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Abstract

In this work, we are concerned with a coarse
grained semantic analysis over sparse data, which
labels all nouns with a set of semantic categories.
To get the benefit of unlabeled data, we propose
a bootstrapping framework with Maximum En-
tropy modeling (MaxEnt) as the statistical learn-
ing component. During the iterative tagging pro-
cess, unlabeled data is used not only for better
statistical estimation, but also as a medium to in-
tegrate non-statistical knowledge into the model
training. Two main issues are discussed in this
paper. First, Association Rule principles are sug-
gested to guide MaxEnt feature selections. Sec-
ond, to guarantee the convergence of the boot-
strapping process, three adjusting strategies are
proposed to soft tag unlabeled data.

1 Introduction

Semantic analysis is an open research field in natural lan-
guage processing. Two major research topics in this field are
Named Entity Recognition (NER) (N. Wacholder and Choi,
1997; Cucerzan and Yarowsky, 1999) and Word Sense Dis-
ambiguation (WSD) (Yarowsky, 1995; Wilks and Steven-
son, 1999). NER identifies different kinds of names such as
”person”,”location” or ”date”, while WSD distinguishes the
senses of ambiguous words. For example, ”bank” can be la-
beled as ”financial institution” or ”edge of a river”. Our task
of semantic analysis has a more general purpose, tagging
all nouns with one semantic label set. Compared with NE,
which only considers names, our task concerns all nouns.
Unlike WSD, in which every ambiguous word has its own
range of sense set, our task aims at another set of semantic
labels, shared by all nouns. The motivation behind this work
is that a semantic category assignment with reliable perfor-
mance can contribute to a number of applications including
statistical machine translation and sub-tasks of information
extraction.

∗This work was supported in part by NSF grant numbers IIS-
0121285. Any opinions, fndings and conclusions or recommenda-
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sarily reflect those of the sponsor.

The semantic categories adopted in this paper come from
the Longman Dictionary. These categories are neither par-
allel to nor independent of each other. One category may
denote a concept which is a subset of that of another. Exam-
ples of the category structures are illustrated in Figure 1.

Figure 1: Structure of some semantic categories used in the
Langman dictionary.

Maximum Entropy (MaxEnt) principle has been success-
fully applied in many classification and tagging tasks (Rat-
naparkhi, 1996; K. Nigam and A.McCallum, 1999; A. Mc-
Callum and Pereira, 2000). We use MaxEnt modeling as the
learning component. A major issue in MaxEnt training is
how to select proper features and determine the feature tar-
gets (Berger et al., 1996; Jebara and Jaakkola, 2000). To
discover useful features, we exploit the concept of Associ-
ation Rules (AR) (R. Agrawal and Swami, 1993; Srikant
and Agrawal, 1997), which is originally proposed in Data
Mining research field to identify frequent itemsets in a large
database.

Like many other classification tasks, human-annotated
data for semantic analysis is expensive and limited, while
a large amount of unlabeled data is easily obtained. Many
researchers (Blum and Mitchell, 1998; K. Nigam and
Mitchell, 2000; Corduneanu and Jaakkola, 2002) have at-
tempted to improve performance with unlabeled data. In
this paper, we also propose a framework to bootstrap with
unlabeled data. Fractional counts are assigned to unlabeled
instances based on current model and accessible knowledge
sources. Pooled with human-annotated data, unlabeled data
contributes to the next MaxEnt model.



We begin with an introduction of our bootstrapping
framework and MaxEnt training. An interesting MaxEnt
puzzle is presented, with its derivation showing possible di-
rections of utilizing unlabeled data. Then the feature selec-
tion criterion guided by AR is discussed as well as the indi-
cator selection (section 3). We discuss initialization meth-
ods for the unlabeled data. Strategies to guarantee conver-
gence of bootstrapping process and approaches of integrat-
ing non-statistical knowledge are proposed in section 4. Fi-
nally, experimental results are presented along with conclu-
sions and future work.

