
Diacritics Restoration Using Neural Networks

Jakub Náplava, Milan Straka, Pavel Straňák, Jan Hajič
Institute of Formal and Applied Linguistics

Charles University, Faculty of Mathematics and Physics
Malostranské náměstí 25, Prague, Czech Republic

{naplava,straka,stranak,hajic}@ufal.mff.cuni.cz

Abstract
In this paper, we describe a novel combination of a character-level recurrent neural-network based model and a language model applied
to diacritics restoration. In many cases in the past and still at present, people often replace characters with diacritics with their ASCII
counterparts. Despite the fact that the resulting text is usually easy to understand for humans, it is much harder for further computational
processing. This paper opens with a discussion of applicability of restoration of diacritics in selected languages. Next, we present a neural
network-based approach to diacritics generation. The core component of our model is a bidirectional recurrent neural network operating at
a character level. We evaluate the model on two existing datasets consisting of four European languages. When combined with a language
model, our model reduces the error of current best systems by 20% to 64%. Finally, we propose a pipeline for obtaining consistent
diacritics restoration datasets for twelve languages and evaluate our model on it. All the code is available under open source license on
https://github.com/arahusky/diacritics_restoration.

Keywords: neural networks, diacritics, diacritics generation, error correction

1. Introduction
When writing emails, tweets or texts in certain languages,
people for various reasons sometimes write without diacrit-
ics. When using Latin script, they replace characters with
diacritics (e.g. c with acute or caron) by the underlying ba-
sic character without diacritics. Practically speaking, they
write in ASCII. We offer several possible reasons for this
phenomenon:
• Historically, many devices offered only an English key-
board and/or ASCII encoding (for example oldermobile
phones and SMS).

• Before Unicode became widespread, there were encod-
ing problems among platforms and even among pro-
grams on the same platform, and many people still have
this in mind.

• Even though text encoding is rarely a problem any more
and all modern devices offer native keyboards, some
problems persist. In situations of frequent code switch-
ing between English and a language with a substantially
different keyboard layout, it is very hard to touch type
in both layouts. It is much easier to type both languages
using the same layout, although one of them without
proper diacritics.

• In some circumstances typing with diacritical marks
is significantly slower than using just basic latin char-
acters. The most common example is on-screen key-
boards on mobile devices. These keyboards do not in-
clude the top row (numerical on US English), so lan-
guages that use that row for accented characters are
much slower to type. Naturally, users type without ex-
plicit accents and rely on the auto-completion systems.
However, these systems are usually simple, unigram-
based, and based on the word form ambiguity for a given
language (cf. Table 1), which introduces many errors.
Postponing the step of diacritics generation would be
beneficial both for typing speed and accuracy.

• For example in Vietnamese, the language with most dia-

critics in our data (cf. Table 1), both the above problems
are very pronounced: Because Vietnamese uses diacrit-
ical marks to distinguish both tones (6) and quality of
vowels (up to 3), a vowel can have (and often has) 2
marks. This need to provide efficient typing of very
many accented characters led to the invention of sys-
tems like unikey.org that allow a user to type all the ac-
cented characters using sequences of basic letters. For
instance to typeset “đường” a user types “dduwowngf”.
While this system elegantly solves the problems above
with switching keyboard layouts and missing top row of
keys, it requires a special software package and it still
results in 9 keystrokes to type 5 characters. That is why
typing without accents in informal situations like emails
or text messages is still common and system for efficient
generation of diacritics would be very useful.

Typical languages where approximately half of the words
contain diacritics are Czech, Hungarian or Latvian. Never-
theless, as we discuss in Sections 2 and 3, diacritics restora-
tion (also known as diacritics generation or diacritization) is
an active problem also in many languages with substantially
lower diacritics appearance.

Current approaches to restoration of diacritics (see Section 3)
are mostly based on traditional statistical methods. However,
in recent years, deep neural networks have shown remark-
able results in many areas. To explore their capabilities, we
propose a neural based model in Section 4 and evaluate its
performance on two datasets in Section 5.

In Section 6, we describe a way to obtain a consistent mul-
tilingual dataset for diacritics restoration and evaluate our
model on them. The dataset can be downloaded from the
published link. Finally, Section 7 concludes this paper with
a summary of outcomes.

