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Abstract

We present an application of ambiguity pack-
ing and stochastic disambiguation techniques
for Lexical-Functional Grammars (LFG) to the
domain of sentence condensation. Our system
incorporates a linguistic parser/generator for
LFG, a transfer component for parse reduc-
tion operating on packed parse forests, and a
maximum-entropy model for stochastic output
selection. Furthermore, we propose the use of
standard parser evaluation methods for auto-
matically evaluating the summarization qual-
ity of sentence condensation systems. An ex-
perimental evaluation of summarization qual-
ity shows a close correlation between the au-
tomatic parse-based evaluation and a manual
evaluation of generated strings. Overall sum-
marization quality of the proposed system is
state-of-the-art, with guaranteed grammatical-
ity of the system output due to the use of a
constraint-based parser/generator.

1 Introduction

Recent work in statistical text summarization has put for-
ward systems that do not merely extract and concate-
nate sentences, but learn how to generate new sentences
from 〈Summary, Text〉 tuples. Depending on the cho-
sen task, such systems either generate single-sentence
“headlines” for multi-sentence text (Witbrock and Mittal,
1999), or they provide a sentence condensation module
designed for combination with sentence extraction sys-
tems (Knight and Marcu, 2000; Jing, 2000). The chal-
lenge for such systems is to guarantee the grammatical-
ity and summarization quality of the system output, i.e.
the generated sentences need to be syntactically well-
formed and need to retain the most salient information of

the original document. For example a sentence extraction
system might choose a sentence like:

The UNIX operating system, with implementations
from Apples to Crays, appears to have the advan-
tage.

from a document, which could be condensed as:

UNIX appears to have the advantage.

In the approach of Witbrock and Mittal (1999), selec-
tion and ordering of summary terms is based on bag-
of-words models andn-grams. Such models may well
produce summaries that are indicative of the original’s
content; however,n-gram models seem to be insufficient
to guarantee grammatical well-formedness of the system
output. To overcome this problem, linguistic parsing and
generation systems are used in the sentence condensation
approaches of Knight and Marcu (2000) and Jing (2000).
In these approaches, decisions about which material to in-
clude/delete in the sentence summaries do not rely on rel-
ative frequency information on words, but rather on prob-
ability models of subtree deletions that are learned from
a corpus of parses for sentences and their summaries.

A related area where linguistic parsing systems
have been applied successfully is sentence simplifica-
tion. Grefenstette (1998) presented a sentence reduction
method that is based on finite-state technology for lin-
guistic markup and selection, and Carroll et al. (1998)
present a sentence simplification system based on linguis-
tic parsing. However, these approaches do not employ
statistical learning techniques to disambiguate simplifi-
cation decisions, but iteratively apply symbolic reduction
rules, producing a single output for each sentence.

The goal of our approach is to apply the fine-grained
tools for stochastic Lexical-Functional Grammar (LFG)
parsing to the task of sentence condensation. The system
presented in this paper is conceptualized as a tool that can
be used as a standalone system for sentence condensation
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or simplification, or in combination with sentence extrac-
tion for text-summarization beyond the sentence-level. In
our system, to produce a condensed version of a sen-
tence, the sentence is first parsed using a broad-coverage
LFG grammar for English. The parser produces a set of
functional (f )-structures for an ambiguous sentence in a
packed format. It presents these to the transfer compo-
nent in a single packed data structure that represents in
one place the substructures shared by several different in-
terpretations. The transfer component operates on these
packed representations and modifies the parser output to
produce reducedf -structures. The reducedf -structures
are then filtered by the generator to determine syntac-
tic well-formedness. A stochastic disambiguator using a
maximum entropy model is trained on parsed and manu-
ally disambiguatedf -structures for pairs of sentences and
their condensations. Using the disambiguator, the string
generated from the most probable reducedf -structure
produced by the transfer system is chosen. In contrast
to the approaches mentioned above, our system guaran-
tees the grammaticality of generated strings through the
use of a constraint-based generator for LFG which uses
a slightly tighter version of the grammar than is used by
the parser. As shown in an experimental evaluation, sum-
marization quality of our system is high, due to the com-
bination of linguistically fine-grained analysis tools and
expressive stochastic disambiguation models.

