
Learning optimal dialogue management rules by using
reinforcement learning and inductive logic programming

Renaud Lecœuche
Microsoft Corporation

Compass House, 80-82 Newmarket road
Cambridge CB5 8DZ, United Kingdom

renaudle@microsoft.com

Abstract
Developing dialogue systems is a complex pro-
cess. In particular, designing efficient dialogue
management strategies is often difficult as there
are no precise guidelines to develop them and no
sure test to validate them. Several suggestions
have been made recently to use reinforcement
learning to search for the optimal management
strategy for specific dialogue situations. These
approaches have produced interesting results,
including applications involving real world dia-
logue systems. However, reinforcement learning
suffers from the fact that it is state based. In
other words, the optimal strategy is expressed
as a decision table specifying which action to
take in each specific state. It is therefore diffi-
cult to see whether there is any generality across
states. This limits the analysis of the optimal
strategy and its potential for re-use in other di-
alogue situations. In this paper we tackle this
problem by learning rules that generalize the
state-based strategy. These rules are more read-
able than the underlying strategy and therefore
easier to explain and re-use. We also investi-
gate the capability of these rules in directing
the search for the optimal strategy by looking
for generalization whilst the search proceeds.

1 Introduction
As dialogue systems become ubiquitous, dia-
logue management strategies are receiving more
and more attention. They define the system be-
havior and mainly determine how well or badly
it is perceived by users. Generic methodolo-
gies exist for developing and testing manage-
ment strategies. Many of these take a user-
centric approach based on Wizard of Oz stud-
ies and iterative design (Bernsen et al., 1998).
However there are still no precise guidelines
about when to use specific techniques such as

mixed-initiative. Reinforcement learning has
been used in several recent approaches to search
for the optimal dialogue management strategy
for specific dialogue situations (Levin and Pier-
accini, 1997; Litman et al., 2000; Singh et al.,
2000; Walker, 2000). In these approaches, a dia-
logue is seen as a walk through a series of states,
from an initial state when the dialogue begins
until a terminal state when the dialogue ends.
The actions of the dialogue manager as well as
those of the user influence the transitions be-
tween states. Each transition is associated with
a reward, which expresses how good or bad it
was to make that transition. A dialogue strat-
egy is then seen as a Markov Decision Process
(Levin et al., 1998). Reinforcement learning can
be used in this framework to search for an op-
timal strategy, i.e., a strategy that makes the
expected sum of rewards maximal for all the
training dialogues. The main idea behind re-
inforcement learning is to explore the space of
possible dialogues and select the strategy which
optimizes the expected rewards (Mitchell, 1997,
ch. 13). Once the optimal strategy has been
found, it can be implemented in the final sys-
tem.

Reinforcement learning is state-based. It
finds out which action to take next given the
current state. This makes the explanation of the
strategy relatively hard and limits its potential
re-use to other dialogue situations. It is quite
difficult to find out whether generic lessons can
be learned from the optimal strategy. In this pa-
per we use inductive logic programming (ILP)
to learn sets of rules that generalize the optimal
strategy. We show that these can be simpler to
interpret than the decision tables given by re-
inforcement learning and can help modify and
re-use the strategies. This is important as hu-
man dialogue designers are usually ultimately in

charge of writing and changing the strategies.
The paper is organized as follows. We first

describe in section 2 a simple dialogue system
which we use as an example throughout the pa-
per. In section 3, we present our method and
results on using ILP to generalize the optimal
dialogue management strategy found by rein-
forcement learning. We also investigate the use
of the rules learned during the search of the op-
timal strategy. We show that, in some cases,
the number of dialogues needed to obtain the
optimal strategy can be dramatically reduced.
Section 4 presents our current results on this
aspect. We compare our approach to other cur-
rent pieces of work in section 5 and conclude the
paper in section 6.

2 Example dialogue system

In this section we present a simple dialogue sys-
tem that we use in the rest of the paper to de-
scribe and explain our results. This system will
be used with automated users in order to sim-
ulate dialogues. The aim of the system is to
be simple enough so that its operation is easy
to understand while being complex enough to
allow the study of the phenomena we are in-
terested in. This will provide a simple way to
explain our approach.

