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Abstract

This paper presents an unsupervised method
for discriminating among the senses of a given
target word based on the context in which it oc-
curs. Instances of a word that occur in similar
contexts are grouped together via McQuitty’s
Similarity Analysis, an agglomerative cluster-
ing algorithm. The context in which a target
word occurs is represented by surface lexical
features such as unigrams, bigrams, and sec-
ond order co-occurrences. This paper summa-
rizes our approach, and describes the results of
a preliminary evaluation we have carried out
using data from the SENSEVAL-2 English lexi-
cal sample and the line corpus.

1 Introduction

Word sense discrimination is the process of grouping or
clustering together instances of written text that include
similar usages of a given target word. The instances that
form a particular cluster will have used the target word in
similar contexts and are therefore presumed to represent a
related meaning. This view follows from the strong con-
textual hypothesis of (Miller and Charles, 1991), which
states that two words are semantically similar to the ex-
tent that their contextual representations are similar.

Discrimination is distinct from the more common
problem of word sense disambiguation in at least two
respects. First, the number of possible senses a target
word may have is usually not known in discrimination,
while disambiguation is often viewed as a classification
problem where a word is assigned to one of several pre–
existing possible senses. Second, discrimination utilizes
features and information that can be easily extracted from
raw corpora, whereas disambiguation often relies on su-
pervised learning from sense–tagged training examples.

However, the creation of sense–tagged data is time con-
suming and results in a knowledge acquisition bottleneck
that severely limits the portability and scalability of tech-
niques that employ it. Discrimination does not suffer
from this problem since there is no expensive preprocess-
ing, nor are any external knowledge sources or manually
annotated data required.

The objective of this research is to extend previous
work in discrimination by (Pedersen and Bruce, 1997),
who developed an approach using agglomerative cluster-
ing. Their work relied on McQuitty’s Similarity Anal-
ysis using localized contextual features. While the ap-
proach in this paper also adopts McQuitty’s method, it
is distinct in that it uses a larger number of features that
occur both locally and globally in the instance being dis-
criminated. It also incorporates several ideas from later
work by (Schütze, 1998), including the reliance on a sep-
arate “training” corpus of raw text from which to iden-
tify contextual features, and the use of second order co–
occurrences (socs) as feature for discrimination.

Our near term objectives for this research include de-
termining to what extent different types of features im-
pact the accuracy of unsupervised discrimination. We
are also interested in assessing how different measures
of similarity such as the matching coefficient or the co-
sine affect overall performance. Once we have refined
our clustering techniques, we will incorporate them into a
method that automatically assigns sense labels to discov-
ered clusters by using information from a machine read-
able dictionary.

This paper continues with a more detailed discussion
of the previous work that forms the foundation for our re-
search. We then present an overview of the features used
to represent the context of a target word, and go on to de-
scribe an experimental evaluation using the SENSEVAL-2
lexical sample data. We close with a discussion of our re-
sults, a summary of related work, and an outline of our
future directions.
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2 Previous Work

The work in this paper builds upon two previous ap-
proaches to word sense discrimination, those of (Peder-
sen and Bruce, 1997) and (Schütze, 1998). Pedersen and
Bruce developed a method based on agglomerative clus-
tering using McQuitty’s Similarity Analysis (McQuitty,
1966), where the context of a target word is represented
using localized contextual features such as collocations
and part of speech tags that occur within one or two po-
sitions of the target word. Pedersen and Bruce demon-
strated that despite it’s simplicity, McQuitty’s method
was more accurate than Ward’s Method of Minimum
Variance and the EM Algorithm for word sense discrimi-
nation.

McQuitty’s method starts by assuming that each in-
stance is a separate cluster. It merges together the pair
of clusters that have the highest average similarity value.
This continues until a specified number of clusters is
found, or until the similarity measure between every pair
of clusters is less than a predefined cutoff. Pedersen and
Bruce used a relatively small number of features, and em-
ployed the matching coefficient as the similarity measure.
Since we use a much larger number of features, we are ex-
perimenting with the cosine measure, which scales simi-
larity based on the number of non–zero features in each
instance.

By way of contrast, (Schütze, 1998) performs discrim-
ination through the use of two different kinds of context
vectors. The first is a word vector that is based on co–
occurrence counts from a separate training corpus. Each
word in this corpus is represented by a vector made up of
the words it co-occurs with. Then, each instance in a test
or evaluation corpus is represented by a vector that is the
average of all the vectors of all the words that make up
that instance. The context in which a target word occurs
is thereby represented by second order co–occurrences,
which are words which co–occur with the co–occurrences
of the target word. Discrimination is carried out by clus-
tering instance vectors using the EM Algorithm.