1566

https://github.com/arahusky/diacritics_restoration

Language Words with Word error rate of
diacritics dictionary baseline

Vietnamese 88.4% 40.53%
Romanian 31.0% 29.71%
Latvian 47.7% 8.45%
Czech 52.5% 4.09%
Slovak 41.4% 3.35%
Irish 29.5% 3.15%
French 16.7% 2.86%
Hungarian 50.7% 2.80%
Polish 36.9% 2.52%
Swedish 26.4% 1.88%
Portuguese 13.3% 1.83%
Galician 13.3% 1.62%
Estonian 19.7% 1.41%
Spanish 11.3% 1.28%
Norwegian-Nynorsk 12.8% 1.20%
Turkish 30.0% 1.16%
Catalan 11.1% 1.10%
Slovenian 14.0% 0.97%
Finnish 23.5% 0.89%
Norwegian-Bokmaal 11.7% 0.79%
Danish 10.2% 0.69%
German 8.3% 0.59%
Croatian 16.7% 0.34%

Table 1: Analysis of percentage of words with diacritics and
the word error rate of a dictionary baseline. Measured on UD
2.0 data, using the uninames method, and CoNLL 17 UD
shared task raw data for dictionary. Only words containing
at least one alphabetical character are considered.

2. Diacritics Restoration in Languages using
Latin Script

Table 1 presents languages using (usually some extended ver-
sion of) a Latin script. EmployingUD 2.0 (Nivre et al., 2017)
plain text data, we measure the ratio of words with diacritics,
omitting languages with less than 5% ofwords with diacritics.
In eleven of the languages, at least every fifth word contains
diacritics; in another eleven languages, at least every tenth
word does.
Naturally, high occurrence of words with diacritics does not
imply that generating diacritics is an ambiguous task. Con-
sequently, we also evaluate word error rate of a simple dic-
tionary baseline to diacritics restoration: according to a large
raw text corpora we construct a dictionary of the most fre-
quent variant with diacritics for a given word without diacrit-
ics, and use the dictionary to perform the diacritics restora-
tion.
Table 1 presents the results. We utilized the raw corpora
by Ginter et al. (2017) released as supplementary material of
CoNLL 2017 UD Shared task (Zeman et al., 2017), which
contain circa a gigaword for each language, therefore provid-
ing a strong baseline. For nine languages, the word error rate
is larger than 2%, and eight more languages have word error
rate still above 1%. We conclude that even with a very large
dictionary, the diacritics restoration is a challenging task for
many languages, and better method is needed.

Letter Hex Unicode namecode
ø 00F8 LATIN SMALL LETTER OWITH STROKE
ł 0142 LATIN SMALL LETTER LWITH STROKE
đ 0111 LATIN SMALL LETTER DWITH STROKE
ʂ 0282 LATIN SMALL LETTER SWITH HOOK

ç 00E7 LATIN SMALL LETTER CWITH CEDILLA
š 0161 LATIN SMALL LETTER SWITH CARON

Table 2: Unicode characters that cannot be decomposed us-
ing NFD (first 4 lines), and those that can. The suffix of the
name removed by the uninamesmethod is show in italics. As
we can see, the strucutre of names is identical, so the method
works for all of these characters.

2.1. Methods of Diacritics Stripping
Although there is no standard way of stripping diacritics, a
commonly usedmethod is to convert input word toNFD (The
Unicode Consortium, 2017, Normalization Form D) which
decomposes composite characters into a base character and
a sequence of combining marks, then remove the combining
marks, and convert the result back to NFC (Unicode Nor-
malization Form C). We dub this method uninorms.
We however noted that this method does not strip diacritics
for some characters (e.g. for đ and ł).1 We therefore pro-
pose a new method uninames, which operates as follows: In
order to remove diacritics from a given character, we inspect
its name in the Unicode Character Database (The Unicode
Consortium, 2017). If it contains a word WITH, we remove
the longest suffix starting with it, try looking up a character
with the remaining name and yield the character if it exists.
The method is illustrated in Table 2, which presents four
characters that do not decompose under NFD, but whose di-
acritics can be stripped by the proposed method.
As shown in Table 3, the proposed uninames method rec-
ognizes all characters the uninorms method does, and some
additional ones. Therefore, we employ the uninames method
to strip diacritics in the paper.

3. Related Work
One of the first papers to describe systems for automatic di-
acritics restoration is a seminal work by Yarowsky (1999),
who compares several algorithms for restoration of diacrit-
ics in French and Spanish. Later, models for diacrization
in Vietnamese (Nguyen and Ock, 2010), Czech (Richter
et al., 2012), Turkish (Adali and Eryiğit, 2014), Ara-

1What constitutes a “diacritic mark” is a bit of a problem. On
one hand not all characters with a graphical element added to a let-
ter letter contain diacritics, e.g. ¥ (symbol of Japanese Yen) or Ð/ð
(Icelandic “eth”). On the other end of the spectrum we have clear
diacritics with Unicode canonical decomposition into a letter and a
combining mark. Between these clear borders there are the char-
acters that do not have a unicode decomposition, but their names
still indicate they are latin letters with some modifier and often they
are used the same as characters that do have decomposition. E.g.
Norwegian/Danish ø is used exactly like ö in Swedish, it is just an
orthographic variation. However while the latter has canonical de-
composition in Unicode, the first does not. This is why we opted to
treat these characters also as “letters with diacritics”.

