
Automatic Article Restoration

John Lee
Spoken Language Systems

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

jsylee@sls.csail.mit.edu

Abstract

One common mistake made by non-native
speakers of English is to drop the articles a, an,
or the. We apply the log-linear model to auto-
matically restore missing articles based on fea-
tures of the noun phrase. We first show that the
model yields competitive results in article gen-
eration. Further, we describe methods to adjust
the model with respect to the initial quality of
the sentence. Our best results are 20.5% arti-
cle error rate (insertions, deletions and substi-
tutions) for sentences where 30% of the articles
have been dropped, and 38.5% for those where
70% of the articles have been dropped.

1 Introduction

An English noun phrase (NP) may contain a determiner,
such as this, that, a, an or the, which specifies the refer-
ence of its head. The two most common of these deter-
miners, a/an and the, are also known as articles. Broadly
speaking, the indicates that the head refers to someone or
something that is uniquely defined; a/an, or the absence
of any articles, indicates that it is a general concept.

Many languages do not have any articles. Native
speakers of these languages often have difficulty choos-
ing appropriate English articles, and tend to underuse
them. Our general goal is to automatically correct the
use of articles in English sentences written by non-native
speakers. In this paper, we describe methods for a more
specific task: restoring missing articles.

2 Related Work

The article generation task could be viewed as a classi-
fication problem, whose input is a set of features drawn
from the context of an NP, and whose output is the most
likely article for that NP. The context features are typi-
cally extracted from the syntactic parse tree of a sentence.

(Heine, 1998) takes a Japanese NP as input, and classi-
fies it as either definite or indefinite. A hierarchy of rules,
ordered by their priorities, are hand-crafted. These rules
involve the presence or absence of honorifics, demon-
stratives, possessives, counting expressions, and a set of
verbs and postpositions that provide strong hints. In the
appointment scheduling domain, 79.5% of the NPs are
classified with an accuracy of 98.9%. The rest are classi-
fied by searching for its referent in the discourse context.

(Knight and Chander, 1994) uses decision trees to pick
either a/an or the for NPs extracted from the Wall Street
Journal (WSJ). There are over 30000 features in the trees,
including lexical features (e.g., the two words before and
after the NP) and abstract features (e.g., the word after the
head noun is a past tense verb). By classifying the more
frequent head nouns with the trees, and guessing the for
the rest, the overall accuracy is 78%.

(Minnen et al., 2000) applies a memory-based learn-
ing approach to choose between a/an, the and null. Their
features are drawn from two sources: first, from the Penn
Treebank, such as the NP head and its part-of-speech
(POS) and functional tags, the category and functional
tags of the constituent embedding the NP, and other deter-
miners in the NP; and second, from a Japanese-to-English
translation system, such as the countability preference
and semantic class of the NP head. The best result is
83.6% accuracy.

3 Approach

The article generation task constitutes one component of
the article correction task. The other component is a
natural language parser that maps an input sentence to a
parse tree, from which context features of NPs are ex-
tracted. In addition, the article correction task needs to
address two issues:� Ideally, the parse tree of an input sentence with in-

appropriate articles should be identical (except, of
course, the leaves for the articles) to that of the

equivalent correct sentence. However, a natural
language parser, trained on grammatical sentences,
does not perform as well on sentences with inappro-
priate articles. It might not be able to identify all
NPs accurately. We evaluate this problem in

�
4.4.

Further, the context features of the NPs might be
distorted. The performance of the article generator
is likely to suffer. We measure this effect in

�
4.5.� The input sentence may already contain some arti-

cles. If the sentence is of high ‘quality’, one should
be conservative in making changes to its articles. We
characterize ‘quality’ using a 3 � 3 confusion ma-
trix. The articles on the rows are the correct ones;
those on the columns are the ones actually used in
the sentence. For example, if a sentence has the ma-
trix

a null the
a ����� ��� 	 �
null � � �
the � ����
 ��� �

then the article the is correctly used in the sentence
with a 40% chance, but is mistakenly dropped (i.e.,
substituted with null) with a 60% chance. If one
could accurately estimate the underlying confusion
matrix of a sentence, then one could judiciously use
the existing articles as a factor when generating arti-
cles.