A second goal of our approach is to apply the standard
evaluation methods for parsing to an automatic evaluation
of summarization quality for sentence condensation sys-
tems. Instead of deploying costly and non-reusable hu-
man evaluation, or using automatic evaluation methods
based on word error rate orn-gram match, summariza-
tion quality can be evaluated directly and automatically
by matching the reducedf -structures that were produced
by the system against manually selectedf -structures that
were produced by parsing a set of manually created con-
densations. Such an evaluation only requires human labor
for the construction and manual structural disambigua-
tion of a reusable gold standard test set. Matching against
the test set can be done automatically and rapidly, and
is repeatable for development purposes and system com-
parison. As shown in an experimental evaluation, a close
correspondence can be established for rankings produced
by thef -structure based automatic evaluation and a man-
ual evaluation of generated strings.

2 Statistical Sentence Condensation in the
LFG Framework

In this section, each of the system components will be
described in more detail.

2.1 Parsing and Transfer

In this project, a broad-coverage LFG gram-
mar and parser for English was employed (see
Riezler et al. (2002)). The parser produces a set of
context-free constituent (c-)structures and associated
functional (f -)structures for each input sentence, repre-
sented in packed form (see Maxwell and Kaplan (1989)).
For sentence condensation we are only interested in the
predicate-argument structures encoded inf -structures.
For example, Fig. 1 shows anf -structure manually
selected out of the 40f -structures for the sentence:

A prototype is ready for testing, and Leary hopes to
set requirements for a full system by the end of the
year.

The transfer component for the sentence condensation
system is based on a component previously used in a ma-
chine translation system (see Frank (1999)). It consists
of an ordered set of rules that rewrite onef -structure
into another. Structures are broken down into flat lists
of facts, and rules may add, delete, or change individ-
ual facts. Rules may be optional or obligatory. In the case
of optional rules, transfer of a single input structure may
lead to multiple alternate output structures. The transfer
component is designed to operate on packed input from
the parser and can also produce packed representations
of the condensation alternatives, using methods adapted
from parse packing.1

An example rule that (optionally) removes an adjunct
is shown below:

+adjunct(X,Y), in-set(Z,Y) ?=>
delete-node(Z,r1), rule-trace(r1,del(Z,X)).

This rule eliminates an adjunct,Z, by deleting the fact that
Z is contained within the set of adjuncts,Y, associated
with the expressionX. The+ before theadjunct(X,Y)
fact marks this fact as one that needs to be present for the
rule to be applied, but which is left unaltered by the rule
application. Thein-set(Z,Y) fact is deleted. Two
new facts are added.delete-node(Z,r1) indicates
that the structure rooted at nodeZ is to be deleted, and
rule-trace(r1,del(Z,X)) adds a trace of this
rule to an accumulating history of rule applications. This
history records the relation of transferredf -structures to
the originalf -structure and is available for stochastic dis-
ambiguation.

Rules used in the sentence condensation transfer sys-
tem include the optional deletion of all intersective ad-
juncts (e.g.,He slept in the bed.can becomeHe slept.,
but He did not sleep.cannot becomeHe did sleep.or He

1The packing feature of the transfer component could not
be employed in these experiments since the current interface
to the generator and stochastic disambiguation component still
requires unpacked representations.



"A prototype is ready for testing , and Leary hopes to set requirements for a full system by the end of the year."