1567

Lowercased letters with diacritics
í 15.7% ů 2.5% ș ī ņ ō
á 11.7% ú 1.6% ā ē ū ŕ
é 9.8% ö 1.5% ñ ą ï ĺ
ě 6.6% ă 1.3% ł ò ļ ţ
ä 6.0% ø 1.1% ć ż ń ì
č 5.5% à 0.9% ň ğ ù ό
ř 5.2% ç 0.9% â ś û ḥ
ž 4.9% ü 0.8% õ ď ű ǎ
ý 4.5% ã 0.8% ť ô ķ ί
š 4.4% è 0.6% ê đ ģ έ
ó 3.2% î 0.5% ę ő ź ά
å 2.9% ț 0.5% ş ľ ë ʂ

Table 3: Most frequent characters with diacritics from data
listed in Table 1, together with their relative frequency.
The bold characters are recognized only using the uninames
method.

bic (Azmi and Almajed, 2015) Croatian, Slovenian, Ser-
bian (Ljubešic et al., 2016), and many other languages were
published. The system complexity ranges from simplest
models, that for each word apply its most frequent transla-
tion as observed in the training data, to models that incor-
porate language models, part-of-speech tags, morphological
and many other features. One of the most similar model to
ours is a system by Belinkov and Glass (2015) who used re-
current neural networks for Arabic diacritization.

4. Model Architecture
The core of our model (see Figure 1) is a bidirectional re-
current neural network, which for each input character out-
puts its correct label (e.g. its variant with diacritics). The in-
put and output vocabularies contain a special out-of-alphabet
symbol.
The input characters are embedded, i.e. each character in
the input sentence is represented by a vector of d real num-
bers. The character embeddings are initialized randomly and
updated during training.
The embeddings are fed to a bidirectional RNN (Graves and
Schmidhuber, 2005). The bidirectional RNN consists of two
unidirectional RNNs, one reading the inputs in standard or-
der (forward RNN) and the other in reverse order (backward
RNN). The output is then a sum of forward and backward
RNN outputs. This way, bidirectional RNN is processing in-
formation from both preceding and following context. The
model allows an arbitrary number of stacked bidirectional
RNN layers.
The output of the (possibly multilayer) bidirectional RNN
is at each time step reduced by an identical fully connected
layer to an o-dimensional vector, where o is the size of the
output alphabet. A nonlinearity is then applied to these re-
duced vectors.
Finally, we use a softmax layer to produce a probability dis-
tribution over output alphabet at each time step.
The loss function is the cross-entropy loss summed over all
outputs.

Figure 1: Visualisation of our model.

4.1. Residual connections
The proposed model allows an arbitrary number of stacked
RNN layers. The model with multiple layers allows each
stacked layer to process more complex representation of cur-
rent input. This naturally brings potential to improve accu-
racy of the model.
As stated by (Wu et al., 2016), simple stacking of more RNN
layers works only up to a certain number of layers. Beyond
this limit, the model becomes too difficult to train, which
is most likely caused by vanishing and exploding gradient
problems (Pascanu et al., 2013). To improve the gradient
flow, (Wu et al., 2016) incorporate residual connections to
the model. To formalize this idea, let RNNi be the i-th RNN
layer in a stack and x0 = (inp1, inp2, . . . , inpN) input to the
first stacked RNN layer RNN0. The model we have proposed
so far works as follows:

oi, ci = RNNi(xi)

xi+1 = oi

oi+1, ci+1 = RNNi+1(xi+1),

where oi is the output of i-th stacked RNN layer and ci is a
sequence of its hidden states. The model with residual con-
nections between stacked RNN layers then works as follows:

oi, ci = RNNi(xi)

xi+1 = oi + xi

oi+1, ci+1 = RNNi+1(xi+1)

4.2. Decoding
For inference we use a left-to-right beam search decoder
combining the neural network and the language model like-
lihoods. The process is a modified version of standard beam
search used by Xie et al. (2016) for decoding sequence-to-
sequence models.
Let b denote the beam size. The hypotheses in the beam are
initialized with the b most probable first characters. In each
step, all beam hypotheses are extended with b most probable
variants of the respective character, creating b2 hypotheses.
These are then sorted and the top b of them are kept.
Whenever a space is observed in the output, all affected hy-
potheses are reranked using both the RNN model output