For the article restoration task, we assume that arti-
cles may be dropped, but no unnecessary articles are
inserted, and the articles the and a are not confused
with each other. In other words, the four zero entries
in the matrix above are fixed. We report experiments
on article restoration in

�
4.6.

3.1 Features

Our context features are drawn from two sources: the out-
put of Model 3 of Collins’ statistical natural language
parser (Collins, 1999), and WordNet Version 2.0. For
each base NP in the parse tree, we extract 15 categories
of syntactic and semantic features. As an example, the
sentence Pierre Vinken, 61 years old, will join the board
as a nonexecutive director Nov. 29 is parsed as:

... the/DT board/NN)
(PP as/IN

(NPB a/DT nonexecutive/JJ director/NN))
(NPB Nov./NNP 29/CD ...

From this parse tree the following features are ex-
tracted for the base NP a nonexecutive director:

Article* The correct article, which may be the, null, or
a (covering both a and an).

Article (a) The article in the original sentence.

Head (director) The root form of the head of the NP. A
number is rewritten as number � . The head is de-
termined using the rules in (Collins, 1999), except
for possessive NPs. The head of a possessive NP is
’s, which is not indicative of its article preference.
Instead, we use the second best candidate for NP
head.

Number (singular) If the POS tag of the NP head is NN
or NNP, the number of the head is singular; if the
tag is NNS or NNPS, it is plural; for all other tags, it
is n/a.

Head POS (NN) The POS tag of the NP head. Any in-
formation about the head’s number is hidden; NNS
is re-written as NN, and NNPS as NNP.

Parent (PP) The category of the parent node of the NP.

Non-article determiner (null) A determiner other than
a or the in the NP.

Words before head (nonexecutive) Words inside the NP
that precede the head, excluding determiners.

Words after head (null) Words inside the NP that fol-
low the head, excluding determiners.

POS of words before head (JJ) The POS tags of words
inside the NP that precede the head, excluding de-
terminers.

POS of words after head (null) The POS tags of words
inside the NP that follow the head, excluding deter-
miners.

Words before NP (board, as) The two words preceding
the base NP. This feature may be null.

Words after NP (Nov, number �) The two words fol-
lowing the base NP. This feature may be null.

Hypernyms (� entity � , � object, physical object � , ...,� head, chief, top dog � , � administrator, decision
maker �) Each synset in the hierarchy of hypernyms
for the head in WordNet is considered a feature. We
do not attempt any sense disambiguation, but always
use the hypernyms for the first sense.

Referent (no) If the same NP head appears in one of the
5 previous sentences, then yes; otherwise, no.

3.2 Log-linear Model

We use the log-linear model (Ratnaparkhi, 1998), which
has the maximum entropy property, to estimate the condi-
tional probabilities of each value of the Article* feature,
given any combination of features. This model is able

to incorporate all these features, despite their interdepen-
dence, in a straightforward manner. Furthermore, unlike
in decision trees, there is no need to partition the training
data, thereby alleviating the data sparseness problem.

In this model, the Article* feature is paired up with
each of the other features to form contextual predicates
(also called “features” in (Ratnaparkhi, 1998)). Thus, our
example sentence has the following predicates:

(Article* = a) & (Article = a)
(Article* = a) & (Head = director)
(Article* = a) & (Head POS = NN)
...

4 Experiments

4.1 Training Sets for Article Restoration

We ran Ratnaparkhi’s MXPOST part-of-speech tagger and
Model 3 of Collins’ parser on the text in sections 00 to 21
of the Penn Treebank-3. We then extracted all base NPs
and their features from the parser’s output.1 There are
about 260000 base NPs. The distribution of the articles
in this set is roughly 70.5% null, 20% the and 9.5% a.

