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Abstract

Supertagging is a sequence prediction task
where each word is assigned a piece of com-
plex syntactic structure called a supertag. We
provide a novel approach to multi-task learn-
ing for Tree Adjoining Grammar (TAG) su-
pertagging by deconstructing these complex
supertags in order to define a set of re-
lated but auxiliary sequence prediction tasks.
Our multi-task prediction framework is trained
over the exactly same training data used to
train the original supertagger where each aux-
iliary task provides an alternative view on the
original prediction task. Our experimental re-
sults show that our multi-task approach signifi-
cantly improves TAG supertagging with a new
state-of-the-art accuracy score of 91.39% on
the Penn treebank supertagging dataset.

1 Introduction
A treebank for lexicalized tree-adjoining grammar
(TAG) (Joshi and Schabes, 1997) consists of an-
notated sentences where each word is provided a
complex tree structure called a supertag and the
overall parse of the sentence combines these su-
pertags into a parse tree. Supertagging is a task
that learns a sequence prediction task from this an-
notated data and is able to then assign the most
likely sequence of supertags to an input sequence
of words (Bangalore and Joshi, 1999). Once the
right supertag is assigned then parsing is a much
easier task and may not even be needed for many
applications where information about syntax is
needed but a full parse is unnecessary.

Supertagging has been shown to be useful for
both Tree Adjoining Grammar (TAG) (Banga-
lore and Joshi, 1999) and combinatory catego-
rial grammar (CCG) (Hockenmaier and Steedman,
2007) parsing. In this paper we aim to improve
the state-of-the-art for the task of learning a TAG
supertagger from an annotated treebank (Kasai

et al., 2018). We observe that supertag predic-
tion does not take full advantage of the complex
structural information contained within each su-
pertag. Neural models have been used to learn em-
beddings over these supertags and thereby share
weights among similar supertags. Friedman et al.
(2017) provide tree-structured neural models over
supertags which can learn interesting relationships
between supertags but the approach does not lead
to higher supertagging accuracy.

Our main contribution is to provide several
novel ways to deconstruct supertags to create mul-
tiple alternative auxiliary tasks, which we then
combine using a multi-task prediction framework
and we show that this can lead to a significant im-
provement in supertagging accuracy.

Multi-task learning (MTL) (Caruana, 1997)
learns multiple heterogenous tasks in parallel with
a shared representation so that what is learned for
one task can be shared for another task. In most
cases the improvement is due to weight sharing be-
tween different tasks (Collobert and Weston, 2008;
Luong et al., 2015). While some combinations
may not provide any benefit in MTL (Bingel and
Søgaard, 2017) and the improvements might be
simply due to training on more data. However,
MTL can be effective even when using large pre-
trained models (Liu et al., 2019).

Unlike most other work in multi-task learning
with neural models we do not use different an-
notated datasets for each task. Similar to the ap-
proach to combining different representations for
phrase structure parsing in (Vilares et al., 2019)
we also construct multiple tasks from exactly the
same training data set. Our approach is also dis-
tinct in that we take advantage of the structure of
the supertags by deconstructing the tree structure
implicit in each supertag.

Our experimental results show that our novel
multi-task learning framework leads to a new
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state-of-the-art accuracy score of 91.39% for TAG
supertagging on the Penn Treebank dataset (Mar-
cus et al., 1993; Chen et al., 2006) which is a sig-
nificant improvement over the previous multi-task
result for supertagging that combines supertagging
with graph-based parsing (Kasai et al., 2018).

2 The Supertagging Task
Supertagging assigns complex structural descrip-
tions to each word in the sentence. The complex
structural descriptions come from grammar for-
malisms that are more expressive than context-free
grammars for phrase structure trees or dependency
trees. In Tree Adjoining Grammar (TAG), the su-
pertags are tree fragments that can express vari-
ous syntactic facts such as transitive verb, wh- ex-
traction, relative clauses, appositive clauses, light
verbs, prepositional phrase attachment and many
other syntactic phenomena. In combinatory cat-
egorial grammar (CCG) the supertags are types
and their type-raised variants which also cap-
ture similar syntactic phenomena as in TAG su-
pertags. Supertagging can be viewed as “almost
parsing” (Bangalore and Joshi, 1999) and can pro-
vide the benefits of syntactic parsing without a full
parser.

