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Abstract

We present a new type of neural proba-
bilistic language model that learns a map-
ping from both words and explicit word
features into a continuous space that is
then used for word prediction. Addi-
tionally, we investigate several ways of
deriving continuous word representations
for unknown words from those of known
words. The resulting model significantly
reduces perplexity on sparse-data tasks
when compared to standard backoff mod-
els, standard neural language models, and
factored language models.

1 Introduction

Neural language models (NLMs) (Bengio et al.,
2000) map words into a continuous representation
space and then predict the probability of a word
given the continuous representations of the preced-
ing words in the history. They have previously been
shown to outperform standard back-off models in
terms of perplexity and word error rate on medium
and large speech recognition tasks (Xu et al., 2003;
Emami and Jelinek, 2004; Schwenk and Gauvain,
2004; Schwenk, 2005). Their main drawbacks are
computational complexity and the fact that only dis-
tributional information (word context) is used to
generalize over words, whereas other word prop-
erties (e.g. spelling, morphology etc.) are ignored
for this purpose. Thus, there is also no principled
way of handling out-of-vocabulary (OOV) words.

Though this may be sufficient for applications that
use a closed vocabulary, the current trend of porting
systems to a wider range of languages (esp. highly-
inflected languages such as Arabic) calls for dy-
namic dictionary expansion and the capability of as-
signing probabilities to newly added words without
having seen them in the training data. Here, we in-
troduce a novel type of NLM that improves gener-
alization by using vectors of word features (stems,
affixes, etc.) as input, and we investigate deriving
continuous representations for unknown words from
those of known words.
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Figure 1: NLM architecture. Each word in the context maps

to a row in the matrix M . The output is next word’s probability

distribution.
A standard NLM (Fig. 1) takes as input the previ-

ous n− 1 words, which select rows from a continu-
ous word representation matrix M . The next layer’s
input i is the concatenation of the rows in M cor-
responding to the input words. From here, the net-
work is a standard multi-layer perceptron with hid-
den layer h = tanh(i ∗Wih + bh) and output layer
o = h ∗Who + bo. where bh,o are the biases on the
respective layers. The vector o is normalized by the
softmax function fsoftmax(oi) = eoi
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ters, including the M matrix, which is shared across
input words. The training criterion maximizes the
regularized log-likelihood of the training data.

3 Generalization in Language Models

An important task in language modeling is to pro-
vide reasonable probability estimates for n-grams
that were not observed in the training data. This
generalization capability is becoming increasingly
relevant in current large-scale speech and NLP sys-
tems that need to handle unlimited vocabularies and
domain mismatches. The smooth predictor func-
tion learned by NLMs can provide good generaliza-
tion if the test set contains n-grams whose individ-
ual words have been seen in similar context in the
training data. However, NLMs only have a simplis-
tic mechanism for dealing with words that were not
observed at all: OOVs in the test data are mapped
to a dedicated class and are assigned the singleton
probability when predicted (i.e. at the output layer)
and the features of a randomly selected singleton
word when occurring in the input. In standard back-
off n-gram models, OOVs are handled by reserv-
ing a small fixed amount of the discount probabil-
ity mass for the generic OOV word and treating it
as a standard vocabulary item. A more powerful
backoff strategy is used in factored language models
(FLMs) (Bilmes and Kirchhoff, 2003), which view
a word as a vector of word features or “factors”:
w = 〈f1, f2, . . . , fk〉 and predict a word jointly
from previous words and their factors: A general-
ized backoff procedure uses the factors to provide
probability estimates for unseen n-grams, combin-
ing estimates derived from different backoff paths.
This can also be interpreted as a generalization of
standard class-based models (Brown et al., 1992).
FLMs have been shown to yield improvements in
perplexity and word error rate in speech recogni-
tion, particularly on sparse-data tasks (Vergyri et
al., 2004) and have also outperformed backoff mod-
els using a linear decomposition of OOVs into se-
quences of morphemes. In this study we use factors
in the input encoding for NLMs.