’ be<[93:ready] >[30:prototype] ’PRED

’ prototype ’PRED

countGRAINNTYPE

’ a’PRED
DET−FORM a, DET−TYPE indef

DETSPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ ready <[30:prototype] >’PRED
[30:prototype]SUBJ

ADEGREE positive , ATYPE predicative93
XCOMP

’ for <[141:test] >’PRED

’ test ’PRED

gerundGRAINNTYPE

CASE acc , NUM sg, PERS 3, PFORM for , VTYPE main141

OBJ

ADV−TYPE vpadv , PSEM unspecified , PTYPE sem125

ADJUNCT

MOOD indicative , PERF −_, PROG −_, TENSE presTNS−ASP

PASSIVE −, STMT−TYPE decl , VTYPE copular

[252:hope]>s73

’ hope<[235:Leary] , [280:set] >’PRED

’ Leary ’PRED

properGRAIN

namePROPERNSEM
NTYPE

ANIM +, CASE nom, NUM sg, PERS 3235

SUBJ

’ set <[235:Leary] , [336:requirement] , [355:for] >’PRED
[235:Leary]SUBJ

’ requirement ’PRED

unspecifiedGRAINNTYPE

CASE acc , NUM pl , PERS 3336

OBJ

’ for <[391:system] >’PRED

’ system ’PRED

’ full ’PRED
ADEGREE positive , ADJUNCT−TYPE nominal , ATYPE attributive398

ADJUNCT

unspecifiedGRAINNTYPE

’ a’PRED
DET−FORM a, DET−TYPE indef

DETSPEC

CASE acc , NUM sg, PERS 3, PFORM for391

OBJ

PSEM unspecified , PTYPE sem355

OBL

’ by<[469:end] >’PRED

’ end’PRED

’ of <[519:year] >’PRED

’ year ’PRED

countGRAINNTYPE

’ the ’PRED
DET−FORM the , DET−TYPE def

DETSPEC

CASE acc , NUM sg, PERS 3, PFORM of519

OBJ

ADJUNCT−TYPE nominal , PSEM unspecified , PTYPE sem512

ADJUNCT

countGRAINNTYPE

’ the ’PRED
DET−FORM the , DET−TYPE def

DETSPEC

CASE acc , NUM sg, PERS 3, PFORM by469

OBJ

ADV−TYPE vpadv , PSEM unspecified , PTYPE sem451

ADJUNCT

PERF −_, PROG −_TNS−ASP

INF−FORM to , PASSIVE −, VTYPE main280

XCOMP

MOOD indicative , PERF −_, PROG −_, TENSE presTNS−ASP

PASSIVE −, STMT−TYPE decl , VTYPE main252

COORD +_, COORD−FORM and, COORD−LEVEL ROOT197

Figure 1:F -structure for non-condensed sentence.

slept.), the optional deletion of parts of coordinate struc-
tures (e.g.,They laughed and giggled.can becomeThey
giggled.), and certain simplifications (e.g.It is clear that
the earth is round.can becomeThe earth is round.but
It seems that he is asleep.cannot becomeHe is asleep.).
For example, one possible post-transfer output of the sen-
tence in Fig. 1 is shown in Fig. 2.

2.2 Stochastic Selection and Generation

The transfer rules are independent of the grammar and are
not constrained to preserve the grammaticality or well-
formedness of the reduced f-structures. Some of the re-
duced structures therefore may not correspond to any En-
glish sentence, and these are eliminated from future con-
sideration by using the generator as a filter. The filter-
ing is done by running each transferred structure through
the generator to see whether it produces an output string.
If it does not, the structure is rejected. For example, for
the f -structure in Fig. 1, the transfer system proposed
32 possible reductions. After filtering these structures by
generation, 16 reducedf -structures comprising possible

"A prototype is ready for testing."

