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Abstract

This paper describes our system (HIT-SCIR)
for the CoNLL 2019 shared task: Cross-
Framework Meaning Representation Parsing.
We extended the basic transition-based parser
with two improvements: a) Efficient Train-
ing by realizing stack LSTM parallel training;
b) Effective Encoding via adopting deep con-
textualized word embeddings BERT (Devlin
et al., 2019). Generally, we proposed a uni-
fied pipeline to meaning representation pars-
ing, including framework-specific transition-
based parsers, BERT-enhanced word represen-
tation, and post-processing. In the final evalu-
ation, our system was ranked first according to
ALL-F1 (86.2%) and especially ranked first in
UCCA framework (81.67%).

1 Introduction

The goal of the CoNLL 2019 shared task (Oepen
et al., 2019) is to develop a unified parsing sys-
tem to process all five semantic graph banks.1 For
the first time, this task combines formally and lin-
guistically different approaches to meaning repre-
sentation in graph form in a uniform training and
evaluation setup.

Recently, a lot of semantic graphbanks arise,
which differ in the design of graphs (Kuhlmann
and Oepen, 2016), or semantic scheme (Abend
and Rappoport, 2017). More specifically, SDP
(Oepen et al., 2015), including DM, PSD and PAS,
treats the tokens as nodes and connect them with
semantic relations; EDS (Flickinger et al., 2017)
encodes MRS representations (Copestake et al.,
1999) as graphs with the many-to-many relations
between tokens and nodes; UCCA (Abend and
Rappoport, 2013) represents semantic structures
with the multi-layer framework; AMR (Banarescu

1See http://mrp.nlpl.eu/ for further technical
details, information on how to obtain the data, and official
results.

et al., 2013) represents the meaning of each word
using a concept graph. Koller et al. (2019) classi-
fies these frameworks into three flavors of seman-
tic graphs, based on the degree of alignment be-
tween the tokens and the graph nodes. In DM and
PSD, nodes are sub-set of surface tokens; in EDS
and UCCA, graph nodes are explicitly aligned
with the tokens; in AMR, the alignments are im-
plicit.

Most semantic parsers are only designed for one
or few specific graphbanks, due to the differences
in annotation schemes. For example, the cur-
rently best parser for SDP is graph-based (Dozat
and Manning, 2018), which assumes dependency
graphs but cannot be directly applied to UCCA,
EDS, and AMR, due the existence of concept
node. Hershcovich et al. (2018) parses across dif-
ferent semantic graphbanks (UCCA, DM, AMR),
but only works well on UCCA. The system of
Buys and Blunsom (2017) is a good data-driven
EDS parser, but does poorly on AMR. Lindemann
et al. (2019) sets a new SOTA in DM, PAS, PSD,
AMR and nearly SOTA in EDS, via represent-
ing each graph with the compositional tree struc-
ture (Groschwitz et al., 2017), but they do not ex-
pand this method to UCCA. Learning from mul-
tiple flavors of meaning representation in parallel
has hardly been explored, and notable exceptions
include the parsers of Peng et al. (2017, 2018);
Hershcovich et al. (2018).

Therefore, the main challenge in cross-
framework semantic parsing task is that diverse
framework differs in the mapping way between
surface string and graph nodes, which incurs
the incompatibility among framework-specific
parsers. To address that, we propose to use
transition-based parser as our basic parser, since
it’s more flexible to realize the mapping (node
generation and alignment) compared with graph-
based parser, and we improve it from the two as-

http://mrp.nlpl.eu/
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Figure 1: A unified pipeline for meaning representation parsing, including transition-based parser, BERT-enhanced
word representation, and post-processing, along with the additional taggers for label the nodes with pos, frame and
lemma.

pects: 1) Efficient Training Aligning the homo-
geneous operation in stack LSTM within a batch
and then computing them simultaneously; 2) Ef-
fective Encoding Fine-tuning the parser with pre-
trained BERT (Devlin et al., 2019) embedding,
which enrich the context information to make ac-
curate local decisions, and global learning for ex-
act search. Together with the post-processing, we
developed a unified pipeline for meaning represen-
tation parsing.