In this paper we focus on the TAG supertagging
task, however, our proposed methods can likely be
used to improve CCG supertagging as well. Su-
pertagging is a relatively simple linear time se-
quence prediction task similar to part of speech
tagging. Supertagging can be useful in many
applications such as machine translation, gram-
matical error detection, disfluency prediction, and
many others while being a much simpler task than
full parsing.

In addition, for both TAG and CCG, supertag-
ging is an essential first step to parsing so any
improvements in supertag prediction will benefit
parsing as well. For all these reasons, in this paper
we focus on the supertagging task. TAG and CCG
can be parsed using graph-parsing methods in
O(n3) but the complexity of unrestricted parsing
for both formalisms is O(n6) which is prohibitive
on real-world data. Neural linear-time transition
based parsers are still not accurate enough to com-
pete with the state-of-the-art supertagging mod-
els or parsers that use supertagging as the initial
step (Chung et al., 2016; Kasai et al., 2018).

An example of the supertagging task for Tree
Adjoining Grammars (TAGs) is shown in Fig. 1.
The ↓ symbol on a leaf node represents a substitu-

tion node which can be expanded by a tree rooted
in the same label, e.g. t3 rooted in NP substitutes
into the NP↓ node in t46. The ∗ symbol on the leaf
node of a tree t represents an adjunction node (also
called a footnode) and signifies that t can be in-
serted into an internal node of another tree with the
same label, e.g. t103 adjoins into the AP node in
t46. The � node is called the head and represents
the node where the word token is inserted into the
tree. The table on the right shows how many dif-
ferent supertags are possible for each word in the
sentence.

Three factors make supertagging a challenging
task for sequence prediction: much more severe
token level ambiguity when compared to other
like part-of-speech tagging, a large number of dis-
tinct supertag types (4727 distinct supertags in
our dataset, including an unknown supertag) and
a complex internal structure for each supertag.

3 Baseline Supertagging Model
For our baseline supertagging model we use the
state-of-the-art model that currently has the high-
est accuracy on the Penn treebank dataset (Kasai
et al., 2018). For the supertagging model the main
contribution of Kasai et al. (2018) was two-fold:
the first was to add a character CNN for model-
ing word embeddings using subword features, and
the second was to add highway connections to add
more layers to a standard bidirectional LSTM. The
output layer was a standard multi-layer perceptron
that had a softmax output over the set of supertags.
Another extension to the standard sequence pre-
diction model in Kasai et al. (2018) was to com-
bine supertagging with graph-based parsing.

In this paper, we focus on the supertagging
model and compare only on supertagging accu-
racy. The neural model for supertagging that we
use as a baseline uses graph-based parsing as an
auxiliary task and has the current highest accu-
racy score on the Penn treebank (90.81%). The
model has three main components: the input layer,
the bidirectional LSTM component, and the out-
put layer which computes a softmax over the set
of supertags. The input to the model is a sequence
of words and the output is a sequence of supertags,
one per word, which makes it a standard tagging
aka sequence prediction task.

3.1 Input Layer

Each word in the input sequence is converted into
a word embedding in the input layer. Following
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NP∗D�
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t1:
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Figure 1: An example that explains the supertagging task for Tree Adjoining Grammars (TAGs). For the sentence
“The answer seems perfectly clear .” the correct supertag for each word is shown above. The table on the right
shows how many different supertags are possible for each word in the sentence. See Section 2 for more details on
the notation used to define the supertags and how the supertags can be combined to form a parse tree.

(Kasai et al., 2018) we use two components in the
word embedding:

• a 30-dimensional character level embed-
ding vector computed using a char-CNN
which captures the morphological informa-
tion (Santos and Zadrozny, 2014; Chiu and
Nichols, 2016; Ma and Hovy, 2016; Kasai
et al., 2018). Each character is encoded as
a 30-dimensional vector, and then we apply
30 convolutional filters with a window size of
5. This produces a 30-dimensional character
embedding.

