
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 613–623
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

613

Exploiting the Entity Type Sequence to Benefit Event Detection

Yuze Ji,1,2 Youfang Lin,1,2 Jianwei Gao,1,2 Huaiyu Wan1,2∗

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China

{yuzeji, yflin, gaojianwei, hywan}@bjtu.edu.cn

Abstract

Event Detection (ED) is one of the most im-
portant tasks in the field of information extrac-
tion. The goal of ED is to find triggers in sen-
tences and classify them into different event
types. In previous works, the information of
entity types are commonly utilized to benefit
event detection. However, the sequential fea-
tures of entity types have not been well utilized
yet in the existing ED methods. In this paper,
we propose a novel ED approach which learns
sequential features from word sequences and
entity type sequences separately, and com-
bines these two types of sequential features
with the help of a trigger-entity interaction
learning module. The experimental results
demonstrate that our proposed approach out-
performs the state-of-the-art methods.

1 Introduction

Event Extraction (EE) is one of the essential tasks
of Information Extraction, which aims to extract
structured events from unstructured texts. Accord-
ing to ACE (Automatic Context Extraction) event
annotation guideline1, an event is represented by
an event trigger, which is often a single verb or
noun, and a set of event arguments, the partici-
pants of the event. Event Detection (ED), as a
crucial step in EE task, focuses on finding event
trigger words and classifying them into different
event types. As pointed out in (Liu et al., 2019;
Ritter et al., 2012), the ambiguity in natural lan-
guages makes ED a challenging task. On the one
hand, various expressions can be used to represent
the same event type; on the other hand, the same
event triggers, when placed in different context,
can be categorized in totally different event types.
To illustrate the second phenomenon, we present

∗Corresponding author: hywan@bjtu.edu.cn
1https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/

files/english-events-guidelines-v5.4.3.pdf

two examples from the widely used ACE 20052

dataset:

1) A Russian Soyuz capsule (VEH) dropped
(Transport) the astronauts (PER) off this
morning.

2) U.S. planes (VEH) dropped (Attack) a bomb
(WEA) near northern Iraq.

Notice that the same annotated event trigger
dropped has different meanings in the two
sentences above and thus evokes entirely different
event types. In the first sentence, dropped evokes
a Transport event, but in the second sentence,
dropped represents an Attack event. According
to Liu et al. (2018a), in the ACE 2005 dataset,
57% of the event triggers are ambiguous. How
to alleviate the ambiguity of event triggers has
become a crucial problem in the ED task.

In several previous works, researchers have
proved that entity mentions could play a positive
role on alleviating the ambiguity of event triggers
(Hong et al., 2011; Li et al., 2013; Feng et al.,
2016; Liu et al., 2017, 2019, 2018a). An entity
mention, as described in ACE 2005 dataset, is a
reference to an object or a set of objects in the
world. Back to the two sentences above, entity
mentions are the underlined word tokens. In the
first sentence, before classifying the event trigger
dropped, if an event detector can obtain the infor-
mation that “Soyuz capsule” is an entity mention
with the type VEHICLE, and “astronauts” has the
entity type PERSON, the event detector may tend
to consider the potential link between VEHICLE
and PERSON, which makes the event more likely
to be a Transport event. In the second sentence,
besides “planes” which is a VEHICLE type entity
mention, another entity mention “bomb”, which
has the type WEAPON, can largely effect on the

2https://catalog.ldc.upenn.edu/LDC2006T06



614

ED result. The appearance of WEAPON tells the
event detector that there is a weapon in the context,
and this clue leads the detector to recognize an
Attack event with less ambiguity.

Liu et al. (2017) utilize raw entity types directly
as local context of words to calculate the attention
value between entity types and candidate triggers,
aiming to catch the most important entity type
information. After that, Liu et al. (2018b, 2019);
Nguyen and Grishman (2018) apply entity types
as a kind of supplementary information of the
word tokens. They concatenate these two types
of features and feed them into neural networks to
learn mixed representations.

Intuitively, we understand that the sequential
features of words are very important in modeling
the sentence information, since the order of tokens
can largely influence the meaning of the sentence.
In the previous works, different neural network
architectures have been employed to capture the
sequential features from word sequences (Chen
et al., 2015; Lin et al., 2018; Sha et al., 2018).
Similar to the word sequences, entity type se-
quences, which consist of entity type annotations
for each token in the word sequences, also contain
sequential features, because the position of an
entity mention’s type in the sequences may affect
its importance in the ED process. However, to
the best of our knowledge, there is no study
which regards the entity type sequence as an
independent sequence to capture the sequential
features and discusses what influence the entity
types’ sequential features would take to the ED
task.

