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Abstract

Coreference resolution, like many problems
in natural language processing, has most of-
ten been explored using datasets of written
text. While spontaneous spoken language
poses well-known challenges, it also offers ad-
ditional modalities that may help disambiguate
some of the inherent disfluency. We explore
features of hand gesture that are correlated
with coreference. Combining these features
with a traditional textual model yields a statis-
tically significant improvement in overall per-
formance.

1 Introduction

Although the natural language processing community has
traditionally focused largely on text, face-to-face spoken
language is ubiquitous, and offers the potential for break-
through applications in domains such as meetings, lec-
tures, and presentations. We believe that in face-to-face
discourse, it is important to consider the possibility that
non-verbal communication may offer features that are
critical to language understanding. However, due to the
long-standing emphasis on text datasets, there has been
relatively little work on non-textual features in uncon-
strained natural language (prosody being the most no-
table exception).

Multimodal research in NLP has typically focused
on dialogue systems for human-computer interaction
(e.g., (Oviatt, 1999)); in contrast, we are interested in
the applicability of multimodal features to unconstrained
human-human dialogues. We believe that such features
will play an essential role in bringing NLP applications
such as automatic summarization and segmentation to
multimedia documents, such as lectures and meetings.

More specifically, in this paper we explore the possi-
bility of applying hand gesture features to the problem

of coreference resolution, which is thought to be fun-
damental to these more ambitious applications (Baldwin
and Morton, 1998). To motivate the need for multimodal
features in coreference resolution, consider the following
transcript:

“[This circle (1)] is rotating clockwise and [this
piece of wood (2)] is attached at [this point (3)]
and [this point (4)] but [it (5)] can rotate. So as
[the circle (6)] rotates, [this (7)] moves in and
out. So [this whole thing (8)] is just going back
and forth.”

Even given a high degree of domain knowledge (e.g.,
that “circles” often “rotate” but “points” rarely do), de-
termining the coreference in this excerpt seems difficult.
The word “this” accompanied by a gesture is frequently
used to introduce a new entity, so it is difficult to deter-
mine from the text alone whether “[this (7)]” refers to
“[this piece of wood (2)],” or to an entirely different part
of the diagram. In addition, “[this whole thing (8)]” could
be anaphoric, or it might refer to a new entity, perhaps
some superset of predefined parts.

The example text was drawn from a small corpus of di-
alogues, which has been annotated for coreference. Par-
ticipants in the study had little difficulty understanding
what was communicated. While this does not prove that
human listeners are using gesture or other multimodal
features, it suggests that these features merit further in-
vestigation. We extracted hand positions from the videos
in the corpus, using computer vision. From the raw hand
positions, we derived gesture features that were used to
supplement traditional textual features for coreference
resolution. For a description of the study’s protocol, auto-
matic hand tracking, and a fuller examination of the ges-
ture features, see (Eisenstein and Davis, 2006). In this pa-
per, we present results showing that these features yield a
significant improvement in performance.
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2 Implementation

A set of commonly-used linguistic features were selected
for this problem (Table 1). The first five features apply
to pairs of NPs; the next set of features are applied indi-
vidually to both of the NPs that are candidates for coref-
erence. Thus, we include two features each, e.g.,J is
PRONOUN andI is PRONOUN, indicating respectively
whether the candidate anaphor and candidate antecedent
are pronouns. We include separate features for each of
the four most common pronouns: “this”, “it”, “that”, and
“they,” yielding features such asJ=“this” .

2.1 Gesture Features

The gesture features shown in Table 1 are derived from
the raw hand positions using a simple, deterministic sys-
tem. Temporally, all features are computed at the mid-
point of each candidate NP; for a further examination
of the sensitivity to temporal offset, see (Eisenstein and
Davis, 2006).

At most one hand is determined to be the “focus hand,”
according to the following heuristic: select the hand far-
thest from the body in the x-dimension, as long as the
hand is not occluded and its y-position is not below the
speaker’s waist. If neither hand meets these criteria, than
no hand is said to be in focus. Occluded hands are also
not permitted to be in focus; the listener’s perspective was
very similar to that of the camera, so it seemed unlikely
that the speaker would occlude a meaningful gesture. In
addition, our system’s estimates of the position of an oc-
cluded hand are unlikely to be accurate.

If focus hands can be identified during both mentions,
the Euclidean distance between focus points is computed.
The distance is binned, using the supervised method de-
scribed in (Fayyad and Irani, 1993). An advantage of
binning the continuous features is that we can create a
special bin for missing data, which occurs whenever a fo-
cus hand cannot be identified.