The approach described in this paper proceeds as fol-
lows. Surface lexical features are identified in a training
corpus, which is made up of instances that consists of a
sentence containing a given target word, plus one or two
sentences to the left or right of it. Similarly defined in-
stances in the test data are converted into vectors based
on this feature set, and a similarity matrix is constructed
using either the matching coefficient or the cosine. There-
after McQuitty’s Similarity Analysis is used to group to-
gether instances based on the similarity of their context,
and these are evaluated relative to a manually created
gold standard.

3 Discrimination Features

We carry out discrimination based on surface lexical fea-
tures that require little or no preprocessing to identify.
They consist of unigrams, bigrams, and second order co–
occurrences.

Unigrams are single words that occur in the same con-
text as a target word. Bag–of–words feature sets made
up of unigrams have had a long history of success in text
classification and word sense disambiguation (Mooney,
1996), and we believe that despite creating quite a bit of
noise can provide useful information for discrimination.

Bigrams are pairs of words which occur together in
the same context as the target word. They may include
the target word, or they may not. We specify a win-
dow of size five for bigrams, meaning that there may be
up to three intervening words between the first and last
word that make up the bigram. As such we are defining
bigrams to be non–consecutive word sequences, which
could also be considered a kind of co–occurrence feature.
Bigrams have recently been shown to be very successful
features in supervised word sense disambiguation (Peder-
sen, 2001). We believe this is because they capture mid-
dle distance co–occurrence relations between words that
occur in the context of the target word.

Second order co–occurrences are words that occur with
co-occurrences of the target word. For example, suppose
that line is the target word. Given telephone line and tele-
phone bill, bill would be considered a second order co–
occurrence of line since it occurs with telephone, a first
order co–occurrence of line.

We define a window size of five in identifying sec-
ond order co–occurrences, meaning that the first order
co–occurrence must be within five positions of the tar-
get word, and the second order co–occurrence must be
within five positions of the first order co–occurrence. We
only select those second order co–occurrences which co–
occur more than once with the first order co-occurrences
which in turn co-occur more than once with the target
word within the specified window.

We employ a stop list to remove high frequency non–
content words from all of these features. Unigrams that
are included in the stop list are not used as features. A bi-
gram is rejected if any word composing it is a stop word.
Second order co–occurrences that are stop words or those
that co–occur with stop words are excluded from the fea-
ture set.

After the features have been identified in the training
data, all of the instances in the test data are converted
into binary feature vectors
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that repre-

sent whether the features found in the training data have
occurred in a particular test instance. In order to clus-
ter these instances, we measure the pair–wise similarities
between them using matching and cosine coefficients.



These values are formatted in a ����� similarity ma-
trix such that cell

��� ��� �
contains the similarity measure

between instances
�

and
�

. This information serves as the
input to the clustering algorithm that groups together the
most similar instances.

4 Experimental Methodology

We evaluate our method using two well known sources of
sense–tagged text. In supervised learning sense–tagged
text is used to induce a classifier that is then applied to
held out test data. However, our approach is purely un-
supervised and we only use the sense tags to carry out an
automatic evaluation of the discovered clusters. We fol-
low Schütze’s strategy and use a “training” corpus only
to extract features and ignore the sense tags.

In particular, we use subsets of the line data (Leacock
et al., 1993) and the English lexical sample data from the
SENSEVAL-2 comparative exercise among word sense
disambiguation systems (Edmonds and Cotton, 2001).

The line data contains 4,146 instances, where each
consists of two to three sentences where a single oc-
currence of line has been manually tagged with one of
six possible senses. We randomly select 100 instances
of each sense for test data, and 200 instances of each
sense for training. This gives a total of 600 evaluation
instances, and 1200 training instances. This is done to
test the quality of our discrimination method when senses
are uniformly distributed and where no particular sense is
dominant.

The standard distribution of the SENSEVAL-2 data
consists of 8,611 training instances and 4,328 test in-
stances. Each instance is made up of two to three sen-
tences where a single target word has been manually
tagged with a sense (or senses) appropriate for that con-
text. There are 73 distinct target words found in this
data; 29 nouns, 29 verbs, and 15 adjectives. Most of
these words have less than 100 test instances, and ap-
proximately twice that number of training examples. In
general these are relatively small samples for an unsu-
pervised approach, but we are developing techniques to
increase the amount of training data for this corpus auto-
matically.