’ be
�

<[93:ready] >[30:prototype] ’PRED
�

’ prototype� ’PRED
�

countGRAINNTYPE

’ a’PRED
�

DET−FORM
�

 a, DET−TYPE
�

 indef
DET

�
SPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ ready <[30:prototype] >’PRED
[30:prototype]SUBJ

ADEGREE
�

 positive� , ATYPE
�

 predicative�93
XCOMP

’ for <[141:test] >’PRED

’ test
�

’PRED

gerundGRAINNTYPE
�

CASE acc , NUM sg, PERS 3, PFORM for , VTYPE main141

OBJ

ADV−TYPE
�

 vpadv� , PSEM
�

 unspecified� , PTYPE
�

 sem125

ADJUNCT
�

MOOD
	

 indicative , PERF
�

 −_, PROG
�

 −_, TENSE pres�TNS−ASP

PASSIVE −, STMT−TYPE decl , VTYPE copular73

Figure 2: Gold standardf -structure reduction.



condensations of the input sentence survive. The 16 well-
formed structures correspond to the following strings that
were outputted by the generator (note that a single struc-
ture may correspond to more than one string and a given
string may correspond to more than one structure):

A prototype is ready.
A prototype is ready for testing.
Leary hopes to set requirements for a full system.
A prototype is ready and Leary hopes to set require-
ments for a full system.
A prototype is ready for testing and Leary hopes to
set requirements for a full system.
Leary hopes to set requirements for a full system by
the end of the year.
A prototype is ready and Leary hopes to set require-
ments for a full system by the end of the year.
A prototype is ready for testing and Leary hopes to
set requirements for a full system by the end of the
year.

In order to guarantee non-empty output for the over-
all condensation system, the generation component has
to be fault-tolerant in cases where the transfer system op-
erates on a fragmentary parse, or produces non-validf -
structures from valid inputf -structures. Robustness tech-
niques currently applied to the generator include insertion
and deletion of features in order to match invalid transfer-
output to the grammar rules and lexicon. Furthermore,
repair mechanisms such as repairing subject-verb agree-
ment from the subject’s number value are employed. As
a last resort, a fall-back mechanism to the original un-
condensedf -structure is used. These techniques guaran-
tee that a non-empty set of reducedf -structures yielding
grammatical strings in generation is passed on to the next
system component. In case of fragmentary input to the
transfer component, grammaticaliy of the output is guar-
anteed for the separate fragments. In other words, strings
generated from a reduced fragmentaryf -structure will be
as grammatical as the string that was fed into the parsing
component.

After filtering by the generator, the remainingf -
structures were weighted by the stochastic disambigua-
tion component. Similar to stochastic disambiguation for
constraint-based parsing (Johnson et al., 1999; Riezler et
al., 2002), an exponential (a.k.a. log-linear or maximum-
entropy) probability model on transferred structures is es-
timated from a set of training data. The data for estima-
tion consists of pairs of original sentencesy and gold-
standard summarizedf -structuress which were manu-
ally selected from the transfer output for each sentence.
For training data{(sj , yj)}m

j=1 and a set of possible sum-
marized structuresS(y) for each sentencey, the objective
was to maximize a discriminative criterion, namely the
conditional likelihoodL(λ) of a summarizedf -structure
given the sentence. Optimization of the function shown
below was performed using a conjugate gradient opti-

mization routine:

L(λ) = log
m∏

j=1

eλ·f(sj)∑
s∈S(yj)

eλ·f(s)
.

At the core of the exponential probability model is a vec-
tor of property-functionsf to be weighted by parameters
λ. For the application of sentence condensation, 13,000
property-functions of roughly three categories were used:

• Property-functions indicating attributes, attribute-
combinations, or attribute-value pairs forf -structure
attributes (≈ 1,000 properties)

• Property-functions indicating co-occurences of verb
stems and subcategorization frames (≈ 12,000 prop-
erties)

• Property-functions indicating transfer rules used to
arrive at the reducedf - structures (≈ 60 properties).

A trained probability model is applied to unseen data
by selecting the most probable transferredf -structure,
yielding the string generated from the selected struc-
ture as the target condensation. The transferedf -structure
chosen for our current example is shown in Fig. 3.

"A prototype is ready."