In order to make use of the information
from both entity type sequences and word
sequences, in this paper, we propose a novel
ED approach Entity-Type-Enhanced-Event-
Detection (ETEED). We consider that the word
sequence and the entity type sequence have
equal importance and thus the representation
of each sequence should be learned separately.
In this procedure, the Transformer Encoder
structure (Vaswani et al., 2017) is utilized to
capture the sequential features. Besides, an
attention based trigger-entity interaction learning
module is proposed to learn the correlation
between triggers and entity types. Different from
previous works which calculate the attention
value between a candidate trigger and the whole
entity type sequence, this module only learns the

relation between entity mentions’ types and the
candidate trigger, and returns weighted summed
entity mention type representations to benefit
the classification. In this way, we can avoid the
disturbance from irrelevant entity types, and focus
only on the effect brought by entity mentions.

In summary, our contribution in this work is as
follows:

• we propose to learn entity type representa-
tions separately from word representations,
in order to make full use of the sequential
features from entity type sequences.

• we propose an attention-based trigger-entity
interaction learning module, which focuses
only on the relation between entity mentions
and candidate triggers, thus can eliminate the
influence brought by irrelative entity types.

• we extensively evaluate our approach on a
widely used benchmark dataset ACE 2005,
and the evaluation result shows that our
method can achieve competitive results
compared with the state-of-the-art methods.

2 Approach

In this section, we elaborate the proposed ETEED
method. Similar to the existing works, we regard
ED as a classification problem. Specifically, in
each sample, there is a candidate trigger, and our
goal is to classify this candidate trigger into 34
event types (33 event subtypes and a NA type).
We present the overall framework of our method
in Figure 1. To well illustrate our model, we divide
this section into three different parts: i) token rep-
resentation learning, which involves representing
the word sequences and entity type sequences,
ii) attention-based feature learning, which inter-
prets how the attention module works to learn
the relation between entity mentions and candi-
date triggers, and iii) trigger classification, which
concatenates all the continuous representation to-
gether and produce the final output for the trigger
classification.

2.1 Token Representation Learning

For each sample with length n in the
dataset, we represent its word sequence as
w = {w1, w2, .., wn}, in which wi means
the i-th word in the sentence. Similarly,
let e = {e1, e2, ..., en} be the entity types



615

a

cameraman

died

when

an

American

tank

…
…

O
B-PER

O

O

B-WEA

…
…

O

O

Word

Sequence

Entity Type

Sequence

Word

Embedding

Transformer

Encoder 1

Entity Type

Embedding

Transformer

Encoder 2

Trigger-Entity 

Interaction Learning

Trigger

Classifier
Output

Token Representation 

Learning

Figure 1: Global structure of our method.

corresponding to w. In consideration that cross-
word entity mentions occur frequently in the ACE
2005 dataset, we apply BIO annotation schema
to assign entity types for each token in the word
sequence. Besides, we use c to represent the
position of a candidate trigger in the sequence,
so wc and ec show the word and entity type
information of the candidate trigger respectively.
In order to learn vector representations in local
semantic context for the word and entity type
tokens, firstly, we use embedding layers to
transform the symbolic representations w and
e to real-value vectors. Then, the Transformer
Encoders are applied to capture the semantic
relation between tokens, and learn a specific
vector representation for each token.

Embedding Layer
With the help of the embedding layer, we transfor-
m the word tokenwi and entity type token ei in the
input sequences into real-value representations.
By looking up pre-trained word embedding matrix
for wi, a fixed sized vector representation xwi can
be obtained. On the other side, for embedding
entity type tokens, following existing works (Li
et al., 2013; Chen et al., 2015; Liu et al., 2017;
Nguyen and Grishman, 2015), we randomly ini-
tialize the real-value representation for each entity
type and update it during the training process. The
vector representation of ei is marked as xei .

