
WordFreak: An Open Tool for Linguistic Annotation

Thomas Morton and Jeremy LaCivita
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{tsmorton,lacivita}@cis.upenn.edu

Abstract

WordFreak is a natural language annotation
tool that has been designed to be easy to
extend to new domains and tasks. Specifically,
a plug-in architecture has been developed
which allows components to be added to
WordFreak for customized visualization,
annotation specification, and automatic an-
notation, without re-compilation. The APIs
for these plug-ins provide mechanisms to
allow automatic annotators or taggers to
guide future annotation to supports active
learning. At present WordFreak can be used
to annotate a number of different types of
annotation in English, Chinese, and Arabic
including: constituent parse structure and
dependent annotations, and ACE named-entity
and coreference annotation. The Java source
code for WordFreak is distributed under the
Mozilla Public License 1.1 via SourceForge at:
http://wordfreak.sourceforge.net.
This site also provides screenshots, and a web
deployable version of WordFreak.

1 Introduction

The adoption of statistical methods in natural language
processing (NLP) has also created a need for rapid anno-
tation of new data. While statistical techniques for a va-
riety of NLP processing tasks exist, applying these tech-
niques to slightly different tasks, or even adapting an ex-
isting statistical model to a different domain requires the
annotation of new text. Often the amount of data needed
is minimal but setting up an interface which makes this
annotation easy can be a time consuming task. This is
especially the case when trying to use active learning to
guide the annotation. Out of this set of needs, we be-
gan developing an annotation tool which eventually was

named WordFreak. These needs led us to focus on mak-
ing the software easily extensible and reusable, included
the integration of automatic annotators, and developed
the tools entirely in Java to facilitate multi-language and
multi-platform support.

2 Components

WordFreak has a number of different types of compo-
nents. These include two types of data visualization com-
ponents, annotation scheme components which define the
type of annotation which is taking place, and automatic
annotators or taggers. Each of these components im-
plements a common interface so that adding additional
components only requires implementing the same inter-
face. Additionally, WordFreak examine the environment
in which it is run and gathers up any components which
implement one of these interfaces. This allows compo-
nents to be added to it without re-compilation of the orig-
inal source code.

2.1 Visualization

The visualization components are called Viewers and
Choosers. Prototypically the Viewer is where the user
looks to perform the annotation. WordFreak currently
contains four such Viewers which display text, trees, a
concordance, and tables respectively. While particular
viewers are better suited to certain tasks, multiple view-
ers can be used simultaneously. The viewer are displayed
in a tabbed-pane for easy access but can also be removed
if the user wishes to see multiple views of the data simul-
taneously.

The second type of visualization components are
called Choosers. These are typically used to display the
choices that an annotator needs to make in a particular an-
notation scheme. Choosers are specific to an annotation
scheme but are constructed via a set of re-usable chooser
components. For example, a typical chooser consist of
a navigation component which allows the user to move

 Edmonton, May-June 2003
 Demonstrations , pp. 17-18
 Proceedings of HLT-NAACL 2003

through annotations, a buttons component parameterized
to contain names of the relationships your annotating, and
a comment component which allows a user to make a
free-form comments about a particular annotation. Cur-
rently there are chooser components for the above de-
scribed tasks as well as tree representations which have
been used to display annotation choices for tasks such as
coreference and word sense disambiguation.

2.2 Task Definitions

Adapting WordFreak to new annotation tasks is a com-
mon task. This has led us to try and minimizes the
amount of new code that needs to be written for new task
definitions. We have used a two tiered approach to new
task definitions.

The first employs the inheritance mechanisms avail-
able in Java. To define a new task or annotation
scheme one can simply sub-classes an existing Annota-
tionScheme class, initialize what types of annotations the
new task will be based on, define the names of the set of
relationships you will be positing over these annotations,
and specify what chooser components you want to use to
display this set of names. While many options can be cus-
tomized such as keyboard short-cuts, color assignment to
particular relationships, and constraints on valid annota-
tion, the default assignments use the most likely settings
so a typical annotation scheme requires under 100 lines
of well delimited code. Annotation schemes which in-
volve more complicated interactions such as coreference
and word sense disambiguation have taken approximately
300 lines of code specific to that task.

The second mechanism, which is currently being de-
veloped, allows a task to be parameterized with an
xml file. This can be applied if an existing annotation
scheme similar to your task has already been developed.
At present we have used this mechanism to customize
named-entity and coreference task which are similar to
their corresponding MUC or ACE tasks. Likewise this
mechanism can be used to customize the tag sets used for
different types of tree-banking tasks.

2.3 Automatic Annotators

We have integrated a number of automatic annotators to
work with WordFreak. These include sentence detectors,
POS taggers, parsers, and coreference revolvers. The
APIs these annotators implement allow them to option-
ally determine the order that annotation choices are dis-
played to the user as well as provide a confidence mea-
sure with each annotation they determine automatically.
The first mechanism is quite useful for tasks which have a
large number of potential choices such as POS tagging or
coreference resolution in that the most likely choices can
be displayed first. The confidence measure can be used
for active learning or just to assist in the correction of the

automatic annotator. We are currently in the process of
adapting open source taggers to be used and distributed
as plug-ins to WordFreak.

3 Source Code

WordFreak’s source code is entirely written in Java. This
has allowed us to deploy it on a number of platforms in-
cluding Windows, Mac OS X, Solaris, and Linux. Java’s
built-in language support and use of Unicode as the
underlying representation of strings has made allowing
WordFreak to annotate non-English text relatively sim-
ple. Currently we have successfully developed annota-
tion schemes for Chinese and Arabic. Finally we have
recently released the source code on SourceForge under
the Mozilla Public License 1.1. This should allow Word-
Freak to be extended by others as well as provide a mech-
anism for wider contribution to this tool.

4 Future Work

We are currently planning on developing an I/O plug-in
interface so that WordFreak can be easily extended to
support additional file formats. We also have plans to
develop a viewer which would render HTML while al-
lowing annotations to reference the underlying text.

5 Conclusions

We have developed an open linguistic annotation tool
which can be easily extended via a large number of re-
usable components. It supports automatic annotation and
active learning for rapid annotation of new text. WordF-
reak is written entirely in Java and can be used with mul-
tiple languages and platforms.