’ be
�

<[93:ready] >[30:prototype] ’PRED

’ prototype� ’PRED

countGRAINNTYPE
�

’ a’PRED
DET−FORM a, DET−TYPE indef

DETSPEC

CASE nom, NUM
�

 sg, PERS
�

 330

SUBJ

’ ready <[30:prototype] >’PRED
�

[30:prototype]SUBJ
ADEGREE positive� , ATYPE predicative�93

XCOMP
�

MOOD indicative , PERF −_, PROG −_, TENSE pres�TNS−ASP

PASSIVE −, STMT−TYPE decl , VTYPE copular73

Figure 3: Transferredf -structure chosen by system.

This structure was produced by the following set of
transfer rules, wherevar refers to the indices in the rep-
resentation of thef -structure:

rtrace(r13,keep(var(98),of)),
rtrace(r161,keep(system,var(85))),
rtrace(r1,del(var(91),set,by)),
rtrace(r1,del(var(53),be,for)),
rtrace(r20,equal(var(1),and)),
rtrace(r20,equal(var(2),and)),
rtrace(r2,del(var(1),hope,and)),
rtrace(r22,delb(var(0),and)).

These rules delete the adjunct of the first conjunct (for
testing), the adjunct of the second conjunct (by the end
of the year), the rest of the second conjunct (Leary hopes
to set requirements for a full system), and the conjunction
itself (and).



3 A Method for Automatic Evaluation of
Sentence Summarization

Evaluation of quality of sentence condensation systems,
and of text summarization and simplification systems in
general, has mostly been conducted as intrinsic evalua-
tion by human experts. Recently, Papineni et al.’s (2001)
proposal for an automatic evaluation of translation sys-
tems by measuringn-gram matches of the system out-
put against reference examples has become popular for
evaluation of summarization systems. In addition, an au-
tomatic evaluation method based on context-free deletion
decisions has been proposed by Jing (2000). However, for
summarization systems that employ a linguistic parser as
an integral system component, it is possible to employ
the standard evaluation techniques for parsing directly
to an evaluation of summarization quality. A parsing-
based evaluation allows us to measure the semantic as-
pects of summarization quality in terms of grammatical-
functional information provided by deep parsers. Further-
more, human expertise was necessary only for the cre-
ation of condensed versions of sentences, and for the
manual disambiguation of parses assigned to those sen-
tences. Given such a gold standard, summarization qual-
ity of a system can be evaluated automatically and re-
peatedly by matching the structures of the system out-
put against the gold standard structures. The standard
metrics of precision, recall, and F-score from statisti-
cal parsing can be used as evaluation metrics for mea-
suring matching quality:Precisionmeasures the number
of matching structural items in the parses of the sys-
tem output and the gold standard, out of all structural
items in the system output’s parse;recall measures the
number of matches, out of all items in the gold stan-
dard’s parse.F-score balances precision and recall as
(2 × precision × recall)/(precision + recall).

For the sentence condensation system presented above,
the structural items to be matched consist ofrela-
tion(predicate, argument)triples. For example, the gold-
standardf -structure of Fig. 2 corresponds to 23 depen-
dency relations, the first 14 of which are shared with the
reducedf -structure chosen by the stochastic disambigua-
tion system:

tense(be:0, pres),
mood(be:0, indicative),
subj(be:0, prototype:2),
xcomp(be:0, ready:1),
stmt_type(be:0, declarative),
vtype(be:0, copular),
subj(ready:1, prototype:2),
adegree(ready:1, positive),
atype(ready:1, predicative),
det(prototype:2, a:7),
num(prototype:2, sg),
pers(prototype:2, 3),
det_form(a:7, a),

det_type(a:7, indef),
adjunct(be:0, for:12),
obj(for:12, test:14),
adv_type(for:12, vpadv),
psem(for:12, unspecified),
ptype(for:12, semantic),
num(test:14, sg),
pers(test:14, 3),
pform(test:14, for),
vtype(test:14, main).

Matching thesef -structures against each other corre-
sponds to a precision of 1, recall of .61, and F-score of
.76.