4 Factored Neural Language Models

NLMs define word similarity solely in terms of their
context: words are assumed to be close in the contin-

uous space if they co-occur with the same (subset of)
words. But similarity can also be derived from word
shape features (affixes, capitalization, hyphenation
etc.) or other annotations (e.g. POS classes). These
allow a model to generalize across classes of words
bearing the same feature. We thus define a factored
neural language model (FNLM) (Fig. 2) which takes
as input the previous n − 1 vectors of factors. Dif-
ferent factors map to disjoint row sets of the ma-
trix. The h and o layers are identical to the standard
NLM’s. Instead of predicting the probabilities for
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Figure 2: FNLM architecture. Input vectors consisting of

word and feature indices are mapped to rows in M. The final

multiplicative layer outputs the word probability distribution.

all words at the output layer directly, we first group
words into classes (obtained by Brown clustering)
and then compute the conditional probability of each
word given its class: P (wt) = P (ct) × P (wt|ct).
This is a speed-up technique similar to the hierarchi-
cal structuring of output units used by (Morin and
Bengio, 2005), except that we use a “flat” hierar-
chy. Like the standard NLM, the network is trained
to maximize the log-likelihood of the data. We use
BKP with cross-validation on the development set
and L2 regularization (the sum of squared weight
values penalized by a parameter λ) in the objective
function.

5 Handling Unknown Factors in FNLMs

In an FNLM setting, a subset of a word’s factors may
be known or can be reliably inferred from its shape
although the word itself never occurred in the train-
ing data. The FNLM can use the continuous repre-
sentation for these known factors directly in the in-
put. If unknown factors are still present, new contin-
uous representations are derived for them from those
of known factors of the same type. This is done by
averaging over the continuous vectors of a selected
subset of the words in the training data, which places
the new item in the center of the region occupied by
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the subset. For example, proper nouns constitute a
large fraction of OOVs, and using the mean of the
rows in M associated with words with a proper noun
tag yields the “average proper noun” representation
for the unknown word. We have experimented with
the following strategies for subset selection: NULL
(the null subset, i.e. the feature vector components
for unknown factors are 0), ALL (average of all
known factors of the same type); TAIL (averaging
over the least frequently encountered factors of that
type up to a threshold of 10%); and LEAST, i.e. the
representation of the single least frequent factors of
the same type. The prediction of OOVs themselves
is unaffected since we use a factored encoding only
for the input, not for the output (though this is a pos-
sibility for future work).

6 Data and Baseline Setup

We evaluate our approach by measuring perplex-
ity on two different language modeling tasks. The
first is the LDC CallHome Egyptian Colloquial Ara-
bic (ECA) Corpus, consisting of transcriptions of
phone conversations. ECA is a morphologically
rich language that is almost exclusively used in in-
formal spoken communication. Data must be ob-
tained by transcribing conversations and is therefore
very sparse. The present corpus has 170K words
for training (|V | = 16026), 32K for development
(dev), 17K for evaluation (eval97). The data was
preprocessed by collapsing hesitations, fragments,
and foreign words into one class each. The corpus
was further annotated with morphological informa-
tion (stems, morphological tags) obtained from the
LDC ECA lexicon. The OOV rates are 8.5% (de-
velopment set) and 7.7% (eval97 set), respectively.

Model ECA (·102) Turkish (·102)
dev eval dev eval

baseline 3gram 4.108 4.128 6.385 6.438
hand-optimized FLM 4.440 4.327 4.269 4.479
GA-optimized FLM 4.325 4.179 6.414 6.637
NLM 3-gram 4.857 4.581 4.712 4.801
FNLM-NULL 5.672 5.381 9.480 9.529
FNLM-ALL 5.691 5.396 9.518 9.555
FNLM-TAIL 10% 5.721 5.420 9.495 9.540
FNLM-LEAST 5.819 5.479 10.492 10.373

Table 1: Average probability (scaled by 10
2) of known words

with unknown words in order-2 context

The second corpus consists of Turkish newspa-

per text that has been morphologically annotated and
disambiguated (Hakkani-Tür et al., 2002), thus pro-
viding information about the word root, POS tag,
number and case. The vocabulary size is 67510
(relatively large because Turkish is highly aggluti-
native). 400K words are used for training, 100K
for development (11.8% OOVs), and 87K for test-
ing (11.6% OOVs). The corpus was preprocessed by
removing segmentation marks (titles and paragraph
boundaries).