We chose a system whose goal is to find values
for three pieces of information, called, unorigi-
nally, a, b and c. In a practical system such as
an automated travel agent for example, these
values could be departure and arrival cities and
the time of a flight.

We now describe the system in terms of
states, transitions, actions and rewards, which
are the basic notions of reinforcement learning.
The system has four actions at its disposal: pre-
pare to ask (prepAsk) a question about one of
the pieces of information, prepare to recognize
(prepRec) a user’s utterance about a piece of
information, ask and recognize (ask&recognize)
which outputs all the prepared questions and
tries to recognize all the expected utterances,
and end (end) which terminates the dialogue.
We chose these actions as they are common, in
one form or another, in most speech dialogue
systems. To get a specific piece of information,
the system must prepare a question about it
and expect a user utterance as an answer be-
fore carrying out an ask&recognize action. The

system can try to get more than one piece of
information in a single ask&recognize action by
preparing more than one question and prepar-
ing to recognize more than one answer.

Actions are associated with rewards or penal-
ties. Every system action, except ending, has a
penalty of -5 corresponding to some imagined
processing cost. Ending provides a reward of
100 times the number of pieces of information
known when the dialogue ends. We hope that
these numbers simulate a realistic reward func-
tion. They could be tuned to reflect user satis-
faction for a real dialogue manager.

The state of the system represents which
pieces of information are known or unknown
and what questions and recognitions have been
prepared. There is also a special end state. For
this example, there are 513 different states.

Pieces of information become known when
users answer the system’s questions. In our tu-
torial example, we used automated users. These
users always give one piece of information if
properly asked as explained above, and answer
potential further questions with a decreasing
probability (0.5 for a second piece of informa-
tion, and 0.25 for a third in our example). We
could tune these probabilities to reflect real user
behavior. Using simulated users enables us to
quickly train our system. It could also allow
us to test the usefulness of ILP under different
conditions.

3 Learning rules from optimal
strategy

In this section we explain how we obtain and
interpret rules expressing the optimal manage-
ment strategy found by reinforcement learning
for the system presented in section 2 as well as
a more realistic one.

3.1 Example system
We first search for the optimal strategy of our
example system by using reinforcement learn-
ing. We do this by having repetitive dialogues
with the automated users and evaluating the
average reward of the actions taken by the sys-
tem. When deciding what to do in each state,
we choose the up-to-now best action with prob-
ability 0.8 and other actions with uniform prob-
ability totaling 0.2. This allows the system to
explore the dialogue space while preferably fol-
lowing the best strategy found. The optimal

State Action
{unknown(c), unknown(b), unknown(a)} prepRec(a)
{unknown(c), unknown(b), unknown(a), prepRec(a)} prepAsk(a)
{unknown(c), unknown(b), unknown(a), prepRec(a),
prepAsk(a)}

ask&recognize

{unknown(c), unknown(b), known(a)} prepRec(b)
{unknown(c), unknown(b), known(a), prepRec(b)} prepAsk(b)
{unknown(c), unknown(b), known(a), prepRec(b), prepAsk(b)} ask&recognize
{unknown(c), known(b), known(a)} prepRec(c)
{unknown(c), known(b), known(a), prepRec(c)} prepAsk(c)
{unknown(c), known(b), known(a), prepRec(c), prepAsk(c)} ask&recognize
{known(c), known(b), known(a)} end

Table 1: Tutorial example optimal strategy

strategy for the tutorial example is shown in
table 1. This strategy is very simple: ask one
piece of information at a time until all the pieces
have been collected, and then end the dialogue.
A typical dialogue following this strategy would
simply go like this, using the travel agent exam-
ple:

S: Where do you want to leave from?
U: Cambridge.
S: Where do you want to go to?
U: Seattle.
S: When do you want to travel?
U: Tomorrow.

