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Abstract

Content of text data are often influenced by
contextual factors which often evolve over
time (e.g., content of social media are often in-
fluenced by topics covered in the major news
streams). Existing language models do not
consider the influence of such related evolv-
ing topics, and thus are not optimal. In this
paper, we propose to incorporate such topical-
influence into a language model to both im-
prove its accuracy and enable cross-stream
analysis of topical influences. Specifically, we
propose a novel language model called Topical
Influence Language Model (TILM), which is a
novel extension of a neural language model to
capture the influences on the contents in one
text stream by the evolving topics in another
related (or possibly same) text stream. Experi-
mental results on six different text stream data
comprised of conference paper titles show that
the incorporation of evolving topical influence
into a language model is beneficial and TILM
outperforms multiple baselines in a challeng-
ing task of text forecasting. In addition to serv-
ing as a language model, TILM further enables
interesting analysis of topical influence among
multiple text streams.

1 Introduction and Motivation

Language modeling plays a central role in many
Natural Language Processing (NLP) tasks and ap-
plications. Neural language models have attracted
much attention recently due to their superior per-
formance (Dieng et al., 2016; Kiros et al., 2014;
Kiddon et al., 2016; Ranzato et al., 2015; Devlin
et al., 2018; Peters et al., 2018). One common lim-
itation of the existing neural language models is
that they cannot model the potential influence of
related contextual factors on text content genera-
tion. However, as text data are produced by hu-
mans based on their observations of the real world,
the content of text data are generally influenced by
many contextual factors, and thus, it is necessary

to model the influence of those contextual factors
on the generation of text content in order to opti-
mize language modeling. For example, the content
of social media may be influenced by the popular
topics in news stream; another example is that the
content of research papers in one research commu-
nity such as Information Retrieval are often influ-
enced by the topics of research papers published in
the same community in the past or research papers
published in another related research community
such as Machine Learning since the general algo-
rithms developed in the latter may be applied to
solve application problems in the former.

In this paper, we propose to incorporate such
topical influence into a language model to both im-
prove its accuracy and enable cross-stream anal-
ysis of topical influences. Specifically, we pro-
pose a novel language model called Topical Influ-
ence Language Model (TILM), which is a novel
extension of a neural language model to capture
the influence on the contents in one text stream
by the evolving topics in another related (or pos-
sibly same) text stream. In other words, TILM
is a recurrent neural network-based deep learning
architecture that incorporates topical influence to
model the generation of a dynamically evolving
text stream. Since most text data have time stamps
associated with them, which generally indicate the
time when a text document was produced, text
data can often be regarded as a sequence / stream
of text objects ordered by their time stamps. TILM
is designed to model the generation of such a text
stream, i.e., the generation of text data conditioned
on a given time stamp. We also assume that the
distributions of words in the text data from two dif-
ferent timestamps are somewhat different, which
allows us to capture the evolution of topics in the
stream data.

TILM is comprised of three basic components.
The first component is the Sequence Generator,
which can be any current neural language model.
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The second component is the Topic Generator
which captures the trend of different topics of in-
terest within the influencing text stream, which can
be based on any topic models, e.g., LDA. Finally,
the third component is a novel Influence Gener-
ator, which ensures that TILM can capture topi-
cal influence corresponding to the input timestamp
and incorporate it into the generation process to
ensure that the generated text is consistent with
that particular timestamp from the perspective of
topical influence. TILM combines these three es-
sential components into a single unified model and
learns all their optimal parameter values from a
training text stream corpus with time stamps.

We conducted comprehensive experiments with
six different sets of publication stream datasets to
evaluate the effectiveness of TILM. These datasets
contain titles of the papers published in differ-
ent machine learning theory and applied machine
learning conferences over 20 years, which were
collected from the Open Academic Graph. Ex-
perimental results show that the incorporation of
topical influence into a language model is benefi-
cial and TILM outperforms multiple baselines by
a clear margin in a challenging task of text fore-
casting. We found that effectively capturing the
evolving topical influence is the key to improv-
ing the accuracy of language modeling. In addi-
tion to serving as a language model, TILM fur-
ther enables interesting analysis of topical influ-
ence among multiple text streams.

