
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 337–340,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

The Simple Truth about Dependency and Phrase Structure Representations
An Opinion Piece

Owen Rambow
CCLS, Columbia University

New York, NY, USA
rambow@ccls.columbia.edu

Abstract

There are many misconceptions about de-
pendency representations and phrase structure
representations for syntax. They are partly due
to terminological confusion, partly due to a
lack of meta-scientific clarity about the roles
of representations and linguistic theories. This
opinion piece argues for a simple but clear
view of syntactic representation.

1 Introduction

To the machine learning community, treebanks are
just collections of data, like pixels with captions,
structural and behavioral facts about genes, or ob-
servations about wild boar populations. In contrast,
to us computational linguists, treebanks are not nat-
urally occurring data at all: they are the result of
a very complex annotation process. While the text
that is annotated (usually) is naturally occurring, the
annotation itself is already the result of a scientific
activity. This opinion piece argues that the level of
discourse about treebanks often found in our com-
munity does not reflect this fact (presumably due
to the influence of the brute machine learning per-
spective). We, as a community of computational lin-
guists, need to be very precise when talking about
treebanks and syntactic representations in general.

So let’s start with three very important concepts
which we must always distinguish. The representa-
tion type: what type of mathematical object is used
to represent syntactic facts? In this opinion piece,
I only consider dependency trees (DTs) and phrase
structure trees (PSTs) (Section 2). The represented

syntactic content: the morphological and syntactic
facts of the analyzed sentence (Section 3). The syn-
tactic theory: it explains how syntactic content is
represented in the chosen representation type (Sec-
tion 4).

A crucial confusing factor is the fact that the terms
dependency and phrase structure both have both a
mathematical and a linguistic meaning. The math-
ematical meaning refers representation types. The
linguistic meaning refers to syntactic content. I dis-
cuss this issue in Section 3. I discuss the issue of
converting between DTs and PSTs in Section 5, as
an example of how my proposed conceptualization
of syntactic representation throws light on a compu-
tational problem.

This opinion piece will be a success if after read-
ing it, the reader concludes that actually he or she
knew this all along. In fact, this opinion piece does
not advocate for a controversial position; its mission
is to make its readers be more precise when talking
about syntactic representations. This opinion piece
is intentionally polemical for rhetorical reasons.

2 DTs and PSTs as Representation Types

Assume we have two disjoint symbol sets: a set of
terminal symbols which contains the words of the
language we are describing; and a set of nontermi-
nal symbols. A Dependency Tree (DT) is a tree
in which all nodes are labeled with words (elements
of the set of terminal symbols) or empty strings. A
Phrase Structure Tree (PST) is a tree in which all
and only the leaf nodes are labeled with words or
empty strings, and internal nodes are labeled with
nonterminal symbols. There is nothing more to the

337



definitions. Trees of both types can have many other
properties which are not part of the two definitions,
and which do not follow from the definitions. I men-
tion some such properties.

Unordered trees. DTs and PSTs can be ordered or
unordered. For example, the Prague Theory (Sgall
et al., 1986) uses unordered DTs at the deeper level
of representation and ordered DTs at a more surfacy
level. GPSG (Gazdar et al., 1985) uses unordered
trees (or at any rate context-free rules whose right-
hand side is ordered by a separate component of the
grammar), as does current Chomskyan theory (the
PST at spell-out may be unordered).

Empty categories. Empty categories can be empty
pronouns, or traces, which are co-indexed with a
word elsewhere in the tree. Empty pronouns are
widely used in both DT- and PST-based represen-
tations. While most DT-based approaches do not
use traces, Lombardo and Lesmo (1998) do; and
while traces are commonly found in PST-based ap-
proaches, there are many that do not use them, such
as the c-structure of LFG.

Discontinuous Constituents or Non-Projectivity.
Both types of trees can be used with or without dis-
continuous constituents; PSTs are more likely to use
traces to avoid discontinuous constituents, but lin-
guistic proposals for PSTs with discontinuous con-
stituents have been made (work by McCawley, or
(Becker et al., 1991)).

Labeled Arcs. In DTs, arcs often have labels; arcs
in PSTs usually do not, but we can of course label
PST arcs as well, as is done in the German TIGER
corpus.I note that in both DTs and PSTs we can rep-
resent the arc label as a feature on the daughter node,
or as a separate node.

3 Syntactic Content

While there is lots of disagreement about the proper
representation type for syntax, there is actually a
broad consensus among theoretical and descriptive
syntacticians of all persuasions about the range of
syntactic phenomena that exist. What exactly is this
content, then? It is not a theory-neutral representa-
tion of syntax (Section 4). Rather, it is the empirical
matter which linguistic theory attempts to represent
or explain. We cannot represent it without a theory,

but we can refer to it without a theory, using names
such as control constructions or transitive verb. In
the same manner, we use the word light and physi-
cists will agree on what the phenomenon is, but we
cannot represent light within a theory without choos-
ing a representation as either particles or wave.

