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Abstract

This paper describes the ÚFAL–Oslo sys-
tem submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP, Oepen et al. 2019). The submission is
based on several third-party parsers. Within
the official shared task results, the submission
ranked 11th out of 13 participating systems.

1 Introduction

The CoNLL 2019 shared task is on Meaning Rep-
resentation Parsing, i.e., finding graphs of se-
mantic dependencies for plain-text English sen-
tences. There are numerous frameworks that de-
fine various kinds of semantic graphs; five of them
have been selected as target representations in this
shared task. The five frameworks are: Prague
Semantic Dependencies (PSD); Delph-In bilexi-
cal dependencies (DM); Elementary Dependency
Structures (EDS); Universal Conceptual Cogni-
tive Annotation (UCCA); and Abstract Mean-
ing Representation (AMR). See the shared task
overview paper (Oepen et al., 2019) for a descrip-
tion of the individual frameworks.

Previous parsing experiments have been de-
scribed for all these frameworks, and some of the
parsers are freely available and re-trainable. Being
novices in the area of non-tree parsing, we did not
aim at implementing our own parser from scratch;
instead, we decided to experiment with third-party
software and see how far we can get. Our partic-
ipation can thus be viewed, to some extent, as an
exercise in reproducibility. The challenge was in
the number and in the diversity of the target frame-
works. No single parser can produce all five target
representation types (or at least that was the case
when the present shared task started).

Within the shared task, data of all five frame-
works are represented in a common JSON-based

interchange format (the MRP format). This for-
mat allows to represent an arbitrary graph struc-
ture whose nodes may or may not be anchored to
spans of the input text. Using a pre-existing parser
thus means that data have to be converted between
the MRP interchange format and the format used
by the parser; such conversion is not always trivial.

The shared task organizers have provided ad-
ditional companion data where both the training
and the test data were preprocessed by UDPipe
(Straka and Straková, 2017), providing automatic
tokenization, lemmatization, part-of-speech tags
and syntactic trees in the Universal Dependen-
cies annotation scheme (Nivre et al., 2016). We
work solely with the companion data in our exper-
iments; we do not process raw text directly.

2 Related Work

For the purposes of this work we considered pre-
vious work matching the following criteria:

• reporting reasonably good results;

• accompanied by open-source code available
to use;

• with instructions sufficient to run the code;

• using only the resources from the shared task
whitelist.

Peng et al. (2017) presented a neural parser that
was designed to work with three semantic depen-
dency graph frameworks, namely, DM, PAS and
PSD. The authors proposed a single-task and two
multitask learning approaches and extended their
work with a new approach (Peng et al., 2018) to
learning semantic parsers from multiple datasets.

The first specialized parser for UCCA was pre-
sented by Hershcovich et al. (2017). It utilized
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novel transition set and features based on bidirec-
tional LSTMs and was developed to deal with spe-
cific features of UCCA graphs, such as DAG struc-
ture of the graph, discontinuous structures, and
non-terminal nodes corresponding to complex se-
mantic units. The work saw further development
in (Hershcovich et al., 2018), where authors pre-
sented a generalized solution for transition-based
parsing of DAGs and explored multitask learning
across several representations, showing that using
other formalisms in joint learning significantly im-
proved UCCA parsing.

Buys and Blunsom (2017) proposed a neu-
ral encoder-decoder transition-based parser for
full MRS-based semantic graphs. The decoder
is extended with stack-based embedding fea-
tures which allows the graphs to be predicted
jointly with unlexicalized predicates and their to-
ken alignments. The parser was evaluated on
DMRS, EDS and AMR graphs. Lexicon extrac-
tion partially relies on Propbank (Palmer et al.,
2005), which is not in the shared task whitelist.
Unfortunately, we were not able to replace it with
an analogous white-listed resource, therefore we
did not use it.

Flanigan et al. (2014) presented the first ap-
proach to AMR parsing, which is based around the
idea of identifying concepts and relations in source
sentences utilizing a novel training algorithm and
additional linguistic knowledge. The parser was
further improved for the SemEval 2016 Shared
Task 8 (Flanigan et al., 2016). JAMR parser uti-
lizes a rule-based aligner to match word spans in a
sentence to concepts they evoke, which is applied
in a pipeline before training the parser.

