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Abstract

We address the problem ofunknown word
sense detection: the identification of cor-
pus occurrences that are not covered by
a given sense inventory. We model this
as an instance ofoutlier detection, using
a simple nearest neighbor-based approach
to measuring the resemblance of a new
item to a training set. In combination with
a method that alleviates data sparseness by
sharing training data across lemmas, the
approach achieves a precision of 0.77 and
recall of 0.82.

1 Introduction

If a system has seen only positive examples, how
does it recognize a negative example? This is
the problem addressed byoutlier detection, also
callednovelty detection1 (Markou and Singh, 2003a;
Markou and Singh, 2003b; Marsland, 2003): to de-
tect novel or unknown items that differ from all the
seen training data. Outlier detection approaches typ-
ically derive some model of “normal” objects from
the training set and use a distance measure and a
threshold to detect abnormal items.

In this paper, we apply outlier detection tech-
niques to the task ofunknown sense detection: the
identification of corpus occurrences that are not cov-
ered by a given sense inventory. The training set

1The termnovelty detectionis also used for the distinction
of novel and repeated information in information retrieval, a
different if related topic.

Figure 1: Wrong assignment due to missing sense:
from the Hound of the Baskervilles, Ch. 14

against which new occurrences are compared will
consist of sense-annotated text.

Unknown sense detection is related to word sense
disambiguation (WSD) and to word sense discrim-
ination (Scḧutze, 1998), but differs from both. In
WSD all senses are assumed known, and the task is
to select one of them, while in unknown sense detec-
tion the task is to decide whether a given occurrence
matches any of the known senses or none of them,
and all training instances, regardless of the sense to
which they belong, are modeled asone group of
knowndata. Unknown sense detection also differs
from word sense discrimination, where no sense in-
ventory is given and the task is to group occurrences
into senses. In unknown sense detection the model
respects the given word senses.

The main motivation for this study comes from
shallow semantic parsing, by which we mean a com-
bination of WSD and the automatic assignment of
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semantic roles to free text. In cases where a sense
is missing from the inventory, WSD will wrongly
assign one of the existing senses. Figure 1 shows
an example, a sentence from theHound of the
Baskervilles, analyzed by the SHALMANESER (Erk
and Pado, 2006) shallow semantic parser. The anal-
ysis is based on FrameNet (Baker et al., 1998), a
resource that lists senses and semantic roles for En-
glish expressions. FrameNet is lacking a sense of
“expectation” or “being mentally prepared” for the
verb prepare, so preparedhas been assigned the
sense COOKING CREATION, a possible but improb-
able analysis2. Such erroneous labels can be fa-
tal when further processing builds on the results of
shallow semantic parsing, e.g. for drawing infer-
ences. Unknown sense detection can prevent such
mistakes.

All sense inventories face the problem of missing
senses, either because of their small overall size (as
is the case for some non-English WordNets) or when
they encounter domain-specific senses. Our study
will be evaluated on FrameNet because of our main
aim of improving shallow semantic parsing, but the
method we propose is applicable to any sense inven-
tory that has annotated data; in particular, it is also
applicable to WordNet.

In this paper we model unknown sense detec-
tion as outlier detection, using a simple Nearest
Neighbor-based method (Tax and Duin, 2000) that
compares the local probability density at each test
item with that of its nearest training item.

To our knowledge, there exists no other approach
to date to the problem of detecting unknown senses.
There are, however, approaches to the complemen-
tary problem of determining the closest known sense
for unknown words (Widdows, 2003; Curran, 2005;
Burchardt et al., 2005), which can be viewed as the
logical next step after unknown sense detection.

Plan of the paper. After a brief sketch of
FrameNet in Section 2, we describe the experimen-
tal setup used throughout this paper in Section 3.
Section 4 tests whether a very simple model suffices
for detecting unknown senses: a threshold on confi-
dence scores returned by the SHALMANESER WSD

2Unfortunately, the semantic roles have been mis-assigned
by the system. The wordI should fill the FOOD role, whilefor
a houndcould be assigned the optional RECEIVER role.

system. The result is that recall is much too low.
Section 5 introduces the NN-based outlier detection
approach that we use in section 6 for unknown sense
detection, with better results than in the first experi-
ment but still low recall. Section 7 repeats the exper-
iment of section 6 with added training data, making
use of the fact that one semantic class in FrameNet
typically pertains to several lemmas and achieving a
marked improvement in results.