Note that in linguistics, the terms dependency and
phrase structure refer to syntactic content, i.e., syn-
tactic facts we can represent. Syntactic depen-
dency is direct relation between words. Usually,
this relation is labeled (or typed), and is identical
to (or subsumes) the notion of grammatical func-
tion, which covers relations such as SUBJECT, OB-
JECT, TEMPORAL-ADJUNCT and so forth. Syn-
tactic phrase structure, also known as syntactic
constituency structure is recursive representation
using sets of one or more linguistic units (words
and empty strings), such that at each level, each
set (constituent) acts as a unit syntactically. Lin-
guistic phrase structure is most conveniently ex-
pressed in a phrase structure tree, while linguis-
tic dependency is most conveniently expressed in
a dependency tree. However, we can express the
same content in either type of tree! For exam-
ple, the English Penn Treebank (PTB) encodes the
predicate-argument structure of English using struc-
tural conventions and special nonterminal labels
(“dashtags”), such as NP-SBJ. And a dependency
tree represents constituency: each node can be in-
terpreted both as a preterminal node (X0) and as a
node heading a constituent containing all terminals
included in the subtree it heads (the XP). Of course,
what is more complex to encode in a DT are inter-
mediate projections, such as VP. I leave a fuller dis-
cussion aside for lack of space, but I claim that the
syntactic content which is expressed in intermediate
projections can also be expressed in a DT, through
the use of features and arc labels.

4 Syntactic Theory

The choice of representation type does not deter-
mine the representation for a given sentence. This
is obvious, but it needs to be repeated; I have heard
“What is the DT for this sentence?” one too many
times. There are many possible DTs and PSTs, pro-
posed by serious syntacticians, for even simple sen-

338



tences, even when the syntacticians agree on what
the syntactic content (a transitive verb with SVO or-
der, for example) of the analysis should be! What is
going on?

In order to make sense of this, we need a third player
in addition to the representation type and the con-
tent. This is the syntactic theory. A linguistic the-
ory chooses a representation type and then defines
a coherent mapping for a well-defined set of con-
tent to the chosen representation type. Here, “coher-
ent representation” means that the different choices
made for conceptually independent content are also
representationally independent, so that we can com-
pose representational choices. Note that a theory
can decide to omit some content; for example, we
can have a theory which does not distinguish raising
from control (the English PTB does not).

There are different types of syntactic theories. A
descriptive theory is an account of the syntax of
one language. Examples of descriptive grammars
include works such as Quirk for English, or the an-
notation manuals of monolingual treebanks, such
as (Marcus et al., 1994; Maamouri et al., 2003).
The annotation manual serves two purposes: it tells
the annotators how to represent a syntactic phe-
nomenon, and it tells the users of the treebank (us!)
how to interpret the annotation. A treebank without
manual is meaningless. And an arborescent struc-
ture does not mean the same thing in all treebanks
(for example, a “flat NP” indicates an unannotated
constituent in the English ATB but a fully annotated
construction in the Arabic Treebank is).

An explanatory theory is a theory which attempts
to account for the syntax of all languages, for exam-
ple by reducing their diversity to a set of principles
and finite-valued parameters. Linguistic theories
(and explanatory theories in particular) often take
the form of a one-to-many mapping from a simple
representation of syntactic dependency (predicate-
argument structure) to a structural representation
that determines surface word order. The linguistic
theory itself is formulated as a (computational) de-
vice that relates the deeper level to the more surfacy
level. LFG has a very pure expression of this ap-
proach, with the deeper level expressed using a DT
(actually, dependency directed acyclic graphs, but
the distinction is not relevant here), and the surfacy

level expressed using a PST. But the Chomskyan ap-
proaches fit the same paradigm, as do many other
theories of syntax.

Therefore, there is no theory-neutral representation
of a sentence or a set of sentences, because every
representation needs a theory for us to extract its
meaning! Often what is meant by “theory-neutral
tree” is a tree which is interpreted using some no-
tion of consensus theory, perhaps a stripped-down
representation which omits much content for which
there is no consensus on how to represent it.

5 Converting Between DTs and PSTs

Converting a set of DS annotations to PS or vice
versa means that we want to obtain a representa-
tion which expresses exactly the same content. This
is frequently done these days as interest in depen-
dency parsing grows but many languages only have
PS treebanks. However, this process is often not un-
derstood.

To start, I observe that uninterpreted structures (i.e.,
structures without a syntactic theory, or trees from
a treebank without a manual) cannot be converted
from or into, as we do not know what they mean
and we cannot know if we are preserving the same
content or not.