We filter the SENSEVAL-2 data in three different ways
to prepare it for processing and evaluation. First, we in-
sure that it only includes instances whose actual sense is
among the top five most frequent senses as observed in
the training data for that word. We believe that this is an
aggressive number of senses for a discrimination system
to attempt, considering that (Pedersen and Bruce, 1997)
experimented with 2 and 3 senses, and (Schütze, 1998)
made binary distinctions.

Second, instances may have been assigned more than
one correct sense by the human annotator. In order to

simplify the evaluation process, we eliminate all but the
most frequent of multiple correct answers.

Third, the SENSEVAL-2 data identifies target words
that are proper nouns. We have elected not to use that in-
formation and have removed these P tags from the data.
After carrying out these preprocessing steps, the number
of training and test instances is 7,476 and 3,733.

5 Evaluation Technique

We specify an upper limit on the number of senses that
McQuitty’s algorithm can discover. In these experiments
this value is five for the SENSEVAL-2 data, and six for
line. In future experiments we will specify even higher
values, so that the algorithm is forced to create larger
number of clusters with very few instances when the ac-
tual number of senses is smaller than the given cutoff.
About a third of the words in the SENSEVAL-2 data have
fewer than 5 senses, so even now the clustering algorithm
is not always told the correct number of clusters it should
find.

Once the clusters are formed, we access the actual cor-
rect sense of each instance as found in the sense–tagged
text. This information is never utilized prior to evalua-
tion. We use the sense–tagged text as a gold standard by
which we can evaluate the discovered sense clusters. We
assign sense tags to clusters such that the resulting accu-
racy is maximized.

For example, suppose that five clusters (C1 – C5) have
been discovered for a word with 100 instances, and that
the number of instances in each cluster is 25, 20, 10, 25,
and 20. Suppose that there are five actual senses (S1 –
S5), and the number of instances for each sense is 20, 20,
20, 20, and 20. Figure 1 shows the resulting confusion
matrix if the senses are assigned to clusters in numeric
order. After this assignment is made, the accuracy of the
clustering can be determined by finding the sum of the
diagonal, and dividing by the total number of instances,
which in this case leads to accuracy of 10% (10/100).
However, clearly there are assignments of senses to clus-
ters that would lead to better results.

Thus, the problem of assigning senses to clusters be-
comes one of reordering the columns of the confusion
such that the diagonal sum is maximized. This corre-
sponds to several well known problems, among them the
Assignment Problem in Operations Research, and deter-
mining the maximal matching of a bipartite graph. Figure
2 shows the maximally accurate assignment of senses to
clusters, which leads to accuracy of 70% (70/100).

During evaluation we assign one cluster to at most one
sense, and vice versa. When the number of discovered
clusters is the same as the number of senses, then there
is a 1 to 1 mapping between them. When the number
of clusters is greater than the number of actual senses,
then some clusters will be left unassigned. And when the



S1 S2 S3 S4 S5
C1: 5 20 0 0 0 25
C2: 10 0 5 0 5 20
C3: 0 0 0 0 10 10
C4: 0 0 15 5 5 25
C5: 5 0 0 15 0 20

20 20 20 20 20 100

Figure 1: Numeric Assignment

S2 S1 S5 S3 S4
C1: 20 5 0 0 0 25
C2: 0 10 5 5 0 20
C3: 0 0 10 0 0 10
C4: 0 0 5 15 5 25
C5: 0 5 0 0 15 20

20 20 20 20 20 100

Figure 2: Maximally Accurate Assignment

number of senses is greater than the number of clusters,
some senses will not be assigned to any cluster.

We determine the precision and recall based on this
maximally accurate assignment of sense tags to clusters.
Precision is defined as the number of instances that are
clustered correctly divided by the number of instances
clustered, while recall is the number of instances clus-
tered correctly over the total number of instances.

To be clear, we do not believe that word sense discrim-
ination must be carried out relative to a pre–existing set
of senses. In fact, one of the great advantages of an un-
supervised approach is that it need not be relative to any
particular set of senses. We carry out this evaluation tech-
nique in order to improve the performance of our cluster-
ing algorithm, which we will then apply on text where
sense–tagged data is not available.