Transformer Encoder Structure
Proposed by Vaswani et al. (2017), the Trans-
former has proved its effectiveness on the ma-
chine translation task. Different from most neural
network based machine translation models (Cho

et al., 2014; Bahdanau et al., 2015; Gehring et al.,
2017), the Transformer is solely based on atten-
tion mechanisms, dispensing with recurrences and
convolutions entirely. One of the most important
reasons is that it is easier for attention mecha-
nisms to learn long-range dependencies, which
is a key challenge in sequential data modeling,
than recurrent and convolutional neural networks.
The Transformer has an encoder-decoder struc-
ture, the encoder maps the input sequence to
new continuous representations, then the decoder
receives the representations and generates an out-
put sequence. The encoder-decoder structure is
suitable for the machine translation task, however,
in our approach, we only need to produce token
representations for input sequences based on their
local context. So, only the Transformer Encoder is
used in our model.

Position

Encoding
⊕

Input Sequence

Multi-Head Attention

⊕

Layer Norm

Position-Wise

Feed-Forward

⊕

Layer Norm

Output Sequence

Figure 2: Architecture of the Transformer Encoder.



616

Figure 2 shows the architecture of the
Transformer Encoder employed in our approach.
For an input sequence consists of vector
representations {x1, x2, ..., xn} with xi ∈ Rd,
the Transformer Encoder produces the output
sequence {z1, z2, ..., zn} of the same dimension
with the input sequence. There are two sub-layers
in the Transformer Encoder, one is a multi-head
self attention layer, and the ohter is a position-wise
feed-forward layer. Each sub-layer is followed by
a residual connection (He et al., 2016) and a layer
normalization (Lei Ba et al., 2016).

Based on single attention function, multi-head
attention mechanism jointly captures the informa-
tion from different representation subspaces. It
firstly does h times different linear projections on
the same input, then performs h single attention
functions in parallel. Finally, in order to integrate
all the information together, h output values from
single attention functions are concatenated and
projected to the same dimension with the input.

Ai(x) = softmax


(
xWQ

i

) (
xWK

i

)T
√
dk

 (1)

headi = Ai(x) ·
(
xW V

i

)
(2)

MultiHead(x) = [head1, ..., headh] ·WO (3)

where x ∈ Rn×d is the input of the multi-head
attention layer, WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk ,

W V
i ∈ Rd×dv are parameters to perform linear

projections on input vectors, WO ∈ Rhdv×d

projects the concatenation of h single attention
results to the same dimension with x. dk, dv are
hyper-parameters determining projection dimen-
sions.

In addition to the multi-head attention layer,
a position-wise feed-forward layer is employed
to enhance the representation capability of the
Transformer Encoder.

FFN(x′) = relu
(
x′W1 + b1

)
W2 + b2 (4)

where x′ ∈ Rn×d is the input of the feed-forward
layer, W1 ∈ Rd×dhidden , b1 ∈ Rdhidden , W2 ∈
Rdhidden×d, b2 ∈ Rd, in which dhidden is a
hyper-parameter. Besides, since the Transformer
Encoder contains neither recurrence nor convo-
lution, in order to utilize the order information
of sequence, position encodings are added to the
input sequence at the beginning of the Transformer

Encoder. The position encodings are calculated
with the following equations:

PE(pos, 2i) = sin
(
pos/100002i/d

)
(5)

PE(pos, 2i+ 1) = cos
(
pos/100002i/d

)
(6)

where pos is the position and i is the dimension.
With the Transformer Encoder architecture de-

scribed above, we obtain the vector representa-
tions from word sequence xw and entity type
sequence xe separately, which will be marked as
zw = {zw1 , ..., zwn}, zwi ∈ Rdw and ze =
{ze1 , ..., zen}, zei ∈ Rde in the following para-
graph.

2.2 Trigger-Entity Interaction Learning
After the token representation learning, we get
two sequences zw and ze. In order to encode
the interaction between entity types and the can-
didate trigger, we introduce a trigger-entity inter-
action learning module in this subsection. It is
an attention-based module which calculates the
attention factors between the candidate trigger and
entity types. In this procedure, we notice that there
are many tokens with type O in the entity type
sequence, which may prevent the method from
explicitly modeling the relation between entity
mentions’ types (non-O entity types) and candi-
date trigger. Inspired by Nguyen and Grishman
(2018), in this paper, we exclusively calculate the
relation between the type of entity mentions and
the candidate trigger. Given the vector representa-
tion of the candidate trigger zwc and the entity type
sequence ze, the attention values will be calculate
as:

zem = {zei |1 ≤ i ≤ n and ei 6= O} (7)

α = σ

(
(zwcU1) · (zemU2)

T

√
dw

+ b3

)
(8)

α′ = softmax (α) (9)

where zem ∈ Rk×de with supposing that there are
k entity mentions in the sample, U1 ∈ Rdw×dw ,
U2 ∈ Rde×dw , b3 ∈ Rk. As mentioned by Vaswani
et al. (2017), to counteract the effect that the large
values of dw may impact the softmax result, we
employ a coefficient 1√

dw
to scale the dot product.

