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Abstract

Neural Machine Translation (NMT) optimized
by Maximum Likelihood Estimation (MLE)
lacks the guarantee of translation adequacy. To
alleviate this problem, we propose an NMT
approach that heightens the adequacy in ma-
chine translation by transferring the seman-
tic knowledge learned from bilingual sentence
alignment. Specifically, we first design a
discriminator that learns to estimate sentence
aligning score over translation candidates, and
then the learned semantic knowledge is trans-
fered to the NMT model under an adversarial
learning framework. We also propose a gated
self-attention based encoder for sentence em-
bedding. Furthermore, an N -pair training loss
is introduced in our framework to aid the dis-
criminator in better capturing lexical evidence
in translation candidates. Experimental results
show that our proposed method outperforms
baseline NMT models on Chinese-to-English
and English-to-German translation tasks. Fur-
ther analysis also indicates the detailed seman-
tic knowledge transfered from the discrimina-
tor to the NMT model.

1 Introduction

Recently, with the renaissance of deep learn-
ing, end-to-end Neural Machine Translation
(NMT) (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014a; Sutskever et al., 2014; Bahdanau
et al., 2014) has gained remarkable perfor-
mance (Wu et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017). Early NMT solutions are
typically optimized to maximize the likelihood es-
timation (MLE) of each word in the ground truth
translations during the training procedure. How-
ever, such an objective cannot guarantee the suffi-
ciency of the generated translations in the NMT
model, due to the lack of quantitative measure-
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yi zhi maoxiao pa zai cao shang

a little layscat on grass pitch

a small layscat on a straw mat

Source

NMT1

NMT2

dian

Figure 1: Comparison between two Chinese-to-
English translation examples of two independent
NMT systems. Lines between Source and NMTs rep-
resent model generated alignments (each source word
cannot be covered more than once). Words in boxes
are key words and red dotted dashed boxes indicate in-
correct translations. Based on the model generated at-
tention weights, NMT2 covers more source words than
NMT1, which is opposite to human judgments.

ment for the information transformational com-
pleteness from the source side to the target side.

Some existing work alleviates this problem by
directly incorporating coverage or fertility mech-
anisms to an NMT model (Tu et al., 2016; Feng
et al., 2016; Kong et al., 2019). However, the prob-
lem is that attention weights based coverage calcu-
lation for NMT is insensitive and sometimes even
inaccurate to translation errors. Furthermore, it is
unreasonable to consider the coverage of all kinds
of source words equally, since various words con-
tribute differently to sentences in semantics and
syntax. For example, as illustrated in Fig. 1, trans-
lation errors are recorded as positive examples,
and the alignments between function words also
dilute the impact of key words alignments.

In this paper, we address the problem of inade-
quate translation by introducing a novel sentence
alignment constrain under an adversarial training
framework (Goodfellow et al., 2014; Lu et al.,
2017; Yang et al., 2018). Specifically, our ap-
proach contains two sub-models: i) a sentence
alignment oriented discriminator D learns to esti-
mate the alignment score and sort the translation
candidates by mainly considering the weighted
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alignment pairs (Ma, 2006) at a sentence repre-
sentation level; and ii) a standard NMT model G
aims to produce an appropriate translation with the
highest ranking score (assigned by D) in the can-
didate list. To better capture the semantic align-
ment evidence of the input data, we also propose a
novel gated self-attention based encoder for bilin-
gual sentences encoding in discriminatorD. Then,
an N -pair training loss (Sohn, 2016) is introduced
to select appropriate translation results from the
candidates. We also leverage Gumbel-Softmax
(GS) (Jang et al., 2017; Kusner and Hernández-
Lobato, 2016) approximation for G to solve the
problem of discrete samples, making the response
from D to G differentiable.

To sum up, the proposed approach has the fol-
lowing advantages:

• We apply a novel end-to-end NMT adver-
sarial training framework that heightens ad-
equacy in translation. Under the framework,
an NMT model is encouraged to generate
translations that match semantic knowledge
learned by a discriminator for sentence align-
ing, which can be viewed as an instance of
“knowledge transfer”.