2 Related Works

There has been a surge of research interest in the
use of neural network (NN) architectures for lan-
guage modeling and automatic text generation in
recent years (Dieng et al., 2016; Kiros et al., 2014;
Kiddon et al., 2016; Ranzato et al., 2015). The
first NN-based text generator was proposed by
Kukich (Kukich, 1987), although generation was
done only at the phrase level. Recent advances in
recurrent neural network-based language models
(RNN-LM) have demonstrated the value of dis-
tributed representations and its power to model ar-
bitrarily long dependencies (Mikolov et al., 2010,
2011). Sutskever et al. (Sutskever et al., 2011)
introduced a simple variant of the RNN that can
generate meaningful sentences by learning from a
character-level corpus. Mao et.al. have demon-
strated how Recurrent Neural Networks, specially,
Long-Short-Term-Memory (LSTM) is effective in

solving various text generation tasks (Mao et al.,
2014). TopicRNN proposed by Dieng (Dieng
et al., 2016) integrated the merits of RNNs and
latent topic models to capture long-range seman-
tic dependency. Recently, Generative Adversar-
ial Nets (GANs) that use a discriminative model
to guide the training of the generative model has
shown promising results in automated text gen-
eration (Rajeswar et al., 2017; Lin et al., 2017;
Che et al., 2017; Zhang et al., 2017). All these
text generation techniques have also been vastly
studied for generating summary for text corpora
[see (Gambhir and Gupta, 2017) for a comprehen-
sive survey]. Most recently, BERT (Devlin et al.,
2018) and ELMo (Peters et al., 2018) have shown
very promising performance. However, none of
these existing methods can model topical influ-
ences from related contextual factors on genera-
tion of text data. While external topical influences
have been studied in the context of search behav-
ior modeling (Karmaker Santu et al., 2017, 2018),
similar study has not been pursued yet for text gen-
eration modeling. Specifically, current text gen-
eration processes are static processes with no no-
tion of time and thus, can not model dynamically
evolving text stream data corresponding to evolv-
ing influences of related text streams, which the
proposed TILM can do.

3 Topical Influence Language Model

We first briefly discuss some preliminaries and no-
tations. Next, we present the three major com-
ponents that are the building blocks of the pro-
posed Topical Influence Language Model (TILM)
and then present how TILM combines them into a
single unified model.

3.1 Preliminaries and Notations

The goal task involves performing language mod-
eling on each text stream within a set of text
streams, S = {s1, s2, ..., sm}, where, |S|= m.
Each text stream consists of a set of tuples in
the form of (document, timestamp) , e.g., s1 =
{(d1, t1), (d2, t2), ....}. Each document is a se-
quence of words, e.g., d1 = [x1x2...], where, each
xi ∈ V and V is the vocabulary set. For model-
ing purposes, we group the documents within each
stream into different bins based on their corre-
sponding timestamp. The time ranges [tstart, tend]
used to create these bins are defined by the user
and can be in varying granularity like year, month,
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day or seconds. Each bin is then assigned a
discrete timestamp T and all the documents in
that bin share the same timestamp, e.g., all pa-
per published in different machine learning con-
ferences during year 2016 are assigned the times-
tamp T2016 = [Jan2016, Dec2016].

3.2 Sequence Generator
Sequence Generator is the basic component of
TILM which generates the next word xi in the
sentence given i − 1 previous words. Thus, Se-
quence Generator is essentially a language model
which generates a probability distribution over a
sequence of words that can be used to predict the
next word in the sequence. Any sequence model-
ing framework, e.g., Hidden Markov Models, Re-
current Neural Networks etc. can work as a se-
quence generator. For the experiments described
in this paper, we chose recurrent neural network
with LSTM cells as the Sequence Generator due
to its recent promising results obtained for lan-
guage modeling tasks (Kiros et al., 2014; Kim
et al., 2016). Given the previous i words, i.e.,
x1:i, the recurrent neural network based language
models compute the conditional probability for the
next word yi = v for v ∈ V , the vocabulary set, by
computing a hidden state hi and passing it through
a Softmax function:

P (yi = v|x1:i) ≡ P (yi = v|hi) (1)

P (yi|hi) ∝ exp(WΩhi +BΩ) (2)

hi = Ω(hi−1, xi) (3)

Here, Ω can be a standard RNN cell or more
complicated cell like LSTM, GRU etc and W and
B are linear transformation coefficients. Output at
step i, i.e., yi is fed as input for step i + 1, thus,
xi+1 = yi.

