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Introduction

The 2019 Conference on Computational Natural Language Learning (CoNLL) is the 23rd in the series
of annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2019 will be held on November 3–4, 2019, and is co-located with the 2019 Conference on
Empirical Methods in Natural Language Processing (EMNLP) in Hong Kong.

CoNLL 2019 followed the tradition of previous CoNLL conferences in inviting only long papers, in
order to accommodate papers with experimental material and detailed analysis. The final, camera-ready
submissions were allowed a maximum of nine content pages plus unlimited pages of references and
supplementary material.

CoNLL 2019 received a record number of 485 submissions in total, out of which 97 papers were chosen
to appear in the conference program (after desk-rejections and a few papers withdrawn by the authors
during the review period), with an overall acceptance rate of 22%. 27 were selected for oral presentation,
and the remaining 70 for poster presentation. All 97 papers appear as long papers here in the conference
proceedings.

CoNLL 2019 features two invited speakers, Christopher Manning (Stanford University) and Gabriella
Vigliocco (University College London). As in recent years, it also features one shared task: Cross-
Framework Meaning Representation Parsing. Papers accepted for the shared tasks are published in
companion volumes of the CoNLL 2019 proceedings.

We would like to thank all the authors who submitted their work to CoNLL 2019, and the program
committee for helping us select the best papers out of many high-quality submissions. We are grateful to
the many program committee members who did a thorough job reviewing our submissions. Due to the
growing size of of the conference, we also had area chairs, for the second time, supporting the CoNLL
organization. We were fortunate to have 24 excellent areas chairs who assisted us greatly in selecting the
best program:

Jason Baldridge, Google AI Language, USA;
Laurent Besacier, Université Grenoble Alpes, France;
Chris Biemann, Universität Hamburg, Germany;
Asli Celikyilmaz, Microsoft Research, USA;
Snigdha Chaturvedi, UCSC, USA;
Grzegorz Chrupala, Tilburg University, The Netherlands;
Mathieu Constant, Université de Lorraine, France;
Ryan Cotterell, University of Cambridge, UK;
Dipanjan Das, Google AI Language, USA;
Greg Durrett, UT Austin, USA;
Manaal Faruqui, Google Assistant, USA;
Michel Galley, Microsoft Research, USA;
Manuel Montes y Gómez, INAOE, Mexico;
Dilek Hakkani-Tur, Amazon Alexa AI, USA;
Mohit Iyyer, UMass Amherst, USA;
Yangfeng Ji, University of Virginia, USA;
Preethi Jyothi, IIT Bombay, India;
Douwe Kiela, Facebook Research, USA;
Graham Neubig, CMU, USA;
Horacio Saggion, Universitat Pompeu Fabra, Spain;
Avirup Sil, IBM Research AI, USA;
Amanda Stent, Bloomberg Research, USA;
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Mark Stevenson, University of Sheffield, UK;
Andreas Vlachos, University of Cambridge, UK.

We are immensely thankful to Julia Hockenmaier and to the members of the SIGNLL board for their
valuable advice and assistance in putting together this year’s program. We also thank Pieter Fivez
and Marcely Zanon Boito for maintaining the CoNLL 2019 website, and Sebastian Ruder and Miikka
Silfverberg for preparing the proceedings for the main conference. We would like to thank our hard
working assistants Darryl Hannan, Ramakanth Pasunuru and Reyhaneh Hashempour for their support
with data checking and publicity. Our heartfelt gratitude also goes to Rodrigo Wilkens for system
administration and general START management.

Our thanks to the program co-chairs of CoNLL 2018, Anna Korhonen and Ivan Titov, who provided us
with excellent advice and help; to Vera Demberg, Naoaki Okazaki, Priscilla Rasmussen and the EMNLP
2019 Organization Committee for their helpful advice on issues involving the conference venue and local
organization.

We would also like to thank the following reviewers who were nominated for commendation: Peter
Anderson; Awais Athar; Niranjan Balasubramanian; Joost Bastings; Lisa Beinborn; Robert Berwick;
Xavier Carreras; Elizabeth Clark; Pablo Duboue; Asif Ekbal; Zhe Gan; Dan Garrette; Sebastian
Gehrmann; Kevin Gimpel; Carlos Gomez-Rodriguez; William L. Hamilton; David Harwath; Jack
Hessel; Jonathan K. Kummerfeld; Miryam de Lhoneux; Nelson F. Liu; Ryan McDonald; Einat Minkov;
Preslav Nakov; Jason Naradowsky; Khanh Nguyen; Vlad Niculae; Brendan O’Connor; Niki Parmar;
Rebecca J. Passonneau; Iria del Rio Gayo; Kenji Sagae; Marten van Schijndel; Kevin Small; Kristina
Striegnitz; James Thorne; Diyi Yang.

Finally, our gratitude goes to our sponsors, Facebook and Google, for supporting the conference
financially.

We hope you enjoy the conference!

Aline Villavicencio and Mohit Bansal
CoNLL 2019 conference co-chairs
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16:30–18:00 Window-Based Neural Tagging for Shallow Discourse Argument Labeling
René Knaebel, Manfred Stede and Sebastian Stober

16:30–18:00 TILM: Neural Language Models with Evolving Topical Influence
Shubhra Kanti Karmaker Santu, Kalyan Veeramachaneni and Chengxiang Zhai

16:30–18:00 Pretraining-Based Natural Language Generation for Text Summarization
Haoyu Zhang, Jingjing Cai, Jianjun Xu and Ji Wang

16:30–18:00 Goal-Embedded Dual Hierarchical Model for Task-Oriented Dialogue Generation
Yi-An Lai, Arshit Gupta and Yi Zhang

16:30–18:00 Putting the Horse before the Cart: A Generator-Evaluator Framework for Question
Generation from Text
Vishwajeet Kumar, Ganesh Ramakrishnan and Yuan-Fang Li

16:30–18:00 In Conclusion Not Repetition: Comprehensive Abstractive Summarization with Di-
versified Attention Based on Determinantal Point Processes
Lei Li, Wei Liu, Marina Litvak, Natalia Vanetik and Zuying Huang

16:30–18:00 Generating Formality-Tuned Summaries Using Input-Dependent Rewards
Kushal Chawla, Balaji Vasan Srinivasan and Niyati Chhaya

16:30–18:00 Do Massively Pretrained Language Models Make Better Storytellers?
Abigail See, Aneesh Pappu, Rohun Saxena, Akhila Yerukola and Christopher D.
Manning

16:30–18:00 Self-Adaptive Scaling for Learnable Residual Structure
Fenglin Liu, Meng Gao, Yuanxin Liu and Kai Lei
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16:30–18:00 BIOfid Dataset: Publishing a German Gold Standard for Named Entity Recognition
in Historical Biodiversity Literature
Sajawel Ahmed, Manuel Stoeckel, Christine Driller, Adrian Pachzelt and Alexander
Mehler

16:30–18:00 Slang Detection and Identification
Zhengqi Pei, Zhewei Sun and Yang Xu

16:30–18:00 Alleviating Sequence Information Loss with Data Overlapping and Prime Batch
Sizes
Noémien Kocher, Christian Scuito, Lorenzo Tarantino, Alexandros Lazaridis, An-
dreas Fischer and Claudiu Musat

16:30–18:00 Global Autoregressive Models for Data-Efficient Sequence Learning
Tetiana Parshakova, Jean-Marc Andreoli and Marc Dymetman

16:30–18:00 Learning Analogy-Preserving Sentence Embeddings for Answer Selection
Aïssatou Diallo, Markus Zopf and Johannes Fürnkranz

16:30–18:00 A Simple and Effective Method for Injecting Word-Level Information into
Character-Aware Neural Language Models
Yukun Feng, Hidetaka Kamigaito, Hiroya Takamura and Manabu Okumura

16:30–18:00 On Model Stability as a Function of Random Seed
Pranava Madhyastha and Rishabh Jain

16:30–18:00 Studying Generalisability across Abusive Language Detection Datasets
Steve Durairaj Swamy, Anupam Jamatia and Björn Gambäck

16:30–18:00 Reduce & Attribute: Two-Step Authorship Attribution for Large-Scale Problems
Michael Tschuggnall, Benjamin Murauer and Günther Specht

16:30–18:00 Variational Semi-Supervised Aspect-Term Sentiment Analysis via Transformer
Xingyi Cheng, Weidi Xu, Taifeng Wang, Wei Chu, Weipeng Huang, Kunlong Chen
and Junfeng Hu

16:30–18:00 Learning to Detect Opinion Snippet for Aspect-Based Sentiment Analysis
Mengting Hu, Shiwan Zhao, Honglei Guo, Renhong Cheng and Zhong Su

16:30–18:00 Multi-Level Sentiment Analysis of PolEmo 2.0: Extended Corpus of Multi-Domain
Consumer Reviews
Jan Kocoń, Piotr Miłkowski and Monika Zaśko-Zielińska
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16:30–18:00 A Personalized Sentiment Model with Textual and Contextual Information
Siwen Guo, Sviatlana Höhn and Christoph Schommer

16:30–18:00 Cluster-Gated Convolutional Neural Network for Short Text Classification
Haidong Zhang, Wancheng Ni, Meijing Zhao and Ziqi Lin

16:30–18:00 Coherence-Based Modeling of Clinical Concepts Inferred from Heterogeneous
Clinical Notes for ICU Patient Risk Stratification
Tushaar Gangavarapu, Gokul S Krishnan and Sowmya Kamath

16:30–18:00 Predicting the Role of Political Trolls in Social Media
Atanas Atanasov, Gianmarco De Francisci Morales and Preslav Nakov

16:30–18:00 Towards a Unified End-to-End Approach for Fully Unsupervised Cross-Lingual
Sentiment Analysis
Yanlin Feng and Xiaojun Wan
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Invited Talk I

Ecological Language: A Multimodal Approach to the Study of Human
Language Learning and Processing

Gabriella Vigliocco
Department of Experimental Psychology, University College London, UK

Abstract

The human brain has evolved the ability to support communication in complex and dynamic environ-
ments. In such environments, language is learned, and mostly used in face-to-face contexts in which
processing and learning are based on multiple cues both linguistic and non-linguistic (such as gestures,
eye gaze, mouth patterns and prosody). Yet, our understanding of how language is learnt and processed
- as well as applications of this knowledge - comes mostly from reductionist approaches in which the
multimodal signal is reduced to speech or text. I will introduce our current programme of research that
investigates language in real-world settings in which the listener/learner has access to – and therefore can
take advantage of – the multiple cues provided by the speaker. I will then describe studies that aim at
characterising the distribution of the multimodal cues in the language used by caregivers when interacting
with their children (mostly 2-4 years old) and provide data concerning how these cues are differentially
distributed depending upon whether the child knows the objects being talked about (allowing us to more
clearly isolate learning episodes), and whether objects being talked about are present. I will then move
to a study using EEG addressing the question of how discourse but crucially also the non-linguistic cues
modulate predictions about the next word in a sentence. Throughout the talk, I will highlight the ways
in which this real world, more ecologically valid, approach to the study of language bear promise across
disciplines.

Biography

Gabriella Vigliocco is Professor of the Psychology of Language in the Department of Experimental Psy-
chology at University College London, Royal Society Wolfson Research Merit Fellow and Director of the
Leverhulme Doctoral training Programme for the Ecological Study of the Brain. She received her PhD
from University of Trieste in 1995, was a post-doc at University of Arizona, and after being at Univer-
sity of Wisconsin as Assistant Professor and the Max Planck Institute for Psycholinguistics as a visiting
scientist, she moved to UCL. Vigliocco leads a multidisciplinary team composed of psychologists, lin-
guists, computer scientists and cognitive neuroscientists sharing the vision that understanding language
and cognition requires integration of multiple levels of analysis and methodological approaches. Her
research focuses on the cognitive and neurobiological basis of human communication. More specifically
she is interested in how we learn and process language in real-word settings, how our semantic knowl-
edge interfaces with perception, action and emotion and how these systems are recruited during language
learning. Through the years, her work has been supported by numerous prestigious awards, including
Human Frontier Science Programme and currently European Research Council.



Invited Talk II

Multi-Step Reasoning for Answering Complex Questions

Christopher Manning
Department of Linguists and Computer Science, Stanford University, USA

Abstract

Current neural network systems have had enormous success on matching but still struggle in supporting
multi-step inference. In this talk, I will examine two recent lines of work to address this gap, done with
Drew Hudson and Peng Qi. In one line of work we have developed neural networks with explicit structure
to support attention, composition, and reasoning, with an explicitly iterative inference architecture. Our
Neural State Machine design also emphasizes the use of a more symbolic form of internal computation,
represented as attention over symbols, which have distributed representations. Such designs encourage
modularity and generalization from limited data. We show the model’s effectiveness on visual question
answering datasets. The second line of work makes progress in doing multi-step question answering
over a large open-domain text collection. Most previous work on open-domain question answering
employs a retrieve-and-read strategy, which fails when the question requires complex reasoning, because
simply retrieving with the question seldom yields all necessary supporting facts. I present a model for
explainable multi-hop reasoning in open-domain QA that iterates between finding supporting facts and
reading the retrieved context. This GoldEn Retriever model is not only explainable but shows strong
performance on the recent HotpotQA dataset for multi-step reasoning.

Biography

Christopher Manning is the inaugural Thomas M. Siebel Professor in Machine Learning in the Depart-
ments of Computer Science and Linguistics at Stanford University and Director of the Stanford Artificial
Intelligence Laboratory (SAIL). His research goal is computers that can intelligently process, under-
stand, and generate human language material. Manning is a leader in applying Deep Learning to Natural
Language Processing, with well-known research on Tree Recursive Neural Networks, the GloVe model
of word vectors, sentiment analysis, neural network dependency parsing, neural machine translation,
question answering, and deep language understanding. He also focuses on computational linguistic ap-
proaches to parsing, robust textual inference and multilingual language processing, including being a
principal developer of Stanford Dependencies and Universal Dependencies. He is an ACM Fellow, a
AAAI Fellow, and an ACL Fellow, and a Past President of the ACL (2015). His research has won ACL,
Coling, EMNLP, and CHI Best Paper Awards. He has a B.A. (Hons) from The Australian National Uni-
versity and a Ph.D. from Stanford in 1994, and he held faculty positions at Carnegie Mellon University
and the University of Sydney before returning to Stanford. He is the founder of the Stanford NLP group
(@stanfordnlp) and manages development of the Stanford CoreNLP software.

xxvii



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 1–11
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

Analysing Neural Language Models: Contextual Decomposition Reveals
Default Reasoning in Number and Gender Assignment
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Abstract

Extensive research has recently shown that re-
current neural language models are able to pro-
cess a wide range of grammatical phenomena.
How these models are able to perform these
remarkable feats so well, however, is still an
open question. To gain more insight into what
information LSTMs base their decisions on,
we propose a generalisation of Contextual De-
composition (GCD). In particular, this setup
enables us to accurately distil which part of
a prediction stems from semantic heuristics,
which part truly emanates from syntactic cues
and which part arise from the model biases
themselves instead. We investigate this tech-
nique on tasks pertaining to syntactic agree-
ment and co-reference resolution and discover
that the model strongly relies on a default rea-
soning effect to perform these tasks.

1 Introduction

Modern language models that use deep learn-
ing architectures such as LSTMs, bi-LSTMs and
Transformers, have shown enormous gains in per-
formance in the last few years and are finding ap-
plications in novel domains, ranging from speech
recognition and writing assistance to autonomous
generation of fake news. Understanding how they
reach their predictions has become a key question
for NLP, not only for purely scientific, but also for
practical and ethical reasons.

From a linguistic perspective, a natural ap-
proach is to test the extent to which these models
have learned classical linguistic constructs, such
as inflectional morphology, constituency struc-
ture, agreement between verb and subject, filler-
gap dependencies, negative polarity or reflexive
anaphora. An influential paper using this approach
was presented by Linzen et al. (2016), who inves-
tigated the performance of an LSTM-based lan-
guage model on number agreement. In many

later papers (e.g. Gulordava et al., 2018; Wilcox
et al., 2018; Jumelet and Hupkes, 2018; Marvin
and Linzen, 2018; Giulianelli et al., 2018) a wide
spectrum of grammatical phenomena has been in-
vestigated, assessing these grammatical abilities
in a mainly “behavioural” fashion, by considering
the model’s output.

In this paper, we take it as established that neu-
ral language models have indeed learned a great
number of non-trivial linguistic patterns and ask
instead how language models come to show this
behaviour, and, more specifically, what kind of
information they use to come to their decisions.
There exist already a number of approaches that
look inside the high-dimensional vector represen-
tations and non-linear functions of these models,
trying to track the flow of information. In the next
section, we will review some of that work, dis-
tinguishing between hypothesis-driven and data-
driven methods. We highlight in particular one
method called Contextual Decomposition (CD,
Murdoch et al., 2018), that combines the strengths
of hypothesis- and data-driven analysis methods.

In the remainder of this paper, we then pro-
pose a generalisation of this method, which we call
Generalised Contextual Decomposition (“GCD”).
We derive equations for GCD for the case of a uni-
directional (one or multi-layer) LSTM (Hochre-
iter and Schmidhuber, 1997), and use the method
to analyse how a language model processes two
different phenomena: number agreement and gen-
dered pronoun resolution.

We demonstrate the power of GCD through the
revelation of some important asymmetries in the
way that both the singular-plural and the male-
female distinction are handled. In particular, we
find evidence for a default reasoning effect, which
we believe could also be important for future work
on detecting and removing bias: a default category
(singular, masculine) appears to be hard-coded in
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the weights of the language model, number and
gender information in the word embeddings them-
selves mainly plays a role for phrases of the op-
posite category (plural, feminine). Furthermore,
GCD enables us to investigate pronoun resolution
in a way that has not been done before: by delv-
ing into the model reasoning we are able to ac-
curately pinpoint where and how this resolution
takes place.1

2 Network analysis methods

Recently, methods to open the blackbox of deep
neural networks have become an important re-
search area (see Poerner et al., 2018; Belinkov
and Glass, 2019, for recent reviews of pro-
posed methods in NLP). We distinguish between
hypothesis-driven methods, and data-driven meth-
ods. Hypothesis-driven methods include probes
or diagnostic classifiers, that test whether specific,
a priori defined information can be decoded from
the internal states of a neural model, many ablation
studies, and types of correlation analysis, where
correlations between the structure of internal rep-
resentations of better and lesser understood mod-
els are studied). An example of this approach is
Giulianelli et al. (2018), who trained linear diag-
nostic classifiers on all layers and gate activations
of an LSTM to predict the number of the subject
that the verb, occurring later in the sentence, needs
to agree with (i.e. the number-agreement task).
Their results show that the relevant information
is encoded in a different way in different compo-
nents of the model, and at different times while
processing a sentence. This result is interesting,
because it starts from a clearly interpretable hy-
pothesis (number information must be maintained
somewhere while the network traverses the sen-
tence), but the work also demonstrates the limita-
tions of the approach: It progresses one hypoth-
esis about one linguistic pattern at a time and in-
volves much training, work, and computation at
each step.

Data-driven methods include gradient-based
methods and contextual decomposition. An ex-
ample of a gradient-based method is Arras et al.
(2017), who adapt Layer-wise Relevance Prop-
agation (LRP, Bach et al., 2015) to the case of
LSTMs. The key idea is to run the LSTM on each

1 We have integrated all our code in diagnnose
(Jumelet and Hupkes, 2019), a well-documented analysis li-
brary which facilitate the diagnosis of neural network activa-
tions: github.com/i-machine-think/diagnnose.

input of interest (the forward pass), then define
a relevance vector at the output layer and prop-
agate that relevance backwards through the net-
work. The relevance vector simply singles out the
dimensions of the output of interest, and sets all
other dimension to zero. The backward pass is al-
most standard backpropagation, except that rele-
vance does not backpropagate into the gates.While
Arras et al.’s results reveal interesting patterns in
sentences used in a sentiment classification task,
their work illustrates some limitations as well. In
particular, the work deals with a classification task
with few classes, aggregates relevance per word
for each predicted class, but offers little insight in
how word meanings interact to build up sentence
meaning beyond ‘pushing in the right direction’
vs. ‘pushing in the wrong direction’.

An alternative data driven method, and the one
that we will expand on in this paper, is Contextual
Decomposition for LSTMs (CD, Murdoch et al.,
2018). The key idea behind this technique is to
partition the hidden states into two components,
that Murdoch et al. label ‘relevant’ and ‘irrele-
vant’. For each word in a sentence, they do a for-
ward pass that computes all cell and gate activa-
tions as in normal operation of the neural network,
but also partition each activation value of each
neuron in h or c in a part that is caused by some
selected token or phrase in focus, and a part that is
not. They achieve this by deriving a factorisation
of the update formulas for h and c, that expresses
them as a long sum of components and then select-
ing some of these components as being relevant,
and others as irrelevant. Qualitative results on sen-
timent analysis suggest that CD can attribute roles
to words in a sentence very well, better than al-
ternatives the authors considered (which, unfortu-
nately, did not include LRP).

CD thus requires no extra training and requires
only the forward pass of the network. It can easily
be extended to work efficiently with many classes,
such as the language modelling task that we are in-
terested in. In the next section, we will define CD
more precisely, where we will use the terms in-
side and outside rather than relevant and irrelevant.
We then propose a generalisation that allows us
to experiment with different hypotheses on what
goes into the inside and outside bins, enabling
some of the advantages of hypothesis-driven anal-
ysis methods to be brought into this data-driven
method.
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Figure 1: A graphical overview of GCD, based on the LSTM design of Olah (2015). φ denotes the phrase in focus,
and t ∈ φ implies the action is only performed when step t is part of φ. � denotes an individual interaction; green
interactions are added the β part and red interactions to γ. V , W , and D represent the linear projections of the
LSTM itself. The interaction set denoted here corresponds to the IN set of Equation 12.

3 Generalised Contextual Decomposition

In this particular study, we consider the LSTM
language model that was made available by Gu-
lordava et al. (2018). This language model (LM)
is a 2-layer LSTM with 650 hidden units in
both layers, trained on a corpus with Wikipedia
data. Given the relevance of the specific LSTM-
dynamics for the understanding of the main
method of our paper, we repeat the equations that
describe it below.

ft = σ(Wfxt + Vfht−1 + bf ) (1)
it = σ(Wixt + Viht−1 + bi) (2)
c̃t = tanh(Wc̃xt + Vc̃ht−1 + bc̃) (3)
ot = σ(Woxt + Voht−1 + bo) (4)

ct = ft � ct−1 + it � c̃t (5)
ht = ot � tanh(ct) (6)

zt = Dht + bd (7)
pt = SoftMax (zt) (8)

The final model output pt represents a multi-
nomial distribution over the model’s vocabulary.
Throughout the paper we refer to the bias terms
b as the model intercepts, to avoid confusion with
general biases that the model may have.

CD To compute the contributions of one or mul-
tiple input tokens (said to be in focus) to the out-
put of an LSTM cell, Murdoch et al. (2018) divide
each cell and hidden state into a sum of two parts:
a β part, which contains the part of this particu-

lar state that stems from inside this phrase, and a
γ part, which contains information coming from
words outside this phrase. The output logit zt can
then be redefined as

zt = Dht + bd = Dβht +Dγht + bd

= βzt + γzt + bd

with βzt providing a quantitative score of the
phrase’s contribution to the logit. How a partic-
ular hidden state ht is partitioned into βht and γht
is determined by two things: i) The decomposi-
tion of the previous states ct−1 (βct−1 and γct−1) and
ht−1 (βht−1 and γht−1), and ii) Which interactions
between the different β and γ terms, the intercepts
b, and the input xt are considered to be part of the
inside contribution of the phrase. We provide a
graphical overview of our setup in Figure 1.

Factorised activation functions The gate inter-
actions cannot yet be expanded into a cross-term
of their input parts, due to the non-linear activa-
tion that wraps them. Murdoch et al. define a
method to factorise the sigmoid and tanh func-
tions for each specific gate into a sum of contribu-
tions of the input terms, such that

tanh(
∑N

i=1
yi) =

∑N

i=1
Ltanh(yi)

Ltanh expresses the contribution of each input,
which is computed by averaging over the differ-
ences of all possible permutations of the input
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terms; a procedure that corresponds to the calcula-
tion of the Shapley values (Shapley, 1953).2

Before this factorisation is performed, an input
token xt is added to the inside part β if it is part
of the phrase for which we decompose (i.e. the
phrase in focus), otherwise it is added to γ. Equa-
tion 1, for example, can then be rewritten as:

ft = σ
(
Vfβ

h
t−1 + Vfγ

h
t−1 +Wfxt + bf

)

= Lσ
(
Vfβ

h
t−1+Wfxt

)
+ Lσ(γ

h
t−1) + Lσ(bf )

(9)

where xt is considered to be inside the phrase in
focus and therefore added to the β part (denoted
in green for extra emphasis). A similar sum can
be written down for the input gate it and the can-
didate cell state c̃t. This allows the two products
ft � ct and it � c̃t of Equation 5 to be expanded
into a sum of cross-terms between the decom-
posed gate and (candidate) cell values. Expand-
ing the forget and input gate results in 15 cross-
terms, that each express different interactions be-
tween the current input, previous β and γ terms,
and the model intercepts.

Murdoch et al. state they observed improve-
ments when the intercept term is fixed to the
first position in each permutation. Consequently,
however, these intercepts are assigned a relatively
larger contribution, as their fixed position makes
their contribution independent of the magnitudes
of the other terms. We therefore pose that the full
set of permutations should be considered, to assign
unbiased contributions to each input term.3

Decomposing interactions Based on all the dif-
ferent interaction terms, the decomposition is de-
termined by which of these interactions should be
considered to belong to the inside part β of the
next cell state and which to the outside part γ.

In the formulation of Murdoch et al., all inter-
actions with outside parts γt are disregarded for
the computation of βt+1, and therefore only infor-
mation directly stemming from the βt terms with
no interference from γt is taken into account. Of
the 15 cross-product terms described above, this
leaves 5 terms to be part of βct+1:

2In the original formulation this procedure is called lin-
earizing. We deemed this term to be slightly confusing, as
the resulting functions L are still non-linear.

3We only discovered the impact of this decision after the
paper had already been reviewed. While using the full set
of permutations did, fortunately, not qualitatively change our
conclusions, the exact numbers presented in this work thus
differ from the earlier version of this paper. For complete-
ness, we report the original results with the fixed intercept
positions in the supplementary materials of this article.

βct+1 = Lσ(Vfβ
h
t +Wfxt)� βct β-β

+ Lσ(bf )� βct β-b

+ Lσ(Viβ
h
t +Wixt)� Ltanh(Vc̃β

h
t +Wc̃xt) β-β

+ Lσ(Viβ
h
t +Wixt)� Ltanh(bc̃) β-b

+ Ltanh(Vc̃β
h
t +Wc̃xt)� Lσ(bi) β-b

(10)

The remaining 10 terms from the cross-product are
put in γct+1. We use the notation {β-β, β-b} to
concisely describe this set of interactions. The de-
composition of the hidden state is created by de-
composing the output gate:

βht+1 = Lσ(Voβ
h
t +Woxt)� βct+1

+ Lσ(bo)� βct+1

(11)

The decomposed contribution score βzT over the
model vocabulary at step T of some phrase in fo-
cus is then calculated by passing the decomposed
hidden state to the decoder, i.e. DβhT . This score
can be expressed as a relative contribution by nor-
malising it by the full model logit z (including
bd). In a multi-layer LSTM, β and γ parts are not
only propagated forward, but also upward, where
they are added to their respective parts in the layer
above them. For initialisation β is set to a zero
vector, and γ is set to the initial LSTM states.4

Generalising CD While Murdoch et al. (2018)
consider only one way of partitioning interactions
between inside and outside components, their
setup can be quite easily generalised to also al-
low other interactions to be included in the inside
terms β. To obtain a better insight into how differ-
ent interactions contribute to the final prediction,
we experiment with various ways of defining the
set of relevant interactions.

A particular case concerns the interactions be-
tween β and γ. It wouldn’t be correct to com-
pletely attribute the information flowing from
these interactions to the phrase in focus, but dis-
allowing any information stemming from interac-
tions of a phrase with a subsequent token results
in loss of relevant information. Consider, for in-
stance, the verb prediction in a number agreement
task. While the correct verb form depends only on
the subject, the right time for this information to
surface depends on the material in between, which
in the setup described in Equation 10 would be dis-
carded by assigning the β-γ interactions to γ.

4For the initial states we use the activations that follow
from the short phrase “. <eos>”. This phrase resets the
model state to a clean slate, and leads to better results than
using 0-valued activations.
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Taking inspiration from Arras et al. (2017), and
based on their motivation, we add the βs-γg in-
teraction to the relevant interaction set, while still
disregarding a γs-βg interaction. The g subscript
denotes the part of the interaction that is coming
from the gate, and s the source part. We denote
this amended interaction as β-γ∗.

Furthermore, we follow the addition of Singh
et al. (2019) of only adding the intercept interac-
tions b-b to the inside part if the current time step
is part of the phrase in focus, which we denote as
b-b ∈ x. We add these β-γ∗ and b-b ∈ x inter-
actions to Equation 10, resulting in the following
decomposition that is presumed to come from in-
side the phrase in focus (denoted as IN):
βct+1 = {β-β, β-b}

+ Lσ(Vfγ
h
t )� βct β-γ∗

+ Lσ(Viγ
h
t )� Ltanh(Vc̃β

h
t +Wc̃xt) β-γ∗

+ Lσ(bi)� Ltanh(bc̃) b-b ∈ x (12)

We also experimented with various other inter-
action sets. To determine the influence of the gate
intercepts, we create an interaction set that does
not take the input embeddings into account at all:
{β-β, β-γ∗, β-b, b-b}, with x always added to γ,
denoted as INTERCEPT∗. We include β-γ∗ to still
account for the way the intercepts are gated by the
input sentence. The initial hidden and cell state are
added to β now as well, as we consider these states
to be part of the model bias. Finally, to determine
the dependence of the input on the gate intercepts
we use an interaction set that never takes the inter-
actions with any intercept into account: {β-β, β-
γ∗}, denoted as ¬INTERCEPT.

4 Experimental setup

We use GCD to study how our LSTM model han-
dles two different linguistic phenomena: subject-
verb agreement and anaphora resolution in rela-
tion to gender. Next to the model of Gulordava
et al. (for which we present our results), we also
ran our experiments on the LM of Józefowicz et al.
(2016), which arrives at similar results.

4.1 Subject-verb agreement
We consider a variant of the number-agreement
(NA) task that was proposed by Linzen et al.
(2016) to assess the syntax-sensitivity of language
models. In this task, a model is evaluated based
on its ability to track a long-distance subject-verb
relation, which is assessed by the percentage of
times that the verb-form it prefers matches the

number of the syntactic subject. Commonly, the
material in between subject and verb contains an
attractor noun that competes with the syntactic
subject, e.g. The keys on the table are.

Here, we consider the NA corpora made avail-
able by Lakretz et al. (2019), which consists of a
number of data sets containing a range of syntactic
constructions in which number agreement plays a
role. We report results for several of their data
sets, but focus in particular on their NounPP sub-
set, in which sentences contain an attractor embed-
ded in a prepositional phrase. These sentences are
formed following the template The N Prep the N
V [..], e.g. The boys near the car greet [..]. The
sentences in this data set are split based on the
number of the subject and the attractor, resulting
in four different conditions: SS, SP, PS, and PP.

4.2 Anaphora resolution and gender bias

Our second experiment concerns anaphora resolu-
tion and the possible gender biases that networks
may use to perform this task. We focus on intra-
sentential anaphora resolution, in which a pronoun
in a subordinate clause refers to an entity in the
main clause, based on gender information. For ex-
ample: The monk liked the nun, because she was
always nice to him.

Compared to number agreement it is more dif-
ficult to formulate a setup for anaphora resolution
in which there is a right or wrong prediction that
directly reflects how the model handles the phe-
nomenon: when predicting she in the example, it
could have been equally probable to predict he.
Rather, to establish if a model correctly resolves
the referent of a pronoun, it should be checked
what the model considered to be the source of this
prediction, which cannot directly be inferred from
the prediction itself. GCD gives us exactly this
information and is therefore an excellent tool to
study anaphora resolution in language modeling.

To create our corpus, we use the templates from
the WinoBias corpus created by Zhao et al. (2018).
This corpus contains sentences with job titles that
are gender neutral, yet contain a stereotypical bias
towards one gender (doctors and CEOs are male,
nurses and housekeepers female). We construct
two types of corpora, one containing the stereo-
typical job titles of Zhao et al. and one in which
we replace these titles by entity descriptions that
are unambiguously gendered (king, bride, father,
etc.). Similar to the NounPP corpus for NA, we
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(a) A single NounPP sentence: singular
subject with plural attractor (SP).

(b) Average NounPP SP: singular sub-
ject with plural attractor.

(c) Average NounPP PS: plural subject
with singular attractor.

Figure 2: Average contributions for the NounPP corpus of Lakretz et al. (2019), defined as βz
t /zt. INIT denotes

the contribution of the initial states. The picture depicts an asymmetry in the way that the model encodes singularity
and plurality: while plural verbs depend strongly on the subject, for singular sentences this is not the case.

create 4 different conditions, based on the gender
of the subject and object (FF, FM, MF, and MM).
An example of an MF sentence would be The fa-
ther likes the woman, because he/she. We sample
from the set of entity descriptions to create 500
sentences per condition, for both corpus types.

4.3 Experiment types
Phrase contributions In the first type of exper-
iment, we consider the contributions of different
words in the input to a later prediction of the
model. This allows us to compare the contribu-
tions of different words in the sentence and track
which words the model uses to come to its pre-
diction. We compute a phrase’s contribution to a
prediction at step t as βzt /zt.

Pruning information In the second type of ex-
periment, we focus on the model’s predictions. In
particular, we study how the model’s predictions
change when it is forced to consider only specific
parts of the input, by disregarding all information
that does not belong to the inside information of
that part of the input. This allows us to quantify
the extent to which a correct prediction does in
fact stem from that phrase. For this experiment,
we consider several different interaction sets, that
differ in what is considered to be inside the contri-
bution of the phrase: IN describes the direct con-
tribution of some phrase, INTERCEPT the contri-
bution of the model intercepts, and ¬INTERCEPT

the contribution of some phrase without its inter-
cept interactions.

5 Subject-verb Agreement

We now study what information the LM uses to
achieve the high prediction accuracies that were

reported by Lakretz et al. (2019).

5.1 Phrase contributions
For every word in a sentence, we compute the
GCD contribution for all words preceding this
word. We plot these contributions in a decomposi-
tion matrix (akin to the attention plots often seen
in machine translation papers). Every cell of this
matrix represents the contribution of an input xi
(row i) to an output yj (column j). The complete
decomposition of an output word yj can thus be
found in column j. The reported scores are the
decomposed scores normalised by the total model
logit, resulting in the relative contribution.

In Figure 2, we plot the average decomposition
matrices for the SP and PS splits of the NounPP
data set. While many interesting observations can
be made here, we would like to focus on the final 2
columns that represent the decompositions of the
correct and wrong verb in the sentence, and on the
contribution of the subject to this verb. In the sin-
gular case (2b), this contribution is, surprisingly,
relatively low: The correct verb prediction does
not seem to depend solely on the syntactic sub-
ject, but stems from elements that lie outside the
subject as well. For the plural case, this picture
is strikingly different: The highest contribution
now stems from the subject of the sentence. When
considering the decomposition of the wrong verb
(the final column) it becomes even more clear that
contributions to a plural verb predominantly stem
from a plural noun, whereas singular verbs receive
strong contributions from non-numbered tokens as
well. This quite remarkable difference provides
the first evidence for one of our conclusions: A
singular prediction acts as the default number for
the model, and predicting a plural verb requires
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Task C FULL IN INTERCEPT∗ ¬INTERCEPT

Simple S 100 73.3 (91.3) 97.3 (100) 69.7 (86.3)
Simple P 100 100 (100) 32.7 (7.7) 100 (100)

nounPP SS 99.2 93.0 (99.7) 99.8 (99.8) 72.7 (88.7)
nounPP SP 87.2 90.3 (99.3) 98.8 (99.8) 60.5 (83.5)
nounPP PS 92.0 100 (100) 0.0 (0.0) 100 (100)
nounPP PP 99.0 100 (99.3) 7.0 (0.5) 99.8 (100)

namePP SS 99.3 97.7 (91.3) 99.4 (100) 76.2 (90.9)
namePP PS 68.9 98.3 (98.2) 1.3 (0.0) 99.9 (99.9)

Table 1: Accuracies on various subject-verb agreement
tasks of Lakretz et al. (2019). FULL denotes the full
model accuracies. IN is the decomposition of the sub-
ject, INTERCEPT∗ only decomposes the gate intercepts
of the model. ¬INTERCEPT takes no interactions with
the intercepts into account. Singular conditions are de-
noted in green. (·) denotes accuracies of scores without
decoder bias, i.e. Dht vs Dht + bd.

some explicit evidence coming from the subject.

5.2 Pruning information

To quantify to which extent the model bases its
prediction on the subject, we prune all information
that is not directly related to the subject and repeat
Lakretz et al.’s NA tasks. If the model prediction
were based solely on the number of the subject,
its accuracy should go up, as we filter out all po-
tentially intervening or confusing information. If,
on the other hand, the prediction of the verb is
not causally linked to the subject, but the model
is using heuristics that require the rest of the sen-
tence, no increase in accuracy is to be expected.
We show the results, along with the accuracy of
the full model in Table 1.

These numbers show a strong causal relation
between plural subjects and verbs: The number
prediction accuracy for the IN decomposition goes
up for all cases with a plural subject. This confirms
our previous finding from the decomposition ma-
trix, which showed a relatively high contribution
of plural subjects to plural verbs, as well as the
conclusion of Lakretz et al. (2019) that the model
is in fact keeping track of syntactic structure.

When considering the singular subjects an in-
teresting pattern emerges: The decomposition of
sentences for which the intervening attractor has
the same number leads to a lower accuracy. This
confirms that the model is in fact basing its predic-
tion for these conditions on information that lies
outside the subject itself.

Intercepts When we only decompose with re-
spect to the gate intercepts (INTERCEPT∗, column

5) it turns out the model has an extreme preference
for selecting singular verbs. Decomposing with-
out the intercept interactions (NO INTERCEPT, col-
umn 6) leads (as expected) to opposite results: the
decomposed model now has a strong preference
towards plural verbs as the singular prediction no
longer can depend on these intercepts. This further
confirms that singular verbs are used as a default
baseline, which is partly encoded in its intercepts.
To predict plural verbs, on the other hand, some
evidence is needed, which the model picks up cor-
rectly from the subject number.

Corpus frequency One would expect that due
to the model’s default number being singular, this
class to be more encountered during training. This
turns out not to be the case: in the model’s training
corpus the plural verbs of the NA tasks occurred
over 5 times as often as their singular counterparts.
This higher frequency is in fact represented in the
decoder intercept, which is higher on average for
plural verbs, but it is surprising that the LSTM
weights encode a default for the minority class.

6 Anaphora-resolution and gender

For the NA-tasks, the full model accuracy provides
evidence that the model can perform the task well;
for anaphora resolution, it is not possible to create
such accuracies based on the full model predic-
tions alone. In this section, we therefore address
two different questions: 1) Does the model cor-
rectly resolve referents? In other words: When the
model generates a male or female pronoun, does it
consistently do this based on male and female ref-
erents encountered earlier in the sentence, and 2) If
the model correctly performs anaphora resolution,
what types of interactions and information does it
use to do so? In our analysis we furthermore con-
sider the difference between sentences with un-
ambiguously gendered referents with sentences in
which the gender of the referents is ambiguous but
contains a stereotypical male or female bias.