Our contribution can be summarised as follows:

• We proposed a unified parsing framework for
cross-framework semantic parsing.

• We designed a simple but efficient method to
realize stack LSTM parallel training.

• We showed that semantic parsing task bene-
fits a lot from adopting BERT.

• Our system was ranked first in CoNLL 2019
shared task among 16 teams upon ALL-F1.

2 System Architecture

Our system architecture is shown in Figure 1. In
this section, we will first introduce the transition-
based parser in Section 2.1, which is the central
part of our system. Then, to speed up the train-
ing of stack LSTM at transition-based parser, we
propose a simple method to do batch-training in
Section 2.2. And we adopt BERT to extract the
contextualized word representation in Section 2.3.
At last, to label the nodes with pos, frame and
lemma, we use additional tagger models to pre-
dict these in Section 2.4. The framework-specific
transition system is presented in Section 3 and
post-processing for each framework is discussed
in Section 4.

2.1 Transition-based Parser
In order to design the unified transition-based
parser, we refer to the following framework-
specific parsers: Wang et al. (2018b) for DM and
PSD, Hershcovich et al. (2017) for UCCA, Buys
and Blunsom (2017) for EDS, Liu et al. (2018) for
AMR. Those parsers differ in the design of tran-
sition system to generate oracle action sequence,
but similar in modeling the parsing state.

A tuple (S,L,B,E, V ) is used to represent
parsing state, where S is a stack holding processed
words, L is a list holding words popped out of S
that will be pushed back in the future, and B is a
buffer holding unprocessed words. E is a set of la-
beled dependency arcs. V is a set of graph nodes
include concept nodes and surface tokens. The
initial state is ([0], [ ], [1, · · · , n], [ ], V ) , where
V only contains surface tokens since the concept
nodes would be generated during parsing. And the
terminal state is ([0], [ ], [ ], E, V

′
). We model the

S, L, B and action history with stack LSTM, which
supports PUSH and POP operation. 2

Transition classifier takes the parsing state from
multiple stack LSTM models as input at once, and
outputs a action that maximizes the score. The
score of a transition action a on state s is calcu-
lated as

p(a|s) = exp{ga · STACK LSTM(s) + ba}∑
a′ exp{ga′ · STACK LSTM(s) + ba′}

,

where STACK LSTM(s) encodes the state s into a
vector, ga and ba are embedding vector, bias vec-
tor of action a respectively. The oracle transition
action sequence is obtained through transition sys-
tem, proposed in in Section 3.

2We encourage the reader to read Dyer et al. (2015) for
more details.
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Figure 2: When some new INSERT operations come, the data to be inserted are pushed into corresponding buffers.
They will be merged into a batch once batch-processing is triggered. After that, new LSTM states will be pushed
to corresponding stacks.

2.2 Batch Training

Kiperwasser and Goldberg (2016) shows that
batch training increases the gradient stability and
speeds up the training. Delaying the backward to
simulate mini-batch update is a simple way to real-
ize batch training, but it fails to compute over data
in parallel. To solve this, we propose a method of
maintaining stack LSTM structure and using oper-
ation buffer.

stack LSTM The stack LSTM augments the
conventional LSTM with a ‘stack pointer’. And
it supports the operation including: a) INSERT

adds elements to the end of the sequence; b) POP

moves the stack pointer to the previous element; c)
QUERY returns the output vector where the stack
pointer points. Among these three operation, POP

and QUERY only manipulates the stack without
complex computing, but INSERT performs lots of
computing.

Batch Data in Operation-Level Like conven-
tional LSTM can’t form a batch inside a sequence
due to the characteristics of sequential processing,
stack LSTM can’t either. Thus, we collect under-
computed operations between different pieces of
data to form a batch. In other words, we construct
batch data on operation-level other than data-level
in tradition. After collecting a batch of operation,
we compute them simultaneously.