• Benefited from the gated self-attention mech-
anism, the proposed encoder learns to focus
on important lexical evidence for sentence
aligning and enhance the contribution of the
key words. This knowledge will be transfered
to G through the proposed framework.

• The N -pair loss (Sohn, 2016; Lu et al.,
2017) encourages samples closed to the gold-
standard one to get higher score. Unlike a bi-
nary classification used in previous work (Yu
et al., 2017; Yang et al., 2018; Wu et al.,
2018), translations that are correct but dif-
ferent from the ground-truth ones will not be
over penalized.

We use one of the state-of-the-art NMT models,
Transformer (Vaswani et al., 2017), as the baseline
model architecture and conduct experiments on
Chinese-to-English and German-to-English trans-
lation tasks. Experimental results show that our
proposed approach achieves significant improve-
ments on both language pairs. We also evalu-
ate the performance of the discriminator on both
sentence alignment and translation candidate re-
ranking tasks, which proves its independence and

transferability. Further analyses show the specific
alignment-oriented knowledge that the discrimi-
nator transfers to the NMT model.

2 Related Work

Most of the state-of-the-art NMT models are opti-
mized by MLE-based objectives (Wu et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017), but
likelihood fails to measure whether the source in-
formation is completely transformed to the target
side. Thus, it cannot handle translation adequacy
problem (Tu et al., 2017).

One way to alleviate these problems is to apply
coverage and fertility to NMT model. Feng et al.
(2016) aim at controlling the fertilities of source
words by appending additional additive terms to
train objectives. Tu et al. (2016) employ coverage
vector or coverage ratio as a lexical-level indicator
to represent whether a source word is translated or
not.

On the other hand, some recent efforts introduce
additional source side constraints and explore du-
ality properties of NMT (He et al., 2016; Cheng
et al., 2016; Xia et al., 2017; Tu et al., 2017).
Cheng et al. (2016) present a semi-supervised ap-
proach to train bidirectional NMT models and re-
construct the monolingual corpora using an auto-
encoder (Socher et al., 2011). Tu et al. (2017) add
a re-constructor to traditional NMT model, which
introduces an auxiliary score to measure the ad-
equacy of translation. Dual learning (He et al.,
2016) and dual supervised learning (Xia et al.,
2017) are also proposed to exploit the probabilis-
tic correlation between dual tasks to regularize the
training process. These previous approaches apply
a reconstruction reward by comparing the source
input and the reconstructed sentence, while we use
alignment score directly to model the discrepancy
between the source and the translation.

GAN (Goodfellow et al., 2014) is another
promising framework to leverage sentence-level
objectives in NMT. Recently, there is some re-
markable work in NMT (Wu et al., 2018; Yang
et al., 2018). The framework comprises of two
sub-models: i) an NMT model aims to produce
sentences which are hard to be discriminated from
the gold-standard sentences; and ii) a discrimina-
tor makes efforts to differentiate the model gener-
ated translations from the ground-truth ones. A
policy gradient method is leveraged to co-train
the NMT model and the discriminator. However,
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those approaches rarely take account of transla-
tion adequacy. Furthermore, the discriminators of
those work refer the target sentence in the corpus
as the single gold-standard regardless the quality
of model generated translations, which will pun-
ish too much to the good model generated trans-
lations. Kong et al. (2019) propose an adequacy-
oriented discriminator which is trained to estimate
the Coverage Difference Ratio (CDR) given the
source and the generated translation. However,
CDR is unable to distinguish translation errors and
it also neglects the importance of diversity be-
tween different words (as the examples shown in
Fig. 1).

Unlike the discriminators in (Wu et al., 2018;
Yang et al., 2018; Kong et al., 2019), our
alignment-oriented discriminator learns a specific
function to measure alignment score between
source and target sentences, which is trained to-
tally independently by the NMT generator. The
proposed discriminator assigns different weights
to words and is sensitive to translation errors. We
also apply N -pair loss for training D to ensure
that D will not punish the translations closed to
the gold-standard overly.