2 Bootstrapping and the MaxEnt puzzle

An instance in the corpus includes the headword, which is
the noun to be labeled, and its context. To integrating the un-
labeled instances in the training process, we propose a tag-
ging method calledsoft tagging. Unlike the normal tagging,
in which each instance is assigned only one label, soft tag-
ging allows one instance to be assigned several labels with
each of them being associated with a fractional credit. All
credits assigned to one instance should sum up to 1. For
example, a raw instance with the headword ”club” can be
soft tagged as (movable J:0.3, not-movable N:0.3, collective
U:0.4). Once all auxiliary instances have been assigned se-
mantic labels, we pool them together with human-annotated
data to select useful features and set up feature expectations.
Then a log-linear model is trained for several iterations to
maximize likelihood of the whole corpora. With the updated
MaxEnt model, unlabeled data will be soft tagged again.
The whole process is repeated until convergence condition
is satisfied. This framework is illustrated in Figure 2.

In building a mexent model, unlabeled data contributes
differently to the feature selection and target estimation
compared to the human-annotated data. While human-
annotated instances never change, tags in unlabeled data
keep updating according to the new MaxEnt model in each
bootstrapping iteration, which might lead to a different fea-
ture set.

Figure 2: The bootstrapping framework

Before presenting the MaxEnt puzzle, let’s first consider
a regular MaxEnt formulation. Letl be a label andx be
an instance. Letkh(l, x) be theh-th binary feature func-
tion which is equal to 1 if(l, x) activates theh-th feature
and 0 otherwise.P (l, x) is given by the model, denoting the
probability of observing bothl andx. P̂ (l, x) is the empir-
ical frequency of(l, x) in the training data. The constraint
associated with featurekh(l, x) is represented as:

∑

l,x

P (l,x) kh(l,x) =
∑

l,x

P̂ (l,x) kh(l,x) (1)

In practice, we are interested in conditional models
P (l|x), which assign probability mass to a label set given
supporting evidencex. And we approximateP (x) with
P̂ (x) . Consequently,

∑

x

P̂ (x)
∑

l

P (l|x) kh(l,x) =
∑

l,x

P̂ (l,x) kh(l,x) (2)

Next, we show how the effect of unlabeled data disap-
pears during the bootstrapping in a restricted situation. We
make the following assumptions:

1. The feature targets are the raw frequencies in the train-
ing data. No smoothing is applied.

2. During the bootstrapping, we maintain a fixed feature
set, while the feature targets might change.

3. The fractional credit assigned to labell and instancex
in thet + 1 iteration isP t(l|x).

Let N be the total number of instance(1, · · · , N ) in la-
beled data andM be the total number of instance(N +
1, · · · , N + M ) in unlabeled data. Letλ be the weight as-
signed to unlabeled instances. The new constraint for the
h-th feature function can be rewritten as:

1

N + λM

N∑

i=1

∑

l

P t+1(l|xi) kh(l,xi) (3)

+
λ

N + λM

N+M∑

i=N+1

∑

l

P t+1(l|xi) kh(l,xi)

=
1

N + λM

N∑

i=1

kh(li,xi)

+
λ

N + λM

N+M∑

i=N+1

∑

l

P t(l|xi) kh(l,xi)

wheret is the index of the bootstrap iterations.li is the
human-annotated label attached to theith instance.

When the procedure converges,P t(l|xi) = P t+1(l|xi),
the second parts on both sides will cancel each other. Fi-
nally, the constraint will turn out to be:

N∑

i=1

∑

l

P t+1(l|xi) kh(l,xi) =

N∑

i=1

kh(li,xi) (4)

which includes statistics only from labeled data. If the fea-
ture set stays the same, unlabeled data will make no con-
tribution to the whole constraint set. A model which can
satisfy Equation 3 must be able to satisfy Equation 4. If un-
labeled instances satisfy the same distribution as labeledin-
stances, given the same set of constraints, the model trained
on only labeled data would be equivalent to the one trained
on both.