3.3 Topic Generator
The next component of TILM is the Topic Gen-
erator. The primary purpose of this component
is to analyze different topics across a related text
stream data (let us call it s) and compute the evolu-
tion of topic distributions within that stream over
time. It takes all past text stream data of s as in-
put and applies a probabilistic topic model to in-
fer n (a user defined parameter) different topics,
each represented with a unique distribution over
the entire vocabulary. Again, many different topic
models can be potentially used, but in our exper-
iments, we chose LDA (Blei et al., 2003) as the

Topic Generator since it has been the most pop-
ular topic modeling technique in the last decade.
Once n topics are identified, the Topic Generator
takes all text content from each discrete timestamp
T (defined in section 3.1) separately and computes
the distribution of n topics over each timestamp,
which we denote by θT .

The Topic Generator also provides a sub-
component, i.e., History Extractor, which, given a
particular timestamp T as input, retrieves the topic
distributions of previous r (a user defined param-
eter) timestamps computed by LDA. We mathe-
matically denote the output of History Extractor
by θT−r:T−1, where, θi:j denotes topic distribu-
tions from timestamp i to j augmented into a sin-
gle vector. This means the cardinality of vector
θT−r:T−1 is r × n. In the case of modeling in-
fluence from multiple related text streams and as-
suming we have m such streams, we can simply
concatenate θT−r:T−1 from each stream to create
a single vector of dimension r × n×m.

3.4 Influence Generator

The Influence Generator is a pivotal component
of TILM, which models the evolving topical in-
fluence during the text generation process. Given
a particular timestamp T , we represent topical in-
fluence by a real valued vector (γT ) of dimension
K (another user defined parameter), which is es-
sentially the output of Influence Generator. The
input to the Influence Generator is the r×n dimen-
sional vector of topic distributions from previous r
timestamps of a related text stream, i.e., θT−r:T−1

(assuming T as the current timestamp). Thus, In-
fluence Generator essentially maps a r×n dimen-
sional topic vector to a K dimensional influence
vector. Although any function that can perform
this mapping can resemble as Influence Generator,
we chose a feed-forward neural network for TILM
due to its capability of approximating a wide fam-
ily of functions. Without loss of generality, we
used ReLU activation units in the hidden layers.
Once the influence vector (γT ) is computed, it is
then injected as a bias into the Sequence Genera-
tor when generating the next word (xi) in the se-
quence (More details in section 3.5).

Here, we assume that the influence vector γT

corresponding to current timestamp T , can be ap-
proximated from the historical topic distribution
θT−r:T−1. This assumption is reasonable, because
most text stream data do not evolve dramatically
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over night, rather their topical shift happens quite
gradually. Take for example some particular re-
search community like SIGKDD. The topic distri-
bution in papers published in a particular year is
unlikely dramatically different from the previous
two years, rather they are somewhat correlated.

Mathematically, let θT denote the topic distri-
bution for the generated text at timestamp T , then
the function of Influence Generator is expressed
as follows (‖ means the concatenation operation):

θT−r:T−1 = θT−r‖θT−r+1‖....‖θT−1 (4)

γT = Γ(θT−r:T−1)

= WΓ
2 ·
[
ReLU(WΓ

1 · θT−r:T−1 +BΓ
1 )
]