1568

probabilities and language model probabilities. The hypoth-
esis probability in step k can be computed as:

P (y1:k|x) = (1− α) logPNN (y1:k|x) + α logPLM (y1:k),

where x denotes the input sequence, y stands for the decoded
symbols contained within current hypothesis, PNN andPLM

are neural network and language model probabilities and the
hyper-parameter α determines the weight of the language
model. To keep both logPNN and logPLM terms within
a similar range in the decoding, we compute the logPNN as
the mean of output token log probabilities and additionally
normalize PLM by the number of words in the sequence.
To train the language model as well as to run it, we use the
open-source KenLM toolkit (Heafield, 2011).

5. Experiments
To compare performance of our model with current ap-
proaches, we perform experiments using two existing
datasets. The first one, created by Ljubešic et al. (2016),
consists of Croatian, Serbian and Slovenian sentences from
three sources: Wikipedia texts, general Web texts and texts
from Twitter. Since Web data are assumed to be the noisi-
est, they are used only for training. Wikipedia and Twitter
testing sets should then cover both standard and non-standard
language. The second evaluation dataset we utilize consists
of Czech sentences collected mainly from newspapers, thus
it covers mostly standard Czech.

5.1. Training and Decoding Details
We used the same model configuration for all experiments.
The bidirectional RNN has 2 stacked layers with resid-
ual connections and utilizes LSTM units (Hochreiter and
Schmidhuber, 1997) of dimension 300. Dropout (Srivastava
et al., 2014) at a rate of 0.2 is used both on the embedded
inputs and after each bidirectional layer. All weights are ini-
tialized using Xavier uniform initializer (Glorot and Bengio,
2010).
The vocabulary of each experiment consists of top 200 most
occurring characters in a training set and a special symbol
(<UNK>) for unknown characters.
To train the model, we use the Adam optimizer (Kingma and
Ba, 2014) with learning rate 0.0003 and a minibatch size of
200. Each model was trained on a single GeForce GTX 1080
Ti for approximately 4 days. After training, the model with
the highest accuracy on the corresponding development set
was selected.
To estimate the decoding parameter α, we performed an ex-
haustive search over [0,1] with a step size of 0.1. The pa-
rameter was selected to maximize model performance on a
particular development set. All results were obtained using a
beam width of 8.

5.2. Croatian, Serbian and Slovenian
The original dataset contains training files divided into Web,
Twitter and Wikipedia subsets. However, Ljubešic et al.
(2016) showed that concatenating all these language-specific
sets for training yields best results. Therefore, we used only
concatenated files for training the models for each of three
languages in our experiments. The training files contain

17 968 828 sentences for Croatian, 11 223 924 sentences for
Slovenian and 8 376 810 sentences for Serbian.2 All letters
in the dataset are lowercased.
To remove diacritics from the collected texts, Ljubešic et al.
(2016) used a simple script that replaced four letters (ž, ć,
č, š) with their ASCII counterparts (z, c, c, s), and one let-
ter (đ) with its phonetic transcription (dj). This results in
the input and target sentences having different length. Since
our model requires both input and target sentences to have
the same length, additional data preprocessing was required
before feeding the data into the model: we replace all occur-
rences of the dj sequence in both input and target sentences
by a special token, and replace it back to dj after decoding.
The results of the experiment with comparison to previ-
ous best system (Lexicon, Corpus) are presented in Table 4.
The Lexicon method replaces each word by its most fre-
quent translation as observed in the training data. The Corpus
method extends it via log-linear model with context probabil-
ity. These methods were evaluated by Ljubešic et al. (2016)
and the Corpus method is to the best of our knowledge state-
of-the-art system for all three languages. System accuracy is
measured, similarly to the original paper, on all words which
have at least one alphanumerical character.
We incorporated the same language models as used by the
authors of the original paper. There are two points in the
results we would like to stress:
• Our system with language model reduces error by more
than 30% on wiki data and by more than 20% on tweet
data. Moreover, our model outperforms the current
best system on wiki data even if it does not incorporate
the additional language model, which makes the model
much smaller (˜30MB instead of several gigabytes of
the language model).

• Diacritics restoration problem is easier on standard lan-
guage (wiki) than on non-standard data (tweets). This
has, in our opinion, two reasons. First, the amount of
wiki data in the training sets is substantially higher than
the amount of non-standard data (tweets). This makes
the model fit more standard data. Second, due to lower
language quality in Twitter data, we suppose that the
amount of errors in the gold data is higher.