The articles in the original sentences were initially as-
signed to both the Article* and Article features. This
would imply a very high quality for the input sentences,
in the sense that their articles were extremely likely to be
correct. As a result, the model would be overly conser-
vative about inserting new articles. To simulate varying
qualities of input sentences, we perturbed the Article fea-
ture with two different confusion matrices, resulting in
the following training sets:

� TRAINDROP70: The Article feature is perturbed
according to the confusion matrix�� ��� ������� �� � �� �����������

��

That is, 70% of the feature (Article = the), and 70%
of the feature (Article = a), are replaced with the
feature (Article = null). The rest are unchanged.

This set trains the model to aim to insert enough ar-
ticles such that the initial number of articles in a sen-
tence would constitute about 30% of the final num-
ber of articles.

1Since Collins’ parser was trained on sections 02 to 21 of the
same treebank, the accuracy of our context features is higher
than what we would expect from other texts. Our motivation
for using the text of the Penn Treebank is to facilitate compari-
son between our article generation results and those reported in
(Knight and Chander, 1994) and (Minnen et al., 2000), both of
which read context features directly from the Penn Treebank.

� TRAINDROP30: The Article feature is perturbed
according to the confusion matrix�� ����������� �� � �� �����������

��

That is, 30% of (Article = the) and 30% of (Arti-
cle = a) are replaced with (Article = null). Upon
seeing a null in an input sentence, all else being
equal, TRAINDROP30 should be less predisposed
than TRAINDROP70 to change it to the or a. In other
words, the weight of (Article* = the) & (Article =
null) and (Article* = a) & (Article = null) should be
heavier in TRAINDROP70 than TRAINDROP30.

Contextual predicates that were true in less than 5 base
NPs in the training sets were deemed unreliable and re-
jected. The weight for each predicate was initialized to
zero, and then trained by iterative scaling.

After training on TRAINDROP30 for 1500 rounds, the
ten heaviest weights were:

(Article* = the) & (Head = the)2

(Article* = a) & (Word before head = lot)
(Article* = the) & (Head = Netherlands)
(Article* = the) & (Head = Beebes)
(Article* = a) & (Word before head = million)
(Article* = a) & (Hypernym = � struggle, bat-
tle �)
(Article* = the) & (Word before head = year-
before)3

(Article* = a) & (Word before head = dozen)
(Article* = a) & (Word before head = restated)
(Article* = the) & (Head = wound)

Notice that two features, Head and Word before head,
dominated the top 10 weights.

4.2 Training Sets for Article Generation

We created three additional training sets which omit the
Article feature. In other words, the articles in input sen-
tences would be ignored. These sets were used in the
article generation experiments.� TRAINGEN �����! : This set uses only four features,

Article*, Head, Number and Head POS.

2The article the as head of an NP is due to incorrect parses.
An example is the sentence Mr. Nixon, the most prominent
American to come to China since The parse had an S parent
dominating a base NP, which contained the alone, and an adjec-
tive phrase, which contained most prominent American and so
forth.

3The word year-before is used as an adjective in the NP, such
as the year-before $33 million.

Accuracy Rate DROP0 DROP30 DROP70
TRAINGEN 87.7% 82.5% 76.4%

TRAINGEN "$#&%'% % 82.4% 79.5% 75.8%
TRAINGEN �����! 80.1% 78.6% 76.9%

Table 1: Accuracy rate in article generation

� TRAINGEN "$#&%(% % : This set uses the subset of our
features that were also used in (Minnen et al., 2000).
These include all the features in TRAINGEN �����) ,
plus Parent and Non-article determiner.� TRAINGEN: This set uses our full set of features.

4.3 Test Sets

We generated four test sets from the text in section 23 of
the Penn Treebank-3 by dropping 70%, 30% and 0% of
the articles. We call these sets DROP70, DROP30 and
DROP0. There are about 1300 a’s and 2800 the’s in the
section.