Operation Buffer To be more efficient, we
adopt a buffer to collect operations and let it trig-
ger the computing of those operations automat-
ically (batch-processing), as shown in Figure 2.
To ensure correctness, batch-processing will only
be triggered when satisfy some conditions. More
specifically, when a) operation INSERT comes and

there is already an INSERT in the buffer; b) oper-
ation POP or QUERY comes. To clarify, the depth
of buffer per data is 1.

2.3 BERT-Enhance Word Representation

2.3.1 Deep Contextualized Word
Representations

Neural parsers often use pretrained word em-
beddings as their primary input, i.e. word2vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014), which assign a single static repre-
sentation to each word so that they cannot capture
context-dependent meaning. By contrast, deep
contextualized word representations, i.e. ELMo
(Peters et al., 2018) and BERT (Devlin et al.,
2019), encode words with respect to the con-
text, which have been proven to be useful for
many NLP tasks, achieving state-of-the-art perfor-
mance in standard Natural Language Understand-
ing (NLU) benchmarks, such as GLUE (Wang
et al., 2018a). Che et al. (2018) adopted ELMo in
CoNLL 2018 shared task (Zeman et al., 2018) and
achieved first prize in terms of LAS metric. (Kon-
dratyuk and Straka, 2019) exceeds the state-of-
the-art in UD with fine-tuning model with BERT.

2.3.2 BERT
We adopt BERT in our model, which uses the
language-modeling objective and trained on unan-
notated text for getting deep contextualized em-
beddings. BERT differs from ELMo in that it em-
ploys a bidirectional Transformer (Vaswani et al.,
2017), which benefit from learning potential de-
pendencies between words directly. For a token
wk in sentence S, BERT splits it to several pieces
and use a sequence of WordPiece embedding (Wu
et al., 2016) sk,1, sk,2, ..., sk,piece numk

instead of
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a single token embedding. Each sk,i is passed to
an L-layered BiTransformer, which is trained with
a masked language modeling objective (i.e. ran-
domly masking a percentage of input tokens and
only predicting these masked tokens).

To encode the whole sentence, we extract the
first piece sk,1 of each token wk, with applying a
scalar mix on all L layers of transformer, to repre-
sent the corresponding token wk.

2.4 Tagger

Semantic graphs in all frameworks can be bro-
ken down into ‘atomic’ component pieces, i.e. tu-
ples capturing (a) top nodes, (b) node labels, (c)
node properties, (d) node anchoring, (e) unlabeled
edges, (f) edge labels, and (g) edge attributes. Not
all tuple types apply to all frameworks, however.3

The released dataset and evaluation is annotated
by MRP, which consists of the tuple including the
graph component mentioned above.

Our transition-based parser can provide the
edge information, while the other node informa-
tion, such as pos, frame and lemma, require us to
use additional tagger models to label the sentence
sequence. The tagger we adopted is directly im-
ported from AllenNLP library, which only mod-
els the dependency between node and label (emis-
sion score), not models the dependency between
labels (transition score). The details about inte-
grating and converting system output into MRP
format will be introduced in Section 4.

3 Transition Systems

Building on previous work on parsing reentran-
cies, discontinuities, and non-terminal nodes, we
define an extended set of transitions and features
that supports the conjunction of these properties.
To solve cross-arc problem, we use list-based arc-
eager algorithm for DM, PSD, and EDS frame-
work as Choi and McCallum (2013); Nivre (2003,
2008); for UCCA framework, we employ SWAP

operation to generate cross-arc as Hershcovich
et al. (2017).4

3.1 DM and PSD

We follow the work of (Wang et al., 2018b) to de-
sign transition system for DM and PSD.

3For further explanation, please visit the official web-
site:http://mrp.nlpl.eu/index.php?page=5

4 The transition sets for each framework have been intro-
duced with table format in supplementary material.

• LEFT-EDGEX and RIGHT-EDGEX add an
arc with label X between wj and wi , where
wi is the top elements of stack and wj is the
top elements of buffer. They are performed
only when one of wi and wj is the head of
the other.