+BΓ
2

(5)
3.5 TILM as a Unified Model
Now that we have presented the three building
blocks of TILM, this section presents how these
different components interact with each other and
work as a unified architecture to model stream text
data by capturing the fluctuations of topical in-
fluence over time. The process can be thought
of as generating text corresponding to a particular
timestamp T . Thus, the whole process starts with
a timestamp T as input and the start-of-sentence
marker (let’s call it #) as the sequence generated
so far. The next task is to generate one word at a
time iteratively until the end-of-sentence marker
is generated (let’s call it *). The exact process
of generating the next word yi in the sequence is
demonstrated in Figure 1.
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Figure 1: TILM architecture: Topic Generator (Red),
Influence Generator (Green) and Sequence Generator
(Purple)

The first step of generation process is to infer
n different topics from a related (possibly same)
historical text stream and compute the topic distri-
butions for each unique timestamp observed in the

training data. Next, given a particular timestamp
T as input, the History Extractor Module extracts
the historical topic distributions corresponding to
previous r timestamps and concatenates them to
generate a vector representation of the history, i.e.,
θT−r:T−1 of dimension r × n (see the previous
subsection for details). θT−r:T−1 is then passed
through Influence Generator Γ which outputs the
K dimensional influence vector γT . For a partic-
ular timestamp T , γT is fixed and can be re-used
for any text generation task tied to the timestamp
T . The bottom middle section (Green Color) of
Figure 1 shows the feed-forward neural network
of Influence Generator.

The next trick in TILM is to concatenate the
influence vector (γT ) with the vector representa-
tion of each word in the sequence generated so
far. This means, for each word in {x1, x2, ..., xi},
γT is concatenated to each of their vector repre-
sentations to create an augmented representation
{xC1 , xC2 , ..., xCi }, i.e., while generating the next
word xi+1 = yi in the sequence, all the previ-
ous words in the sequence share the same topi-
cal influence represented by vector γT . This aug-
mented representation essentially allows TILM to
capture the dynamic nature of text stream data as
the influence vector injects evolving topical influ-
ence into the generation process. Finally, the aug-
mented representations {xC1 , xC2 , ..., xCi } are fed
into the recurrent neural network model to com-
pute a hidden state hi . The final output vector Y
is computed by applying a linear transformation
on hi. Note that, vector Y is a real-valued vector.
We apply a Softmax function on Y to convert it
into a valid probability distribution, sampling from
which, the next word in the sequence is generated.
The mathematical formulas behind the entire gen-
eration process is summarized below:

Y = WΩ · hi +BΩ, (6)

hi = Ω(hi−1, x
C
i ), (7)

xCi = xi‖γT . (8)

Thus, Y can be written as follows:

Y = WΩ · Ω(hi−1, xi‖γT ) +BΩ. (9)

Here, γT is obtained as follows:

γT = WΓ
2 ·

[
ReLU(WΓ

1 · θT−r:T−1 +BΓ
1 )

]
+BΓ

2 . (10)

Here, θT−r:T−1 is the concatenation of topic dis-
tribution vector from previous r timestamps.
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Finally, we apply a Softmax function on the out-
put vector Y to convert it into a valid probability
distribution P (yi|hi), as follows:

P (yi = v|hi) =
exp(Yi)∑|V |
j=1 exp(Yj)

. (11)

The next word yi = xi+1 in the sequence is gen-
erated by sampling from this conditional distribu-
tion. TILM repeats this whole process multiple
times to generate new words in the sentence until
a end-of-sentence marker is generated. The whole
process is summarized in Algorithm 1, which de-
scribes the generation of a single sentence by
TILM for a particular timestamp T .

Algorithm 1: Topical Influence Language
Model (TILM)

1 Process TILM (T,Θ,Γ,Ω, r, n,K,E);
Input : T : discrete timestamp

Θ: Topic Generator (n: number of topics)
Γ: Influence Generator (K: cardinality of

influence vector)
Ω: Sequence Generator (E: cardinality of

word vector)
r: History Window

Output: Generated sentence X corresponding to T
2 x← {start of sentence marker}
3 θT−r:T−1 ← Θ(θT−r)‖Θ(θT−r+1)‖...‖Θ(θT−1),