5.3. Czech
The second experiment we conducted is devoted to diacritics
restoration in Czech texts. To train both the neural network
and language models, we used the SYN2010 corpus (Křen et
al., 2010), which contains 8 182 870 sentences collected from
Czech literature and newspapers. To evaluate the model,
PDT3.0 (Hajič et al., 2018) testing set with 13 136 sentences
originating from Czech newspapers is used. Both the train-
ing and testing set, thus, contain mainly standard Czech. For
language model training, we consider only those {2,3,4,5}-
grams that occurred at least twice, and use default KenLM
options.
Table 5 presents a comparison of our model performance
with Microsoft Office Word 2010, ASpell, CZACCENT
(Rychlý, 2012) and Korektor (Richter et al., 2012), the lat-
ter being the state-of-the-art system of diacritics restoration

2The Serbian dataset is based on a Latin script.

1569

System wiki tweet
hr sr sl hr sr sl

Lexicon 0.9936 0.9924 0.9933 0.9917 0.9893 0.9820
Corpus 0.9957 0.9947 0.9962 0.9938 0.9917 0.9912
Our model 0.9967 0.9961 0.9970 0.9932 0.9939 0.9882
Our model + LM 0.9973 0.9968 0.9974 0.9951 0.9944 0.9930
Error reduction 36.81% 39.74% 30.45% 21.62% 32.14% 20.77%

Table 4: Results obtained on Crotian (HR), Serbian (SR) and Slovenian (SL) Wikipedia and Twitter testing sets. Note that
the word accuracy presented in the table is not measured on all words, but only on words having at least one alphanumerical
character.

System Word accuracy
Microsoft Office Word 2010 (*) 0.8910
ASpell (*) 0.8839
Lexicon 0.9527
CZACCENT 0.9607
Corpus 0.9713
Korektor 0.9861
Our model 0.9887
Our model + LM 0.9951
Error reduction 64.75%

Table 5: Comparison of several models of restoration of di-
acritics for Czech. The (*) denotes reduced test data (see
text).

for Czech. Note that evaluation using Microsoft OfficeWord
2010 and ASpell was performed only on the first 746 (636)
sentences, because it requires user interaction (confirming
the suggested alternatives).
As the results show, models that are not tuned to the task
of diacritics restoration perform poorly. Our model com-
bined with a language model reduces the error of the pre-
vious state-of-the-art system by more than 60%; our model
achieves slightly higher accuracy than Korektor even if no
language model is utilized.

5.3.1. Ablation Experiments
One of the reasons why deep learning works so well is the
availability of large training corpora. This motivates us to
explore the amount of data our model needs to perform well.
As Figure 2 shows, the RNN model trained on 50 000 ran-
dom sentences from SYN2010 corpus performs better on the
PDT3.0 testing set than the Lexicon baseline trained on full
SYN2010 corpus. Further, up to 5M sentences the perfor-
mance of the RNN model increases with the growing train-
ing set size. We do not observe any performance difference
between the RNN model trained on 5M and 8M sentences.
The second ablation experiment examines the effect of resid-
ual connections. We trainedmodels with 2, 3, 4 and 5 stacked
layers each with and without residual connections. We also
trained a simple model with 1 bidirectional layer without
residual connections. The results of this experiment are pre-
sented in Figure 3. Apart from the big difference in word
accuracy between the model with 1 layer and other models,
we can see that models with residual connections perform
generally better than when no residual connections are incor-
porated. It is also evident that when more layers are added

10
4

10
5

10
6

10
7

Train sentences

84

86

88

90

92

94

96

98

W
or

d
ac

cu
ra

cy

RNN
Lexicon

Figure 2: Comparison of RNN and Lexicon performance
with varrying training data size.

1 2 3 4 5
Number of stacked layers

96.0

96.4

96.8

97.2

97.6

98.0

98.4

98.8

99.2

W
or

d
ac

cu
ra

cy

96.64

98.82 98.87 98.79 98.89 98.72 98.91 98.63 98.91

With residuals
Without residuals

Figure 3: Effect of using residual connections with respect to
the number of stacked layers.

in stack, performance of models without residual connec-
tions deteriorates while performance of models with addi-
tional residual connections does not.

6. New Multilingual Dataset
As discussed in the preceding sections, diacritics restora-
tion is an active field of research. However, to the best of
our knowledge, there is no consistent approach to obtaining
datasets for this task. When a new diacritics restoration sys-

1570

tem is published, a new dataset is typically created both for
training and testing. This makes it difficult to compare per-
formance across systems. We thus propose a new pipeline
for obtaining consistent multilingual datasets for the task of
diacritics restoration.