The above derivation shows that with the three restric-
tions, the soft tagged instances make no contribution to the
constraint set, which is counter-intuitive. That is why we
call it a ”MaxEnt Puzzle”. Consequently, to utilize unla-
beled data, we should break the three restrictions: to re-
select feature set after each bootstrapping iteration, or adjust
the soft tagging results given by the model.

3 Feature selection

Berger et al (1996) proposed an iterative procedure of
adding news features to feature set driven by data. We
present a simple and effective approach using some statis-
tical heuristics for feature selection.

There are two kinds of features in MaxEnt modeling:
marginal features and conditional features. Marginal fea-
tures represent the priors of the semantic categories. Condi-
tional features are composed of an indicator and a label. An
indicator can be a single word, an array of words or a word
cluster. Similarly, a label can be either a single semantic
category or a set of categories.

One major motivation of combining unlabeled data with
labeled data in the training process is that unlabeled data
can provide a large pool of valuable feature candidates as
well as more statistical information. An (indicator, label)
pair may appear only once in labeled data, but it may oc-
cur very frequently in soft tagged data, it might be selected
as a feature during the bootstrapping. Similarly, a feature
selected only from human-annotated data may become rel-
atively infrequent when the soft tagged instances are added,
thus being eliminated from the feature set.

3.1 Indicators

A good indicator should have an obvious preference for def-
inite semantic categories. For instance, ”good”,”great” are
weak indicators because they can modify almost all seman-
tic categories; ”drinkable” and ”light-weighted” are usually
associated with ”liquid (L)” and ”movable (J)” respectively,
thus are strong indicators. The quality of an indicator can be
measured by the entropy of the semantic categories it mod-
ifies. The lower the entropy is, the stronger preference the
indicator has.

To overcome the data sparsity problem, several indica-
tors can be clustered together to form a new single indica-
tor. There are two possible ways of clustering. One is hard
clustering, which divides all words into non-overlapping
classes; The other is soft clustering, which permits one word
to belong to different classes. Usually, words with similar
semantic preferences are clustered together.

3.2 Association rules in feature selection

An indicator can be combined with different labels to form
different features. But not all pairs including good indica-
tors are good features. In a statistical learning algorithm,
a good feature should first be statistically reliable, whichis
considered in most of the MaxEnt modeling implementa-
tions. However, with this single requirement, it is possible
that (x, l) is a feature if bothx and l are frequent, but the
chance of seeing labell is tiny given the presence of indica-
tor x. More constraints are necessary to pinpoint indicative

features. We exploit Association Rule (AR) principles to put
more restrictions in feature selecting.

Let x be an indicator andl be a label. count(x, l) de-
notes the number of instances which include indicatorx and
are attached with labell in the training corpus.N is the to-
tal number of instances. We define three measurements to
characterize the goodness of a given(x, l) pair from three
different points. We put thresholds on each of them.

support(x, l) denotes how frequently indicatorx and la-
bel l occur together.

support(x, l) =
count(x, l)

N
(5)

confidence(x, l) denotes how likely it is to observe label
l when indicatorx is at present.

confidence(x, l) =
count(x, l)

count(x)
(6)

improvement(x, l) shows how much more likely to see
label l when indicatorx is observed relative to the overall
probability of seeingl.

improvement(x, l) =
count(x, l)/count(x)

count(l)/N
(7)

The concept ofimprovement can be extended to each
part of the indicators. LetS be the feature set.

improvement(x, l) = minx′∈x,(x′,l)∈S

confidenc(x, l)

confidenc(x′, l)
(8)

For instance, assume the improvement threshold is 1.
Let x=x1x2, if confidence(x1, l) > confidence(x1x2, l),
then (x1x2, l) will be ignored and only(x1, l) is selected
as a feature; otherwise, only(x1x2, l) remains and(x1, l)
is ignored. This idea can be applied to remove embedded
features, reducing the redundancy in the feature set.