Damonte et al. (2017) proposed a transition-
based parser for AMR not dissimilar to the ARC-
EAGER transition system for dependency tree
parsing, which parses sentences left-to-right in
real time.

Lyu and Titov (2018) presented an AMR parser
that jointly learns to align and parse treating align-
ments as latent variables in a joint probabilistic
model. The authors argue that simultaneous learn-
ing of alignment and parses benefits the parsing
in the sense that alignment is directly informed by
the parsing objective thus producing overall better
alignments.

Zhang et al. (2019a) and (Zhang et al., 2019b)
recently reported results that outperform all pre-
viously reported SMATCH scores, on both AMR

2.0 and AMR 1.0. The proposed attention-based
model is aligner-free and deals with AMR parsing
as sequence-to-graph task. Additionally, the au-
thors proposed an alternative view on reentrancy
converting an AMR graph into a tree by duplicat-
ing nodes that have reentrant relations and then
adding an extra layer of annotation by assigning
an index to each node so that the duplicates of the
same node would have the same id and could be
merged to recover the original AMR graph. This
series of papers looks very promising, but unfor-
tunately we were not able to test the parser due to
them being published after the end of the shared
task.

3 System Description

3.1 DM and PSD
To deal with the DM and PSD frameworks we
chose a parser that was described in (Peng et al.,
2017). This work explores a single-task and two
multitask learning approaches using the data from
the 2015 SemEval shared task on Broad-Coverage
Semantic Dependency Parsing (SDP, Oepen et al.
2015) and reports significant improvements on
the state-of-the-art results for semantic depen-
dency parsing. The parser architecture utilizes arc-
factored inference and a bidirectional-LSTM com-
posed with a multi-layer perceptron. Our first in-
tention was to adapt the models that utilize the
multitask learning approach. Unfortunately, the
project seems to be stalled and multitask pars-
ing part is not available. We proceeded with the
single-task model (NeurboParser), in which mod-
els for each formalism are trained completely sep-
arately. To reproduce the experiment from the pa-
per we needed to perform the following steps:

• Convert the training data from the MRP
format to the input format required by the
parser.1 The input format is the same as the
one used in the 2015 SemEval Shared Task2

(see Figure 1 for an example).

• Download pre-trained word embeddings
(GloVe, Pennington et al. 2014). We use
the same version that is described in the

1All conversion scripts that we created for this
shared task are available on GitHub at https:
//github.com/ufal/mrptask/tree/master/
conll-2019-system.

2See detailed format description at http:
//alt.qcri.org/semeval2015/task18/index.
php?id=data-and-tools

https://github.com/ufal/mrptask/tree/master/conll-2019-system
https://github.com/ufal/mrptask/tree/master/conll-2019-system
https://github.com/ufal/mrptask/tree/master/conll-2019-system
http://alt.qcri.org/semeval2015/task18/index.php?id=data-and-tools
http://alt.qcri.org/semeval2015/task18/index.php?id=data-and-tools
http://alt.qcri.org/semeval2015/task18/index.php?id=data-and-tools
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paper – 100-dimensional vectors trained on
Wikipedia and Gigaword.

• Create training and development splits. We
use scripts and id lists provided by the au-
thors. The development set comprises 5% of
sentences of the training data.

• Create an additional file with the following
information: part-of-speech tag, token ID of
the head of the current word, dependency re-
lation. The parser considers syntactic depen-
dencies before it predicts the semantic ones;
note that we can obtain this information from
the companion data and give it to the parser.

• Run the training script to train the model.
The most challenging part was to install and
compile the parser. The authors provided
the training script with default hyperparam-
eters; however, using some of the docu-
mented options resulted in errors on our sys-
tem. Models are trained up to 20 epochs with
Adadelta (Zeiler, 2012).