6.1 Phrase contributions
As the template that the sentences in our anaphora
data set follow is not as rigid as those of the NA
tasks, creating an averaged decomposition matrix
for all words in the sentences does not result in a
comprehensive picture. To evaluate whether the
model links pronouns to referents of the correct
gender, we subtract the referent contribution to she
from that to he: βzhe/zhe − βzshe/zshe. A positive
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(a) unambiguous (b) stereotypical

Figure 3: Average decomposed preference of he over
she, calculated as the difference between the relative
contributions: βz

he/zhe − βz
she/zshe. Positive values de-

note male preference, negative values female prefer-
ence. Phrases occurring between subject and object,
and object and pronoun are denoted with [...].

difference then indicates this referent had a greater
contribution towards predicting he than she, and
a negative difference vice versa. Little difference
indicates that the referent did not contribute much
to the gender of the predicted pronoun.

Unambiguous referents In Figure 3a we plot
this relative contribution difference for the two
conditions in our data set that contain both an un-
ambiguous female and male referent. It is evident
that the model bases its prediction on a referent of
the right gender: The female subjects and objects
contribute more to the prediction of she (reflected
by the negative purple cells) and the male subjects
and objects more to the prediction of he (the posi-
tive green cells).

Interestingly, this effect is much stronger visi-
ble for the female connections. The reason for this
can be found in the model intercepts; male prefer-
ence is more strongly encoded in the intercepts of
the decoder: he has an intercept of 7.75, she only
6.09. This enables the model to use this male pre-
diction as a default, similar to how singular verbs
acted as a default baseline for number prediction.
Akin to number agreement the model thus needs
to encounter sufficient evidence of an entity being
female to prefer a female pronoun. In the next sec-
tion we show that this male default is encoded in
the gate intercepts as well.

Stereotypical referents The intermediate con-
clusion that the language model performs success-
ful anaphora resolution on our experiment also
provides us the opportunity to probe the gender
biases of the model. To do so, we repeat the pro-
noun preference test on an adapted version of the
WinoBias corpus (Zhao et al., 2018), in which all
referents are only stereotypically considered to be

male or female (e.g., doctor and nurse). The re-
sults, plotted in Figure 3b, show that the model is
very susceptible to stereotypically male referents;
these decomposed scores contain an even stronger
male preference than for the unambiguous corpus.
The stereotypically female referents, on the other
hand, do not lead to a female preference, indicat-
ing that their contribution is not considered strong
enough evidence by the model to prefer a female
pronoun. All the intermediate tokens exhibit a
slight male preference, a pattern that is compa-
rable to the singular bias of the NA task. From
these results we conclude that the model considers
a stereotypically male job occupation to be male
(“doctors are male”), whereas this does not hold
for stereotypically female jobs.

6.2 Pruning information
Following our subject-verb agreement setup, we
compare the predictions of our language model
when it focuses only on the subject or object of the
sentence. In Table 2, we show the percentage of
cases in which he is assigned a higher decomposed
score than she, for both unambiguously gendered
referents and stereotypically gendered referents.

FULL In the first column of Table 2a, we see
that if the sentence contains referents of the same
gender (MM & FF), the full model prediction al-
most always prefers to use a pronoun with that
same gender. When both a male and female ref-
erent are present, the model has a slight prefer-
ence for generating a pronoun that matches with
the subject of the sentence (which, interestingly,
is the referent that is the furthest away from the
pronoun). In the stereotypical case (Table 2b), the
difference between male and female sentences for
the FULL scores almost disappears, showing a pre-
dominant male pronoun preference. This shows
that the model by default prefers a masculine pro-
noun, and only when it is provided sufficient evi-
dence of a female entity it will consider predicting
she (similar to number agreement).

Pruning When considering the decompositions
with relation to the subject or object we see that
the decomposed score of a male entity in all con-
ditions always prefers a male pronoun. For female
entities this effect is slightly obscured by the male
bias of the decoder intercept: The accuracies with-
out adding this intercept highlight that female con-
tributions lead to a strong female preference. For
the stereotypical corpus this female preference is
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FULL SUBJECT OBJECT INTERCEPT∗

MM 100 100 (93.2) 100 (97.8) 100 (93.2)
MF 58.6 100 (86.4) 47.2 (0.8) 100 (96.0)
FM 37.0 29.2 (0.6) 100 (97.2) 100 (98.0)
FF 1.2 77.2 (0.8) 88.8 (1.2) 100 (92.2)

(a) %he>she, unambiguous referents

GCD

FULL SUBJECT OBJECT INTERCEPT∗

MM 100 100 (100) 100 (100) 100 (88.0)
MF 94.6 100 (99.6) 95.4 (84.0) 100 (84.8)
FM 88.8 90.6 (77.4) 100 (100) 100 (91.0)
FF 84.6 92.8 (75.6) 97.4 (84.0) 100 (89.2)

(b) %he>she, stereotypical referents

Table 2: Gender preference on the fixed and stereotypical gender corpora. Reported scores are the percentage of
times he is preferred over she. The first column denotes the gender of the subject and object. FULL denotes the full
model preference, SUBJECT the decomposed score of the subject phrase (including determiners), and OBJECT the
decomposed object score. INTERCEPT∗ is the decomposed score with relation to the intercepts only. (·) denotes
accuracies of scores without decoder bias, i.e. Dht vs Dht + bd.

far less apparent, which is in line with the results
of Section 6.1. When solely considering the inter-
cept contributions it becomes clear once more that
a strong male bias is encoded in them, an effect
that is further amplified by the decoder intercept.

Corpus frequency For NA the default class
turned out to be less frequent in the training cor-
pus. For our gender setup it turns out the male
default is in fact the majority class, with he being
nearly 4 times more frequent than she. We con-
clude that the default class is not directly corre-
lated to training frequency and likely depends on
the phenomenon at hand, although an investiga-
tion incorporating a wider range of models would
be needed to establish this.

7 Conclusion

We propose a generalised version of Contextual
Decomposition (Murdoch et al., 2018) – GCD –
that allows to study specifically selected interac-
tions of components in an LSTM language model.
This enables GCD to extract the contributions of
a model’s intercepts, or to investigate the interac-
tions of a phrase with other phrases and intercepts.

We analyse two linguistic phenomena in a pre-
trained language model: subject-verb agreement,
in which number plays a role, and anaphora reso-
lution for which gender is important. Anaphora
resolution in the context of language modelling
had not been investigated thoroughly before, and
our setup enables this at an unprecedented level.

We trace what information the language model
uses to make predictions that require gender and
number information and find that, in both cases,
the model applies a form of default reasoning, by
falling back on a default class (male, singular) and
predicting a female or plural token only when it is
provided enough explicit evidence. As such, the
decision to predict masculine and singular words

can not be traced back evidently to specific infor-
mation in the network inputs, but is encoded by
default in the model’s weights.

Our setup and results demonstrate the power of
GCD, which can be applied on top of any model
without additional training. Our results bear rele-
vance for work on detecting and removing model
biases, and may clarify some of the issues that
were raised by Gonen and Goldberg (2019), who
argue that current bias removal methods only op-
erate on a superficial level. GCD could also be
used to aid a model in guiding it towards the right
flow of information, which could be applied to a
wide range of applications such as the interven-
tions of Giulianelli et al. (2018). In the future, we
plan on extending GCD to other types of language
models, such as the currently popular attention-
based models. Furthermore, we wish to expand
the capacities of GCD by improving the gate fac-
torisation with a better Shapley value approxima-
tor, such as those proposed by Lundberg and Lee
(2017) or Ancona et al. (2019). The axiomatic ap-
proach of Montavon (2019) could provide further
insight into how GCD relates to other explanation
methods, and we are confident that combining the
strengths of GCD with that of other frameworks
will ultimately lead to a more robust and faithful
insight into deep neural networks.
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Abstract

Supertagging is a sequence prediction task
where each word is assigned a piece of com-
plex syntactic structure called a supertag. We
provide a novel approach to multi-task learn-
ing for Tree Adjoining Grammar (TAG) su-
pertagging by deconstructing these complex
supertags in order to define a set of re-
lated but auxiliary sequence prediction tasks.
Our multi-task prediction framework is trained
over the exactly same training data used to
train the original supertagger where each aux-
iliary task provides an alternative view on the
original prediction task. Our experimental re-
sults show that our multi-task approach signifi-
cantly improves TAG supertagging with a new
state-of-the-art accuracy score of 91.39% on
the Penn treebank supertagging dataset.

1 Introduction
A treebank for lexicalized tree-adjoining grammar
(TAG) (Joshi and Schabes, 1997) consists of an-
notated sentences where each word is provided a
complex tree structure called a supertag and the
overall parse of the sentence combines these su-
pertags into a parse tree. Supertagging is a task
that learns a sequence prediction task from this an-
notated data and is able to then assign the most
likely sequence of supertags to an input sequence
of words (Bangalore and Joshi, 1999). Once the
right supertag is assigned then parsing is a much
easier task and may not even be needed for many
applications where information about syntax is
needed but a full parse is unnecessary.

Supertagging has been shown to be useful for
both Tree Adjoining Grammar (TAG) (Banga-
lore and Joshi, 1999) and combinatory catego-
rial grammar (CCG) (Hockenmaier and Steedman,
2007) parsing. In this paper we aim to improve
the state-of-the-art for the task of learning a TAG
supertagger from an annotated treebank (Kasai

et al., 2018). We observe that supertag predic-
tion does not take full advantage of the complex
structural information contained within each su-
pertag. Neural models have been used to learn em-
beddings over these supertags and thereby share
weights among similar supertags. Friedman et al.
(2017) provide tree-structured neural models over
supertags which can learn interesting relationships
between supertags but the approach does not lead
to higher supertagging accuracy.

Our main contribution is to provide several
novel ways to deconstruct supertags to create mul-
tiple alternative auxiliary tasks, which we then
combine using a multi-task prediction framework
and we show that this can lead to a significant im-
provement in supertagging accuracy.

Multi-task learning (MTL) (Caruana, 1997)
learns multiple heterogenous tasks in parallel with
a shared representation so that what is learned for
one task can be shared for another task. In most
cases the improvement is due to weight sharing be-
tween different tasks (Collobert and Weston, 2008;
Luong et al., 2015). While some combinations
may not provide any benefit in MTL (Bingel and
Søgaard, 2017) and the improvements might be
simply due to training on more data. However,
MTL can be effective even when using large pre-
trained models (Liu et al., 2019).

Unlike most other work in multi-task learning
with neural models we do not use different an-
notated datasets for each task. Similar to the ap-
proach to combining different representations for
phrase structure parsing in (Vilares et al., 2019)
we also construct multiple tasks from exactly the
same training data set. Our approach is also dis-
tinct in that we take advantage of the structure of
the supertags by deconstructing the tree structure
implicit in each supertag.

Our experimental results show that our novel
multi-task learning framework leads to a new
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state-of-the-art accuracy score of 91.39% for TAG
supertagging on the Penn Treebank dataset (Mar-
cus et al., 1993; Chen et al., 2006) which is a sig-
nificant improvement over the previous multi-task
result for supertagging that combines supertagging
with graph-based parsing (Kasai et al., 2018).

2 The Supertagging Task
Supertagging assigns complex structural descrip-
tions to each word in the sentence. The complex
structural descriptions come from grammar for-
malisms that are more expressive than context-free
grammars for phrase structure trees or dependency
trees. In Tree Adjoining Grammar (TAG), the su-
pertags are tree fragments that can express vari-
ous syntactic facts such as transitive verb, wh- ex-
traction, relative clauses, appositive clauses, light
verbs, prepositional phrase attachment and many
other syntactic phenomena. In combinatory cat-
egorial grammar (CCG) the supertags are types
and their type-raised variants which also cap-
ture similar syntactic phenomena as in TAG su-
pertags. Supertagging can be viewed as “almost
parsing” (Bangalore and Joshi, 1999) and can pro-
vide the benefits of syntactic parsing without a full
parser.

In this paper we focus on the TAG supertagging
task, however, our proposed methods can likely be
used to improve CCG supertagging as well. Su-
pertagging is a relatively simple linear time se-
quence prediction task similar to part of speech
tagging. Supertagging can be useful in many
applications such as machine translation, gram-
matical error detection, disfluency prediction, and
many others while being a much simpler task than
full parsing.

In addition, for both TAG and CCG, supertag-
ging is an essential first step to parsing so any
improvements in supertag prediction will benefit
parsing as well. For all these reasons, in this paper
we focus on the supertagging task. TAG and CCG
can be parsed using graph-parsing methods in
O(n3) but the complexity of unrestricted parsing
for both formalisms is O(n6) which is prohibitive
on real-world data. Neural linear-time transition
based parsers are still not accurate enough to com-
pete with the state-of-the-art supertagging mod-
els or parsers that use supertagging as the initial
step (Chung et al., 2016; Kasai et al., 2018).

An example of the supertagging task for Tree
Adjoining Grammars (TAGs) is shown in Fig. 1.
The ↓ symbol on a leaf node represents a substitu-

tion node which can be expanded by a tree rooted
in the same label, e.g. t3 rooted in NP substitutes
into the NP↓ node in t46. The ∗ symbol on the leaf
node of a tree t represents an adjunction node (also
called a footnode) and signifies that t can be in-
serted into an internal node of another tree with the
same label, e.g. t103 adjoins into the AP node in
t46. The � node is called the head and represents
the node where the word token is inserted into the
tree. The table on the right shows how many dif-
ferent supertags are possible for each word in the
sentence.

Three factors make supertagging a challenging
task for sequence prediction: much more severe
token level ambiguity when compared to other
like part-of-speech tagging, a large number of dis-
tinct supertag types (4727 distinct supertags in
our dataset, including an unknown supertag) and
a complex internal structure for each supertag.

3 Baseline Supertagging Model
For our baseline supertagging model we use the
state-of-the-art model that currently has the high-
est accuracy on the Penn treebank dataset (Kasai
et al., 2018). For the supertagging model the main
contribution of Kasai et al. (2018) was two-fold:
the first was to add a character CNN for model-
ing word embeddings using subword features, and
the second was to add highway connections to add
more layers to a standard bidirectional LSTM. The
output layer was a standard multi-layer perceptron
that had a softmax output over the set of supertags.
Another extension to the standard sequence pre-
diction model in Kasai et al. (2018) was to com-
bine supertagging with graph-based parsing.

In this paper, we focus on the supertagging
model and compare only on supertagging accu-
racy. The neural model for supertagging that we
use as a baseline uses graph-based parsing as an
auxiliary task and has the current highest accu-
racy score on the Penn treebank (90.81%). The
model has three main components: the input layer,
the bidirectional LSTM component, and the out-
put layer which computes a softmax over the set
of supertags. The input to the model is a sequence
of words and the output is a sequence of supertags,
one per word, which makes it a standard tagging
aka sequence prediction task.

3.1 Input Layer

Each word in the input sequence is converted into
a word embedding in the input layer. Following
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NP

NP∗D�

The

t1:

NP

N�

answer

t3:

VP

VP∗V�

seems

t23:

AP

AP∗Ad�

perfectly

t103:

S

VP

AP

A�

clear

NP0 ↓

t46:

S

.�S∗

t26: Token #supertags
The 5

answer 14
seems 20

perfectly 5
clear 32

. 16

Figure 1: An example that explains the supertagging task for Tree Adjoining Grammars (TAGs). For the sentence
“The answer seems perfectly clear .” the correct supertag for each word is shown above. The table on the right
shows how many different supertags are possible for each word in the sentence. See Section 2 for more details on
the notation used to define the supertags and how the supertags can be combined to form a parse tree.

(Kasai et al., 2018) we use two components in the
word embedding:

• a 30-dimensional character level embed-
ding vector computed using a char-CNN
which captures the morphological informa-
tion (Santos and Zadrozny, 2014; Chiu and
Nichols, 2016; Ma and Hovy, 2016; Kasai
et al., 2018). Each character is encoded as
a 30-dimensional vector, and then we apply
30 convolutional filters with a window size of
5. This produces a 30-dimensional character
embedding.

• a 100/200/300 size word embedding which
is initialized using GloVe (Pennington et al.,
2014). For words that do not appear in
GloVe, we randomly initialized the word em-
bedding.

A start of sentence token and an end of sentence
token is added into the beginning and ending po-
sition of each sentence, but is not included in the
computation of loss and accuracy.

Unlike (Kasai et al., 2018) we do not use pre-
dicted part of speech (POS) tags as part of the in-
put sequence. In our experiments, the improve-
ment was negligible and there was a significant
overhead of having to do part of speech predic-
tions at test time.

3.2 BiLSTM Layer

The core of this base model is a bidirectional
recurrent neural network, in particular a Long
Short-Term Memory neural network (Graves and
Schmidhuber, 2005). For the hyperparameters, we
use the settings in Kasai et al. (2018) in order to
ensure a fair comparison.

Unlike (Kasai et al., 2018) we do not use high-
way connections in our model. We did exper-
iment with the addition of highway connections
but we found no improvement in accuracy over
the baseline BiLSTM-only model with a signifi-
cant increase in training time.

The bidirectional representation has 1024 units,
a combination of the 512 forward and backward
units each. Dropout layers (Gal and Ghahramani,
2016; Srivastava et al., 2014) are inserted between
the input and BiLSTM layer, between BiLSTM
layers, and between recurrent time steps. The
dropout rate used was 0.5. We used 2-3 BiLSTM
layers. Kasai et al. (2018) provide some reasons
why > 3 layers do not provide any additional ac-
curacy even with highway connections.

3.3 Output Layer

We concatenate hidden vectors from both direc-
tions of the last layer of BiLSTM and pass it into a
multilayer perceptron (MLP). In practice a single
layer perceptron performs just as well in this task.
The number of input neurons of the single layer
perceptron equals 1024 (2 × 512) and the output
vector size equals the number of labels for each
specific task: 4727 for the main supertagging task.

4 Deconstructing Supertags
The error analysis of our baseline BiLSTM model
is shown in Fig. 1. We observed some consis-
tent ways in which the baseline model confused
the correct supertag with the incorrect one. We
also observed that the baseline BiLSTM model
can achieve over 97% 3-best accuracy on the su-
pertagging task. This means it should be possible
to boost the accuracy by rescoring the alternatives
that already exist in the n-best output of the base-
line supertagger. Rather than a re-ranking frame-
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Prediction Ground Truth #times in dev

NP

NP∗N�

t2:
NP

NP∗A�

t36:

194

CO�

tCO:

VP

PP

NP1 ↓IN�

VP∗

t13:

156

NP

PP

NP1 ↓IN�

NP∗

t4:
VP

PP

NP1 ↓IN�

VP∗

t13:

144

Table 1: The top-3 errors made by the state-of-the-art
Bi-LSTM supertagger. tCO stands for a co-head in the
case where a supertag has multiple heads. One example
is a sentence fragment like pull it from the marketplace
which contains a multi-word predicate pull . . . from;
pull is the V� head of tree t531 which has a INc node
where tCO (headed by from) is inserted.

work we used a multi-task learning framework in
order to boost the scores of correct supertags over
the error-prone supertags. The auxiliary tasks we
created based on our error analysis are as follows.

4.1 Auxiliary Tasks

4.1.1 HEAD

Consider the trees t2 and t36 in Table 1. t2 is
headed by a noun head N and t36 is headed by an
adjective A. The label of the head node is a use-
ful auxiliary task for disambiguation. We define
a function HEAD(t) to get the head node (marked
by a diamond) of supertag t. There are 29 distinct
HEAD labels.

4.1.2 ROOT

Consider the trees t4 and t13 in Table 1. t4 mod-
ifies an NP node while t13 modifies a VP node.
This is a case of preposition attachment ambigu-
ity. The label of the root node is a useful auxil-
iary task for disambiguation. We define a function
ROOT(t) to get the root node of supertag t. There
are 48 distinct ROOT labels.

4.1.3 TYPE

Consider the trees tCO and t13 in Table 1. tCO is a
supertag that does not use adjunction (this type of
supertag is called an initial tree). In contrast, t13
modifies an internal VP node in another supertag
(this type of supertag is called an auxiliary tree). In
addition a left auxiliary tree modifies from the left

while a right auxiliary tree modifies from the right.
To make this task more sensitive we also include
the node label of the root (for initial trees) or footn-
ode which is the node marked with ∗ (for left/right
auxiliary trees). We define a function TYPE(t) to
obtain the type of each supertag. There are 67 dis-
tinct types.

4.1.4 SKETCH

In many cases, the overall shape of the supertag
is useful for disambiguation, ignoring the node la-
bels. The following example keeps the tree struc-
ture of the supertag but removes the node labels:

S

S∗PP

NP1 ↓IN�

X

XX

XX

Tree sketches help disambiguation (see t81 in Ta-
ble 5). We define a function SKETCH(t) that re-
turns the sketch. There are 602 distinct supertag
sketches.

4.1.5 SPINE

The spine of a supertag is the path from the root
node to the head node (marked by �). The follow-
ing example keeps only the path from root to head
and produces a spine supertag:

S

S∗PP

NP1 ↓IN�

S

PP

IN

Spine supertags are helpful for disambiguation as
well (see t132 in Table 5). We use a function
SPINE(t) to return the spine of supertag t. There
are 1372 distinct supertag spines.

4.2 Multi-task Framework

Unlike most other work in multi-task learning with
neural models we do not use different datasets for
each task. We use exactly the same training data
set but we construct multiple tasks with alternate
output labels by automatically deconstructing the
supertags (the output labels in the original task).
These alternate output labels are easier to predict
than the full set of supertags, and these new output
labels are related to the original supertag in a lin-
guistically relevant way. As a result, we train on
the same training set but with alternate output la-
bels, each forming a different task. We then com-
bine these multiple tasks in order to improve the
performance in the original supertagging task.
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Figure 2: The prediction procedure of combining mod-
els trained on separate tasks

The usual criticism of a fair comparison be-
tween multi-task and single-task learning is that
the multi-task setting simply uses more la-
beled data instances (typically with different data
sources) and as a result a fair comparison between
a multi-task and a single-task setting should in-
volve large pre-trained models trained using a lan-
guage modelling objective (such as ELMO (Pe-
ters et al., 2018) or BERT (Devlin et al., 2018)).
In our case, because we re-use the same training
set for multi-task learning, we have made sure our
experimental settings exactly match the previous
best state-of-the-art method for supertagging (Ka-
sai et al., 2018) and we use the same pre-trained
word embeddings to ensure a fair comparison.

We train six different neural sequence predic-
tion models independently on the supertagging
task, root node prediction (ROOT), head node pre-
diction (HEAD), tree type prediction (TYPE), tree
sketch prediction (SKETCH) and tree spine pre-
diction (SPINE) tasks. For each task, we use the
state-of-the-art baseline supertagging model as de-
fined in Section 3. The only change is that the

output size for softmax is changed to reflect the
number of output labels in each task. We obtain
very high accuracies for each of the tasks. For
example, on the dev set we obtain the following
accuracies: ROOT = 97.04%, HEAD = 93.37%,
TYPE = 93.14%, SKETCH = 93.74% and SPINE
= 91.00%.

We train the model, including the word embed-
ding (which is initialized using a pre-trained em-
bedding) and character-level CNNs by optimiz-
ing the negative log-likelihood of the predicted se-
quences of output labels. The output labels for
each task is different: supertag, root node, head
node, tree type, sketch, spine. Training is done us-
ing minibatches. The main hyperparameters are as
follows: we use the ADAM optimizer with a batch
size of 100 and learning rate ` = 0.001 (Kingma
and Ba, 2015). After every training epoch, we
evaluate the model on the dev set, if the accuracy
on dev set has not been improved for five consecu-
tive epochs, training stops. The maximum number
of epochs is 70. After obtaining the best model
trained with ` = 0.001, we further fine-tune the
best model using ` = 0.0001 for at most 10 more
epochs. By conducting this step, we have seen
0.1% to 0.2% accuracy improvement depending
on the task.

After obtaining the best trained model on each
of the multiple tasks we combine the multiple
tasks together in order to create a decoder for the
supertagging task.

We first run the baseline supertagger to obtain
the distribution PSTAG and using this distribution
we select the top-K output supertags for each word
in each sentence in the dev or test data. We exper-
iment with different values of K but we know that
even K=3 gives 97% accuracy for the supertagging
task. For each dev or test sentence we also com-
pute the output softmax distributions for each task,
PHEAD, PROOT, PTYPE, PSKETCH, PSPINE. Each of
these probabilities are defined as a sequence pre-
diction task over the auxiliary tasks using the func-
tions defined in Section 4.1.

PHEAD(t) = P (HEAD(t))
PROOT(t) = P (ROOT(t))
PTYPE(t) = P (TYPE(t))
PSKETCH(t) = P (SKETCH(t))
PSPINE(t) = P (SPINE(t))

We compute the argmax sequence of supertags
t∗1, t

∗
2, . . . , t

∗
T by scoring each supertag t∗i individ-
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ually from the top-K list by combining the proba-
bilities from the different tasks as follows:

t∗i = argmax
ti∈S

(1)

α1PSTAG(ti) + α2PHEAD(ti) (2)

+α3PROOT(ti) + α4PTYPE(ti) (3)

+α5PSKETCH(ti) + α6PSPINE(ti) (4)

S is the top-K set of supertags for each word
in the input sequence. The hyperparameters αi

can be tuned. However we found in our experi-
ments that the results were not very sensitive to
the values, and the uniform distribution over all
the tasks performed the best. The model and de-
coding step for our multi-task model is shown in
Fig. 2. We also experiment with a commonly used
multi-task model where some or all of the compo-
nents are shared between the different (unlike our
approach)..

5 Dataset
We use the dataset that has been widely used
by previous work in supertagging and TAG pars-
ing (Bangalore et al., 2009; Chung et al., 2016;
Friedman et al., 2017; Kasai et al., 2017, 2018).
We use the grammar and the TAG-annotated WSJ
Penn Tree Bank extracted by Chen et al. (2006).
As in previous work, we use Sections 01-22 as the
training set, Section 00 as the dev set, and Sec-
tion 23 as the test set. The training, dev, and test
sets comprise 39832, 1921, and 2415 sentences;
950028, 46451, 56683 tokens, respectively.

The TAG-annotated version of Penn tree-
bank (Chen and Shankar, 2001) includes 4727 dis-
tinct supertags (including an unknown supertag)
and the grammar file of all supertags is down-
loaded from http://mica.lif.univ-mrs.fr/.
There are 69 auxiliary tree TYPEs, 40 distinct
types of ROOT node and 30 different types of
HEAD node, 602 tree SKETCHes and 1372 tree
SPINEs.

6 Results and Discussion
For our experiments, we implemented all of the
models we discussed above in PyTorch (Paszke
et al., 2017). We have various hyperparame-
ters and Table 2 shows the results obtained from
the different model configurations which were de-
scribed in Section 3. The table also includes the
results from the multi-task model and decoder de-
scribed in Section 4. We experiment with pre-

trained GloVe word embeddings of three different
sizes: 100, 200 and 300.

With our multi-task approach, all base mod-
els gain significant improvements compared to a
single supertagging base model between 0.4% to
0.65%. We also varied the parameter K which
picks the top-K supertags from the baseline model
for use with the multi-task model. Table 3 that in-
creasing K helps up to a point. After K=10 there
is no further improvement.

We obtain a new state-of-the-art result of
91.39% which is significantly better than the
90.81% result which combines supertagging with
the parsing task and so is using more labeled train-
ing information used by our supertagger models.

Table 4 shows the result of task ablation for each
task. We can see that adding a new task always
improves the results. The best result is obtained
by using all five auxiliary tasks.

We computed a significance score on
the accuracy of our best model BiL-
STM3+CNN+GloVe200 with and without
multi-task learning. On the dev set, using
McNemar’s significance test we found that the
multi-task model is significantly better than the
baseline model with a p-value of 0.0062; on the
test set, the p-value is 0.0064.

We evaluated our own implementation of the
baseline BiLSTM-only model and even with high-
way connections we only obtained 89.25% on the
dev set compared to the built-in BiLSTM imple-
mentation in Pytorch (without highway connec-
tions) which obtains 89.94%.

6.1 Task Contribution

Table 5 shows some examples about how each
of auxiliary tasks can help in the correction of
supertag prediction. Examples of each task are
selected if a considerable number of predictions
of each example are corrected after applying the
multi-task model.

While the multi-task model can correct many
wrong predictions made by the baseline model, the
multi-task model may also override some correct
predictions.

The first row is an example of the prediction
of head node that helps differentiate two similar
supertags, t2 and t36. In the dev set, there are
24 words of which ground truth supertags are t2,
wrongly predicted as t36 by a single base model;
25 words of which ground truth supertags are t36,
wrongly predicted as t2. All of those words are
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Model Multi-task Dev Test
BiLSTM3+HW+CNN+POS+GloVe100 (Kasai et al., 2018) - 90.45 90.81

BiLSTM2+GloVe100
No 89.11 -
Yes 89.67 -

BiLSTM2+CNN+GloVe100
No 89.45 -
Yes 90.12 -

BiLSTM3+GloVe100
No 89.41 -
Yes 90.02 -

BiLSTM3+CNN+GloVe100
No 89.83 -
Yes 90.41 -

BiLSTM3+CNN+GloVe200
No 89.94 -
Yes 90.55 91.37

BiLSTM3+CNN+GloVe300
No 89.91 -
Yes 90.45 -

Shared BiLSTM layer
(BiLSTM3+CNN+Glove200)

No 90.11 90.83
Yes 90.11 90.83

Table 2: Supertagging task results. The number after BiLSTM represents the number of BiLSTM layers; CNN
refers to the word embedding model using character-level CNN; the number immediately after GloVe represents
the dimension of pre-trained GloVe word vectors. HW in Kasai et al. (2018) refers to highway connections, and
POS refers to the use of predicted part-of-speech tags as inputs. We do not use HW or POS in our models as they
do not provide any benefit.

Top-K Dev Test
Top-3 90.55 91.37
Top-5 90.58 91.38
Top-10 90.58 91.39
Top-20 90.58 91.39

Table 3: Change in accuracy as K is increased when
choosing Top-K supertags for rescoring. The model
used is BiLSTM+CNN+GloVe200.

correctly predicted by the multi-task model. The
ROOT, TYPE, SKETCH and SPINE are all the
same for t2 and t36, the only difference is the
HEAD value, N for t2 and A for t36. The model
for the HEAD task correctly predicts the head
node of those words which is further improved us-
ing our multi-task approach.

The second row demonstrates how the tree
sketch can help discriminate supertags. t81 and
t27 have exactly the same ROOT, HEAD, SPINE
(S-VP-V) and TYPE (Init), the only difference be-
tween these two supertags is the tree structure.

The third to fifth rows are examples of the ef-
fect of multiple auxiliary tasks in getting the pre-
diction right. The third row is an example of the
prediction of TYPE and SKETCH that can help
differentiate supertags. The TYPE of t3 is Init,
while t38 has TYPE Left+NP. They also have dif-

ferent tree sketches. There are 11 words of which
supertags are wrongly predicted as t3 by a single
supertagging model, but correctly predicted as t38
by the multi-task model; also, 3 words of which
supertags are wrongly predicted as t38 by a single
supertagging model, but correctly predicted as t3
by the multi-task model.

The forth row is an example of how the predic-
tion of the ROOT can help differentiate supertags.
The ROOT of t3 is NP, while t18 has ROOT N (N
is also its head node). For the last row, t132 and
t20 have the same root node(S), head node(Punct)
and tree type (Right+S) but they are different in
the tree spine (S-Punct for t20 and S-PRN-Punct
for t132) and SKETCH. The joint effort of vari-
ous models plays a significant role in getting the
prediction right.

7 Related Work

Bangalore et al. (2009) and Chung et al. (2016)
trained a feature based classification model for
TAG supertags, that extract features using lexical,
part-of-speech attributes from the left and right
context in a 6-word window and the lexical, ortho-
graphic (e.g. capitalization, prefix, suffix, digit)
and part-of-speech attributes of the word being
supertagged. Neural network based supertagging
models in TAG (Kasai et al., 2018) and CCG (Xu
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Multi-task setting Dev Test
None 89.94 90.73
HEAD 90.00 90.79
ROOT 90.06 90.91
TYPE 90.15 91.07
SKETCH 90.25 90.99
SPINE 90.22 91.08
HEAD+ROOT 90.15 90.94
TYPE+HEAD+ROOT 90.27 91.10
TYPE+HEAD+ROOT+SKETCH 90.48 91.27
TYPE+HEAD+ROOT+SKETCH+SPINE 90.55 91.37

Table 4: Result of different multi-task combinations. The base model is BiLSTM+CNN+GloVe200.

Ground
truth

Baseline Multi-Task Most Help-
ful Task

NP

NP∗N�

t2:

NP

NP∗A�

t36:

NP

NP∗N�

t2:

HEAD

S

VP

V�

NP0 ↓

t81:
S

VP

NP1 ↓V�

NP0 ↓

t27:

S

VP

V�

NP0 ↓

t81:

SKETCH

NP

N�

t3: NP

NP

N�

NP∗

t38:

NP

N�

t3:

TYPE,
SKETCH

NP

N�

t3:

N�
t18:

NP

N�

t3:

ROOT,
SKETCH

S

S∗PRN

Punct�

t132:

S

S∗Punct�

t20: S

S∗PRN

Punct�

t132:

SPINE,
SKETCH

Table 5: Some examples of how the deconstructing
of base models correct the prediction made by the su-
pertagging model.

et al., 2015; Lewis et al., 2016; Xu, 2016; Vaswani
et al., 2016) have shown substantial improvement
in performance, but the supertagging models are
all quite similar as they all use a bi-directional
RNN feeding into a prediction layer. Structural
features of supertags are heavily used in pre-neural
statistical parsing methods (Bangalore et al., 2009)
and proved to be useful. The use of supertag struc-
ture was explored in (Friedman et al., 2017) where
they adopt grammar features into a tree-structured

neural model over the supertags but this model
was unable to beat the state-of-the-art. (Kasai
et al., 2018) combines supertagging with parsing
which does provide state-of-the-art accuracy but
at the expense of computational complexity.

Kasai et al. (2017) extends the BiLSTM model
with predicted part-of-speech tags and suffix em-
beddings as inputs, then Kasai et al. (2018) further
extends the BiLSTM model with highway connec-
tion as well as character CNN as input, and jointly
train the supertagging model with parsing model
and this work had the state-of-the-art accuracy be-
fore our paper on the Penn treebank dataset. Fried-
man et al. (2017) investigated a recursive tree-
based vector representation of TAG supertags, but
while their model can learn useful facts about su-
pertags, about how one can be related to another,
there was no performance improvement as a result
of their model on the supertagging task. Xu et al.
(2015) uses RNN for the CCG supertagging task,
Lewis et al. (2016) adopted the LSTM structure
into this task, while Vaswani et al. (2016) also in-
troduced another variation of Bi-LSTM into this
task. Xu (2016) then proposed an attention-based
Bi-LSTM supertagging model.

8 Conclusion

In this paper we have introduced a novel multi-
task framework for the TAG supertagging task.
The approach involved a novel multi-task learning
framework which led to a new state-of-the-art ac-
curacy score of 91.39% for TAG supertagging on
the Penn treebank dataset.

Our multi-task prediction framework is trained
over the exactly same training data used to train
the original supertagger where each auxiliary task
provides an alternative view on the original pre-
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diction task.
In the future we would like to explore further

tasks to integrate into our multi-task sequence pre-
diction framework. We also believe that the idea of
our multi-task framework can be applied into sim-
ilar tasks such as CCG supertagging task of which
the labels themselves contains the latent informa-
tion. We would also like to investigate how to
semi-automatically generate new tasks which can
be of further help in the multi-task setting.
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Abstract

We present a method for applying a neural net-
work trained on one (resource-rich) language
for a given task to other (resource-poor) lan-
guages. We accomplish this by inducing a
mapping from pre-trained cross-lingual word
embeddings to the embedding layer of the neu-
ral network trained on the resource-rich lan-
guage. To perform element-wise cross-task
embedding projection, we invent locally linear
mapping which assumes and preserves the lo-
cal topology across the semantic spaces before
and after the projection. Experimental results
on topic classification task and sentiment anal-
ysis task showed that the fully task-specific
multilingual model obtained using our method
outperformed the existing multilingual mod-
els with embedding layers fixed to pre-trained
cross-lingual word embeddings.1

1 Introduction

Deep neural networks have improved the accu-
racy of various natural language processing (NLP)
tasks by performing representation learning with
massive annotated datasets. However, the anno-
tations in NLP depend on the target language as
well as the task, and it is unrealistic to prepare such
extensive annotated datasets for every pair of lan-
guage and task. As a result, we can only obtain an
accurate model for a few resource-rich languages
such as English.

To overcome this problem, researchers have at-
tempted to make models trained with massive an-
notated datasets in a resource-rich language (here-
after, source language) applicable to a resource-
poor language (target language) that have no an-
notated datasets (Ruder et al., 2019) (§ 2). These
methods utilize language-universal word represen-
tations, namely cross-lingual word embeddings, to

1All the code is available at: https://github.com/
jyori112/task-spec

Task-specific word embeddings
(embedding layer of trained model)

General cross-lingual
word embeddings

terrible

bad
good

wonderful
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(wonderful)
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(wonderful)

badterrible
mauvaise (bad)

dog

cat chat (cat)
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manger (eat)

Figure 1: Locally linear mapping for sentiment analy-
sis task. The relationship between “merveilleux (won-
derful)” and its neighboring English words, “wonder-
ful” and “good,” are preserved after projection.

absorb the differences among languages in the vo-
cabularies of neural network models; specifically,
these multilingual models are trained with embed-
ding layers fixed to pre-trained cross-lingual word
embeddings. However, because those embedding
layers are not optimized for the target task, the re-
sulting model cannot exploit the true potential of
representation learning, as demonstrated by Kim
(2014) and our experimental results (§ 5.1).

We propose methods of projecting pre-trained
cross-lingual word embeddings to word embed-
dings of a fully task-specific neural network all
of whose parameters are optimized to the train-
ing data in a source language, to realize fully
task-specific multilingual model (§ 3). In ad-
dition to naive linear projection, we present an
element-wise projection method inspired by lo-
cally linear embeddings used for dimension reduc-
tion (Roweis and Saul, 2000). This method is built
on the assumption that local topology is preserved
between the semantic spaces of word embeddings
in two NLP tasks; that is, adequately close words
in pre-trained cross-lingual word embeddings will
have similar representation even in task-specific
semantic space (Figure 1). We first represent the
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general cross-lingual word embedding of a word
in the target language by weighted linear combina-
tions of general cross-lingual word embeddings of
k neighboring words in the source language. We
then use the weights to compute a task-specific
word embedding of the target word as a linear
combination of task-specific word embeddings of
the k neighboring source words (§ 3.2).

We evaluate our method on topic classification
and sentiment analysis tasks (§ 4). We first obtain
a task-specific neural network using annotated cor-
pora in the source language (English) and then in-
duce task-specific cross-lingual word embeddings
for the target languages to apply the accurate task-
specific neural network to those languages. Exper-
imental results demonstrate that our method has
improved the classification accuracy of the multi-
lingual model (Duong et al., 2017) in most of the
task-language pairs (§ 5).

Our contributions are as follows:

• We established a method of obtaining fully
task-specific multilingual models by learn-
ing a cross-task embedding projection (§ 3).

• Our cross-task projection is simple and has
an analytical solution with one hyperparam-
eter; the solution is a global optima (§ 3.2).

• We confirmed the limitation of the tradi-
tional multilingual model with embedding
layers fixed to pre-trained cross-lingual word
embeddings (§ 5.1).

• We showed the effectiveness of our method
over the existing models (§ 5.2).

2 Related work

Lack of resources in resource-poor languages has
been a deeply rooted problem in NLP, and there
have been many pieces of researches contributed
to mitigating this problem by transferring models
across languages.