If the same hand is in focus during both NPs, then the
value ofWHICH HAND is set to “same”; if a different
hand is in focus then the value is set to “different”; if a
focus hand cannot be identified in one or both NPs, then
the value is set to “missing.” This multi-valued feature is
automatically converted into a set of boolean features, so
that all features can be represented as binary variables.

2.2 Coreference Resolution Algorithm

(McCallum and Wellner, 2004) formulates coreference
resolution as a Conditional Random Field, where men-
tions are nodes, and their similarities are represented as
weighted edges. Edge weights range from−∞ to ∞,
with larger values indicating greater similarity. The op-
timal solution is obtained by partitioning the graph into
cliques such that the sum of the weights on edges within

cliques is maximized, and the sum of the weights on
edges between cliques is minimized:

ŷ = argmaxy
∑

i,j,i6=j

yi,js(xi, xj) (1)

In equation 1,x is a set of mentions andy is a corefer-
ence partitioning, such thatyi,j = 1 if mentionsxi andxj

corefer, andyi,j = −1 otherwise.s(xi, xj) is a similarity
score computed on mentionsxi andxj .

Computing the optimal partitioninĝy is equivalent to
the problem of correlation clustering, which is known to
be NP-hard (Demaine and Immorlica, to appear). De-
maine and Immorlica (to appear) propose an approxima-
tion using integer programming, which we are currently
investigating. However, in this research we use average-
link clustering, which hierarchically groups the mentions
x, and then forms clusters using a cutoff chosen to maxi-
mize the f-measure on the training set.

We experiment with both pipeline and joint models for
computings(xi, xj). In the pipeline model,s(xi, xj) is
the posterior of a classifier trained on pairs of mentions.
The advantage of this approach is that any arbitrary clas-
sifier can be used; the downside is that minimizing the er-
ror on all pairs of mentions may not be equivalent to min-
imizing the overall error of the induced clustering. For
experiments with the pipeline model, we found best re-
sults by boosting shallow decision trees, using the Weka
implementation (Witten and Frank, 1999).

Our joint model is based on McCallum and Well-
ner’s (2004) adaptation of the voted perceptron to corefer-
ence resolution. Here,s is given by the product of a vec-
tor of weightsλ with a set of boolean featuresφ(xi, xj)
induced from the pair of noun phrases:s(xi, xj) =
λφ(xi, xj). The maximum likelihood weights can be ap-
proximated by a voted perceptron, where, in the iteration
t of the perceptron training:

λt = λt−1 +
∑

i,j,i6=j

φ(xi, xj)(y∗i,j − ŷi,j) (2)

In equation 2,y∗ is the ground truth partitioning from
the labeled data.ŷ is the partitioning that maximizes
equation 1 given the set of weightsλt−1. As before,
average-link clustering with an adaptive cutoff is used to
partition the graph. The weights are then averaged across
all iterations of the perceptron, as in (Collins, 2002).

3 Evaluation

The results of our experiments are computed using
mention-based CEAF scoring (Luo, 2005), and are re-
ported in Table 2. Leave-one-out evaluation was used to
form 16 cross-validation folds, one for each document in
the corpus. Using a planned, one-tailed pairwise t-test,
the gesture features improved performance significantly
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MARKABLE DIST The number of markables between the candidate NPs
EXACT MATCH True if the candidate NPs have identical surface forms
STR MATCH True if the candidate NPs match after removing articles
NONPRO MATCH True if the candidate NPs are not pronouns and have identical surface forms
NUMBER MATCH True if the candidate NPs agree in number

PRONOUN True if the NP is a pronoun
DEF NP True if the NP begins with a definite article, e.g. “the box”
DEM NP True if the NP is not a pronoun and begins with the word “this”
INDEF NP True if the NP begins an indefinite article, e.g. “a box”
pronouns Individual features for each of the four most common pronouns: “this”, “it”, “that”, and

“they”

FOCUS DIST Distance between the position of the in-focus hand duringj andi (see text)
WHICH HAND Whether the hand in focus duringj is the same as ini (see text)

Table 1: The feature set

System Feature set F1
AdaBoost Gesture + Speech 54.9
AdaBoost Speech only 52.8
Voted Perceptron Gesture + Speech 53.7
Voted Perceptron Speech only 52.9
Baseline EXACT MATCH only 50.2
Baseline None corefer 41.5
Baseline All corefer 18.8

Table 2: Results

for the boosted decision trees (t(15) = 2.48, p < .02),
though not for the voted perceptron (t(15) = 1.07, p =
.15).