The single-task model does not predict the
frame labels. This is a simple classifica-
tion problem, similar to lemmatization, so as a
quick workaround, we used UDPipe (Straka and
Straková, 2017), namely its predictor of morpho-
logical features, to simulate such a classifier. First,
we converted the training data to the CoNLL-U
format3 replacing morphological features in the
sixth column with the frame labels. Next, we
trained the model using the instructions from Re-
producible Training section of the UDPipe man-
ual.4

To produce the final output for the testing data,
we first parsed it with the trained models. The
input files were produced using companion data.
To be more specific, for the UDPipe model input
we used tokenization and word forms from com-
panion data. NeurboParser takes the following in-
formation as input: token ID, word form, lemma,
and part-of-speech tag. Then we merged the frame
information predicted by UDPipe with the Neur-
boParser output and converted it back to the MRP
interchange format.

3https://universaldependencies.org/
format.html

4http://ufal.mff.cuni.cz/udpipe/
models#universal_dependencies_24_
reprodusible_training

3.2 EDS

We do not have any parser specifically for EDS.
However, EDS is closely related to DM (DM is
a lossy conversion of EDS, where nodes that do
not represent surface words have been removed
(Ivanova et al., 2012)). We thus work with the hy-
pothesis that a DM graph is a subset of the cor-
responding EDS graph, and we submit our DM
graph to be also evaluated as EDS.

This is obviously just an approximation, as EDS
parsing is a task inherently more complex than
DM parsing. The hope is that the DM parser will
be able to identify some EDS edges while others
will be missing, and the overall results will still
be better than if we did not predict anything at all.
To illustrate this, consider Figures 2 and 3. Four
DM edges are also present in the EDS graph (in
one case, the corresponding nodes have different
labels but they are still anchored in the same sur-
face string).

3.3 AMR

For AMR, we chose the JAMR parser (Flanigan
et al., 2014, 2016). The parser is based on a
two-part algorithm that identifies concepts using
a semi-Markov model and then identifies the rela-
tions by searching for the maximum spanning con-
nected subgraph (MSCG) from an edge-labeled,
directed graph representing all possible relations
between the identified concepts. Lagrangian re-
laxation (Geoffrion, 1974) is used to ensure se-
mantic well-formedness. For our experiments we
used the version that was presented at the 2016
SemEval shared task on Meaning Representation
Parsing (May, 2016), in which the authors imple-
mented a novel training loss function for struc-
tured prediction, added new lists of concepts and
improved features, and improved the rule-based
aligner.

The instructions and training scripts were pro-
vided by the authors. To run the training, we
needed to split the data into training and devel-
opment sets, to create a label-set file, which is a
list of unique edge labels collected from the train-
ing data, and then convert the training data to the
parser input format. Our development split con-
sists of 5% of sentences taken from each text of
the training data.

The JAMR parser works with the traditional
AMR format, PENMAN, which represents an
AMR graph in bracketed form (Banarescu et al.,

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_24_reprodusible_training
http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_24_reprodusible_training
http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_24_reprodusible_training
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1 There there EX - -
2 is be VBZ + + v there:e-i loc
3 no no DT - + q:i-h-h
4 asbestos asbestos NN - - n:x ARG1 BV ARG1
5 in in IN - + p:e-u-i
6 our we PRP$ - + q:i-h-h
7 products product NNS - - n:x ARG2 poss
8 now now RB - + time n:x
9 . . . - -
10 '' ” ' ' - -

Figure 1: An example of a sentence in the format required by NeurboParser. See Figure 3 for visualization of this
DM graph.

be no asbestos in def poss pronoun pron product loc time def now
v there q n 1 p explicit q poss q n 1 nonsp n implicit q a 1

ARG1

ARG1

BV

ARG1

BV

ARG1

ARG1

ARG2

ARG2

ARG2

BV

BV

top

“There is no asbestos in our products now.”

Figure 2: EDS representation of the example sentence.

is no asbestos in our product now

ARG2

ARG1

ARG1

loc

BV poss

top

“There is no asbestos in our products now.”

Figure 3: DM representation of the example sentence.

2013), therefore necessitating a two-way conver-
sion between the MRP and PENMAN formats.
The example sentence “There is no asbestos in our
products now."” would look the following way in
PENMAN format (see also Figure 5 for a visual-
ization of the graph):

(a / asbestos :polarity -
:time (n / now)
:location (t / thing

:ARG1-of (p / produce-01
:ARG0 (w / we))))

To facilitate the conversion, we created a
Python3 script for each conversion direction.

