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Abstract

My research is focused on developing ma-
chine learning algorithms for inferring de-
pendency parsers from language data. By
investigating several approaches I have
developed a unifying perspective that al-
lows me to share advances between both
probabilistic and non-probabilistic meth-
ods. First, I describe a generative tech-
nique that uses a strictly lexicalised pars-
ing model, where all the parameters are
based on words and do not use any part-
of-speech (POS) tags nor grammatical cat-
egories. Then, I incorporate two ideas
from probabilistic parsing—word similar-
ity smoothing and local estimation—to
improve the large margin approach. Fi-
nally, I present a simpler and more ef-
ficient approach to training dependency
parsers by applying a boosting-like proce-
dure to standard training methods.

1 Introduction

Over the past decade, there has been tremendous
progress on learning parsing models from treebank
data (Magerman, 1995; Collins, 1999; Charniak,
1997; Ratnaparkhi, 1999; Charniak, 2000; Wang
et al., 2005; McDonald et al., 2005). Most of the
early work in this area was based on postulating
generative probability models of language that in-
cluded parse structures (Magerman, 1995; Collins,
1997; Charniak, 1997). Learning in this context
consisted of estimating the parameters of the model
with simple likelihood based techniques, but incor-
porating various smoothing and back-off estimation

tricks to cope with the sparse data problems (Collins,
1997; Bikel, 2004). Subsequent research began to
focus more on conditional models of parse structure
given the input sentence, which allowed discrimi-
native training techniques such as maximum con-
ditional likelihood (i.e. “maximum entropy”) to be
applied (Ratnaparkhi, 1999; Charniak, 2000). Cur-
rently, the work on conditional parsing models ap-
pears to have culminated in large margin training
approaches (Taskar et al., 2004; McDonald et al.,
2005), which demonstrates the state of the art per-
formance in English dependency parsing.

Despite the realization that maximum margin
training is closely related to maximum conditional
likelihood for conditional models (McDonald et
al., 2005), a sufficiently unified view has not yet
been achieved that permits the easy exchange of
improvements between the probabilistic and non-
probabilistic approaches. For example, smoothing
methods have played a central role in probabilistic
approaches (Collins, 1997; Wang et al., 2005), and
yet they are not being used in current large margin
training algorithms. Another unexploited connec-
tion is that probabilistic approaches pay closer at-
tention to the individual errors made by each compo-
nent of a parse, whereas the training error minimized
in the large margin approach—the “structured mar-
gin loss” (McDonald et al., 2005)—is a coarse mea-
sure that only assesses the total error of an entire
parse rather than focusing on the error of any par-
ticular component. I have addressed both of these
issues, as well as others in my work.

2 Dependency Parsing Model

Given a sentence
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, I consider the
problem of computing an accurate directed depen-
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dency tree, � , over
�

. Note that � consists of or-
dered pairs of words

�������������
in

�
such that each

word appears in at least one pair and each word has
in-degree at most one. Dependency trees are usually
assumed to be projective (no crossing arcs), which
means that if there is an arc

�������������
, then

���
is

an ancestor of all the words between
���

and
���

. Let��� �!�
denote the set of all the directed, projective

trees that span
�

.
From an input sentence

�
, one would like to be

able to compute the best parse; that is, a projective
tree, �#" ��� �!�

, that obtains the highest “score”. In
particular, I follow Eisner (1996) and McDonald et
al. (2005) and assume that the score of a complete
spanning tree � for a given sentence, whether prob-
abilistically motivated or not, can be decomposed as
a sum of local scores for each link (a word pair). In
which case, the parsing problem reduces to
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where the score s
��� � � � � �

can depend on any
measurable property of

���
and

���
within the tree� . This formulation is sufficiently general to capture

most dependency parsing models, including proba-
bilistic dependency models (Wang et al., 2005; Eis-
ner, 1996) as well as non-probabilistic models (Mc-
Donald et al., 2005; Wang et al., 2006).

For the purpose of learning, the score of each link
can be expressed as a weighted linear combination
of features

s
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where
E

are the weight parameters to be estimated
during training.