Now, my central claim about the possibility of au-
tomatically converting between PSTs and DTs is the
following. If we have an interpretation for the source
representation and the goal representation (as we
must in order for this task to be meaningful), then
we can convert any facts that are represented in the
source structure, and we cannot convert any facts
that are not represented in the source structure. It
is that simple. If we are converting from a source
which contains less information than the target, then
we cannot succeed. For example, if we are convert-
ing from a PS treebank that does not distinguish par-
ticles from prepositions to a DS treebank that does,
then we will fail. General claims about the possi-
bility of conversion (“it is easier to convert PS to
DS than DS to PS”) are therefore meaningless. It
only matters what is represented, not how it is rep-
resented.

There is, however, no guarantee that there is a sim-
ple algorithm for conversion, such as a parametrized

339



head percolation algorithm passed down from re-
searcher to researcher like a sorcerer’s incantation.
In general, if the two representations are indepen-
dently devised and both are linguistically motivated,
then we have no reason to believe that the conversion
can be done using a specific simple approach, or us-
ing conversion rules which have some fixed property
(say, the depth of the trees in the rules templates). In
the general case, the only way to write an automatic
converter between two representations is to study the
two annotation manuals and to create a case-by-case
converter, covering all linguistic phenomena repre-
sented in the target representation.

Machine learning-based conversion (for example,
(Xia and Palmer, 2001)) is an interesting exercise,
but it does not give us any general insights into de-
pendency or phrase structure. Suppose the source
contains all the information that the target should
contain. Then if machine learning-based conversion
fails or does not perform completely correctly, the
exercise merely shows that the machine learning is
not adequate. Now suppose that the source does
not contain all the information that the target should
contain. Then no fancy machine learning can ever
provide a completely correct conversion. Also, note
that unlike, for example, parsers which are based
on machine learning and which learn about a natu-
ral phenomenon (language use), machine learning of
conversion merely learns an artificial phenomenon:
the relation between the two syntactic theories in
question, which are created by researchers. (Of
course, in practice, machine learning of automatic
conversion between DT to PSTs is useful.)

6 Conclusion

I have argued that when talking about dependency
and phrase structure representations, one should al-
ways distinguish the type of representation (depen-
dency or phrase structure) from the content of the
representation, and one needs to understand (and
make explicit if it is implicit) the linguistic the-
ory that relates content to representation. Machine
learning researchers have the luxury of treating syn-
tactic representations as mere fodder for their mills;
we as computational linguists do not, since this is
our area of expertise.

Acknowledgments

I would like to thank my colleagues on the Hindi-
Urdu treebank project (Bhatt et al., 2009) (NSF
grant CNS-0751089) for spirited discussions about
the issues discussed here. I would like to thank Syl-
vain Kahane, Yoav Goldberg, and Joakim Nivre for
comments that have helped me improve this paper.
The expressed opinions have been influenced by far
too many people to thank individually here.

References

Tilman Becker, Aravind Joshi, and Owen Rambow.
1991. Long distance scrambling and tree adjoining gram-
mars. In Fifth Conference of the European Chapter of the
Association for Computational Linguistics (EACL’91),
pages 21–26. ACL.
Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Sharma, and Fei Xia. 2009.
A multi-representational and multi-layered treebank for
hindi/urdu. In Proceedings of the Third Linguistic Anno-
tation Workshop, pages 186–189, Suntec, Singapore.
Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan
Sag. 1985. Generalized Phrase Structure Grammar.
Harvard University Press, Cambridge, Mass.
Vincenzo Lombardo and Leonardo Lesmo. 1998. For-
mal aspects and parsing issue of dependency theory. In
36th Meeting of the Association for Computational Lin-
guistics and 17th International Conference on Compu-
tational Linguistics (COLING-ACL’98), pages 787–793,
Montréal, Canada.
Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim
Buckwalter. 2003. Arabic treebank: Part 1 v 2.0. Dis-
tributed by the Linguistic Data Consortium. LDC Cata-
log No.: LDC2003T06.
Mohamed Maamouri, Ann Bies, and Tim Buckwalter.
2004. The Penn Arabic Treebank: Building a large-
scale annotated arabic corpus. In NEMLAR Conference
on Arabic Language Resources and Tools, Cairo, Egypt.
M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating predicate argu-
ment structure. In Proceedings of the ARPA Human Lan-
guage Technology Workshop.
Igor A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press, New York.
P. Sgall, E. Hajičová, and J. Panevová. 1986. The mean-
ing of the sentence and its semantic and pragmatic as-
pects. Reidel, Dordrecht.
Fei Xia and Martha Palmer. 2001. Converting depen-
dency structure to phrase structures. In hlt2001, pages
61–65.

340