An alternative means of evaluation is to have a hu-
man inspect the discovered clusters and judge them based
on the semantic coherence of the instances that populate
each cluster, but this is a more time consuming and sub-
jective method of evaluation that we will pursue in future.

6 Experimental Results

For each word in the SENSEVAL-2 data and line, we con-
ducted various experiments, each of which uses a differ-
ent combination of measure of similarity and features.

Features are identified from the training data. Our fea-
tures consist of unigrams, bigrams, or second order co–
occurrences. We employ each of these three types of fea-
tures separately, and we also create a mixed set that is the
union of all three sets. We convert each evaluation in-
stance into a feature vector, and then convert those into a

similarity matrix using either the matching coefficient or
the cosine.

Table 1 contains overall precision and recall for the
nouns, verbs, and adjectives overall in the SENSEVAL-
2 data, and for line. The SENSEVAL-2 values are de-
rived from 29 nouns, 28 verbs, and 15 adjectives from
the SENSEVAL-2 data. The first column lists the part of
speech, the second shows the feature, the third lists the
measure of similarity, the fourth and the fifth show pre-
cision and recall, the sixth shows the percentage of the
majority sense, and the final column shows the number
of words in the given part of speech that gave accuracy
greater than the percentage of the majority sense. The
value of the majority sense is derived from the sense–
tagged data we use in evaluation, but this is not infor-
mation that we would presume to have available during
actual clustering.

Table 1: Experimental Results
pos feat meas prec rec maj � maj

noun soc cos 0.49 0.48 0.57 6/29
mat 0.54 0.52 0.57 7/29

big cos 0.53 0.50 0.57 5/29
mat 0.52 0.49 0.57 3/29

uni cos 0.50 0.49 0.57 7/29
mat 0.52 0.50 0.57 8/29

mix cos 0.50 0.48 0.57 6/29
mat 0.54 0.51 0.57 5/29

verb soc cos 0.51 0.49 0.51 11/28
mat 0.50 0.47 0.51 6/28

big cos 0.54 0.45 0.51 5/28
mat 0.53 0.43 0.51 5/28

uni cos 0.42 0.41 0.51 13/28
mat 0.43 0.41 0.51 9/28

mix cos 0.43 0.41 0.51 12/28
mat 0.42 0.41 0.51 7/28

adj soc cos 0.59 0.54 0.64 1/15
mat 0.59 0.55 0.64 1/15

big cos 0.56 0.51 0.64 0/15
mat 0.55 0.50 0.64 0/15

uni cos 0.55 0.50 0.64 1/15
mat 0.58 0.53 0.64 0/15

mix cos 0.50 0.44 0.64 0/15
mat 0.59 0.54 0.64 2/15

line soc cos 0.25 0.25 0.17 1/1
mat 0.23 0.23 0.17 1/1

big cos 0.19 0.18 0.17 1/1
mat 0.18 0.17 0.17 1/1

uni cos 0.21 0.21 0.17 1/1
mat 0.20 0.20 0.17 1/1

mix cos 0.21 0.21 0.17 1/1
mat 0.20 0.20 0.17 1/1



For the SENSEVAL-2 data, on average the precision
and recall of the clustering as determined by our evalu-
ation method is less than that of the majority sense, re-
gardless of which features or measure are used. How-
ever, for nouns and verbs, a relatively significant num-
ber of individual words have precision and recall values
higher than that of the majority sense. The adjectives are
an exception to this, where words are very rarely dis-
ambiguated more accurately than the percentage of the
majority sense. However, many of the adjectives have
very high frequency majority senses, which makes this
a difficult standard for an unsupervised method to reach.
When examining the distribution of instances in clusters,
we find that the algorithm tends to seek more balanced
distributions, and is unlikely to create a single long clus-
ter that would result in high accuracy for a word whose
true distribution of senses is heavily skewed towards a
single sense.

We also note that the precision and recall of the clus-
tering of the line data is generally better than that of the
majority sense regardless of the features or measures em-
ployed. We believe there are two explanations for this.
First, the number of training instances for the line data is
significantly higher (1200) than that of the SENSEVAL-2
words, which typically have 100–200 training instances
per word. The number and quality of features identified
improves considerably with an increase in the amount of
training data. Thus, the amount of training data avail-
able for feature identification is critically important. We
believe that the SENSEVAL-2 data could be augmented
with training data taken from the World Wide Web, and
we plan to pursue such approaches and see if our perfor-
mance on the evaluation data improves as a result.