The fact that our method does not rely on a compar-
ison of the characteristics of surface strings is a clear
advantage. Such comparisons are bad at handling exam-
ples which are similar in meaning but differ in word or-
der or vary structurally, such as in passivization or nom-
inalization. Our method handles such examples straight-
forwardly. Fig. 4 shows two serialization variants of the
condensed sentence of Fig. 2. Thef -structures for these
examples are similar to thef -structure assigned to the
gold standard condensation shown in Fig. 2 (except for
the relationsADJUNT-TYPE:parenthetical ver-
susADV-TYPE:vpadv versusADV-TYPE:sadv ). An
evaluation of summarization quality that is based on
matchingf -structures will treat these examples equally,
whereas an evaluation based on string matching will yield
different quality scores for different serializations.

"A prototype, for testing, is ready."

’ be
�

<[221:ready] >[30:prototype] ’PRED
�

’ prototype� ’PRED
�

countGRAINNTYPE

’ a’PRED
�

DET−FORM
�

 a, DET−TYPE
�

 indef
DET

�
SPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ ready <[30:prototype] >’PRED
[30:prototype]SUBJ

ADEGREE
�

 positive� , ATYPE
�

 predicative�221
XCOMP

’ for <[117:test] >’PRED

’ test
�

’PRED

gerundGRAINNTYPE
�

CASE acc , NUM sg, PERS 3, PFORM for , VTYPE main117

OBJ

ADJUNCT−TYPE
�

 parenthetical� , PSEM
�

 unspecified� , PTYPE
�

 sem73

ADJUNCT
�

MOOD
�

 indicative , PERF
�

 −_, PROG
�

 −_, TENSE pres�TNS−ASP

PASSIVE −, STMT−TYPE decl , VTYPE copular201

"For testing, a prototype is ready."

’ be
�

<[177:ready] >[131:prototype] ’PRED
�

’ prototype� ’PRED
�

countGRAINNTYPE

’ a’PRED
�

DET−FORM
�

 a, DET−TYPE
�

 indef
DET

�
SPEC

CASE nom, NUM sg, PERS 3131

SUBJ

’ ready <[131:prototype] >’PRED
[131:prototype]SUBJ

ADEGREE
�

 positive� , ATYPE
�

 predicative�177
XCOMP

’ for <[27:test] >’PRED

’ test
�

’PRED

gerundGRAINNTYPE
�

CASE acc , NUM sg, PERS 3, PFORM for , VTYPE main27

OBJ

ADV−TYPE
�

 sadv , PSEM
�

 unspecified� , PTYPE
�

 sem11

ADJUNCT
�

MOOD
�

 indicative , PERF
�

 −_, PROG
�

 −_, TENSE pres�TNS−ASP

PASSIVE −, STMT−TYPE decl , VTYPE copular83

Figure 4: F -structure for word-order variants of gold
standard condensation.



In the next section, we present experimental results
of an automatic evaluation of the sentence condensation
system described above. These results show a close cor-
respondence between automatically produced evaluation
results and human judgments on the quality of generated
condensed strings.

4 Experimental Evaluation

The sentences and condensations we used are taken from
data for the experiments of Knight and Marcu (2000),
which were provided to us by Daniel Marcu. These data
consist of pairs of sentences and their condensed versions
that have been extracted from computer-news articles and
abstracts of the Ziff-Davis corpus. Out of these data, we
parsed and manually disambiguated 500 sentence pairs.
These included a set of 32 sentence pairs that were used
for testing purposes in Knight and Marcu (2000). In or-
der to control for the small corpus size of this test set, we
randomly extracted an additional 32 sentence pairs from
the 500 parsed and disambiguated examples as a second
test set. The rest of the 436 randomly selected sentence
pairs were used to create training data. For the purpose
of discriminative training, a gold-standard of transferred
f -structures was created from the transfer output and the
manually selectedf -structures for the condensed strings.
This was done automatically by selecting for each exam-
ple the transferredf -structure that best matched thef -
structure annotated for the condensed string.