6.1. Dataset
As the data for diacritics restoration need to be clean, we
decided to utilize Wikipedia for both development and test-
ing sets. Because there may be not enough data to train po-
tential diacritics restoration systems on Wikipedia texts only,
we further decided to create training sets from the (general)
Web. We chose two corpora for this task: the W2C cor-
pus (Majliš, 2011) with texts fromWikipedia and the general
Web in 120 languages, and the CommonCrawl corpus with
language annotations generated by Buck et al. (2014) with a
substantially larger amount of general Web texts in more than
150 languages.
To create training, development and testing data from the
Wikipedia part of the W2C corpus, its data are first seg-
mented into sentences, these are then converted to lowercase
and finally split into disjoint training, development and test-
ing set. The split was performed in such a way that all three
sets consist of sentences collected from whole articles rather
then being randomly sampled across all articles. Each test-
ing set consists of 30 000 sentences, development set of ap-
proximatelly 15 000 sentences and the rest of the data are
preserved for training set.
The pipeline for creating additional training data from the
CommonCrawl corpus starts with the removal of invalid
UTF8 data and Wikipedia data. These filtered data are then
segmented into sentences and converted to lowercase. Since
these data come from general Web and may be noisy (e.g.
contain sentences with missing diacritics), only those sen-
tences that have at least 100 characters and contain at least
a certain amount of diacritics are preserved. The constant
determining the minimum amount of diacritics is language
specific and is derived from Table 1. Finally, sentence in-
tersection with existing development and testing set is re-
moved and maximally ten similar sentences are preserved in
the training data. Since both baseline methods (Lexicon and
Corpus) require data to be word tokenized, all texts are also
word tokenized.
The dataset was created for 12 languages (see Table 6), where
the additional training sets were generated from the 2017_17
web crawl. Complete dataset can be downloaded from http:
//hdl.handle.net/11234/1-2607.

6.2. Experiments
We train and evaluate our model on the created dataset and
compare its performance to two baseline methods. The same
model hyperparameters as described in Section 5.1 are used,
except for the RNN cell dimension, which is 500.
Training was performed in two phases. First, each lan-
guage specific model was trained on particular Common-
Crawl (Web) training set for approximately four days. Then,
eachmodel was fine-tunedwith a smaller learning rate 0.0001
on respective Wikipedia training set for three more days. Fi-
nally, as all models seemed to be continuously improving on
the development sets, we took the last model checkpoints for

evaluating.
Both baseline methods and language models were trained
on concatenation of Wikipedia and CommonCrawl training
data. For language model training, we considered only those
{2,3,4,5}-grams that occurred at least twice, and used default
KenLM options.
To measure model performance, modified word error accu-
racy is used. The alpha-word accuracy considers only words
that consist of at least one alphabetical character, because
only these can be potentially diacritized. The testing set re-
sults ofLexicon andCorpus baselines, as well as of ourmodels
before and after fine-tuning, and with a language model are
presented in Table 6.
As results show, our model outperforms both baselines even
if no language model is used. Moreover, incorporation of
the language model helps the model perform better as well
as does model fine-tuning. Without fine-tuning, all models
but the Romanian outperform baselines. We suspect that the
reason why the Romanian model before fine-tuning performs
worse than the Corpusmethod is that non-standard Web data
differ too much from standard data from Wikipedia. It is
also an interesting fact that the biggest error reduction is at
Vietnamese and Romanian which seem to be most difficult
for both baseline methods.

7. Conclusion
In this work, we propose a novel combination of recurrent
neural network and a language model for performing diacrit-
ics restoration. The proposed system is language agnostic as
it is trained solely from parallel corpora of texts without dia-
critics and diacritized texts. We test our system on two exist-
ing datasets comprising of four languages, and we show that it
outperforms previous state-of-the-art systems. Moreover, we
propose a pipeline for generating consistent multilingual dia-
critics restoration datasets, run it on twelve languages, publish
the created dataset, evaluate our system on it and provide a
comparison with two baseline methods. Our method outper-
forms even the stronger contextual baseline method on the
new dataset by a big margin.
Future work includes detailed error analysis, which could re-
veal types of errors made by our system. Since certain words
may be correctly diacritized in several ways given the context
of the whole sentence, such error analysis could also set the
language specific limit on the accuracy that can be achieved.
Further, when designing our multilingual dataset we decided
to use testing sets with sentences from Wikipedia articles.
This was well motivated as we wanted it to contain sentences
with proper diacritics. However, such testing sets contain
mainly standard language and are thus worse for comparison
of models aiming to generate diacritics for non-standard lan-
guage. Therefore, we plan to create additional development
and testing sets in the future work.
While experimenting with the model on Czech we found out
that when it is trained to output instructions (e.g. add caron)
instead of letters, it performs better. Future work thus also
includes thorough inspection of this behavior when applied
to all languages.
Finally, the system achieves better results when a language
model is incorporated while inferring. Because the use of
an external model both slows down the inferring process and