The assumption behind those criteria is that most features
should be positive, i.e., given feature (x,l), the existence of
indicatorx always increase the odds of seeing labell, other
than decrease it.

4 Soft tagging

Initialization of unlabeled instances is important for our
bootstrapping framework, because its effect will be carried
on from one iteration to another. Even if the auxiliary data
(unlabeled data included in training) has no effect on the
constraint set under some circumstances, the soft tagged
auxiliary data is still a part of the training corpus, the like-
lihood of which is to be maximized in the MaxEnt training.
On one hand, we wish the initialization to be as close as
possible to the real value, of which we have no idea except
for the knowledge from labeled data; on the other hand, we
wish the tagging of the auxiliary data could be slightly dif-
ferent from the model trained only on labeled data, to avoid
converging to this model itself.

As we have seen in section 2, using the model generated
in the previous iteration directly to soft tag the auxiliarydata



is one of the causes diluting the effect of the auxiliary data.
Therefore, we propose to adjust the soft tagging results by
non-statistical knowledge or through fixing some of the tags.

4.1 Initialization of unlabeled data

Inspired by the MaxEnt puzzle, we realize the importance
of additional knowledge sources. To assign inital fractional
credits to unlabeled instances, we look up a dictionary to
narrow down choices. In particular,

1. If the headword of the instance has a unique semantic
label choice according to the dictionary, it gets credit 1
for this label and 0 for others.

2. If the headword has been observed in labeled data and
it has more than one possible labels in the dictionary, it
is initialized as follows:

Let w be the headword andl be a label.m is the to-
tal number of permitted labels forw according to the
dictionary. LetL(w) be the set of(w, l) pairs in la-
beled data andD(w) be the set of(w, l) permitted in
the dictionary.

If D(w) = L(w), then

credit(w, l) =

{
count(w,l)
count(w) if (w, l) ∈ L(w)

0 otherwise

Otherwise, we add one and renormalize:

credit(w, l) =

{
count(w,l)+1
count(w)+m

if (w, l) ∈ D(w)

0 otherwise

3. If the headword never occurs in human-annotated data,
we initialize the credits with the flat distribution.

credit(w, l) =

{
1
m

if (w, l) ∈ D(w)
0 otherwise

4.2 Adjust credits according to their distributions

Considering the bootstrapping process as a tug-of-war be-
tween labeled and unlabed data, with the flag denoting the
model. In each bootstrapping iteration, tags of the auxil-
iary data are updated in accordance with the model. Unla-
beled data is moving towards the labeled data while the latter
stands still. One way to prevent the auxiliary data from be-
ing dragged completely to the point of the labeled data is to
nail down part of the auxiliary data tags. For example, sup-
pose an instance gets credits (0.8,0.15,0.05). Since the first
category is much more likely than the others, we can fix the
credits as (1,0,0) for ever. Another choice would be to re-
move the least probable category, i.e., changing the credits
to (0.84,0.16,0). An even more radical method is to remove
the whole instance from the auxiliary data if it has no strong
semantic preferences.

Here are the details of these adjusting strategies:

rmlow set the least probable category with credit zero and
renormalize the remaining credits. Whether to apply
this action or not can depend on thresholding on the
mininal credit, the ratio of the minimal credit to the
maximal credit, or the entropy of the credit distribution.

kphigh assign all credit 1 to the most probable category.
Possible thresholds can be set for the maximal credit,
the ratio of the maximal credit to the second maximal
credit, or the entropy of the credit distribution.

rmevent remove the instance if it has a flat credit distri-
bution after several iterations. Possible thresholds can
be set for the maximal credit, the ratio of the maximal
credit to the minimal credit, or the entropy of the credit
distribution.