Multilingual models using parallel corpora
An intuitive approach to realize the cross-lingual
transfer of a model is to utilize machine transla-
tion by either translating the training set or the
model input (Wan, 2009). Instead of translating,
Meng et al. (2012) leverage a parallel corpus of the
source and target languages to obtain cross-lingual
mixture model to bridge the language gap. Xu and
Wan (2017) also utilize parallel corpus with word
alignment to train a multilingual model for sen-

timent analysis task. While some of these meth-
ods do not rely on an annotated corpus in the tar-
get language, they heavily rely on cross-lingual re-
sources such as parallel corpora, and thus, are not
applicable to the resource-poor languages.

Multilingual models with cross-lingual word
embeddings Another method to obtain multilin-
gual models is to fix the embedding layer of a neu-
ral network to pre-trained cross-lingual word em-
beddings. Many existing pieces of researches im-
plemented this for various tasks in unsupervised
senario (Duong et al., 2017; Can et al., 2018)
where no annotated corpus is available in the target
language as ours and supervised scenario (Pappas
and Popescu-Belis, 2017; Upadhyay et al., 2018)
where a small annotated corpus is available in
the target language. Another study enhanced this
method by employing language-adversarial net-
works (Chen et al., 2018). These methods do not
induce task-specific word embeddings, thereby
failing to exert true potential of neural networks,
as we confirm in § 5.

Multilingual models with character embed-
dings Several studies utilize character level em-
beddings shared across languages to obtain mul-
tilingual models (Kim et al., 2017; Yang et al.,
2017). An obvious weak point of these meth-
ods is that they do not apply to distant language
pairs with different alphabets. In contrast, our
method only relies on cross-lingual word embed-
dings which are obtainable regardless of the alpha-
bets of the languages (Artetxe et al., 2018).

Task-specific word embeddings Few efforts
have been previously made to obtain cross-lingual
task-specific word embeddings. Gouws and
Søgaard (2015) obtain task-specific cross-lingual
word embeddings by constructing a task-specific
bilingual dictionary, which defines “equivalent
classes” designed for the given task instead of
equivalent semantics. Although they successfully
obtained task-specific cross-lingual word embed-
dings for POS tagging and supersense tagging
tasks, the open problems are how to define a task-
specific bilingual dictionary for many of other
tasks, and cost of developing such resources.

Feng and Wan (2019) exploit multi-task learn-
ing to induce cross-lingual task-specific word em-
beddings for sentiment analysis task. This method
is tailored for the sentiment analysis task and thus,
not applicable to other tasks.
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3 Fully task-specific multilingual model

Our method first learns a neural network model by
optimizing to the annotated corpus in the source
language. It then induces a projection from the
semantic space of general cross-lingual word em-
beddings to the semantic space of the optimized
embedding layer, to make the model applicable to
languages other than the source language.

3.1 Framework
The entire framework of obtaining a fully task-
specific multilingual model is as follows:

Step 1 (train task-specific neural network)
First, we train a neural network f(·;Xspec, θ) on
an annotated corpus in the source language. The
embedding layer, Xspec, of the resulting neural
network consists of task-specific word embed-
dings of the source language, and θ is the collec-
tion of the other parameters. At this point, this
neural network is only applicable to the source lan-
guage since we do not have task-specific word em-
beddings Y spec of the target language in the same
semantic space as Xspec.

Step 2 (induce cross-lingual word embeddings)
Next, we obtain general cross-lingual word em-
beddings {Xgen, Y gen} in the same semantic space
from raw monolingual corpora where Xgen and
Y gen are cross-lingual word embeddings of the
source and target languages, respectively. Without
loss of generality, we assume that Xgen and Xspec

are aligned so that Xgen
i and Xspec

i represent the
same word. We utilize unsupervised cross-lingual
word embeddings such as (Artetxe et al., 2018)
that do not require any cross-lingual resources to
maximize the applicability of our approach.

Step 3 (learn cross-task embedding projection)
Then, we induce a cross-task projection φ that
computes task-specific word embeddings of the
target language Y spec from the general cross-
lingual word embeddings {Xgen, Y gen} obtained
in Step 2 to the task-specific word embeddings of
the source language Xspec obtained in Step 1. We
explain the details of this core part in § 3.2.

Step 4 (obtain task-specific multilingual model)
Finally, we replace embedding layer Xspec of the
neural network f(·;Xspec, θ) trained in Step 1 with
Y spec induced in Step 3 to obtain a task-specific
neural network f(·;Y spec, θ) applicable to the tar-
get language.

3.2 Cross-task embedding projection
Here, we explain the detailed construction of our
cross-task projection φ for cross-lingual word em-
beddings used in Step 3 in § 3.1. Given general
cross-lingual word embeddings,Xgen and Y gen, of
the source and target languages and task-specific
word embeddings Xspec of the source language,
we compute task-specific word embeddings Y spec

of the target language in the same semantic space
with Xspec. In what follows, we propose two sim-
ple methods to obtain such projection: a linear
projection and a locally linear mapping.

Linear projection
One naive approach is to regard general and
task-specific word embeddings as embeddings of
two distinct languages and to exploit a mapping
method developed for cross-lingual word embed-
dings (Mikolov et al., 2013).2 Concretely, we
train a transformation matrix W that maps gen-
eral word embeddings Y gen to task-specific word
embeddings Y spec by minimizing

Ŵ = argmin
W

|VX |∑

i=1

∥∥WX
gen
i −Xspec

i

∥∥2 (1)

where |VX | is the vocabulary size of the source
langauge. Then, we compute the task-specific
word embeddings of the target language, Ŷ spec;

Ŷ
spec
i =WY

gen
i . (2)

Locally linear mapping
A possible limitation of the above linear projection
method is the lack of representation power. Due
to the difference of topologies between the gen-
eral and task-specific semantic spaces, our experi-
mental results indicate that it fails to obtain precise
cross-task embedding projection (§ 5).

Therefore, we introduce an element-wise map-
ping method inspired by locally linear embed-
dings (Roweis and Saul, 2000), a dimension re-
duction technique. Our method assumes that the
local topology among nearest neighbors will be
consistent between two NLP tasks (here, language
modeling and the target task). In other words, syn-
onyms will have a similar role across NLP tasks.

We build the cross-task projection as follows.
First, for each word i in the target language, we

2Although orthogonal mapping (Xing et al., 2015) is re-
ported to perform better for inducing cross-lingual word em-
beddings, it performed worse for our purpose in preliminary
experiments probably due to the strong constraint.
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take k nearest neighbors (words) in the source lan-
guage, N gen

i , in the semantic space of the general
cross-lingual word embeddings where k is a hy-
perparameter, and the cosine similarity is the met-
ric. We next obtain the reconstruction weights,
α̂ij ∈ R, that restore Y gen

i as a linear combination
of Xgen

j ∈ N gen
i by optimizing

α̂i = argmin
αi

∥∥∥∥∥∥
Y

gen
i −

∑

j∈N gen
i

αijX
gen
j

∥∥∥∥∥∥

2

(3)

with constraint of
∑

j αij = 1. The solution to this
optimization problem can be analytically given by
using the method of Lagrange multipliers as:

α̂ij =

∑
l(C
−1
i )jl∑

j

∑
l(C
−1
i )jl

(4)

where

Cijl =
(
Y

gen
i −Xgen

j

)
·
(
Y

gen
i −Xgen

l

)
(5)

(see Appendix A for the detailed derivation). We
can thereby find the global optima by this analyti-
cal solution with simple computation.

We then compute Y spec
i using α̂i by

Y
spec
i =

∑

j∈N gen
i

α̂ijX
spec
j , (6)

assuming that the local topology among N gen
i is

preserved before and after the projection. The re-
sulting Y spec is in the same semantic space with
Xspec. Setting a large k = |N gen

i | in the projec-
tion, we can handle words in the target language
that have no direct translations in the source lan-
guage (e.g., amiga, female friend in Spanish).

Hyperparameter search In general, we choose
a hyperparameter that performs best on develop-
ment data in the target task and language. How-
ever, since we assume that no annotated data is
available in the target language, we cannot exploit
development data in the target language.

To address this issue, we apply our cross-task
projection to the source language with various hy-
perparameter k; namely, represent Xgen

i consider-
ing k nearest neighbors Xgen

j (j 6= i). We then
choose k with the best model performance with
the resulting embeddings on the development data
of the target task in the source language. In § 5.2,
we report results with this language-universal, yet

Language train dev. test

English (en) 653,762 10,000 10,000
Danish (da) 6,633 1000 1000
German (de) 84,550 1000 1000
Spanish (es) 12,997 1000 1000
French (fr) 69,292 1000 1000
Italian (it) 19,594 1000 1000
Dutch (nl) 590 100 1000
Portuguese (pt) 4,263 1000 1000
Swedish (sv) 8,383 1000 1000

Table 1: Number of examples for topic classification.

the task-specific method of tuning. We also re-
port results of a language- and task-specific tuning
method assuming a minimal development data in
the target language in addition to a naive method
of fixing k = 1, which is equivalent to the word-
by-word translation. Furthermore, we investigate
the effect of value k in details in § 5.3.

4 Experimental setup

We conduct a series of experiments to evaluate
our fully task-specific multilingual models (§ 3)
obtained by our cross-task projections of cross-
lingual word embeddings (§ 3.2). Our method is
language- and task-independent and is applicable
to various tasks where existing multilingual mod-
els are applicable. We adopted a topic classifica-
tion task and a sentiment analysis task as the target
tasks for evaluation in various languages.

Topic classification is the task of predicting the
topic of a given document. For this task, we use
English (en) as the source language, and Spanish
(es), German (de), Danish (da), French (fr), Italian
(it), Dutch (nl), Portuguese (pt), and Swedish (sv)
as the target languages. We use the RCV1/RCV2
dataset (Lewis et al., 2004) for this task, follow-
ing Duong et al. (2017). This dataset contains
news articles in various languages with labels of
four categories: Corporate/Industrial, Economics,
Government/Social, and Markets.

For English dataset, we randomly chose 10,000
examples as test data, another 10,000 examples as
development data, and the rest as training data.
For the other languages, we randomly selected
1000 examples as test data, and another 1000 ex-
amples (for Danish, 100 examples) as develop-
ment data, and the rest as training data. Among the
development data, we randomly chose 100 sam-
ples as the development data for an alternative,
language-specific tuning of k (§ 3.2). The sum-
mary of the resulting dataset is shown in Table 1.
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Sentiment analysis is a task of predicting a po-
larity label of the writer’s attitude for a given text.
We design this task to be a three-class classifica-
tion of positive, negative, and neutral labels. We
use datasets from two domains of restaurant re-
view and product review to conduct this exper-
iment. In both domains, we consider the most
resource-rich language, English (en), as the source
language and other languages (Spanish (es), Dutch
(nl), and Turkish (tr) for restaurant review domain,
and German (de), French (fr), and Japanese (ja) for
product review domain) as the target languages.

To train models in restaurant review domain, we
use Yelp Review dataset3 which consists of a set
of restaurant reviews with numerical ratings in the
range of 1-5 given by the reviewers. We label the
reviews with ratings of 1 or 2 as negative, those
with ratings of 4 or 5 as positive, and the rest with
ratings of 3 as neutral. Then, we randomly chose
100,000 examples as test data, another 100,000 ex-
amples as development data, and the rest as train-
ing data. For evaluation in the target languages,
we use a subset of ABSA dataset (Pontiki et al.,
2016), which consists of restaurant reviews in En-
glish, Spanish, Dutch, and Turkish with annotation
of a polarity label of positive, negative, or neutral
to each sentence. For each language, we randomly
chose 100 sentences as development data for the
alternative, language-specific tuning of k (§ 3.2)
and the rest as test data.

For experiments in the product review domain,
we use Amazon Multilingual Review dataset4

which consists of a set of product reviews in En-
glish, German, French, Japanese with numerical
ratings given in the same manner as the Yelp Re-
view dataset. We label the reviews in the same
manner as the Yelp Review dataset. For English
dataset, we randomly sample 100,000 examples
as development data, other 100,000 examples as
test data, and the remaining 6,731,166 examples
as training data. For the other languages, we
randomly chose 10,000 examples as development
data, another 10,000 examples as test data, and
the rest as training data. Among the development
data, we randomly chose 100 examples as devel-
opment data for the alternative, language-specific
tuning of k. The summary of the resulting datasets
is shown in Table 2.

3https://www.yelp.com/dataset
4https://s3.amazonaws.com/

amazon-reviews-pds/readme.html

Dataset Language train dev. test

Yelp English (en) 5,796,996 100,000 100,000

ABSA

English (en) - 100 1462
Spanish (es) - 100 1237
Dutch (nl) - 100 1125
Turkish (tr) - 100 855

Amazon

English (en) 6,731,166 100,000 100,000
German (de) 659,121 10,000 10,000
French (fr) 234,080 10,000 10,000
Japanese (ja) 242,431 10,000 10,000

Table 2: Number of examples for sentiment analysis.

General cross-lingual word embeddings were
obtained using a state-of-the-art unsupervised
method with self-learning framework (Artetxe
et al., 2018).5 This method takes monolingual
word embeddings of two languages and learns
a mapping between them to obtain cross-lingual
word embeddings. For monolingual word em-
beddings, we used pre-trained word embeddings
available online (Grave et al., 2018).6 They are
word embeddings with 300 dimensions obtained
by applying subword-information skip-gram (Bo-
janowski et al., 2017) to the Wikipedia corpus.

Preprocessing We use the tokenizer of Europarl
tools7 to tokenize all datasets except for Japanese.
For Japanese, we use MeCab v0.9968 with IPA
dictionary v2.7.0. After tokenization, the tokens
are lowercased to match vocabularies of the pre-
trained word embeddings.

Models To evaluate the impact of our task-
specific word embeddings on multilingual models
and to compare the two methods for the cross-task
embeddings projections we proposed in § 3, we
compare the following five models.

CLWE fixed trains a bag-of-embeddings model
in the target language with its embedding lay-
ers fixed to the pre-trained cross-lingual word
embedding. The model takes the dimension-
wise average of all embeddings of input to-
kens into a feedforward neural network with
one hidden layer. This model is analogous
to (Duong et al., 2017) except that they use
the summation weighted by tf · idf.

5https://github.com/artetxem/vecmap
6https://fasttext.cc/docs/en/

crawl-vectors.html
7http://www.statmt.org/europarl/
8https://taku910.github.io/mecab/
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Method en-da en-de en-es en-fr en-it en-nl en-pt en-sv

CLWE fixed 0.621 0.813 0.363 0.772 0.535 0.791 0.524 0.816
CLWE fixed + NNmap 0.593 0.843 0.448 0.815 0.583 0.794 0.554 0.503

CLWE opt (LP) 0.599 0.617 0.117 0.670 0.197 0.627 0.185 0.206

CLWE opt (LLM)
k = 1 0.694 0.848 0.764 0.879 0.578 0.815 0.584 0.805
k tuned to task 0.672 0.809 0.705 0.885 0.623 0.814 0.580 0.831
k tuned to task/language 0.687 0.833 0.764 0.879 0.615 0.837 0.572 0.830

Monolingual 0.968 0.984 0.975 0.980 0.932 0.950 0.948 0.970

Table 3: Classification accuracy of topic classification task in cross-lingual settings. The underlined values indicate
that, among the three trials, the worst model of CLWE opt (LLM) outperforms the best model of CLWE fixed.

Amazon Yelp - ABSA
Method en-de en-fr en-ja en-es en-nl en-tr

CLWE fixed 0.798 0.805 0.798 0.731 0.675 0.591
CLWE fixed + NNmap 0.798 0.803 0.784 0.748 0.665 0.556

CLWE opt (LP) 0.797 0.804 0.779 0.725 0.655 0.605

CLWE opt (LLM)
k = 1 0.813 0.811 0.764 0.731 0.680 0.569
k tuned to task 0.815 0.812 0.785 0.759 0.684 0.616
k tuned to task/language 0.815 0.810 0.777 0.766 0.719 0.617

Monolingual 0.879 0.857 0.838 - - -

Table 4: Classification accuracy of sentiment analysis task in cross-lingual settings. The underlined values indicate
that, among the three trials, the worst model of CLWE opt (LLM) outperforms the best model of CLWE fixed.

CLWE fixed + NNmap adds two embedding-
wise hidden layers to the original feedfor-
ward neural network in CLWE fixed. This is
aimed at giving the network the capability of
acquiring task-specific word embeddings by
enhancing the representation of the network.

CLWE opt (LP) is CLWE fixed with embedding
layer updated; we made this model cross-
lingual by the linear projection (§ 3.2).

CLWE opt (LLM) is CLWE fixed with the em-
bedding layer updated; we made this model
cross-lingual by the locally linear mapping
(§ 3.2). We report results with the three
strategies to tune the hyperparameter k for
cross-task projection.

Monolingual has the same network as CLWE
fixed with the embedding layer updated; we
trained the model with datasets in the same
languages as testing. We present this result
to show the upper bound of model accuracy.

The dimensions of all the layers of the above
five models are 300, and they are all optimized by
Adam optimizer (Kingma and Ba, 2014) for train-
ing. We conduct all experiments three times with

Method Topic Class. Senti. Analysis
Amazon Yelp

Monolingual fixed 0.921 0.828 0.799
Monolingual 0.980 0.872 0.866

Table 5: Classification accuracy of monolingual mod-
els in English.

different initialization of the model parameters and
report the average accuracy, and hyperparameter
tuning is conducted independently to each model.

5 Results

We evaluate the models in cross-lingual settings
to confirm how well our method produces task-
specific cross-lingual word embeddings (Table 3
and Table 4). Prior to reporting the results, we
confirm the impact of task-specific word embed-
dings in neural networks through experiments in a
monolingual setting in English (Table 5).

5.1 Impact of task-specific word embeddings

We examine the impact of optimizing the em-
bedding layer of a neural network to the given
task on model accuracy through experiments in
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General Topic class. Senti. analysis
(Amazon)

excellent
excellently excellently awesome
superb exceptional perfect
good tabcorp pleased
impressive novorossiisk timeless
commendable southcorp mesmerizing

terrible
horrible frightening horrible
dreadful devastating useless
awful shocking wasted
horrendous mishaps miserably
horrific ugliness refund

economic
economy imf addition
macroeconomic trade nightstand
economies economy finances
microeconomic wto everyday
socio economist arguably

(a) English

General Topic class. Senti. analysis
(Amazon)

excellentexcellent
excellenteexcellent excellentsexcellent excellente
excellents excellente excellents
bongood excellentesexcellent excellentes
excellentes appréciableappreciable extraordinary
excellerto excel bons parfaite

terribleterrible
terriblesterrible terribles terribles
horriblehorrible horrible horrible
terriblementterribly meurtriewounded débilestupid

épouvantable gwynplaine horribleshorrible

effroyableterrifying épouvantesterrified stupidestupid

économieeconomy
economieeconomy économiqueeconomic economie
économique économiqueseconomic economiques
macroéconomiemacroeconomy conjonctureconjuncture economiceconomic

géoéconomiegeoeconomy fmiIMF economiqueeconomic

microéconomiemicroeconomy economiqueeconomic economieseconomies

(b) French (English translations are given as subscripts)

Table 6: Nearest neighbors of some words in the semantic space of general and task-specific word embeddings.

English by comparing Monolingual to Monolin-
gual fixed which is the same network as Mono-
lingual with the embedding layer fixed to gen-
eral words embeddings. We show the results of
topic classification and sentiment analysis tasks
in Table 5. In both tasks, Monolingual outper-
formed Monolingual fixed with a wide margin,
which indicates that task-specific word embed-
dings are indeed crucial to obtain better model per-
formance. This result motivates us to learn task-
specific cross-lingual word embeddings to exploit
the fully task-specific neural network.

5.2 Performance of multilingual models

Table 3 and Table 4 report the classification ac-
curacy of the models on topic classification and
sentiment analysis, respectively. All models are
trained in English and evaluated in the target
languages. CLWE opt with hyperparameter k
tuned on the source language successfully out-
performed the two baselines, CLWE fixed and
CLWE fixed + NNmap, in all task-language pairs
except for English-German in the topic classifi-
cation task and English-Japanese in the sentiment
analysis task. This result indicates the importance
of task-specific word representation in the multi-
lingual model and that our projection successfully
induced task-specific cross-lingual word embed-
dings. Although we gained some improvements
by tuning k to the target language using the min-
imal development set in some configurations, the

gains are smaller than the gains over the two base-
lines. This implies that k is more sensitive to the
target task rather than the target language, which
we discuss further in § 5.3.

In some languages, CLWE fixed + NNmap has
even lower classification accuracy than CLWE
fixed. We hypothesize that by having more layers,
the model becomes more sensitive to the small dif-
ference in word representation, which means that
the noise in pre-trained cross-lingual word embed-
dings affects on the model accuracy.

Comparing CLWE opt (LLM) to CLWE opt
(LP), we found that our locally linear mapping
outperforms the linear projection method for a
cross-task embedding projection. For some con-
figurations, the performance of CLWE opt (LP)
degrades significantly. These results indicate that
the topology of the general and task-specific em-
bedding spaces are so apart from each other that
simple projection methods such as the linear pro-
jection are inappropriate. We will further discuss
the difference in the topologies of the general and
task-specific embedding spaces in § 5.3 by looking
into nearest neighbors of some target words in the
semantic space of general and task-specific cross-
lingual word embeddings (Table 6).

In all configurations where sufficient dataset is
available in the target languages, monolingual
outperformed cross-lingual models with a wide
margin. This indicates that there is still space for
improvements in cross-lingual models.
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Figure 2: Distribution of the reconstruction weights α̂ for the nearest words of the target words and the other
nearest neighbors.

5.3 Analysis

We conduct further investigation to gain a pro-
found understanding of our method and the re-
sulting task-specific cross-lingual word embed-
dings. We first analyze the task-specific cross-
lingual word embeddings through nearest neigh-
bors of some words. We next investigate the dis-
tribution of the reconstruction weights to see the
impact of k nearest neighbors other than the near-
est one. We then evaluate the sensitivity of the
model accuracy to the value of k.

Properties of task-specific embeddings Here,
we examine the properties of task-specific word
embeddings obtained using our cross-task projec-
tion. For this purpose, we present nearest neigh-
bors of frequent words in the tasks in various em-
beddings in English and French.

Table 6a shows nearest neighbors of “excel-
lent,” “terrible,” and “economic” in the general
word embeddings, and the embedding layer of the
models optimized for the training data in English.
In the general embeddings, the words are close
to words that have similar semantic or syntactic
while the task-specific word embeddings show dif-
ferent properties specific to the target tasks.

In the embedding layer optimized for topic
classification, we found “economic” to be close
to “imf (International Monetary Fund)” or “wto
(World Trade Organization).” Even though they
are semantically distinct, they all strongly indicate
the Economy label. In contrast, the nearest neigh-
bors of “excellent” and “terrible” are noisy since
they do not contribute to the topic classification
task.

The embedding layers optimized for sentiment
analysis exhibit different properties. While the
nearest neighbors of “excellent” and “terrible” are
not semantically close, they all indicate positive
and negative polarities in the respective domains.
However, the nearest neighbors of “economic” are
noisy as they do not contribute to the task.

Table 6b shows nearest neighbors of “excellent
(excellent),” “terrible (terrible),” and “économie
(economy)” in French; the general word embed-
dings (General) and the task-specific word em-
beddings obtained using our cross-task projec-
tion (LLM). General embeddings exhibit similar
properties as English ones.

LLM embeddings of topic classification task
have “fmi (IMF; International Monetary Fund)”
and “conjoncture (conjuncture)” as nearest neigh-
bors of “économie.” This indicates that our cross-
task projection successfully obtains word embed-
dings optimized for the task since they are strong
signals of the Economy label. For sentiment anal-
ysis, the word embeddings obtained by our cross-
task projection of Amazon dataset captures “ex-
traordinary” and “parfaite,” which strongly indi-
cate positive polarity, as the nearest neighbors of
“excellent” In contrast, the words strongly associ-
ated with negative polarity, “débile” and “stupide,”
are the nearest neighbors of “terrible” in the em-
bedding space. These properties suggest that our
cross-task projection successfully obtains task-
specific cross-lingual word embeddings.

Distribution of the reconstruction weights To
see how much the nearest neighbors for the target
words contribute to the projection, we investigate
the distribution of α̂ induced by Eq. 3. Figure 2
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Figure 3: Classification accuracy as a function of k in cross-task embedding projection.

shows the distribution of the absolute value of α̂
for the nearest neighbors of the target word and
the other nearest neighbors. For this experiment,
we used k tuned on the source language.

Even though the nearest words tend to have a
slightly higher value of α̂ compared to the other
nearest neighbor words, the difference is not so
significant for most of the configuration. This ob-
servation indicates that all of the k-nearest neigh-
bors contribute to the projection.

Sensitivity to hyperparameter k We proposed
three strategies to tune the hyperparameter k of
our locally linear mapping for cross-task embed-
ding projection of cross-lingual word embeddings:
tuning on the development data in the source lan-
guage as described in § 3.2, preparing small devel-
opment data (100 samples) in the target languages,
or fixing k = 1. Revisiting results in Table 3
and Table 4, for the topic classification task, the
classification accuracy of the models are consis-
tent among all of the tuning methods (Table 3),
while for the sentiment analysis task, fixing k = 1
yields lower classification acuracy (Table 4). Here,
we conduct further analysis to gain a profound un-
derstanding of the effect of the value of k.

Figure 3 depicts the classification accuracy of
the models on the test set while varying k in
the topic classification task and sentiment anal-
ysis task. Across languages, a smaller value of
k yields better performance for the topic classifi-
cation task, while a larger value of k yields bet-
ter performance for the sentiment analysis task.
These results indicate that the best value of k is
language-independent and thus, the tuning k for

the development set of source language suffices to
achieve good results.

6 Conclusions

We proposed a method to obtain a fully task-
specific multilingual model without relying on any
cross-lingual resources or annotated corpora in the
target language by a cross-task embedding projec-
tion. Because a naive linear projection puts too
strong assumption on the topologies of two em-
bedding spaces, we present an effective method
for the cross-task embedding projection named lo-
cally linear mapping. The locally linear mapping
assumes and preserves the local topology across
the semantic spaces before and after the projec-
tion. Experimental results demonstrated that the
locally linear mapping successfully obtains task-
specific word embeddings of the target language,
and the resulting fully task-specific multilingual
model exhibited better model accuracy than the
existing multilingual model that fixes its embed-
ding layer to general word embeddings.

We plan to evaluate our method on various
NLP tasks, languages, and neural network mod-
els, and investigate the results to devise an adap-
tive method to tune k for individual words.
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2016. Semeval-2016 task 5: Aspect based sentiment
analysis. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval), pages
19–30.

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlin-
ear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323–2326.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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A Derivation of the locally linear
mapping

Recall that Xgen and Y gen represent general cross-
lingual word embeddings of the source and target
languages, respectively. Also, for each word i in
the target language, we denote the set of its k near-
est neighbors in the target language in the seman-
tic space of the general cross-lingual word embed-
dings as N gen

i .
We reconstruct Y gen

i as a linear combination,

∑

j∈N gen
i

αijX
gen
j

where αi is the weight vector which we optimize.
The reconstruction error is given as

ε =

∥∥∥∥∥∥
Y

gen
i −

∑

j∈N gen
i

αijX
gen
j

∥∥∥∥∥∥

2

=
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j∈N gen
i

αij

(
Y

gen
i −Xgen

j

)
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=
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j∈N gen
i
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i∈N gen
i

αijαilCijl

where Ci ∈ Rk×k is the covariance matrix,

Cijl =
(
Y

gen
i −Xgen

j

) (
Y

gen
i −Xgen

l

)
.

We minimize this reconstruction error ε under
the constraint of

∑
j∈N gen

i
αij = 1. Applying the

method of Lagrange multiplier, we have

L =
∑

j∈N gen
i

∑

i∈N gen
i

αijαilCijl−λ


 ∑

j∈N gen
i

αij − 1


 .

We then solve ∂L
∂αij

= ∂L
∂λ = 0 to obtain

α̂ij =

∑
l(C
−1
i )jl∑

j

∑
l(C
−1
i )jl

.

The resulting value of α̂i is then used to com-
pute the task-specific word embedding of i as

Y
spec
i =

∑

j∈N gen
i

α̂ijX
spec
j

where Xspec is the tast-specific word embeddings
of the source language.
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Abstract

In this paper, we present a thorough inves-
tigation on methods that align pre-trained
contextualized embeddings into shared cross-
lingual context-aware embedding space, pro-
viding strong reference benchmarks for fu-
ture context-aware crosslingual models. We
propose a novel and challenging task, Bilin-
gual Token-level Sense Retrieval (BTSR). It
specifically evaluates the accurate alignment
of words with the same meaning in cross-
lingual non-parallel contexts, currently not
evaluated by existing tasks such as Bilingual
Contextual Word Similarity and Sentence Re-
trieval. We show how the proposed BTSR
task highlights the merits of different align-
ment methods. In particular, we find that us-
ing context average type-level alignment is ef-
fective in transferring monolingual contextual-
ized embeddings cross-lingually especially in
non-parallel contexts, and at the same time im-
proves the monolingual space. Furthermore,
aligning independently trained models yields
better performance than aligning multilingual
embeddings with shared vocabulary.

1 Introduction

Contextualized embeddings have been shown to
achieve superior performance compared to static
word embeddings in English (Peters et al., 2018;
Devlin et al., 2019). Despite recent efforts to better
understand their multilingual variants (Pires et al.,
2019), leveraging these available pretrained contex-
tualized embeddings to learn cross-lingual contex-
tualized embeddings is still an under-explored area:
past cross-lingual embedding alignment methods
have mainly focused on static embeddings (Ruder
et al., 2019). In this paper, we introduce a first study
that investigates and compares different ways of
aligning the pretrained contextualized embeddings.
In particular, we make the comparisons focused on
the following properties: (1) aligning contextual-

ized embeddings at the level of word tokens versus
word types; (2) different training signals: static dic-
tionaries, word alignment, or sentence alignment
from parallel data; and (3) aligning different model
variants: aligning from independently trained mod-
els versus aligning embeddings from a multilingual
model with shared vocabulary.

We evaluate the methods on a variety of context-
aware tasks. Besides two previously established
evaluation tasks (1) Bilingual Contextual Word
Similarity (Chi and Chen, 2018) and (2) Sentence
Retrieval (Conneau et al., 2017), we introduce a
new task: Bilingual Token-level Sense Retrieval
(BTSR). It is more challenging than the alterna-
tives as it requires the accurate cross-lingual re-
trieval of contextualized words on the token level
which are disambiguated both in the source and the
target language using non-parallel contexts. We
provide BTSR task data and run evaluations on two
language pairs: English–Chinese (EN–ZH) and
English–Spanish (EN–ES). The data and guide-
lines can be found at: https://github.com/
qianchu/BTSR

Our main findings are as follows. (1) Using
the average of the contextualized word represen-
tations as type-level anchors is effective and ro-
bust for aligning pre-trained contextualized em-
beddings cross-lingually, and can also improve the
monolingual contextualized space as it brings the
largest gains in English context-aware evaluation
compared to results from aligning on other levels.
(2) Using a dictionary with a few thousand entries
is able to yield performance comparable to lever-
aging training signals from parallel corpora. (3)
Aligning independently trained models performs
better than aligning embeddings from a multilin-
gual model trained with shared vocabulary.
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2 Related Work

Cross-lingual Word Embeddings. We conduct
our experiments using a popular projection-based
approach that learns an orthogonal mapping be-
tween pretrained embeddings (Xing et al., 2015;
Artetxe et al., 2016). The orthogonality of the
mapping is crucial as it preserves monolingual in-
variance and is empirically proven to be more ro-
bust (Smith et al., 2017; Xing et al., 2015). This
projection-based method can be applied post-hoc
on pretrained monolingual embeddings with an ex-
act analytical solution. Moreover, its performance
is often competitive to that of jointly trained cross-
lingual models using additional bilingual signals in
the form of parallel or comparable corpora (Ruder
et al., 2019; Glavaš et al., 2019).

However, projection-based cross-lingual embed-
dings are still predominantly concerned with static
word embeddings (Glavaš et al., 2019; Vulić et al.,
2019; Mohiuddin and Joty, 2019). Learning cross-
lingual contextualized embeddings is still a large
unexplored area with only two concurrent papers
at the moment. First, Aldarmaki and Diab (2019)
adopt the same projection-based approach as our
paper to align contextualized embeddings on the
token-level using parallel data. They find that
context-aware mapping using parallel data outper-
forms context-independent mappings from static
dictionaries on a parallel Sentence Retrieval task.
Second, Schuster et al. (2019) introduce anchor
embeddings as the average of contextualized em-
beddings of a word to perform alignment for con-
textualized models, and show its effectiveness in
cross-lingual dependency parsing. These two stud-
ies are not directly comparable, whereas our paper
provides a comprehensive and systematic compari-
son of various methods for learning cross-lingual
contextualized embeddings and introduces a new
and more challenging evaluation task.

Evaluation of (Contextualized) Cross-lingual
Embeddings. The traditional task to evaluate
cross-lingual embeddings is Bilingual Dictionary
Induction (BDI) (Vulić and Moens, 2013; Mikolov
et al., 2013a; Gouws et al., 2015): given a source
query word, the task is to retrieve the translation
word in the target language. The test words in
BDI are out-of-context and polysemy cannot be
addressed properly. The same issue is found in an-
other relevant lexical task, Cross-lingual Semantic
Similarity. (Camacho-Collados et al., 2017).

The only context-aware dataset for evaluating
cross-lingual embeddings on the word level is Bilin-
gual Contextual Word Similarity (BCWS) (Chi and
Chen, 2018). It challenges a system to predict
similarity scores between cross-lingual word pairs
with sentential context provided in both languages.
However, BCWS does not explicitly test for the
retrieval of meaning-equivalent cross-lingual con-
textualized embeddings, which is explicitly tested
in our test. Also, BCWS is only available for one
language pair: English-Chinese.

Another task used for evaluating contextualized
embeddings is Sentence Retrieval (Aldarmaki and
Diab, 2019): given a query source sentence, the
task is to retrieve the corresponding parallel sen-
tence in the target language. Sentences can be
represented as averages of contextualized embed-
dings of their constituent words. As the task does
not explicitly evaluate at the word level, even if
a system cannot accurately capture polysemy, it
can rely on other words in the sentence to retrieve
the correct parallel sentence. Therefore, Sentence
Retrieval may lead to superficially high scores.

Cross-lingual Word Sense Disambiguation.
Our new task is also related to Cross-lingual Word
Sense Disambiguation (Lefever and Hoste, 2009):
given a source language word in context, a sys-
tem needs to provide the correct sense labels as
clustered translation words in a number of target
languages. Another related task is Cross-lingual
Lexical Substitution (Sinha et al., 2009): the model
must provide plausible target language translations
for the source language lexical item in the source
language context. In contrast, our BTSR task: (1)
directly evaluates token-level word representations
without the need to predict sense labels from a
sense inventory and (2) it contextualizes both the
source query and the target candidates ensuring
full sense disambiguation. The core differences be-
tween the three tasks are illustrated in the following
examples below:

(1) Cross-lingual Word Sense Disambigution:
source query: the national [coach] of the Irish teams ...
answer: allenatore (Italian); Fußbaltrainer; National-
trainer; Trainer (German); entrenador(Spanish) ...

(2) Cross-lingual Lexical Substitution :
source query: She looked as [severely] as she could
muster at Draco.
answer: rigurosamente, seriamente

(3) BTSR:
source query: The reflections included in this docu-
ment are linked to discussions with many colleagues
and friends, in the present [tense].
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answer: Scott Peterson metió la pata elfondo y usó
el [tiempo] pasado mientras afirmaba que su esposa
asesinada estaba viva , lanzando una búsqueda (...)

3 Methods

3.1 Monolingual Contextualized Embeddings

Compared to static word embeddings (Mikolov
et al., 2013b; Bojanowski et al., 2017), more re-
cent contextualized embeddings provide dynamic
representations for a word in context as hidden
layers in a deep neural network. They are typi-
cally obtained by unsupervised pretraining based
on language modeling objectives (Devlin et al.,
2019; Yang et al., 2019). The underlying con-
textualized method in our study is the pretrained
BERTbase cased model1 (Devlin et al., 2019).
BERT is trained using a transformer architecture
(Vaswani et al., 2017) with masked language mod-
elling (MLM) and next sentence prediction (NSP)
tasks. MLM predicts the vocabulary id of a ran-
domly masked word in a sentence based on the
word’s context. NSP trains text-pair representa-
tions to predict whether the text-pair contains con-
secutive sentences from a monolingual corpus.2

We work with two BERT variants. First, we ex-
plore aligning independently trained BERT models,
that is, models with separate model parameters for
each language. For English and Chinese, we align
independently trained Chinese and English mono-
lingual models. For Spanish and English, since
there is no pretrained BERT Spanish model, we
take the Spanish embeddings from the BERT mul-
tilingual model and align it with the monolingual
English model. We take this alignment as an ap-
proximation to aligning two independently trained
models. We have also experimented with directly
aligning embeddings obtained from the BERT mul-
tilingual model, which is a joint model trained with
the same model parameters with shared subword
vocabulary (Devlin et al., 2019). This means that
identical words in two different languages will ob-
tain the same embeddings.

1To produce the contextualized representation for a word
in context, we average the 12 hidden layers of the word’s sub-
word representations in BERT and then average the subword
representations as input for the cross-lingual alignment. We
leave other ways to extract the representations for future work.

2We have also experimented with ELMo in lieu of BERT
(Peters et al., 2018; Che et al., 2018). However, as we
reach similar conclusions in terms of relative performance,
while BERT-based cross-lingual embeddings outperform their
ELMo-based counterparts in absolute terms, we do not re-
port ELMo’s results for brevity. It should be noted that these
pretrained models used different training data.

3.2 Orthogonal Mapping and MIM
Given a dictionary with item pairs from source and
target languages (si, ti), and matrices S and T that
contain the vector representations corresponding
to the item pairs in the columns, we follow the
standard practice (Glavaš et al., 2019) to find an
orthogonal alignment matrix W that minimizes the
distance between the transformed matrix WS and
T . For improved performance, following Artetxe
et al. (2016), we normalize and mean center the
embeddings in S and T . The mapping is as follows:

W = arg min
W

‖WS − T‖2 s.t. WTW = I. (1)

The closed-form solution can be found by solving
the orthogonal Procrustes problem (Schönemann,
1966) as follows:

TST = UΣV T ;W = UV T (2)

We also optionally apply a post-processing
Meeting-in-the-Middle (MIM) technique, recently
proposed by Doval et al. (2018). It first calculates
the average of each dictionary item representation
in a pair after the orthogonal mapping: we denote
the matrix U as the matrix where each column is
such an average vector. Then, it finds a linear map-
ping M from both the source language (denoted
as Ms) and the target language (Mt) after the pre-
vious step of orthogonal mapping to minimize the
distance to U via a closed-form solution. Equation
(3) formulates how to find Ms, and we do the same
from target to source.

Ms = arg min
Ms

‖MsWS − U‖2 (3)

We apply the orthogonal mapping and MIM both
on static embeddings (for baselines) and contextual-
ized embeddings. For mapping the contextualized
embeddings, we either extract type-level embed-
dings from the contextualized models to serve as
anchors for the alignment using static dictionaries,
or we use parallel sentences as dictionary items to
directly align contextualized word representations
on the token level. We discuss this in what follows.

3.3 Alignment Levels
We explore aligning contextualized models on two
levels: type-level and token-level. Type-level word
representation refers to static word representation
that assigns one fixed embedding to a word. All
the traditional word embedding models (e.g., skip-
gram, CBOW, fastText) provide such embeddings,
and cross-lingual alignment is typically applied on
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these type-level embeddings (Ruder et al., 2019).
Token-level word representation refers to dynamic
representations for words in context, i.e., contextu-
alized word representations.

Contextualized models such as BERT provide
token-level embeddings by default: a natural way
to align these embeddings is token-level alignment.
This has been proposed concurrently to our work by
Aldarmaki and Diab (2019). This method requires
token-level training data , e.g., from a word-aligned
parallel corpus.

