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Abstract

We explore the problem of retrieving
semi-structured documents from a real-
world collection using a structured query.
We formally develop Structured Rele-
vance Models (SRM), a retrieval model
that is based on the idea that plausible
values for a given field could be inferred
from the context provided by the other
fields in the record. We then carry out a
set of experiments using a snapshot of the
National Science Digital Library (NSDL)
repository, and queries that only mention
fields missing from the test data. For such
queries, typical field matching would re-
trieve no documents at all. In contrast, the
SRM approach achieves a mean average
precision of over twenty percent.

1 Introduction

This study investigates information retrieval on
semi-structured information, where documents con-
sist of several textual fields that can be queried in-
dependently. If documents containedsubjectand
author fields, for example, we would expect to see
queries looking for documents abouttheory of rela-
tivity by the authorEinstein.

This setting suggests exploring the issue of inex-
act match—isspecial theory of relativityrelevant?—
that has been explored elsewhere (Cohen, 2000).
Our interest is in an extreme case of that problem,
where the content of a field is not corrupted or in-

correct, but is actually absent. We wish to find rele-
vant information in response to a query such as the
one above even if a relevant document is completely
missing thesubjectandauthorfields.

Our research is motivated by the challenges we
encountered in working with the National Science
Digital Library (NSDL) collection.1 Each item in
the collection is a scientific resource, such as a re-
search paper, an educational video, or perhaps an
entire website. In addition to its main content, each
resource is annotated withmetadata, which provides
information such as the author or creator of the re-
source, its subject area, format (text/image/video)
and intended audience – in all over 90 distinct fields
(though some are very related). Making use of such
extensive metadata in a digital library paves the way
for constructing highly-focused models of the user’s
information need. These models have the potential
to dramatically improve the user experience in tar-
geted applications, such as the NSDL portals. To
illustrate this point, suppose that we are running
an educational portal targeted at elementary school
teachers, and some user requests teaching aids for
an introductory class on gravity. An intelligent
search system would be able to translate the request
into a structured query that might look something
like: subject=’gravity’ AND audience=’grades 1-4’
AND format=’image,video’ AND rights=’free-for-
academic-use’. Such a query can be efficiently an-
swered by a relational database system.

Unfortunately, using a relational engine to query a
semi-structured collection similar to NSDL will run
into a number of obstacles. The simplest problem is

1http://www.nsdl.org
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that natural language fields are filled inconsistently:
e.g., theaudiencefield contains values such asK-
4, K-6, second grade, andlearner, all of which are
clearly semantically related.

A larger problem, and the one we focus on in this
study, is that of missing fields. For example 24%
of the items in the NSDL collection have no sub-
ject field, 30% are missing the author information,
and over 96% mention no target audience (reading
level). This means that a relational query for ele-
mentary school material will consider at most 4% of
all potentially relevant resources in the NSDL col-
lection.2

The goal of our work is to introduce a retrieval
model that will be capable of answering complex
structured queries over a semi-structured collection
with corrupt and missing field values. This study
focuses on the latter problem, an extreme version
of the former. Our approach is to use a generative
model to compute how plausible a word would ap-
pear in a record’s empty field given the context pro-
vided by the other fields in the record.

The remainder of this paper is organized as fol-
lows. We survey previous attempts at handling semi-
structured data in section 2. Section 3 will provide
the details of our approach, starting with a high-level
view, then providing a mathematical framework, and
concluding with implementation details. Section 4
will present an extensive evaluation of our model on
the large set of queries over the NSDL collection.
We will summarize our results and suggest direc-
tions for future research in Section 5.

2 Related work

The issue of missing field values is addressed in a
number of recent publications straddling the areas of
relational databases and machine learning. In most
cases, researchers introduce a statistical model for
predicting the value of a missing attribute or relation,
based on observed values. Friedman et al (1999) in-
troduce a technique called Probabilistic Relational
Models (PRM) for automatically learning the struc-
ture of dependencies in a relational database. Taskar

2Some of the NSDL metadata fields overlap substantially in
meaning, so it might be argued that the overlapping fields will
cover the collection better. Under the broadest possible inter-
pretation of field meanings, more than 7% of the documents
still contain no subject and 95% still contain no audience field.

et al (2001) demonstrate how PRM can be used to
predict the category of a given research paper and
show that categorization accuracy can be substan-
tially improved by leveraging the relational structure
of the data. Heckerman et al (2004) introduce the
Probabilistic Entity Relationship (PER) model as an
extension of PRM that treats relations between enti-
ties as objects. Neville at al (2003) discuss predict-
ing binary labels in relational data using Relational
Probabilistic Trees (RPT). Using this method they
successfully predict whether a movie was a box of-
fice hit based on other movies that share some of
the properties (actors, directors, producers) with the
movie in question.