• SHIFT is performed when no dependency ex-
ists between wj and any word in S other than
wi, which pushes all words in list and wj into
stack S.

• REDUCE is performed only when wi has head
and is not the head or child of any word in
buffer, which pops wi out of stack.

• PASS is performed when neither SHIFT nor
REDUCE can be performed, which moves wi

to the front of list.

• FINISH pops the root node and marks the
state as terminal.

3.2 UCCA

We follow the work of (Hershcovich et al., 2017)
to design transition system for UCCA.

• SHIFT and REDUCE operations are the same
as DM and PSD. REDUCE pops the stack, to
allow removing a node once all its edges have
been created.

• NODE transition creates new non-terminal
nodes. For every X ∈ L, NODEX creates
a new node on the buffer as a parent of the
first element on the stack, with an X-labeled
edge.

• LEFT-EDGEX and RIGHT-EDGEX create a
new primary X-labeled edge between the
first two elements on the stack, where the par-
ent is the left or the right node, respectively.

• LEFT-REMOTEX and RIGHT-REMOTEX do
not have this restriction, and the created edge
is additionally marked as remote.

• SWAP pops the second node on the stack and
adds it to the top of the buffer, as with the
similarly named transition in previous work
(Maier, 2015; Nivre, 2009).

• FINISH pops the root node and marks the
state as terminal.

http://mrp.nlpl.eu/index.php?page=5
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As a UCCA node may only have one incoming
primary edge, EDGE transitions are disallowed if
the child node already has an incoming primary
edge. To support the prediction of multiple par-
ents, node and edge transitions leave the stack un-
changed, as in other work on transition-based de-
pendency graph parsing (Sagae and Tsujii, 2008).

3.3 EDS
Based on the work of (Buys and Blunsom, 2017),
we extended NODE-STARTL and NODE-END ac-
tions for generating concept node and realizing
node alignment.

To clarify, wi is the top element in stack and wj

is the top element in buffer. Moreover, wi could
only be concept node (stack and list only contain
concept node), and wj could be concept node or
surface token.

• SHIFT and REDUCE operations are the same
as DM and PSD.

• LEFT-EDGEX and RIGHT-EDGEX add an
arc with label X between wj and wi. (wj is
the concept node)

• DROP pops wj . Then push all elements in list
into stack. (wj is the surface token).

• REDUCE is performed only when wi has head
and is not the head or child of any node in
buffer B, which pops wi out of stack S.

• NODE-STARTX generates a new concept
node with label X and set it’s alignment start-
ing from wj . (wj is the surface token)

• NODE-END set the alignment of wi ending in
wj . (wj is the surface token)

• PASS is performed when neither SHIFT nor
REDUCEl can be performed, which moves wi

to the front of list .

• FINISH pops the root node and marks the
state as terminal.

3.4 AMR
We extend the basic transition set to obtain the
ability to generate graph nodes from the surface
string, following previous work (Liu et al., 2018).
There are 3 steps to parse graph nodes from the
surface string in general. (a) Many concepts ap-
pear as phrases rather than single words, so we
connect token spans on top of buffer to form

special single tokens if needed using operation
MERGE. (b) Then we use operation CONFIRM

to convert a single token on buffer to a graph
node(concept). In order to process entity concepts
like date-entity better, operation ENTITY is a spe-
cial form of CONFIRM which also generates prop-
erty nodes of the entity concept. (c) The other con-
cepts are not derived from surface string but previ-
ous concepts. If there is a concept node on top of
buffer, operation NEW can be performed to parse
this kind of concept nodes.

After solving the problem of parsing concept
nodes from surface string, the basic transition set
used in DM and PSD is able to predict edges be-
tween concept nodes.

• REDUCE and PASS operations are the same
as DM and PSD.