Finally, with the help of the attention values α′

and the entity mention type sequence zem, we can
calculate the vector representation for the trigger-
entity interaction. Before doing the dot product



617

with α′, in order to reinforce the capability of the
model, we employ a fully connected layer on zem
with ReLU as activation function.

r = α′ · relu(zemU3 + b4) (10)

where U3 ∈ Rde×dw , b4 ∈ Rdw , and r ∈ Rdw

represents the output of trigger-entity interaction
learning.

2.3 Trigger Classification
As illustrated in Figure 1, for each sample, we con-
catenate the trigger-entity interaction r with the
candidate trigger zwc and the corresponding entity
type representation zec , to form the complete can-
didate trigger representation. Then, a multi-layer
perceptron is employed as the trigger classifier to
model the candidate trigger representation. The
activation function SELU (Klambauer et al., 2017)
is utilized in this multi-layer perceptron. Finally,
the softmax function is applied to calculate the
conditional probabilities that the candidate trigger
belongs to each event type.

Hc1 = selu ([zwc , zec , r]Wc1 + bc1) (11)

Hc2 = selu (Hc1Wc2 + bc2) (12)

O = softmax (Hc2Wo + bo) (13)

where Wc1 ∈ R(de+2dw)×dc1 , Wc2 ∈ Rdc1×dc2 ,
Wo ∈ Rdc2×dT are weight metrics, in which
dci (i ∈ {1, 2}) are dimensions of the hidden
states, dT demonstrates the number of event types.

During the training procedure, we set the cross-
entropy error as the loss function of our model,
and the Adam optimizer (Kingma and Ba, 2015)
is utilized to update the parameters. To keep the
scale of gradients roughly the same in all layers,
all the parameters are initialized by Xavier initial-
izer (Glorot and Bengio, 2010). Table 1 shows the
hyper-parameter settings in our experiments.

3 Experiments

3.1 Dataset
We evaluate our approach on a widely used bench-
mark dataset ACE 2005. In this dataset, event
triggers are categorized into 33 subtypes (e.g.,
Be-Born, Marry, Attack). Besides, we annotate
the candidate triggers which have no event types
with the NA type. So, in total 34 event types
are involved in our experiments. We also uti-
lize the golden entity mentions annotated in ACE

Module Parameter Value

Embedding word 200
entity 128

Transformer Encoder
(Common)

head number 4
layer number 1
dhidden 2048

Transformer Encoder
(Word)

dk 200
dv 200

Transformer Encoder
(Entity)

dk 128
dv 128

Trigger Classifier dc1 256
dc2 64

Adam Optimizer

lr 5e-5
β1 0.9
β2 0.999
ε 1e-8

Table 1: Hyper-parameter settings in our experiments.

2005 with BIO schema to produce the entity type
sequences. Following the previous studies (Liu
et al., 2019; Hong et al., 2018; Ji and Grishman,
2008), from the ACE 2005 English corpus, we
choose randomly 40 newswire articles as the test
set, 30 other articles as the development set, and
pick the remaining 529 articles as the training set.

Following the ACE 2005’s guideline document
and Liu et al. (2019), we enumerate every noun,
verb and adjective in sentences as candidate
triggers. The NLP toolkit NLTK3 is employed to
parse and annotate the POS tags for sentences.
We use pre-trained GloVe (Pennington et al.,
2014) vectors as the embeddings for word tokens,
and randomly initialize the embeddings for
entity types then update them during the training
procedure.

3.2 Overall Performance

We compare our ETEED model with the following
state-of-the-art methods:

1) JointBeam is a feature-based method pro-
posed by Li et al. (2013), which combines the
manually designed local and global features to
extract events.

2) RBPB is proposed by Sha et al. (2016),
which simultaneously utilizes patterns and elabo-
rately designed features to extract event triggers.
In addition, a regularization method is applied to
further improve the performance of the model.

3) JRNN is proposed by Nguyen et al. (2016),
which combines the manually designed features
with BiGRU to jointly extract triggers and argu-
ments.