1571

http://hdl.handle.net/11234/1-2607
http://hdl.handle.net/11234/1-2607

Language Wiki Web Words with Lexicon Corpus Our model Our model Our model Error
sentences sentences diacritics w/o finetuning + LM reduction

Vietnamese 819 918 25 932 077 73.63% 0.7164 0.8639 0.9622 0.9755 0.9773 83.33%
Romanian 837 647 16 560 534 24.33% 0.8533 0.9046 0.9018 0.9799 0.9837 82.96%
Latvian 315 807 3 827 443 39.39% 0.9101 0.9457 0.9608 0.9657 0.9749 53.81%
Czech 952 909 52 639 067 41.52% 0.9590 0.9814 0.9852 0.9871 0.9906 49.20%
Polish 1 069 841 36 449 109 27.09% 0.9708 0.9841 0.9891 0.9903 0.9955 71.64%
Slovak 613 727 12 687 699 35.60% 0.9734 0.9837 0.9868 0.9884 0.9909 44.21%
Irish 50 825 279 266 26.30% 0.9735 0.9800 0.9842 0.9846 0.9871 35.55%
Hungarian 1 294 605 46 399 979 40.33% 0.9749 0.9832 0.9888 0.9902 0.9929 58.04%
French 1 818 618 78 600 777 14.65% 0.9793 0.9931 0.9948 0.9954 0.9971 58.11%
Turkish 875 781 72 179 352 25.34% 0.9878 0.9905 0.9912 0.9918 0.9928 24.14%
Spanish 1 735 516 80 031 113 10.41% 0.9911 0.9953 0.9956 0.9958 0.9965 25.57%
Croatian 802 610 7 254 410 12.39% 0.9931 0.9947 0.9951 0.9951 0.9967 36.92%

Table 6: Results obtained on new multilingual dataset. Note that the alpha-word accuracy presented in the table is measured
only on those words that have at least one alphabetical character. The last column presents errror reduction of our model
combined with language model compared to the Corpus method.

requires significantly more memory, it would be desirable to
train the model in such way that no additional languagemodel
is needed. We suspect that multitask learning (e.g. training
the model also to predict next/previous letter) may compen-
sate for the absence of a language model.

8. Acknowledgements
The research described herein has been supported by the
Grant No. DG16P02R019 of the Ministry of Culture of the
Czech Republic. Data has been used from and stored into
the repository of LINDAT/CLARIN, a large research infras-
tructure supported by the Ministry of Education, Youth and
Sports of the Czech Republic under projects LM2015071
and CZ.02.1.01/0.0/0.0/16_013/0001781.
Thanks to NGỤY Giang Linh for the information and exam-
ples on Vietnamese.

9. Bibliographical References
Adali, K. and Eryiğit, G. (2014). Vowel and diacritic
restoration for social media texts. In Proceedings of the 5th
Workshop on Language Analysis for Social Media (LASM),
pages 53–61.

Azmi, A. M. and Almajed, R. S. (2015). A survey of auto-
matic arabic diacritization techniques. Natural Language
Engineering, 21(3):477–495.

Belinkov, Y. and Glass, J. (2015). Arabic diacritization
with recurrent neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, pages 2281–2285.

Buck, C., Heafield, K., and Van Ooyen, B. (2014). N-gram
counts and language models from the common crawl. In
LREC, volume 2, page 4.

Ginter, F., Hajič, J., Luotolahti, J., Straka, M., and Ze-
man, D. (2017). CoNLL 2017 shared task - automat-
ically annotated raw texts and word embeddings. LIN-
DAT/CLARIN digital library at the Institute of Formal
and Applied Linguistics, Charles University.

Glorot, X. and Bengio, Y. (2010). Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 249–256.

Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional LSTM and other
neural network architectures. Neural Networks, pages 5–6.