3 Lexicalised Dependency Parsing

To learn an accurate dependency parser from data,
the first approach I investigated is based on a strictly
lexical parsing model where all the parameters are
based on words (Wang et al., 2005). The advantage
of this approach is that it does not rely on part-of-
speech tags nor grammatical categories. Further-
more, I based training on maximizing the condi-
tional probability of a parse tree given a sentence,
unlike most previous generative models (Magerman,
1995; Collins, 1997; Charniak, 1997), which focus

on maximizing the joint probability of the parse tree
and the sentence.

An efficient training algorithm can be achieved
by maximizing the conditional probability of each
parsing decision, hence minimizing a loss based
on each local link decision independently. Impor-
tantly, inter-dependence between links can still be
accommodated by exploiting dynamic features in
training—features that take into account the labels
of (some) of the surrounding components when pre-
dicting the label of a target component. To cope
with the sparse data problem, I use distributional
word similarity (Pereira et al., 1993; Grefenstette,
1994; Lin, 1998) to generalize the observed fre-
quency counts in the training corpus. The exper-
imental results on the Chinese Treebank 4.0 show
that the accuracy of the conditional model is 13.6%
higher than corresponding joint models, while sim-
ilarity smoothing also allows the strictly lexicalised
approach to outperform corresponding models based
on part-of-speech tags.

4 Extensions to Large Margin Parsing

The approach presented above has a limitation: it
uses a local scoring function instead of a global scor-
ing function to compute the score for a candidate
tree. The structured large margin approach, on the
other hand, uses a global scoring function by mini-
mizing a training loss—the “structured margin loss”
(McDonald et al., 2005)—which is directly coordi-
nated with the global tree. However, the training
error minimized in the large margin approach is a
coarse measure that only assesses the total error of
an entire parse rather than focusing on the error of
any particular component. Also, smoothing meth-
ods, which have been widely used in probabilistic
approaches, are not currently being used in large
margin training algorithms. In the second approach,
I improve structured large margin training for pars-
ing in two ways (Wang et al., 2006). First, I incor-
porate local constraints that enforce the correctness
of each individual link, rather than just scoring the
global parse tree. Second, to cope with sparse data
and generalize to unseen words, I smooth the lexical
parameters according to their underlying word sim-
ilarities. To smooth parameters in the large margin
framework, I introduce the technique of Laplacian
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regularization in large margin parsing. Finally, to
demonstrate the benefits of my approach, I recon-
sider the problem of parsing Chinese treebank data
using only lexical features, as in Section 3. My re-
sults improve current large margin approaches and
show that similarity smoothing combined with local
constraint enforcement leads to state of the art per-
formance, while only requiring word-based features
that do not rely on part-of-speech tags nor grammat-
ical categories in any way.

5 Training via Structured Boosting

Finally, I have recently demonstrated the somewhat
surprising result that state of the art dependency
parsing performance can be achieved through the
use of conventional, local classification methods. In
particular, I show how a simple form of structured
boosting can be used to improve the training of stan-
dard local classification methods, in the context of
structured predictions, without modifying the under-
lying training method (Wang et al., 2007). The ad-
vantage of this approach is that one can use off-the-
shelf classification techniques, such as support vec-
tor machines or logistic regression, to achieve com-
petitive parsing results with little additional effort.

The idea behind structured boosting is very sim-
ple. To produce an accurate parsing model, one
combines the local predictions of multiple weak pre-
dictors to obtain a score for each link, which a parser
can then use to compute the maximum score tree for
a given sentence. Structured boosting proceeds in
rounds. On each round a local “link predictor” is
trained merely to predict the existence and orienta-
tion of a link between two words given input fea-
tures encoding context—without worrying about co-
ordinating the predictions in a coherent global parse.
Once a weak predictor is learned, it is added to the
ensemble of weak hypotheses, the training corpus
is re-parsed using the new predictor, and the local
training contexts are re-weighted based on errors
made by the parser’s output. Thus, a wrapper ap-
proach is used to successively modify the training
data so that the training algorithm is encouraged to
facilitate improved global parsing accuracy.