• a 100/200/300 size word embedding which
is initialized using GloVe (Pennington et al.,
2014). For words that do not appear in
GloVe, we randomly initialized the word em-
bedding.

A start of sentence token and an end of sentence
token is added into the beginning and ending po-
sition of each sentence, but is not included in the
computation of loss and accuracy.

Unlike (Kasai et al., 2018) we do not use pre-
dicted part of speech (POS) tags as part of the in-
put sequence. In our experiments, the improve-
ment was negligible and there was a significant
overhead of having to do part of speech predic-
tions at test time.

3.2 BiLSTM Layer

The core of this base model is a bidirectional
recurrent neural network, in particular a Long
Short-Term Memory neural network (Graves and
Schmidhuber, 2005). For the hyperparameters, we
use the settings in Kasai et al. (2018) in order to
ensure a fair comparison.

Unlike (Kasai et al., 2018) we do not use high-
way connections in our model. We did exper-
iment with the addition of highway connections
but we found no improvement in accuracy over
the baseline BiLSTM-only model with a signifi-
cant increase in training time.

The bidirectional representation has 1024 units,
a combination of the 512 forward and backward
units each. Dropout layers (Gal and Ghahramani,
2016; Srivastava et al., 2014) are inserted between
the input and BiLSTM layer, between BiLSTM
layers, and between recurrent time steps. The
dropout rate used was 0.5. We used 2-3 BiLSTM
layers. Kasai et al. (2018) provide some reasons
why > 3 layers do not provide any additional ac-
curacy even with highway connections.

3.3 Output Layer

We concatenate hidden vectors from both direc-
tions of the last layer of BiLSTM and pass it into a
multilayer perceptron (MLP). In practice a single
layer perceptron performs just as well in this task.
The number of input neurons of the single layer
perceptron equals 1024 (2 × 512) and the output
vector size equals the number of labels for each
specific task: 4727 for the main supertagging task.

4 Deconstructing Supertags
The error analysis of our baseline BiLSTM model
is shown in Fig. 1. We observed some consis-
tent ways in which the baseline model confused
the correct supertag with the incorrect one. We
also observed that the baseline BiLSTM model
can achieve over 97% 3-best accuracy on the su-
pertagging task. This means it should be possible
to boost the accuracy by rescoring the alternatives
that already exist in the n-best output of the base-
line supertagger. Rather than a re-ranking frame-
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Prediction Ground Truth #times in dev

NP

NP∗N�

t2:
NP

NP∗A�

t36:

194

CO�

tCO:

VP

PP

NP1 ↓IN�

VP∗

t13:

156

NP

PP

NP1 ↓IN�

NP∗

t4:
VP

PP

NP1 ↓IN�

VP∗

t13:

144

Table 1: The top-3 errors made by the state-of-the-art
Bi-LSTM supertagger. tCO stands for a co-head in the
case where a supertag has multiple heads. One example
is a sentence fragment like pull it from the marketplace
which contains a multi-word predicate pull . . . from;
pull is the V� head of tree t531 which has a INc node
where tCO (headed by from) is inserted.

work we used a multi-task learning framework in
order to boost the scores of correct supertags over
the error-prone supertags. The auxiliary tasks we
created based on our error analysis are as follows.

4.1 Auxiliary Tasks

4.1.1 HEAD

Consider the trees t2 and t36 in Table 1. t2 is
headed by a noun head N and t36 is headed by an
adjective A. The label of the head node is a use-
ful auxiliary task for disambiguation. We define
a function HEAD(t) to get the head node (marked
by a diamond) of supertag t. There are 29 distinct
HEAD labels.

4.1.2 ROOT

Consider the trees t4 and t13 in Table 1. t4 mod-
ifies an NP node while t13 modifies a VP node.
This is a case of preposition attachment ambigu-
ity. The label of the root node is a useful auxil-
iary task for disambiguation. We define a function
ROOT(t) to get the root node of supertag t. There
are 48 distinct ROOT labels.