4.4 Identifying Noun Phrases

We would like to measure the degree to which the missing
articles corrupted the parser output. We analyzed the fol-
lowing for each sentence: whether the correct NP heads
were extracted; and, if so, whether the boundaries of the
NPs were correct. DROP30 and DROP70 were POS-
tagged and parsed, and then compared against DROP0.

97.6% of the sentences in DROP30 had all their NP
heads correctly extracted. Among these sentences, 98.7%
of the NPs had correct boundaries.

The accuracy rate for NP heads decreased to 94.7% for
DROP70. Among the sentences in DROP70 with correct
heads, 97.5% of the NPs had correctly boundaries.

We now turn our attention to how these errors affected
performance in article generation.

4.5 Article Generation

We trained the log-linear model with TRAINGEN,
TRAINGEN "$#&%'% % and TRAINGEN �����! , then performed
the article generation task on all test sets. Table 1 shows
the accuracy rates.

Our baseline accuracy rate on DROP0, 80.1%, is close
to the corresponding rate (80.8% for the “head+its part-
of-speech”feature) reported in (Minnen et al., 2000). Our
best result, 87.7%, is an improvement over both (Minnen
et al., 2000) and (Knight and Chander, 1994).

We added 8 more features (see
�
3.1) to

TRAINGEN "$#&%'% % to make up TRAINGEN. After
adding the features Words before/after head and POS
of words before/after head, the accuracy increased by
more than 4%. In fact, these features dominated the 10
heaviest weights in our training; they were not used in
(Minnen et al., 2000).

Article null generated the generated a generated
null 9647 324 124
the 656 1898 228
a 167 249 878

Table 2: Contingency table for article generation using
TRAINGEN on DROP0

The Words before/after NP features gave another
0.8% boost to the accuracy. These features were also used
in (Knight and Chander, 1994) but not in (Minnen et al.,
2000). The Hypernyms feature, which placed NP heads
under the WordNet semantic hierarchy, was intended to
give a smoothing effect. It further raised the accuracy by
0.3%.

At this point, the biggest source of error was gener-
ating null instead of the correct the. We introduced the
Referent feature to attack this problem. It had, however,
only a modest effect. Among weights that involved this
feature, the one with the largest magnitude was (Article*
= a) & (Referent = yes), at a meagre -0.71. The others
were within * 0.3. Table 2 is the final contingency table
for TRAINGEN on DROP0.

The confusion between null and the remained the
biggest challenge. The 656 misclassifications seemed
rather heterogeneous. There was an almost even split
between singular and plural NP heads; more than three
quarters of these heads appeared in the list three times or
less. The most frequent ones were number � (22 times),
bond, year, security, court (8 times), fifth and show (7
times).

As expected, the performance of TRAINGEN degraded
on DROP30 and DROP70.

4.6 Article Restoration

So far, our experiments have not made use of the Article
feature; articles in the original sentences are simply ig-
nored. In the article restoration task, it is possible to take
advantage of this feature.

We trained the log-linear model with TRAINDROP30,
TRAINDROP70 and TRAINGEN. Our baseline was keep-
ing the original sentences intact. The test sets were pro-
cessed as follows: If an NP contained an article, the new
article (that is, the output of the article generator) would
replace it; otherwise, the new article would be inserted at
the beginning of the NP. The final sentences were evalu-
ated against the original sentences for three kinds of er-
rors:

Deletions The number of articles deleted.

Substitutions The number of a’s replaced by the’s, and
vice versa.

Insertions The number of articles inserted.

Training Set DROP0 DROP30 DROP70
BASELINE 0% 30.3% 69.0%
TRAINDROP30 4.4% 20.5% 40.7%
TRAINDROP70 8.9% 22.3% 38.5%
TRAINGEN 43.0% 46.0% 49.4%

Table 3: Article error rate

The article error rate is the total number of errors di-
vided by the number of articles in the original sentences.