At this point we do not observe a clear advantage to
using the cosine measure or matching coefficient. This
surprises us somewhat, as the number of features em-
ployed is generally in the thousands, and the number of
non–zero features can be quite large. It would seem that
simply counting the number of matching features would
be inferior to the cosine measure, but this is not the case.
This remains an interesting issue that we will continue to
explore, with these and other measures of similarity.

Finally, there is not a single feature that does best in
all parts of speech. Second order co–occurrences seem to
do well with nouns and adjectives, while bigrams result
in accurate clusters for verbs. We also note that second
order co–occurrences do well with the line data. As yet
we have drawn no conclusions from these results, but it
is clearly a vital issue to investigate further.

7 Related Work

Unsupervised approaches to word sense discrimination
have been somewhat less common in the computational

linguistics literature, at least when compared to super-
vised approaches to word sense disambiguation.

There is a body of work at the intersection of super-
vised and unsupervised approaches, which involves using
a small amount of training data in order to automatically
create more training data, in effect bootstrapping from the
small sample of sense–tagged data. The best example of
such an approach is (Yarowsky, 1995), who proposes a
method that automatically identifies collocations that are
indicative of the sense of a word, and uses those to itera-
tively label more examples.

While our focus has been on Pedersen and Bruce, and
on Schütze, there has been other work in purely unsuper-
vised approaches to word sense discrimination.

(Fukumoto and Suzuki, 1999) describe a method for
discriminating among verb senses based on determining
which nouns co–occur with the target verb. Collocations
are extracted which are indicative of the sense of a verb
based on a similarity measure they derive.

(Pantel and Lin, 2002) introduce a method known as
Committee Based Clustering that discovers word senses.
The words in the corpus are clustered based on their dis-
tributional similarity under the assumption that semanti-
cally similar words will have similar distributional char-
acteristics. In particular, they use Pointwise Mutual In-
formation to find how close a word is to its context and
then determine how similar the contexts are using the co-
sine coefficient.

8 Future Work

Our long term goal is to develop a method that will as-
sign sense labels to clusters using information found in
machine readable dictionaries. This is an important prob-
lem because clusters as found in discrimination have no
sense tag or label attached to them. While there are cer-
tainly applications for unlabeled sense clusters, having
some indication of the sense of the cluster would bring
discrimination and disambiguation closer together. We
will treat glosses as found in a dictionary as vectors that
we project into the same space that is populated by in-
stances as we have already described. A cluster could be
assigned the sense of the gloss whose vector it was most
closely located to.

This idea is based loosely on work by (Niwa and Nitta,
1994), who compare word co–occurrence vectors derived
from large corpora of text with co–occurrence vectors
based on the definitions or glosses of words in a ma-
chine readable dictionary. A co–occurrence vector indi-
cates how often words are used with each other in a large
corpora or in dictionary definitions. These vectors can be
projected into a high dimensional space and used to mea-
sure the distance between concepts or words. Niwa and
Nitta show that while the co–occurrence data from a dic-
tionary has different characteristics that a co–occurrence



vector derived from a corpus, both provide useful infor-
mation about how to categorize a word based on its mean-
ing. Our future work will mostly attempt to merge clus-
ters found from corpora with meanings in dictionaries
where presentation techniques like co–occurrence vectors
could be useful.

There are a number of smaller issues that we are inves-
tigating. We are also exploring a number of other types
of features, as well as varying the formulation of the fea-
tures we are currently using. We have already conducted
a number of experiments that vary the window sizes em-
ployed with bigrams and second order co–occurrences,
and will continue in this vein. We are also considering
the use of other measures of similarity beyond the match-
ing coefficient and the cosine. We do not stem the train-
ing data prior to feature identification, nor do or employ
fuzzy matching techniques when converting evaluation
instances into feature vectors. However, we believe both
might lead to increased numbers of useful features being
identified.

9 Conclusions

We have presented an unsupervised method of word
sense discrimination that employs a range of surface lexi-
cal features, and relies on similarity based clustering. We
have evaluated this method in an extensive experiment
that shows that our method can achieve precision and re-
call higher than the majority sense of a word for a reason-
ably large number of cases. We believe that increases in
the amount of training data employed in this method will
yield to considerably improved results, and have outlined
our plans to address this and several other issues.
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