@inproceedings{soler-company-wanner-2014-use,
title = "How to Use less Features and Reach Better Performance in Author Gender Identification",
author = "Soler Company, Juan and
Wanner, Leo",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}`14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/L14-1030/",
pages = "1315--1319",
abstract = "Over the last years, author profiling in general and author gender identification in particular have become a popular research area due to their potential attractive applications that range from forensic investigations to online marketing studies. However, nearly all state-of-the-art works in the area still very much depend on the datasets they were trained and tested on, since they heavily draw on content features, mostly a large number of recurrent words or combinations of words extracted from the training sets. We show that using a small number of features that mainly depend on the structure of the texts we can outperform other approaches that depend mainly on the content of the texts and that use a huge number of features in the process of identifying if the author of a text is a man or a woman. Our system has been tested against a dataset constructed for our work as well as against two datasets that were previously used in other papers."
}
Markdown (Informal)
[How to Use less Features and Reach Better Performance in Author Gender Identification](https://preview.aclanthology.org/jlcl-multiple-ingestion/L14-1030/) (Soler Company & Wanner, LREC 2014)
ACL