Topic History
4 γT ← Γ(θT−r:T−1), Generate Influence Vector for

timestamp T
5 i← 1
6 repeat
7 for j ← 1 to i do
8 xCj ← xj‖γT , where, ‖ is concatenation

operation
9 end

10 compute hi ← Ω(xC1:i) by applying Ω recursively
11 Draw word yi ∼ P (yi|hi), where

P (yi|hi) ∝ exp(WΩhi +BΩ)
12 x← x ∪ {yi}
13 i← i+ 1
14 until end of sentence marker is generated;
15 return x

3.6 Estimation of TILM parameters
In this section, we present the estimation tech-
niques for the optimal values of TILM model pa-
rameters. Close observation of Equation 6-10 re-
veals that TILM contains the following set of pa-
rameters:

W =
{
WΩ, BΩ,WΓ

1 , B
Γ
1 ,W

Γ
2 , B

Γ
2

}
(12)

We find the optimal values for the parameter set
W by maximizing the log-likelihood of the train-
ing text stream data. The optimization problem
thus can be written as follows:

W∗ = argmax
W

logL(x1x2...xn|W ) (13)

As maximizing the log-likelihood is the same
as minimizing the negative of the log-likelihood
function and as we know the exact word which
comes next in the sequence during the training
process, our optimization problem boils down to
minimizing the softmax cross entropy with logits
between the conditional distribution P (yi|hi) and
the one-hot encoding of the actual word that ap-
pears next in the training data. Softmax Cross En-
tropy with logits essentially measures the proba-
bility error in discrete classification tasks in which
the classes are mutually exclusive. Thus,

W
∗

= argmin
W

{− logL(x1x2...xn|W )} (14)

= argmin
W

−
N∑

i=1

∑
v∈V

I(xi, v) · logP (xi = v|hi(W ))


(15)

Here, N is the total number of words in the
training data. I(p, q) is an indicator function that
returns 1 if p = q and 0 otherwise.

We used back-propagation to learn the weights
of the network connection edges of TILM. Specif-
ically, we used Adaptive Moment Estimation,
which is a popular stochastic gradient descent
technique and commonly known as Adam Opti-
mizer, to compute the gradient for minimizing our
objective function in Equation 15. Adam Opti-
mizer is an update to the RMSProp (Hinton et al.,
2012), which is another popular optimizer. For
more details, refer to (Kingma and Ba, 2014).

4 Experimental Design

4.1 Dataset
We experimented with six different sets of publi-
cation title stream data to evaluate the performance
of TILM. These datasets were collected from the
Open Academic Graph1(Tang et al., 2008; Sinha
et al., 2015). Here, we focused on studying how
the paper titles published by different machine
learning related conferences evolved over time. As
community, we considered both the core machine
learning community, e.g., NIPS, ICML as well as
research communities that apply a fair share of
machine learning, e.g, KDD, SIGIR. Specifically,
we considered all the titles of papers published
during the years 1996-2015 by the following six
conference venues: NIPS, CVPR, ICML, KDD,
SIGIR and WWW. For these datasets, the dis-
crete timestamp corresponds to a particular year.

1https://www.openacademic.ai/oag/

https://www.openacademic.ai/oag/
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Conf. # of Ti-
tles

Title/
Year

Total
Words

Words/
Title

KDD 5,499 274.95 49,980 9.08
NIPS 6,229 311.45 49,792 7.99

SIGIR 3,994 199.7 34,892 8.73
ICML 4,106 205.3 34,159 8.32

WWW 5,701 285.05 50,253 8.82
CVPR 10,121 506.05 90,890 8.98

Table 1: Dataset Summary

Each row in these datasets consists of a tuple
<timestamp, paper-title> and altogether they con-
tain 35, 650 paper titles in total. Again, each paper
title can contribute multiple instances for predict-
ing the next word which resulted in 309, 966 total
instances (see Table 1).

4.2 Evaluation Roadmap

For a proper evaluation of TILM, we need a goal
task which is both time-sensitive and requires in-
fluence modeling. To address this challenge, we
evaluate TILM using a text forecasting task, where
we attempt to predict the text content at future
timestamps in a text stream based on the past data
from related (including the same) streams.