As an alternative, we obtain static type-level rep-
resentations in the same space as our contextualized
embeddings and use these type-level representa-
tions as anchors to learn the crosslingual mapping.
The type-level anchors can be seen as taking a
representative sample of the infinite space of the
contextualized embeddings. The mapping learned
via the anchors will hopefully be generalizable to
align the dynamic token-level contextualized em-
beddings as well. The advantage of this approach
is that we can align the contextualized embeddings
with a standard dictionary now that we have one
representation per word.

We experiment with two different kinds of an-
chor type-level embeddings: iso type and avg type.
The iso type refers to type-level embeddings that
are produced by simply inputting the word in iso-
lation to the contextualized model. Avg type em-
beddings are obtained by taking the average of
the contextualized representations of a word.3 The
context-average avg type embeddings has been pro-
posed recently by Schuster et al. (2019). In this
work, we provide a systematic comparison of em-
beddings aligned on the token level, and on the two
kinds of type-level alignments.

3.4 Alignment Training Signal
We explore a number of different supervision sig-
nals for learning the alignment between monolin-
gual embeddings. First, we evaluate traditional
methods that exploit word-level training signals
(Ruder et al., 2019). We use (1) a static manually
created (i.e., external) dictionary to obtain the align-
ment, and (2) we rely on word alignments from a
parallel corpus as the source of the training sig-
nal. For word alignments, we either treat them as a
large dictionary to perform type-level alignment or
we additionally leverage the context in the aligned

3In practice, we take 1000 random samples for a word
from the training data of the parallel corpora used in our
experiments.

sentences to extract a dynamic contextualized dic-
tionary to perform token-level alignment.

We also exploit the training signal coming from
the aligned parallel sentences alone without word
alignments. We first create sentence representa-
tions by averaging type-level or token-level embed-
dings, and then align the parallel sentence represen-
tations from source to target language.

The configurations for learning cross-lingual
contextualized word embeddings explored in this
work are summarized in Table 1, and we rely on
the configuration labels from the table throughout
the paper. Type-level configurations which ignore
context are treated as baselines.

4 Bilingual Token-level Sense Retrieval
Task (BTSR)

Task Description. In §2, we already discussed
the main properties of the two other tasks that can
be used to evaluate cross-lingual context-aware em-
beddings: BCWS and parallel Sentence Retrieval.
In short, BCWS only measures similarity between
cross-lingual word pairs in context, and it does not
evaluate the translation capacity of different meth-
ods. The Sentence Retrieval task does not evaluate
on the word level and can be solved by relying on
the context alone.

To bridge this gap in evaluation, we introduce
a new task: Bilingual Token-level Sense Retrieval
(BTSR). It tests for the retrieval of meaning-
equivalent cross-lingual contextualized word em-
beddings relying on non-parallel context informa-
tion. Our task can be seen as a contextualized
variant of the BDI task. Its comparison to the tradi-
tional BDI task is provided in Table 2.

In what follows, we define the BTSR task for-
mally and provide details on how the task data is
created. To build a representative sample of contex-
tualized words in the source and target languages,
we collect translation pairs and contextualize the
word pairs into token-level representations. Then
we manually check a sample of the contextualized
word pairs to ensure correspondence of sense on
the token-level. To understand the effect of the size
of the search space, we experiment with 20k and
200k candidates respectively.

Formal Definition. In BTSR, we define S :
s1tk,1, s

1
tk,2, s

2
tk,1, . . . , s

n
tk,m as a set of queries from

the source language. A query sitk,j is a token-
level contextualized representation of the ith source
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Component Options Label
Alignment Signal Word alignment from parallel data wa

Sentence alignment from parallel data sa
MUSE training dictionary dict

Alignment Level Token-level alignment token
Type-level alignment from context average avg type
Type-level alignment from inputting the word in isolation iso type
Type-level alignment in static embeddings (eg. Fasttext) type

Models monolingual English BERT model mono en
monolingual Chinese BERT model mono zh
BERT multilingual English model multi en
BERT multilingual Spanish model multi es
Fasttext baseline fasttext

Alignment techniques the original orthogonal linear transformation orig
post-processing linear transformation after the orthogonal transformation mim

Evaluation level Evaluated on token-level representations [token]
Evaluated on type-level representations [type]

Table 1: Different components used for the model configurations in our evaluation.

BDI BTSR

uniform 制服 ..[uniforms] were black... 他的[制服].. (His [uniform]..)
subdue 制服 ..mosquito was [subdued].. ..[制服]刺客.. (...[subdue] the assas-

sin...)
uniform 一致 the [uniform] convergence of the regular

solution
...[一致]漸近穩定...定理 (the theorem
of [uniform] asymptotic stability...)

Table 2: BTSR: examples and a comparison with traditional (non-contextualized) BDI.

word that corresponds to the word’s jth sense. Sim-
ilarly, we define T : t1tk,1, t

1
tk,2, . . . , t

p
tk,q as a set

of candidates in the target language where each
candidate is a contextualized token-level word that
represents a specific sense of a word in the target
language. For each query stk, the task is to find a
target contextualized token-level word ttk that has
the same word sense as in the query. Sim(stk, ttk)
is a function that computes the similarity of stk and
ttk. In our experiments, we use cosine similarity.
Using Sim(stk, ttk), for each query, we retrieve
ttk,i1 , . . . , ttk,iK : the top K most similar token-
level contextualized words from the target set T in
the cross-lingual space as the nearest neighbours.
We report Precision@K, i.e. precision of finding
the gold ttk in the top K retrieved candidates.

Collecting Translation Pairs. We select a repre-
sentative set of query words from WordNet (Miller,
1998) (one unique word per WordNet synset). For
each source word, we retrieve its WordNet senses
and the corresponding translations in the target lan-
guage from Multilingual WordNet (Bond and Fos-
ter, 2013). As WordNet senses are too fine-grained,
we collapse senses into clusters if they contain the
same translation for the source word. For example,
“uniform” has five WordNet senses which are trans-
lated into four distinct Chinese words: 制服(the
clothes worn by a particular group),一致(the trans-
lation of two senses: consistent and undifferenti-

ated)4,不變(unchanged) and相同(the same) . We
take these four Chinese words to form four transla-
tion pairs with “uniform”.

Word Pair Contextualization. For each word
in a word pair, we “contextualize” the word by se-
lecting a sentence in which the word appears, and
ensure that the resulting contextualized word can be
translated into the other word. Therefore, if a pol-
ysemous word occurs in multiple word pairs with
distinct translations, it will be accompanied with
different contexts that correspond to each transla-
tion. We achieve this by selecting a pair of parallel
sentences in which the source word and the tar-
get word from the word pair are aligned after we
run word alignment. The context in the source
language in this parallel sentence pair is used to
“contextualize” the source word. When we select
context for the target word, we choose a different
parallel sentence in which the two words in the pair
are aligned. Therefore, the final contexts for the
source and target word in the word pair are indeed
non-parallel.

The use of non-parallel contexts here is crucial
because when we perform the token retrieval task,
parallel contexts can be superficially retrieved by
simply matching the contexts rather than repre-

4Notice the senses are different thus contexts are needed
to find the pair corresponding to the same meaning.
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senting the words in context appropriately. We
empirically verified that a simplistic context av-
erage baseline outperforms contextualized word
embeddings in a variant of our task which relies on
parallel contexts.

We set aside 1M parallel sentences from the
UMCorpus (Tian et al., 2014) (EN–ZH) and the
WMT13 news dataset (Bojar et al., 2013) (EN–ES)
for extracting the sentence contexts. We end up
with 14,604 distinct word pairs with contexts ex-
tracted for EN–ZH, and 9,623 pairs for EN–ES.

Creation of Test Data. As the contexts are non-
parallel in a word pair, we need to check if the
contextualized words in a word pair genuinely rep-
resent the same meaning. We manually checked a
sample of the word pairs extracted in the previous
step to produce the final test set for BTSR. To pro-
duce the sample, we selected the translation pairs
that satisfy any of the following constraints: 1) tar-
get or source word belongs to the top 250 frequent
words in each language, 2) target or source word
belongs to the top 250 most ambiguous words in
each language. We take the number of sense clus-
ters as introduced above as a measure of ambiguity
for each word.

The first author then provided an initial manual
annotation of the samples for both EN–ES and EN–
ZH on whether the contextualized words in a pair
correspond to the same meaning. The samples from
the two language pairs were subsequently anno-
tated by one native Chinese speaker and one native
Spanish speaker respectively. The final agreement
rate calculated as pairwise inter-annotator agree-
ment on a binary choice5 for EN–ZH is 94.5%,
and 94.7% for EN–ES. Finally, we take the sub-
sets where all annotators agree as the test sets for
EN–ZH (1,181 pairs) and EN–ES (994 pairs).

Target Candidates. We treat the token-level rep-
resentations of the target words from all words pairs
in the contextualization process described above
as our candidate space. To make the target can-
didate space more representative of the language,
we supplement the space with words outside of the
WordNet inventory from monolingual Wikipedia
dumps in the target language. For each of these
words, we randomly select a sentence in which it
occurs to contextualize the word into a token-level

5For each language pair, it is calculated as the percentage
of token pairs marked correct by both annotators (the first
author and one native speaker of the language) divided by the
number of all the token pairs.

target candidate. We experiment with 20k target
candidates and 200k target candidates.

5 Experiments

Training Setup. To test the effects of corpora
size on the induction of the cross-lingual align-
ment, we vary the size of the parallel corpus from
100 up to 200k parallel sentences in the UMCorpus
and the WMT13 corpus. Word alignment was pro-
duced by IBM Model 2 using Fastalign (Dyer et al.,
2013). We also induce cross-lingual alignments
relying on static dictionaries provided by MUSE
(Conneau et al., 2017). BERT variants (see §3.1)
are taken from Devlin et al. (2019). For comparison
with BERT, we also run fasttext (Bojanowski et al.,
2017) to produce baseline static embeddings using
the same training Wikipedia corpora for English,
Chinese and Spanish.

5.1 Bilingual Contextual Word Similarity

We first evaluate the models on two previous evalua-
tion tasks: BCWS and Sentence Retrieval. For both
tasks, we compute cosine similarity to measure the
distance between representations. For BCWS, we
evaluate embedding distance against human anno-
tations via Spearman correlation. Results on the
BCWS task for EN–ZH are shown in Figure 1. The
main finding is that all cross-lingual contextual-
ized embeddings in our comparison surpass the
previous state-of-the-art (SOTA) based on a cross-
lingual multi-sense model (Chi and Chen, 2018) as
soon as they are fed 5K or more parallel sentences.
Note that the previous SOTA model was trained
on the full EN–ZH parallel corpus of around 2M
sentences. Although BERT was pretrained on a
corpus comprising 3.3B words , it is reasonable to
assume that it is easier to procure abundant mono-
lingual data than parallel data. Therefore, aligning
pretrained monolingual embeddings using only a
small amount of parallel data rather than training on
a large parallel corpus is a more favorable choice.

Alignment based on independent monolingual
models (mono en→mono zh) is particularly effec-
tive, achieving human-level performance. While
different methods achieve comparable results,
avg type consistently takes the lead.

5.2 Sentence Retrieval

For the Sentence Retrieval task, we compute co-
sine similarity between the query sentence repre-
sentation and sentence representations in the tar-
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token wa orig [token]
avg_type sa orig [token]
token sa orig [token]
avg_type wa orig [token]
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iso_type wa orig [token]
previous SOTA
human upperbound

Figure 1: BCWS (Spearman’s ρ). The horizontal axis
indicates the number of parallel sentences used for
learning the alignment transformation. Please refer to
Table 1 for understanding the method acronyms in the
legend. For example, ‘token wa orig [token]’ refers
to token-level orthogonal mapping trained with word
alignment and it is evaluated on token-level data.

get language in the test set of UMcorpus (English-
Chinese) and WMT13 corpus (English-Spanish).
Precision results for finding the parallel sentence
in the top 5 candidates are reported in Figure 2.
We find that evaluating with contextualized em-
beddings on the token-level (all the [token] lines)
performs consistently better than type embedding
baselines. Among the different ways to transfer the
contextualized embeddings, aligning directly on
the token level with parallel data outperforms align-
ing via type-level anchoring. Concerning the align-
ment training signal, sentence alignment starts low
but is able to yield comparable results with word
alignment after 50K sentences. For the EN–ZH
Sentence Retrieval, aligning independently trained
BERT models outperforms aligning embeddings
with shared vocabulary. For the EN–ES Sentence
Retrieval task, aligning from both independent
models and from shared embeddings achieves ceil-
ing performance.

5.3 Bilingual Token-level Sense Retrieval

We report Precision@5 scores for 20k target words
in Figure 3. We also report the results from align-
ing using 200k parallel sentences on BTSR with
200k target words and applying the additional MIM
technique in Table 3.

Baselines. We evaluate four baselines that help
us better understand the models’ performance in
this task. For BL(word) methods, we discard the
contexts and use only the query and target word’s
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(d) multi en→multi es
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token sa orig [token]
avg_type sa orig [token]
avg_type dict orig [token]
iso_type wa orig [token]

iso_type sa orig [token]
avg_type wa orig [type]
avg_type sa orig [type]
fasttext type sa orig [type]
fasttext type wa orig [type]

Figure 2: Results on the Sentence Retrieval task from
the testset of UMcorpus and WMT13 corpus; the
scores are Precision@5 (%). The horizontal axis indi-
cates the number of parallel sentences used for learning
the alignment transformation. Please refer to Table 1
for understanding the method acronyms.

type representations. Therefore, polysemous words
in the dataset will have only one static representa-
tion. We implement both a fasttext baseline and a
context-average type embedding baseline for each
contextualized model. We also provide baselines
which use context but ignore the word in focus
(BL(context)). These baselines take an average of
the context embeddings both at the token level and
at the type level of the contextualized models. In-
stead of finding the best translation word in context,
these baselines retrieve the target sentence with the
best translation of the source context.6 Finally, we
evaluate a simple baseline that combines both word
and context as an average of the two representa-
tions. Context representation here is the average
of the context embeddings. Both word and context
embeddings here are calculated using the avg type
embeddings.

Discussion. The low performance of all the base-
lines suggest that the proposed task is more chal-
lenging than the alternatives: it can not be easily

6On our trivial parallel variant of the task, this context
baseline gives the best performance.
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token avg type iso type
wa sa wa sa wa sa

mono en→mono zh 30.84 28.87 32.04 31.7 25.43 26.46
+ mim 29.98 30.15 34.79 34.45 26.37 27.15
multi en→multi zh 17.14 16.97 19.9 20.84 16.8 18.17
+ mim 15.93 16.62 21.62 21.79 14.81 14.9
mono en→multi es 33.47 30.15 34.37 33.37 29.25 28.44
+mim 32.46 30.55 35.38 33.57 27.34 25.43
multi en→multi es 27.14 25.43 29.35 29.25 27.04 26.33
+mim 28.44 27.94 31.86 31.76 26.73 25.03

Table 3: BTSR results with 200k candidates; alignment learned from 200k parallel sentences. Please refer to
Table 1 for the explanation of the acronyms.
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Figure 3: EN–ZH and EN–ES BTSR results; Preci-
sion@5 (%). The horizontal axis indicates the number
of parallel sentences used for learning the alignment
transformation. Please refer to Table 1 for understand-
ing the method acronyms.

tackled by looking at word in isolation (i.e., at type-
level representations) or the context alone, or a
simple combination of context and the query word.

Regarding the alignment level, compared to the
Sentence Retrieval task, the benefit of dynamic
token-level alignment from parallel corpora now
disappears. Aligning the contextualized embed-
dings via context-average anchor type embeddings,
i.e. avg type alignment, (which consistently out-
perform iso type embeddings) is the best model in
most cases, or yields comparable performance with
token-level alignment. Their advantage becomes
more pronounced in the experiments with 200K

target candidates, see Table 3. We suspect that this
method is particularly robust when generalizing to
words in non-parallel contexts: we find the same
pattern in the BCWS task which is also constructed
with nonparallel sentences.

Applying MIM brings consistent improvement
for the best (avg type) alignment method. Such
improvements for the other methods are less sta-
ble. This suggests MIM is only effective when
the alignment methods already learn a high-quality
cross-lingual space before applying MIM.

As for training signals, relying only on a small
dictionary (5K word pairs) yields comparable re-
sults with the methods that are trained on large
amounts of parallel data. This suggests that a small
seed dictionary may be enough to transfer the con-
textualized embeddings cross-lingually and be able
to disambiguate words in context cross-lingually.

When comparing model variants, we see an
advantage of aligning independent models over
aligning shared models as we increase the train-
ing data. This advantage becomes more obvious
with 200K target candidates, see Table 3. For EN–
ES results in Figure 3, we observe that all align-
ment methods which use the shared model (i.e.,
multi en→multi es) start higher than results from
aligning independently trained mono en→multi es.
With the ‘avg type wa orig’ method for exam-
ple, aligning mono en→multi es starts at 29.04(%)
whereas multi en→multi es starts at 34.07(%)
given 100 parallel sentences. This is intuitive as
English and Spanish share a larger portion of their
vocabulary compared to English and Chinese: this
gives the multilingual model a head start, but it is
quickly surpassed by aligning from independently-
trained models, especially via the avg type align-
ment, as we increase training data.

In sum, we show that (1) BTSR is a challeng-
ing task; (2) unlike in Sentence Retrieval, context
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English original token avg type iso type
mono en multi en wa mim sa mim wa mim sa mim wa mim sa mim

mono en→mono zh 76.37 - 76.9 77.98 78.16 78.28 73.82 74.37
mono en→multi es 76.37 - 75.89 76.76 77.2 76.83 73.12 72.05
multi en→multi zh - 72.6 73.56 75.31 74.89 75.1 68.55 68.07
multi en→multi es - 72.6 72.3 73.78 74.1 73.72 68.43 66.99

Table 4: Evaluating alignment methods and model variants on the monolingual SCWS dataset which measures
word similarity in context (in English). Spearman’s ρ (× 100%). Previous best reported score is 69.3 (Neelakantan
et al., 2014). Please refer to Table 1 for the explanations of the acronyms.

average type-level alignment performs the best in
our task and in the BCWS task where the con-
texts are non-parallel, and can be further improved
with the MIM technique. (3) Using a small dic-
tionary is sufficient to transfer the contextualized
embeddings via type-level alignment. (4) Align-
ing from a shared model gives a head start when
two languages contain some shared vocabulary, but
aligning from independently trained monolingual
embeddings is able to achieve better performance
given sufficient training data (5) Overall, increasing
the search space from 20K to 200K target words
results in a decrease of 10% in precision in BTSR,
but the relative performance of different methods
is more consistent and more pronounced.

Monolingual Contextual Evaluation. We also
examine whether the cross-lingual alignment with
MIM post-processing can improve the monolingual
contextualized embeddings by evaluating the EN
models on the Stanford Contextualized Word Sim-
ilarity Task (Huang et al., 2012) which measures
similarity of word pairs with context in English. We
evaluate the alignments learned from using 200K
parallel sentences. The results are in Table 4. It
seems that aligning independently trained models,
which have better monolingual performance, out-
performs aligning from shared models as found in
BTSR. Also, we see consistent improvement over
the original monolingual space after MIM, espe-
cially with avg type alignment level. This indicates
that the avg type alignment level is effective not
only in transferring the contextualized embeddings
to the target language, but it can also improve the
context-aware monolingual space.

We also observe that the EN contextualized
models in their original space (both mono en and
multi en) outperform SOTA (69.3%), a multi-sense
static embedding model (Neelakantan et al., 2014).
This indicates that the present contextualized em-
beddings are already capturing context effect in-
cluding sense-level information without explicitly

assigning embeddings to discrete sense categories.

6 Conclusion

We have conducted novel comparisons and anal-
yses of various alignment methods for aligning
contextualized embeddings cross-lingually. We
have also introduced a novel task, Bilingual Token-
level Sense Retrieval, which directly evaluates the
retrieval of meaning-equivalent cross-lingual con-
textualized embeddings. The proposed task is chal-
lenging and enables a finer-grained analysis of dif-
ferent cross-lingual alignment methods. We have
found that using context-average type-level align-
ment (avg type) is effective and robust in trans-
ferring monolingual contextualized embeddings
cross-lingually and at the same time improves the
monolingual space. Using a small static dictio-
nary as the alignment signal provides comparable
results to word alignment methods relying on paral-
lel corpora. We have also found that aligning inde-
pendently trained monolingual embeddings yields
better performance than aligning embeddings from
a shared model. As our paper focuses only on the
projection-based alignment methods, future work
may explore other ways to learn the cross-lingual
contextualized embeddings, e.g., based on joint
training (Mulcaire et al., 2019).
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Abstract

Producing diverse paraphrases of a sentence is
a challenging task. Natural paraphrase cor-
pora are scarce and limited, while existing
large-scale resources are automatically gen-
erated via back-translation and rely on beam
search, which tends to lack diversity. We de-
scribe PARABANK 2, a new resource that con-
tains multiple diverse sentential paraphrases,
produced from a bilingual corpus using nega-
tive constraints, inference sampling, and clus-
tering. We show that PARABANK 2 signif-
icantly surpasses prior work in both lexical
and syntactic diversity while being meaning-
preserving, as measured by human judgments
and standardized metrics. Further, we illus-
trate how such paraphrastic resources may be
used to refine contextualized encoders, leading
to improvements in downstream tasks.

1 Introduction

The ability to understand and produce paraphrases
is a basic competency task, one that is often used
as a teaching aid to validate if a student under-
stands a statement or a concept. Current deep
learning systems struggle with this task, exhibit-
ing brittleness to both understanding and produc-
ing paraphrastic expressions (Iyyer et al., 2018).

One crucial factor behind this incompetence is
the dearth of sentential paraphrastic data. Many
works have sought to leverage the relative abun-
dance of sub-sentential paraphrastic resources in
paraphrase detection or generation (Napoles et al.,
2016). Yet, they fail to capture contextualized
word choices or syntactical variations, as word-
or phrase-level resources cannot incorporate infor-
mation from the whole input sentence.

Recent works have focused on leveraging bilin-
gual resources to create large sentence-level para-
phrastic collections using translation-based meth-
ods (Wieting and Gimpel, 2018; Hu et al., 2019).

I took this by mistake. I took it by mistake.vzal jsem ho omylem.

I took this by mistake. I took it by accident.vzal jsem ho omylem.

Source Target (Reference) Paraphrase

I took this by mistake. I took it by mistake.

… …

I took this by mistake. I picked it up accidentally.

Constrained

Unconstrained

⊕

⊖

⊖ ⊖

I took this by mistake. I took it by accident.vzal jsem ho omylem.

I took it by mistake.I picked it up accidentally.

Clustered

I picked up accidentally.
I picked it accidentally.

I took mistake.
I took it.

I took by accident.

Figure 1: Contrived example paraphrases from previ-
ous work (unconstrained and constrained—used with
permission) and ours (clustered).

However, these works are confined to using beam
search in decoding, which tend not to produce di-
verse candidates. One approach to force diverse
translations is the use of hard lexical constraints at
inference time (Hu et al., 2019). While effective in
some cases, current approaches to automatic selec-
tion of such constraints is based on heuristics and
task-oriented trial-and-error.

We present a novel resource with accurate and
collectively diverse paraphrases, generated using
stochastic decoding and clustering. By collec-
tively diverse, we mean that the paraphrases of a
given sentence cover a wide lexical and syntac-
tic spectrum. Given a bilingual input pair, our
core idea is to sample a large space of outputs
from a translation system, cluster the results ac-
cording to a notion of token-sequence similarity,
score them with two translation models (one in
each direction), and then select the best item from
each cluster. We believe that sampling from the
word distribution at each decoder time-step bet-
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ter preserves the decoder’s level of uncertainty,
which is intrinsic to the goals of paraphrasing.
We also sample ancillary lexical constraints to
discourage, instead of explicitly prohibiting (Hu
et al., 2019), certain words from being used by the
decoder. While our experiment produces a large-
scale English resource, our approach is dependent
only on the availability of large bitexts and so is
language-agnostic. We chose to build an English
resource from CzEng to enable a direct compari-
son with Wieting and Gimpel (2018) and Hu et al.
(2019).

Our contributions include:

• A large, high quality paraphrase collection1

with up to 5 paraphrases per reference, close
to 100 million pairs in total, which are more
diverse than prior work in two distinct ways,
as measured by standardized metrics;

• An evaluation of semantic similarity, lexi-
cal and syntactic diversity, compared against
prior works, along with results on Sentence
Textual Similarity (STS) Benchmark;

• Experiments on how our resource can be
leveraged to improve performance on a set of
language tasks.

2 Paraphrase generation pipeline

Prior works in constructing sentential paraphras-
tic resources have worked from large collections
of bitext, producing translations of the foreign
language sentence which, when paired with the
target-language reference, constitute a set of para-
phrases. Working from the very large CzEng par-
allel corpus, Wieting and Gimpel (2018) produced
a single paraphrase for each English sentence by
translating from the Czech source. Hu et al. (2019)
expanded on this by translating the Czech sen-
tence several times, using positive or negative con-
straints obtained from the English reference.

In terms of producing diverse paraphrases, both
approaches are limited because they rely on beam
search. There are potentially billions of para-
phrases of a sentence (Dreyer and Marcu, 2012),
yet beam search with recurrent models can only
search a constant subset of them (in the beam
size). There are techniques for producing more di-
verse paraphrases, such as the use of positive and
negative constraints (Hu et al., 2019) or syntactic

1Available at http://nlp.jhu.edu/parabank2

fragments (Iyyer et al., 2018), but these require the
user to manually specify them, which can be cum-
bersome and unreliable.

We follow these prior works in working with
the CzEng, a Czech–English dataset (Bojar et al.,
2016b), due to its size, diverse domain coverage,
and rich syntactic variations (Wieting and Gim-
pel, 2018), and to allow for a direct comparison
in methodologies. However, we propose a new
approach to paraphrase generation designed to in-
crease paraphrastic diversity, using a multi-step
process: the first part of the pipeline generates a
large number of candidate paraphrases through a
random process, and the second part whittles them
down to a much shorter list. For each {source, tar-
get} input pair, we run the following pipeline:

1. Constrained sampling. We sample trans-
lations using a source→target translation
model with lexical constraints. We obtain
negative constraints by randomly selecting a
set of tokens from the “source”, so that they
are not allowed to appear in the translations.
Then, we decode each translation by sam-
pling from only the top-k most probable to-
kens at each time step, after excluding con-
strained tokens (§2.1).

2. Dual scoring. The set of samples is then
scored against the original source input us-
ing a target→source translation model. The
scores from the forward and backward mod-
els are summed (§2.2).

3. Clustering. The samples are then clustered.
The best item from each cluster (according to
the summed score) is then returned (§2.3).

2.1 Constrained sampling

Sampling is a more effective way to explore model
search space than beam search, particularly in
auto-regressive models that do not permit dynamic
programming. We introduce two means by which
we can expand the hypothesis space, and pro-
duce a more diverse set of paraphrases, relative to
straightforward beam search.

Top-k sampling In auto-regressive neural MT,
the standard sampling approach would be to
choose a word wt at each decoder timestep t by
sampling from the distribution P (wt | w1...t−1).
This approach has been found effective over 1-
best beam search in generating source sentences in
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back-translation (Edunov et al., 2018). However,
for paraphrasing, this is not ideal, since words that
are not semantically licensed by the source may be
selected. Instead, we propose top-k sampling, in
which we choose wt from the top k most-probable
tokens at each time step. This way, we allow the
model to sample flexibly, vastly opening up the
hypothesis space, without creating a large risk of
producing nonsensical translations.

Randomized negative constraints Negative
constraints are tokens that are not permitted in the
decoder output. They are not formally described
in the literature, but an implementation was
provided with the associated positive constraints
(Post and Vilar, 2018). Negative constraints can
be provided as tokens or phrases; the decoder
tracks the progress of generation through each
constraint and adds an infinite cost to the final
word of any constraints, precluding its selection
in both sampling and beam search.

In order to further increase sample diversity
when generating the hypotheses (§2.1), we obtain
negative constraints from the source by randomly
choosing a subset of tokens. We do this indepen-
dently multiple times for each input sentence. This
provides new sets of constraints for the inputs, in-
dependent of the decoding.

Note that we use subword regularization (Kudo,
2018) during training, causing different subword
segmentations to be applied to training data types
each time they are encountered and helping to
build more robust models. We only constrain on
the Viterbi segmentation, effectively discouraging
negatively constrained words from appearing in
the output, instead of prohibiting them, since there
are often ways for the model to produce a word by
generating a different decomposition.

2.2 Back-translation likelihoods

Some semantic changes during paraphrasing, es-
pecially omission, are not well-reflected by the
(forward) probability pgenerate from the generat-
ing model. However, a model running in the other
direction can penalize this omission, as found by
Goto and Tanaka (2017). Thus, we obtain the
back-translation probability pback of each sampled
candidate paraphrase, and define the final score for
each candidate paraphrase as the joint probability
p∗ = pgenerate ∗ pback, which is the sum of nega-
tive log-likelihood.

2.3 Edit-distance-based clustering

The above process produces a large set of transla-
tions of the source sentence. Many of them will be
minor variants of one another, but we expect that
there will be a lot of variety in the large pool. The
task now is to reduce this pool to a small set of
collectively diverse paraphrastic candidates.

We address this problem with k-means clus-
tering via Levenshtein (or edit) distance (Miller
et al., 2009). We compute this on lowercased,
segmented candidates, after striping punctuation.
Clusters are initialized with the k furthest candi-
dates measured by edit-distance. We also add the
reference sentence as the centroid of an additional
cluster and skip the re-centering for that cluster.
This improves the chance of the k clusters con-
gregating candidates different from the reference
in different ways. When the clustering has con-
verged, we take the candidate with the best score
from each cluster (except for the one with the ref-
erence sentence), rank them by score, and take the
best n as the final output.

3 Evaluations

3.1 Data

All of our experiments are based on the CzEng 1.7
corpus, a subset of CzEng 1.6 (Bojar et al., 2016b)
that has been chosen for higher quality. Based
on experience with data quality issues in neural
MT (Ott et al., 2018; Junczys-Dowmunt, 2018),
we decided to further clean the corpus. First,
we normalize Unicode punctuation, and keep only
bilingual pairs whose English side can be encoded
with latin-1 and Czech side with latin-2.
We then filter the data with dual cross-entropy fil-
tering (Junczys-Dowmunt, 2018). We use Sock-
eye (Hieber et al., 2017) to train two NMT mod-
els, CS–EN and EN-CS, on a relatively clean sub-
set of the data provided for WMT 2018 (Bojar
et al., 2016a): Europarl, Wiki titles, and news
commentary. We use 4 layer Transformer models
(Vaswani et al., 2017) trained to convergence, with
held-out likelihood evaluated on a random 500-
sentence subset of the WMT16 and WMT17 news
test data. These models are then used to score
all the remaining CzEng data after deduplication.
We kept all sentences with a model score (negative
log-likelihood) of less than 3.5. After applying the
above two filters, we keep 19, 723, 003 out of the
57, 065, 358 pairs in CzEng 1.7.
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3.2 Translation models

We train two new translation models on the filtered
data, the CS–EN generation model (for generat-
ing English candidates via sampling) and the EN–
CS scoring model (for providing backwards scores
of the candidates). Both are Transformer models
built with AWS SOCKEYE. The generation model
is a 12 layer Transformer with a model and em-
bedding size of 768, 12 attention heads, a feed-
forward layer size of 3072. The scoring model
has 6 layers, model and embedding size of 512,
8 attention heads, and a feed-forward layer size of
2048.

All training data is pre-processed with subword
sampling using SentencePiece2 (Kudo, 2018) with
a vocabulary size of 20k and character coverage
of 0.9999. We used separate models for Czech
and English. At inference time, we use the Viterbi
segmentation of each input sentence, for both the
generation and scoring models.

3.3 Parameters

There are a few parameters involved in the sample-
score-cluster pipeline. For each Czech input sen-
tence, we generate 5 sets of random constraints
(§2.1), creating 5 variants of the input. From each
of these inputs, we generate 30 samples using top-
k sampling with k = 10 (i.e., at each timestep,
the model randomly chooses from the top 10 most
probable words, according to their scaled distribu-
tion, and excluding negatively constrained words).
The resulting 150 sentences are scored, and any-
thing with a combined score greater than 3.5 is
thrown out. The remaining sentences are clustered
into 8 clusters, one of them centered on the En-
glish reference. The reference cluster is thrown
out, and a list of the best-scoring translation from
the remaining 7 clusters is constructed. From this
list, the top 5 translations are returned as hypothe-
ses.

3.4 Setup

We follow the evaluation framework of Hu et al.
(2019), which judged semantic similarity between
paraphrases and their reference through human
evaluation, and lexical diversity via automatic
metrics. We use the evaluation result made pub-
lic by Hu et al. (2019) to enable a direct compar-
ison. Rather than focusing on improving seman-

2https://github.com/google/
sentencepiece

tic similarity, which is limited by the quality of
the bilingual resource, we seek to build a resource
that contains both more lexical and syntactical di-
versity.

We obtained the evaluation set from Hu et al.
(2019), which contains 400 English sentences
from CzEng. Due to additional filtering, 24 out
of 400 (6%) reference sentences aren’t in PARA-
BANK 2 and therefore excluded in this evaluation.

We set the output size n = 5. After sorting the
candidates by negative log-likelihood for each ref-
erence, we treat candidates at each rank as an in-
dividual system to investigate the expected quality
of paraphrases under our approach. For references
that produce fewer than 5 paraphrases, the para-
phrase with the highest negative log-likelihood is
duplicated to fill in ranks that otherwise would be
empty. We also artificially pick the paraphrase
with the maximum, minimum, and median human
semantic similarity judgment under each reference
as three additional oracle systems.

3.5 Semantic similarity via human judgments
For a fair comparison, we used the evaluation
setup released by Hu et al. (2019), which uses the
interface from EASL (Sakaguchi and Van Durme,
2018) to collect semantic similarity and gammat-
icality judgments. Each human annotator is pre-
sented with a reference sentence and five para-
phrases from different sources. Annotators use a
slider bar under each paraphrase to rate the seman-
tic similarity from 0 (Opposite/Irrelevant) to 100
(Identical Meaning). Annotators are also asked
to comment on whether the paraphrase is ungram-
matical or nonsensical. The reference sentence is
repeated next to the paraphrase for easier visual
comparison.

Each paraphrase receives at least 3 independent
judgments. Following Hu et al. (2019), we ran-
domly add in the reference sentence as a para-
phrase and filter out annotators who fail to score
them 100 more than 10% of such encounters. The
result includes only annotators who contributed at
least 25 judgments and is shown in Tab. 1.

3.6 Paraphrastic diversity
BLEU has been a successful metric in evaluating
MT systems. However, as noted earlier, monolin-
gual paraphrasing has inherently different objec-
tives than cross-lingual translation. BLEU, in tan-
dem with human evaluation in semantic similar-
ity, makes a good metric for paraphrastic diversity.
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System Semantics↑ Grammar↑ 1-BLEU↑ ∩/∪ ↓ Tree ED↑ Len. Ratio

PARANMT 83.2 89.2 66.29 48.76 6.62 1.00
PARABANK17 84.5 92.1 62.85 46.21 6.21 1.01
PARABANK34 85.7 92.7 58.16 51.01 6.51 1.02

Our work1 84.4±.0 90.2±.2 75.83±.10 37.75±.02 7.16±.05 1.04±.00
Our work2 83.8±.0 88.3±.4 76.98±.07 36.19±.36 7.15±.17 1.05±.00
Our work3 83.5±.0 87.3±.1 78.29±.69 35.22±.43 7.47±.11 1.05±.00
Our work4 83.2±.2 86.6±.8 78.92±.19 34.49±.06 7.51±.11 1.06±.01
Our work5 81.7±.1 87.3±.8 81.55±.35 32.50±.32 7.80±.19 1.09±.00

Our workmax 91.2±.2* 93.1±.8* 76.71±.11 37.15±.33 7.38±.06 1.05±.01
Our workmed. 84.1±.1 88.2±.1 78.34±.10 35.34±.25 7.52±.08 1.06±.00
Our workmin 72.5±.2 81.5±.2 79.29±.21* 33.13±.55* 7.65±.10* 1.05±.00

Table 1: Paraphrastic diversity measured by (1-BLEU)×100, bag-of-word intersection/union score×100, and Tree
edit-distance. Systems from this work that receive the best human judgments, worst human judgments, and the
median, are included in the table. A higher 1-BLEU suggests higher paraphrastic diversity; a higher Intersec-
tion/Union score suggests a higher lexical diversity; a higher Tree edit-distance suggests a higher syntactic diver-
sity. Best in each column, excluding oracle systems, is in bold. * denotes best oracle systems.

Here, we use 1-BLEU to measure how different
the paraphrases are to the references.

We generate 5 paraphrases for each reference
sentence using the approach outlined in this work.
To account for randomness, we average over two
independent runs in the result, shown in Tab. 1.

We consider two sources of paraphrastic diver-
sity: 1) lexical diversity, the use of different words;
and 2) syntactic diversity, the change of sentence
or phrasal structure. We separately measure them
using bag-of-word Intersection/Union scores and
parse-tree edit-distances, respectively.

Lexical diversity A sentence is lexically differ-
ent from the reference when it uses lexical para-
phrases (e.g., synonyms) to convey similar mean-
ings. We calculate the case-insensitive piece In-
tersection/Union score after striping punctuation
and the SentencePiece white space symbol. All
pieces are put to lowercase and into a set. The
more pieces the two sentences share, the higher the
score will be. The Intersection/Union scores be-
tween the reference and the paraphrases are shown
in Tab. 1.

Syntactic diversity We consider the edit-
distance between the parse trees of the reference
and the paraphrase as a metric of syntactic
diversity. Parse tree edit-distance is considered
a useful feature in NLP tasks (Yao et al., 2013).
The more syntactic variations there are between
two sentences, the larger the tree edit-distance

will be. We consider only the top 3 levels of the
parse trees, excluding any terminals. Sentences
are parsed with Stanford CoreNLP (Manning
et al., 2014); the tree edit-distance is calculated
with the APTED (Pawlik and Augsten, 2015a,b)
algorithm. The average tree edit-distance for each
system is shown in Tab. 1.

Diversity among paraphrases Hu et al. (2019)
produced multiple paraphrases for each reference.
While shown to be diverse compared to the refer-
ence, the authors did not investigate whether these
paraphrases are trivial rewrites of one another, as
it is likely the case with beam search under a few
lexical constraints. Our clustering step is specifi-
cally designed to retrieve collectively diverse para-
phrases.

We use the same metrics to evaluate pairs of
systems from our work and compare them against
PARABANK (Hu et al., 2019), as shown in Tab. 2.
The max/min/median systems are oracle systems
derived from human semantic similarity judg-
ment scores. The human judgments from Tab. 1
show our paraphrases are of comparable quality to
PARABANK, while maintaining a much higher de-
gree of diversity among paraphrases of the same
reference, as shown by automatic metrics.

3.7 Semantic similarity on STS Benchmark
In addition to evaluating via human judgments,
we consider the same evaluation mechanism as
PARANMT (Wieting and Gimpel, 2018): the use
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Systems Compared 1-BLEU↑ ∩/∪ ↓ Tree ED↑
PARABANK17/PARABANK34 20.58 80.93 2.26

Our work1/Our work3 64.16±.21 52.77±.48 5.51±.01
Our work3/Our work5 71.05±.22 45.00±.51 6.40±.19
Our work1/Our work5 69.46±.27 46.79±.12 6.25±.18

Our workmax/Our workmin 66.03±.86 49.10±.16 5.84±.33

Table 2: Collective diversity within our work compared to PARABANK, as measured by (1-BLEU)×100, intersec-
tion/union score×100, and parse tree edit-distance.

of paraphrase corpora as training data for the Se-
mantic Textual Similarity (STS) task. STS aims
to measure the degree of equivalence in meaning
or semantics between a pair of sentences. No-
tably, Agirre et al. (2016) having been a part of
the SemEval workshop (2012 -2017). The evalua-
tion consists of human annotated English sentence
pairs, scored on a scale of 0 to 5 to quantify simi-
larity of meaning, with 0 being the least, and 5 the
most similar.

