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Abstract

We present a Gaussian Mixture model for de-
tecting different types of figurative language
in context. We show that this model performs
well when the parameters are estimated in an
unsupervised fashion using EM. Performance
can be improved further by estimating the pa-
rameters from a small annotated data set.

1 Introduction

Figurative language employs words in a way that de-
viates from their normal meaning. It includes id-
iomatic usage, metaphor, metonymy or other types
of creative language. Being able to detect figurative
language is important for a number of NLP applica-
tions, e.g., machine translation.

Simply checking the input against an idiom dic-
tionary does not solve the problem. While some
expressions (e.g., trip the light fantastic) are al-
ways used idiomatically, many expressions (e.g.,
spill the beans), can take on a literal meaning as
well. Whether such expression is used idiomatically
or not has to be inferred from the discourse context.
Likewise, simple dictionary look-up would not work
for truly creative, one-off usages; these can neither
be found in a dictionary nor can they be detected
by standard idiom extraction methods, which apply
statistical measures to accumulated corpus evidence
for an expression to assess its ’idiomaticity’. An ex-
ample of a fairly creative usage can be found in (1),
which is a variation of the idiom put a sock in.
(1) Take the sock out of your mouth and create a

brand-new relationship with your mom.

We propose a method for detecting figurative lan-
guage in context. Because we use context informa-
tion rather than corpus statistics, our approach works
also for truly creative usages.

2 Related Work

Most studies on the detection of idioms and other
types of figurative language focus on one of three
aspects: type-based extraction (detect idioms on the
type level), token-based classification (given a po-
tentially idiomatic phrase in context, decide whether
it is used idiomatically), token-based detection (de-
tect figurative expressions in running text).

Type-based extractions exploit the fact that idioms
have many properties which differentiate them from
other expressions, e.g., they often exhibit a degree of
syntactic and lexical fixedness. These properties can
be used to identify potential idioms, for instance, by
employing measures of association strength between
the elements of an expression (Lin, 1999).

Type-based approaches are unsuitable for expres-
sions which can be used both figuratively and lit-
erally. These have to be disambiguated in context.
Token-based classification aims to do this. A num-
ber of token-based approaches have been proposed:
supervised (Katz and Giesbrecht, 2006), weakly su-
pervised (Birke and Sarkar, 2006), and unsupervised
(Fazly et al., 2009; Sporleder and Li, 2009).

Finally, token-based detection can be viewed
as a two stage task which is the combination of
type-based extraction and token-based classifica-
tion. There has been relatively little work on this so
far. One exception are Fazly et al. (2009) who detect
idiom types by using statistical methods that model
the general idiomaticity of an expression and then
combine this with a simple second-stage process that
detects whether the target expression is used figura-
tively in a given context, based on whether the ex-
pression occurs in canonical form or not.

However, modeling token-based detection as a
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combination of type-based extraction and token-
based classification has some drawbacks. First,
type-based approaches typically compute statistics
from multiple occurrences of a target expression,
hence they cannot be applied to novel usages. Sec-
ond, these methods were developed to detect figu-
ratively used multi-word expressions (MWEs) and
do not work for figuratively used individual words,
like sparrow in example (2). Ideally, one would like
to have a generic model that can detect any type of
figurative usage in a given context. The model we
propose in this paper is one step in this direction.

(2) During the Iraq war, he was a sparrow; he
didn’t condone the bloodshed but wasn’t both-
ered enough to go out and protest.

3 Using Gaussian Mixture Model to Detect
Figurative Language

We address the problem by using Gaussian Mix-
ture Models (GMMs). We assume that the literal
(l) and non-literal (n) data are generated by two dif-
ferent Gaussians (literal and nonliteral Gaussian).
The token-based detection task is done by compar-
ing which Gaussian has the higher probability of
generating a specific instance.

The Gaussian mixture model is defined as:

p(x) =
∑

c∈{l,n}

wc ×N(x|µc,Σc)

Where, c is the category of the Gaussian, µc is the
mean, Σc is the covariance matrix, and wc is the
Gaussian weight.

Our method is based on the insight that figura-
tive language exhibits less semantic cohesive ties
with the context than literal language (Sporleder and
Li, 2009). We use Normalized Google Distance to
model semantic relatedness (Cilibrasi and Vitanyi,
2007) and represent the data by five types of seman-
tic relatedness features x = (x1, x2, x3, x4, x5):
x1 is the average relatedness between the target

expression and context words,

x1 =
2

|T | × |C|
∑

(wi,cj)∈T×C

relatedness(wi, cj)

where wi is a component word of the target expres-
sion (T); cj is one of the context words (C); |T | is
the total number of words in the target expression,
and |C| is the total number of words in the context.