4) HNN is a language independent neural net-

3http://www.nltk.org/



618

Method
Trigger

Identification(%)
Trigger

Classification(%)
P R F1 P R F1

JointBeam 76.9 65.0 70.4 73.7 62.3 67.5
RBPB N/A 70.3 67.5 68.9
JRNN 68.5 75.7 71.9 66.0 73.0 69.3
HNN* 80.8 71.5 75.9 84.6 64.9 73.4
SELF 75.3 78.8 77.0 71.3 74.7 73.0
DEEB-RNN N/A 72.3 75.8 74.0
TEACHER N/A 76.8 72.9 74.8
ETEED (ours) 78.1 82.5 80.2 74.1 78.2 76.1

Table 2: Overall performance with golden entity labels. * represents the model doesn’t utilize entity type
information.

work architecture proposed by Feng et al. (2016).
With the structure which combines BiLSTM with
CNN, this method can capture both the sequence
and chunk information of words to benefit ED.

5) DEEB-RNN is proposed by Zhao et al.
(2018), which incorporates the document-level
clues with BiGRU to enhance ED.

6) SELF is proposed by Hong et al. (2018),
which integrates BiLSTM into GAN structure, in
order to distinguish the authentic information from
spurious features.

7) TEACHER is an adversarial imitation based
knowledge distillation approach proposed by Liu
et al. (2019). This model contains two modules,
one is a “teacher” module which combines the
word sequences with the golden annotations of
entity types and argument roles to learn knowledge
representations. The other one is a “student”
module which tries to imitate the representations
from the “teacher” module.

We evaluate the performance via Precision (P),
Recall (R) and F1-score (F1). Table 2 shows
the overall performance of different approaches
on the ED task. From the results, it can be
found that our approach outperforms the state-of-
the-art methods in both trigger identification and
trigger classification. In the trigger identification,
our approach achieves better results than all the
previous methods in recall and F1-score (promote
respectively 3.7% and 3.2% against the best base-
line model SELF). Besides, although lower in
precision by 2.8% , ETEED is 11% higher than the
HNN model in recall. The same conclusion can
be made in the trigger classification, our methods
produces the highest recall and F1-score, and the
improvement of F1-score is 1.3% over the best

Method Classification F1(%)
JointBeam 65.6 (↓1.9)
RBPB 67.8 (↓1.1)
TEACHER 71.2 (↓3.6)
ETEED (ours) 74.8 (↓1.3)

Table 3: Performance with predicted entity labels.
↓ represents the performance drop from golden
annotations.

baseline model TEACHER. To summarize, on
the one hand, ETEED significantly improves the
recall values compared with the state-of-the-art
methods. On the other hand, ETEED produces
relatively comparable precisions to the existing
methods, which ensures the good F1-score.

To further verify the performance of our model
in the real testing scenario, where the golden entity
annotations are missing, we utilize the predicted
entity type labels in the test procedure. Following
Liu et al. (2019), we train a BiLSTM-CRF model
on the training set, then apply it on the test set to
get the predicted entity type sequences. The F1-
score of the BiLSTM-CRF model on the test set
is 82.7%. The JointBeam, RBPB and TEACHER
are selected as baseline methods. Table 3 shows
that our approach has significant improvement
compared with the baseline methods. Besides, our
model has relatively small performance descent
with using predicted annotations than using gold-
en annotations.

3.3 Effect of Entity Type Representation

In order to evaluate the effect of the entity type
representation, we design the two following exper-
iments:



619

Method
Trigger

Identification(%)
Trigger

Classification(%)
P R F1 P R F1

ETEEDno entity 82.1 74.4 78.0 77.8 70.5 74.0
ETEEDconcat 83.2 73.9 78.3 78.4 69.7 73.8
ETEED 78.1 82.5 80.2 74.1 78.2 76.1

Table 4: Effect of entity type sequence representation.

Method
Trigger

Identification(%)
Trigger

Classification(%)
P R F1 P R F1

ETEEDno interaction 82.6 75.2 78.7 79.3 72.2 75.6
ETEEDall entity 82.3 77.4 79.7 78.2 73.5 75.8
ETEED 78.1 82.5 80.2 74.1 78.2 76.1
TEACHER N/A 76.8 72.9 74.8
ETEEDargument 87.4 82.9 85.1 86.0 81.6 83.8

Table 5: Effect of trigger-entity interaction.

1) ETEEDno entity utilizes only word token
sequences, which means there is no more entity
information used in the model. For each sam-
ple, firstly the word sequence is encoded by the
Transformer Encoder, then the candidate trigger’s
representation xwc is fed into the trigger classifier
to get its event type.