Wieting and Gimpel (Wieting and Gimpel,
2018) compared three encoding mechanisms:
WORD, TRIGRAM and LSTM. The WORD
model (Wieting et al., 2016) averages the embed-
ding for each word in the sentence into a fixed
length vector embedding for the sentence; the
TRIGRAM model (Huang et al., 2013) averages
over character trigrams; and the LSTM (Hochre-
iter and Schmidhuber, 1997) approach averages
over the final hidden states to obtain the sentence
embedding.

Encoders are trained on paraphrase pairs (s, s′)
with a margin based loss function l(s, s′, t, t′) =

max(0, δ − cos[g(s), g(s′)] + cos[g(s), g(t)])+

max(0, δ − cos[g(s), g(s′)] + cos[g(s′), g(t′)])

where g is one of (WORD, TRIGRAM, LSTM)
and (t, t′) is a negative sample selected from
a megabatch, an aggregation of m mini-
batches (Wieting and Gimpel, 2018).3

We evaluate the WORD model trained4 on
PARANMT, PARABANK and PARABANK 2 (our
work). We retrieved the paraphrases from PARA-

3We confirmed this loss with Wieting and Gimpel, that it
captures their open implementation, which we employ. Wi-
eting and Gimpel (2018) described their loss as: max(0, δ −
cos(g(s), g(s′)) + cos(g(s), g(t))), which is equivalent un-
der their assumption the paraphrases are equivalent.

4https://github.com/jwieting/
para-nmt-50m

System Pearson’s r Spearman’s r

PARANMT 75.378 76.322
PARABANK 76.006 76.961
Our work1 76.546 77.528
Our work2 76.143 77.240
Our work3 76.397 77.500
Our work4 76.414 77.612
Our work5 75.882 77.075

Our work1/5 75.680 76.882

Table 3: Pearson’s r × 100 and Spearman’s r × 100
computed on STS 2016 task. Our work1/5 contains
paraphrase pairs from system1 paired with system5,
while all other systems are paired with the reference
sentence.

BANK and our work that share the same refer-
ences as PARANMT-5M. Our work is evaluated
as 5 systems, based on the rank in the output; the
last available paraphrase is used when lower ranks
are empty. We also include a system that uses
a pair of paraphrases, instead of a reference and
a paraphrase. We keep PARABANK paraphrases
that have a bag-of-word intersection/union score
of 0.7 or less, and use the 1-best based on regres-
sion scores. In Tab. 3, we report Pearson’s r and
Spearman’s r on the STS’16 test set. Sentence em-
beddings trained on our work exhibit higher cor-
relation with human judgments, which reflects the
superior paraphrastic diversity of the corpus.

3.8 Improving contextualized encoders with
paraphrastic data

Paraphrastic data can be used to fine-tune contex-
tualized encoders such as BERT (Devlin et al.,
2018). We frame the fine-tuning task as para-
phrase identification (Das and Smith, 2009),
where given a pair of sentences, the task is to
classify them as paraphrases or non-paraphrases.
To generate the training data, we extract, for each
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QQP MNLI STS-B MRPC

BERT 87.90 83.86 88.40 84.00
pBERT 88.14 82.64 88.59 86.55

Table 4: F1 scores are reported for QQP and MRPC,
Spearman correlations are reported for STS-B, and ac-
curacy scores are reported for MNLI. Numbers re-
ported on Dev set

Type BERT pBERT

F1 HasAns 76.81 74.21
NoAns 71.44 74.95
Total 74.12 74.58

Exact Match HasAns 70.34 68.00
NoAns 71.44 74.95
Total 70.89 71.48

Table 5: SQuAD 2.0 results on dev set.

sentence in PARANMT-5M, the sentence embed-
dings generated by the WORD model trained in
§3.7. For each sentence s, we then find the (ap-
proximate) nearest neighbour n which is not s′,
among all of the sentences. We thus obtain two
pairs, where (s, s′) is a paraphrase pair, and (s, n)
is a non-paraphrase pair. We use these to train a
binary classifier with cross-entropy loss.

We then use this BERT fine-tuned on para-
phrases (henceforth pBERT) for fine-tuning on
SQuAD 2.0 (Rajpurkar et al., 2018) and 4 NLP
tasks present in the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2019): Quora Question Pairs (QQP) (Chen
et al., 2017), Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2018), the Seman-
tic Textual Similarity Benchmark (STS-B) (Agirre
et al., 2016), and the Microsoft Research Para-
phrase Corpus (MRPC) (Dolan et al., 2004). Fol-
lowing the model formulation, hyper-parameter
selection and training procedure specified in De-
vlin et al. (2018), we add a single task-specific,
randomly initialized output layer for the classifier.

We present our results in Tab. 4 and Tab. 5.
We observe gains for STS-B, MRPC and QQP,
tasks strongly related to paraphrase identifica-
tion. Fine-tuning on our paraphrase corpus also
improves performance on SQuAD, a question-
answering task, while slightly degrading perfor-
mance on MNLI. Overall, simple fine-tuning of
BERT on our corpus leads to improvements on

downstream tasks, in particular when the task is
related to paraphrase detection.

4 Related works

4.1 Paraphrastic resources

Paraphrastic resources exist across different
scopes (i.e., lexical, phrasal, sentential) and differ-
ent creation strategies (i.e., manually curated, au-
tomatically generated). For a more comprehensive
survey on data-driven approaches to paraphrasing,
please refer to Madnani and Dorr (2010).

Sub-sentential resources WordNet (Miller,
1995), FrameNet (Baker et al., 1998), and
VerbNet (Schuler, 2006) can be used to extract
paraphrastic expressions at lexical levels. They
contain the grouping of words or phrases that
share similar semantics and sometimes entailment
relations. While FrameNet and VerbNet do
have example sentences or frames where lexical
units are put into contexts, there is no explicit
paraphrastic relations among these examples.
Also, these datasets tend to be small, as they
were curated manually. There have been efforts
to augment such resources with automatic meth-
ods (Snow et al., 2006; Pavlick et al., 2015b),
but they are still confined to lexical level and
sometimes require the use of other paraphrastic
resources (Pavlick et al., 2015b).

PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015a) automated the generation of lexical para-
phrases via bilingual pivoting, taking advantage
of the relative abundance of bilingual corpora.
While significantly larger and more informative
(e.g., ranking, entailment relations, etc.) than the
above manually curated resources, PPDB suffers
from ambiguity as words or phrases are removed
from their sentential contexts.

Sentential resources There exists multiple hu-
man translations in the same language for some
classic readings. Barzilay and McKeown (2001)
sought to extract lexical paraphrastic expression
from such sources. Unfortunately such resources
– along with those manually constructed for text
generation research (Robin, 1995; Pang et al.,
2003) – are small and limited in domain.

PARANMT and PARABANK are two much
larger sentential paraphrastic resources created
through back-translation.
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Reference:
Real life is sometimes thoughtless and mean. Hey, stop right there!

PARANMT:
real life is sometimes reckless and cruel . hey , stop .

PARABANK:
The real life is occasionally ruthless and cruel. Stay where you are!
The real world is occasionally ruthless and cruel.
The real life is sometimes reckless and cruel.

Our work:
True life is sometimes ruthless and cruel. Hold your position!
Actual life is sometimes ruthless and cruel. Stay where you are!
Sometimes real life is ruthless and cruel. Stay in position!
Real life can be inconsiderate, cruel sometimes. Remain where you are!
Real living is a harsh and unscrupulous one, at times. Stay put!

Table 6: Selected examples from our work, compared to paraphrastic resources with prior approaches. Our work
has paraphrases that are not only different from the reference, but also diverse among themselves.

4.2 Translation-based Approaches

PARANMT is an automatically generated senten-
tial paraphrastic resource through back-translating
bilingual resources. It leveraged the imperfect
ability of Neural Machine Translation (NMT) to
recreate the translation target by conditioning on
the source side of the bitext.

PARABANK took a similar approach but with
the inclusion of lexical constraints from the tar-
get side of the bitext. This step allows for multi-
ple translations from one bilingual sentence pair
and promotes lexical diversity. Their work, de-
spite being larger and shown to be less noisy than
PARANMT, relies on heuristics to produce hard
constraints on the decoder, which often causes un-
intended changes in semantics or grammar.

Both works largely follow standard approaches
in NMT, generating 1-best hypotheses given a
source text and a set of constraints using beam
search. Sentential paraphrasing, nevertheless, has
fundamentally different objectives than MT. The
latter strives to find the best elicitation that is both
fluent and semantically close to the foreign text to
convey information across languages. The former,
on the other hand, seeks syntactically and lexically
diverse expressions that convey the same meaning,
with the goal of capturing the intrinsic flexibility
and uncertainty of human communications. This
work attempts to adapt the methodology to these
objectives of monolingual paraphrasing.

4.3 Leveraging paraphrases in NLP

In the context of semantic parsing, Berant and
Liang (2014) use a paraphrase classification mod-
ule to determine the match between a canonical
utterance and a logical form, both using a phrase
table and distributed representations. To im-
prove question answering (QA), Duboue and Chu-
Carroll (2006) generate paraphrases of a given
question using back-translation, and optionally re-
place the original question with the most rele-
vant paraphrase. Dong et al. (2017) tackle QA by
marginalizing the probability of an answer over a
set of paraphrases, generated using rule-based and
NMT-based methods. Fader et al. (2013) use a cor-
pus of questions with paraphrases, to construct a
corpus of semantically equivalent queries.

The task of paraphrase identification, which we
use as a fine-tuning objective, has been studied as a
task in itself. Das and Smith (2009) use grammars
to perform generative modeling of paraphrases.
Madnani et al. (2012) identify paraphrases by re-
lying only on MT metrics as features. Ferreira
et al. (2018) feed sentence similarity measured
with hand-crafted features to machine learning al-
gorithms. Convolutional neural networks have
been introduced by Yin and Schütze (2015) and
Chen et al. (2018), and further augmented with
LSTMs (Kubal and Nimkar, 2018) and attention
mechanisms (Fan et al., 2018).
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5 Conclusions and future work

A presumed goal for building a sentential para-
phrase resource is to capture different ways of ex-
pressing the same thing: diversity matters. Previ-
ous work on paraphrastic resource creation relied
on decoding techniques from NMT using bilingual
corpora, with limited success in promoting diverse
expressions. We have presented a new community
resource produced by sampling and clustering. We
evaluated our method against prior works (Wiet-
ing and Gimpel, 2018; Hu et al., 2019) and found
significant gains in both lexical and syntactic di-
versity. Further, we’ve shown how straightforward
fine-tuning of a state-of-the-art contextual encoder
on our resource can improve performance on a va-
riety of language tasks.
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Abstract
Systems that can associate images with their
spoken audio captions are an important step
towards visually grounded language learning.
We describe a scalable method to automati-
cally generate diverse audio for image caption-
ing datasets. This supports pretraining deep
networks for encoding both audio and images,
which we do via a dual encoder that learns to
align latent representations from both modali-
ties. We show that a masked margin softmax
loss for such models is superior to the stan-
dard triplet loss. We fine-tune these models on
the Flickr8k Audio Captions Corpus and ob-
tain state-of-the-art results—improving recall
in the top 10 from 29.6% to 49.5%. We also
obtain human ratings on retrieval outputs to
better assess the impact of incidentally match-
ing image-caption pairs that were not associ-
ated in the data, finding that automatic evalua-
tion substantially underestimates the quality of
the retrieved results.

1 Introduction

Natural language learning in people starts with
speech, not text. Text is tidy: it comes in con-
venient symbolic units that vary little from one
writer to another. Speech is continuous and messy:
the sounds used to convey a given word are modi-
fied by those of surrounding words, and the rate of
speech, its pitch, and more vary across speakers and
even for the same speaker in different contexts. As
such, problems involving speech provide distinct
challenges and opportunities for learning language
representations that text-based work—which repre-
sents the vast majority—gets a free pass on.

Recent work has explored various means to trans-
form raw speech into symbolic forms with little or
no supervision (Park and Glass, 2007; Varadara-
jan et al., 2008; Ondel et al., 2016; Kamper et al.,

∗ Work done as a member of the Google AI Residency
Program.

Figure 1: Models that encode speech segments and im-
ages into a shared latent space enable images to be re-
trieved using their audio descriptions (top) and to asso-
ciate images with spoken captions (bottom). Text cap-
tions are provided for clarity; only speech and images
are used by the models.

2017a; Bhati et al., 2018). However, learning natu-
ral language starts with grounded, contextualized
speech. While infants as young as 8-months-old
can segment word-like units without non-linguistic
information (Jusczyk and Aslin, 1995) and adults
can learn to segment words in artificial languages
(Saffran et al., 1996), a learner must ultimately
ground their representations of linguistic sequences
(Harnad, 1990) to effectively use them to refer to
objects, events and more. Furthermore, learning
from rich perceptual data and interactions can be
more efficient as it provides additional cues to the
identities of words and their meaning in context.

We address the problem of relating images to
audio captions that describe them (Figure 1), build-
ing on previous research into learning from vi-
sually grounded, untranscribed speech (Harwath
and Glass, 2015; Sun et al., 2016; Harwath et al.,
2016; Chrupała et al., 2017; Kamper et al., 2017b;
Chrupała, 2019; Harwath and Glass, 2019). Such
problem settings provide opportunities both to im-
prove our theoretical understanding of language
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as well as to realize gains on practical problems—
including voice interaction with virtual assistants,
image retrieval based on speech, and generally bet-
ter supporting people with visual impairments.

Our contribution is to improve performance on
bidirectional speech/image retrieval through better
data and better models for learning fixed dimen-
sional latent representations of both modalities. We
construct a synthetic speech caption dataset for pre-
training by applying text-to-speech (TTS) on Con-
ceptual Captions (Sharma et al., 2018), a dataset
with 3.3 million diverse image-caption pairs. Un-
like Chrupała et al. (2017), who similarly applied
TTS to MS-COCO (Chen et al., 2015), we inject di-
versity by varying the voice, speech rate, pitch and
volume gain on every synthetically produced audio
caption. We refer to the resulting dataset as Concep-
tual Spoken Captions (CSC). CSC’s scale allows
us to train deeper models than previous work. We
use Inception-ResNet-v2 (Szegedy et al., 2017) to
encode both the audio and visual modalities in a
dual encoder model, pretraining on CSC and then
fine-tuning and evaluating on human speech in the
smaller Flickr Audio Caption Corpus (FACC) (Har-
wath and Glass, 2015). Using an adapted batch
loss function rather than the triplet loss used in
previous work, we substantially improve on the
previous state-of-the-art for the standard FACC re-
trieval tasks.

Image captioning datasets contain positively
paired items—but that does not imply that a ran-
dom image and caption cannot also be a valid
match. For instance, in FACC there are many spo-
ken captions about beaches and sunsets and plenty
of images that match these captions; two differ-
ent images with descriptions “A surfer is riding a
wave.” and “A man surfs the wave” are likely com-
patible. It is of course not feasible to exhaustively
annotate all pairwise associations, so we have hu-
man raters judge the top five retrieved results for
two models to assess the impact of this aspect of
the data on automatic retrieval metrics used thus far.
Unsurprisingly, models retrieve many compatible
results that are unpaired in FACC: with the human
evaluations, we find consistent increases in recall.

2 Data

Larger training datasets support better performance
and generalization (Banko and Brill, 2001; Halevy
et al., 2009; Sun et al., 2017), especially for deep
models. Collecting labels from people has become

easier via crowd computing (Buhrmester et al.,
2011), but is still expensive and remains a bottle-
neck for creating broad and representative datasets.
This motivates the case for exploiting incidental
annotation (Roth, 2017) and automating some as-
pects of dataset creation. The current trend of using
machine translation systems to produce augmented
datasets for machine translation itself (Sennrich
et al., 2016) and for monolingual tasks like classifi-
cation (Yu et al., 2018) and paraphrasing (Wieting
and Gimpel, 2018) is a good example of this.

For speech image captioning, Chrupała et al.
(2017) used a Text-to-Speech (TTS) system to cre-
ate audio from the textual captions given in the
MS-COCO dataset, resulting in 300k unique im-
ages with 5 spoken captions each. We scale this
idea to the larger and more diverse textual Concep-
tual Captions dataset with 3.3 million unique image
and captions, additionally modifying the produced
speech by using multiple voices and random per-
turbations to the rate, pitch and audio. Our goal is
to make the resulting data more effective for pre-
training models so they can learn more efficiently
on smaller amounts of human speech.

2.1 Conceptual Captions

Image captioning datasets have ignited a great deal
of research at the intersection of the computer vi-
sion and natural language processing communities
(Lin et al., 2014; Vinyals et al., 2015; Bernardi
et al., 2016; Anderson et al., 2018). Getting anno-
tators to provide captions works well with crowd
computing, but Sharma et al. (2018) exploit inci-
dental supervision for this task to obtain greater
scale with their Conceptual Captions dataset. It
contains 3.3 million pairs of image and textual cap-
tions, where pairs are extracted from HTML web
pages using the alt-text field of images as a starting
point for their descriptions.

The textual captions are processed in a hyper-
nymization stage. Named entities and syntactic
dependency annotations are obtained using Google
Cloud Natural Language APIs, which are matched
to hypernym terms using the Google Knowledge
Graph Search API. Proper nouns, numbers, units,
dates, durations and locations are removed; iden-
tified named-entities are substituted with their hy-
pernym, merging together analogous terms when
possible. For example, the original alt-text (1) is
converted to the conceptual caption (2).

(1) alt-text: Musician Justin Timberlake per-
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forms at the 2017 Pilgrimage Music & Cul-
tural Festival on September 23, 2017 in
Franklin, Tennessee.

(2) conceptual caption: pop artist performs at
the festival in a city.

There are many sequential filtering steps for im-
proving the quality of the captions—see Sharma
et al. (2018) for a thorough description. As quality
control, a random sample of 4K conceptual cap-
tions were rated by human annotators, and 90.3%
were judged “good” by at least 2 out of 3 raters.

2.2 Conceptual Spoken Captions
We use TTS to generate a high-fidelity spoken sen-
tence for each of the 3.3 million textual captions
in the Conceptual Captions dataset.1 We use the
Google Cloud Speech API2 for TTS. Internally,
the service uses a WaveNet model (Van Den Oord
et al., 2016) to generate audio. For diversity, the
speech is synthesized using parameter variations,
as follows:

• Voice, which is sampled uniformly from a
set of 6 different voices generated using a
WaveNet model for American English.

• Speaking rate controls the speed of the synthe-
sized audio. A speaking rate of 1.0 means the
normal speed of a given voice, while a speak-
ing rate of 2.0 means twice as fast. When
synthesizing the data, we draw this parameter
from a Gaussian distribution ∼ N (1.0, 0.12).

• Pitch controls how high/deep the voice is. For
example, if set to 1, this means the voice will
be synthesized 1 semitones above the origi-
nal pitch. This parameter is drawn from a
Gaussian distribution ∼ N (0.0, 1.02).

• Volume gain controls a gain in dB with respect
to the normal native signal amplitude. If set to
0, the voice is synthesized without alterations
in volume. This parameter is drawn from a
Gaussian distribution ∼ N (0.0, 2.02).

To avoid degenerate cases, we clip the values
sampled from the Gaussian distributions described
above such that they are never more than 2 times
the standard deviation from the mean. All spoken
captions are generated in 16000 Hz.

1The alt-text does not come with the dataset and cannot be
redistributed, so we focus on the conceptual captions for ease
of experimentation and reproducibility.

2https://cloud.google.com/text-to-speech/

Figure 2: Dual-encoder model architecture.

2.3 Flickr Audio Caption Corpus
The Flickr Audio Caption Corpus (FACC) (Har-
wath and Glass, 2015) consists of 40,000 pairs of
images and spoken captions, with 8000 unique im-
ages, of which 1000 are held for validation and
1000 for testing. The spoken captions are generated
from humans reading the textual captions from the
Flickr8k dataset (Hodosh et al., 2013), originally
crowd-sourced and based on images from Flickr.

We use FACC for evaluation, both when pretrain-
ing on Conceptual Spoken Captions and when train-
ing on FACC from scratch. Like previous work, the
core evaluation considered is retrieval of the known
paired image given an audio caption within some
top-k set of retrieved items (e.g. R@1 for whether
the first item retrieved is the paired one and R@10
for whether it is in the top ten results). We also
conduct human evaluations on retrieval outputs to
detect the presence of unpaired but matching image-
caption pairs identified by the models and thereby
better assess their impact on performance.

3 Model

Dual encoders are used in a wide range of ap-
plications, including signature verification (Brom-
ley et al., 1994), object tracking (Bertinetto et al.,
2016), sentence similarity (Mueller and Thyagara-
jan, 2016), improving neural machine translation
(Yang et al., 2019) and many others. The core
of this set of architectures is a simple two-tower
model illustrated in Figure 2, where inputs x ∈ X
are processed by an encoder gx and inputs y ∈ Y
by a second encoder gy. The inputs may come
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from the same distribution—or they may be from
entirely different sources or modalities. The towers
may share the same architecture and weights—or
they can be completely unlike and disconnected.

These models are standard in audiovisual image
captioning (Harwath and Glass, 2015; Chrupała,
2019; Harwath et al., 2018). In this setting, the
dual encoder model, is composed by a visual tower,
gvis, processing the images, and an audio tower,
gaud, processing the spoken captions. The model
is trained to map both modalities into a joint latent
space. Here, we extend previous work to consider a
batched margin loss, which we show to be superior
for learning dense representations for retrieval.

Notation. The inputs are processed in batches
of size B. For each input xk and yk in the batch,
1 ≤ k ≤ B , let gx(xk) and gy(yk) be their la-
tent representations extracted by the corresponding
tower. We define the B × B matrix Z as the sim-
ilarity between the latent representations for each
pair of elements in the batch. A natural choice for
that similarity is the dot product between the latent
representations:

Zij = gx(xi) · gy(yj) (1)

As shown in Figure 2, Z encodes all pairwise as-
sociations in the batch. However, an additional
aspect of some datasets must be taken into account:
often times the same input x can match multiple
inputs y or vice-versa—for instance, both Flickr8k
and MS-COCO have multiple captions for the each
image. To respect these pairs when they land in
the same batch—and thus not penalize models for
(correctly) associating them—we define a B ×B
masking matrix M:

Mij =

{
0, if xi matches yj
1, otherwise

(2)

All pairs (xk, yk) match and this equivalence is
transitive, so M is symmetric and all diagonal ele-
ments Mkk, 1 ≤ k ≤ B are zero.

Triplet Loss. Both Chrupała (2019) and Harwath
et al. (2018) (and their previous work) employ the
triplet loss function given in Equation 3.

LT =

B∑

k=1

(
max(0,Zkm − Zkk + δ)+

max(0,Znk − Zkk + δ)
)

(3)

For each value k, m is randomly drawn from a uni-
form distribution over indices j such that Mkj = 1,
and n over indices i such that Mik = 1.

Masked Margin Softmax Loss. The triplet loss
(3) used previously misses opportunities to learn
against a wider set of negative examples, namely
all those in the batch that are not known to be posi-
tively associated (i.e., Mij = 1). To exploit these
additional negatives, we minimize the Masked Mar-
gin Softmax (MMS) loss function, inspired by Hen-
derson et al. (2017) and Yang et al. (2019). MMS
simulates x-to-y and y-to-x retrievals inside the
batch. It is defined at a high level as:

LMMS = Lxy + Lyx (4)

LMMS is the sum of losses defined over x-to-y (Eq.
5) and y-to-x (Eq. 6) in-batch retrievals.

Lxy = −
1

B

B∑

i=1

log
eZii−δ

eZii−δ +
∑B

j=1MijeZij

(5)

Lyx = − 1

B

B∑

j=1

log
eZjj−δ

eZjj−δ +
∑B

i=1MijeZij

(6)
These are equivalent to a cross-entropy loss after a
column-wise or row-wise softmax on the matrix Z,
subject to the masking constraints in M and margin
δ.

The margin hyperparameter δ is gradually in-
creased as training progresses. Empirically, we
found that, with a fixed δ, large values lead to unsta-
ble performance in early training, while small val-
ues lead to negligible results in final performance.
Starting with a small δ and increasing it does not
hurt early training and forces the model to learn
from a harder task later on. There many ways to
increase δ along training—e.g. linearly, quadrati-
cally, and exponentially. The latter is used in this
work.

Contrasting Equations 3 and 4, the former
chooses a negative sample randomly, while the lat-
ter takes advantage of all negative pairs in the batch
and thus improves sample efficiency. LMMS has
three main differences with Yang et al. (2019): (1)
a masking term that accounts for the fact that there
might be multiple positive choices in the batch for
a given input; (2) a varying margin term δ, which is
increased during training; (3) a log term that makes
MMS more closely resemble a cross-entropy loss.
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Speech to Image Image to Speech

Loss Batch Size R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100
LT 48 .037 .109 .165 .367 .474 .031 .101 .155 .346 .455

LMMS

12 .025 .083 .129 .311 .432 .024 .083 .132 .315 .433
24 .054 .143 .206 .418 .533 .046 .137 .197 .411 .520
48 .078 .204 .282 .499 .604 .074 .194 .269 .485 .587

Table 1: Performance on the validation set of Conceptual Spoken Captions, comparing different loss functions and
batch sizes.

4 Experiments

4.1 Experimental settings

Image preprocessing. During training, data aug-
mentation is performed by randomly distorting the
brightness and saturation of images. Each image is
also randomly cropped or padded such that at least
67% of the area of the original image is covered,
and re-scaled if necessary to 299×299. During
evaluation, we do not perform color distortions,
and we crop/pad the central portion of the images.

Audio preprocessing. We extract 128 Mel-
Frequency Cepstral Coefficients (MFCCs) from
the raw audio signals using a window size of 20ms.
The audio signals have a sampling rate of 16000Hz.
We compute features every 10ms, such that each
window has a 50% overlap with its neighbors. Dur-
ing training, we randomly crop/pad the MFCCs in
the temporal dimension, and perform data augmen-
tation as in Park et al. (2019), using one mask with
a frequency mask parameter of 20 and a time mask
parameter of 40. We do not perform time warping.

Encoders. Both audio and image encoders are
Inception-ResNet-v2 networks (Szegedy et al.,
2017), allowing the model to reap the benefits
of relatively low computational cost, fast train-
ing and and strong performance when combining
the Inception architecture with residual connec-
tions.3 Related to our setting for audio processing,
Li et al. (2019) also uses residual convolutional
neural networks for state of the art results on Lib-
riSpeech dataset (Panayotov et al., 2015). For the
audio tower, we stack 3 replicas of the MFCCs
and treat them as images. For each modality, a
1536-dimensional latent space representation is ex-
tracted. Despite using the same architecture for
both encoders, their weights are not shared. Unless
specified otherwise, the models are not pretrained.

3See Bianco et al. (2018) for an extensive benchmark anal-
ysis of popular convolutional neural network architectures.

Optimization. Models are trained using Adam
(Kingma and Ba, 2014), with an initial learning
rate of 0.001 and an exponential decay of 0.999
every 1000 training steps, β1 = 0.9, β2 = 0.999
and ε = 1e−8. We use a weight decay of 4e−5,
and train on 32 GPUs until convergence. Unless
specified otherwise, the optimization objective is
minimizing the loss LMMS (Eq. 4) with a margin
term initially set to δ = 0.001 exponentially and
increased by a factor of 1.002 every 1000 steps.

4.2 Retrieval: Conceptual Spoken Captions

Our primary aim with CSC is to use it for pretrain-
ing for later fine-tuning and evaluation on datasets
with human speech instead of TTS. Nevertheless,
we can compare different loss functions and differ-
ent batch sizes on the CSC validation set to better
understand the impact of these parameters.

We train models on CSC for 3 million steps,
cropping/padding spoken captions to a duration of
3.5 seconds and using the loss functions LT (Eq.
3) and LMMS (Eq. 4). We find continuing im-
provements as batch size increases from 12 to 24
to 48. Furthermore, with the same batch size of
48, models optimized for minimizing LMMS per-
form substantially better than those using LT, as
summarized in Table 1. Of particular note is that
R@1 scores for LMMS (batch size 48) are more
than double those of LT in both directions.

4.3 Retrieval: Flickr Audio Caption Corpus

Table 2 compares previous results on the FACC
dataset with those obtained by variations of our
model. As a pre-processing step, spoken captions
are cropped/padded to a duration of 8 seconds. Af-
ter pretraining the model in CSC, we explore all
possible combinations of using or not the pretrained
weights for each of the branches gaud and gvis as
a warm-starting point, training until convergence
on FACC. Warm-starting each of the branches in
the dual-encoder leads to substantial improvements
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Caption to Image Image to Caption

Model R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

Text

Socher et al. 2014 - - .286 - - - - .2r90 - -
Karpathy et al. 2014 - - .425 - - - - .440 - -
Harwath and Glass 2015 - - .490 - - - - .567 - -
Chrupała et al. 2017 .127 .364 .494 - - - - - - -

Speech

Harwath and Glass 2015 - - .179 - - - - .243 - -
Chrupała et al. 2017 .055 0.163 .253 - - - - - - -
Chrupała 2019 - - .296 - - - - - - -

Ours (from scratch) .018 .063 .101 .288 .428 .024 .072 .124 .332 .458
Ours (warm-starting gaud) .041 .138 .211 .467 .613 .550 .166 .241 .522 .654
Ours (warm-starting gvis) .062 .190 .279 .560 .703 .081 .242 .352 .664 .782
Ours (warm-starting all) .139 .368 .495 .781 .875 .182 .435 .558 .842 .910

Table 2: Retrieval scores on the test set of FACC.

over the baseline, and combining both branches
leads to the best overall performance.

In particular, we improve R@10 for caption-to-
image from the .296 obtained by Chrupała (2019)
by 20% absolute to .495, without using multitask
training or pretraining gvis on ImageNet (Deng
et al., 2009). The multitask training approach of
Chrupała (2019) is complementary to our improve-
ments, so further gains might be obtained by com-
bining these strategies. Furthermore, very deep,
residual convolutional neural networks over charac-
ters have been shown to perform well for text-based
tasks (Conneau et al., 2017). We expect that our
strategy of using the same basic architecture across
different input types (speech, text and image) can
be fruitfully extended to that setting. A related ob-
servation: while our results exceed previous results
reported on text/image retrieval settings for FACC,
we expect that recent advances in text encoding
could easily beat those reported numbers.

We also explore very low-data regimes using our
pretrained model (see Fig. 3). Using small training
subsets randomly drawn from FACC, we report per-
formance as a function of how much data the model
sees. With as little as 10% of the original training
data (3000 image/spoken caption pairs), the warm-
started model performs competitively with a model
trained on all training data.

Qualitative evaluation. Once a model is trained,
any input (image or spoken caption) can be be used
to query the corpus of images and spoken captions
for nearest neighbors in the latent space. Figure 4
shows some examples of retrieved nearest neigh-
bors in FACC’s test set. Given a spoken caption or
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Figure 3: Ablations on low-data regime on FACC:
chart shows recall scores for image-to-speech (I2S) and
speech-to-image (S2I) retrieval, as a function of the
amount of training data used for fine-tuning.

an image we show the five nearest image neighbors
and five nearest caption neighbors. From these, it is
clear that the representations capture many seman-
tically salient attributes of the inputs. The retrieved
items correctly share many thematic elements and
many are clearly good matches even though the
particular image-caption pairs are not associated in
the data. This serves to reinforce our observation
that R@k evaluations using only the known paired
items is likely to underestimate the actual perfor-
mance of the models—which we show to be the
case with human evaluations in Section 4.4.

Only some items are substantially incompatible:
e.g. an image of a car for a caption about a woman
in a river (they share water spraying), a picture of
three adults for a caption about children raising
their hands, and a caption about a boy climbing
a wall for an image of children playing leapfrog).
That said, many details are poor matches, such as
the count of objects (one ball versus many), colors
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Figure 4: Nearest neighbors in the joint visual and acoustic latent space, best viewed with zoom: using 4 spoken
captions and 4 images as queries, we extract from FACC’s test set the closest 5 images and 5 spoken captions in
the latent space for each of them. For simplicity, we show the text associated with each spoken caption.

(brown dogs versus multicolored ones), people de-
scriptions (elderly woman versus male dirt biker),
object identification (e.g. a yellow pool noodle
viewed as similar to slides), processes (jumping ver-
sus sliding) and perspective (man looking up versus
viewed from behind and climbing). As such, there
is clearly significant headroom for better, more fine-
grained modeling of both captions and images. Ad-
ditionally, cross-modal attention mechanisms (Xu
et al., 2015) and other explainability techniques
(Ribeiro et al., 2016) could help better inspect and
understand a model’s predictions.

Furthermore, as noted by Chrupała et al. (2017),
text-based retrieval models often handle mis-
spellings poorly. In contrast, speech-based models
are unlikely to suffer from similar problems be-
cause they inherently must deal with variation in
the expression of words and utterances. For in-
stance, the caption “a dirt biker rides his moto-
cycle through the woods” (fourth row of Figure

4) is highly correlated with the correctly spelled
sentences.

4.4 Human evaluation

We ran human evaluations to answer two questions:
(1) how much does cropping limit model perfor-
mance? and (2) how much do retrieval evaluations
based only on positive associations underestimate
model performance? Hints about both questions
can be seen in the qualitative evaluation (Fig. 4).

To answer the first question, Table 3 shows the
ratings for ground truth image/caption pairs in the
FACC test set. The uncropped row shows that over-
all the captions are high quality and do match the
full images. However, human ratings on images
cropped at the center (which is what is provided
to the models) show that there is considerable loss
from cropping—only 62.5% of cropped images are
rated as good matches by all five raters. Inspection
makes it clear why cropping hurts: for example an
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“good” ratings (out of 5)
1+ 2+ 3+ 4+ 5

Cropped .949 .918 .874 .800 .625
Uncropped .995 .994 .989 .971 .891

Table 3: Human evaluation results on ground truth pairs
on the test set of FACC, using either center cropped
(which the models receive) or uncropped versions of
the images.

image of a snowboarder in the air next to another
on a ski lift is cropped such that the snowboarder
is missing, and thus a poor match to captions men-
tioning the snowboarder. This clearly indicates that
standard cropping (which we follow) inherently
limits model performance and that strategies that
use the full image should be explored.

Standard retrieval evaluations are blind to pairs
that match but are not associated in the data. To
address this and answer the second question posed
above, we present the top-5 retrieved captions for
each image and the top-5 retrieved images for each
caption in FACC’s test set to human raters. To in-
crease speed and decrease costs, we show raters
the original Flickr8k textual captions instead of the
spoken ones. Each pair is judged by five raters
as “good” or not. This gives a soft measure of the
compatibility of each pair based on fast binary judg-
ments from each rater. For retrieval evaluations of
a model, we compute recall based on the majority
of human raters approving each image-caption pair:
R@1 is the percentage of top-1 results and R@5
the percentage of top-5 results that are evaluated as
a match by at least 3 of the 5 raters.

Table 4 shows these metrics computed on re-
trieval outputs from two settings: FACC training
from scratch and FACC fine-tuning after CSC pre-
training. It also shows the corresponding auto-
matic evaluations from Table 2 for easy comparison.
These results make it clear that evaluation based
only on positive associations is too rigid: speech-to-
image retrieval based on human evaluations shows
that a good matching item is returned in 52.2% of
cases rather than just the 36.8% indicated by strict
corpus matches. For image-to-speech retrieval the
55.8% strict measure goes up to 63.8%. That said,
the results also show that the strict measure is nev-
ertheless a useful indicator for comparing relative
model performance: the model pretrained on CSC
beats the corresponding one trained on FACC from
scratch, on both human and automatic evaluations.

S2I I2S

Eval Pretrain R@1 R@5 R@1 R@5
Auto .018 .063 .024 .072
Auto 3 .139 .368 .182 .558
Humans .056 .154 .070 .196
Humans 3 .229 .522 .306 .638

Table 4: Comparison of human rater scores (major-
ity agreement) versus using only corpus-known pairs
on all metrics for speech-to-image (S2I) and image-
to-speech (I2S) retrieval. Rows with Auto evaluation
correspond to Ours (from scratch) and Ours (warm-
starting all) scores in Table 2.

5 Conclusion

Large-scale datasets are essential for training deep
networks from scratch. In this paper, we present
a scalable method for generating an audio caption
dataset taking advantage of TTS systems to create
millions of data pairs. Using the MMS loss, we
demonstrate that pretraining on this dataset greatly
improves performance on a human-generated au-
dio caption dataset. As TTS models continue to
improve and be developed for more languages, this
data augmentation strategy will only become more
robust and helpful over time. Finally, using human
evaluations, we show evidence that corpus-based
retrieval scores underestimate actual performance.

This present work is focused on the here and now
since captions describe a snapshot in time and focus
on the visual entities and events involved in them.
We thus have little hope to learn representations
for words like visit, career and justice, for example.
Videos can help with process oriented words like
visit and could get significant components of words
like career (such as the visual contexts, but not
the overall path with intermediate goals involved
in careers). They are likely to be hopeless for ab-
stract words like justice. To address problems of
this sort, there are likely many opportunities to
combine ideas from unsupervised term discovery
(Kamper et al., 2016; Bansal et al., 2017) with au-
diovisual word learning (Harwath et al., 2018) and
models of visual grounding that have been applied
to text (Kiros et al., 2018). Being able to learn
effective representations from raw audio associated
with images could provide new possibilities for
work that learns from videos and text (transcribed
speech) (Chen et al., 2018), and in particular open
up such techniques to new languages and domains.
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Abstract

Neural language models (LMs) perform well
on tasks that require sensitivity to syntactic
structure. Drawing on the syntactic priming
paradigm from psycholinguistics, we propose
a novel technique to analyze the representa-
tions that enable such success. By establish-
ing a gradient similarity metric between struc-
tures, this technique allows us to reconstruct
the organization of the LMs’ syntactic rep-
resentational space. We use this technique
to demonstrate that LSTM LMs’ representa-
tions of different types of sentences with rel-
ative clauses are organized hierarchically in a
linguistically interpretable manner, suggesting
that the LMs track abstract properties of the
sentence.

1 Introduction

Neural networks trained on text alone, without
explicit syntactic supervision, have been surpris-
ingly successful in tasks that require sensitivity
to sentence structure. The difficulty of interpret-
ing the learned neural representations that under-
lie this success has motivated a range of analysis
techniques, including diagnostic classifiers (Giu-
lianelli et al., 2018; Conneau et al., 2018; Shi et al.,
2016), visualization of individual neuron activa-
tions (Kádár et al., 2017; Qian et al., 2016), ab-
lation of individual neurons or sets of neurons
(Lakretz et al., 2019) and behavioral tests of gener-
alization to infrequent or held out syntactic struc-
tures (Linzen et al., 2016; Weber et al., 2018; Mc-
Coy et al., 2018); for reviews, see Belinkov and
Glass (2019) and Alishahi et al. (2019).

This paper expands the toolkit of neural net-
work analysis techniques by drawing on the syn-
tactic priming paradigm, a central tool in psy-
cholinguistics for analyzing human syntactic rep-
resentations (Bock, 1986). This paradigm is based
on the empirical finding that people tend to reuse

syntactic structures that they have recently pro-
duced or encountered. For example, English pro-
vides two roughly equivalent ways to express a
transfer event:

(1) a. The boy threw the ball to the dog.
b. The boy threw the dog the ball.

When readers encounter one of these variants in
the text more frequently than the other, they ex-
pect that future transfer events will more likely be
expressed using the frequent construction than the
infrequent one. For example, after reading sen-
tences like (1a) (the prime), readers expect sen-
tences like (2a), which shares syntactic structure
with the prime, to occur with a greater likelihood
than the alternative variant like (2b) which does
not (Wells et al., 2009).1

(2) a. The lawyer sent the letter to the client.
b. The lawyer sent the client the letter.