3 Approach

In this section, we describe our approach that can
transfer knowledge from a sentence alignment ori-
ented discriminator D to an NMT model G. Our
approach mainly consists of two sub-models: i)
a discriminator D learns to estimate the alignment
score and sort the translation candidates, and ii) an
NMT model G aims to generate translations with
higher score assigned by D. A sketch of the pro-
posed training framework is shown in Fig. 2: for
each sentence pair (X,Y) sampled from the train-
ing corpus, the NMT model G generates a trans-
lation Ŷ given X, and queries the discriminator D
with Ŷ to get feedback and update itself. In or-
der to obtain more stable training, we also lever-
age a teacher-forcing (Li et al., 2017) step to our
approach.

3.1 NMT Generator

In this paper, we take the Transformer (Vaswani
et al., 2017), one of the popular state-of-the-art
NMT models, as the specific implementation of
the NMT model G. This helps to better illus-
trate the effectiveness of the proposed method.
The Transformer in this paper follows the con-

1: Pre-train a generator G (see section 3.1) and
a discriminator D (see section 3.2), individu-
ally.

2: for number of training iterations do
3: Sample (X,Y+) from training corpus
4: Sample Ŷ∼G(X) with a Gumbel-Softmax

sampler (see section 3.4)
5: Compute loss LG for (X, Ŷ) using D (see

section 3.3)
6: Update G with the learning rate η:

θG ← θG − η5θGLG (1)

7: Teacher-Forcing: update G on (X,Y+)
(see section 3.5)

8: end for

Figure 2: A brief overview of the proposed training
framework. See section 3 for more details.

ventional encoder-decoder framework (Cho et al.,
2014b). Specifically, the encoder contains a stack
of six identical layers. Each layer is consist of two
sub-layers: i) a multi-head self-attention mecha-
nism, and ii) a position-wise fully connected feed-
forward network. A residual connection is applied
around each of the two sub-layers, followed by
layer normalization (Ba et al., 2016). The decoder
is also composed of a stack of six identical lay-
ers. Besides the two sub-layers stated above, a
third sub-layer is inserted in each layer that per-
forms multi-head attention over the output of the
encoder.

Following the base model setups of the Trans-
former (Vaswani et al., 2017), we use 8 atten-
tion heads, 512-dimensional output vectors for
each layer, and 2048-dimensional inner-layer of
the feed-forward network.

3.2 Discriminator

For the discriminator D, we propose a gated
self-attention based sentence encoder to perform
source and target sentence encoding, and then cal-
culate the alignment score using the encodings
pair.
Gated Self-Attention Sentence Encoder. As
depicted in Fig. 3, we opt a shallow network ar-
chitecture: one gated hidden layer and one self-
attention layer as the sentence encoder. This
lightweight encoder mainly captures the lexical
meanings of the sentence. The self-attention
mechanism helps the encoder select more impor-
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Figure 3: Model architecture of the gated self-
attention sentence encoder. See section 3.2 for more
details.

tant lexical evidences to estimate the alignment
score between two sentences.

Given a one-hot encoded input sequence X and
a word embedding lookup table D ∈ R|V |×d,
where d is the model dimension. The input X
will be represented as a corresponding word em-
bedding matrix E ∈ RTx×d. We apply a gating
mechanism (Dauphin et al., 2017) to compute the
hidden layer H:

H = (UhE + bh)⊗ σ(UgE + bg), (2)

where Uh and Ug ∈ Rd×d, σ(·) is a logistic sig-
moid function and ⊗ is element-wise product be-
tween matrices. Then the self-attention weights W
is computed as:

W = softmax(tanh(UaH)), (3)

where Ua ∈ Rd×d. The output of the gated self-
attention encoder is formulated as:

e = Uo(W ×H) + bo, (4)

where e ∈ Rd, and Uo ∈ Rd×d. We add layer
normalization (Ba et al., 2016) to the output layer.
The model dimension d is set to 512.
Alignment Score and Discriminator Loss. With
the source and target sentence encodings ex and
ey, the alignment score s(X,Y) can be computed
as:

s(X,Y) = e>x ey. (5)