The effect of those actions is permanent. That is, if a cat-
egory is forbidden (set to zero) for one instance, it will be
forbidden for this instance in the following iterations. Sim-
ilarly, if an instance is removed, it will never be used in the
training process again.

4.3 Adjust credits with non-statistical knowledge

Non-statistical knowledge is the knowlege which is not ob-
tainable from statistics in a sparse data set, but rather from
other resources like a dictionary or WordNet. This kind of
knowledge may not be expressed in labeled data, therefore
could not be used to form features. For instance, we can ob-
tain easily from a dictionary that word ”long-tailed” is used
to modify animals. But if ”long-tailed” is rarely observed in
the training data, it will not not selected as a feature, thus
being ignored by the model.

To take advantage of non-statistical knowledge, we use it
to adjust soft tagging results. One possibility is pruning the
illegal categories with a dictionary. By doing so, this kind
of knowledge can affect the MaxEnt modeling indirectly.
Similarly, the preference of a context word could also be
used to adjust the credit distributions.

5 Experiments

5.1 Corpus

The corpus used in our experiments is provided by Sheffield
University. The human-annotated data is divided into train-
ing (SHD) and test (Blind). SHD contains 197K instances
and Blind contains 13K instances.

The Longman dictionary provides 36 semantic cate-
gories, among which only 21 most frequently used cate-
gories with the exception of ”unknown (Z)” are used in our
experiments. The distribution of the semantic categories is
far from uniform. Semantic category ”abstract (T)” alone
forms60% (126K) of the human-annotated instances. The
histogram of the other categories is shown in Figure 3.

The inter-annotator agreement for the labeled data is95%
with exact match. Even though some semantic categories
form a hierarchical structure, we always assume that human
annotators chose the most specific categories. Evaluation of
the classification error rate (CER) in the following experi-
ments also uses exact match only.

5.2 Feature selection with Association Rule principles

The first group of experiments are designed to test different
indicators as well as the feature selection strategies, without
using unlabeled instances or bootstrapping. The indicators
and feature selection thresholds which result in the best per-
formance are used in the bootstrapping experiments.



Figure 3: The number of instances labeled with semantic
categories other than T

Since96% of the headwords in Blind are also in SHD,
headwords are the most effective indicators. Using head-
words alone can get9.47% classification error rate. Other
indicators investigated include adjectives, which modify
headwords, and their clusters. As we mentioned before,
clustering can alleviate data sparseness problem. So we
group headwords and adjectives. Headword clusters are soft
clusters. The ambiguous headwords can belong to several
clusters as long as the corresponding categories of those
clusters are permitted for these headwords in the dictionary.
Adjectives are hard clustered. We discard general common
adjectives according to their entropies. We keep only those
with strong semantic preferences and assign them to the
clusters corresponding to their best preferences.

We also include compound features such as headword-
adjective, headword-adjectivecluster and other combina-
tions.

Table 1 shows the experimental results with all types
of indicators which are mentioned above, and compared
the results with the baseline. For different types of fea-
tures, we set up different thresholds. In config-1, only the
support thresholds are used. From config-2 to config-5,
we raiseconfidence and improvement thresholds grad-
ually to lower the number of features. The CER results
show that with proper thresholds, usingconfidence and
improvement not only helps decreasing the feature set size
by as much as26%, but also improves the performance.

The last column of the table 1 shows the p-value of sig-
nificnce test between each configuration and its precedence.
Clearly, config 1,2,and 3 perform similar to each other,
though they are significant better than using headwords only.
And config 4 and 5 are significant better than config 3.

5.3 Bootstrapping

In this group of experiments, we use Blind as the auxiliary
data in the bootstrapping process. Blind data is initialized
with the methods mentioned in section 4. No human labels
in Blind are included in the training process. The weight
for the auxiliary dataλ is set to 1 in our experiments. The
Longman dictionary is always used in soft tagging to elimi-
nate the illegal categories.