As the setup of such a text forecasting task is es-
sentially similar to summarizing future text data,
we use two popular evaluation metrics from the
literature of text summarization, i.e., BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), where
a score is generated by comparing the automat-
ically generated text against some reference text
written by humans. However, neither BLEU nor
ROUGE considers the notion of time, thus we
need a time-sensitive customization of both BLEU
and ROUGE. The simplest way to do this is to
compare a TILM generated text for timestamp T
against the original text corresponding to the same
timestamp T . This means, when TILM is asked to
generate a paper title relevant to timestamp T , the
ground truth paper title against which the gener-
ated title is compared must also correspond to the
timestamp T . Another challenge is to match the
generated title against multiple independent pub-
lication titles corresponding to timestamp T . We
address it by adopting a simple greedy approach
where the TILM-generated title is matched against
each ground truth title corresponding to the times-
tamp T and paired with the most similar one in
terms of BLEU or ROUGE score. The matched
ground truth title is then removed from the cor-
pus so that the next generated title cannot match
with the previously matched title again. This en-
sures that TILM is generating a diverse set of titles

rather than just memorizing one single title from
each timestamp T . This way, we can use TILM
to generate multiple sentences (titles) for a par-
ticular timestamp T and then average the scores
of all generated sentences to get an evaluation
score corresponding to timestamp T . This whole
computation process is presented in Algorithm 2,
where we demonstrate the case for time-sensitive
BLEU score. The case for ROUGE is exactly sim-
ilar. Finally, these average scores across different
timestamps can be further averaged to compute the
overall forecasting score2.

Algorithm 2: Time aware BLEU score com-
putation

1 Time aware BLEU (T,G,R);
Input : T : discrete timestamp

G: Generated Text set
R: Reference Text set

Output: Time sensitive BLEU
2 score← 0
3 |G|← number of sentences in G
4 for each sentence g in G do
5 for each sentence r in R do
6 compute BLEU(g, r)
7 end
8 r∗ = argmax

r
BLEU(g, r)

9 score← score+BLEU(g, r∗)
10 R← R− {r∗}
11 end
12 return score

|G|

4.3 Baseline Methods
The main questions we want to answer in our ex-
periments are whether the incorporation of top-
ical influence (from a related stream) is benefi-
cial for language modeling and whether the spe-
cific configuration of TILM we described earlier
is an effective way to capture evolving topical in-
fluence. To answer the second question, we com-
pare TILM with two baselines which are both vari-
ants of TILM but with different ways to capture
influence. The first one is called RILSTM which is
identical to TILM except that the influence vector
of RILSTM is generated randomly as opposed to
generating it by the Influence Generator of TILM.
The second baseline is called IILSTM where we
do not inject the influence vector as a bias into

2All the codes and evaluation scripts for experimen-
tation can be found at the following link: (https://
bitbucket.org/karmake2/tilm/src/master/

https://bitbucket.org/karmake2/tilm/src/master/
https://bitbucket.org/karmake2/tilm/src/master/
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Acronym Details Nature
Bigram Bigram Language Model Static
LSTM Long short-term memory Static

RILSTM LSTM with Random Influence Dynamic
IILSTM Sampling from Joint LSTM-

Influence Distribution
Dynamic

TILM Topical Influence LM Dynamic

Table 2: Baselines for Quantitative Comparison.

the vector representation of words, rather, the In-
fluence Generator directly computes a probabil-
ity distribution for sampling the next word and
this probability is multiplied with the probability
computed independently by LSTM. To answer the
first question, i.e., to verify the benefit of mod-
eling the evolution of topical influence, we also
compared TILM against two baselines represent-
ing static models: simple bigram language model
and Long-Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997; Gers et al., 1999). Ta-
ble 2 contains the summary of these baseline algo-
rithms along with TILM.