4.1.3 TYPE

Consider the trees tCO and t13 in Table 1. tCO is a
supertag that does not use adjunction (this type of
supertag is called an initial tree). In contrast, t13
modifies an internal VP node in another supertag
(this type of supertag is called an auxiliary tree). In
addition a left auxiliary tree modifies from the left

while a right auxiliary tree modifies from the right.
To make this task more sensitive we also include
the node label of the root (for initial trees) or footn-
ode which is the node marked with ∗ (for left/right
auxiliary trees). We define a function TYPE(t) to
obtain the type of each supertag. There are 67 dis-
tinct types.

4.1.4 SKETCH

In many cases, the overall shape of the supertag
is useful for disambiguation, ignoring the node la-
bels. The following example keeps the tree struc-
ture of the supertag but removes the node labels:

S

S∗PP

NP1 ↓IN�

X

XX

XX

Tree sketches help disambiguation (see t81 in Ta-
ble 5). We define a function SKETCH(t) that re-
turns the sketch. There are 602 distinct supertag
sketches.

4.1.5 SPINE

The spine of a supertag is the path from the root
node to the head node (marked by �). The follow-
ing example keeps only the path from root to head
and produces a spine supertag:

S

S∗PP

NP1 ↓IN�

S

PP

IN

Spine supertags are helpful for disambiguation as
well (see t132 in Table 5). We use a function
SPINE(t) to return the spine of supertag t. There
are 1372 distinct supertag spines.

4.2 Multi-task Framework

Unlike most other work in multi-task learning with
neural models we do not use different datasets for
each task. We use exactly the same training data
set but we construct multiple tasks with alternate
output labels by automatically deconstructing the
supertags (the output labels in the original task).
These alternate output labels are easier to predict
than the full set of supertags, and these new output
labels are related to the original supertag in a lin-
guistically relevant way. As a result, we train on
the same training set but with alternate output la-
bels, each forming a different task. We then com-
bine these multiple tasks in order to improve the
performance in the original supertagging task.
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Figure 2: The prediction procedure of combining mod-
els trained on separate tasks

The usual criticism of a fair comparison be-
tween multi-task and single-task learning is that
the multi-task setting simply uses more la-
beled data instances (typically with different data
sources) and as a result a fair comparison between
a multi-task and a single-task setting should in-
volve large pre-trained models trained using a lan-
guage modelling objective (such as ELMO (Pe-
ters et al., 2018) or BERT (Devlin et al., 2018)).
In our case, because we re-use the same training
set for multi-task learning, we have made sure our
experimental settings exactly match the previous
best state-of-the-art method for supertagging (Ka-
sai et al., 2018) and we use the same pre-trained
word embeddings to ensure a fair comparison.

We train six different neural sequence predic-
tion models independently on the supertagging
task, root node prediction (ROOT), head node pre-
diction (HEAD), tree type prediction (TYPE), tree
sketch prediction (SKETCH) and tree spine pre-
diction (SPINE) tasks. For each task, we use the
state-of-the-art baseline supertagging model as de-
fined in Section 3. The only change is that the

output size for softmax is changed to reflect the
number of output labels in each task. We obtain
very high accuracies for each of the tasks. For
example, on the dev set we obtain the following
accuracies: ROOT = 97.04%, HEAD = 93.37%,
TYPE = 93.14%, SKETCH = 93.74% and SPINE
= 91.00%.

We train the model, including the word embed-
ding (which is initialized using a pre-trained em-
bedding) and character-level CNNs by optimiz-
ing the negative log-likelihood of the predicted se-
quences of output labels. The output labels for
each task is different: supertag, root node, head
node, tree type, sketch, spine. Training is done us-
ing minibatches. The main hyperparameters are as
follows: we use the ADAM optimizer with a batch
size of 100 and learning rate ` = 0.001 (Kingma
and Ba, 2015). After every training epoch, we
evaluate the model on the dev set, if the accuracy
on dev set has not been improved for five consecu-
tive epochs, training stops. The maximum number
of epochs is 70. After obtaining the best model
trained with ` = 0.001, we further fine-tune the
best model using ` = 0.0001 for at most 10 more
epochs. By conducting this step, we have seen
0.1% to 0.2% accuracy improvement depending
on the task.