2) ETEEDconcat follows some previous works
(Liu et al., 2019, 2017), this model utilizes the
concatenation of the word representations and the
entity type representations as the input of down-
stream structures. In ETEEDconcat, the concate-
nated representations are sent into the Transformer
Encoder, then the features of the candidate triggers
are picked from the output results to be classified
by the trigger classifier.

The hyper-parameter settings keep the same
with the ETEED. Table 4 shows that, our approach
significantly outperforms the baseline models on
F1-score (1.9% on identification and 2.1% on
classification). In the meanwhile, our method
has higher recall values but slightly lower pre-
cision values than the baseline models. This
phenomenon shows that our method can largely
improve the recall values with few precision loss.
Especially, when compared with ETEEDconcat,
ETEED produces large performance gain on F1-
score (1.9% and 2.1% on identification and clas-
sification respectively), which proves the effec-
tiveness of our method. With the entity types’
sequential features, our method can bring more
entity information to trigger classifier than the

baseline models.

3.4 Effect of Trigger-Entity Interaction

In this subsection, we conduct three comparison
experiments to evaluate the effect of the trigger-
entity interaction learning.

1) ETEEDno interaction removes the trigger-
entity learning from the complete model.

2) ETEEDall entity uses all entity type informa-
tion rather than the entity mentions’ type informa-
tion to learn trigger-entity interaction.

3) ETEEDargument is a model designed to
evaluate the effect of the argument role sequence.
As mentioned in (Liu et al., 2019), TEACHER
needs to utilize both the entity type and the argu-
ment role information to get the best performance.
In the ETEEDargument, we replace the entity
type sequences by the argument role sequences to
compare with the TEACHER model.

Table 5 shows the results. Compared with
ETEEDno interaction, the complete ETEED mod-
el performs larger improvement on identification
than classification on F1-score (1.5% to 0.5%).
This result reveals that the use of entity mentions’
types is obviously helpful when judging the oc-
currence of an event, but when it comes to trig-
ger classification, the entity mention information
brings less improvement. In order to explicitly
capture the entity mention information, we only
use entity mention features in our approach. To
evaluate its effect, we compare ETEEDall entity

with ETEED. Although the performance gain are



620

not significant, focusing on entity mentions can
still bring 0.5% and 0.3% F1-score improvement
on trigger identification and classification.

When comparing ETEEDargument with
ETEED, we can find that the use of argument
role information can dramatically improve the
performance of ED, because argument roles
contain more information than entity types.
Besides, some special argument roles can point
to specific event types. As methods which use
argument role information, ETEEDargument

significantly outperforms TEACHER, this result
further proves the effectiveness of our model.
However, in the real testing and application
scenarios, we can hardly obtain the arguments
role information before getting the event types of
the candidate triggers. Instead, using predicted
entity type information is more feasible.

4 Related Work

Event Detection is an important task in Infor-
mation Extraction. The majority of existing ap-
proaches regard this task as a classification prob-
lem, and we summarize these approaches into two
categories globally.

Feature-based methods are proposed as the first
kind of approach to tackle the ED task by introduc-
ing feature-engineering to convert the classifica-
tion clues like POS tags and dependency features
into feature vectors (Ahn, 2006; Ji and Grishman,
2008; Hong et al., 2011; Li et al., 2013; Patward-
han and Riloff, 2009; Gupta and Ji, 2009; Liao
and Grishman, 2010; Liu et al., 2016). This kind
of approach depends heavily on expert knowledge
and manual feature design, which makes these
approaches time-consuming and low adaptability
on different datasets. Chambers and Jurafsky
(2011) design a weakly supervised system, which
can automatically induce the event templates and
extract event information from unlabeled corpus,
to alleviate the need of expert knowledge. Howev-
er, the required external resources are not always
available for some low-resource languages.

In recent years, deep learning methods have
proved their effectiveness on the ED task. (Chen
et al., 2015; Nguyen and Grishman, 2016; Lin
et al., 2018) utilize CNN to automatically capture
the high-level vector representations of sentences.
Nguyen et al. (2016) apply RNN in their model
in order to capture the sequential features in the
sentences. Feng et al. (2016) combine CNN