Given the candidate target sentences list Y , the
discriminator produces a distribution over Y and
aims to maximize the log-likelihood of the gold-
standard alignment sentence Y+. Since sentence-
level alignments in automatic extracted corpora
are usually not very precise, we expect the loss
function for training D not to be too strict with
candidates that are closed to the gold-standard
one. Therefore, following Lu et al. (2017),
we apply a metric-learning multi-class N -pair
loss (Sohn, 2016) to our model, which can be de-
fined as:

LD = LN−pair({X,Y+, {Y−n }N−1n=1 })

= log(1 +

N∑
n=1

exp(s(X,Y−
n )−s(X,Y+))),

(6)

where Y+ is alignment target sentence to the
source language X, and Y−n is one of the N −1
unaligned samples.

Compared to cross entropy loss used in previous
work (Yu et al., 2017; Yang et al., 2018; Wu et al.,
2018), the N -pair objective encourages the score
of target sentences which are similar to the given
golden-standard one to be higher than the dissim-
ilar ones. In this way, translations that are correct
but different from the ground truth will not be over
penalized, and thus this can be useful to provide a
reliable signal for the generator.

In later sections, we will analyze the semantic
information learned by the model through some
visualization examples, shown in section 5.1, and
the experimental results show that it achieves suf-
ficient accuracy for scoring the alignment between
source and target sentences.

3.3 Discriminative Losses for Generative
Training

In our framework, G aims to generate a transla-
tion score higher than the golden-standard, under
the premise of encoders and the scoring function
learned by D. Specifically, for each sentence pairs
(X,Y+) in training sets, first, G samples transla-
tion Ŷ given X with greedy searching. Second,
D takes Ŷ as well as (X,Y+) as inputs to com-
pute alignment scores, and then G gets the feed-
back from D. Eq. (7) gives the perceptual loss
that G aims to optimize.

LG = L1−pair({X,Y+, Ŷ})
= log(1 + exp(s(X,Y+) − s(X,Ŷ))).

(7)
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Intuitively, updating generator parameters to
minimize LG can be interpreted as learning to pro-
duce a translation Ŷ that “fools” the discriminator
into believing that this answer should score higher
than the human response Y + under the D’s scor-
ing function.

3.4 Gumbel-Softmax Sampler
The process of sampling a translation Ŷ with G is
not differentiable, since it includes argmax(·) op-
erator to perform one-hot encoding. We leverage
the Gumbel-softmax (Jang et al., 2017) sampler to
solve this problem. Formally, at the decoding step
j, suppose that pj ∈ RVy contains the model out-
put log-probabilities over target vocabulary, and
gj ∈ RVy includes i.i.d samples drawn from the
standard distribution Gumbel(0, 1). A sample yj
is transformed as:

ŷj = softmax((pj + gj)/τ), (8)

where τ is a temperature parameter and is set to
0.5 in our experiments.

3.5 Teacher-forcing Step
Since LG in Eq. (7) mainly considers the discrep-
ancy of alignment and integrity between the model
output and the ground-truth, it rarely inspects
grammar correctness and language fluency. To al-
leviate this problem, following (Li et al., 2017; Lu
et al., 2017), we adopt the similar teacher-forcing
step to our training process.

We perform two different teacher-forcing ob-
jectives for comparison: i) a likelihood objective
OLM and ii) a BLEU score reward (RBLEU), un-
der the training strategies of MLE and MRT (Shen
et al., 2016), respectively.

4 Experiments

4.1 Datasets and Setups1

We evaluate the proposed approach on Chinese-to-
English (Zh-En) and English-to-German (En-De)
translation tasks. For both of the two translation
tasks, we tokenize all corpora with the Moses to-
kenizer2. Sentences longer than 100 words are
discarded, and all the sentences are encoded with
byte-pair encoding (bpe) (Sennrich et al., 2016).