Hajič, Jan and Bejček, Eduard and Bémová, Alevtina and
Buráňová, Eva and Hajičová, Eva and Havelka, Jiří
and Homola, Petr and Kárník, Jiří and Kettnerová, Vá-
clava and Klyueva, Natalia and Kolářová, Veronika and
Kučová, Lucie and Lopatková, Markéta and Mikulová,
Marie and Mírovský, Jiří and Nedoluzhko, Anna and
Pajas, Petr and Panevová, Jarmila and Poláková, Lu-
cie and Rysová, Magdaléna and Sgall, Petr and Spous-
tová, Johanka and Straňák, Pavel and Synková, Pavlína
and Ševčíková, Magda and Štěpánek, Jan and Urešová,
Zdeňka and Vidová Hladká, Barbora and Zeman, Daniel
and Zikánová, Šárka and Žabokrtský, Zdeněk. (2018).
Prague Dependency Treebank 3.5. Institute of Formal and
Applied Linguistics, LINDAT/CLARIN, Charles Univer-
sity.

Heafield, K. (2011). Kenlm: Faster and smaller language
model queries. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, pages 187–197. Associa-
tion for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Kingma, D. and Ba, J. (2014). Adam: Amethod for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Křen, M., Bartoň, T., Cvrček, V., Hnátková, M., Jelínek,
T., Kocek, J., Novotná, R., Petkevič, V., Procházka,
P., Schmiedtová, V., et al. (2010). Syn2010: žánrově
vyváženỳ korpus psané češtiny. Ústav Českého národního
korpusu FF UK, Praha.

Ljubešic, N., Erjavec, T., and Fišer, D. (2016). Corpus-
based diacritic restoration for south slavic languages. In
Proceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016). European
Language Resources Association (ELRA)(may 2016).

Majliš, M. (2011). W2c–web to corpus–corpora.
Nguyen, K.-H. and Ock, C.-Y. (2010). Diacritics restora-
tion in vietnamese: letter based vs. syllable based model.
PRICAI 2010: Trends in Artificial Intelligence, pages 631–

1572

636.
Nivre, J., Agić, Ž., Ahrenberg, L., et al. (2017). Univer-
sal Dependencies 2.0. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics, Charles
University, Prague.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the
difficulty of training recurrent neural networks. ICML (3),
28:1310–1318.

Richter, M., Straňák, P., and Rosen, A. (2012). Korektor-a
system for contextual spell-checking and diacritics com-
pletion. In COLING (Posters), pages 1019–1028.

Rychlý, P. (2012). Czaccent–simple tool for restoring ac-
cents in czech texts. RASLAN 2012 Recent Advances in
Slavonic Natural Language Processing, page 85.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. Journal of ma-
chine learning research, 15(1):1929–1958.

The Unicode Consortium. (2017). The Unicode Stan-
dard, Version 10.0.0. The Unicode Consortium, Mountain
View, CA.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. (2016). Google’s neural machine translation sys-
tem: Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., and Ng,
A. Y. (2016). Neural language correction with character-
based attention. arXiv preprint arXiv:1603.09727.

Yarowsky, D. (1999). A comparison of corpus-based tech-
niques for restoring accents in spanish and french text.
In Natural language processing using very large corpora,
pages 99–120. Springer.

Zeman, D., Popel, M., Straka, M., Hajič, J., Nivre, J.,
Ginter, F., Luotolahti, J., Pyysalo, S., Petrov, S., Pot-
thast, M., Tyers, F., Badmaeva, E., Gökırmak, M.,
Nedoluzhko, A., Cinková, S., Hajič jr., J., Hlaváčová, J.,
Kettnerová, V., Urešová, Z., Kanerva, J., Ojala, S., Mis-
silä, A., Manning, C., Schuster, S., Reddy, S., Taji, D.,
Habash, N., Leung, H., de Marneffe, M.-C., Sanguinetti,
M., Simi, M., Kanayama, H., de Paiva, V., Droganova,
K., Martínez Alonso, H., Uszkoreit, H., Macketanz, V.,
Burchardt, A., Harris, K., Marheinecke, K., Rehm, G.,
Kayadelen, T., Attia, M., Elkahky, A., Yu, Z., Pitler, E.,
Lertpradit, S., Mandl, M., Kirchner, J., Fernandez Al-
calde, H., Strnadova, J., Banerjee, E., Manurung, R.,
Stella, A., Shimada, A., Kwak, S., Mendonça, G., Lando,
T., Nitisaroj, R., and Li, J. (2017). CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies. Association for Computational Linguistics.

1573

	Introduction
	Diacritics Restoration in Languages using Latin Script
	Methods of Diacritics Stripping

	Related Work
	Model Architecture
	Residual connections
	Decoding

	Experiments
	Training and Decoding Details
	Croatian, Serbian and Slovenian
	Czech
	Ablation Experiments

	New Multilingual Dataset
	Dataset
	Experiments

	Conclusion
	Acknowledgements
	Bibliographical References