We use the priming paradigm to analyze neu-
ral network language models (LMs), systems that
define a probability distribution over the nth word
of a sentence given its first n− 1 words. Building
on paradigms that determine whether the LM’s ex-
pectations are consistent with the syntactic struc-
ture of the sentence (Linzen et al., 2016), we mea-
sure the extent to which a LM’s expectation for
a specific syntactic structure is affected by re-
cent experience with related structures. We prime
a fully trained model with a structure by adapt-
ing it to a small number of sentences containing
that structure (van Schijndel and Linzen, 2018).
We then measure the change in surprisal (nega-
tive log probability) after adaptation when the LM
is tested either on sentences with the same struc-

1Wells et al. (2009) measured priming effects for relative
clauses, not dative constructions. For work on priming in pro-
duction with dative constructions, see Kaschak et al. (2011).
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ture or sentences with different but related struc-
tures. The degree to which one structure primes
another provides a graded similarity metric be-
tween the model’s representations of those struc-
tures (cf. Branigan and Pickering 2017), which
allows us to investigate how the representations of
sentences with these structures are organized.

As a case study, we applied this technique to
investigate how recurrent neural network (RNN)
LMs represent sentences with relative clauses
(RCs). We found that the representations of these
sentences are organized in a linguistically inter-
pretable manner: sentences with a particular type
of RC were most similar to other sentences with
the same type of RC in the LMs’ representation
space. Furthermore, sentences with different types
of RCs were more similar to each other than sen-
tences without RCs. We demonstrate that the sim-
ilarity between sentences was not driven merely
by specific words that appeared in the sentence,
suggesting that the LMs tracked abstract proper-
ties of the sentence. This ability to track abstract
properties decreased as the training corpus size
increased. Finally, we tested the hypothesis that
LMs’ accuracy on agreement prediction (Marvin
and Linzen, 2018) would increase with the LMs’
ability to track more abstract properties of the sen-
tence, but did not find evidence for this hypothesis.

2 Background

2.1 Syntactic predictions in neural LMs

We build on paradigms that use LM probability es-
timates for words in a given context as a measure
of the model’s sensitivity to the syntactic struc-
ture of the sentence (Linzen et al., 2016; Gulor-
dava et al., 2018; Marvin and Linzen, 2018). If a
language model assigns a higher probability to a
verb form that agrees in number with the subject
(the boy... writes) than a verb form that does not
(the boy... write), we can infer that the model en-
codes information about the agreement features of
nouns and verbs (that is, the difference between
singular and plural) and has correctly identified
the subject that corresponds to this verb. This
reasoning has been extended beyond subject-verb
agreement to study whether the predictions of neu-
ral LMs are sensitive to a range of other syntac-
tic dependencies, including negative polarity items
(Jumelet and Hupkes, 2018), filler-gap dependen-
cies (Wilcox et al., 2018) and reflexive pronoun
binding (Futrell et al., 2019).

2.2 Syntactic priming in humans

Syntactic priming has been used to study whether
the representations of two sentences have shared
structure. For example, (1a) (repeated below as
(3)) shares the structure VP→ V NP PP with (4a)
but not (4b).

(3) The boy threw the ball to the dog.

(4) a. The renowned chef made some wonderful
pasta for the guest.

b. The renowned chef made the guest some
wonderful pasta.

If (3) primes (4a) more than it primes (4b), we can
infer that the representations of (3) are more sim-
ilar to that of (4a) than to that of (4b). Since (4b)
and (4a) differ only in their structure, this differ-
ence in similarity must be driven by structural in-
formation in the representations of the sentences
(for reviews, see Mahowald et al. 2016 and Tooley
and Traxler 2010).

Although priming studies have traditionally
measured the priming effect on the sentence im-
mediately following the prime, more recent stud-
ies have demonstrated that the effects of syntactic
priming can be cumulative and long-lasting: sen-
tences with a shared structure SX become progres-
sively easier to process when preceded by n sen-
tences with the same structure SX than when pre-
ceded by n sentences with a different structure SY
(Kaschak et al., 2011; Wells et al., 2009).2 In con-
junction with the finding that words that are con-
sistent with a probable syntactic parse are easier
to process than words consistent with less proba-
ble parses (Hale, 2001; Levy, 2008), the increased
ease of processing in cumulative priming stud-
ies can be interpreted as evidence that, with in-
creased exposure to a structure, participants begin
to expect that structure with a greater probability
(Chang et al., 2006).

Cumulative priming allows us to study how sen-
tences are related to each other in the human (or
LM) representation space in the same way that
non-cumulative priming does: when participants
(or LMs) are exposed to sentences with structure
SX , if there is a greater decrease in surprisal when
they are tested on other sentences with SX than
when they are tested on other sentences with SY ,
we can infer that the representations of sentences
with SX are more similar to each other than to the

2In studies looking at non-cumulative priming, n = 1.
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Abstract structure Example

Unreduced Object RC The conspiracy that the employee welcomed divided the beautiful country.
Reduced Object RC The conspiracy the employee welcomed divided the beautiful country.
Unreduced Passive RC The conspiracy that was welcomed by the employee divided the beautiful country.
Reduced Passive RC The conspiracy welcomed by the employee divided the beautiful country.
Active Subject RC The employee that welcomed the conspiracy quickly searched the buildings.
PS/ORC-matched Coordination The conspiracy welcomed the employee and divided the beautiful country.
ASRC-matched Coordination The employee welcomed the conspiracy and quickly searched the buildings.

Table 1: Examples of sentences generated using templates containing the seven abstract structures we analyzed
(optional elements, which only occur in a subset of the examples, are indicated in grey).

representations of sentences with SY .

2.3 LM adaptation as cumulative priming

Van Schijndel and Linzen (2018) modeled cu-
mulative priming in recurrent neural networks
(RNNs) by adapting fully trained RNN LMs to
new stimuli — i.e. taking a fully trained RNN LM
and continuing to train it on a small set of sen-
tences (cf. Grave et al. 2017; Krause et al. 2017;
Chowdhury and Zamparelli 2019). They demon-
strated that when an RNN LM was adapted to a
small number of sentences with a shared syntac-
tic structure, the surprisal for novel sentences with
that structure decreased, enabling them to infer
that the LM’s representations of sentences con-
tained information about that structure.

3 Similarity between syntactic structures
in RNN LM representational space

Following the assumptions in Section 2.2, we de-
fine a similarity metric between two structures SX
and SY in an LM’s representation space by adapt-
ing the LM to sentences with SX and measuring
the change in surprisal for sentences with SY —
i.e. measuring to what extent sentences with SX
prime sentences with SY . We use the notation
A(Y | X) to refer to this change in surprisal3,
whereX and Y are non-lexically-overlapping sets
of sentences whose members share the structures
SX and SY respectively. If we assume that SX and
SY are similar to each other in the LM’s represen-
tation space, then A(Y | X) > 0 — i.e., encoun-
tering sentences with SX causes the LM to assign
a higher probability to sentences with SY . On the
other hand, if we assume that SX and SY are unre-
lated to each other, then A(Y | X) = 0 — i.e., en-
countering sentences with SX does not cause the
LM to change its probability for sentences with

3 A is shorthand for adaptation.

SY .

4 Experimental setup

4.1 Syntactic structures
We analyzed five types of RCs. In an active sub-
ject RC, the gap is in the subject position of the
embedded clause:4

(5) My cousin that liked the book ...

In a passive subject RC (passive RCs), the gap is
in the subject position of the embedded clause, and
the embedded verb is passive. In English, passive
RCs can be unreduced (6a) or reduced (6b):

(6) a. The book that was liked by my cousin ...
b. The book liked by my cousin ...

In an object RC the gap is in the object position of
the embedded clause. In English, object RCs can
be unreduced (7a) or reduced (7b):

(7) a. The book that my cousin liked ...
b. The book my cousin liked ...

Finally, we also included two additional condi-
tions with verb coordination: one with nearly
identical word order and lexical content as active
subject RCs ((8); ASRC-matched Coordination),
and another with nearly identical word order and
lexical content as passive RCs and object RCs ((9);
PS/ORC-matched Coordination).5

(8) My cousin liked the book and ...

(9) The book liked my cousin and ...
4We illustrate the location of the gap with underscores

here, but the underscores were not included in the LM’s input.
5In order to maintain the same word order as in object and

passive RCs, the subject of the coordinated verb phrases is
an NP that tends to fill the object position in other sentences
(e.g, “the equation”). Therefore, many of the sentences in
this condition are implausible (e.g., “The equation reviewed
the physicists and challenged the method.”)
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Figure 1: A schematic for calculating the similarity
between two structures SX and SY in an LM’s repre-
sentation space. X1, X2 and Y1, Y2 are non-lexically-
overlapping sets of sentences with SX and SY respec-
tively. ModelX and ModelY refer to versions of a fully
trained model that have been adapted to either X1 or
Y1 respectively. SurpX() and SurpY () are functions
that return the surprisal of sentences for ModelX and
ModelY .

These conditions enable us to measure whether
sentences with different types of RCs are more
similar to each other in an LM’s representation
space than they are to lexically matched sentences
without RCs.

4.2 Adaptation and test sets

We generated sentences from seven templates, one
for each of the syntactic structures of interest. The
slots were filled with 223 verbs, 164 nouns, 24
adverbs and 78 adjectives such that the semantic
plausibility of the combination of nouns, verbs,
adverbs and adjectives was ensured. The seven
variants of every sentence had nearly identical lex-
ical items (see Table 1).6 We used these tem-
plates to generate five experimental lists — each
list comprised of a pair of adaptation and test sets
with minimal lexical overlap between them (only
function words and some modifiers were shared).
Each adaptation set contained 20 sentences and
each test set contained 50.

In order to infer that any decrease in surprisal
is caused by adaptation to an abstract syntactic
structure, we need to ensure that the models are
not adapting to properties of the sentence that are
unrelated to the abstract structure of interest. Con-

6Since the main verb of the sentence was constrained to
be semantically plausible with the subject of the sentence, it
often varied between active subject RC and ASRC-matched
coordination on the one had and all other conditions on the
other.

sider a LM adapted to (10) and tested on (11):

(10) The conspiracy that the employee welcomed
divided the country.

(11) The proposal that the receptionist managed
shocked the CEO.

When the LM is adapted to sentences such
as (10), it could adjust its expectations about sev-
eral properties of the sentence, some more lin-
guistically interesting than others. For instance,
it could learn that there are three determiners in
the sentence, that the third word of the sentence
is that, that sentences have nine words, that every
verb is preceded by a noun, and so on and so forth.
If there is a decrease in surprisal when a model is
adapted to (10) and tested on (11), it is unclear if
this is because the model learned to expect object
relative clauses or if it learned to expect any of the
other mentioned properties.

To minimize the likelihood that the adaptation
effects are driven by irrelevant properties of the
sentence, we introduced several sources of vari-
ability to our templates: nouns could either be
singular or plural, noun phrases could be option-
ally modified by an adjective, adjectives were
optionally modified with an intensifier and verb
phrases were optionally modified with adverbs
which could occur either pre-verbally or post-
verbally (details in the Supplementary Materials).7

4.3 Models

We used 75 of the LSTM language models trained
by van Schijndel et al. (2019); these LMs varied
in the number of hidden units per layer (100, 200,
400, 800, 1600) and the number of tokens they
were trained on (2 million, 10 million or 20 mil-
lion). For each training corpus size, van Schijndel
and Linzen trained models on five disjoint subsets
of the WikiText-103 corpus, to ensure that the re-
sults generalized across different training sets.

4.4 Calculating the adaptation effect (AE)

For every structure, we computed the similarity
between that structure and every other structure
(including itself) as described in Section 3. This
process is schematized in Figure 1. The surprisal
values were averaged across the entire sentence.8

7The Supplementary Materials, the templates and and
code for all the analyses along with the data can be found
on GitHub: https://github.com/grushaprasad/RNN-Priming

8Unknown words were excluded from this average.
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Figure 2: The adaptation effect averaged across all 75 models when (a) they were adapted to each of the structures
and tested on either the same structure (blue, bottom) or different structure (pink, top) and (b) they were adapted
to RCs and tested on non-RCs or vice versa (pink bars); or when they were adapted to RCs or non-RCs and tested
on other RCs or and non-RCs respectively (blue bars). Greater values indicate more similarity between adaptation
and test structures. Error bars reflect 95% CIs.

We found that A(B | A) was proportional to the
surprisal of B prior to adaptation (see Supplemen-
tary Materials). As a consequence, for three struc-
turesX , Y and Z, A(Y | X) could be greater than
A(Z | X) merely because Y was a more surpris-
ing structure to begin with than Z. In order to re-
move this confound, we first fit a linear regression
model predicting A(Y | X) from the surprisal of
Y prior to adaptation (Surp(Y )):

A(Y | X) = β0 + β1Surp(Y ) + ε

We then regressed out the linear relationship be-
tween A(Y | X) and Surp(Y ) as follows:

AE(Y | X) = A(Y | X)− β1Surp(Y )

= β0 + ε

Since Surp(Y ) was centered around its mean,
β0 reflects the mean of A(Y | X) when Surp(Y )
is equal to the mean surprisal of all sentences prior
to adaptation. The term ε reflects any variance in
A(Y | X) that is not predicted by Surp(Y ). By
summing these two terms together, AE(Y | X) re-
flects the change in surprisal for Y after adapting
to X that is independent of Surp(Y ).

4.5 Statistical analyses
We used linear mixed effects models (Pinheiro
et al., 2000) to test for statistical significance; all
of the results reported below were highly signifi-
cant. Details about the statistical analyses can be
found in the Supplementary Materials.

5 Results

5.1 Validating AE as a similarity metric
As discussed in Section 2.3, under the adaptation-
as-priming paradigm, we would expect sentences

that share the same specific structure to be more
similar to each other than lexically matched sen-
tences that do not share the structure.9 In other
words, ifX1 andX2 are non-lexically-overlapping
sets of sentences with shared structure SX , and
Y2 is a set of sentences with structure SY , but is
lexically matched with X2, then we would expect
AE(X2 | X1) > AE(Y2 | X1). We found this
prediction to be true for all of our seven structures
(Figure 2a), thus validating our similarity metric.

5.2 Similarity between sentences with
different types of VP coordination

Our two coordination conditions were structurally
identical to each other but varied in their semantic
plausibility — the sentences in PS/ORC-matched
coordination condition were often semantically
implausible whereas sentences in ASRC-matched
condition were always semantically plausible (see
footnote 5). If sentences that were structurally
similar were close together irrespective of seman-
tic plausibility, then we expect sentences with co-
ordination to be more similar to each other than
lexically matched sentences with RCs. Consistent
with this prediction, the adaptation effect for mod-
els adapted to one type of coordination was greater
when the models were tested on sentences with the
other type of coordination than when they were
tested on sentences with RCs (top panel of Fig-
ure 2b).

9By lexically matched we mean that all content words
were shared between sentences.
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Figure 3: The adaptation effect when models adapted
to sentences with reduced and unreduced RCs are
tested on sentences that match only in reduction (top
right), match only in passivity (bottom right), match in
both reduction and passivity (top left) or sentences that
match in neither (bottom right).

5.3 Similarity between sentences with
different types of RCs

Unlike sentences with coordination, sentences
with different types of RCs differ from each other
at a surface level (see Table 1). However, at
a more abstract level they all share a common
property: a gap. If the RNN LMs were keep-
ing track of whether or not a sentence contained
a gap, we would expect sentences with different
types of RCs to be more similar to each other in
the RNN LMs’ representation space than lexically
matched sentences without a gap. In other words,
if RCX and RCY are two different types of RCs
and CoordY is a sentence with verb coordination
lexically matched with RCY , then we would ex-
pect AE(RCY | RCX) > AE(CoordY | RCX).

Consistent with this prediction, the adaptation
effect for models adapted to RCs was greater when
they were tested on sentences with other types of
RCs than when they were tested on sentences with
coordination (bottom panel of Figure 2b). This
suggests that the LMs do keep track of whether
or not a sentence contains a gap, even though this
property is not overtly indicated by a lexical item
that is shared across all types of RCs.

5.4 Similarity between sentences belonging to
different sub-classes of RCs

The different types of RCs we tested can be di-
vided into sub-classes based on at least two lin-
guistically interpretable features: reduction and
passivity. Reduction distinguishes reduced passive
and object RCs on the one hand from unreduced
passive and object RCs on the other. Passivity dis-

tinguishes reduced and unreduced passive RCs on
the one hand from reduced and unreduced object
RCs on the other. The LMs could be tracking ei-
ther, both or none of these features.

We probed whether the LMs track these fea-
tures by comparing the similarity between sen-
tences that share one feature but not the other, with
the similarity between sentences that share neither
feature. If the adaptation effect is greater when
there is a match in one feature than when there is a
match in neither of the features, we can infer that
the LMs track whether sentences have that feature.
We found that the LMs track both of these features
(Figure 3).

Additionally, we probed which of the features
contributes more towards the similarity between
sentences by comparing the similarity between
sentences that match only in passivity with sen-
tences that match only in reduction. When the
adaptation and test sets matched only in passiv-
ity, the adaptation effect was slightly (but signifi-
cantly) greater than when the adaptation and test
sets matched only in reduction (Figure 3). In other
words, in the LMs’ representation space, (12) is
more similar to (13) than it is to (14), suggesting
that passivity contributes more towards the simi-
larity between sentences than reduction.

(12) The conspiracy the employee welcomed di-
vided the country.

(13) The conspiracy that the employee welcomed
divided the country.

(14) The conspiracy welcomed by the employee
divided the country.

This result is both intuitive and linguistically inter-
pretable — the edit distance between reduced and
unreduced RCs is smaller than the that between
object and passive RCs; the syntax tree for (12) is
also more similar to (13) than it is to (14).

5.5 What properties of sentences drive the
similarity between them?

Our analyses so far have demonstrated that sen-
tences that belong to linguistically interpretable
classes (e.g., sentences that match in reduction)
are more similar to each other in the LMs’ rep-
resentation space than they are to sentences that
do not belong to those classes (e.g., sentences that
do not match in reduction). However, it is unclear
what properties of the sentences are driving this
similarity between members of the class. For al-
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most all of the linguistically interpretable classes
we considered, all sentences belonging to a class
shared at least some, if not all, function words.
The only exception was the class of all RCs, where
the property shared by all sentences in this class
(the presence of a gap) was not overtly observ-
able. Therefore, it is possible that the similarity
between members of most of the classes we tested
was being driven entirely by the presence of these
function words.

In order to test whether the similarity between
members of classes was indeed being driven by the
presence of shared function words, we compared
the representation space of the models we tested in
the previous sections (henceforth trained models)
with the representation space of models trained on
no data (henceforth baseline models). Since the
baseline models were only ever exposed to the 20
sentences in the adaptation set and there was no
lexical overlap in content words between adapta-
tion and test sets, any similarity between sentences
in the representation space of these models would
be driven by the presence of function words. If the
similarity between sentences in the representation
space of the trained models was being driven by
factors other than the presence of function words,
we would expect this similarity to be greater than
the similarity between these sentences in the rep-
resentation space of the baseline models.

We cannot directly use adaptation effect to com-
pare the similarity between sentences in the rep-
resentation spaces of trained models and baseline
models, however: models trained on more data are
likely to have stronger priors and are therefore less
likely to drastically change their representations
after 20 sentences than models trained on less data.
In order to mitigate this issue, we defined a dis-
tance measure between sentences that belong to a
class and sentences that do not belong to a class
SX as follows (see Figure 4 for a schematic):

D(SX ,¬SX) =
AE(X2 | X1)

AE(¬X2 | X1)
This value would be greater than one if sen-

tences that belonged to a class were more simi-
lar to each other than they were to sentences that
did not belong to the class. Since the strength of
prior belief would affect sentences that belong to
the class the same way it would affect sentences
that do not belong to the class, the effect would
cancel out.

We measured the distance between members
and non-members for three linguistically inter-

Figure 4: A schematic of how D(RC,¬RC) is calcu-
lated. For any given row, the black square indicates the
specific structure the models were adapted to, the blue
squares indicate other structures that belong to the same
linguistically defined class as the black square and the
pink squares indicate the structures that do not belong
to this linguistically defined class. In calculating the
distance, we first calculated the proportion between the
mean adaptation effect for the blue squares and the
mean adaptation effect for pink squares for each row.
We then averaged across the proportion for each row to
arrive at one number.

pretable classes: sentences which contained the
same type of RC, sentences that matched in their
reduction or sentences that contained any type of
RC. In our baseline models, for all three classes,
sentences that belonged to one of these classes
were more similar to each other than sentences
that did not belong to that class (Figure 5a). This
was surprising for the class of sentences that con-
tained any type of RC because there was no func-
tion word that was shared by all sentences in this
class. We hypothesize that this is because sen-
tences without RCs always contained the word
and, whereas sentences with RCs never did.

In cases where members of the class shared at
least some function words, the distance between
sentences that belonged to the class and sentences
that did not for the trained models was greater than
that for the baseline models. This suggests that
the similarity between sentences in the representa-
tion space of trained models was being driven by
factors other than the mere presence of function
words. However, somewhat surprisingly, as the
number of training tokens increased, the distance
between members and non-members decreased.

In the case where the members of the class did
not share any function words, the distance between
sentences that belonged to the class and sentences
that did not belong to the class did not differ be-
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Figure 5: (a) Effect of hidden layer size and corpus size on the distance between sentences with specific RCs and
sentences without (left), between sentences that match in reduction and sentences that do not (middle) and between
sentences with RCs and sentences without (right). The solid black line indicates the point at which sentences that
belong to a particular class are equally similar to other sentences that belong to that class and sentences that do not.
(b) Agreement prediction accuracy on reduced object RCs and unreduced object RCs as a function of D(RC,¬RC)

tween the trained models and the baseline mod-
els. This suggests that any similarity between sen-
tences in the representation space of trained mod-
els was driven purely by the presence (or in this
case absence) of lexical items.

5.6 Does D(RC,¬RC) predict agreement
prediction accuracy?

Marvin and Linzen (2018) created a dataset that
evaluated the grammaticality of the predictions of
language models. Using this dataset, they showed
that LSTM LMs could not accurately predict the
number of the main verb if the main clause sub-
ject was modified by an object RCs (either reduced
or unreduced). However, the models had bet-
ter performance if the main clause was modified
by an active subject RC. For example, the mod-
els were at near chance levels in predicting that
(15a) should have higher probability than (15b),
but were slightly better at predicting that (16a)
should have higher probability than (16b):

(15) a. The farmer that the parents love swims.
b. *The farmer that the parents love swim.

(16) a. The farmer that loves the parents swims.
b. *The farmer that loves the parents swim.

One possible explanation for this poor perfor-
mance is that object RCs, either reduced or unre-
duced, are quite infrequent (Roland et al., 2007).
If the LM treats object RCs as unrelated to other
RCs, there are likely very few training examples
from which the models can learn about subject-
verb agreement when the subject is modified by
an object RC. If the LM had instead treated ob-

ject RCs as belonging to the same class as other
RCs, it could learn to generalize from training ex-
amples of subject-verb agreement when the sub-
ject is modified by other RCs. This suggests the
hypothesis that agreement prediction accuracy on
object RCs will be higher in LMs in which the rep-
resentation of object RCs is more similar to the
representation of other RCs.

The similarity between object RCs and other
RCs was defined as in the previous section (the
proportion of blue squares to pink squares of the
top two rows in Figure 4). There was an in-
crease in accuracy as the number of hidden units
increased (see Figure 5b). However, the similar-
ity between object RCs and other types of RCs did
not significantly correlate with agreement predic-
tion; we therefore did not find any evidence for the
hypothesis mentioned above.10

6 Discussion

Drawing on the syntactic priming paradigm from
psycholinguistics, we proposed a new technique
to analyze how the representations of sentences
in neural language models (LMs) are organized.
Applying this paradigm to sentences with relative
clauses (RCs), we found that the representations of
these sentences were organized in a linguistically
interpretable hierarchical manner (summarized in
Figure 6).

We investigated whether this hierarchical or-
ganization was driven by function words that
are shared among sentences sentences or whether
there was evidence that LMs were tracking more

10Similar patterns were observed for the other construc-
tions in the dataset. See Supplementary Materials.
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Figure 6: A schematic of how sentences belonging to different linguistically defined classes are related to each
other in the LMs’ representation space. Each colour indicates a different level of hierarchy.

abstract properties of the sentence. We found
that for at least some linguistically interpretable
classes, sentences that belonged to these classes
were more similar to each other in the representa-
tion space of the LMs we tested than in the rep-
resentation space of baseline LMs that were not
trained on any data. This suggests that the trained
LMs were capable of tracking abstract properties
of the sentence.

However, for linguistically interpretable classes
in which sentences shared a non-lexically observ-
able property (e.g. presence of a gap), sentences
were as similar to each other in the representa-
tion space of the LMs we tested as in the repre-
sentation space of baseline LMs. Taken together,
these results suggest that LMs might be able to
track abstract properties of classes of sentences
only if these classes also share a lexically observ-
able property.

Additionally, we found that the sentences be-
longing to linguistically interpretable classes were
more similar to each other in the representation
spaces of models trained on 2 million tokens than
in the representation spaces for models trained on
20 million tokens. We infer from this that LMs’
ability to track abstract properties of sentences de-
creases with an increase in the training corpus size.
This suggests that if we want these LMs to track
more abstract linguistic properties, training them
on more data from the same distribution is unlikely
to help (cf. van Schijndel et al. 2019). Future work
can explore how to bias these models to track lin-
guistically useful properties through architectural
biases (Dyer et al., 2016), training on auxiliary
tasks (Enguehard et al., 2017) or data augmenta-
tion (Perez and Wang, 2017).

We hypothesized that models’ accuracy on sub-
ject verb agreement when preceded by object RCs
would increase as the similarity between object
RCs and the other types of RCs increased. How-
ever, we did not find evidence for this. This could
either be because the similarity between object
RCs and the other types of RCs was too weak to
be useful (see Figure 5a) or because the LMs do
not use this property when predicting verb agree-
ment. Future work can disambiguate these reasons
by testing models that are biased to treat sentences
with object RCs and other RCs as being similar.

Finally, our method allows us to generate a sim-
ilarity matrix in the LMs representation space for
any given set of structures. In the future, gener-
ating a similar matrix for human representations
using priming experiments and comparing these
two matrices using analysis methods from cogni-
tive neuroscience (Kriegeskorte et al., 2008) may
enable us to gain insight into how human-like the
LM representations are and vice versa.

7 Conclusion

We proposed a novel technique to analyze how the
representations of various syntactic structures are
organized in neural language models. As a case
study, we applied this technique to gain insight
into the representations of sentences with relative
clauses in RNN language models and found that
the representations of sentences were organized in
a linguistically interpretable manner.
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Abstract

Computational research on error detection
in second language speakers has mainly ad-
dressed clear grammatical anomalies typical to
learners at the beginner-to-intermediate level.
We focus instead on acquisition of subtle se-
mantic nuances of English indefinite pronouns
by non-native speakers at varying levels of
proficiency. We first lay out theoretical, lin-
guistically motivated hypotheses, and support-
ing empirical evidence on the nature of the
challenges posed by indefinite pronouns to En-
glish learners. We then suggest and evaluate an
automatic approach for detection of atypical
usage patterns, demonstrating that deep learn-
ing architectures are promising for this task in-
volving nuanced semantic anomalies.

1 Introduction

The ubiquity of English as an online lingua franca
offers a rich opportunity for computational re-
search on second language acquisition and on
tools for aiding non-native speakers. Most com-
putational research in second language (L2) has
focused on spelling and grammar errors, and
has been conducted on learners with beginner-to-
intermediate proficiency level (henceforth, “learn-
ers”) (e.g. Ji et al., 2017; Sakaguchi et al., 2017;
Rozovskaya et al., 2017; Lo et al., 2018). Lit-
tle empirical work has looked at semantic errors,
with existing research mostly focusing on colloca-
tions (e.g., Dahlmeier and Ng, 2011; Vecchi et al.,
2011; Kochmar and Briscoe, 2013). Also, highly
proficient, advanced L2 speakers (henceforth, “ad-
vanced L2s”) have received little attention (though
see Daudaravicius et al., 2016). In contrast to
learners, these speakers rarely violate grammati-
cal norms of the L2, but rather deviate from native
usage in much more nuanced ways, often exhibit-
ing mild infelicities rather than outright errors.

We aim to explore an elusive aspect of master-
ing the subtle contours of a word’s meaning that
are shaped by its context. Specifically, we in-
vestigate patterns of acquisition of English indefi-
nite pronouns by L2 speakers. Indefinite pronouns
(IPs) are linguistic devices that refer to an entity
(such as a person or thing) that has not yet been
introduced in discourse. In English, examples are
words like someone, anything, and nobody. Con-
sider the following sentences, taken verbatim from
corpora of L2 speakers (original pronoun is bold-
faced; less felicitous usages marked with ‘?’).1

1. Do you know someone/anyone who was dis-
criminated based on gender?

2. It was a little amazing, because they didn’t stole
?something/anything.

3. ??Anyone/Someone told me the company has
millions in debts and isn’t able to pay it.

Clearly, mastery of IPs in English relies on recog-
nizing subtle factors that determine their appropri-
ate usage in various contexts.

Here, in Section 2, we develop a linguistic anal-
ysis with detailed hypotheses on precisely how
the tangled relations between some- and any- pro-
nouns, exemplified above, pose a challenge for L2
learners. In Sections 3 and 4, we perform a large-
scale investigation of these linguistic predictions
using productions of both learners and advanced
L2s, and find that the predicted infelicities occur
not only in the language of the former but also the
latter, albeit (as expected) to a lesser extent.

A practical goal of this work is to gain predic-
tive power regarding the nuanced semantic diffi-
culties that L2 speakers face. As a first step in that
direction, in Section 5 we consider the ability of
deep learning language models (LMs) – shown to
be adept at capturing grammatical phenomena (Ji

1We refer to either less preferred or unacceptable occur-
rences of an IP, as in (2) and (3), as infelicitous usages.
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Usage class some-? any-? Example
specific (SP) X I had to reevaluate things when someone pointed that out.
non-specific (NS) X Someone please make me a GIF of that Wade dunk.
question (QU) X X Anyone know what the issue might be?
conditional (CD) X X I would love it if someone could explain it in a more precise way.
indirect negation (IN) X X I don’t understand how anyone can really hate on him.
direct negation (DN) X X I don’t have anything to add other than to say thanks for typing this out.
comparison (CP) X X If you work harder you deserve to earn more than someone who doesn’t do so.
free choice (FC) X ...they invite anyone on, including musicians sometimes.

Table 1: Usage classes of IPs, an indication of those subsumed by some- and any-, and examples from our corpora.

et al., 2017; Sakaguchi et al., 2017; Marvin and
Linzen, 2018; Goldberg, 2019) – to identify the
subtle infelicities that stem from the semantic con-
fusion introduced by some- and any- IPs. We show
that while state-of-the-art models obtain encour-
aging initial results on this task, they leave room
for future improvement (possibly informed by our
linguistic findings) in mastering the semantic nu-
ances of the system of English IPs.

The contribution of this work is thus three-fold:
First, to our knowledge, we develop the first large-
scale empirical investigation of second-language
acquisition of indefinite pronouns, constituting a
case study of taking a computational approach in
linguistic analysis to yield novel insights into chal-
lenges in L2 acquisition. Second, we suggest and
evaluate an automatic approach to detect infelic-
ities stemming from these challenges in a large
collection of L2 productions. Finally, in both
cases, we extend our experiments to utterances of
highly proficient L2 speakers – a population that
has heretofore received little attention in the con-
text of automatic error/infelicity detection.2

2 Linguistic Insights into English IPs

Previous work has suggested that the English sys-
tem of IPs is crosslinguistically atypical, with pre-
cise analogues to some- and any- unusual across
languages (Haspelmath, 1997; Beekhuizen et al.,
2017). Building on a suggestion from Beekhuizen
et al. (2017), we analyze the factors that could lead
to difficulty in learning these IPs, and develop de-
tailed hypotheses concerning the challenges that
L2 speakers are predicted to face.

Our analysis is based on patterns of colexifica-
tion (Franois, 2008): that is, how usages express-
ing different semantics are grouped (or not) in var-
ious combinations under a single word. As the ba-
sis for our analysis, we first need to specify the

2All code and data are available at https://github.
com/ellarabi/indefinite-pronouns

allowable semantic and syntactic usages of IPs.
These usage classes are adapted from Haspelmath
(1997), who outlines a universal set of IP semantic
functions across all languages.3 Our usage classes
are shown in Table 1, with an indication of the
classes that some- and any- can express.

Table 1 illustrates a striking fact about colexifi-
cation of the usage classes in English: some- and
any- each cover a very broad range of classes, with
a high degree of overlap. This level of overlap in
languages appears to be very rare: in the 40 lan-
guages studied by Haspelmath (1997), we find that
only some 10% of languages have IPs that overlap
over such a broad area of the semantic space.4

Within any of these classes, some seman-
tic/syntactic contexts call for just one of some- or
any-, while others allow both, but with differing
meanings (and frequencies/preferences). For ex-
ample, these similar contexts allow both, but the
preferred pronoun differs:

1. ...people care a lot if something is a repost...

2. ...before you know if anything is wrong...

We thus predict a difficulty for English L2 speak-
ers in having to choose between two (not inter-
changeable) terms that can be used in highly sim-
ilar semantic/syntactic environments.

In addition to looking at difficulties posed by
the colexification of IPs within English, we can
consider crosslinguistic patterns of colexification
for further insight. Semantic typologists have pro-
posed (and empirically supported, across many
domains) that the more two underlying concepts
are colexified across languages, the more similar
those two concepts are (e.g., Anderson, 1982). In

3Haspelmath’s functions are determined by syntactic, se-
mantic, and pragmatic factors. Our usage classes emphasize
the syntactic context, for ease of automatic identification and
consistent annotation.

4Computed using the original Haspelmath’s mapping into
functions, therefore, not strictly comparable to the slightly
different notation of usage classes in this work.
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Figure 1: Layout of usage classes in crosslinguistic semantic
space; light blue illustrates the scope of English any-, pink
illustrates the natural grouping of QU/CD with SP/NS.

this way, crosslinguistic patterns of colexification
can be used to deduce pairwise similarity among
concepts, yielding a universal semantic similarity
space for a domain (e.g., Berlin and Kay, 1969;
Levinson et al., 2003).

Here, we derive such a similarity space over the
IP usage classes of Table 1, using the colexifica-
tion data across 40 languages, from Haspelmath
(1997).5 We form a distance matrix (found in sup-
plemental materials, A.1) by recording, for every
pair of usage classes, the number of languages that
have a term subsuming both those classes (indi-
cating their relative similarity). We then use Mul-
tidimensional Scaling (MDS) to project the space
onto two dimensions, as exemplified in Figure 1.6

Figure 1 demonstrates, first, that SP, FC, and
DN form three natural “extremes” of the semantic
space. In English, these correspond to the canon-
ical uses of the IPs some-, any-, and no-, respec-
tively; thus some- is anchored at SP and any- at
FC (cf. Table 1). Moreover, we find that the usage
classes of QU and CD are very close to SP and NS,
indicating that QU and CD are most frequently
colexified with SP/NS, in particular, much more
so than with FC. For English, this means that it is
much more natural for some- to express QU/CD
than for any- to do so.

To summarize, our linguistic analysis reveals
two potential challenges of English some- and
any-: their confusability across many classes, and
the particular difficulty of any- in the QU/CD
classes. We further find empirically that some-
IPs are more frequent than any- in native English

5For this, we map our classes to Haspelmath’s functions.
6The relative distances slightly differ, but remain highly

similar across many such projections we produce.

text, suggesting that some- will be easier for L2
speakers, and that they may overgeneralize it when
faced with uncertainty of which pronoun to use.
Collectively, these findings motivate:

Hypothesis 1: The unusually large and overlap-
ping extents of some- and any- are expected to
pose difficulty for L2 speakers; any- is predicted to
be especially difficult due to its lower frequency.

Hypothesis 2: Due to greater naturalness of
grouping QU and CD with other classes subsumed
by some-, we predict that QU and CD usages of
any- will be particularly difficult for L2 speakers.

In exploring each of these hypotheses, we look
for evidence in two forms: overuse of some- com-
pared to native speakers, and more errors involv-
ing any-. We focus on the frequent semantic cate-
gories of people and things, specifically the set of
IPs someone, anyone, something, and anything.7

3 Materials and Methods

3.1 Datasets

We expect that mastery of IPs will depend on
a speaker’s command of English, and there-
fore consider language productions both of learn-
ers (largely beginner-to-intermediate), and of L2
speakers on Reddit (shown to be highly proficient,
almost on par with Reddit natives; Rabinovich
et al. 2018). Our learner dataset comprises sev-
eral sub-corpora: EFCAMDAT (Geertzen et al.,
2013), TOEFL11 (Blanchard et al., 2013), and
the freely available part of the FCE corpus (Yan-
nakoudakis et al., 2011). The advanced L2 dataset
includes online posts by advanced non-native En-
glish speakers from the L2-Reddit corpus (re-
leased by Rabinovich et al., 2018, and com-
prising utterances by native as well as highly-
proficient non-native speakers, published on the
Reddit platform). We extended the L2-Reddit cor-
pus (originally collected in 2017) with data pub-
lished through September 2018; the final dataset
includes over 320M native and L2 English sen-
tences. Table 2 presents details of the two corpora.

Dataset Sentences Tokens L1s
learners 5.6M 72M >13
advanced L2s (Reddit) 177M 2.4B 51
native (Reddit) 146M 2.1B –

Table 2: Statistics on datasets.
7We excluded somebody/anybody as they are about 1/10

the frequency of their -one counterparts in our data.
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3.2 Classification of IP Usages

Evaluating our hypotheses in Section 2 depends
on assessing which usage class an utterance with
a some-/any- pronoun belongs to, so we can
compare patterns of usage and infelicities across
classes. In English, the IP usage classes are of-
ten associated with particular lexical or syntactic
cues in the clause with the IP – e.g., a negative ad-
verb for DN (I don’t want anything from this col-
lection.), or a question mark for QU (Would you
like to buy something online?). This enabled us to
develop a rule-based classifier (see supplemental
materials (A.3) for details), using a parser (Kitaev
and Klein, 2018) and a set of heuristic rules.

We evaluated the classifier on sentences man-
ually annotated by three in-house native English
speakers with a background in linguistics. A
sample of 750 sentences produced by Reddit na-
tive English speakers was selected for annotation,
and the annotators assigned a label to each sen-
tence from within the set of {DN, QU, CD, CP,
MIXED}, where the MIXED class comprises the
SP, NS, FC, and IN classes (cf. Table 1). The
MIXED grouping contains classes that are (1) dif-
ficult to distinguish using simple lexical and syn-
tactic cues (essentially, an “other” class), and (2)
predicted by our linguistic analysis to be relatively
similar in their error patterns. Average annotator
agreement on our task was κ = 0.932; detailed
annotation guidelines can be found in supplemen-
tal materials (A.2).

Table 3 shows that our rule-based classification
is a reliable way to categorize a sentence with an
IP (five-way classification baseline is 0.2). Be-
cause we use a subset of sentences associated with
each usage class throughout our experiments, we
focus on classification precision, while maintain-
ing recall. We use this classifier to automatically
label L2 sentences by usage class.

Class DN QU CD CP MIXED
P 0.835 0.882 0.853 0.833 0.849
R 0.723 0.789 0.853 0.962 0.874
F1 0.775 0.833 0.853 0.893 0.861

Table 3: Evaluation of classification of IP usage classes.