• SHIFT, LEFT-EDGEX and RIGHT-EDGEX

are similar to operations in DM and PSD, but
they can be performed only when the top of
buffer is a concept node.

• DROP operation pops the top of buffer when
it is a token.

• MERGE operation connect the top two tokens
in the buffer to a single token which is wait-
ing for being converted to a concept node.

• CONFIRMX operation convert top of buffer to
a concept node X if it is a token.

• ENTITYX operation does same things with
CONFIRMX and then adds internal attributes
of entity X , such as year, month and day of a
date-entity.

• NEWX operation create a concept node la-
beled with X and push it to the buffer.

• FINISH pops the root node and marks the
state as terminal.

4 Pre-processing and Post-processing

As discussed in 2.4, the official dataset is anno-
tated with MRP format, while our system’s input
is a set of the triple (incoming arc, outgoing arc,
arc label). Therefore, besides developing the tran-
sition system, we need to do: a) Pre-processing:
Before training, we need to construct the input for
our system based on MRP format graph; b) Post-
processing: After prediction, we need to convert
system’s output into MRP format graph.
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At first, all those framework construct triple in-
put is basically the same, which using directed
edges, edge labels and node id. About node
anchor, we directly derive the anchoring based
on segmentation from companion data alignment
with each sentence.5

While the other elements, such as top nodes, are
a bit different among the frameworks. We will in-
troduce these framework-specific work in the fol-
lowing.

4.1 DM and PSD

Node Properties Nodes in DM and PSD are la-
beled with lemmas and carry two additional prop-
erties that jointly determine the predicate sense,
viz. pos and frame. We use two taggers to handle
this problem.

Top Nodes At first, we construct an artifact node
called ROOT. Then we add an edge (node, ROOT,
ROOT) where the node is enumerated from top
nodes.

Node Label We copy the lemmas from addi-
tional companion data and set it as node labels.

4.2 UCCA

Top Nodes There is only one top node in
UCCA, which used to initialize the stack. Mean-
while, top node is the protect symbol of stack
(never be popped out).

Edge Properties UCCA is the only framework
with edge properties, used as a sign for remote
edges. We treat remote edges the same as primary
edge, except the edge label added with a special
symbol, i.e. star(*).

Node Anchoring Refer to the original UCCA
framework design, we link the the node in layer
0 to the surface token with edge label ’Terminal’.
In post-processing, we combine surface token and
layer 0 nodes via collapsing ‘Terminal’ edge to ex-
tract the alignment or anchor information.

4.3 EDS

Top Nodes The TOP operation will set the first
concept node in buffer as top nodes.

5Organizer released pre-tokenized, PoS-tagged, and lem-
matized form for training and evaluation data, besides a se-
quence of ’raw’ sentence string. You could download the
sample companion data from http://svn.nlpl.eu/
mrp/2019/public/companion.tgz

Node Labels We train a tagger to handle this.
Although there are many node labels exists, the
result shows our system performs well on this.

Node Properties The only framework-specific
property used on EDS nodes is carg (for constant
argument), a string-valued parameter that is used
with predicates(node label) like named or dofw,
for proper names and the days of the week, respec-
tively.

We write some rules to convert the surface
token into properties value, such as converting
million(token) to 1000000(value) when card(node
label).

Node Anchoring We obtain alignment informa-
tion through NODE START and NODE END oper-
ation,

4.4 AMR
Alignment There is no anchor between tokens
from surface string and nodes from AMR graph.
So we have to know which token aligns to which
node, or we cannot train our model. Actually,
finding alignment is a quite hard problem so that
we could only get approximate solutions through
heuristic searching. Although basic alignments
have been contained in the companion data, we de-
cide to use an enhanced rule-based aligner TAMR
(Liu et al., 2018).

TAMR recalls more alignments by matching
words and concepts from the view of semantic and
morphological. (a) semantic match: Glove em-
bedding represents words in some vector space.
Considering a word and a concept striping off
trailing number, we think them matching if their
cosine similarity is small enough. (b) morphologi-
cal match: Morphosemantic database in the Word-
Net project provides links connecting noun and
verb senses, which helps match words and con-
cepts.