with RNN and propose a hybrid neural network.
Araki and Mitamura (2018) make use of the dis-
tant supervision mechanism to detect the events
regardless of domains. Liu et al. (2017); Zhao
et al. (2018) utilize attention mechanisms aiming
to fuse the external sentence features (i.e. entity
type features, document features) with the word
features. (Hong et al., 2018; Liu et al., 2019) im-
plement adversarial training to distinguish effec-
tive information from spurious features. GCN is
a powerful neural network architecture on graphs,
Nguyen and Grishman (2018) use this architecture
to represent dependency relations in sentences.
Compared with the feature-based methods, the
deep learning methods need no more feature-
engineering, which means less financial/time cost
and better adaptability. Among them, there are
several approaches which utilize the entity type
information in their neural networks. Liu et al.
(2017) utilize the entity type embedding directly
as local context of the current word, and calculate
the attention values between them; others (Liu
et al., 2018b, 2019; Nguyen and Grishman, 2018)
concatenate the entity type embeddings with the
work token embeddings, in order to integrate these
two types of features into mixed representations
with the help of neural networks. However, these
existing studies ignore the entity types’ sequential
features which may benefit the ED task.

In our approach, we learn the word features and
the entity type features separately, which allows us
to capture the sequential features of entity types
and thus make full use of the entity type infor-
mation. Besides, an attention-based trigger-entity
interaction learning is introduced in our work
to learn relations between the candidate trigger
words and the entity mentions’ type features.

5 Conclusion

In this work, we propose a novel neural network
architecture ETEED for the ED task. In order
to capture the sequential features from both the
word sequences and the entity type sequences, our
approach proposes to model these two types of
sequences separately. The two types of sequences
are firstly modeled by two isolated Transformer
Encoders, then, an attention-based trigger-entity
interaction learning module is applied to capture
the correlations between the candidate trigger’s
word representation and the entity type represen-
tations of the sequence. Aiming to obtain a more



621

accurate interaction representation, this module
utilizes only the entity mentions’ type information
rather than the whole entity type sequence to
calculate the attention values. Finally, the concate-
nation of the candidate trigger’s word, entity type
representations and the trigger-entity interaction
representation is fed into the trigger classifier to
obtain the final event category. In the future, we
plan to extend our method to the Event Extraction
task, which means not only to extract triggers from
sentences, but also to identify and classify the
corresponding event arguments.

Acknowledgments

This paper is supported by the National Key R&D
Program of China (No. 2018YFC0830200). We
thank anonymous reviewers for their valuable
comments.

References
David Ahn. 2006. The stages of event extraction.

In Proceedings of the Workshop on Annotating
and Reasoning about Time and Events, pages 1–
8, Sydney, Australia. Association for Computational
Linguistics.

Jun Araki and Teruko Mitamura. 2018. Open-
domain event detection using distant supervision. In
Proceedings of the 27th International Conference
on Computational Linguistics, pages 878–891,
Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nathanael Chambers and Dan Jurafsky. 2011.
Template-based information extraction without
the templates. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
976–986, Portland, Oregon, USA. Association for
Computational Linguistics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 167–176, Beijing, China. Association for
Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Heng Ji,
Bing Qin, and Ting Liu. 2016. A language-
independent neural network for event detection. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 66–71, Berlin, Germany.
Association for Computational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Xavier Glorot and Yoshua Bengio. 2010. Under-
standing the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence
and statistics, pages 249–256.

Prashant Gupta and Heng Ji. 2009. Predicting
unknown time arguments based on cross-event
propagation. In Proceedings of the ACL-IJCNLP
2009 Conference Short Papers, pages 369–372,
Suntec, Singapore. Association for Computational
Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
770–778.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1127–1136, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Yu Hong, Wenxuan Zhou, Jingli Zhang, Guodong
Zhou, and Qiaoming Zhu. 2018. Self-regulation:
Employing a generative adversarial network to
improve event detection. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 515–526, Melbourne, Australia. Association
for Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In
Proceedings of ACL-08: HLT, pages 254–262,
Columbus, Ohio. Association for Computational
Linguistics.

https://www.aclweb.org/anthology/W06-0901
https://www.aclweb.org/anthology/C18-1075
https://www.aclweb.org/anthology/C18-1075
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/P11-1098
https://www.aclweb.org/anthology/P11-1098
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/P16-2011
https://doi.org/10.18653/v1/P16-2011
https://www.aclweb.org/anthology/P09-2093
https://www.aclweb.org/anthology/P09-2093
https://www.aclweb.org/anthology/P09-2093
https://www.aclweb.org/anthology/P11-1113
https://www.aclweb.org/anthology/P11-1113
https://www.aclweb.org/anthology/P18-1048
https://www.aclweb.org/anthology/P18-1048
https://www.aclweb.org/anthology/P18-1048
https://www.aclweb.org/anthology/P08-1030
https://www.aclweb.org/anthology/P08-1030


622

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Günter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. 2017. Self-normalizing
neural networks. In Advances in neural information
processing systems, pages 971–980.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. Computing
Research Repository, arXiv:1607.06450. Version 1.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint
event extraction via structured prediction with global
features. In Proceedings of the 51st Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 73–
82, Sofia, Bulgaria. Association for Computational
Linguistics.