1The demo data and source codes will be re-
leased online at https://github.com/PolarLion/
Sentence-Alignment-Learning

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

Chinese-to-English. For Chinese-to-English
translation, our training data are extracted from
four LDC corpora3. The training set contains to-
tally 1.3M parallel sentence pairs. For prepro-
cessing, the Chinese part for both training and
testing sets is segmented by the LTP Chinese
word segmentor (Che et al., 2010) before applying
bpe (Sennrich et al., 2016) to the corpus. We get
a Chinese vocabulary of about 39K tokens, and an
English vocabulary of about 30K tokens. We use
NIST2005 dataset for validation and NIST2002,
NIST2003, and NIST2004 datasets for testing. In
the following parts of the paper, the Chinese exam-
ples are presented by segmented italic romanized
form, and different Chinese characters are delim-
ited by single quotation marks.

English-to-German. For English-to-German
translation, we conduct experiments on the pub-
licly available corpora WMT’14 En-De. The train-
ing set of En-De task totally contains 4.5M sen-
tence pairs, and we use a shared source-target
vocabulary of about 39K tokens. We use new-
stest2013 as the validation set and report the re-
sults on newstest2014.

Discriminative Corpus Construction. Differ-
ent from parallel sentence pairs for training gen-
erative models, the corpus for training D needs
to provide a candidate translations list for each
source sentence. Therefore, we need to manually
construct the corpus for training D using the orig-
inal parallel corpus. For each source sentence, we
set the size of candidate list to 100. The trans-
lation candidates are preferentially obtained from
the context of the golden standard translation in
the comparable paragraph. If the context sentence
number Nc is less than 99, we will randomly sam-
ple another 99−Nc sentences from the whole rest
target corpus. As for the data format, we follow
most of Das et al. (2019).

Evaluation. As for generative models, follow-
ing Vaswani et al. (2017), we report the result of
a single model obtained by averaging the 5 check-
points around the best model selected on the de-
velopment set. We apply beam search during de-
coding with the beam size of 6. The transla-
tion results in this paper are measured in case-
insensitive BLEU (Papineni et al., 2002) by the

3LDC2005T10, LDC2003E14, LDC2004T08 and
LDC2002E18. Since LDC2003E14 is a document-level
alignment comparable corpus, we use Champollion Tool
Kit (Ma, 2006) to extract parallel sentence pairs from it.

https://github.com/PolarLion/Sentence-Alignment-Learning
https://github.com/PolarLion/Sentence-Alignment-Learning
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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multi-bleu.perl script4. For the discriminator, the
performance is evaluated on recall@k and mean
rank score.

4.2 Training Details

Pre-train discriminator and NMT model. Dur-
ing the training procedure, we first pre-train the
discriminator and the generator separately for a
warm start. We pre-train the model until the per-
formance of D and G on development set dose
not improve. For training discriminator on all lan-
guage pairs, we use the Adam optimizer with β1 =
0.8, β2 = 0.99 and a base learning rate of 4 ×
10−4. The mini-batch size is 100 and the dropout
rate is set to 0.1. As for the NMT model, we fol-
low the base model of Transformer (Vaswani et al.,
2017) for most of training setups, except the label
smoothing (Szegedy et al., 2016).

Frozen discriminator v.s. adversarial dis-
criminator. We also study the effects of two
training setups of the discriminator: updating D
(adversarial D) or not (frozen D) with the NMT
model. When we perform frozen D, the NMT
model is learned with a combination discrimina-
tive perceptual loss (Lu et al., 2017) and teacher-
forcing loss (Li et al., 2017; Lu et al., 2017). Each
mini-batch contains 30 sentence pairs due to the
limitation of memory size of a single GPU. For the
adversarial discriminator, We alternately update
G and D under the adversarial learning frame-
work (Yang et al., 2018; Wu et al., 2018; Kong
et al., 2019). An adversarial D is to maximize the
score of the human translation Y+ and minimize
the score of the generated translation Ŷ. Then the
training loss for adversarial D can be represented
as: LD = −LG.