The results in Table 3 reflect the intuition that, for a
test set where + % of the articles have been dropped, the
optimal model is the one that has been trained on sen-
tences with + % of the articles missing. More generally,
one could expect that the optimal training set is the one
whose underlying confusion matrix is the most similar to
that of the test set.

Whereas TRAINGEN ignores the original articles, both
TRAINDROP30 and TRAINDROP70 led the model to be-
come extremely conservative in deleting articles, and in
changing the to a, or vice versa. Thus, the only major dis-
tinguishing characteristic between them was their aggres-
siveness in inserting articles: TRAINDROP70 was more
aggressive than TRAINDROP30. Tables 4 to 6 illustrate
the breakdown of the kinds of error contributing to the
article error rate:

Training Set DROP0 DROP30 DROP70
BASELINE 0% 30.3% 69.0%
TRAINDROP30 0.4% 13.0% 28.4%
TRAINDROP70 0.3% 9.7% 20.2%
TRAINGEN 19.3% 21.7% 23.9%

Table 4: Deletion error rate

The trends in the deletion error rate (Table 4) were
quite straightforward: the rate was lower when the model
inserted more articles, and when fewer articles were
dropped in the original sentences.

Training Set DROP0 DROP30 DROP70
BASELINE 0% 0% 0%
TRAINDROP30 0.0% 2.7% 6.5%
TRAINDROP70 0.0% 3.0% 7.1%
TRAINGEN 11.8% 11.3% 10.9%

Table 5: Substitution error rate

Most of the substitution errors (Table 5) were caused
by the following: an article (e.g., a) was replaced by null
in the test set; then, the wrong article (e.g., the) was gen-
erated to replace the null. In general, the substitution
rate was higher when the model inserted more articles,
and when more articles were dropped in the original sen-
tences.

Training Set DROP0 DROP30 DROP70
BASELINE 0% 0% 0%
TRAINDROP30 4.0% 4.9% 5.9%
TRAINDROP70 8.6% 9.7% 11.2%
TRAINGEN 11.9% 13.0% 14.6%

Table 6: Insertion error rate

The more aggressive the model was in inserting arti-
cles, the more likely it “over-inserted”, pushing up the in-
sertion error rate (Table 6). With the aggressiveness kept
constant, it might not be obvious why the rate should rise
as more articles were dropped in the test set. It turned
out that, in many cases, inaccurate parsing (see

�
4.4) led

to incorrect NP boundaries, and hence incorrect insertion
points for articles.

As the wide range of error rates suggest, it is important
to choose the optimal training set with respect to the input
sentences. As one becomes more aggressive in inserting
articles, the decreasing deletion rate is counter-balanced
by the increasing substitution and insertion rates. How
could one determine the optimal point?

Table 7 shows the changes in the number of articles,
as a percentage of the number of articles in the final
sentences. When running TRAINGEN on DROP30 and
DROP70, there was an increase of 23.8% and 65.9% in
the number of articles. These rates of increase were
close to those obtained (24.4% and 66.0%) when run-
ning their respective optimal sets, TRAINDROP30 and
TRAINDROP70. It appeared that TRAINGEN was able
to provide a reasonable estimate of the number of articles
that “should” be restored. When given new input sen-
tences, one could use TRAINGEN to estimate the percent-
age of missing articles, then choose the most appropriate
training set accordingly.

5 Future Work

5.1 Article Generation

We would like to improve the performance of the article
generator. Our largest source of error is the confusion
between null and the. In this work, we used predomi-
nantly intra-sentential features to disambiguate the arti-
cles. Article generation, however, clearly depends on pre-
vious sentences. Our only inter-sentential feature, Refer-

Training Set DROP0 DROP30 DROP70
BASELINE 0% 0% 0%
TRAINDROP30 +3.9% +24.4% +60.1%
TRAINDROP70 +8.1% +38.1% +66.0%
TRAINGEN -7.5% +23.8% +65.9%

Table 7: Change in the number of articles

ent, rather naı̈vely assumed that the referent was explic-
itly mentioned using the same noun within 5 preceding
sentences. Techniques in anaphora resolution could help
refine this feature.