2 FrameNet

Frame Semantics (Fillmore, 1982) models the mean-
ings of a word or expression by reference to
frameswhich describe the background and situa-
tional knowledge necessary for understanding what
the predicate is “about”. Each frame provides its
specific set of semantic roles.

The Berkeley FrameNet project (Baker et al.,
1998) is building a semantic lexicon for English de-
scribing the frames and linking them to the words
and expressions that canevokethem. These can
be verbs as well as nouns, adjectives, preposi-
tions, adverbs, and multiword expressions. Frames
are linked by IS-A and other relations. Currently,
FrameNet contains 609 frames with 8,755 lemma-
frame pairs, of which 5,308 are exemplified in an-
notated sentences from the British National Corpus.
The annotation comprises 133,846 sentences.

As FrameNet is a growing resource, many lem-
mas are still lacking senses, and many senses are still
lacking annotation. This is problematic for the use
of FrameNet analyses as a basis for inferences over
text, as e.g. in Tatu and Moldovan (2005).

For example, the verbprepare from Figure 1 is
associated with the frames

COOKING CREATION: prepare food
ACTIVITY PREPARE: get ready for an activity
ACTIVITY READY STATE: be ready for an activity
WILLINGNESS: be willing

of which only the COOKING CREATION sense has
been annotated. The sense in Figure 1 is not cov-
ered yet: ACTIVITY READY STATE would be more
appropriate than COOKING CREATION, but still not
optimal, since the sentence refers to a mental state
rather than the preparation of an activity.
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3 Experimental setup and data

Experimental setup. To evaluate an unknown
sense detection system, we need occurrences that are
guaranteed not to belong to any of the seen senses.
To that end we use sense-annotated data, in our case
the FrameNet annotated sentences, simulating un-
known senses by designating one sense of each am-
biguous lemma as unknown. All occurrences of that
sense are placed in the test set, while occurrences
of all other senses are split randomly between train-
ing and test set, using 5-fold cross-validation. We
repeat the experiment with each of the senses of an
ambiguous lemma playing the part of the unknown
sense once. Viewing each cross-validation run for
each unknown sense as a separate experiment, we
then report precision and recall averaged over un-
known senses and cross-validation runs.

It may seem questionable that in this experimen-
tal setup, theunknown senseoccurrences of each
lemma all belong to the same sense. However, this
does not bias the experiment since none of the mod-
els we study take advantage of the shape of the test
set in any way. Rather, each test item is classified in-
dividually, without recourse to the other test items.

Data. All experiments in this paper were per-
formed on the FrameNet 1.2 annotated data per-
taining to ambiguous lemmas. After removal of
instances that were annotated with more than one
sense, we obtain 26,496 annotated sentences for the
1,031 ambiguous lemmas. They were parsed with
Minipar (Lin, 1993); named entities were computed
using Heart of Gold (Callmeier et al., 2004).

4 Experiment 1: WSD confidence scores
for unknown sense detection

In this section we test a very simple model of un-
known sense detection: Classifiers often return a
confidence score along with the assigned label. We
will try to detect unknown senses by a threshold
on confidence scores, declaring anything below the
threshold as unknown. Note that this method can
only be applied to lemmas that have more than one
sense, since for single-sense lemmas the system will
always return the maximum confidence score.

Data. While the approach that we follow in this
section is applicable to all lemmas with at least two

her and upwards

She
She

wave

hand outwards
s subj obj mod

gen punc conj

(1): subj , obj , mod (sinces andsubj corefer,
we use only one of them)
(2): she , hand , outwards
(3): subj-she , obj-hand , mod-outwards
(4): mod-obj-subj

Figure 2: Sample Minipar parse and extracted gram-
matical function features

senses, we need lemmas with at least three senses
to evaluate it: One of the senses of each lemma is
treated asunknown, which for lemmas with three or
more senses leaves at least two senses for the train-
ing set. This reduces our data set to 125 lemmas
with 7,435 annotated sentences.