4.3 Machine Translation Results

We report the experimental results on machine
translation in this section. Table 1 shows the
BLEU scores of Zh-En and En-De translation
tasks. Our approach achieves an improvement up
to +0.76 BLEU points averagely on Zh-En test-
ing sets and +0.64 BLEU points on En-De test-
ing set. It should be noted that we do not ap-
ply label smoothing (Szegedy et al., 2016) due to
using Gumbel-Softmax approximation, which re-
sults in a decline in En-De translation performance

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

compared to the reported result of BLEU 27.3 in
Vaswani et al. (2017).

We compare two setups of frozen D (Row 3-4)
and adversarial D (Row 5-6) for the discrimina-
tor. Experimental results show that continuing to
update D along with G gains best BLEU score for
the both translation tasks. It means that fine-tuning
D with the model generated data can further im-
prove training quality. We also evaluate two dif-
ferent training objectives for the teacher-forcing
step (Row 3,5 vs Row 4,6) and Row 2 is another
baseline for training only on RBLEU (similar to
MRT (Shen et al., 2016)). We can see from the
results that applying MLE or BLEU reward does
not make much difference. These results indicate
that the proposed method makes up for the short-
comings of MLE training.

4.4 Discriminative Results

The format of the test datasets for discriminator is
similar to the training set described in section 4.1,
where each input corresponds to one hundred can-
didate translations extracted from the document
context. The goal of the discriminator is to rank
the correct translation as high as possible. We
present recall@k and mean rank of the discrimi-
nator on Zh-En and En-De test sets in Table 2. It
shows that for all test sets of both language pairs,
our proposed discriminator performs steadily at
high recall rate of more than 96% on recall@1 and
nearly 100% on recall@5 and recall@10. Both of
the high recall@k and ranking mean closed to 1
indicate that the ground-truth translations are al-
ways assigned to high alignment score.

Empirical and principled studies indicate that
high initial accuracy of binary classification based
discriminator may lead to worse model perfor-
mance for GANs (Salimans et al., 2016; Arjovsky
and Bottou, 2017; Yang et al., 2018). In this pa-
per, G is trained with a specific 1-pair loss defined
on sentence alignment score, instead of Jensen-
Shannon divergence (Arjovsky and Bottou, 2017;
Arjovsky et al., 2017) between two data distribu-
tions, which could avoid the vanishing gradient
problem in GANs. Therefore, the high accuracy of
the proposed discriminator would not make nega-
tive impact on G.

5 Analysis

In this section, we will study characteristics of the
proposed approach and report some detailed ex-

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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# Model
Zh-En En-De

NIST2002 NIST2003 NIST2004 Average newstest2014
1 Transformer 41.56 39.95 42.05 41.19 26.52
2 +RBLEU 42.30 40.47 42.46 41.74 26.73
3 + frozen D + OLM 42.51 40.74 42.42 41.89 27.10
4 + frozen D + RBLEU 41.63 40.06 42.16 41.28 26.77
5 + adversarial D +OLM 42.67 40.67 42.51 41.95 27.16
6 + adversarial D +RBLEU 42.75 40.28 42.67 41.90 27.05

Table 1: BLEU scores on Zh-En and En-De translation task. Transformer is the baseline model. “Average” is
the averaged BLEU scores on testing sets. Following Vaswani et al. (2017), we report the result of a single model
obtained by averaging the 5 checkpoints around the best model selected on the development set. See section 4.3
for more details.

Testset R@1 R@5 R@10 Mean
NIST2002 97.04 99.77 99.89 1.06
NIST2003 97.50 99.34 99.67 1.10
NIST2004 97.25 99.94 99.94 1.05

newstest2014 96.60 99.43 99.73 1.12

Table 2: Discriminator performance on Zh-En and
En-De test sets. R@k and Mean are abbreviations for
recall@k score and mean rank score, respectively. See
section 4.4 for more details.

perimental results. We also give a specific transla-
tion example to illustrate how knowledge transfer-
ring improves NMT performance.