Our work differs from most of these approaches in
that we work with free-text fields, whereas database
researchers typically deal with closed-vocabulary
values, which exhibit neither the synonymy nor the
polysemy inherent in natural language expressions.
In addition, the goal of our work is different: we aim
for accuraterankingof records by their relevance to
the user’s query, whereas database research has typ-
ically focused onpredictingthe missing value.

Our work is related to a number of existing ap-
proaches to semi-structured text search. Desai et
al (1987) followed by Macleod (1991) proposed us-
ing the standard relational approach to searching
unstructured texts. The lack of an explicit rank-
ing function in their approaches was partially ad-
dressed by Blair (1988). Fuhr (1993) proposed the
use of Probabilistic Relational Algebra (PRA) over
the weights of individual term matches. Vasan-
thukumar et al (1996) developed a relational imple-
mentation of the inference network retrieval model.
A similar approach was taken by de Vries and
Wilschut (1999), who managed to improve the ef-
ficiency of the approach. De Fazio et al (1995) in-
tegrated IR and RDBMS technology using an ap-
proached called cooperative indexing. Cohen (2000)
describes WHIRL – a language that allows efficient
inexact matching of textual fields within SQL state-
ments. A number of relevant works are also pub-
lished in the proceedings of theINEX workshop.3

The main difference between these endeavors and
our work is that we are explicitly focusing on the
cases where parts of the structured data are missing

3http://inex.is.informatik.uni-duisburg.de/index.html
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or mis-labeled.

3 Structured Relevance Model

In this section we will provide a detailed description
of our approach to searching semi-structured data.
Before diving into the details of our model, we want
to clearly state the challenge we intend to address
with our system.

3.1 Task: finding relevant records

The aim of our system is to identify a set of
records relevant to a structured query provided by
the user. We assume the query specifies a set of
keywords for each field of interest to the user, for
exampleQ: subject=’physics,gravity’ AND audi-
ence=’grades 1-4’4. Each record in the database is
a set of natural-language descriptions for each field.
A record is considered relevant if itcould plausibly
be annotated with the query fields. For example, a
record clearly aimed at elementary school students
would be considered relevant toQ even if it does not
contain’grades 1-4’ in its description of the target
audience. In fact, our experiments will specifically
focus on finding relevant records that contain no di-
rect match to the specified query fields, explicitly
targeting the problem of missing data and inconsis-
tent schemata.

This task is not a typical IR task because the
fielded structure of the query is a critical aspect of
the processing, not one that is largely ignored in fa-
vor of pure content based retrieval. On the other
hand, the approach used is different from most DB
work because cross-field dependencies are a key
component of the technique. In addition, the task
is unusual for both communities because it consid-
ers an unusual case where the fields in the query do
not occur at all in the documents being searched.

3.2 Overview of the approach

Our approach is based on the idea that plausible val-
ues for a given field could be inferred from the con-
text provided by the other fields in the record. For
instance, a resource titled’Transductive SVMs’and
containing highly technical language in its descrip-
tion is unlikely to be aimed at elementary-school stu-

4For this paper we will focus on simple conjunctive queries.
Extending our model to more complex queries is reserved for
future research.

dents. In the following section we will describe a
statistical model that will allow us to guess the val-
ues of un-observed fields. At the intuitive level, the
model takes advantage of the fact that records sim-
ilar in one respect will often be similar in others.
For example, if two resources share the same author
and have similar titles, they are likely to be aimed at
the same audience. Formally, our model is based on
thegenerativeparadigm. We will describe a proba-
bilistic process that could be viewed, hypothetically,
as the source of every record in our collection. We
will assume that the query provided by our user is
also a sample from this generative process, albeit a
very short one. We will use the observed query fields
(e.g.audienceandsubject) to estimate the likely val-
ues for other fields, which would beplausiblein the
context of the observed subject and audience. The
distributions over plausible values will be calledrel-
evance models, since they are intended to mimic the
kind of record that might be relevant to the observed
query. Finally, all records in the database will be
ranked by their information-theoretic similarity to
these relevance models.