After obtaining the best trained model on each
of the multiple tasks we combine the multiple
tasks together in order to create a decoder for the
supertagging task.

We first run the baseline supertagger to obtain
the distribution PSTAG and using this distribution
we select the top-K output supertags for each word
in each sentence in the dev or test data. We exper-
iment with different values of K but we know that
even K=3 gives 97% accuracy for the supertagging
task. For each dev or test sentence we also com-
pute the output softmax distributions for each task,
PHEAD, PROOT, PTYPE, PSKETCH, PSPINE. Each of
these probabilities are defined as a sequence pre-
diction task over the auxiliary tasks using the func-
tions defined in Section 4.1.

PHEAD(t) = P (HEAD(t))
PROOT(t) = P (ROOT(t))
PTYPE(t) = P (TYPE(t))
PSKETCH(t) = P (SKETCH(t))
PSPINE(t) = P (SPINE(t))

We compute the argmax sequence of supertags
t∗1, t

∗
2, . . . , t

∗
T by scoring each supertag t∗i individ-
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ually from the top-K list by combining the proba-
bilities from the different tasks as follows:

t∗i = argmax
ti∈S

(1)

α1PSTAG(ti) + α2PHEAD(ti) (2)

+α3PROOT(ti) + α4PTYPE(ti) (3)

+α5PSKETCH(ti) + α6PSPINE(ti) (4)

S is the top-K set of supertags for each word
in the input sequence. The hyperparameters αi

can be tuned. However we found in our experi-
ments that the results were not very sensitive to
the values, and the uniform distribution over all
the tasks performed the best. The model and de-
coding step for our multi-task model is shown in
Fig. 2. We also experiment with a commonly used
multi-task model where some or all of the compo-
nents are shared between the different (unlike our
approach)..

5 Dataset
We use the dataset that has been widely used
by previous work in supertagging and TAG pars-
ing (Bangalore et al., 2009; Chung et al., 2016;
Friedman et al., 2017; Kasai et al., 2017, 2018).
We use the grammar and the TAG-annotated WSJ
Penn Tree Bank extracted by Chen et al. (2006).
As in previous work, we use Sections 01-22 as the
training set, Section 00 as the dev set, and Sec-
tion 23 as the test set. The training, dev, and test
sets comprise 39832, 1921, and 2415 sentences;
950028, 46451, 56683 tokens, respectively.

The TAG-annotated version of Penn tree-
bank (Chen and Shankar, 2001) includes 4727 dis-
tinct supertags (including an unknown supertag)
and the grammar file of all supertags is down-
loaded from http://mica.lif.univ-mrs.fr/.
There are 69 auxiliary tree TYPEs, 40 distinct
types of ROOT node and 30 different types of
HEAD node, 602 tree SKETCHes and 1372 tree
SPINEs.

6 Results and Discussion
For our experiments, we implemented all of the
models we discussed above in PyTorch (Paszke
et al., 2017). We have various hyperparame-
ters and Table 2 shows the results obtained from
the different model configurations which were de-
scribed in Section 3. The table also includes the
results from the multi-task model and decoder de-
scribed in Section 4. We experiment with pre-

trained GloVe word embeddings of three different
sizes: 100, 200 and 300.

With our multi-task approach, all base mod-
els gain significant improvements compared to a
single supertagging base model between 0.4% to
0.65%. We also varied the parameter K which
picks the top-K supertags from the baseline model
for use with the multi-task model. Table 3 that in-
creasing K helps up to a point. After K=10 there
is no further improvement.

We obtain a new state-of-the-art result of
91.39% which is significantly better than the
90.81% result which combines supertagging with
the parsing task and so is using more labeled train-
ing information used by our supertagger models.

Table 4 shows the result of task ablation for each
task. We can see that adding a new task always
improves the results. The best result is obtained
by using all five auxiliary tasks.

We computed a significance score on
the accuracy of our best model BiL-
STM3+CNN+GloVe200 with and without
multi-task learning. On the dev set, using
McNemar’s significance test we found that the
multi-task model is significantly better than the
baseline model with a p-value of 0.0062; on the
test set, the p-value is 0.0064.