3.3 Annotation of (In)felicitous Usages

We used the FigureEight crowdsourcing platform
for collecting annotations to be used as ground
truth of L2 infelicities. We extracted a randomly

sampled set of 3, 711 sentences from our learner
corpus representing a balanced distribution over
the five usage classes,8 and a similar set of 10, 000
sentences from our advanced L2 (Reddit) corpus,
each containing a usage of someone, something,
anyone, or anything.9 Each sentence was anno-
tated by five native English speakers in a choice-
based annotation scheme. The occurrence of the
IP in the sentence was replaced with a blank line,
and each annotator marked their preference for the
some- or any- pronoun in that context (or “other”),
reflecting the most natural choice between the two.
The gold annotation for each sentence was deter-
mined by its majority choice, and the confidence
score was computed based on the number of se-
lections (out of five annotators) of each of the two
pronouns. Annotation guidelines and a sample of
500 manually annotated sentences can be found in
the supplemental materials (A.4).

Table 4 presents example sentences produced
by learners and L2 Reddit authors where the ma-
jority annotation unanimously differed from the
original pronoun (as indicated). The utterances
are provided verbatim, maintaining grammatical
errors typical to productions in our corpora.

Sentences with a confidence level ≤ 0.6 are
considered close to equally felicitous with either
pronoun, while the confidence of 1 represents a
unanimous preference for one of the alternatives.
Because we used a forced-choice task, if both pro-
nouns were acceptable (e.g., Did you see some-
thing/anything you like?), we expect that the con-
fidence score will indicate the level of naturalness
or typicality of the pronoun in that context. For
this reason, we only consider an example infelici-
tous when it differs from annotator choice with a
confidence ≥ 0.8, which indicates a stronger pref-
erence for one pronoun over the other.

The final annotation results include 50% (1556)
and 77% (2857) of sentences with a confidence of
1.0 and of ≥ 0.8, respectively, for learners. Our
advanced L2 data has 56% (5639) of sentences
with a confidence of 1.0 and 81% (8079) of≥ 0.8.

A question arises as to how meaningful it is to
label an IP usage as infelicitous – i.e., the preferred
IP in annotation differed from the original – if both
some- and any- are in fact acceptable. To explore
this, we also got crowdsourced annotations on 500

8Aiming at 1K per class, limited by 587 and 124 sentences
in the QU and CP classes in our learner data, respectively.

9We excluded sentences with idiomatic expressions con-
taining IPs from this work; see supplemental materials (A.5).
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L2 utterance Annotation
Moreover, he also takes a risk of not knowing someone from this country. anyone
About 20 years ago, we didn’t know someone who cares about them, who defend animal’s right,
but today, I know many people who cares about, cause animals need to be protected.

anyone

It is justified to say that they have to change anything to cope with the now situation. something
I never said something about political science, probably it was not very good worded but my point is
just that it shows how the extremes of two sides can come closer together again.

anything

I think it’s a sampling bias rather than anyone massaging the numbers to see what they want to see. someone
If there is a day where no one works then this is useless because you can’t do something on that day
with family besides walking in forests because everything would be closed.

anything

Table 4: Example sentences annotated by human annotators for infelicitous pronoun choice (original pronoun is boldfaced).
The top part refers to learners’ utterances, the bottom part refers to advanced L2s’.

native utterances from Reddit, and compared the
percentages of usages annotated as infelicitous to
those of 500 randomly sampled sentences by ad-
vanced L2s. We found that 3% of native utterances
were annotated as infelicitous at a confidence level
of ≥ 0.8, indicating a high agreement among na-
tive writers and our annotators, while for advanced
L2s, the percentage was around twice that high –
6.7%. Despite acceptable variation in some-/any-
usage in a given context, even advanced L2 speak-
ers differ from natives in their relative preferences.

4 Analysis of IP Infelicities in L2

4.1 Distribution of IPs by Usage Types
First, considering Hypothesis 1 from Section 2,
we expect the confusability of some- and any- to
be reflected in overgeneralization of some- due to
its higher frequency. The subtle distinction be-
tween these pronoun types is assumed to be better
mastered by advanced L2 speakers, so we expect
the divergence from the native distribution to be
amplified in learners’ productions.

Figure 2 presents relative frequencies of some-
and any- pronouns in a random sample of 5M na-
tive, advanced L2, and learner productions, both
in the entire sample (left) and distributed by us-
age class (right). In line with our predictions,
we find in Figure 2 (left) that overall, L2 speak-
ers use some- pronouns more than any- pronouns
compared to native speakers. We can further see
in Figure 2 (right), and discussed in detail below,
that this pattern occurs in almost all the IP usage
classes, especially pronounced for learners.

Elaborating on Hypothesis 1, we further sug-
gest that in addition to general overuse of some-
vs. any- (which may partly be due to avoidance
of any-), L2 speakers are also expected in their
infelicities to more often use some- where native
speakers would use any-, than vice versa. This

prediction is also supported by our annotated data:
In cases where the preferred pronoun is some-,
learners infelicitously use any- 8.4% of the time,
but in cases where the preferred pronoun is any-,
learners infelicitously use some- almost 23% of
the time. That is, learners have almost three times
as many infelicities of using some- instead of any-
than the reverse. Our advanced L2s speakers also
show more infelicities using some- instead of any-
than vice versa, but the difference is less pro-
nounced (5.8% and 10.1% respectively), as we ex-
pect given their greater proficiency.

4.2 Distribution of Infelicitous Usages

Next we turn to Hypothesis 2 from Section 2,
which further predicts that the precise extent of
deviation from native-like usage patterns will not
be distributed uniformly across the different usage
classes, but rather there will be a higher degree of
deviation in classes that are atypically grouped un-
der any- – that is, QU and CD – than in those that
introduce less of a semantic challenge (DN, CP,
and those in the MIXED class). L2 speakers are
expected to exhibit both more overuse of some-
and more infelicities in the QU and CD classes.

Our predictions regarding the non-uniform
overuse of some- are largely borne out in Figure
2: the classes expected to be most difficult for L2
speakers – QU and CD – show a significant differ-
ence not only for learners, but even for advanced
L2 speakers compared to natives, while DN and
CP show only a difference for learners.

A few observations from Figure 2 do not fol-
low our hypothesis. First, the difference in learner
usage of some- vs. any- for DN goes in the direc-
tion opposite to the prediction: i.e., learners use
any- more than some- pronouns in direct negation.
We attribute this to the sheer frequency of any-
in direct negation, such that learners are overgen-
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Figure 2: Distribution of some- and any- pronouns by usage class (native, advL2, learner, left-to-right in each); see Table 1 for
definitions of classes. ‘total’ refers to some- and any- counts extracted from the sample of 5M sentences for each population.
‘***’ indicates significant difference at the level of p < .001; ‘ns’ indicates non-significant difference.

eralizing any- here. Second, the MIXED group-
ing also shows a difference for the advanced L2
speakers, although these usages are not predicted
to be especially difficult by our linguistic analy-
sis. This class contains a very large and diverse
set of usages, making it difficult to predict what
is driving this effect, and we leave this for future
work. Finally, the largest gap in overuse of some-
vs. any- is observed in the CP class for learners,
thereby not complying with our prediction of the
highest difficulty being introduced by the QU and
CD classes. Note, however, that this result is based
on a relatively small amount of data in the CP class
for learners (only 124 sentences; see Table 5).

To consider the pattern of infelicities across the
usage classes, Table 5 shows the results from our
crowdsourced annotation of IP usages of learners
(top) and advanced L2s (bottom), separated by the
classes. As expected, learners exhibit a very high
percentage of infelicities in the QU class (24%);
the CD class is not nearly as bad (12%), but is
still higher than the other three (8–9%). Although
advanced L2s have much fewer infelicities than
learners, they also have more in the QU and CD
classes (7% and over 9% respectively) than in the
others (5–6%). Thus, as with Hypothesis 1, Hy-
pothesis 2 is largely borne out by the data, and we
find additional evidence that the IP system of En-
glish is particularly challenging for beginning to
intermediate learners.

5 Automatic Detection of Infelicities

Our motivation for the above analysis is to use
these insights to drive development of tools for L2

Usage class DN QU CD CP MIXED

# annotated 1000 587 1000 124 1000
# infelicitous 81 141 124 11 87
% infelicitous 8.1 24.0 12.4 8.9 8.7

# annotated 2000 2000 2000 2000 2000
# infelicitous 106 141 182 102 113
% infelicitous 5.3 7.1 9.1 5.1 5.7

Table 5: Distribution of annotated infelicities by usage
class. Top panel: learners; bottom: advanced L2s.

learners. Here we consider the first step, that of de-
tection of infelicities with a language model (LM).

Neural network based approaches are currently
among the most successful LMs. While being eas-
ily applied to a wide range of tasks, they provide
significant improvements over classic backoff n-
gram models. A common use of a pre-trained LM
– typically trained on an extremely large corpus
– is to predict the likelihood of an ‘unseen’ sam-
ple of text: The higher the score (or the lower the
perplexity) a text is assigned, the more probable it
is, given the model. In particular, a fluent, well-
formed text is likely to be scored higher by an LM
than a text containing linguistic anomalies.

Encouraged by results on the task of grammat-
ical error detection (Yuan and Briscoe, 2016; Ji
et al., 2017), we adhere to a similar approach, cast-
ing the detection of infelicities as a binary classi-
fication scenario: An LM is applied on a sentence
with an original pronoun (e.g., something) and on
the same sentence where the pronoun is substi-
tuted with its alternative (e.g., anything); then the
one predicted as more probable (scored highest) is
chosen as a model decision.
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5.1 Models

Aiming to test the effect of various factors, such
as training data size and register, on the predic-
tive power of LMs in our task, we used both pre-
trained models and models trained locally on in-
domain, albeit much smaller, data.

Gulordava et al.: A successful variant of
RNNs, the long short-term memory model
(LSTM, Hochreiter and Schmidhuber, 1997), used
for syntactic error detection in Gulordava et al.
(2018). We trained the model using a similar set of
parameters to Gulordava et al. (2018),10 on 10M
sentences by native English speakers of Reddit
(see Section 3), using a 20K sentence validation
set and a 50K sentence test set. This model allows
us to test the benefits of using in-domain data (for
advanced L2s), despite its significantly lower vol-
ume, compared to other models.

Google 1B: A very large publicly available LM
released by Jozefowicz et al. (2016). This fine-
tuned language model, trained on a billion-word
corpus (Chelba et al., 2013), requires a massive
infrastructure for training. It achieves impressive
perplexity scores on common benchmarks, and
has been shown effective on a range of NLP tasks.

BERT: A recent bidirectional encoder represen-
tations from transformers (BERT) LM released by
Google (Devlin et al., 2018). Proven highly effec-
tive in several language modeling tasks, it achieves
state-of-the-art results in syntax-sensitive scenar-
ios (Goldberg, 2019), pushing the limits of what is
feasible with current language modeling tools.

We report the models’ precision, recall and F1
scores for infelicitous and correct classes sepa-
rately. We also report the overall accuracy of each,
computed as the ratio of correctly classified cases
out of all sentences. Following the intuition laid
out in Section 3.3, we conducted two sets of exper-
iments: (1) considering cases where annotators’
confidence score was 0.8 or higher, and (2) consid-
ering cases with confidence of 1. Sentences with
a lower confidence score (i.e., where both some-
and any- were roughly equally preferred) were ex-
cluded from these experiments.

10Specifically, we used two hidden layers of 200 units per
layer, dropout rate of 0.2, batch size of 20, and initial learning
rate of 20, and trained for 40 epochs (until the validation set
perplexity converged).

5.2 Results and discussion

Tables 6 and 7 present the results for learners and
advanced L2 speakers, each split by the degree of
annotation confidence. Baseline accuracy is com-
puted as the ratio of felicitous usages (the ma-
jority class) out of all instances. The Gulordava
et al. LM yields results inferior to the baseline,
despite training on in-domain (but much smaller)
data. BERT performs best overall, and both it and
Google 1B exceed the baseline for learners, but
BERT performs only at baseline for advanced L2s,
confirming the extreme difficulty of this task. Re-
sults obtained for the correct class are far superior
to those for the infelicitous class, suggestive of the
inherent difficulty of the latter cases, compared to
(occasionally clear-cut) correct usage patterns.

Systematically higher scores obtained for
learner utterances (Table 6), compared to ad-
vanced L2s (Table 7), imply that the mild infe-
licities of the latter pose a higher challenge to
automatic tools. That is, not only do advanced
L2s show fewer errors, but their errors are likely
more subtle and more difficult to detect. The high-
confidence setup (= 1.0) yields results superior
to those produced by the lower-confidence setup
(≥ 0.8), further supporting that clear-cut infelici-
ties are more easily captured by an LM.

Returning to our linguistic predictions, the pref-
erence of some- over any- predicted by Hypoth-
esis 1 and shown for non-native speakers (Sec-
tion 4.1) does not hold for our best-performing
LM. We found a roughly equal rate (up to two per-
cent points) of infelicities in model preferences in
cases with some- vs. any- gold annotations, show-
ing that the model (unlike non-natives) does not
have greater difficulty with any- overall.

We also consider the non-uniform difficulty
of IPs across various usage cases, predicted by
Hypothesis 2 and shown for non-natives (Sec-
tion 4.2). To address this question, we test BERT
for infelicitous choices compared to annotators’
decisions: That is, for each sentence, we compare
the pronoun preferred by the model to the gold an-
notation. Table 8 presents statistics across usage
classes, for learners and advanced L2s (taken from
Table 5), as well as for BERT. The top panel refers
to learner data; the bottom panel, to advanced L2
data. While (expectedly) outperforming the two
non-native populations, the model exhibits simi-
lar distributional patterns, with more infelicities
in the CD and QU classes. The model also has
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Learners Infelicitous class Correct class
model P R F1 P R F1 acc

≥
0
.8 Gulordava et al. (trained on Reddit) 0.437 0.573 0.496 0.920 0.870 0.894 0.825

Google 1B (pre-trained) 0.500 0.686 0.578 0.946 0.889 0.917 0.861
BERT (pre-trained) 0.602 0.736 0.673 0.956 0.911 0.933 0.889

=
1

Gulordava et al. (trained on Reddit) 0.499 0.652 0.565 0.954 0.916 0.935 0.887
Google 1B (pre-trained) 0.523 0.720 0.606 0.970 0.932 0.950 0.912
BERT (pre-trained) 0.681 0.859 0.759 0.981 0.949 0.965 0.939

Table 6: Automatic detection of infelicities in learner data (sentences where annotation disagrees with author usage
of IP), with confidence level ≥ 0.8 (top), and with confidence level = 1 (bottom). Baseline accuracy is 0.850 for
the former and 0.887 for the latter. Best result in a column (for each part) is boldfaced.

Advanced L2s Infelicitous class Correct class
model P R F1 P R F1 acc

≥
0
.8 Gulordava et al. (trained on Reddit) 0.274 0.583 0.373 0.959 0.863 0.908 0.840

Google 1B (pre-trained) 0.380 0.704 0.494 0.976 0.912 0.943 0.898
BERT (pre-trained) 0.506 0.701 0.585 0.972 0.938 0.955 0.919

=
1

Gulordava et al. (trained on Reddit) 0.219 0.690 0.332 0.984 0.886 0.932 0.877
Google 1B (pre-trained) 0.380 0.760 0.507 0.988 0.942 0.964 0.934
BERT (pre-trained) 0.503 0.790 0.614 0.990 0.964 0.977 0.956

Table 7: Automatic detection of infelicities in advanced L2 data (sentences where annotation disagrees with author
usage of IP), with confidence level ≥ 0.8 (top), and with confidence level = 1 (bottom). Baseline accuracy is
0.918 for the former and 0.956 for the latter. Best result in a column (for each part) is boldfaced.

a higher number of infelicities in the CP class for
learners; again, we note the small sample of data in
this class, entailing a need for further investigation
of this particular pattern. The model results here
pose intriguing questions for future work regard-
ing the nature of challenges faced by automatic
neural methods, and their potential analogues to
those of humans.

DN QU CD CP MIXED

learners 8.1 24.0 12.4 8.9 8.7
BERT 0.8 6.1 3.6 4.0 2.2

advanced L2s 5.3 7.1 9.1 5.1 5.7
BERT 1.3 2.5 2.7 1.6 1.5

Table 8: Distribution of % of infelicities (difference
from gold annotation) across classes for humans and
for BERT on the corresponding data.

6 Related Work

Computational approaches to grammatical error
correction (GEC) in learners’ productions has
been a prolific field of research in recent years.
A standard approach to dealing with grammar and
spelling errors makes use of a machine-learning
classification paradigm; a comprehensive survey
of these methods can be found in Ng et al. (2014).
Recent advances in the field of GEC were achieved
by using neural models (Yuan and Briscoe, 2016;
Ji et al., 2017; Sakaguchi et al., 2017; Lo et al.,

2018). Most studies used a supervised setup for
selecting a correct choice (e.g., a preposition) out
of a set of multiple alternatives, rendering our ex-
perimental setup not directly comparable.

Another line of work has assessed the capability
of neural LMs to capture errors stemming from vi-
olation of syntax-sensitive dependencies (Linzen
et al., 2016; Gulordava et al., 2018; Marvin and
Linzen, 2018). The recent BERT model (Devlin
et al., 2018) has been shown to be highly effec-
tive for detection of syntactic anomalies stemming
from subject-verb disagreement (Goldberg, 2019).

Most research on L2 error correction focuses
on function words, such as prepositions and de-
terminers. Very little work has been done on
detecting and correcting incorrect usage of con-
tent words. Most has been focused on the fe-
licity of word combinations, such as identifying
disfluencies stemming from L1 paraphrases (e.g.,
eat medicine or look movies, Brooke and Hirst,
2011; Dahlmeier and Ng, 2011), or using mod-
els of compositionality to detect semantically de-
viant pairs (residential steak, Vecchi et al., 2011)
or infelicitous collocations (?big importance vs.
great importance, Kochmar and Briscoe, 2013). A
shared task on automatic evaluation of scientific
writing (Daudaravicius et al., 2016) addressed au-
tomatic detection of a variety of grammatical er-
rors (e.g., misuse of an article or punctuation) and
lexical infelicities (e.g., phrasing choices stem-
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ming from style requirements of the genre) in sci-
entific papers, edited by a professional company.

While most closely related to the field of se-
mantic error detection, our work deals with sub-
tle linguistic choices that shape the ultimate attain-
ment of L2 in non-native speakers. Compared to
grammatical and semantic anomalies explored in
previous work, the choice of indefinite pronoun
is often guided by implicit contextual clues that
are not necessarily reflected in superficial colloca-
tional patterns, thereby posing a higher challenge
for automatic techniques.

7 Conclusion

We develop and evaluate linguistic hypotheses on
the difficulties for second language learners of the
atypical system of English indefinite pronouns.
We find that the tangled relation between some-
and any- pronouns pose challenges that are evident
in the productions of both learners and advanced
L2 speakers. This work thus demonstrates the
promise of extending computational approaches
for error-detection in L2 productions to more sub-
tle semantic usages. Moreover, our results reveal
the challenges that these subtleties can pose for
even advanced non-native speakers.

Much research in second language acquisition
establishes native language transfer as one of the
major factors that shape productions of non-native
speakers. While the work here addresses univer-
sal (i.e., native-language independent) challenges
posed to L2 speakers, a plausible assumption is
that mastery of English IPs is also affected by the
proximity of the analogous system in a speaker’s
L1. We leave this direction for future research.

We also evaluate here the ability of language
models to detect the errors arising in the use of En-
glish indefinite pronouns in L2 productions. Not
surprisingly, we find that the more clearcut errors
exhibited by learners are easier to automatically
identify than the potentially more subtle errors that
arise with advanced L2 speakers. The best per-
forming language model shows a varying match to
human patterns of difficulty, raising issues for fur-
ther research regarding the factors that influence
difficulty for both humans and language models.

The practical impact of this work will be in fa-
cilitating the development of educational applica-
tions for L2 English speakers at various levels of
proficiency. At present, most error correction and
detection tools focus on explicit spelling or gram-

mar errors. Enriching these tools with the ability
to capture subtle semantic infelicities in the usage
of IPs would advance the current state of the art in
educational applications for language learners.
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Abstract

Image captioning models are usually evaluated
on their ability to describe a held-out set of im-
ages, not on their ability to generalize to un-
seen concepts. We study the problem of com-
positional generalization, which measures how
well a model composes unseen combinations
of concepts when describing images. State-
of-the-art image captioning models show poor
generalization performance on this task. We
propose a multi-task model to address the poor
performance, that combines caption genera-
tion and image–sentence ranking, and uses a
decoding mechanism that re-ranks the cap-
tions according their similarity to the image.
This model is substantially better at generaliz-
ing to unseen combinations of concepts com-
pared to state-of-the-art captioning models.

1 Introduction

When describing scenes, humans are able to
almost arbitrarily combine concepts, producing
novel combinations that they have not previously
observed (Matthei, 1982; Piantadosi and Aslin,
2016). Imagine encountering a purple-colored dog
in your town, for instance. Given that you under-
stand the concepts PURPLE and DOG, you are able
to compose them together to describe the dog in
front of you, despite never having seen one before.

Image captioning models attempt to auto-
matically describe scenes in natural language
(Bernardi et al., 2016). Most recent approaches
generate captions using a recurrent neural net-
work, where the image is represented by features
extracted from a Convolutional Neural Network
(CNN). Although state-of-the-art models show
good performance on challenge datasets, as mea-
sured by text-similarity metrics, their performance

∗The work was carried out during a visit to the University
of Copenhagen.

A white cat sitting on 
a laptop computer

A white dog running 
along a beach

A big brown dog 
sitting on a couch

Training
Evaluation

White 
things

Dogs

Figure 1: We evaluate whether image captioning mod-
els are able to compositionally generalize to unseen
combinations of adjectives, nouns, and verbs by forc-
ing paradigmatic gaps in the training data.

as measured by human judges is low when com-
pared to human-written captions (Vinyals et al.,
2017, Section 5.3.2).

It is widely believed that systematic compo-
sitionality is a key property of human language
that is essential for making generalizations from
limited data (Montague, 1974; Partee, 1984; Lake
et al., 2017). In this work, we investigate to what
extent image captioning models are capable of
compositional language understanding. We ex-
plore whether these models can compositionally
generalize to unseen adjective–noun and noun–
verb composition pairs, in which the constituents
of the pair are observed during training but the
combination is not, thus introducing a paradig-
matic gap in the training data, as illustrated in Fig-
ure 1. We define new training and evaluation splits
of the COCO dataset (Chen et al., 2015) by hold-
ing out the data associated with the compositional
pairs from the training set. These splits are used to
evaluate how well models generalize to describing
images that depict the held out pairings.

We find that state-of-the-art captioning models,
such as Show, Attend and Tell (Xu et al., 2015),
and Bottom-Up and Top-Down Attention (Ander-
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son et al., 2018), have poor compositional gener-
alization performance. We also observe that the
inability to generalize of these models is primarily
due to the language generation component, which
relies too heavily on the distributional character-
istics of the dataset and assigns low probabilities
to unseen combinations of concepts in the evalua-
tion data. This supports the findings from concur-
rent work (Holtzman et al., 2019) which studies
the challenges in decoding from language models
trained with a maximum likelihood objective.

To address the generalization problem, we pro-
pose a multi-task model that jointly learns image
captioning and image–sentence ranking. For cap-
tion generation, our model benefits from an ad-
ditional step, where the set of captions generated
by the model can be re-ranked using the jointly-
trained image–sentence ranking component. We
find that the ranking component is less affected by
the likelihood of n-gram sequences in the training
data, and that it is able to assign a higher ranking to
more informative captions which contain unseen
combinations of concepts. These findings are re-
flected by improved compositional generalization.

The source code is publicly available on
GitHub.1

2 Related Work

2.1 Caption Generation and Retrieval
Image Caption Generation models are usually
end-to-end differentiable encoder-decoder mod-
els trained with a maximum likelihood objective.
Given an image encoding that is extracted from
a convolutional neural network (CNN), an RNN-
based decoder generates a sequence of words that
form the corresponding caption (Vinyals et al.,
2015, inter-alia). This approach has been im-
proved by applying top-down (Xu et al., 2015) and
bottom-up attention mechanisms (Anderson et al.,
2018). These models show increasingly good per-
formance on benchmark datasets, e.g. COCO, and
in some cases reportedly surpass human-level per-
formance as measured by n-gram based evaluation
metrics (Bernardi et al., 2016). However, recent
work has revealed several caveats. Firstly, when
using human judgments for evaluation, the auto-
matically generated captions are still considered
worse in most cases (Fang et al., 2015; Vinyals
et al., 2017). Furthermore, when evaluating out-

1https://github.com/mitjanikolaus/
compositional-image-captioning

of-domain images or images with unseen con-
cepts, it has been shown that the generated cap-
tions are often of poor quality (Mao et al., 2015;
Vinyals et al., 2017). Attempts have been made to
address the latter issue by leveraging unpaired text
data or pre-trained language models (Hendricks
et al., 2016; Agrawal et al., 2018).

Image–Sentence Ranking is closely related to
image captioning. Here, the problem of language
generation is circumvented and models are instead
trained to rank a set of captions given an image,
and vice-versa (Hodosh et al., 2013). A common
approach is to learn a visual–semantic embedding
for the captions and images, and to rank the im-
ages or captions based on similarity in the joint
embedding space. State-of-the-art models extract
image features from CNNs and use gated RNNs
to represent captions, both of which are projected
into a joint space using a linear transformation
(Frome et al., 2013; Karpathy and Fei-Fei, 2015;
Vendrov et al., 2016; Faghri et al., 2018).

2.2 Compositional Models of Language
Investigations of compositionality in vector space
models date back to early debates in the cogni-
tive science (Fodor and Pylyshyn, 1988; Fodor and
Lepore, 2002) and connectionist literature (Mc-
Clelland et al., 1986; Smolensky, 1988) regard-
ing the ability of connectionist systems to com-
pose simple constituents into complex structures.
In the NLP literature, numerous approaches that
(loosely) follow the linguistic principle of compo-
sitionality2 have been proposed (Mitchell and La-
pata, 2008; Baroni and Zamparelli, 2010; Grefen-
stette and Sadrzadeh, 2011). More recently, it
has become standard to employ representations
which are learned using neural network architec-
tures. The extent to which these models behave
compositionally is an open topic of research (Lake
and Baroni, 2017; Dasgupta et al., 2018; Ettinger
et al., 2018; McCoy et al., 2018) that closely re-
lates to the focus of the present paper.

Compositional generalization in image caption-
ing has received limited attention in the litera-
ture. In Atzmon et al. (2016), the captions in the
COCO dataset are replaced by subject-relation-
object triplets, circumventing the problem of lan-
guage generation, and replacing it with structured

2The meanings for complex expressions are derived from
the meanings of their parts via specific composition functions.
(Partee, 1984)
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triplet prediction. Other work explores generaliza-
tion to unseen combinations of visual concepts as
a classification task (Misra et al., 2017; Kato et al.,
2018). Lu et al. (2018) is more closely related to
our work; they evaluate captioning models on de-
scribing images with unseen noun-noun pairs.

In this paper, we study compositional general-
ization in image captioning with combinations of
multiple classes of nouns, adjectives, and verbs.3

We find that state-of-the-art models fail to gener-
alize to unseen combinations, and present a multi-
task model that improves generalization by com-
bining image captioning (Anderson et al., 2018)
and image–sentence ranking (Faghri et al., 2018).
In contrast to other models that use a re-ranking
step4, our model is trained jointly on both tasks
and does not use any additional features or ex-
ternal resources. The ranking model is only used
to optimize the global semantics of the generated
captions with respect to the image.

3 Compositional Image Captioning

3.1 Problem Definition

In this section we define the compositional cap-
tioning task, which is designed to evaluate how
well a model generalizes to captioning images that
should be described using previously unseen com-
binations of concepts, when the individual con-
cepts have been observed in the training data.

We assume a dataset of captioned images D, in
which N images are described by K captions: D
:= {�i1, s1

1, ..., s
1
K�, ..., �iN , sN

1 , ..., sN
K�}. We also

assume the existence of a concept pair {ci, cj} that
represents the concepts of interest in the evalua-
tion. In order to evaluate the compositional gen-
eralization of a model for that concept pair, we
first define a training set by identifying and re-
moving instances where the captions of an image
contain the pair of concepts, creating a paradig-
matic gap in the original training set: Dtrain :=
{�in, sn

k�} s.t. ∀N
n=1� k : ci ∈ sn

k ∧ cj ∈ sn
k .

Note that the concepts ci and cj can still be inde-
pendently observed in the captions of an image of

3This is different from the ”robust image captioning” task
(Lu et al., 2018) because we are testing for the composition
of nouns with adjectives or verbs, and not the co-occurrence
of different nouns in an image.

4Fang et al. (2015) use a discriminative model that has
access to sentence-level features and a multimodal similar-
ity model in order to capture global semantics. Wang et al.
(2017) uses a conditional variational auto-encoder to gener-
ate a set of diverse captions and a consensus-based method
for re-ranking the candidates.

this set, but not together in the same caption. We
also define validation and evaluation sets Dval and
Deval that only contain instances where at least
one of the captions of an image contains the pair
of concepts: Dval/eval := {�in, sn

k�} s.t. ∀N
n=1∃ k :

ci ∈ sn
k ∧ cj ∈ sn

k . A model is trained on the Dtrain
training set until it converges, as measured on the
Dval validation set. The compositional generaliza-
tion of the model is measured by the proportion
of evaluation set captions which successfully com-
bined a held out pair of concepts {ci, cj} in Deval.

3.2 Selection of Concept Pairs
We select pairs of concepts that are likely to be
represented in an image recognition model. In par-
ticular, we identify adjectives, nouns, and verbs in
the English COCO captions dataset (Chen et al.,
2015) that are suitable for testing compositional
generalization. We define concepts as sets of syn-
onyms for each word, to account for the variation
in how the concept can be expressed in a caption.
For each noun, we use the synonyms defined in
Lu et al. (2018). For the verbs and adjectives,
we use manually defined synonyms (see Appendix
D). From these concepts, we select adjective–noun
and noun–verb pairs for the evaluation. To identify
concept pair candidates, we use StanfordNLP (Qi
et al., 2018) to label and lemmatize the nouns, ad-
jectives, and verbs in the captions, and to check if
the adjective or verb is connected to the respective
noun in the dependency parse.

Nouns: We consider the 80 COCO object cat-
egories (Lin et al., 2014) and additionally divide
the “person” category into “man”, “woman” and
“child”. It has been shown that models can detect
and classify these categories with high confidence
(He et al., 2016). We further group the nouns un-
der consideration into animate and inanimate ob-
jects. We use the following nouns in the evalu-
ation: woman, man, dog, cat, horse, bird,
child, bus, plane, truck, table.

Adjectives: We analyze the distribution of the
adjectives in the dataset (see Figure 4 in Appendix
A). The captions most frequently contain descrip-
tions of the color, size, age, texture or quantity
of objects in the images. We consider the color
and size adjectives in this evaluation. It has been
shown that CNNs can accurately classify the color
of objects (Anderson et al., 2016); and we assume
that CNNs can encode the size of objects because
they can predict bounding boxes, even for small
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black cat big bird red bus
small plane eat man lie woman
white truck small cat brown dog
big plane ride woman fly bird
white horse big cat blue bus
small table hold child stand bird
black bird small dog white boat
stand child big truck eat horse

Table 1: The 24 concept pairs used to construct the
training Dtrain and eval Deval datasets.

objects (Bai et al., 2018). In the evaluation, we use
the following adjectives: big, small, black,
red, brown, white, blue.

Verbs: Sadeghi and Farhadi (2011) show that it
is possible to automatically describe the interac-
tion of objects or the activities of objects in im-
ages. We select verbs that describe simple and
well-defined actions and group them into transi-
tive and intransitive verbs. We use the following
verbs in the pairs: eat, lie, ride, fly, hold,
stand.

Pairs and Datasets: We define a total of 24 con-
cept pairs for the evaluation, as shown in Table 1.
The training and evaluation data is extracted from
the COCO dataset, which contains K=5 reference
captions for N=123,287 images. In the composi-
tional captioning evaluation, we define the train-
ing datasets Dtrain and validation datasets Dval

as subsets of the original COCO training data,
and the evaluation datasets Deval as subsets of the
COCO validation set, both given the concept pairs.

To ensure that there is enough evaluation data,
we only use concept pairs for which there are more
than 100 instances in the validation set. Occur-
rence statistics for the considered concept pairs
can be found in Appendix B.

3.3 Evaluation Metric

The performance of a model is measured on
the Deval datasets. For each concept pair eval-
uation set consisting of M images, we depen-
dency parse the set of M × K generated cap-
tions {�s1

1, ..., s
1
K�, ..., �sM

1 , ..., sM
K �} to determine

whether the captions contain the expected concept
pair, and whether the adjective or verb is a depen-
dent of the noun.5 We denote the set of captions
for which these conditions hold true as C.

5This means that a model gains no credit for predicting the
concept pairs without them attaching to their expected target.

There is low inter-annotator agreement in the
human reference captions on the usage of the con-
cepts in the target pairs.6 Therefore, one should
not expect a model to generate a single caption
with the concepts in a pair. However, a model can
generate a larger set of K captions using beam
search or diverse decoding strategies. Given K
captions, the recall of the concept pairs in an eval-
uation dataset is:

Recall@K =
|{�sm

k � | ∃k : sm
k ∈ C}|

M
(1)

Recall@K is an appropriate metric because the
reference captions were produced by annotators
who did not need to produce any specific word
when describing an image. In addition, the set of
captions C is determined with respect to the same
synonym sets of the concepts that were used to
construct the datasets, and so credit is given for
semantically equivalent outputs. More exhaustive
approaches to determine semantic equivalence for
this metric are left for future work.

4 State-of-the-Art Performance

4.1 Experimental Protocol
Models: We evaluate two image captioning
models on the compositional generalization task:
Show, Attend and Tell (SAT; Xu et al., 2015) and
Bottom-up and Top-down Attention (BUTD; An-
derson et al., 2018). For SAT, we use ResNet-152
(He et al., 2016) as an improved image encoder.

Training and Evaluation: The models are
trained on the Dtrain datasets, in which groups of
concept pairs are held out—see Appendix C for
more information. Hyperparameters are set as de-
scribed in the respective papers. When a model
has converged on the Dval validation split (as mea-
sured in BLEU score), we generate K captions for
each image in Deval using beam search. Then, we
calculate the Recall@K metric (Eqn. 1, K=5) for
each concept pair in the evaluation split, as well as
the average over all recall scores to report the com-
positional generalization performance of a model.

We also evaluate the compositional generaliza-
tion of a BUTD model trained on the full COCO

6We calculate the inter-annotator agreement for the target
pairs between the 5 reference captions for every image in the
COCO dataset: on average, only 1.57 / 5 captions contain the
respective adjective–noun or noun–verb concept pair, if it is
present in any. We ascribe this lack of agreement to the open
nature of the annotation task: there were no restrictions given
for what should be included in an image caption.
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training dataset (FULL). In this setting, the model
is trained on compositions of the type we seek to
evaluate in this task, and thus does not need to gen-
eralize to new compositions.

Pretrained Language Representations: The
word embeddings of image captioning models
are usually learned from scratch, without pre-
training7. Pretrained word embeddings (e.g.
GloVe (Pennington et al., 2014)) or language mod-
els (e.g. Devlin et al. (2019)) contain distributional
information obtained from large-scale textual re-
sources, which may improve generalization per-
formance. However, we do use them for this task
because the resulting model may not have the ex-
pected paradigmatic gaps.

4.2 Results
Image Captioning: The models mostly fail to
generate captions that contain the held out pairs.
The average Recall@5 for SAT and BUTD are 3.0
and 6.5, respectively. A qualitative analysis of the
generated captions shows that the models usually
describe the depicted objects correctly, but, in the
case of held out adjective–noun pairs, the mod-
els either avoid using adjectives, or use adjectives
that describe a different property of the object in
question, e.g. white and green airplane instead
of small plane in Figure 3. In the case of held
out noun–verb pairs, the models either replace the
target verb with a less descriptive phrase, e.g. a
man sitting with a plate of food instead of a man
is eating in Figure 3, or completely omit the verb,
reducing the caption to a simple noun phrase.

In the FULL setting, average Recall@5 reaches
33.3. We assume that this score is a conservative
estimate due to the low average inter-annotator
agreement (see Footnote 6). The model is less
likely to describe an image using the target pair
if the pair is only present in one of the reference
captions, as the feature is likely not salient (e.g.
the car in the image has multiple colors, and the
target color is only covering one part of the car).
In fact, if we calculate the average recall for im-
ages where at least 2 / 3 / 4 / 5 of the reference
captions contain the target concept pair, Recall@5
increases to 46.5 / 58.3 / 64.9 / 75.2. This shows
that the BUTD model is more likely to generate a
caption with the expected concept pair when more
human annotators agree that it is a salient pair of
concepts in an image.

7Exceptions: You et al. (2016); Anderson et al. (2017)

Image–Sentence Ranking: In a related experi-
ment, we evaluate the generalization performance
of the VSE++ image–sentence ranking model on
the compositional captioning task (Faghri et al.,
2018). We use an adapted version of the evalu-
ation metric because the ranking model does not
generate tokens.8 The average Recall@5 with
the adapted metric for the ranking model is 46.3.
The respective FULL performance for this model
is 47.0, indicating that the model performs well
whether it has seen examples of the evaluation
concept pair at training time or not. In other
words, the model achieves better compositional
generalization than the captioning models.

5 Joint Model

In the previous section, we found that state-of-the-
art captioning models fail to generalize to unseen
combinations of concepts, however, an image-
sentence ranking model does generalize. We pro-
pose a multi-task model that is trained for im-
age captioning and image–sentence ranking with
shared parameters between the different tasks.
The captioning component can use the ranking
component to re-rank complete candidate captions
in the beam. This ensures that the generated cap-
tions are as informative and accurate as possible,
given the constraints of satisfying both tasks.

Following Anderson et al. (2018), the model
is a two-layer LSTM (Hochreiter and Schmidhu-
ber, 1997), where the first layer encodes the se-
quence of words, and the second layer integrates
visual features from the bottom-up and top-down
attention mechanism, and generates the output se-
quence. The parameters of the ranking compo-
nent θ2 are mostly a subset of the parameters of
the generation component θ1. We name the model
Bottom-Up and Top-down attention with Ranking
(BUTR). Figure 2 shows a high-level overview of
the model architecture.

5.1 Image–Sentence Ranking
To perform the image–sentence ranking task, we
project the images and captions into a joint visual-
semantic embedding space RJ . We introduce a

8For each image in the evaluation set, we construct a test
set that consists of the 5 correct captions and the captions of
1,000 randomly selected images from the COCO validation
set. We ensure that all captions in the test set contain exactly
one of the constituent concept pairs, but not both (except for
the 5 correct captions). We construct a ranking of the captions
in this test set with respect to the image, and use the top-K
ranked captions to calculate the concept pair recall (Eqn. 1).
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Figure 2: An overview of BUTR, which jointly learns image–sentence ranking and image captioning.

language encoding LSTM with a hidden layer di-
mension of L.

hl
t = LSTM(W1ot, h

l
t−1) (2)

where ot ∈ RV is a one-hot encoding of the input
word at timestep t, W1 ∈ RE×V is a word embed-
ding matrix for a vocabulary of size V and hl

t−1

the state of the LSTM at the previous timestep. At
training time, the input words are the words of the
target caption at each timestep.

The final hidden state of the language encoding
LSTM hl

t=T is projected into the joint embedding
space as s∗ ∈ RJ using W2 ∈ RJ×L:

s∗ = W2h
l
t=T (3)

The images are represented using the bottom-up
features proposed by Anderson et al. (2018). For
each image, we extract a set of R mean-pooled
convolutional features vr ∈ RI , one for each pro-
posed image region r. We introduce W3 ∈ RJ×I ,
which projects the image features of a single re-
gion into the joint embedding space:

ve
r = W3vr (4)

To form a single representation v∗ of the image
from the set of embedded image region features
ve

r , we apply a weighting mechanism. We gen-
erate a normalized weighting of region features
β ∈ RR using W4 ∈ R1×J . βr denotes the weight
for a specific region r. Then we sum the weighted
region features to generate v∗ ∈ RJ :

β�r = W4v
e
r (5)

β = softmax(β�) (6)

v∗ =
R�

r=1

βrv
e
r (7)

We define the similarity between an image and a
caption as the cosine similarity cos(v∗, s∗).