5 Results
This section presents both quantitative and quali-
tative evaluation results for TILM. For all the re-
sults reported in this section, TILM used the fol-
lowing parameter settings: r was set to 3, for both
Sequence Generator and Influence Generator, the
number of hidden units was empirically set to 256,
K (dimension of influence vector) was set to 15,
batch size was set to 2000 instances and the learn-
ing rate was set to 0.01. For the Topic Generator,
n (number of topics) was set to 15, θT was com-
puted from target text stream itself and LDA was
run using α = 0.1 and β = 0.05.

5.1 Quantitative Evaluation
Figure 2 provides the summary of results for com-
paring TILM against multiple baseline methods.
Close examination of Figure 2 reveals that TILM
outperforms all other baselines by a clear margin
for all six datasets. For example, BLEU-4 score
obtained by TILM on KDD Dataset is 0.57, while
LSTM obtained only a score of 0.22. ROUGE-L
score obtained by TILM is 0.63, while it is 0.31
for LSTM. This clearly indicates that TILM can
indeed capture the temporal evolution of KDD pa-
per titles over time and given a input timestamp
T , can generate text relevant to T . Also note that,
RILSTM performs significantly worse compared
to LSTM for most datasets which implies that
the influence vector plays the key role in helping
TILM capture the evolution of the text stream. It

is also noteworthy that IILSTM is the second best
performing method which confirms that injecting
influence vector as a bias into the word represen-
tation works better than using the Joint LSTM-
Influence distribution obtained by simply multi-
plying influence probabilities with LSTM proba-
bilities.

To get more insights into the performance of
TILM, we plot the timestamp-wise performance
of all compared methods for KDD Dataset (BLEU
4) and WWW Dataset (ROUGE L) in Figure 3
[other plots are similar and omitted due to lack
of space]. A general inspection of Figure 3 also
demonstrates the superiority of TILM for the text
forecasting task, where, for any performance met-
ric, TILM obtains the best score across different
timestamps for most of the cases.

External Influence: So far, we have only con-
sidered the influence of the community for which
the text generation is targeted towards. However,
other related communities also pose indirect in-
fluence on the text content generated within the
target community. For example, a shift in the in-
terest of theoretical machine learning conferences
like ICML often influences the research directions
pursued by more applied conferences like KDD
or WWW. To test this hypothesis, we conducted
a series of experiments where instead of using
the influence of the target community (e.g., KDD,
WWW) itself, we computed the influence vector
from the historical topic distribution of a core ma-
chine learning community (e.g. ICML, NIPS). We
call this approach TILM-EI where EI means ex-
ternal influence. We conducted another set of ex-
periments where we computed influence vectors
from both the target community and a related ex-
ternal community and injected both influence vec-
tors into the TILM process. We call this approach
TILM-CI where CI stands for combined influence.
Two sample results from these experiments are
shown in Figure 4, i.e., influence of ICML on
KDD and WWW, respectively. Experiments re-
sults suggest that, although TILM-EI is not always
better than TILM itself, TILM-CI outperforms ba-
sic TILM as TILM-CI combines both internal and
external influence.

5.2 Qualitative Evaluation
In this section, we present qualitative results to
show the great potentials of TILM. We first ran
LDA on paper titles from SIGIR and KDD over
the year range 2000-2015. Number of topics was
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(a) KDD (b) NIPS (c) SIGIR

(d) ICML (e) WWW (f) CVPR
Figure 2: Comparison of TILM against baselines for text forecasting.

(a) KDD: BLEU 4 (b) WWW: ROUGE L

Figure 3: Year-Wise Performance distribution of TILM
against different baseline text generation techniques

Topic Top Keywords
Optimization matrix, gradient, sparse, convex,

stochastic
Search Relevance information, retrieval, search, in-

dex, document
Rule Mining rule, discovery, association, pattern,

mine
Social Networks social, network, recommender,

community, topic
SVM Classifiers supervised, learning, support, vec-

tor, machine
User Behavior
Modeling

log, behavior, personalization,
click, feedback

Table 3: Sample topics Extracted from KDD and SI-
GIR for year range [1995-2015] Using LDA

set to 15. Table 3 shows six example topics along
with top 5 keywords for each topic. Next, we did
some topic trend analysis for SIGIR conference
in Figure 5. For SIGIR, we considered two top-
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0.80