Shasha Liao and Ralph Grishman. 2010. Using
document level cross-event inference to improve
event extraction. In Proceedings of the 48th Annual
Meeting of the Association for Computational
Linguistics, pages 789–797, Uppsala, Sweden.
Association for Computational Linguistics.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun.
2018. Nugget proposal networks for Chinese
event detection. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1565–1574, Melbourne, Australia. Association for
Computational Linguistics.

Jian Liu, Yubo Chen, and Kang Liu. 2019. Exploiting
the ground-truth: An adversarial imitation based
knowledge distillation approach for event detection.
In AAAI, Honolulu, Hawaii, USA.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018a.
Event detection via gated multilingual attention
mechanism. In Thirty-Second AAAI Conference on
Artificial Intelligence. AAAI Press.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1789–1798, Vancouver,
Canada. Association for Computational Linguistics.

Shulin Liu, Kang Liu, Shizhu He, and Jun Zhao.
2016. A probabilistic soft logic based approach
to exploiting latent and global information in event
classification. In Thirtieth AAAI Conference on
Artificial Intelligence, pages 2993–2999. AAAI
Press.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018b.
Jointly multiple events extraction via attention-
based graph information aggregation. In Proceed-
ings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 1247–1256,
Brussels, Belgium. Association for Computational
Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph
Grishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 300–309, San Diego,
California. Association for Computational Linguis-
tics.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume
2: Short Papers), pages 365–371, Beijing, China.
Association for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2016.
Modeling skip-grams for event detection with
convolutional neural networks. In Proceedings
of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 886–
891, Austin, Texas. Association for Computational
Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2018.
Graph convolutional networks with argument-aware
pooling for event detection. In Thirty-Second AAAI
Conference on Artificial Intelligence, pages 5900–
5907. AAAI Press.

Siddharth Patwardhan and Ellen Riloff. 2009. A
unified model of phrasal and sentential evidence
for information extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing, pages 151–160, Singapore.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Alan Ritter, Oren Etzioni, Sam Clark, et al. 2012.
Open domain event extraction from twitter. In
Proceedings of the 18th ACM SIGKDD internation-
al conference on Knowledge discovery and data
mining, pages 1104–1112. ACM.

Lei Sha, Jing Liu, Chin-Yew Lin, Sujian Li,
Baobao Chang, and Zhifang Sui. 2016. RBPB:
Regularization-based pattern balancing method for
event extraction. In Proceedings of the 54th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1224–1234, Berlin, Germany. Association for
Computational Linguistics.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1607.06450
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P10-1081
https://www.aclweb.org/anthology/P10-1081
https://www.aclweb.org/anthology/P10-1081
https://www.aclweb.org/anthology/P18-1145
https://www.aclweb.org/anthology/P18-1145
https://doi.org/10.18653/v1/P17-1164
https://doi.org/10.18653/v1/P17-1164
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11990/12052
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11990/12052
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11990/12052
https://www.aclweb.org/anthology/D18-1156
https://www.aclweb.org/anthology/D18-1156
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.18653/v1/D16-1085
https://doi.org/10.18653/v1/D16-1085
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329/16155
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329/16155
https://www.aclweb.org/anthology/D09-1016
https://www.aclweb.org/anthology/D09-1016
https://www.aclweb.org/anthology/D09-1016
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P16-1116
https://doi.org/10.18653/v1/P16-1116
https://doi.org/10.18653/v1/P16-1116


623

Lei Sha, Feng Qian, Baobao Chang, and Zhifang
Sui. 2018. Jointly extracting event triggers and
arguments by dependency-bridge RNN and tensor-
based argument interaction. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 5916–5923.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5998–6008. Curran
Associates, Inc.

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, and Xueqi
Cheng. 2018. Document embedding enhanced event
detection with hierarchical and supervised attention.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 414–419, Melbourne, Aus-
tralia. Association for Computational Linguistics.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16222
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16222
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16222
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/P18-2066
https://www.aclweb.org/anthology/P18-2066