3.3 Definitions

We start with a set of definitions that will be used
through the remainder of this paper. LetC be a
collection of semi-structured records. Each record
w consists of a set of fieldsw1. . .wm. Each
field wi is a sequence of discrete variables (words)
wi,1. . .wi,ni , taking values in the field vocabulary
Vi.5 When a record contains no information for the
i’th field, we assumeni=0 for that record. A user’s
queryq takes the same representation as a record
in the database:q={qi,j∈Vi : i=1..m, j = 1..ni}.
We will usepi to denote alanguage modeloverVi,
i.e. a set of probabilitiespi(v)∈[0, 1], one for each
word v, obeying the constraintΣvpi(v) = 1. The
set of all possible language models overVi will be
denoted as the probability simplexIPi. We define
π : IP1×· · ·×IPm→[0, 1] to be a discrete measure
function that assigns a probability massπ(p1. . .pm)
to a set ofm language models, one for each of the
m fields present in our collection.

5We allow each field to have its own vocabularyVi, since we
generally do not expect author names to occur in the audience
field, etc. We also allowVi to share same words.

91



3.4 Generative Model

We will now present a generative process that will be
viewed as a hypothetical source that produced ev-
ery record in the collectionC. We stress that this
process is purely hypothetical; its only purpose is to
model the kinds of dependencies that are necessary
to achieve effective ranking of records in response to
the user’s query. We assume that each recordw in
the database is generated in the following manner:

1. Pickm distributionsp1. . .pm according toπ

2. For each fieldi = 1. . .m:

(a) Pick the lengthni of thei′th field of w
(b) Draw i.i.d. wordswi,1. . .wi,ni from pi

Under this process, the probability of observing a
record{wi,j : i=1..m, j=1..ni} is given by the fol-
lowing expression:

∫

IP1...IPm

[
m∏

i=1

ni∏
j=1

pi(wi,j)

]
π(p1. . .pm)dp1. . .dpm (1)

3.4.1 A generative measure function

The generative measure functionπ plays a critical
part in equation (1): it specifies the likelihood of us-
ing different combinations of language models in the
process of generatingw. We use a non-parametric
estimate forπ, which relies directly on the combi-
nations of language models that are observed in the
training part of the collection. Each training record
w1. . .wm corresponds to a unique combination of
language modelspw

1 . . .pw
m defined by the following

equation:

pw
i (v) =

#(v,wi) + µicv

ni + µi
(2)

Here#(v,wi) represents the number of times the
word v was observed in thei’th field of w, ni

is the length of thei’th field, and cv is the rela-
tive frequency ofv in the entire collection. Meta-
parametersµi allow us to control the amount of
smoothing applied to language models of different
fields; their values are set empirically on a held-out
portion of the data.

We defineπ(p1. . .pm) to have mass1
N when

its argumentp1. . .pm corresponds to one of theN

recordsw in the training partCt of our collection,
and zero otherwise:

π(p1. . .pm) =
1

N

∑
w∈Ct

m∏
i=1

1pi=pw
i

(3)

Herepw
i is the language model associated with the

training recordw (equation 2), and1x is the Boolean
indicator function that returns 1 when its predicatex
is true and zero when it is false.

3.4.2 Assumptions and limitations of the model

The generative model described in the previous
section treats each field in the record as abag of
words with no particular order. This representation
is often associated with the assumption ofword in-
dependence. We would like to stress that our model
does not assume word independence, on the con-
trary, it allows for strongun-ordereddependencies
among the words – both within a field, and across
different fields within a record. To illustrate this
point, suppose we letµi→0 in equation (2) to re-
duce the effects of smoothing. Now consider the
probability of observing the word’elementary’ in
the audience field together with the word’differen-
tial’ in the title (equation 1). It is easy to verify that
the probability will be non-zero only if some train-
ing recordw actually contained these words in their
respective fields – an unlikely event. On the other
hand, the probability of’elementary’and ’differen-
tial’ co-occurring in the same title might be consid-
erably higher.

While our model does not assume word indepen-
dence, it does ignore the relative ordering of the
words in each field. Consequently, the model will
fail whenever the order of words, or their proximity
within a field carries a semantic meaning. Finally,
our generative model does not capture dependencies
across different records in the collection, each record
is drawn independently according to equation (1).