Then, in order to learn rules generalizing the
optimal strategy, we use foidl. foidl is a pro-
gram which learns first-order rules from exam-
ples (Mooney and Califf, 1995; Mitchell, 1997,
ch. 10). foidl starts with rules without condi-
tions and then adds further terms so that they
cover the examples given but not others. In
our case, rule conditions are about properties
of states and rule actions are the best actions
to take. Some advantages of foidl are that it
can learn from a relatively small set of posi-
tive examples without the need for explicit neg-
ative examples and that it uses intentional back-
ground knowledge (Califf and Mooney, 1998).
foidl has two main learning modes. When
the examples are functional, i.e., for each state
there is only one best action, foidl learns a set
of ordered rules, from the more generic to the
more specific. When applying the rules only the
first most generic rule whose precondition holds
needs to be taken into account. When the ex-

amples are not functional, i.e., there is at least
one state where two actions are equally good,
foidl learns a bag of rules. All rules whose pre-
conditions hold are applied. Ordered rules are
usually easier to understand. In this paper, we
use foidl in both modes: functional mode for
the tutorial example and non-functional mode
for the other example.

The rules learned by foidl from the optimal
strategy are presented in table 2. Precondi-
tions on states express the required and suffi-
cient conditions for the action to be taken for
a state. Uppercase letters represent variables
(à la Prolog) which can unify with a, b or c.
Rules were learned in functional mode. The
more generic rules are at the bottom of the ta-
ble and the more specific at the top. It can be
quite clearly seen from these rules that the strat-
egy is composed of two kinds of rules: ordering
rules which indicate in what order the variables
should be obtained, and generic rules, typeset
in italic, which express the strategy of obtaining
one piece of information at a time. The order-
ing, which is a, then b, then c, is arbitrary. It
was imposed by the reinforcement learning algo-
rithm. The general strategy consists in prepar-
ing to ask whatever piece of information the or-
dering rules have decided to recognize, and then
asking and recognizing a piece of information as
soon as we can. By expressing the strategy in
the form of rules it is apparent how it operates.
It would then be relatively easy for a dialogue
engineer to implement a strategy that keeps the
optimal one-at-a-time questioning strategy but
does not necessarily impose the same order on

Preconditions on state Action
unknown(a) prepRec(a)
unknown(b), known(X) prepRec(b)
known(b), unknown(X) prepRec(c)
known(c) end
prepAsk(X) ask&recognize
unknown(X), prepRec(X) prepAsk(X)

Table 2: Tutorial example optimal rules

the process.

3.2 Real world example

Although the tutorial example showed how rules
could be obtained and interpreted, it does not
say much about the practical use of our ap-
proach for real-world dialogues. In order to
study this, we applied foidl to the optimal
strategy presented in (Litman et al., 2000),
which “presents a large-scale application of RL
[reinforcement learning] to the problem of op-
timizing dialogue strategy selection [...]”. This
system is a more realistic application than our
introductory example. It has been used by hu-
man users over the phone. The dialogue is
about activities in New Jersey. A user states
his/her preferences for a type of activity (mu-
seum visit, etc.) and availability, and the sys-
tem retrieves potential activities. The system
can vary its dialogue strategy by allowing or not
allowing users to give extra information when
answering a question. It can also decide to con-
firm or not to confirm a piece of information it
has received.

The state of the system represents what
pieces of information have been obtained and
some information on how the dialogue has
evolved so far. This information is repre-
sented by variables indicating, in column or-
der in table 3, whether the system has greeted
the user (0=no, 1=yes), which piece of infor-
mation the system wants (1, 2 or 3), what
was the confidence in the user’s last an-
swer (0=low, 1=medium, 2=high, 3=accept,
4=deny), whether the system got a value for the
piece of information (0=no, 1=yes), the number
of times the system asked for that piece of in-
formation, whether the last question was open-
ended (0=open-ended, 1=restrictive), and how
well the dialogue was going (0=bad, 1=good).