In the “all corefer” baseline, all NPs are grouped into
a single cluster; in the “none corefer”, each NP gets its
own cluster. In the “EXACT MATCH” baseline, two NPs
corefer when their surface forms are identical. All ex-
perimental systems outperform all baselines by a statis-
tically significant amount. There are few other reported
results for coreference resolution on spontaneous, uncon-
strained speech; (Strube and Müller, 2003) similarly finds
low overall scores for pronoun resolution on the Switch-
board Corpus, albeit by a different scoring metric. Unfor-
tunately, they do not compare performance to equivalent
baselines.

For the AdaBoost method, 50 iterations of boosting are
performed on shallow decision trees, with a maximum
tree depth of three. For the voted perceptron, 50 training
iterations were performed. The performance of the voted
perceptron on this task was somewhat unstable, varying
depending on the order in which the documents were
presented. This may be because a small change in the
weights can lead to a very different partitioning, which
in turn affects the setting of the weights in the next per-
ceptron iteration. For these results, the order of presenta-

tion of the documents was randomized, and the scores for
the voted perceptron are the average of 10 different runs
(σ = 0.32% with gestures, 0.40% without).

Although the AdaBoost method minimizes pairwise
error rather than the overall error of the partitioning, its
performance was superior to the voted perceptron. One
possible explanation is that by boosting small decision
trees, AdaBoost was able to take advantage of non-linear
combinations of features. We tested the voted perceptron
using all pairwise combinations of features, but this did
not improve performance.

4 Discussion

If gesture features play a role in coreference resolu-
tion, then one might expect the probability of corefer-
ence to vary significantly when conditioned on features
describing the gesture. As shown in Table 3, the pre-
diction holds: the binnedFOCUS DIST gesture feature
has the fifth highestχ2 value, and the relationship be-
tween coreference and all gesture features was significant
(χ2 = 727.8, dof = 4, p < .01). Note also that although
FOCUS DIST ranks fifth, three of the features above it
are variants of a string-match feature, and so are highly
redundant.

The WHICH HAND feature is less strongly corre-
lated with coreference, but the conditional probabilities
do correspond with intuition. If the NPs corefer, then
the probability of using the same hand to gesture during
both NPs is 59.9%; if not, then the likelihood is 52.8%.
The probability of not observing a focus hand is 20.3%
when the NPs corefer, 25.1% when they do not; in other
words, gesture is more likely for both NPs of a corefer-
ent pair than for the NPs of a non-coreferent pair. The
relation between theWHICH HAND feature and coref-
erence is also significantly different from the null hypoth-
esis (χ2 = 57.2, dof = 2, p < .01).
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Rank Feature χ2

1. EXACT MATCH 1777.9
2. NONPRO MATCH 1357.5
3. STR MATCH 1201.8
4. J = “it” 732.8
5. FOCUS DIST 727.8
6. MARKABLE DIST 619.6
7. J is PRONOUN 457.5
8. NUMBER 367.9
9. I = “it” 238.6
10. I is PRONOUN 132.6
11. J is INDEF NP 79.3
12. SAME FOCUS HAND 57.2

Table 3: Top 12 Features By Chi-Squared

5 Related Work

Research on multimodality in the NLP community
has usually focused on multimodal dialogue systems
(e.g., (Oviatt, 1999)). These systems differ fundamen-
tally from ours in that they address human-computerin-
teraction, whereas we address human-humaninteraction.
Multimodal dialogue systems tackle interesting and dif-
ficult challenges, but the grammar, vocabulary, and rec-
ognized gestures are often pre-specified, and dialogue is
controlled at least in part by the computer. In our data, all
of these things are unconstrained.

Prosody has been shown to improve performance on
several NLP problems, such as topic and sentence seg-
mentation (e.g., (Shriberg et al., 2000)). We are aware of
no equivalent work showing statistically significant im-
provement on unconstrained speech using hand gesture
features. (Nakano et al., 2003) shows that body posture
predicts turn boundaries, but does not show that these
features improve performance beyond a text-only system.
(Chen et al., 2004) shows that gesture may improve sen-
tence segmentation; however, in this study, the improve-
ment afforded by gesture is not statistically significant,
and evaluation was performed on a subset of their original
corpus that was chosen to include only the three speakers
who gestured most frequently. Still, this work provides a
valuable starting point for the integration of gesture fea-
ture into NLP systems.

6 Conclusion

We have described how gesture features can be used to
improve coreference resolution on a corpus of uncon-
strained speech. Hand position and hand choice corre-
late significantly with coreference, explaining this gain in
performance. We believe this is the first example of hand
gesture features improving performance by a statistically
significant margin on unconstrained speech.
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