3.5 Using the model for retrieval

In this section we will describe how the generative
model described above can be used to find database
records relevant to the structured query provided by
the user. We are given a structured queryq, and
a collection of records, partitioned into the training
portionCt and the testing portionCe. We will use
the training records to estimate a set ofrelevance
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records average unique
covered length words

title 655,673 (99%) 7 102,772
description 514,092 (78%) 38 189,136

subject 504,054 (77%) 12 37,385
content 91,779 (14%) 743 575,958

audience 22,963 (3.5%) 4 119

Table 1: Summary statistics for the five NSDL fields
used in our retrieval experiments.

modelsR1. . .Rm, intended to reflect the user’s in-
formation need. We will then rank testing records by
their divergence from these relevance models. A rel-
evanceRi(v) specifies how plausible it is that word
v would occur in thei’th field of a record, given
that the record contains a perfect match to the query
fieldsq1. . .qm:

Ri(v) =
P (q1. . .v◦qi. . .qm)

P (q1. . .qi. . .qm)
(4)

We usev◦qi to denote appending wordv to the
string qi. Both the numerator and the denomina-
tor are computed using equation (1). Once we have
computed relevance modelsRi for each of them
fields, we can rank testing recordsw′ by their sim-
ilarity to these relevance models. As a similarity
measure we use weighted cross-entropy, which is an
extension of the ranking formula originally proposed
by (Lafferty and Zhai, 2001):

H(R1..m;w1..m) =

m∑
i=1

αi

∑
v∈Vi

Ri(v) log pw
i (v) (5)

The outer summation goes over every field of inter-
est, while the inner extends over all the words in the
vocabulary of thei’th field. Ri are computed accord-
ing to equation (4), whilepw

i are estimated from
equation (2). Meta-parametersαi allow us to vary
the importance of different fields in the final rank-
ing; the values are selected on a held-out portion of
the data.

4 Experiments

4.1 Dataset and queries

We tested the performance of our model on a Jan-
uary 2005 snapshot of the National Science Digi-
tal Library repository. The snapshot contains a to-
tal of 656,992 records, spanning 92 distinct (though

sometimes related) fields.6Only 7 of these fields
are present in every record, and half the fields are
present in less than 1% of the records. An average
record contains only 17 of the 92 fields. Our experi-
ments focus on a subset of 5 fields (title, description,
subject, contentand audience). These fields were
selected for two reasons: (i) they occur frequently
enough to allow a meaningful evaluation and (ii)
they seem plausible to be included in a potential
query.7 Of these fields,title represents the title of the
resource,descriptionis a very brief abstract,content
is a more detailed description (but not the full con-
tent) of the resource,subjectis a library-like clas-
sification of the topic covered by the resource, and
audiencereflects the target reading level (e.g.ele-
mentary schoolor post-graduate). Summary statis-
tics for these fields are provided in Table 1.

The dataset was randomly split into three sub-
sets: thetraining set, which comprised 50% of the
records and was used for estimating the relevance
models as described in section 3.5; theheld-out set,
which comprised 25% of the data and was used to
tune the smoothing parametersµi and the bandwidth
parametersαi; and theevaluation set, which con-
tained 25% of the records and was used to evaluate
the performance of the tuned model8.

Our experiments are based on a set of 127 auto-
matically generated queries. We randomly split the
queries into two groups, 64 for training and 63 for
evaluation. The queries were constructed by com-
bining two randomly pickedsubjectwords with two
audiencewords, and then discarding any combi-
nation that had less than 10 exact matches in any
of the three subsets of our collection. This proce-
dure yields queries such asQ91={subject:’artificial
intelligence’ AND audience=’researchers’}, or
Q101={subject:’philosophy’ AND audience=’high
school’}.
4.2 Evaluation paradigm

We evaluate our model by its ability to find “rele-
vant” records in the face of missing values. We de-

6As of May 2006, the NSDL contains over 1.5 million doc-
uments.

7The most frequent NSDL fields (id, icon, url, link and 4
brandfields) seem unlikely to be used in user queries.

8In real use, typical pseudo relevance feedback scheme can
be followed: retrieve top-k documents to build relevance mod-
els then perform IR again on the same whole collection
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fine a recordw to be relevant to the user’s queryq
if every keyword inq is found in the corresponding
field of w. For example, in order to be relevant to
Q101 a record must contain the word‘philosophy’in
the subject field and words‘high’ and‘school’ in the
audience field. If either of the keywords is missing,
the record is considered non-relevant.9

When the testing records are fully observable,
achieving perfect retrieval accuracy is trivial: we
simply return all records that match all query key-
words in the subject and audience fields. As we
stated earlier, our main interest concerns the sce-
nario when parts of the testing data are missing. We
are going to simulate this scenario in a rather ex-
treme manner bycompletelyremoving thesubject
and audiencefields from all testing records. This
means that a straightforward approach – matching
query fields against record fields – will yield no rel-
evant results. Our approach will rank testing records
by comparing theirtitle, descriptionand content
fields against the query-based relevance models, as
discussed in section 3.5.