7 Experiments and Results

We first investigated how the different OOV han-
dling methods affect the average probability as-
signed to words with OOVs in their context. Ta-
ble 1 shows that average probabilities increase com-
pared to the strategy described in Section 3 as
well as other baseline models (standard backoff tri-
grams and FLM, further described below), with the
strongest increase observed for the scheme using the
least frequent factor as an OOV factor model. This
strategy is used for the models in the following per-
plexity experiments.

We compare the perplexity of word-based and
factor-based NLMs with standard backoff trigrams,
class-based trigrams, FLMs, and interpolated mod-
els. Evaluation was done with (the “w/unk” column
in Table 2) and without (the “no unk” column) scor-
ing of OOVs, in order to assess the usefulness of our
approach to applications using closed vs. open vo-
cabularies. The baseline Model 1 is a standard back-
off 3-gram using modified Kneser-Ney smoothing
(model orders beyond 3 did not improve perplex-
ity). Model 2 is a class-based trigram model with
Brown clustering (256 classes), which, when inter-
polated with the baseline 3-gram, reduces the per-
plexity (see row 3). Model 3 is a 3-gram word-based
NLM (with output unit clustering). For NLMs,
higher model orders gave improvements, demon-
strating their better scalability: for ECA, a 6-gram
(w/o unk) and a 5-gram (w/unk) were used; for Turk-
ish, a 7-gram (w/o unk) and a 5-gram (w/unk) were
used. Though worse in isolation, the word-based
NLMs reduce perplexity considerably when interpo-
lated with Model 1. The FLM baseline is a hand-
optimized 3-gram FLM (Model 5); we also tested
an FLM optimized with a genetic algorithm as de-
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# Model ECA dev ECA eval Turkish dev Turkish eval
no unk w/unk no unk w/unk no unk w/unk no unk w/unk

1 Baseline 3-gram 191 176 183 172 827 569 855 586
2 Class-based LM 221 278 219 269 1642 1894 1684 1930
3 1) & 2) 183 169 178 167 790 540 814 555
4 Word-based NLM 208 341 204 195 1510 1043 1569 1067
5 1) & 4) 178 165 173 162 758 542 782 557
6 Word-based NLM 202 194 204 192 1991 1369 2064 1386
7 1) & 6) 175 162 173 160 754 563 772 580
8 hand-optimized FLM 187 171 178 166 827 595 854 614
9 1) & 8) 182 167 174 163 805 563 832 581

10 genetic FLM 190 188 181 188 761 1181 776 1179
11 1) & 10) 183 166 175 164 706 488 720 498
12 factored NLM 189 173 190 175 1216 808 1249 832
13 1) & 12) 169 155 168 155 724 487 744 500
14 1) & 10) & 12) 165 155 165 154 652 452 664 461

Table 2: Perplexities for baseline backoff LMs, FLMs, NLMs, and LM interpolation
scribed in (Duh and Kirchhoff, 2004) (Model 6).
Rows 7-10 of Table 2 display the results. Finally, we
trained FNLMs with various combinations of fac-
tors and model orders. The combination was opti-
mized by hand on the dev set and is therefore most
comparable to the hand-optimized FLM in row 8.
The best factored NLM (Model 7) has order 6 for
both ECA and Turkish. It is interesting to note that
the best Turkish FNLM uses only word factors such
as morphological tag, stem, case, etc. but not the
actual words themselves in the input. The FNLM
outperforms all other models in isolation except the
FLM; its interpolation with the baseline (Model 1)
yields the best result compared to all previous inter-
polated models, for both tasks and both the unk and
no/unk condition. Interpolation of Model 1, FLM
and FNLM yields a further improvement. The pa-
rameter values of the (F)NLMs range between 32
and 64 for d, 45-64 for the number of hidden units,
and 362-1024 for C (number of word classes at the
output layer).

8 Conclusion

We have introduced FNLMs, which combine neu-
ral probability estimation with factored word repre-
sentations and different ways of inferring continuous
word features for unknown factors. On sparse-data
Arabic and Turkish language modeling task FNLMs
were shown to outperform all comparable models
(standard backoff 3-gram, word-based NLMs) ex-
cept FLMs in isolation, and all models when inter-
polated with the baseline. These conclusions apply

to both open and closed vocabularies.
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