Modeling. We test whether the WSD system built
into SHALMANESER (Erk, 2005) can distinguish
known senseitems fromunknown senseitems reli-
ably by its confidence scores. The system extracts
a rich feature set, which forms the basis of all three
experiments in this paper:

• a bag-of-words context, with a window size of
one sentence;

• bi- and trigrams centered on the target word;

• grammatical function information: for each de-
pendent of the target, (1) its function label, (2)
its headword, and (3) a combination of both are
used as features. (4) The concatenation of all
function labels constitutes another feature. For
PPs, function labels are extended by the prepo-
sition. As an example, Figure 2 shows a BNC
sentence and its grammatical function features.

• for verb targets, the target voice.

The feature set is based on Florian et al. (2002) but
contains additional syntax-related features. Each
word-related feature is represented as four features
for word, lemma, part of speech, and named entity.

SHALMANESER trains one Naive Bayes classifier
per lemma to be disambiguated. For this experiment,
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θ Precision Recall
0.5 0.6524 (σ 0.115) 0.0011 (σ 0.0004)
0.75 0.7855 (σ 0.0086) 0.0527 (σ 0.0013)
0.9 0.7855 (σ 0.0093) 0.1006 (σ 0.0021)
0.98 0.7847 (σ 0.0073) 0.1744 (σ 0.0025)

Table 1: Experiment 1: Results for labelunknown
sense, WSD confidence level approach.θ: confi-
dence threshold.σ: std. dev.

all system parameters were set to their default set-
tings. To detect unknown senses building on this
WSD system, we use a fixed confidence threshold
and label all items below the threshold asunknown.

Results and discussion. Table 1 shows precision
and recall for labeling instances asunknownusing
different confidence thresholdsθ, averaged over un-
known senses and 5-fold cross-validation3. We see
that while the precision of this method is acceptable
at 0.74 to 0.765, recall is extremely low, i.e. almost
no items were labeledunknown, even at a threshold
of 0.98. However, SHALMANESER has very high
confidence values overall: Only 14.5% of all in-
stances in this study had a confidence value of 0.98
or below (7,697 of 53,206).

We conclude that with the given WSD system and
(rather standard) features, this simple method cannot
detect items with an unknown sense reliably. This
may be due to the indiscriminately high confidence
scores; or it could indicate that classifiers, which
are geared atdistinguishingbetween known classes
rather thandetectingobjects that differ from all seen
data, are not optimally suited to the task. However,
one further disadvantage of this approach is that, as
mentioned above, it can only be applied to lemmas
with more than one annotated sense. For FrameNet
1.2, this comprises only 19% of the lemmas.

5 A nearest neighbor-based method for
outlier detection

In the previous section we have tested a simple ap-
proach to unknown sense detection using WSD con-
fidence scores. Our conclusion was that it was not a
viable approach, given its low recall and given that

3Note that the minimum confidence score is 0.5 if 2 senses
are present in the training set, 0.33 for 3 present senses etc.

t
t‘

dtt´
x

dxt

Figure 3: Outlier detection by comparing distances
between nearest neighbors

it is only applicable to lemmas with more than one
known sense. In this section we introduce an al-
ternative approach, which uses distances to nearest
neighbors to detect outliers.

In general, the task of outlier detection is to de-
cide whether a new object belongs to a given training
set or not. Typically, outlier detection approaches
derive some boundary around the training set, or
they derive from the set some model of “normal-
ity” to which new objects are compared (Markou
and Singh, 2003a; Markou and Singh, 2003b; Mars-
land, 2003). Applications of outlier detection in-
clude fault detection (Hickinbotham and Austin,
2000), hand writing deciphering (Tax and Duin,
1998; Scḧolkopf et al., 2000), and network intru-
sion detection (Yeung and Chow, 2002; Dasgupta
and Forrest, 1999). One standard approach to out-
lier detection estimates the probability density of the
training set, such that a test object can be classified
as an outlier or non-outlier according to its probabil-
ity of belonging to the set.

Rather than estimating the complete density func-
tion, Tax and Duin (2000) approximate local density
at the test object by comparing distances between
nearest neighbors. Given a test objectx, the ap-
proach considers the training objectt nearest tox
and compares the distancedxt betweenx andt to the
distancedtt′ betweent and its own nearest training
data neighbort′. Then the quotient between the dis-
tances is used as an indicator of the (ab-)normality
of the test objectx:

pNN (x) =
dxt

dtt′

When the distancedxt is much larger thandtt′ , x is
considered an outlier. Figure 3 illustrates the idea.