We will use the standard rank-based evaluation
metrics: precisionand recall. Let NR be the total
number of records relevant to a given query, sup-
pose that the firstK records in our ranking contain
NK relevant ones. Precision at rankK is defined
as NK

K and recall is defined asNK
NR

. Average preci-
sion is defined as the mean precision over all ranks
where relevant items occur.R-precision is defined
as precision at rankK=NR.

4.3 Baseline systems

Our experiments will compare the ranking perfor-
mance of the following retrieval systems:

cLM is a cheatingversion of un-structured text
search using a state-of-the-art language-modeling
approach (Ponte and Croft, 1998). We disregard
the structure, take all query keywords and run them
against aconcatenationof all fields in the testing
records. This is a “cheating” baseline, since the con-

9This definition of relevance is unduly conservative by the
standards of Information Retrieval researchers. Many records
that might be considered relevant by a human annotator will be
treated as non-relevant, artificially decreasing the accuracy of
any retrieval algorithm. However, our approach has the advan-
tage of being fully automatic: it allows us to test our model on
a scale that would be prohibitively expensive with manual rele-
vance judgments.

catenation includes theaudienceandsubjectfields,
which are supposed to be missing from the testing
records. We use Dirichlet smoothing (Lafferty and
Zhai, 2001), with parameters optimized on the train-
ing data. This baseline mimics the core search capa-
bility currently available on the NSDL website.

bLM is a combination of SQL-like structured
matching and unstructured search with query ex-
pansion. We take all training records that contain
an exact match to our query and select 10 highly-
weighted words from thetitle, description, andcon-
tentfields of these records. We run the resulting 30
words as a language modeling query against the con-
catenation oftitle, description, andcontentfields in
the testing records. This is a non-cheating baseline.

bMatch is a structured extension of bLM. As in
bLM, we pick training records that contain an ex-
act match to the query fields. Then we match 10
highly-weightedtitle words, against thetitle field of
testing records, do the same for thedescriptionand
contentfields, and merge the three resulting ranked
lists. This is a non-cheating baseline that is similar
to our model (SRM). The main difference is that this
approach uses exact matching to select the training
records, whereas SRM leverages a best-match lan-
guage modeling algorithm.

SRM is the Structured Relevance Model, as de-
scribed in section 3.5. For reasons of both effec-
tiveness and efficiency, we firstly run the original
query to retrieve top-500 records, then use these
records to build SRMs. When calculating the cross
entropy(equ. 5), for each field we only include the
top-100 words which will appear in that field with
the largest probabilities.

Note that our baselines do not include a standard
SQL approach directly on testing records. Such
an approach would have perfect performance in a
“cheating” scenario with observablesubjectandau-
diencefields, but would not match any records when
the fields are removed.

4.4 Experimental results

Table 2 shows the performance of our model (SRM)
against the three baselines. The model parameters
were tuned using the 64 training queries on thetrain-
ing andheld-outsets. The results are for the 63 test
queries run against theevaluationcorpus. (Similar
results occur if the 64 training queries are run against
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cLM bMatch bLM SRM %change improved
Rel-ret: 949 582 914 861 -5.80 26/50

Interpolated Recall - Precision:
at 0.00 0.3852 0.3730 0.4153 0.5448 31.2 33/49
at 0.10 0.3014 0.3020 0.3314 0.4783 44.3 42/56
at 0.20 0.2307 0.2256 0.2660 0.3641 36.9 40/59
at 0.30 0.2105 0.1471 0.2126 0.2971 39.8 36/58
at 0.40 0.1880 0.1130 0.1783 0.2352 31.9 36/58
at 0.50 0.1803 0.0679 0.1591 0.1911 20.1 32/57
at 0.60 0.1637 0.0371 0.1242 0.1439 15.8 27/51
at 0.70 0.1513 0.0161 0.1001 0.1089 8.7 21/42
at 0.80 0.1432 0.0095 0.0901 0.0747 -17.0 18/36
at 0.90 0.1292 0.0055 0.0675 0.0518 -23.2 12/27
at 1.00 0.1154 0.0043 0.0593 0.0420 -29.2 9/23