Preconditions on state Action

gre
eti

ngs

info.
#

con
fidence

val
ue

quest
ion

#

op
en/cl

ose
d

histo
ry

B 1 0 1 F G H expconf(1)
B 1 1 E F G H expconf(1)
B 1 2 E F G H noconf(1)
B 1 4 E 0 G H reaskm(1)
B 1 D E 1 G H reasks(1)
B 2 0 1 F G H expconf(2)
1 2 2 1 0 0 0 noconf(2)
B 2 0 E F 1 1 noconf(2)
B 2 2 E F 1 H noconf(2)
B 2 D 0 1 G H reaskm(2)
B 3 D 1 F G 1 expconf(3)
B 3 D 1 F 0 H expconf(3)
1 3 1 1 0 1 0 noconf(3)
1 3 1 1 0 0 1 noconf(3)
1 3 2 1 0 0 1 noconf(3)
B 3 0 E F G 0 noconf(3)
B 3 0 E F 0 H noconf(3)
1 C 0 0 0 G H asku(C) [2]
B C 4 E 0 G H reasks(C) [3]
B C 4 0 F G 1 reaskm(C) [2]
B C 2 E F 0 1 expconf(C) [2]
B C 1 1 F 0 H expconf(C) [5]
B C 2 E F 1 0 noconf(C) [3]
0 C D E F G H greetu [1]

Table 3: NJFun optimal rules

See Litman et al. (2000) for a more detailed ex-
planation of the state representation. The ac-
tions the system can take are: greeting users
(greetu), asking questions to users (asku), re-
asking questions to users with an open or re-
strictive question (reaskm/reasks), asking for
confirmation or not (expconf/noconf). The op-
timal strategy is composed of 42 state-action
pairs. It can be reduced to 24 equivalent rules.
We present the rules in table 3. Some of these
rules are very specific to the state they apply to.
The more generic ones, which are valid what-
ever the exact piece of information being asked,
are typeset in italic. The number of states they
generalize is indicated in brackets.

These rules can be divided into four cate-
gories:

Asking The first rule simply states that asking

(asku) is the best thing to do if we have
never asked the value of a piece of informa-
tion before.

Re-asking The second rule states that the sys-
tem should re-ask for a value with a re-
stricted grammar (reasks), i.e., a gram-
mar that does not allow mixed-initiative,
if the previous attempt was made with an
open-ended grammar and the user denied
the value obtained. The third rule states
that re-asking with an open-ended question
(reaskm) is fine when the user denied the
value obtained but the dialogue was going
well until now.

Confirming The fourth and fifth rules state
that the system should explicitly confirm
(expconf) a value if the grammar to get
it was open-ended, the confidence in the
value obtained being medium or even high.
No confirmation (noconf) is needed when
the confidence is high and the answer was
obtained with a restricted grammar even
when the dialogue is going badly.

Greeting The last rule indicates that the sys-
tem should greet the user if it has not done
so already.

When preconditions hold for more than one
rule, which can for example be the case for
reasks and reaskm in some situations, all the
actions allowed by the activated rules are pos-
sible.

The generic rules are more explicit than the
state-based decision table given by reinforce-
ment learning. For example, the rules about
asking and greeting are obvious and it is reas-
suring that the approach suggests them. The
effects of open-ended or closed questions on the
reasking and confirming policies also become
much more apparent. Restricting the potential
inputs is the best thing to do when re-asking
except if the dialogue was going well until that
point. In that case the system can risk having
an open-ended grammar. The rules on confir-
mation show the preference to confirm if the
value was obtained via an open-ended grammar
and that no confirmation is required if the sys-
tem has high confidence in a value asked via
a closed grammar even if the dialogue is going
badly. Because the rules enable us to better un-
derstand what the optimal policy does, we may

Iterations Best score Best score
(without rules) (with rules)

5000 154.13 154.13
10000 153.78 195.97
15000 183.36 220.34
20000 193.47 227.44 (*)
25000 210.77 231.43 (*)
30000 224.32 231.68 (*)
35000 224.40 231.71 (*)
40000 228.60 231.72 (*)
45000 228.95 231.72 (*)
50000 230.44 (*) 231.72 (*)

Table 4: Effect of using rules during learning

be able to re-use the strategy learned in this
specific situation in other dialogue situations.

It should be noted that the generic rules gen-
eralize only a part of the total strategy (18
states out of 42 in the example). Therefore a lot
remains to be explained about the less generic
rules. For example, the second piece of infor-
mation does not require confirmation even if we
got it with a low confidence value if the gram-
mar was restrictive and the dialogue going well.
Under the same conditions the first piece of in-
formation would require a confirmation. The
underlying reasons for these differences are not
clear. Some of the decisions made by the re-
inforcement learning algorithm are also hard to
explain, whether in the form of rules or not. For
example, the optimal strategy states that the
third piece of information does not require con-
firmation if we got it with low confidence and
the dialogue was going badly. It is difficult to
explain why this is the best action to take.