5.1 What kind of Knowledge Does D
Transfer to G?

In this paper, we propose a discriminator that di-
rectly learns to measure alignment and then trans-
fers the learned knowledge to an NMT model.
D is designed to capture lexical evidence for
sentence alignment by learning a self-attention
encoder. We give averaged sentence alignment
scores between translations and source inputs on
different model setups in Table 3. Those align-
ment scores are estimated by a pre-trained D. Ta-
ble 3 shows that the output alignment scores of the
proposed approaches are all higher than the base-
line methods, which illustrates thatG can learn the
knowledge on measuring alignment from D under
the proposed training frameworks.

In order to illustrate the lexical-level knowledge
learned by D, we give a visual example in Fig. 4.
It shows self-attention weights of the encoders for
the given source and the target sentence. In the
example, the source sentence is “bao’wei’er 12’ri
yu sha’long ju’xing le hui’tan” and the target sen-
tence is “Powell hold a talk with Sharon on the

Model setups Align
Transformer 11.15

+RBLEU 11.18
+ frozen D + OLM 11.31

+ frozen D + RBLEU 11.38
+ adversarial D +OLM 11.34

+ adversarial D +RBLEU 11.36

Table 3: Averaged sentence alignment scores on Zh-
En NIST2002∼2004 test sets. “Align” means the av-
eraged sentence alignment score estimated by D. The
higher score represents the better alignment quality in
D’s view. See section 5.1 for more details.

12th .” We notice that the source language words
“bao’wei’er”, “12’ri” and “sha’long”, and their
corresponding target language words “Powell”,
“12th” and “Sharon” are assigned higher atten-
tion weights than others. This means that the en-
coders regard those words as important lexical ev-
idences for estimating the alignment score. Those
self-learned attention weights share the same spirit
with the weighted translation pairs in Champol-
lion (Ma, 2006). During the training process, G
leans to treat those important words carefully and
avoid missing them to get higher score with the
judgment of D. This process can be considered as
transferring the semantic knowledge leaned by D
to G.

5.2 Can discriminator distinguish good and
bad translation results?

Since D is trained independently in our frame-
work, it is difficult to estimate whether the dis-
criminator can correctly distinguish the good and
bad translations generated by the NMT model.
Therefore, to verify whether an individual dis-
criminator is suitable for the model generated data,
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Figure 4: Example of the self-attention weights for
the source (lower) and the target (upper) language
encoders. Sentences in the example are selected from
NIST2002 Zh-En test set. All weights in this exam-
ple are scaled by Min-Max scaling method for better
visualization and darker colors represent higher atten-
tion weights. Aligned words are manually connected
by dashed lines. See section 5.1 for more details.

we conduct further experiments on translation re-
ranking task on the baseline Transformer (Vaswani
et al., 2017) model on Zh-En translation. More-
over, in order to obtain more translation candi-
dates, we expand the beam size to 24 and then
re-order the N -best translation candidates by D.
Experimental results are shown in Table 4. We
can observe that the larger beam search size leads
to the worse performance, since the likelihood
score for decoding tends to score short transla-
tions higher than long sentences. Larger search-
ing space also brings more good translation can-
didates, and D re-orders them by alignment score
and gains better BLEU scores than most baseline
setups as shown in Table 4. The above observa-
tion indicates that D can successfully handle the
unseen data generated by NMT models. Previous
work (Wu et al., 2016; Koehn and Knowles, 2017)
introduces length normalization to solve the above
beam search decoding problem, whose results are
also presented in Table 4 for a fair comparison.