Avg.Prec. 0.1790 0.1050 0.1668 0.2156 29.25 43/63
Precision at:

5 docs 0.1651 0.2159 0.2413 0.3556 47.4 32/43
10 docs 0.1571 0.1651 0.2063 0.2889 40.0 34/48
15 docs 0.1577 0.1471 0.1841 0.2360 28.2 32/49
20 docs 0.1540 0.1349 0.1722 0.2024 17.5 28/47
30 docs 0.1450 0.1101 0.1492 0.1677 12.4 29/50

100 docs 0.0913 0.0465 0.0849 0.0871 2.6 37/57
200 docs 0.0552 0.0279 0.0539 0.0506 -6.2 33/53
500 docs 0.0264 0.0163 0.0255 0.0243 -4.5 26/48

1000 docs 0.0151 0.0092 0.0145 0.0137 -5.8 26/50
R-Prec. 0.1587 0.1204 0.1681 0.2344 39.44 31/49

Table 2: Performance of the 63 test queries retrieving 1000 documents on the evaluation data. Bold figures
show statistically significant differences. Across all 63 queries, there are 1253 relevant documents.

theevalutioncorpus.)

The upper half of Table 2 shows precision at
fixed recall levels; the lower half shows precision
at different ranks. The%changecolumn shows rel-
ative difference between our model and the base-
line bLM. The improvedcolumn shows the num-
ber of queries where SRM exceeded bLM vs. the
number of queries where performance was different.
For example,33/49 means that SRM out-performed
bLM on 33 queries out of63, underperformed on
49−33=16 queries, and had exactly the same per-
formance on63−49=14 queries. Bold figures in-
dicate statistically significant differences (according
to the sign test withp < 0.05).

The results show that SRM outperforms three
baselines in the high-precision region, beating
bLM’s mean average precision by 29%. User-
oriented metrics, such as R-precision and precision
at 10 documents, are improved by 39.4% and 44.3%
respectively. The absolute performance figures are
also very encouraging. Precision of 28% at rank 10
means that on average almost 3 out of the top 10
records in the ranked list are relevant, despite the re-
quested fields not being available to the model.

We note that SRM continues to outperform bLM
until very high recall and until the 100-document
cutoff. After that, SRM degrades rapidly with re-
spect to bLM. We feel the drop in effectiveness is of
marginal interest because precision is already well
below 10% and few users will be continuing to that
depth in the list.

It is encouraging to see that SRM outperforms
both cLM, the cheating baseline that takes advantage
of the field values that are supposed to be “miss-
ing”, and bMatch, suggesting that best-match re-
trieval provides a superior strategy for selecting a set
of appropriate training records.

5 Conclusions

We have developed and empirically validated a new
retrieval model for semi-structured text. The model
is based on the idea that missing or corrupted val-
ues for one field can be inferred from values in other
fields of the record. The cross-field inference makes
it possible to find documents in response to a struc-
tured query when those query fields do not exist in
the relevant documents at all.

We validated the SRM approach on a large
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archive of the NSDL repository. We developed a
large set of structured Boolean queries that had rel-
evant documents in the test portion of collection.
We then indexed the documentswithout the fields
used in the queries. As a result, using standard field
matching approaches, not a single document would
be returned in response to the queries—in particular,
no relevant documents would be found.

We showed that standard information retrieval
techniques and structured field matching could be
combined to address this problem, but that the SRM
approach outperforms them. We note that SRM
brought two relevant documents into the top five—
again, querying on missing fields—and achieved an
average precision of 23%, a more than 35% im-
provement over a state-of-the-art relevance model
approach combining the standard field matching.

Our work is continuing by exploring methods
for handling fields with incorrect or corrupted val-
ues. The challenge becomes more than just inferring
what values might be there; it requires combining
likely missing values with confidence in the values
already present: if an audience field contains ’under-
graduate’, it should be unlikely that ’K-6’ would be
a plausible value, too.

In addition to using SRMs for retrieval, we are
currently extending the ideas to provide field valida-
tion and suggestions for data entry and validation:
the same ideas used to find documents with miss-
ing field values can also be used to suggest potential
values for a field and to identify values that seem
inappropriate. We have also begun explorations to-
ward using inferred values to help a user browse
when starting from some structured information—
e.g., given values for two fields, what values are
probable for other fields.
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