 3-year-old son,
Stephen, who was last seen alive on Dec.12,
1962. H: William Leonard Jennings killed his
3-year-old son, Stephen.

Labeling of examples 1-4 seems to hinge on the
assessment of the likelihood of an alternative expla-
nation. Thus, it is possible that the biggest producer
of oil is not the biggest exporter, because, for ex-
ample, its internal consumption is much higher than
in the second-biggest producer. In 2, abduction is
a possible cause for being missing, but how rela-
tively probable is it? Similarly, fire is a kind of ac-
cident, but can we infer that there was fire from a
report about an accident? In 4, could the man have
sobbed because on top of loosing his son he was
also being falsely accused of having killed him? Ex-
perts marked all five as true entailments, while many
Turkers had reservations.

(5) T: Bush returned to the White House late Satur-
day while his running mate was off campaigning
in the West. H: Bush left the White House.

(6) T: De la Cruz’s family said he had gone to Saudi
Arabia a year ago to work as a driver after a long
period of unemployment. H: De la Cruz was
unemployed.

(7) T: Measurements by ground-based instruments
around the world have shown a decrease of up
to 10 percent in sunlight from the late 1950s to
the early 1990s. H: The world is about 10 per
cent darker than half a century ago.
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In examples 5-7 time seems to be an issue. If Bush
returned to White House, he must have left it before-
hand, but does this count as entailment, or is the hy-
pothesis referencing a time concurrent with the text,
in which case T and H are in contradiction? In 6,
can H be seen as referring to some time more than a
year ago? In 7, if the hypothesis is taken to be stated
in mid- or late-2000s, the time of annotation, half
a century ago would reach to late 1950s, but it is
possible that further substantial reduction occurred
between early 1990s mentioned in the text and mid
2000s, amounting to much more than 10%. Experts
labeled example 5 as false, 6 and 7 as true.

(8) T: On 2 February 1990, at the opening of Parlia-
ment, he declared that apartheid had failed and
that the bans on political parties, including the
ANC, were to be lifted. H: Apartheid in South
Africa was abolished in 1990.

(9) T: Kennedy had just won California’s Demo-
cratic presidential primary when Sirhan shot
him in Los Angeles on June 5, 1968. H: Sirhan
killed Kennedy.

Labeling examples 8 and 9 (both true according to
the experts) requires knowledge about South African
and American politics, respectively. Was the ban on
ANC the only or the most important manifestation
of apartheid? Was abolishing apartheid merely an
issue of declaring that it failed? In 9, killing is a po-
tential but not necessary outcome of shooting, so de-
tails of Robert Kennedy’s case need to be known to
the annotator to render the case-specific judgment.

(10) T: The version for the PC has essentially the
same packaging as those for the big game con-
soles, but players have been complaining that
it offers significantly less versatility when it
comes to swinging through New York. H: Play-
ers have been complaining that it sells signifi-
cantly less versatility when it comes to swinging
through New York.

(11) T: During his trip to the Middle East that took
three days, Clinton made the first visit by an
American president to the Palestinian Territories
and participated in a three-way meeting with Is-
raeli Prime Minister Benjamin Netanyahu and
Palestinian President Yasser Arafat. H: During
his trip to the east of the Middle which lasted
three days, the Clinton to first visit to Ameri-
can President to the occupied Palestinian terri-
tories and participated in meeting tripartite co-

operation with Israeli Prime Minister Benjamin
Netanyahu and Palestinian President, Yasser
Arafat.

(12) T: The ISM non-manufacturing index rose to
64.8 in July from 59.9 in June. H: The non-
manufacturing index of the ISM raised 64.8 in
July from 59.9 in June.

(13) T: Henryk Wieniawski, a Polish-born musician,
was known for his special preference for resur-
recting neglected or lost works for the violin. H:
Henryk Wieniawski was born in Polish.

Examples 10-13 were labeled as false by experts,
possibly betraying over-sensitivity to the failings of
language technology. Sells is not an ideal substitu-
tion for offers, but in a certain sense versatility is
sold as part of a product. In 11-13, some Turkers
felt the hypothesis is not too bad a rendition of the
text or of its part, while experts seemed to hold MT
to a higher standard.

7.2 Turkers vs experts
Model M puts 159 items in the difficult type B2.
While M is the best fitting model, it is possible to
find a model that still fits with p>0.05 but places
a smaller number of items in B2, in order to ob-
tain a conservative estimate on the number of dif-
ficult cases. The model with B1∼ B(10, 0.21) on
373 items, B2∼ B(10,0.563) on 110 items, B3∼
B(10,0.89) on 327 items still produces a fit with
p>0.05, but going down to 100 instances in B2
makes it impossible to find a good fit with a 3 type
model. There are therefore about 110 difficult cases
by a conservative estimate. Assuming there remain
110 hard cases in the 800 item dataset for which
even experts flip a fair coin, we expect about 55
disagreements between the 800 item gold standard
from RTE-1 and a replication by a new expert, or
an agreement of 745

800=93% on average. This estimate
is consistent with reports of 91% to 96% replication
accuracy for the expert annotations on various sub-
sets of the data by different groups of experts (see
section 2.3 in Dagan et al. (2006)).
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