5.3 Example Translations

We provide example translations on Zh-En trans-
lation task in Fig. 5. From Fig. 5, we can see that
though the translation results of the baseline model
is correct in syntax, its logic is wrong on account
of missing an important source information of
“went to Hong Kong on Saturday for a visa”. All
the translations generated by our proposed method
do not make this mistake, since it is learned and

Setups NIST02 NIST03 NIST04
beam 6 41.56 39.95 42.05
beam 24 40.72 38.64 41.13

+length penalty 41.93 40.26 42.49
+re-ranking 42.22 40.20 42.56

Table 4: BLEU scores on Zh-En translation re-
ranking task. The “beam N” represents the decoding
beam search size. The “+length penalty” means using
length normalization (Wu et al., 2016) when perform-
ing beam search. The “+re-ranking” represents that the
translation candidates are re-ranked by D. See sec-
tion 5.2 for more details.

transfered from the discriminator where the verb
“went”, nouns ‘Saturday’ and “visa” are important
lexical evidence for estimating alignment score.
We also show a translation re-ranking example,
which gains a similar result to other proposed
methods. An alignment score evaluated by the dis-
criminator and a sentence-level BLEU5 (Papineni
et al., 2002) score are also shown under the corre-
sponding translations. Both the golden reference
and the model generated translations gain higher
alignment score from D, which illustrates the ra-
tionality of discriminator design.

6 Conclusion

In this work, we propose a novel training frame-
work which achieves sentence alignment oriented
knowledge transfer to improve the NMT. We de-
sign a discriminator to measure sentence align-
ment by mainly considering lexical evidence via
a gated self-attention mechanism. Then, a dis-
criminative loss as well as a teacher-forcing ob-
jective is used to make NMT model generate suf-
ficient and fluent translations during training pro-
cedure. Experimental results on different lan-
guage pairs show that our proposed approach out-
performs standard NMT models. Further analy-
sis indicates the proposed discriminator well cap-
tures the weighted lexical relationships among
sentences and successfully transfers the knowl-
edge to the NMT model.

In the future, we would like to make dis-
criminator learn more semantic related knowledge
like dependency, and combine our approach with
other advanced techniques in reinforcement learn-
ing and adversarial learning (Yu et al., 2017; Yang
et al., 2018; Kong et al., 2019).

5Evaluated by Moses (Koehn et al., 2007) sentence-bleu
script.
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Source
chen’jin’de xing’qi’liu fu xiang’gang
qu’de qian’zheng , zuo’tian di jing
fang’wen 10 tian .

Reference

Chen Chin-teh went to Hong Kong on
Saturday for his visa and arrived in
Beijing yesterday for his 10-day visit .

(align: 11.15)

Transformer
Chen Jinde arrived in Beijing yesterday
for a 10-day visit to Hong Kong .

(align: 9.91, BLEU: 28.33)

+frozen D
re-ranking

after receiving a visa in Hong Kong on
Saturday , Chen Jinde arrived in Bei-
jing yesterday for a 10-day visit .

(align: 10.75, BLEU: 39.32)

+frozen D
+OLM

Chen Jinde went to Hong Kong to ob-
tain a visa on Saturday and yesterday
arrived in Beijing for a 10-day visit .

(align: 10.97, BLEU: 29.55)

+frozen D
+RBLEU

Chen Jinde went to Hong Kong on Sat-
urday to obtain a visa , and yesterday
arrived in Beijing for a 10-day visit .

(align: 10.99, BLEU: 37.49)

+adversarial D
+OLM

Chen Jinde went to Hong Kong on Sat-
urday to obtain a visa and yesterday
arrived in Beijing for a 10-day visit .

(align: 10.92, BLEU: 40.19)

+adversarial D
+RBLEU

Chen Jinde went to Hong Kong on Sat-
urday for a visa , and yesterday arrived
in Beijing for a 10-day visit .

(align: 11.01, BLEU: 44.53)

Figure 5: Example translations on the Zh-En trans-
lation task. The example is selected from the
NIST2002 testing set. “Source” and “Reference” are
the source input and one of the four given references.
Words in red bold fonts represent the missing part
of the translation generated by the baseline model. A
alignment score (align) and a sentence-level BLEU are
given below the target sentence. See section 5.3 for
more details.
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