The main features of conversion from the MRP

be no asbestos #PersPron product now

RSTR

ACT-arg

APP

LOC

TWHEN
top

“There is no asbestos in our products now.”

Figure 4: PSD representation of the example sentence.

format to the PENMAN format are as follows:

• For each sentence, a representation of the
graph in the form of source-to-target mapping
is obtained from the JSON representation of
the list of edges.

• The graph is traversed starting from the top
using depth-first search algorithm outputting
one node on a line in order the nodes are tra-
versed, leading to dropping reentrancies.

• Nodes that were already visited are marked
and are not traversed again in order to break
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asbestos now thing produce-01 we
polarity=-

location

time ARG1-of ARG0

“There is no asbestos in our products now.”

Figure 5: AMR representation of the example sentence.

possible infinite loops resulting from the cy-
cles in the graph.

• Numeric node ids are substituted with al-
phanumeric values standard for PENMAN
format: the first letter of the MRP node la-
bel is followed by an ordinal number if it is
necessary to distinguish multiple nodes start-
ing with the same letter.

• Properties of the node are output on the same
line as the node.

• Property values that contain characters that
are special for AMR representation, namely
a colon (:), are enclosed in straight double
quotes, as recommended by the parser doc-
umentation, e.g., 20:00 becomes "20:00".

The back conversion has the following features:

• For each sentence, its AMR representation is
recursively split into a nested list structure re-
flecting the nestedness of bracket notation.

• The path starting from the top node is recur-
sively retrieved from the nested list structure.

• The lists of nodes and edges are collected
along the path and converted to the MRP for-
mat.

• Finally, the alphanumeric node ids are con-
verted to numeric format: the root is assigned
0, then the incremental ids are assigned to the
rest of the nodes in order they are visited by
depth-first traverse, with the child nodes of
the same parent node sorted by rough prior-
ity of their connecting edge label:

– frame arguments are sorted in order of
their numbers, e.g., :ARG0 precedes
:ARG1;

– frame arguments precede semantic rela-
tions, e.g., :ARG0 precedes :date;

– inverse relations are placed after straight
ones of the same name, e.g., :ARG0 pre-
cedes :ARG0-of.

3.4 UCCA
We decided to adapt JAMR parser that we had al-
ready set up to parse AMR data in order to train on
UCCA data as well. We had theorized that a parser
suitable for AMR could be trained to predict non-
surface nodes in UCCA graphs. For this, we
needed to convert UCCA graphs from the uniform
graph interchange format to AMR-like bracketed
representation and vice versa, so the parser would
be able to work with sentences in familiar format.
The example sentence “There is no asbestos in our
products now."” would look the following way in
the AMR-like representation (see also Figure 6 for
a visualization of the graph):

(_1 / _root
:H (_2 / _h

:S (t / There)
:F (i / is)
:D (n / no)
:A (a / asbestos)
:A (_3 / _a

:R (i1 / in)
:E (_4 / _e

:S (o / our))
:C (p / products))

:T (n1 / now)
:U (. / .)
:U (_ / _quot)))

As demonstrated by this example, we intro-
duced the following modifications to the PEN-
MAN format in order to adapt it for UCCA:

• Since in UCCA nodes that do not directly
correspond to surface tokens lack any labels
at all, we assign them placeholder labels dur-
ing conversion, which start with the under-
score to differentiate them from labels of sur-
face nodes. Top node is given the root la-
bel, while the rest are given labels that are
the same as the label on the edge connecting
it with its parent node.

• In UCCA punctuation gets its own nodes. In
most cases we use the punctuation symbol
as the node label, with one exception: we
replace the double-quote character (") with
quot because the parser treats the double

quote as a special character.
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2 There is no asbestos 3 in 4 our products now .

U

T

A

A

D

F

S

C

E

R S

H

“There is no asbestos in our products now.”

Figure 6: UCCA representation of the example sentence.