In the automatic evaluation off -structure match, three
different system variants were compared. Firstly, ran-
domly chosen transferredf -structures were matched
against the manually selectedf -structures for the man-
ually created condensations. This evaluation constitutes
a lower bound on the F-score against the given gold
standard. Secondly, matching results for transferredf -
structures yielding the maximal F-score against the gold
standard were recorded, giving an upper bound for the
system. Thirdly, the performance of the stochastic model
within the range of the lower bound and upper bound was
measured by recording the F-score for thef -structure that
received highest probability according to the learned dis-
tribution on transferred structures.

In order to make our results comparable to the re-
sults of Knight and Marcu (2000) and also to investigate
the correspondence between the automatic evaluation and
human judgments, a manual evaluation of the strings gen-
erated by these system variants was conducted. Two hu-
man judges were presented with the uncondensed sur-
face string and five condensed strings that were displayed
in random order for each test example. The five con-
densed strings presented to the human judges contained
(1) strings generated from three randomly selectedf -
structures, (2) the strings generated from thef -structures
which were selected by the stochastic model, and (3) the

manually created gold-standard condensations extracted
from the Ziff-Davis abstracts. The judges were asked
to judge summarization quality on a scale of increasing
quality from 1 to 5 by assessing how well the generated
strings retained the most salient information of the orig-
inal uncondensed sentences. Grammaticality of the sys-
tem output is optimal and not reported separately. Results
for both evaluations are reported for two test corpora of
32 examples each.Testset Icontains the sentences and
condensations used to evaluate the system described in
Knight and Marcu (2000).Testset IIconsists of another
randomly extracted 32 sentence pairs from the same do-
main, prepared in the same way.

Fig. 5 shows evaluation results for a sentence conden-
sation run that uses manually selectedf -structures for
the original sentences as input to the transfer component.
These results demonstrate how the condenstation system
performs under the optimal circumstances when the parse
chosen as input is the best available. Fig. 6 applies the
same evaluation data and metrics to a sentence conden-
sation experiment that performs transfer from packedf -
structures, i.e. transfer is performed on all parses for an
ambiguous sentence instead of on a single manually se-
lected parse. Alternatively, a single input parse could be
selected by stochastic models such as the one described
in Riezler et al. (2002). A separate phase of parse disam-
biguation, and perhaps the effects of any errors that this
might introduce, can be avoided by transferring from all
parses for an ambiguous sentence. This approach is com-
putationally feasible, however, only if condensation can
be carried all the way through without unpacking. Our
technology is not yet able to do this (in particular, as men-
tioned earlier, we have not yet implemented a method for
stochastic disambiguation on packedf -structures). How-
ever, we conducted a preliminary assessment of this pos-
sibility by unpacking and enumerating the transferredf -
structures. For many sentences this resulted in more can-
didates than we could operate on in the available time
and space, and in those cases we arbitrarily set a cut-off
on the number of transferredf -structures we considered.
Since transferredf -structures are produced according to
the number of rules applied to transfer them, in this setup
the transfer system produces smallerf -structures first,
and cuts off less condensed output. The result of this ex-
periment, shown in Fig. 6, thus provides a conservative
estimate on the quality of the condensations we might
achieve with a full-packing implementation.

In Figs. 5 and 6, the first row shows F-scores for a
random selection, the system selection, and the best pos-
sible selection from the transfer output against the gold
standard. The second rows show summarization quality
scores for generations from a random selection and the
system selection, and for the human-written condensa-
tion. The third rows report compression ratios. As can



testset I
lower
bound

system
selection

upper
bound

F-score 58% 67.3% 77.2 %
sum-quality 2.0 3.5 4.4
compr. 50.2% 60.4% 54.9%

testset II
lower
bound

system
selection

upper
bound

F-score 59% 65.4% 83.3%
sum-quality 2.1 3.4 4.6
compr. 52.7% 65.9% 56.8%

Figure 5: Sentence condensation from manually selected
f -structure for original uncondensed sentences.