The normality or abnormality of test objects is de-
cided by a fixed thresholdθ on pNN . The lowest
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threshold that makes sense is 1.0, which rejects any
x that is further apart from its nearest training neigh-
bor t thant is from its neighbor. Tax and Duin use
Euclidean distance, i.e.

dxt =
√∑

i

(xi − ti)2

Applied to feature vectors with entries either 0 or 1,
this corresponds to the size of the symmetric differ-
ence of the two feature sets.

6 Experiment 2: NN-based outlier
detection

In this section we use the NN-based outlier detection
approach of the previous section for an experiment
in unknown sense detection. Experimental setup and
data are as described in Section 3.

Modeling. We model unknown sense detection as
an outlier detection task, using Tax and Duin’s out-
lier detection approach that we have outlined in
the previous section. Nearest neighbors (by Eu-
clidean distance) were computed using the ANN
tool (Mount and Arya, 2005). We compute one out-
lier detection model per lemma. With training and
test sets constructed as described in Section 3, the
average training set comprises 22.5 sentences.

We use the same features as in Section 4, with fea-
ture vector entries of 1 for present and 0 for absent
features. For a more detailed analysis of the contri-
bution of different feature types, we test on reduced
as well as full feature vectors:

All : full feature vectors

Cx: only bag-of-word context features (words, lem-
mas, POS, NE)

Syn: function labels of dependents

Syn-hw : Syn plus headwords of dependents

We compare the NN-based model to that of
Experiment 1, but not to any simpler baseline.
While for WSD it is possible to formulate simple
frequency-based methods that can serve as a base-
line, this is not so in unknown sense detection be-
cause the frequency of unknown senses is, by def-
inition, unknown. Furthermore, the number of an-
notated sentences per sense in FrameNet depends

Features Precision Recall
All 0.7072 (σ 0.0088) 0.2683 (σ 0.0043)
Cx 0.7016 (σ 0.0041) 0.3511 (σ 0.0035)
Syn 0.8333 (σ 0.0085) 0.2099 (σ 0.0042)
Syn-hw 0.7784 (σ 0.0029) 0.2368 (σ 0.0022)

Table 2: Experiment 2: Results for labelunknown
sense, NN-based outlier detection,θ = 1.0. σ: stan-
dard deviation

Precision Recall
Features all ≥ 10 ≥ 20 all ≥ 10 ≥ 20
All 0.71 0.70 0.67 0.27 0.35 0.45
Cx 0.70 0.70 0.67 0.35 0.47 0.58
Syn 0.83 0.81 0.77 0.21 0.22 0.21
Syn-hw 0.78 0.76 0.73 0.24 0.28 0.31

Table 3: Experiment 2: Results by training set size,
θ = 1.0

on the number of subcategorization frames of the
lemma rather than the frequency of the sense, which
makes frequency calculations meaningless.

Results. Table 2 shows precision and recall for la-
beling instances asunknownusing a distance quo-
tient threshold ofθ=1.0, averaged over unknown
senses and over 5-fold cross-validation. We see that
recall is markedly higher than in Experiment 1, es-
pecially for the two conditions that include context
words,All andCx. The syntax-based conditions
Syn andSyn-hw show a higher precision, with a
less pronounced increase in recall.

Raising the distance quotient threshold results in
little change in precision, but a large drop in recall.
For example,All vectors with a threshold ofθ =
1.1 achieve a recall of 0.14 in comparison to 0.27
for θ = 1.0 .

Training set size is an important factor in sys-
tem results. Table 3 lists precision and recall for all
training sets, for training sets of size≥ 10, and for
training sets of size≥ 20. Especially in conditions
All andCx, recall rises steeply when we only con-
sider cases with larger training sets. However note
that precision does not rise with larger training sets,
rather it shows a slight decline.

Another important factor is the number of senses
that a lemma has, as the upper part of Table 7 shows.
For lemmas with a higher number of senses, preci-
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Figure 4: “Acceptance radius” of an outlier within
the training set (left) and a more “normal” training
set object (right)

sion is much lower, while recall is much higher.

Discussion. While results in this experiment are
better than in Experiment 1 – in particular recall has
risen by 19 points forCx –, system performance is
still not high enough to be usable in practice.