Top Nodes There is exact one top node in AMR.
For the convenience of processing, we add a guard
element to the stack and use operation LEFT-
EDGEROOT between guard element and concept
nodes to predict top nodes.

Node Labels Node label appears as the name of
each concept which is parameter of operation EN-
TITY, CONFIRM and NEW.

Node Properties This is the main part of post-
processing. Since our model predicts everything

http://svn.nlpl.eu/mrp/2019/public/companion.tgz
http://svn.nlpl.eu/mrp/2019/public/companion.tgz
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System DM PSD EDS UCCA AMR ALL-F1
HIT-SCIR 95.08 (2) 90.55(4) 90.75(2) 81.67 (1) 72.94 (2) 86.2
SJTU-NICT 95.50 (1) 91.19 (3) 89.90 (3) 77.80 (3) 71.97 (3) 85.3
Suda-Alibaba 92.26 (7) 85.56 (8) 91.85 (1) 78.43 (2) 71.72 (5) 84.0
Saarland 94.69 (4) 91.28 (1) 89.10 (4) 67.55 (6) 66.72 (6) 81.9
Hitachi 91.02 (8) 91.21 (2) 83.74 (6) 70.36 (5) 43.86 (8) 76.0
Amazon 93.26 (6) 89.98 (5) - - 73.38 (1) -

Table 1: The top 5 evaluation results upon cross-framework metric ALL-F1. 95.08 (2) indicates HIT-SCIR system
scores 95.08 F1 in DM framework, and it ranks 2nd in DM. Amazon achieves 1st in AMR. We only list the involved
results they submitted.

DM PSD UCCA EDS AMR
Feature LF1 MRP LF1 MRP LF1 MRP EDM MRP SMATCH MRP

GloVe 87.1 87.3 74.1 73.7 56.3 87.5 82.5 88.2 64.8 65.3
BERT(base) 94.3 90.5 83.6 76.7 64.3 92.8 87.6 91.5 71.0 71.4

Table 2: HIT-SCIR parser results on MRP split dataset with GloVe or BERT as pretrained word representation.
MRP stands for cross-framework evaluation metric. LF1 stands for SDP Labeled F1 (Oepen et al., 2014) in
DM/PSD, UCCA Labeled Dependency F1 (Hershcovich et al., 2019) in UCCA. And EDM (Dridan and Oepen,
2011) stands for Elementary Dependency Match in EDS. SMATCH (Cai and Knight, 2013) is an evaluation metric
for semantic feature structures in AMR.

as nodes and edges, we need an extra procedure
to recognize which nodes should be properties in
the final result. Once recognized, node along with
the corresponding edge will be converted to the
property of its parent node, edge label for the key,
and node label for the value.

We write some rules to perform the recogniz-
ing procedure. Rules come from 2 basic facts. (a)
attribute node: Numbers, URLs, and other special
tokens like ‘-’(value of ‘polarity’) should be values
of properties. (b) constant relation: When an edge
has a label like ‘value’, ‘quant’, ‘opx’ and so on, it
is usually a key to property. We treat it as property
if there is an edge of constant relation connecting
to an attribute node.

5 Experiments

In this section, we will show the basic model setup
including BERT fine-tuning, and results including
overall evaluation, training speed. More details
about training, including model selection, hyper-
parameters and so on, are contained in supplemen-
tary material.

5.1 Model Setup

Our work uses the AllenNLP library built for the
PyTorch framework. We split parameters into
two groups, i.e., BERT parameters and the other
parameters (base parameters). The two parameter

groups differ in learning rate. For training we
use Adam (Kingma and Ba, 2015). Code for
our parser and model weights are available at
https://github.com/DreamerDeo/
HIT-SCIR-CoNLL2019.