We evaluated our own implementation of the
baseline BiLSTM-only model and even with high-
way connections we only obtained 89.25% on the
dev set compared to the built-in BiLSTM imple-
mentation in Pytorch (without highway connec-
tions) which obtains 89.94%.

6.1 Task Contribution

Table 5 shows some examples about how each
of auxiliary tasks can help in the correction of
supertag prediction. Examples of each task are
selected if a considerable number of predictions
of each example are corrected after applying the
multi-task model.

While the multi-task model can correct many
wrong predictions made by the baseline model, the
multi-task model may also override some correct
predictions.

The first row is an example of the prediction
of head node that helps differentiate two similar
supertags, t2 and t36. In the dev set, there are
24 words of which ground truth supertags are t2,
wrongly predicted as t36 by a single base model;
25 words of which ground truth supertags are t36,
wrongly predicted as t2. All of those words are

http://mica.lif.univ-mrs.fr/
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Model Multi-task Dev Test
BiLSTM3+HW+CNN+POS+GloVe100 (Kasai et al., 2018) - 90.45 90.81

BiLSTM2+GloVe100
No 89.11 -
Yes 89.67 -

BiLSTM2+CNN+GloVe100
No 89.45 -
Yes 90.12 -

BiLSTM3+GloVe100
No 89.41 -
Yes 90.02 -

BiLSTM3+CNN+GloVe100
No 89.83 -
Yes 90.41 -

BiLSTM3+CNN+GloVe200
No 89.94 -
Yes 90.55 91.37

BiLSTM3+CNN+GloVe300
No 89.91 -
Yes 90.45 -

Shared BiLSTM layer
(BiLSTM3+CNN+Glove200)

No 90.11 90.83
Yes 90.11 90.83

Table 2: Supertagging task results. The number after BiLSTM represents the number of BiLSTM layers; CNN
refers to the word embedding model using character-level CNN; the number immediately after GloVe represents
the dimension of pre-trained GloVe word vectors. HW in Kasai et al. (2018) refers to highway connections, and
POS refers to the use of predicted part-of-speech tags as inputs. We do not use HW or POS in our models as they
do not provide any benefit.

Top-K Dev Test
Top-3 90.55 91.37
Top-5 90.58 91.38
Top-10 90.58 91.39
Top-20 90.58 91.39

Table 3: Change in accuracy as K is increased when
choosing Top-K supertags for rescoring. The model
used is BiLSTM+CNN+GloVe200.

correctly predicted by the multi-task model. The
ROOT, TYPE, SKETCH and SPINE are all the
same for t2 and t36, the only difference is the
HEAD value, N for t2 and A for t36. The model
for the HEAD task correctly predicts the head
node of those words which is further improved us-
ing our multi-task approach.

The second row demonstrates how the tree
sketch can help discriminate supertags. t81 and
t27 have exactly the same ROOT, HEAD, SPINE
(S-VP-V) and TYPE (Init), the only difference be-
tween these two supertags is the tree structure.

The third to fifth rows are examples of the ef-
fect of multiple auxiliary tasks in getting the pre-
diction right. The third row is an example of the
prediction of TYPE and SKETCH that can help
differentiate supertags. The TYPE of t3 is Init,
while t38 has TYPE Left+NP. They also have dif-

ferent tree sketches. There are 11 words of which
supertags are wrongly predicted as t3 by a single
supertagging model, but correctly predicted as t38
by the multi-task model; also, 3 words of which
supertags are wrongly predicted as t38 by a single
supertagging model, but correctly predicted as t3
by the multi-task model.

The forth row is an example of how the predic-
tion of the ROOT can help differentiate supertags.
The ROOT of t3 is NP, while t18 has ROOT N (N
is also its head node). For the last row, t132 and
t20 have the same root node(S), head node(Punct)
and tree type (Right+S) but they are different in
the tree spine (S-Punct for t20 and S-PRN-Punct
for t132) and SKETCH. The joint effort of vari-
ous models plays a significant role in getting the
prediction right.