5.2 Parser Robustness

The performance of the article generator degraded by
more than 5% on when 30% of the articles in a sentence
were dropped, and by more than 11% when 70% were
dropped (see

�
4.5). This degradation was due to errors in

the extraction of context features, and in identifying the
NPs (see

�
4.4).

These errors could be reduced by retraining the POS
tagger and the natural language parser on sentences with
missing articles. New training sets for the tagger and
parser could be readily created by dropping the article
leaves from the Penn Treebank.

5.3 Weight Estimation

We used different confusion matrices to create training
sets that simulated discrete percentages of dropped arti-
cles. Given some input sentences, the best one could do is
to estimate their underlying confusion matrix, and choose
the training set whose underlying matrix is the most sim-
ilar.

Suppose a sentence is estimated to have half of its arti-
cles missing, but we do not have weights for a TRAIN-
DROP50 set. Rather than retraining such a set from
scratch, could we interpolate optimal weights for this sen-
tence from existing weights?

5.4 Other Types of Grammatical Mistakes and
Texts

We would like to lift our restrictions on the confusion
matrix; in other words, to expand our task from restoring
articles to correcting articles.

We have also identified a few other common categories
of grammatical mistakes, such as the number of the NP
head (singular vs. plural), and the verb tenses (present vs.
past vs. continuous). For native speakers of languages
that do not inflect nouns and verbs, it is a common mis-
take to use the root forms of nouns and verbs instead of
the inflected form.

Finally, we would like to investigate how well the rules
learned by our model generalize to other genres of texts.
After all, most non-native speakers of English do not
write in the style of the Wall Street Journal! We plan to
train and test our model on other corpora and, if possible,
on writing samples of non-native speakers.

6 Conclusion

We applied the log-linear model on the article generation
task, using features drawn from a statistical natural lan-
guage parser and WordNet. The feature set was progres-

sively enriched with information from both inside and
outside the NP, semantics, and discourse context. The
final feature set yielded very competitive results.

We applied the same model to tackle the article restora-
tion task, where sentences may have missing articles. On
the one hand, article generation performance degraded
significantly due to context extraction errors; this points
to the need to adapt the tagger and parser to ungrammati-
cal sentences. On the other hand, the articles that were al-
ready present in the sentence provided strong hints about
the correct article; this points to the need for better meth-
ods for estimating the underlying confusion matrix of a
sentence.

7 Acknowledgements

The author would like to thank Michael Collins and the
four anonymous reviewers for their very helpful com-
ments. This work is in part supported by a fellowship
from the National Sciences and Engineering Research
Council of Canada, and by the NTT Corporation.

References

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing, Ph.D. Thesis, Univer-
sity of Pennsylvania, Philadelphia, PA.

Julia E. Heine. 1998. Definiteness Predictions for
Japanese Noun Phrases, in Proceedings of the
36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Confer-
ence on Computational Linguistics (COLING/ACL-
98), pages 519-525, Montréal, Canada.

Kevin Knight and Ishwar Chander. 1994. Automated
Postediting of Documents, in Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI-
94), pages 779-784, Seattle, WA.

Guido Minnen, Francis Bond and Ann Copestake. 2000.
Memory-based Learning for Article Generation, in
Proceedings of the 4th Conference on Computational
Language Learning and the 2nd Learning Language
in Logic Workshop (CoNLL/LLL-2000), pages 43-48,
Lisbon, Portugal.

Adwait Ratnaparkhi. 1998. Maximum Entropy Mod-
els for Natural Language Ambiguity Resolution Ph.D.
Thesis, University of Pennsylvania, Philadelphia, PA.