Fine-Tuning BERT with Parser Based on De-
vlin et al. (2019), fine-tuning BERT with super-
vised downstream task will receive the most ben-
efit. So we choose to fine-tune BERT model to-
gether with the original parser. In our prelimi-
nary study, gradual unfreezing and slanted trian-
gular learning rate scheduler is essential for BERT
fine-tuning model. More details are discussed in
supplementary material.

5.2 Results

Overall Evaluation We list the evaluation re-
sults on Table 1, which is ranked by the cross-
framework metric, named ALL-F1, attached with
the result of specific framework. 6 In final submis-
sion, we only use the single model for prediction.
In the follow-up experiments, we get further im-
provement via the ensemble model. The related
results is listed in supplementary material.

Training Speed To explore the effect of batch-
training methods which proposed in Section 2.2

6Evaluation results of CoNLL 2019 shared task are avail-
able at http://bit.ly/cfmrp19.

https://github.com/DreamerDeo/HIT-SCIR-CoNLL2019
https://github.com/DreamerDeo/HIT-SCIR-CoNLL2019
http://bit.ly/cfmrp19
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DM PAS PSD
Parser Feature id F ood F id F ood F id F ood F

Wang et al. (2018b) T word2vec 89.3 83.2 91.4 87.2 76.1 73.2
Dozat and Manning (2018) G GloVe+char 92.7 87.8 94.0 90.6 80.5 78.6

HIT-SCIR T GloVe+char 86.1 79.2 89.8 85.2 72.8 68.5
AllenNLP G GloVe+char 91.6 86.1 93.1 89.6 77.4 73.0

HIT-SCIR T BERT 92.9 89.2 94.4 92.4 81.6 81.0
AllenNLP G BERT 94.1 90.8 94.8 92.9 80.7 79.5

Table 3: Semantic parsing accuracies (id = in domain test set; ood = out of domain test set). G and T stand for
graph-based parser and transition-based parser. We adopted BERT (base+cased) model here. AllenNLP refers to
the graph-based parser (Dozat and Manning, 2018) re-implemented by AllenNLP.

in training process, we conduct several experi-
ments through adjusting the batch-size. Since
we have adopted two different ways to address
the cross-arc problem: list-based (DM, PSD,
EDS, AMR) and SWAP operation (UCCA), we
try batch-training experiments on DM and UCCA
respectively. The result is shown in Figure 3.
5.3x on DM and 2.7x on UCCA speedup could
be reached approximately while increasing batch
size. We use GloVe pretrained embedding instead
of BERT to reduce memory cost and support a
larger batch size in the speed test.

Figure 3: The training time per epoch, under different
batch-size experiment setting, which indicates the effi-
cient of batch-training methods we proposed in 2.2.

Improvement through BERT Our parser ben-
efits a lot from BERT compared with GloVe as
shown in Table 2. The improvement is more obvi-
ous in the out-of-domain evaluations, illustrating
BERT’s ability to transfer across domains.

6 Discussion

In recent years, graph-based parser holds the state-
of-the-art in dependency parsing area due to its
ability in the global decision, compared with
transition-based parser. However, when we con-
catenated those models with BERT, we receive

the similar performance, which shows that power-
ful representation could eliminate the gap between
structure or parsing strategy.

Kulmizev et al. (2019) proposes that deep con-
textualized word representations are more effec-
tive at reducing errors in transition-based parsing
than in graph-based parsing. Their experiments
were all about dependency parsing (tree structure),
and we found similar results in meaning represen-
tation parsing (graph structure), as shown in Table
3. It remains the future work to study this phe-
nomenon with the theoretical analysis.

7 Conclusion and Future Work

Our system extends the basic transition-based
parser with the following improvements: 1) adopt-
ing BERT for better word representation; 2) re-
alizing batch-training for stack LSTM to speed
up the training process. And we proposed a uni-
fied pipeline for meaning representation parsing,
suitable for main stream graphbanks. In the final
evaluation, we were ranked first place in CoNLL
2019 shared task according to ALL-F1 (86.2%)
and especially ranked first in UCCA framework
(81.67%).
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