7 Related Work

Bangalore et al. (2009) and Chung et al. (2016)
trained a feature based classification model for
TAG supertags, that extract features using lexical,
part-of-speech attributes from the left and right
context in a 6-word window and the lexical, ortho-
graphic (e.g. capitalization, prefix, suffix, digit)
and part-of-speech attributes of the word being
supertagged. Neural network based supertagging
models in TAG (Kasai et al., 2018) and CCG (Xu
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Multi-task setting Dev Test
None 89.94 90.73
HEAD 90.00 90.79
ROOT 90.06 90.91
TYPE 90.15 91.07
SKETCH 90.25 90.99
SPINE 90.22 91.08
HEAD+ROOT 90.15 90.94
TYPE+HEAD+ROOT 90.27 91.10
TYPE+HEAD+ROOT+SKETCH 90.48 91.27
TYPE+HEAD+ROOT+SKETCH+SPINE 90.55 91.37

Table 4: Result of different multi-task combinations. The base model is BiLSTM+CNN+GloVe200.

Ground
truth

Baseline Multi-Task Most Help-
ful Task

NP

NP∗N�

t2:

NP

NP∗A�

t36:

NP

NP∗N�

t2:

HEAD

S

VP

V�

NP0 ↓

t81:
S

VP

NP1 ↓V�

NP0 ↓

t27:

S

VP

V�

NP0 ↓

t81:

SKETCH

NP

N�

t3: NP

NP

N�

NP∗

t38:

NP

N�

t3:

TYPE,
SKETCH

NP

N�

t3:

N�
t18:

NP

N�

t3:

ROOT,
SKETCH

S

S∗PRN

Punct�

t132:

S

S∗Punct�

t20: S

S∗PRN

Punct�

t132:

SPINE,
SKETCH

Table 5: Some examples of how the deconstructing
of base models correct the prediction made by the su-
pertagging model.

et al., 2015; Lewis et al., 2016; Xu, 2016; Vaswani
et al., 2016) have shown substantial improvement
in performance, but the supertagging models are
all quite similar as they all use a bi-directional
RNN feeding into a prediction layer. Structural
features of supertags are heavily used in pre-neural
statistical parsing methods (Bangalore et al., 2009)
and proved to be useful. The use of supertag struc-
ture was explored in (Friedman et al., 2017) where
they adopt grammar features into a tree-structured

neural model over the supertags but this model
was unable to beat the state-of-the-art. (Kasai
et al., 2018) combines supertagging with parsing
which does provide state-of-the-art accuracy but
at the expense of computational complexity.

Kasai et al. (2017) extends the BiLSTM model
with predicted part-of-speech tags and suffix em-
beddings as inputs, then Kasai et al. (2018) further
extends the BiLSTM model with highway connec-
tion as well as character CNN as input, and jointly
train the supertagging model with parsing model
and this work had the state-of-the-art accuracy be-
fore our paper on the Penn treebank dataset. Fried-
man et al. (2017) investigated a recursive tree-
based vector representation of TAG supertags, but
while their model can learn useful facts about su-
pertags, about how one can be related to another,
there was no performance improvement as a result
of their model on the supertagging task. Xu et al.
(2015) uses RNN for the CCG supertagging task,
Lewis et al. (2016) adopted the LSTM structure
into this task, while Vaswani et al. (2016) also in-
troduced another variation of Bi-LSTM into this
task. Xu (2016) then proposed an attention-based
Bi-LSTM supertagging model.

8 Conclusion

In this paper we have introduced a novel multi-
task framework for the TAG supertagging task.
The approach involved a novel multi-task learning
framework which led to a new state-of-the-art ac-
curacy score of 91.39% for TAG supertagging on
the Penn treebank dataset.

Our multi-task prediction framework is trained
over the exactly same training data used to train
the original supertagger where each auxiliary task
provides an alternative view on the original pre-
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diction task.
In the future we would like to explore further

tasks to integrate into our multi-task sequence pre-
diction framework. We also believe that the idea of
our multi-task framework can be applied into sim-
ilar tasks such as CCG supertagging task of which
the labels themselves contains the latent informa-
tion. We would also like to investigate how to
semi-automatically generate new tasks which can
be of further help in the multi-task setting.
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