The bootstrapping process will stop when the constraint
set does not change. Since the feature set is re-selected in

configuration # of features CER(%) p-value
headwords only 12514 9.47 -

config-1 49861 8.18 < 1.0e−12

config-2 44141 8.18 0.53
config-3 39136 7.94 0.034
config-4 36631 7.62 < 1.0e−3

config-5 32214 7.64 0.65

Table 1: Classification Error Rates (CER) with different fea-
ture sets

each iteration, the convergence of the iterative steps is diffi-
cult to achieve. Fluctuations might be observed. With strate-
gies proposed in 4.2, more and more auxiliary instances can
be fixed with one semantic category. The whole process will
stop at some point.

Figure 4 plots the CER in the first 20 iterations for dif-
ferent setups. It shows adding Blind into the bootstrapping
process can lower the error rate to7.37%. Without any soft
tagging adjustment (normal), the training process does not
stop and the CER drops at first but then climbs up later.

Using entropy as thresholds is an efficient way to en-
sure the convergence for bothrmlow andkphigh. Action
rmevent can also keep the results from getting much worse
during bootstrapping.

Figure 4: Error rate in each iteration for different soft tag-
ging strategies

6 Conclusions

We introduce a general semantic analysis task, which labels
all nouns with a unique set of semantic categories. In order
to get benefitted from unlabeled data, we propose a boot-
strapping framework with MaxEnt modeling as the main
learning component. Unlabeled data, after soft tagging, can
be combined with labeled data to provide evidence for Max-
Ent feature selection and target estimation. Moreover, non-
statistical knowledge can affect the modeling indirectly by
adjusting the soft tagging results of the auxiliary data.

For MaxEnt training, we suggest using Association Rule
principles to control the feature selection. The intuitionbe-
hind these criteria is that the very frequent, strongly prefered
(indicator,label) pairs are good enough for model training.



Using AR principles not only decreases the size of the fea-
ture set dramatically, but also improves the performances.
But there is no good way to set the AR thresholds properly
yet.

With the feature set changing in each iteration, the con-
vergence of the bootstrapping is hard to guarantee. By
sharpening the soft tagging results through removing the
least probable label or keeping only the most probable la-
bel, we can speed up convergence.

7 Future work

At present, only headwords and adjectives are used to com-
pose indicators. We plan to incorporate linguistically en-
riched features. Using parsing, we can locate verbs and use
their relationships with headwords as new indicators. An-
other type of potential indicators are the subject codes of the
headwords. Subject codes represent finer grained semantic
classifications. Some of the instances in human-annotated
data have been marked with subject codes. There are a to-
tal of 320 subject codes, such as ”architecture”,”agriculture”
and ”business”. We believe that knowing the subject codes
of the headwords will help to decrease the entropy of the
headword senses.

We have a very large data set BNC corpus, which comes
from the same source as the labeled data we use. BNC data
is composed of 1.2M unambiguous instances, 1.4M seen
instances (ambiguous instances with headwords being ob-
served in SHD) and 0.4M unseen instances (ambiguous in-
stances with headwords never being observed in SHD). In
the future, we will try bootstrapping with BNC data.

Alternative indicator clustering techniques will be ex-
plored too. We have used entropy as a heuristic in the ex-
periments; an alternative heuristic that can be employed is
mutual information.

We have provided a framework to utilize non-statistical
knowledge. In addition to using a dictionary to limit the
choices of unlabeled data, we can obtain plenty of informa-
tion about word sense preferences from the WordNet for soft
tagging adjustment.

The bootstrapping process is closely related to
Expectation-Maximization procedure, in which soft
tagging can be ragarded as the E-step. In many practical
EM implementations, however, updating at the E-step does
not use the exact theoretical value. The modification taken
in the E-step can be a linear combination of the old value
and the new calculated one. Similar re-estimation strategies
can be applied in our work. A theoretical description
of the relationship between EM and soft tagging would
potentially be able to identify convergency properties of the
bootstrapping framework.
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