The uniformity of the training set has a large in-
fluence on performance, as Table 7 shows. The more
senses a lemma has, the harder it seems to be for the
model to identifyknown senseoccurrences. Preci-
sion for the assignment of theunknownlabel drops,
while recall rises. We see a tradeoff between preci-
sion and recall, in this table as well as in Table 3.
There, we see that many moreunknowntest objects
are identified when training sets are larger, but a
larger training set does not translate into universally
higher results.

One possible explanation for this lies in a prop-
erty of Tax and Duin’s approach. If a training itemt
is situated at distanced from its nearest neighbor in
the training set, then any test item within a radius of
d aroundt will be consideredknown. Thus we could
termd the “acceptance radius” oft. Now if t is an
outlierwithin the training set, thend will be large, as
illustrated in Figure 4. The sparser the training set is,
the more training outliers we are likely to find, with
large acceptance radii that assign a label ofknown
even to more distanced test items. Thus a sparse
training set could lead to lower recall ofunknown
senseassignment and at the same time higher pre-
cision, as the items labeledunknownwould be the
ones at great distance from any items on the training
set – conforming to the pattern in Tables 3 and 7.

7 Experiment 3: NN-based outlier
detection with added training data

While the NN-based outlier detection model we
used in the previous experiment showed better re-

Target lemma: put
Senses:ENCODING, PLACING

Sense currently treated as unknown:PLACING

Extend training set by: all annotated sentences for
lemmas other thanput in the sense ENCODING:
couch.v, expression.n, formulate.v, formulation.n,
frame.v, phrase.v, word.v, wording.n

Table 4: Extending training sets: an example

Features Precision Recall
All 0.7709 (σ 0.001) 0.7243 (σ 0.0018)
Cx 0.7727 (σ 0.0027) 0.8172 (σ 0.0035)
Syn 0.8571 (σ 0.0045) 0.1694 (σ 0.0012)
Syn-hw 0.8025 (σ 0.0041) 0.3383 (σ 0.0025)
Syn 0.8587 (σ 0.0081) 0.1748 (σ 0.0015)
Syn-hw 0.8055 (σ 0.0056) 0.3516 (σ 0.0015)

Table 5: Experiment 3: Results for labelunknown
sense, NN-based outlier detection,θ = 1.0. σ: stan-
dard deviation

sults than the WSD confidence model, its recall is
still low. We have suggested that data sparseness
may be responsible for the low performance. Con-
sequently, we repeat the experiment of the previous
section with more, but less specific, training data.

Like WordNet synsets, FrameNet frames are se-
mantic classes that typically comprise several lem-
mas or expressions. So, assuming that words with
similar meaning occur in similar contexts, the con-
text features for lemmas in the same frame should
be similar. Following this idea, we supplement the
training data for a lemma by all theotherannotated
data for the senses that are present in the training
set, where by “other data” we mean data with other
target lemmas. Table 4 shows an example4.

Modeling. Again, we use Tax and Duin’s outlier
detection approach for unknown sense detection.
The experimental design and evaluation are the same
as in Experiment 2, the only difference being the
training set extension. Training set extension raises
the average training set size from 22.5 to 374.

Results. Table 5 shows precision and recall for la-
beling instances asunknown, with a distance quo-
tient threshold of 1.0, averaged over unknown senses

4ConditionsSyn andSyn-hw were also tested using only
other target lemmas with the same part of speech. Results were
virtually unchanged.
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Precision Recall
Features all ≥ 50 ≥ 200 all ≥ 50 ≥ 200
All 0.77 0.77 0.73 0.72 0.80 0.87
Cx 0.77 0.77 0.73 0.82 0.89 0.94
Syn 0.86 0.85 0.82 0.17 0.16 0.13
Syn-hw 0.80 0.79 0.76 0.38 0.36 0.38
Syn 0.86 0.85 0.82 0.17 0.17 0.14
Syn-hw 0.81 0.80 0.76 0.35 0.37 0.38

Table 6: Experiment 3: Results by training set size,
θ = 1.0

Number of senses
2 3 4 5

Exp. 2 Prec. 0.78 0.68 0.59 0.55
Rec. 0.21 0.38 0.47 0.59

Exp. 3 Prec. 0.83 0.71 0.63 0.56
Rec. 0.68 0.81 0.89 0.88

Table 7: Experiments 2 and 3: Results by the num-
ber of senses of a lemma, conditionAll , θ = 1.0

and 5-fold cross-validation. In comparison to Exper-
iment 2, precision has risen slightly, and for condi-
tionsAll , Cx andSyn-hw , recall has risen steeply;
the maximum recall is achieved byCx at 0.82.