4 Learning optimal strategy using
rules

In this section, we discuss the use of rules during
learning. Since rules can generalize the optimal
strategy as we saw in the previous section, it
is interesting to see whether they can general-
ize strategies obtained during training. If the
rules can generalize the up-to-now best strat-
egy, we may then be able to benefit from the
rules to guide the search for the optimal strat-
egy throughout the search space. In order to
test this, we ran the same reinforcement learn-
ing algorithm to find out the optimal policy in

the same setting as in the example system of sec-
tion 3. We also ran the same algorithm but this
time we stopped it every 5000 iterations. An
iteration corresponds to a transition between
states in the dialogue. We then searched for
rules summarizing the best policy found until
then. We took the generic rules found, i.e., not
the ones that are specific to a particular state,
and used these to direct the search. That is to
say, when a rule applied we chose to take the
action it suggested rather than the action sug-
gested by the state’s values (this is still sub-
jected to the 0.8 probability selection). The
idea behind this was that, if the rules gener-
alize correctly the best strategy, following the
rules would guide us more quickly to the best
policy than a blind exploration. It should be
noted that the underlying representation is still
state-based, i.e., we do not generalize the state
evaluation function. Our method is therefore
guaranteed to find the optimal policy even if
the actions suggested by the rules are not the
right ones.

Table 4 summarizes the value of the best pol-
icy found after each step of 5000 iterations. A
star (*) indicates that the optimal strategy has
been consistently found. As can be seen from
this table, using rules during learning improved
the value of the best strategy found so far and
reduced the number of iterations needed to find
the optimal strategy for this particular example.
The main effect of using rules seems to be the
stabilization of the search on the optimal policy.
The search without rules finds the optimal pol-
icy but then goes off track before coming back
to it. This may not be always the case1 since
the best strategy found at first may not be opti-
mal at all (for example, a rather good strategy
at first is to end the dialogue immediately since
it avoids negative rewards), or the dialogue may
not be regular enough for rules to be useful. In
these cases using rules may well be detrimen-
tal. Nevertheless it is important to see that

1We do not claim any statistical evidence since we
ran only a limited set of experiments on the effects of
rules and present just one here. Even if we ran enough
experiments to get statistically significant results, they
would be of little use as they would depend on a par-
ticular type of dialogues. Much more work needs to be
done to evaluate the influence of rules on reinforcement
learning and, if possible, in which conditions they are
useful.

rules can help reduce, in this case by a factor of
2, the number of iterations needed to find the
optimal strategy. Computationally, using rules
may not be much different than not using them
since the benefits of fewer reinforcement learn-
ing cycles are counter-balanced by the inductive
learning costs. However, requiring fewer train-
ing dialogues is still an important advantage of
this method. This is especially true for systems
that train online with real users rather than sim-
ulated ones. In this case, example dialogues are
an expensive commodity and reducing the need
for training dialogues is beneficial.

5 Discussion

Recent work on reinforcement learning and di-
alogue management has mainly focused on how
to reduce the search space for the optimal strat-
egy. Because reinforcement learning is state
based and there may potentially be a large num-
ber of states, problems may arise when few di-
alogues are available and the data too sparse to
select the best strategy. States can usually be
collapsed to make this problem less acute. The
main idea here is to express the state of the
dialogue by a limited number of features while
keeping enough and the right kind of informa-
tion to be able to learn useful strategies (Walker
et al., 1998). There has also been new research
on how to model the dialogue with partially ob-
servable Markov models (Roy et al., 2000).

Some work has also been done on finding out
rules to select dialogue management strategies.
For example, Litman and Pan (2000) use ma-
chine learning to learn rules detecting when di-
alogues go badly. The dialogue manager uses
a strategy predefined by a dialogue designer.
If a rule detects a bad dialogue, the dialogue
strategy is changed to a more restrictive, more
system guided strategy. Our approach is dif-
ferent from that work since the strategy is not
predefined but based on the optimal strategy
found by reinforcement learning. Our rules not
only detect in principle when a dialogue is go-
ing badly but also indicate which action to take.
The efficiency of the rules obviously depends on
the way the optimal strategy search space has
been modeled and other conditions influencing
learning.