The term 2
|T |×|C| is the normalization factor, which

is the total number of relatedness pairs between tar-
get component words and context words.
x2 is the average semantic relatedness in the con-

text of the target expression,

x2 =
1(
|C|
2

) ∑
(ci,cj)∈C×C,i6=j

relatedness(ci, cj)

x3 is the difference between the average seman-
tic relatedness between the target expression and the
context words and the average semantic relatedness
of the context (i.e., x3 = x1− x2). It is an indicator
of how strongly the target expression is semantically
related to the discourse context.
x4 is the feature used by Sporleder and Li (2009)

for predicting literal or idiomatic use in the cohesion
graph based method,

x4 =
{

1 if x3 < 0
0 else

x5 is a high dimensional vector which represents
the top relatedness scores between the component
words of the target expression and the context,

x5(k) = max
(wi,cj)∈T×C

(k, {relatedness(wi, cj)})

where the function max(k,A) is defined to choose
the kth highest element from the set A.1

The detection task is done by a Bayes decision
rule, which chooses the category by maximizing the
probability of fitting the data into the different Gaus-
sian components:

c(x) = arg max
i∈{l,n}

{wi ×N(x|µi,Σi)}

4 Evaluating the GMM Approach

4.1 Data

We evaluate our method on two data sets. The
first set (idiom set) is taken from Sporleder and Li
(2009) and consists of 3964 idiom occurrences (17
idiom types) which were manually labeled as ’lit-
eral’ or ’figurative’. The second data set (V+NP
set), consists of a randomly selected sample of
500 V+NP constructions from the Gigaword corpus,
which were manually labeled.

To determine how well our model deals with dif-
ferent types of figurative usage, we distinguish four
phenomena: Phrase-level figurative means that the

1We set k to be 100 in our experiment.
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whole phrase is used figuratively. We further divide
this class into expressions which are potentially am-
biguous between literal and figurative usage (nsa),
e.g., spill the beans, and those that are unambigu-
ously figurative irrespective of the context (nsu),
e.g., trip the light fantastic. The latter can, theoreti-
cally, be detected by dictionary look-up, the former
cannot. The label token-level figurative (nw) is used
when part of the phrase is used figuratively (e.g.,
sparrow in (2)). Often it is difficult to determine
whether a word is still used in a ’literal’ sense or
whether it is already used figuratively. Since we are
interested in improving the performance of NLP ap-
plications such as MT, we take a pragmatic approach
and classify usages as ’figurative’ if they are not lex-
icalized, i.e., if the specific sense is not listed in a
dictionary.2 For example, we would classify summit
in the ’meeting’ sense as ’literal’ (l). In our data set,
7.3% of the instances were annotated as ’nsa’, 1.9%
as ’nsu’, 9.2% as ’nw’ and 81.5% as ’l’. A randomly
selected sample (100 instances) was annotated inde-
pendently by a second annotator. The kappa score
(Cohen, 1960) is 0.84, which suggest that the anno-
tations are reliable.

4.2 GMM Estimated by EM

We used the MatLab package provided by Cali-
non (2009) for estimating the GMM model. The
GMM is trained by the EM algorithm. The pri-
ors of Gaussian components, means and covariance
of each components, are initialized by the k-means
clustering algorithm (Hartigan, 1975).

To determine whether the GMM is able to per-
form token-based idiom classification, we applied
it to the idiom data set. The results (see Table 1)
show that the GMM can distinguish usages quite
well and gains equally good results as Sporleder and
Li’s cohesion graph method (Co-Graph). In addi-
tion, this method can deal with unobserved occur-
rences of non-literal language.

Table 2 shows the results on the second data set.
The baseline predicts ’idiomatic’ and ’literal’ ac-
cording to a biased probability which is based on the
true distribution in the annotated set. GMM shows
the performance on the whole V+NP set. We also
split the test set into three different subsets to de-

2We used http://www.askoxford.com.

Model C Pre. Rec. F-S. Acc.

Co-Graph
n 90.55 80.66 85.32

78.38
l 50.04 69.72 58.26

GMM
n 90.69 80.66 85.38

78.39
l 50.17 70.15 58.50

Table 1: Results on the idiom data set, n(on-literal) is the
union of the predefined three sub-classes (nsu, nsa, nw),
l(iteral), Acc(uracy), Pre(cision), Rec(all), F-S(core)

Model C Pre. Rec. F-S. Acc.