As before, increasing the distance quotient thresh-
old leads to little change in precision but a sharp
drop in recall. ForAll vectors, recall is 0.72 for
threshold 1.0, 0.56 forθ = 1.1, and 0.41 forθ = 1.2.

Table 6 shows system performance by training set
size. As the average training set in this experiment
is much larger than in Experiment 2, we are now
inspecting sets of minimum size 50 and 200 rather
than 10 and 20. We find the same effect as in Ex-
periment 2, with noticeably higher recall for lemmas
with larger training sets, but slightly lower precision.

Table 7 breaks down system performance by the
degree of ambiguity of a lemma. Here, too, we see
the same effect as in Experiment 2: the more senses
a lemma has, the lower the precision and the higher
the recall ofunknownlabel assignment.

Discussion. In comparison to Experiment 2, Ex-
periment 3 shows a dramatic increase in recall, and
even some increase in precision. Precision and re-
call for conditionsAll andCx are good enough for
the system to be usable in practice.

Of the four conditions, the three that involve con-
text words,All , Cx and Syn-hw , show consid-

erably higher recall thanSyn. Furthermore, the
two conditions that do not involve syntactic fea-
tures, All and Cx, have markedly higher results
thanSyn-hw . This could mean that syntactic fea-
tures are not as helpful as context features in detect-
ing unknown senses; however in Experiment 2 the
performance difference betweenSyn and the other
conditions was not by far as large as in this experi-
ment. It could also mean that frames are not as uni-
form in their syntactic structure as they are in their
context words. This seems plausible as FrameNet
frames are constructed mostly on semantic grounds,
without recourse to similarity in syntactic structure.

Table 6 points to a sparse data problem, even with
training sets extended by additional items. It also
shows that the more a test condition relies on context
word information, the more it profits from additional
data. So it may be worthwhile to explore methods
for a further alleviation of data sparseness, e.g. by
generalizing over context words.

Table 7 underscores the large influence of train-
ing set uniformity: the more senses a lemma has, the
more likely the model is to classify a test instance as
unknown. This is the case even for extended training
sets. One possible way of addressing this problem
would be to take into account more than a single
nearest neighbor in NN-based outlier detection in
order to compute more precise boundaries between
known and unknown instances.

8 Conclusion and outlook

We have defined and addressed the problem of
unknown word sense detection: the identification
of corpus occurrences that are not covered by a
given sense inventory, using a training set of sense-
annotated data as a basis. We have modeled this
problem as an instance ofoutlier detection, using
the simple nearest neighbor-based approach of Tax
and Duin to measure the resemblance of a new oc-
currence to the training data. In combination with
a method that alleviates data sparseness by sharing
training data across lemmas, the approach achieves
good results that make it usable in practice: With
items represented as vectors of context words (in-
cluding lemma, POS and NE), the system achieves
0.77 precision and 0.82 recall in an evaluation on
FrameNet 1.2. The training set extension method,
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which proved crucial to our approach, relies solely
on a grouping of annotated data by semantic simi-
larity. As such, the method is applicable to any re-
source that groups words into semantic classes, for
example WordNet.

For this first study on unknown sense detection,
we have chosen a maximally simple outlier detec-
tion method; many extensions are possible. One ob-
vious possibility is the extension of Tax and Duin’s
method to more than one nearest training neigh-
bor for a more accurate estimate of local density.
Furthermore, more sophisticated feature vectors can
be employed to generalize over context words, and
other outlier detection approaches (Markou and
Singh, 2003a; Markou and Singh, 2003b; Marsland,
2003) can be tested on this task.

Our immediate goal is to use unknown sense de-
tection in combination with WSD, to filter out items
that the WSD system cannot handle due to missing
senses. Once items have been identified asunknown,
they are available for further processing: If possible
one would like to assign some measure of sense in-
formation even to these items. Possibilities include
associating items with similar existing senses (Wid-
dows, 2003; Curran, 2005; Burchardt et al., 2005) or
clustering them into approximate senses.
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