The conversion process is mostly the same as
for AMR, with the following notable modifica-
tions:

• Conversion from MRP to the AMR-like for-
mat:

– labels for the nodes that correspond to
surface tokens are obtained by taking
parts of the sentence text denoted by
corresponding anchors;

– the list of possible special characters
that necessitate the label to be enclosed
in double quotes is extended to slash (/)
and parentheses;

– nodes with empty labels are assigned la-
bels as described above;

– the double-quote label is replaced with
quot as described above.

• Conversion from the AMR-like format to
MRP:

– anchors are recalculated from node la-
bels and sentence text where needed, as-
suming the order of nodes’ occurrences
corresponds to the order in which their
labels occur in the sentence;

– alphanumeric ids are reassigned to nu-
meric not based on the order the nodes
emerge when depth-first traversing the
tree, but first assigned to the surface
nodes in order of their occurrence in the
sentence, then to the rest of the nodes,
which seems to be the preferred way for
UCCA graphs.

4 Results

The results are shown in Table 1. Unfortunately,
our results for AMR and UCCA testing sentences

were corrupted, thus the official results comprise
only scores for DM, PSD and EDS frameworks.
However, we do provide the scores for the post-
evaluation run for AMR and UCCA frameworks.
The results for the complete evaluation set and for
the LPPS subset, a 100-sentence sample from The
Little Prince annotated in all frameworks, are re-
ported for both the official and unofficial runs.

For reference we provide previously reported
original results measured by formalism-specific
metrics for both the parsers that we use. Our re-
sults for DM and PSD are quite close to the origi-
nal results reported in (Peng et al., 2017). Original
SMATCH scores are reported in (May, 2016). The
score reported on the LPPS subset is close to the
original score, whereas the score measured on the
whole test set is much lower. This difference may
largely be due to a misinterpreted bug in the back
conversion script, which lead to dropping 36% of
sentences from the evaluation set. This, however,
didn’t affect the LPP subset, which comprises rel-
atively simple sentences.

5 Conclusion

We have described the ÚFAL–Oslo submission to
the CoNLL 2019 shared task on cross-framework
meaning representation parsing. This submission
stands on three parsers that were previously pro-
posed, implemented and made available by other
researchers: NeurboParser, JAMR, and UDPipe.
We added several conversion scripts to make the
parsers work with the shared task data. We were
not able to implement other improvements within
the time span of the shared task; we also do not list
other publicly available parsers that we thought of
testing but failed to make them work.

The main purpose of the present paper is to pro-
vide some context to our numbers in the shared
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MRP MRP:DM MRP:PSD MRP:EDS MRP:UCCA MRP:AMR SDP:DM SDP:PSD SMATCH:AMR

Official run 0.344 0.8051 0.6092 0.3064 0.0000 0.0000 0.8803 0.7689 0.0000
0.334 0.7782 0.5663 0.3260 0.0000 0.0000 0.8879 0.7950 0.0000

Post-evaluation 0.439 0.8051 0.6092 0.3064 0.1118 0.3645 0.8803 0.7689 0.3515
0.473 0.7782 0.5663 0.3260 0.1748 0.5194 0.8879 0.7950 0.5081

Previously reported 0.894 0.776 0.56

Table 1: Official run: official results; Post-evaluation: results that were achieved after the submission deadline;
Previously reported: original results for utilized parsers. For every metric we show F1 score, except for SDP:DM
and SDP:PSD, where we show labeled F1 score; for both runs we provide results for the complete evaluation set
(upper line) and the LPPS subset (lower line).

task results; the results themselves are far from op-
timal. Using the official MRP shared task metric
(and looking at the unofficial post-evaluation run,
which includes AMR and UCCA results), we were
relatively successful only in parsing DM. Parsing
PSD is obviously harder (these figures are compa-
rable, as we applied the same processing to PSD
and DM), and, perhaps unsurprisingly, AMR is
the most difficult target of the three. We achieved
non-zero score on EDS by simply pretending that
the DM graph is EDS. Finally, training an AMR
parser on the UCCA representation did not turn
out to be a good idea, and our UCCA score is the
worst among all the target representations.
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