Some pieces of work have been concerned
with natural language processing from an induc-

tive logic programming point of view. Notably,
work on morphology (Mooney and Califf, 1995)
and parsing (Thompson et al., 1997) has been
carried out. However, as far as we know, the
application of inductive logic programming to
dialogue management is new.

6 Conclusion
In this paper, we presented an approach for
finding and expressing optimal dialogue strate-
gies. We suggested using inductive logic pro-
gramming to generalize the results given by re-
inforcement learning methods. The resulting
rules are more explicit than the decision tables
given by reinforcement learning alone. This al-
lows dialogue designers to better understand the
effect of the optimal strategy and improves po-
tential re-use of the strategies learned. We also
show that in some situations rules may have a
beneficial effect when used during learning. By
guiding the search based on the best strategy
found so far, they can direct a reinforcement
learning program towards the optimal strategy,
thus reducing the amount of training dialogues
needed. More work needs to be done to deter-
mine, if possible, under which conditions such
improvements can be obtained.

References
Niels Ole Bernsen, Hans Dybkjær, and

Laila Dybkjær. 1998. Designing interactive
speech systems. Springer-Verlag.

Mary Elaine Califf and Raymond J. Mooney.
1998. Advantages of decision lists and
implicit negatives in inductive logic pro-
gramming. New Generation Computing,
16(3):263–281.

Esther Levin and Roberto Pieraccini. 1997. A
stochastic model of computer-human interac-
tion for learning dialogue strategies. Techni-
cal Report 97.28.1, AT&T Labs Research.

Esther Levin, Roberto Pieraccini, and Wieland
Eckert. 1998. Using Markov decision process
for learning dialogue strategies. In Proceed-
ings of the IEEE international conference on
acoustics, speech and signal processing, Seat-
tle, USA, May.

Diane J. Litman and Shimei Pan. 2000. Pre-
dicting and adapting to poor speech recogni-
tion in a spoken dialogue system. In Proceed-
ings of the 17th national conference on arti-

ficial intelligence, Austin, Texas, USA, Au-
gust.

Diane J. Litman, Michael S. Kearns, Satin-
der B. Singh, and Marilyn A. Walker. 2000.
Automatic optimization of dialogue manage-
ment. In Proceedings of the 18th interna-
tional conference on computational linguis-
tics, Saarbrücken, Luxembourg, Nancy, July.

Tom M. Mitchell. 1997. Machine learning.
McGraw-Hill.

Raymond J. Mooney and Mary Elaine Califf.
1995. Induction of first-order decision lists:
Results on learning the past tense of English
verbs. Journal of Artificial Intelligence Re-
search, 3:1–24.

Nicholas Roy, Joelle Pineau, and Sebastian
Thrun. 2000. Spoken dialogue management
using probabilistic reasoning. In Proceedings
of the 38th annual meeting of the Association
for Computational Linguistics, Hong-Kong,
October.

Satinder B. Singh, Michael S. Kearns, Diane J.
Litman, and Marylin A. Walker. 2000. Em-
pirical evaluation of a reinforcement learning
spoken dialogue system. In Proceedings of the
17th national conference on artificial intelli-
gence, Austin, USA, July.

Cynthia A. Thompson, Raymond J. Mooney,
and Lappoon R. Tang. 1997. Learning to
parse natural language database queries into
logical forms. In Proceedings of the work-
shop on automata induction, grammatical in-
ference, and language acquisition, Nashville,
Tennessee, USA, July.

Marilyn A. Walker, Jeanne C. Fromer, and
Shrikanth Narayanan. 1998. Learning opti-
mal dialogue strategies: A case study of a
spoken dialogue agent for email. In Proceed-
ings of the 17th international conference on
computational linguistics and the 36th annual
meeting of the Association for Computational
Linguistics, Montreal, Quebec, Canada, Au-
gust.

Marilyn Walker. 2000. An application of rein-
forcement learning to dialogue strategy selec-
tion in a spoken dialogue system for email.
Journal of Artificial Intelligence Research,
12:387–416.