BLEU 2 BLEU 3 BLEU 4 ROUGE L

(a) ICML influencing KDD
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(b) ICML influencing WWW

Figure 4: Results of adding external influence into
TILM for text forecasting task.

ics, i.e., User Behavior Modeling [Figure 5a, 5b]
and Search and Relevance [Figure 5c, 5d]. Beside
plotting the original topic-distribution trend com-
puted from the real conference proceedings (Fig-
ures in red color), we also plot the simulated topic-
distribution trend computed from the text gener-
ated by TILM (Figures in green color). Close ob-
servation of Figure 5 confirms that TILM can in-
deed generate sentences aligned with the evolu-
tion of the text stream corresponding to evolving
topical influence. For example, Figure 5a shows
that research interest towards User Behavior Mod-
eling grew significantly within SIGIR community
in the past ten years, which is also nicely reflected
in the text generated by TILM [Figure 5b]. On
the other hand, research on Search and relevance
almost matured after 2008 within the SIGIR com-
munity [Figure 5c], which has also been captured
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(a) SIGIR(Original):
User Behavior Modeling

(b) SIGIR(Generated):
User Behavior Modeling

(c) SIGIR(Original):
Search & Relevance

(d) SIGIR(Generated):
Search & Relevance

Figure 5: Topic trend analysis to demonstrate how TILM captures evolution of SIGIR research paper titles.

year # Sample Generated Title
2000 1 discovering in hierarchical rules using lexical

knowledge
- 2 data mining criteria for tree based regression

and classification
2002 3 mining frequent class sets in spatial databases
2007
-

1 a framework for community identification in
dynamic social networks

2009 2 learning preferences of new users in recom-
mender systems

3 data mining for intrusion detection from out-
liers

2012
-

1 deep model based transfer and multi task learn-
ing for biological image analysis

2015 2 a bayesian framework for estimating properties
of information network

3 active learning for sparse bayesian classification

Table 4: Sample titles generated by TILM for confer-
ence KDD across different year ranges

effectively by TILM and apparent from the decay-
ing trend of Figure 5d.

Finally, Table 4 presents some sample paper ti-
tles generated by TILM for different time ranges
targeted towards KDD community. A closer look
into Table 4 reveals that TILM can generate syn-
tactically correct, semantically coherent and time-
sensitive evolving text. It is worth mentioning that,
TILM did not store any paper-to-year mapping in-
formation. Table 4 also nicely captures the inter-
est shift within KDD community over the years.
For example, paper titles generated for year range
2000-2002 include topics like rule mining and tree
based classifications, while paper titles generated
for year range 2012-2015 include topics like deep
learning and active learning, which is consistent
with our expectation.

6 Conclusion

We studied how to improve neural language mod-
els by incorporating topical influence from contex-
tual factors and proposed a novel Topical Influ-
ence Language Model (TILM), which includes a
novel extension of a basic neural language model

by incorporating both a topic generator (based on
topic modeling) and a neural network-based in-
fluence modeling component, leading to a gen-
eral architecture with three major components: Se-
quence Generator, Topic Generator and Influence
Generator. We quantitatively evaluated TILM
using a text forecasting task on six publication
stream datasets and demonstrated that it is bene-
ficial to incorporate topical influence in language
modeling and TILM outperforms multiple base-
line methods by a significant margin. As a novel
language model, TILM allows for leveraging re-
lated text streams to improve accuracy of language
modeling of a target stream, thus potentially help-
ing improve many applications where language
models are applied. We also show that TILM is
able to generate well-structured, meaningful text
content corresponding to future time stamps, thus
potentially allowing us to predict topical trends in
the future, which would be useful for optimizing
decision making. Moreover, we also showed the
potential that TILM can be used as a tool to com-
pare influences of different external streams on
a particular target stream, thus facilitating cross-
stream influence analysis. While it is not the fo-
cus of this paper, such analysis clearly opens up
an interesting direction for analyzing multiple text
streams to understand their influences in a topic-
specific way, a highly promising direction for fu-
ture research.
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