Baseline n 21.79 22.67 22.22 71.87l 83.19 82.47 82.83

Co-Graph n 37.29 84.62 51.76 70.92l 95.12 67.83 79.19

GMM n 40.71 73.08 52.29 75.41l 92.58 75.94 83.44

GMM{nsu,l} n 8.79 1.00 16.16 76.49l 1.00 75.94 86.33

GMM{nsa,l} n 22.43 77.42 34.78 76.06l 97.40 75.94 85.34

GMM{nw,l} n 23.15 64.10 34.01 74.74l 94.93 75.94 84.38

Table 2: Results on the V+NP data set, Gaussian compo-
nent parameters estimated by EM

termine how the GMM performs on distinguishing
literal usage from the different types of figurative us-
age: GMM{nsu, l}, GMM{nsa, l}, GMM{nw, l}.

The unsupervised GMM model beats the base-
line and achieves good results on the V+NP data set.
It also outperforms the Co-Graph approach, which
suggests that the statistical model, GMM, is more
likely to boost the performance by capturing statisti-
cal properties of the data for more difficult cases (id-
ioms vs. general figurative usages), compared with
the Co-Graph approach.

In conclusion, the model is not only able to clas-
sify idiomatic expressions but also to detect new fig-
urative expressions. However, the performance on
the second data set is worse compared with run-
ning the same model on the idiom data set. This
is because the V+NP data set contains more diffi-
cult examples, e.g., expressions which are only par-
tially figurative (e.g., (2)). One would expect the
literal part of the expression to exhibit cohesive ties
with the context, hence the cohesion based features
may fail to detect this type of figurative usage. Con-
sequently the performance of the GMM is lower
for figuratively used words (’nw’) than for idioms
(’nsa’, ’nsu’). However, even for ’nw’ cases the
model still obtains a relatively high accuracy.
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4.3 GMM estimated from Annotated Data
In a second experiment, we tested how well the
GMM performs when utilizing the annotated idiom
data set to estimate the two Gaussian components in-
stead of using EM. We give equal weights to the two
Gaussian components and predict the label on the
V+NP data set by fixing the mixture model which
is estimated from the training set (GMM+f). This
method further improves the performance compared
to the unsupervised approach (Table 3).

We also experimented with setting a threshold and
abstaining from making a prediction when the prob-
ability of an instance belonging to the Gaussian is
below the threshold (GMM+f+s). Table 3 shows
the performance when only evaluating on the subset
for which a classification was made. It can be seen
that the accuracy and the overall performance on the
literal class improve, but the precision for the non-
literal class remains relatively low, i.e., many literal
instances are still misclassified as ’non-literal’. One
reason for this may be that there are a few instances
containing named entities, which exhibit weak co-
hesive ties with the context even if though they are
used literally. Using a named-entity tagger before
applying the GMM might solve the problem.

Model C Pre. Rec. F-S. Acc.

GMM+f n 42.22 73.08 53.52 76.60l 92.71 77.39 84.36

GMM+f+s n 41.38 54.55 47.06 83.44l 92.54 87.94 90.18

Table 3: Results on the V+NP data set, Gaussian compo-
nent parameters estimated by annotated data

Finally, Table 4 shows the result when using dif-
ferent idioms to generate the nonliteral Gaussian.
The literal Gaussian can be generated from the au-
tomatically obtained nonliteral examples by Li and
Sporleder (2009). We found the estimation of the
GMM is not sensitive to idioms; our model is robust
and can use any existing idiom data to discover new
figurative expressions. Furthermore, Table 4 also
shows that the GMM does not need a large amount
of annotated data for parameter estimation. A few
hundred instances are sufficient.

5 Conclusion

We described a GMM based approach for detecting
figurative expressions. This method not only works

Train (size) C Pre. Rec. F-S. Acc.
bite one’s tongue n 40.79 79.49 53.91 74.94(166) l 94.10 73.91 82.79

break the ice n 39.05 52.56 44.81 76.12(541) l 88.36 81.45 84.77

Table 4: Results on the V+NP dataset, Gaussian compo-
nent parameters estimated on different idioms

for distinguishing literal and non-literal usages of a
potential idiomatic expression in a discourse con-
text, but also discovers new figurative expressions.

The components of the GMM can be effectively
estimated using the EM algorithm. The performance
can be further improved when employing an anno-
tated data set for parameter estimation. Our results
show that the estimation of Gaussian components
are not idiom-dependent. Furthermore, a small an-
notated data set is enough to obtain good results.
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