be seen from these tables, the ranking of system variants
produced by the automatic and manual evaluation con-
firm a close correlation between the automatic evaluation
and human judgments. A comparison of evaluation re-
sults across colums, i.e. across selection variants, shows
that a stochastic selection of transferredf -structures is
indeed important. Even if allf -structures are transferred
from the same linguistically rich source, and all gener-
ated strings are grammatical, a reduction in error rate of
around 50% relative to the upper bound can be achieved
by stochastic selection. In contrast, a comparison be-
tween transfer runs with and without perfect disambigua-
tion of the original string shows a decrease of about 5% in
F-score, and of only .1 points for summarization quality
when transferring from packed parses instead of from the
manually selected parse. This shows that it is more im-
portant to learn what a good transferredf -structure looks
like than to have a perfectf -structure to transfer from.
The compression rates associated with the systems that
used stochastic selection is around 60%, which is accept-
able, but not as aggressive as human-written condensa-
tions. Note that in our current implementation, in some
cases the transfer component was unable to operate on
the packed representation. In those cases a parse was cho-
sen at random as a conservative estimate of transfer from
all parses. This fall-back mechanism explains the drop in
F-score for the upper bound in comparing Figs. 5 and 6.

5 Conclusion

We presented an approach to sentence condensation
that employs linguistically rich LFG grammars in a
parsing/generation-based stochastic sentence condensa-
tion system. Fine-grained dependency structures are out-
put by the parser, then modified by a highly expressive
transfer system, and filtered by a constraint-based gener-
ator. Stochastic selection of generation-filtered reduced
structures uses a powerful Maximum-Entropy model.
As shown in an experimental evaluation, summarization

testset I
lower
bound

system
selection

upper
bound

F-score 55.2% 63.0% 72.0%
sum-quality 2.1 3.4 4.4
compres. 46.5% 61.6% 54.9%

testset II
lower
bound

system
selection

upper
bound

F-score 54% 59.7% 76.0 %
sum-quality 1.9 3.3 4.6
compres. 50.9% 60.0% 56.8%

Figure 6: Sentence condensation from packedf -
structures for original uncondensed sentences.

quality of the system output is state-of-the-art, and gram-
maticality of condensed strings is guaranteed. Robustness
techniques for parsing and generation guarantee that the
system produces non-empty output for unseen input.

Overall, the summarization quality achieved by
our system is similar to the results reported in
Knight and Marcu (2000). This might seem disappoint-
ing considering the more complex machinery employed
in our approach. It has to be noted that these re-
sults are partially due to the somewhat artificial na-
ture of the data that were used in the experiments of
Knight and Marcu (2000) and therefore in our experi-
ments: The human-written condensations in the data set
extracted from the Ziff-Davis corpus show the same
word order as the original sentences and do not exhibit
any structural modification that are common in human-
written summaries. For example, humans tend to make
use of structural modifications such as nominalization
and verb alternations such as active/passive or transi-
tive/intransitive alternations in condensation. Such alter-
nations can easily be expressed in our transfer-based
approach, whereas they impose severe problems to ap-
proaches that operate only on phrase structure trees. In
the given test set, however, the condensation task re-
stricted to the operation of deletion. A creation of addi-
tional condensations for the original sentences other than
the condensed versions extracted from the human-written
abstracts would provide a more diverse test set, and fur-
thermore make it possible to match each system output
against any number of independent human-written con-
densations of the same original sentence. This idea of
computing matching scores to multiple reference exam-
ples was proposed by Alshawi et al. (1998), and later by
Papineni et al. (2001) for evaluation of machine transla-
tion systems. Similar to these proposals, an evaluation
of condensation quality could consider multiple reference
condensations and record the matching score against the
most similar example.

Another desideratum for future work is to carry



condensation all the way through without unpacking
at any stage. Work on employing packing techniques
not only for parsing and transfer, but also for genera-
tion and stochastic selection is currently underway (see
Geman and Johnson (2002)). This will eventually lead to
a system whose components work on packed represen-
tations of all orn-best solutions, but completely avoid
costly unpacking of representations.
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