Table 1: Comparison with State of the Art (Depen-
dency Accuracy)

Model Chinese English
Yamada&Matsumoto 03 - 90.3

Nivre&Scholz 04 - 87.3
Wang et al. 05 (Sec. 3) 79.9* -

McDonald et al. 05 - 90.9
McDonald&Pereira 06 82.5* 91.5
Corston-Oliver et al. 06 73.3 K 90.8

Structured 86.6* 89.3
Boosting (Sec. 5) 77.6 KL

Obtained with Chinese Treebank 4.0 using the data split re-
ported in Wang et al. (2005).M

Obtained with Chinese Treebank 5.0 using the data split re-
ported in Corston-Olivr et al. (2006).

6 Current Results

Table 1 compares my results1 with those obtained
by other researchers, on both English and Chinese
data.2 The English results are obtained using the
same standard training and test set splits from En-
glish Penn Treebank 3.0. The results on Chinese are
obtained on two different data sets, Chinese Tree-
bank 4.0 and Chinese Treebank 5.0 as noted.3

Table 1 shows that the results I am able to achieve
on English are competitive with the state of the art,
but are still behind the best results of (McDonald
and Pereira, 2006). However, perhaps surprisingly,
Table 1 also shows that the structured boosting ap-
proach actually surpasses state of the art accuracy on
Chinese parsing for both treebank collections.

7 Future Work

Although the three pieces of my work above look
very different superficially, they are actually closely
related by the “scoring” formulation and, more

1I did not include the results of the technique described in
Section 4, because we were only able to conveniently train on
sentences with less than or equal to 15 words.

2McDonald et al. (2005) have tried MIRA on Chinese Tree-
bank 4.0 with the same data split reported here, obtaining a
dependency accuracy score of 82.5 (Ryan McDonald, personal
communication).

3The results on Chinese Treebank 5.0 are generally worse
than on Chinese Treebank 4.0, since the former is a superset of
the latter, and moreover the additional sentences come entirely
from a Taiwanese Chinese source that is more difficult to parse
than the rest of the data.

7



specifically, by the equations introduced in Sec-
tion 2. In other words, they all compute a linear
classifier.4 The only differences among them are:
(1) What features are used? (2) How are the param-
eters

E
estimated?

A general perspective I bring to my investigation
is the desire to delineate the effects of domain en-
gineering (choosing good features for representing
and learning parsing models) from the general ma-
chine learning principles (training criteria, regular-
ization and smoothing techniques) that permit good
results. In fact, combined features have been proved
to be useful in dependency parsing with support vec-
tor machines (Yamada and Matsumoto, 2003), and
I have already obtained some preliminary results on
generating useful feature combinations via boosting.
Therefore, I will consider combining all the projects
I presented above. That is, I plan to incorporate all
the useful features, the morphological features and
the combined features as discussed above, into the
training algorithms presented in Section 4 or Sec-
tion 5, to train a dependency parser globally. Then
I am going to augment the training with the exist-
ing smoothing and regularization techniques (as de-
scribed in Section 4), or new developed ones. I ex-
pect the resulting parser to have better performance
than those I have presented above.

There are a lot of other ideas which can be ex-
plored in my future work. First and most important,
I plan to investigate new advanced machine learning
methods (e.g., structured boosting or unsupervised
/ semi-supervised algorithms (Xu et al., 2006)) and
apply them to the dependency parsing problem gen-
erally, since the goal of my research is to learn nat-
ural language parsers in an elegant and principled
manner. Next, I am going to apply my approaches
to parse other languages, such as Czech, German,
Spanish and French, and analyze the performance
of my parsers on these different languages. Further-
more, I plan to apply my parsers in other domains
(e.g., biomedical data) (Blitzer et al., 2006) besides
treebank data, to investigate the effectiveness and
generality of my approaches.

4In general, for any probabilistic model, the product of prob-
abilities can be converted to sums of scores in the log space,
which makes the search identical to a score based discrimina-
tive model.
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