5.2 Caption Generation
For caption generation, we introduce a separate
language generation LSTM that is stacked on top
of the language encoding LSTM. At each timestep
t, we first calculate a weighted representation of
the input image features. We calculate a normal-
ized attention weight αt ∈ RR (one αr,t for each
region) using the language encoding and the image
region features. Then, we create a single weighted
image feature vector:

α�
r,t = W5tanh(W6v

e
r + W7h

l
t) (8)

αt = softmax(α�
r,t) (9)

v̂t =

R�

r=1

αr,tv
e
r (10)

where W5 ∈ RH , W6 ∈ RH×J and W7 ∈
RH×L. H indicates the hidden layer dimension
of the attention module.

These weighted image features v̂t, the output of
the language encoding LSTM hl

t (Eqn. 2) and the
previous state of the language generation LSTM
hg

t−1 are input to the language generation LSTM:

hg
t = LSTM([v̂t, h

l
t], h

g
t−1) (11)

The hidden layer dimension of the LSTM is G.
The output probability distribution over the vocab-
ulary is calculated using W8 ∈ RV ×G:

p(wt|w<t) = softmax(W8h
g
t ) (12)

5.3 Training
The model is jointly trained on two objectives.
The caption generation component is trained with
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a cross-entropy loss, given a target ground-truth
sentence s consisting of the words w1, . . . , wT :

Lgen(θ1) = −
T�

t=1

log p(wt|w<t; i) (13)

The image–caption ranking component is
trained using a hinge loss with emphasis on hard
negatives (Faghri et al., 2018):

Lrank(θ2) = max
s�

[α+ cos(i, s�)− cos(i, s)]+

+ max
i�

[α+ cos(i�, s)− cos(i, s)]+ (14)

where [x]+ ≡ max(x, 0).
These two loss terms can take very different

magnitudes during training, and thus can not be
simply added. We use GradNorm (Chen et al.,
2018) to learn loss weighting parameters wgen and
wrank with an additional optimizer during train-
ing. These parameters dynamically rescale the
gradients so that no task becomes too dominant.
The overall training objective is formulated as the
weighted sum of the single-task losses:

L(θ1, θ2) = wgenLgen(θ1) + wrankLrank(θ2) (15)

5.4 Inference
The model generates B captions for each image
using beam search decoding. At each timestep,
the tokens generated so far for each item on the
beam are input back into the language encoder
(Eqn. 3). The output of the language encoder is
concatenated with the image representation (Eqn.
7) and the previous hidden state of the generation
LSTM, and input to the generation LSTM (Eqn.
11) to predict the next token (Eqn. 12).

The jointly-trained image–sentence ranking
component can be used to re-rank the generated
captions comparing the image embedding with a
language encoder embedding of the captions (Eqn.
4). We expect the ranking model will produce a
better ranking of the B captions than only beam
search by considering their relevance and informa-
tivity with respect to the image.

6 Results

We follow the experimental protocol defined in
Section 4 to evaluate the joint model. See Ap-
pendix E for training details and hyperparameters.

Table 2 shows the compositional generalization
performance, as well as the common image cap-
tioning metric scores for all models. BUTR uses

Model R M S C B

SAT 3.0 23.2 16.6 80.4 27.5
BUTD 6.5 25.8 19.1 98.1 32.6
BUTR 6.5 25.7 19.0 97.0 32.0
BUTR + RR 13.2 26.4 20.4 92.7 28.8

FULL 33.3 27.4 20.9 105.3 36.6

Table 2: Average results for Recall@5 (R; Eqn. 1),
METEOR (M; Denkowski and Lavie, 2014), SPICE
(S; Anderson et al., 2016) , CIDEr (C; Vedantam et al.,
2015), BLEU (B; Papineni et al., 2002). RR stands for
re-ranking after decoding.

Color Size Verb

A I A I T I

SAT 3.7 10.5 0 0 1.6 2.2
BUTD 5.4 10.9 0.5 0 11.6 10.3
BUTR 6.4 16.2 0.3 0.2 7.0 8.6
+ RR 13.8 26.0 1.4 0.8 20.3 16.9

FULL 42.7 38.7 5.9 33.3 39.6 39.5

Table 3: Detailed Recall@5 scores for different cate-
gories of held out pairs. The scores are averaged over
the set of scores for pairs from the respective category.
RR stands for re-ranking after decoding. Color and size
adjectives are split into Animate or Inanimate objects;
Verbs are split into Transitive and Intransitive verbs.

the same image features and a decoder architecture
as the BUTD model. Thus, when using the stan-
dard beam search decoding method, BUTR does
not improve over BUTD. However, when using the
improved decoding mechanism with re-ranking
BUTR + RR, Recall@5 increases to 13.2. We also
observe an improvement in METEOR and SPICE,
and a drop in BLEU and CIDEr compared to the
other models. We note that BLEU has the weakest
correlations (Elliott and Keller, 2014), and SPICE
and METEOR have the strongest correlations with
human judgments (Kilickaya et al., 2017).

The Recall@5 scores for different categories of
held out pairs is presented in in Table 3, and Figure
3 presents examples of images and the generated
captions from different models. We observe that
all models are generally best at describing colors,
especially of inanimate objects; they nearly never
correctly describe held out size modifiers; and for
held out noun–verb pairs, performance is slightly
better for transitive verbs.
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SAT

a black and white 
cow standing on top 
of a lush green field

a bus parked on the 
side of the street

a cat sitting on top of 
a wooden bench

a fighter jet on top 
of a lush green field

a man sitting at a 
table with a plate of 
food

a white bird sitting 
on top of a car

BUTD

a brown and white 
cow standing on a 
lush green field

a public transit bus 
on a city street

a cat sitting on top of 
a wooden bench

a white and green 
airplane on a field

a man sitting down 
with a plate of food

a white bird sitting 
on top of a car

BUTR+RR

a large white horse 
standing on top of a 
green field

a blue and yellow 
bus traveling down 
the street

a cat sitting on a 
bench near a wall

a white and green 
plane is parked on 
the grass

a man sitting down 
eating a plate of food

a large white bird 
standing on top of 
a car

Concepts white horse blue bus small cat small plane man eat bird stand

Figure 3: Selected examples of the captions generated by SAT, BUTD, and BUTR for six different concept pairs.
The bold words in a caption indicate compositional success.

7 Analysis and Discussion

Describing colors: The color–noun pairings
studied in this work have the best generalization
performance. We find that all models are better
at generalizing to describing inanimate objects in-
stead of animate objects, as shown in the detailed
results in Table 3. One explanation for this could
be that the colors of inanimate objects tend to have
a higher variance in chromaticity when compared
to the colors of animate objects (Rosenthal et al.,
2018), making them easier to distinguish.

Describing sizes: The generalization perfor-
mance for size modifiers is consistently low for all
models. The CNN image encoders are generally
able to predict the sizes of object bounding boxes
in an image. However, this does not necessarily
relate to the actual sizes of the objects, given that
this depends on their distance from the camera. To
support this claim, we perform a correlation anal-
ysis in Appendix F showing that the bounding box
sizes of objects in the COCO dataset do not relate
to the described sizes in the respective captions.

Nevertheless, size modification is challenging
from a linguistic perspective because it requires
reference to an object’s comparison class (Cress-
well, 1977; Bierwisch, 1989). A large mouse is so
with respect to the class of mice, not with respect
to the broader class of animals. To successfully
learn size modification, a model needs to represent
such comparison classes.

We hypothesize that recall is reasonable in the
FULL setting because it exploits biases in the
dataset, e.g. that trucks are often described as BIG.

In that case, the model is not actually learning the
meaning of BIG, but simple co-occurrence statis-
tics for adjectives with nouns in the dataset.

Describing actions: In these experiments, the
models were better at generalizing to transitive
verbs than intransitive verbs. This may be because
images depicting transitive events (e.g. eating) of-
ten contain additional arguments (e.g. cake); thus
they offer richer contextual cues than images with
intransitive events. The analysis in Appendix G
provides some support for this hypothesis.

Diversity in Generated Captions: A crucial
difference between human-written and model-
generated captions is that the latter are less diverse
(Devlin et al., 2015; Dai et al., 2017). Given that
BUTR+RR improves compositional generalization,
we explore whether the diversity of the captions is
also improved. Van Miltenburg et al. (2018) pro-
poses a suite of metrics to measure the diversity of
the captions generated by a model. We apply these
metrics to the captions generated by BUTR+RR and
BUTD and compare the scores to the best models
evaluated in Van Miltenburg et al. (2018).

The results are presented in Table 4. BUTR+RR

shows the best performance as measured by most
of the diversity metrics. BUTR+RR produces the
highest percentage of novel captions (%Novel),
which is important for compositional generaliza-
tion. It generates sentences with a high average
sentence length (ASL) – performing similarly to
Liu et al. (2017) – but with a larger standard devi-
ation, suggesting a greater variety in the captions.
The total number of word types (Types) and cover-
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Model ASL Types TTR1 TTR2 %Novel Cov Loc5

Liu et al. (2017) 10.3 ± 1.32 598 0.17 0.38 50.1 0.05 0.70
Vinyals et al. (2017) 10.1 ± 1.28 953 0.21 0.43 90.5 0.07 0.69
Shetty et al. (2017) 9.4 ± 1.31 2611 0.24 0.54 80.5 0.20 0.71
BUTD 9.0 ± 1.01 1162 0.22 0.49 56.4 0.09 0.78
BUTR+RR 10.2 ± 1.76 1882 0.26 0.59 93.6 0.14 0.80

Validation data 11.3 ± 2.61 9200 0.32 0.72 95.3 - -

Table 4: Scores for diversity metrics as defined by Van Miltenburg et al. (2018) for different models.

age (Cov) are higher for Shetty et al. (2017), which
is trained with a generative adversarial objective in
order to generate more diverse captions. However,
these types are more equally distributed in the cap-
tions generated by BUTR+RR, as shown by the
higher mean segmented type-token ratio (TTR1)
and bigram type-token ratio (TTR2).

The increased diversity of the captions may ex-
plain the lower BLEU score of BUTR+RR com-
pared to BUTD. Recall that BLEU measures
weighted n-gram precision, hence it awards less
credit for captions that are lexically or syntacti-
cally different than the references. Thus, BLEU
score may decrease if a model generates diverse
captions. We note that METEOR, which incorpo-
rates non-lexical matching components in its scor-
ing function, is higher for BUTR+RR than BUTD.

Decoding strategies: The failure of the caption-
ing models to generalize can be partially ascribed
to the effects of maximum likelihood decoding.
Holtzman et al. (2019) find that maximum like-
lihood decoding leads to unnaturally flat and high
per-token probability text. We find that even with
grounding from the images, the captioning models
do not assign a high probability to the sequences
containing compositions that were not observed
during training. BUTR is jointly trained with a
ranking component, which is used to re-rank the
generated captions, thereby ensuring that at the
sentence-level, the captions are relevant for the im-
age. It can thus be viewed as an improved decod-
ing strategy such as those proposed in Vijayaku-
mar et al. (2018); Fan et al. (2018); Radford et al.
(2019); Holtzman et al. (2019).

8 Conclusion

Image captioning models are usually evaluated
without explicitly considering their ability to gen-
eralize to unseen concepts. In this paper, we ar-

gued that models should be capable of composi-
tional generalization, i.e. the ability to produce
captions that include combinations of unseen con-
cepts. We evaluated the ability of models to gen-
eralize to unseen adjective–noun and noun–verb
pairs and found that two state-of-the-art models
did not generalize in this evaluation, but that an
image–sentence ranking model did. Given these
findings, we presented a multi-task model that
combines captioning and image–sentence ranking,
and uses the ranking component to re-rank the
captions generated by the captioning component.
This model substantially improved generalization
performance without sacrificing performance on
established text-similarity metrics, while generat-
ing more diverse captions. We hope that this work
will encourage researchers to design models that
better reflect human-like language production.

Future work includes extending the evalua-
tion to other concept pairs and other concept
classes, analysing the circumstances in which the
re-ranking step improves compositional general-
ization, exploring the utility of jointly trained dis-
criminative re-rankers into other NLP tasks, devel-
oping models that generalize to size modifier ad-
jectives, and devising approaches to improve the
handling of semantically equivalent outputs for the
proposed evaluation metric.
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Abstract

We introduce a new embedding model to rep-
resent movie characters and their interactions
in a dialogue by encoding in the same repre-
sentation the language used by these charac-
ters as well as information about the other par-
ticipants in the dialogue. We evaluate the per-
formance of these new character embeddings
on two tasks: (1) character relatedness, using
a dataset we introduce consisting of a dense
character interaction matrix for 4,761 unique
character pairs over 22 hours of dialogue from
eighteen movies; and (2) character relation
classification, for fine- and coarse-grained re-
lations, as well as sentiment relations. Our ex-
periments show that our model significantly
outperforms the traditional Word2Vec con-
tinuous bag-of-words and skip-gram models,
demonstrating the effectiveness of the charac-
ter embeddings we introduce. We further show
how these embeddings can be used in conjunc-
tion with a visual question answering system
to improve over previous results.

1 Introduction

Understanding characters (or more broadly peo-
ple) plays a critical role in the human-level in-
terpretation of dialogues – be those in stories,
movies, or day-to-day conversations. The verbal
interaction between characters provides important
information (Iyyer et al., 2016; Elson et al., 2010).
In these contexts, the names of characters trigger
reasoning at a much deeper level than other reg-
ular words, due to the character background, be-
haviors, social network, and so forth. Currently,
the most commonly used word embedding models
such as Word2Vec (Mikolov et al., 2013a,b) and
Glove (Pennington et al., 2014) represent charac-
ters using the embeddings corresponding to the to-
kens used to name them. Using these models in a
dialogue setting to represent the characters poses

Henry: I did not know you could fly a plane.
Indiana: Fly yes. Land no. Dad, you have to

use the machine gun. Get it ready.
Eleven o’clock!

Henry: What happens at eleven o’clock?
Indiana: Twelve, eleven, ten. Eleven o’clock,

fire! Dad, are we hit?
Henry: More or less. Son, I am sorry. They

got us.
Indiana: Hang on, dad. We are going in.

Table 1: A snippet of conversation between two char-
acters from the “Indiana Jones and the Last Crusade”
movie with each dialogue turn annotated with its corre-
sponding speaker name. We aim to generate embed-
ding representations for “Indiana” and “Henry” in a
way that captures their relation.

three main issues. First, name mentions in dia-
logues are sparse (Azab et al., 2018), which makes
it difficult for these models to learn a good qual-
ity representation for these names (Barteld, 2017).
Second, in dialogues or narratives, names often do
not refer to the same person, and yet these embed-
dings have a single vector representation for each
word in the vocabulary. For example, “Danny” in
the dialogue of the “American History X” movie
is different from “Danny” in the “Ocean’s Eleven”
movie. Finally, the learned embeddings of these
names reflect the co-occurrences of these name
mentions and other words uttered by these char-
acters, but do not model how related these charac-
ters are. Thus, the resulting embeddings cannot be
effectively used to further reason about the char-
acters and their relations.

The representation of characters in dialogues
has been an important task for social network ex-
traction (Elson et al., 2010), character relation
modeling (Chaturvedi et al., 2016), and persona-
based conversation models (Li et al., 2016). How-
ever, most of the previous work relies upon the ex-
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traction of linguistic features like explicit forms of
address (Makazhanov et al., 2014), the length of
the utterance, or the frequency of exchanges be-
tween the characters (Elson et al., 2010).

In this work, we address the task of represent-
ing characters in dialogues, specifically focusing
on movies and plays. Given a set of dialogue turns,
annotated with the corresponding speaker names,
our goal is to generate a vector representation for
each of these characters that captures the relation
with other characters. We propose a new approach
to embed characters in dialogues based not only on
what a character is saying, but also to whom. This
model allows the information from the words in a
dialogue turn to propagate to the representation of
the previous and following speakers.

Despite its simplicity, our model yields strong
empirical performance. By evaluating our model
on two different tasks – namely character relat-
edness and character relation classification (fine-
grained, coarse-grained, and sentiment) – we find
that the model exceeds by a large margin several
strong baselines, which indicates that our model
effectively captures the various characteristics of
characters. Additionally, in the process of evaluat-
ing the model, we build a new dataset consisting of
4,761 character relation pairs obtained from eigh-
teen movies, manually annotated with relatedness
scores and relations of various granularities. We
are making the dataset publicly available.

2 Related Work

Learning distributional representation of words
plays an increasingly important role in represent-
ing text in many tasks (Bengio et al., 2013; Chen
and Manning, 2014). The existence of huge
datasets allowed learning high quality word em-
beddings in an unsupervised way by training a
neural network on fake objectives (Mikolov et al.,
2013a,b; Turney and Pantel, 2010). A major
strength of these learned word embeddings is that
they are able to capture useful semantic informa-
tion that can be easily used in other tasks of in-
terest such as semantic similarity and relatedness
between pair of words (Mikolov et al., 2013a;
Pennington et al., 2014; Wilson and Mihalcea,
2017) and dependency parsing (Chen and Man-
ning, 2014; Dyer et al., 2015). However, these
models treat names and entities no more than the
tokens used to mention them. As a result, these
models are unable to well represent names in nar-

rative understanding task because the word “John”
in a given story can be very different from the
word “John” in another narrative. In this work, we
only focus on representing character names and
not the whole embedding space (Ji et al., 2017).

Recently, several approaches have been pro-
posed to build dynamic representations for enti-
ties (Henaff et al., 2016; Ji et al., 2017; Kobayashi
et al., 2016, 2017). One common approach is to
rely on neural language models to encode the lo-
cal context of an entity and use the resulting con-
text vectors as the embedding for subsequent oc-
currences of that entity (Kobayashi et al., 2016,
2017). Another approach is to learn a generative
model that generates the representation of an en-
tity mention (Ji et al., 2017). Henaff et al. (2016)
proposed an explicit entity tracking model by re-
lying on an external memory to store information
about entities as they appear in a given sentence.
While these rich representations improve the per-
formance on several tasks such as coreference and
reading comprehension, they rely on explicit men-
tions of entities in text as available in toy datasets
such as bAbi (Weston et al., 2015). Thus, it is dif-
ficult to apply these representations in a dialogue
setting due to the sparseness of name mentions in
dialogue, as well as the lack of explicit conversa-
tion connections between characters (as available
in movies) (Azab et al., 2018). Most of the ex-
isting story understanding work feeds the model
with the vector representations of names based on
a global model such as Word2Vec or Glove, which
hinders the ability of these models to understand
dialogue (Tapaswi et al., 2016; Na et al., 2017;
Lei et al., 2018). Recently, Li et al. (2016) re-
lied on TV series scripts in order to learn speaker
persona representations and used these represen-
tations to improve the performance of neural con-
versation models. Unlike (Ji et al., 2017; Li et al.,
2016), we focus on representing character names
in dialogue settings and learning different embed-
dings for characters from different story dialogues
in a way that reflects the relatedness of story char-
acters; more specifically, we propose the use of
speaker prediction as an auxiliary supervision to
improve the character representation.

Identifying and analyzing character relations in
literary texts is a well studied problem (Agarwal
et al., 2013; Makazhanov et al., 2014; Elson et al.,
2010; Iyyer et al., 2016). Most of these models de-
pend on analyzing the co-occurrence of the char-
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acters and stylistic features used while characters
address each other. These models are really im-
portant to summarize, understand, and generate
stories (Elson et al., 2010). In this work, we use
the task of character relation classification as an
extrinsic evaluation task to evaluate the impact of
character embeddings on this task.

3 Character Embeddings

Characters play an important role in any dialogue,
including movies or plays. Yet, work to date has
rarely considered specialized character represen-
tations. We hypothesize that a representation that
leverages both the language uttered by the charac-
ters as well as information on the other characters
in the dialogue could result in richer encodings.
The intuition behind our hypothesis is explained
by the example in table 1. Here, the word “Dad”
should be associated not only with “Indiana” but
also propagate its information to “Henry”, condi-
tioned by “Indiana”. Our proposed model is well
conveying this intuition to encode characters.

3.1 Setup

Our architecture builds on a pretrained embedding
model generated by standard Word2Vec models
(Mikolov et al., 2013a,b) or pre-trained contextu-
alized word representations from neural language
models (ELMo) (Peters et al., 2018). We start by
collecting sets of (current speaker, previous speak-
ers, next speakers, context words) as training ex-
amples. We split the four elements in the sets
into target and context depending on our objec-
tives. Figure 1 describes the input-output (target-
context) pairs of our system. Additionally, our
model works as an unsupervised post-training of
existing embeddings, rather than starting the train-
ing from scratch. This is due to the fact that get-
ting a good representation for characters is a sep-
arate task from getting a general representation of
tokens. A good pre-trained embedding space is an
essential component to map characters so that they
will be distributed in a semantically meaningful
embedding space. While a good pre-trained em-
bedding is important, our models focus on “mov-
ing” the character embeddings without affecting
any other word representations.

3.2 Architecture

We propose two post-training schemes, which we
refer to as Character Embedding (SG) and Charac-

ter Embedding (CBOW). The differences stand in
the objective of post-training, given sets of (cur-
rent speaker, previous speakers, next speakers,
context words) as training examples. Formally,
given the sequence of speakers at each turn S =
s1, s2, s3, , , sT−1, sT , we define context words C
for turn t as the set of words found by a sliding
context window in the utterance. We propose our
post-training objectives as following:

L =
1

N

∑

si∈S

∑

wi∈C(si)

∑

−sw≤j≤sw

log(p(wi|si+j)))
(1)

L =
1

N

∑

si∈S

∑

wi∈C(si)

(log(p(si|wi)+

∑

−sw≤j≤sw,j 6=0

log(p(si|si+j)))
(2)

Our Character Embedding (SG) model maxi-
mizes the objective on Equation 1, while Char-
acter Embedding (CBOW) maximizes the objec-
tive on Equation 2, where N indicates the number
of training examples and sw indicates the size of
the speaker window (speaker window of size one
means we consider speakers of one preceding turn
and one succeeding turn). Our formulation defines
probabilities p(si|wi), p(si|si+j) and p(wi|si+j)
using the softmax equation. We also define two
transformations of our network – lookup table
(LUT) initialized by embedding of pre-trained em-
bedding model and Linear Projection Layer W.

To examine the generality of our post-training
schemes, we also apply them to another pre-
trained word embedding model. Given a dialogue
turn, we encode it using ELMo’s pre-trained Bi-
LSTM model (Peters et al., 2018) to generate a
sequence of contextualized vectors for words. We
add a linear projection layer on top that takes the
generated embedding, in addition to the previous
and following speakers, and train it to predict the
speaker of the current turn. We refer to this model
as Character Embedding (ELMo).

3.3 Training

We represent our contexts and targets as a one hot
vector of length equal to the vocabulary size. The
purpose of our model is to update the embedding
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S(t-1):
Henry 

C(S(t)):
Dad 

S(t+1): 
Henry

S(t):
Indiana 

S(t):
Indiana 

S(t-1):
Henry 

C(S(t)):
Dad 

S(t+1): 
Henry

Input Projection Output Input Projection Output

Figure 1: The conceptual figure describing input /output pairs of our character embedding model. The diagram de-
scribes when both the speaker window and the context window are size one. Left: Character Embedding(CBOW),
Right: Character Embedding(SG).

of characters in LUT by propagating the gradient
from our objectives. We use cross-entropy to cal-
culate the loss, and we use gradient descent to up-
date the parameters. The description of our Char-
acter Embedding (SG) model with a speaker win-
dow size of one is showed in Algorithm 1.

4 Evaluation Tasks and Datasets

We evaluate the quality of our speaker embedding
model across two different tasks. Our goal is to
evaluate how well each embedding model captures
simple and complex character representations and
interactions.

4.1 Character Relatedness
Measures of semantic relatedness between words
indicate the degree to which words are associated
with any kind of semantic relationship such as syn-
onymy, antonymy, and so on. Semantic related-
ness is commonly used as an absolute intrinsic
evaluation task to assess and compare the qual-
ity of different word embeddings (Schnabel et al.,
2015; Yih and Qazvinian, 2012; Upadhyay et al.,
2016) and phrase embeddings (Wilson and Mihal-
cea, 2017).

Similarly, we define character relatedness as the
degree to which a pair of characters in a given
story are related to each other based on the story
plot and their level of interaction throughout the
dialogue. Given a pair of characters, we would
like the relatedness score between their embed-
ding representations to have a high correlation
with their corresponding human-based relatedness
score. Thus, the distance of the embeddings be-
tween closely related characters should be smaller
than the distance between less related ones.

To measure the relatedness between characters
in movies, we construct a new annotated dataset
based on a publicly available dataset (Azab et al.,
2018). That dataset includes 28K turns spoken
by 396 different speakers in eighteen movies cov-
ering different genres, with the subtitles of each
movie labeled with the character name of their cor-
responding speakers. On average, each character
uttered 452 words.

For each movie in that dataset, two human
annotators watched the movies and annotated a
dense relatedness matrix of characters on a 1-5
scale. Table 2 shows the meaning of each score.
These scores reflect the level of interaction or how
closely related the characters are over the course
of the movie. For example, given two characters
X and Y, a high score for X and Y is assigned if
e.g., X is the father of Y, regardless of the amount
of interaction between the two characters. We also
give a high score for the cases where X and Y
are closely interacted, even if they are unrelated
in terms of kinship. Due to the sparseness of the
number of closely related characters, we asked the
annotators to select the higher score when hesitat-
ing between two scores.

For three movies, the Pearson correlation be-
tween the two annotators is 0.8394, which re-
flects a very good agreement. We then average the
scores assigned by the annotators and use the re-
sult as the human relatedness ground-truth score
for each pair of characters.

In this dataset, we have 4,761 unique character
pairs annotated with a relatedness score. Figure 2
shows the statistics over the relatedness scores. As
shown in the table, only a small number of char-
acter pairs are closely related, while the majority
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Algorithm 1: Character Embedding(SG)
E: The embedding from pre-trained model
W: Linear Projection Layer
α: Learning Rate
maxepoch: maximum epoch to run
LUT← E, epoch← 1;
while epoch ≤ maxepoch do

for t from 2 to T − 1 do
x1 ← LUT [st−1];
x2 ← LUT [st];
x3 ← LUT [st+1];
for w0 in C(st) do

target← LUT [w0];
logits = tanh(W T (x1+x2+x3));
prediction = softmax(logits);
loss = −target + log(prediction);
W :=W − α ∗ δlossδW ;
LUT [st−1] := x1 − α ∗ δlossδx1

;
LUT [st] := x2 − α ∗ δlossδx2

;
LUT [st+1] := x3 − α ∗ δlossδx3

;
end

end
epoch := epoch + 1

end

5 interacted frequently/closely related
4 interacted/related
3 moderately interacted/somewhat related
2 interacted few times/not related
1 did not interact/not related

Table 2: Relatedness annotation scores.

of the characters have either interacted very few
times or did not interact at all. However, it is im-
portant to include these unrelated pairs while eval-
uating the quality of the character embeddings, as
unrelated pairs might be closer than related ones
especially for minor characters that do not speak
much during the dialogue.

4.2 Character Relationships

Understanding the relationships between charac-
ters is a primary task in extracting and analyzing
social relation networks from literary novels (El-
son et al., 2010; Agarwal et al., 2013). It is also
important for improving computational story sum-
marization and generation methods (Elsner, 2012;
Gorinski and Lapata, 2015).

Character relationship is a more complex
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Figure 2: Statistics of the character relatedness dataset
on movies of speaker naming dataset.

task than character relatedness. In this task,
given a pair of character embeddings, we would
like to classify the type of their relation-
ship on multiple dimensions. Specifically, we
consider: fine-grained relations, such as sis-
ter/father/friend/enemy; coarse-grained relations,
such as familial/social/professional; and relation
sentiment, i.e., positive, negative or neural. The
goal of this task is to evaluate the quality of
our character embeddings and how well it cap-
tures such complex information in an unsuper-
vised fashion. It also serves as an extrinsic evalua-
tion for the impact of our character representations
on downstream tasks.

We use a subset of character relationships in a
literary dataset (Massey et al., 2015). This dataset
includes annotations for eighteen fine-grained re-
lationship classes, four coarse-grained relation-
ship classes, and three relation sentiment classes.1

We use the 31 Shakespeare plays in this dataset,
and obtain their corresponding text from project
Gutenberg. We use the Shakespeare plays because
they have the dialogue turns annotated with speak-
ers names, which is necessary for training our
character embedding models. The plays include
a total of 605 character pair relationship annota-
tions.

5 Experiments

5.1 Baselines
For each task, we compare our character embed-
ding models against five baselines:

1Annotations on temporal change in the sentiment be-
tween each pair of characters is also included, but since our
models do not have the ability to track such temporal infor-
mation, we do not use these annotations.
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Interaction Frequency. We count the number
of exchanged dialogue turns between every pair of
characters and normalize it by the total number of
turns spoken by a given pair of characters.

TF-IDF. We treat all the utterances of a charac-
ter as a document and calculate a tf-idf weight for
each word. We then represent a character by its
tf-idf vector of the words that they uttered.

Word2Vec (CBOW) model. We use the tradi-
tional Word2Vec architecture to train a word em-
bedding space based on the continuous bag-of-
words approach (Mikolov et al., 2013a). Given a
sequence of words D, the context words that exist
in a defined window size are considered as input
to the network and the objective is to predict the
target word by maximizing the average long prob-
ability:

L =
1

|D|
∑

wi∈D
logP (wi|C(wi)) (3)

Word2Vec (SG) model. We use the skip-gram
architecture of Word2Vec with negative sampling
(Mikolov et al., 2013b). In this architecture, the
objective is to learn a representation of the target
word that would be good at predicting the words
within a defined window by maximizing the aver-
age log probability:

L =
1

|D|
∑

wi∈D

∑

w0∈C(wi)

logP (w0|wi) (4)

Character BOW. We represent each charac-
ter as the mean-pooling of a 300-dimension pre-
trained Word2Vec representation of all the words
that this character has uttered through the entire
dialogue.

Doc2Vec. We train a Doc2Vec model (Le and
Mikolov, 2014) as tagged documents using the
character names as the document tags. We then
represent each character as the Doc2Vec represen-
tation of all the words that this character has ut-
tered through the entire dialogue.

ELMo (Mean-Pooling). We use pre-trained
contextualized word representations from neural
language models (ELMo) (Peters et al., 2018) to
generate character names representations based
on the sentences that include their names.2 To
generate these representations, we feed the pre-
trained ELMo model with a Glove representation

2We also tried training ELMo from scratch on our data but
the pre-trained model produces better results.

for the words and ELMo augments their repre-
sentation with the hidden states of its two lay-
ers bi-directional LSTM to represent the words
with respect to their context. For each character
name, we average their contextualized representa-
tions through the entire dialogue.

5.2 Experimental Setting
To have these models trained on in-domain data,
we use GenSim (Řehůřek and Sojka, 2010) to
train the different architectures of Word2Vec on
the almost 600K sentences / 4M words of subti-
tles and Shakespeare plays. For the target movies
and plays, the speaker names are included in the
training data so that we can have a vector repre-
sentation for each character name. The names in
our corpus have been manually normalized so that
’Joe’ and ’Joseph’ in a movie get the same rep-
resentation, while ’Joseph’ in a different movie
gets a different representation. To achieve the
first part of the name normalization, we utilize the
name-clustering algorithm provided by Bamman
(2014) to extract and cluster name tokens from
the text and annotate the true representation of
names for each cluster. We achieve the second
part of the name normalization by adding the text
title to the name tokens (e.g., ’Michael’ becomes
’MichaelOthello’).

For GenSim (Řehůřek and Sojka, 2010), we set
the learning rate to 0.1, the window size to 4 and
the samples to 50 for negative sampling. We run
30 epochs to train our baselines. For post-training
by our models, we use a gradient decent to update
our parameters. For general experiments, we set
the learning rate to 0.1 and the learning rate decays
by the factor of 0.9 per 10 epochs. We run maxi-
mum 40 epochs for our post-training. For Charac-
ter Embedding (CBOW), we use a context window
of size two. We use a speaker window of size one
for both the Character Embedding (CBOW) and
the Character Embedding (SG).

5.3 Results
Character Relatedness. For each model, given
a pair of characters we compute the cosine simi-
larity score between the embeddings of these two
characters, defined as:

similarity(CCC1,CCC2) =
CCC1 ·CCC2

||CCC1|| · ||CCC2|| (5)

and compute the similarity score between two
characters in the embedding space similar to (Col-

104



Movie Character Methods Closest Second closest Third Closest

The Devil’s
Advocate

Alice Lomax

Ground Truth Kevin Lomax John Milton Mary Lomax
Interaction Frequency Kevin Lomax Pam Garrety John Milton
TF-IDF Mary Lomax John Milton Don King
Character Average BOW John Milton Kevin Lomax Barbara
Word2Vec (CBOW) Lloyd Gettys Judge Poe Alexander Cullen
Word2Vec (SG) Alfonse D’amato Lloyd Gettys Judge Poe
ELMo (Mean-Pooling) Kevin Lomax Mary Lomax Alexander Cullen
Character Embedding(CBOW) Kevin Lomax Judge Poe Mary Lomax
Character Embedding(SG) Kevin Lomax John Milton Mary Lomax
Character Embedding(ELMo) Kevin Lomax Pam Garrety Mary Lomax

Table 3: Example of character relatedness task. Given a character, we list the top three characters sorted in
descending order from left to right according to their similarity scores.

lobert et al., 2011; Mikolov et al., 2013b). The list
of the nearest characters of a given character C are
all the other characters from the same movie sorted
in descending order by their similarity score with
respect to C.

Pearson Coeff
Interaction Frequency 0.3632
TF-IDF 0.3129
Doc2Vec 0.1771
Word2Vec (CBOW) 0.2081
Word2Vec (SG) 0.1989
Character BOW 0.2256
ELMo (Mean-Pooling) 0.3212
Character Embedding(CBOW) 0.4644
Character Embedding(SG) 0.4933
Character Embedding(ELMo) 0.3475

Table 4: Comparison between the average Pearson
correlation coefficient scores of the different models
against average human relatedness scores.

Table 4 shows the Pearson correlation co-
efficients of the resulting similarity scores of
each model against the average human annotation
scores. These results suggest that having the con-
text window over the utterance and adding the pre-
vious and next speakers to the input layer greatly
improves the ability of the character embeddings
to capture the relatedness between the different
characters in a given story dialogue.

Table 3 shows an example of characters that are
most related to “Alice Lomax” from the movie
“The Devil’s Advocate” as calculated based on
each model sorted in descending order according
to their cosine similarity scores. It is worth not-
ing that Kevin Lomax is Alice’s son, John Milton
is Kevin’s father and Mary Ann Lomax is Kevin’s
wife. On the other hand the characters suggested
by both Word2Vec CBOW and SG models did not

interact with Alice through the whole movie.
To further analyze the quality of the produced

character embeddings, we evaluate the embed-
dings across different characters according to the
their frequency of appearance in the movies. Fig-
ure 3 shows a comparison between the perfor-
mance of the different models over minor and ma-
jor characters based on the number of dialogue
turns that each character uttered. These results
show that our character embedding model consis-
tently outperforms the traditional Word2Vec base-
line models and reflect the robustness of our model
in generating better character embeddings.
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Figure 3: Comparison of the average Pearson correla-
tion coefficient over characters who had different num-
ber of turns.

Character Relationship. We have three clas-
sification tasks for character relationships: 1)
fine-grained relationship classification; 2) coarse-
grained relationship classification; 3) relation sen-
timent classification. For each of these tasks,
we train a logistic regression classifier using the
Scikit-learn library (Pedregosa et al., 2011). These
classifiers take a pair of character embeddings as
a concatenation of their vectors and predict their
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Fine-grained Relation Coarse-grained Relation Sentiment
P R F P R F P R F

Interaction Frequency 0.04 0.16 0.06 0.30 0.44 0.33 0.33 0.58 0.42
TF-IDF 0.11 0.12 0.10 0.39 0.42 0.40 0.43 0.53 0.40
Character Average BOW 0.08 0.16 0.05 0.33 0.43 0.28 0.28 0.53 0.37
Word2Vec (CBOW) 0.11 0.13 0.12 0.37 0.38 0.38 0.39 0.40 0.39
Word2Vec (SG) 0.09 0.12 0.10 0.37 0.37 0.37 0.41 0.43 0.42
Doc2Vec 0.12 0.12 0.12 0.40 0.40 0.40 0.42 0.42 0.42
ELMo (Mean-Pooling) 0.14 0.18 0.14 0.39 0.41 0.40 0.44 0.50 0.46
Character Embedding(CBOW) 0.11 0.14 0.12 0.43 0.44 0.43 0.44 0.47 0.44
Character Embedding(SG) 0.11 0.17 0.12 0.43 0.46 0.42 0.40 0.51 0.42
Character Embedding (ELMo) 0.18 0.19 0.19 0.48 0.48 0.48 0.48 0.48 0.48

Table 5: Comparison between the average of the precision, recall and macro-weighted f-score of the baselines and
our character embedding model on both fine-grained, coarse-grained character relation and sentiment classification.

. Fine- Coarse- Senti-
Play Char 1 Char 2 Methods grained grained ment

The Two
Gentlemen
of Verona

Julia Proteus

Ground Truth lovers social positive
Interaction Frequency lovers social positive
TF-IDF servant social negative
Character Average BOW friend social positive
Word2Vec (CBOW) servant familial negative
Word2Vec (SG) servant familial positive
ELMo (Mean-Pooling) friend social positive
Character Embedding(CBOW) lovers social negative
Character Embedding(SG) lovers social positive
Character Embedding(ELMo) lovers social positive

Table 6: Example of classification task on Shakespeare’s play, using different baselines and our character repre-
sentation methods. The classification output consists of the relations of character 2 from character 1’s perspective.
A bold face indicates a correct relation classification.

relationship. We use a leave-one-play-out cross-
validation in which character pairs from each play
are used as a test set and character pairs from
the other plays are used to train the models. Ta-
ble 5 shows the classification average precision,
recall and weighted F-score obtained by training
the logistic regression classifiers using the char-
acter embeddings produced by the different mod-
els. Training classifiers using our character em-
bedding models consistently outperforms the clas-
sifiers trained using the other models, which re-
flects the quality of the semantic information cap-
tured by our character embeddings when com-
pared to other models. Table 6 shows examples
of the three character relation classification tasks
as classified by our character embedding models
and the baselines.

Question Answering. As a final evaluation, we
test the impact of our character embedding on dia-
logue understanding. TVQA (Lei et al., 2018) is a
challenging dataset that includes 152.5K multiple

Accuracy
Q+S Q+S+V

MS (Glove) (Lei et al., 2018) 0.6515 0.6770
MS (Glove w/o names) 0.6177 0.6467
MS (CharEmbedding(CBOW)) 0.6590 0.6852
MS (CharEmbedding(SG)) 0.6554 0.6884

Table 7: Comparison on the TVQA validation dataset
using the MS method with Glove and Glove fine-tuned
using our proposed character embedding method.

choice question answers about 21.8K video clips
from 6 TV shows such as the Big Bang Theory,
House, and so on. These questions were created in
a way that requires understanding of both the dia-
logue and the visual content of a given video. Each
video clip includes the video frames and subtitles
with speaker names aligned automatically with
their corresponding show scripts (around 69% of
the subtitle segments include speakers names). We
follow the same dataset splits for training, valida-
tion, and test.
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To evaluate our embedding, we use the base-
line implementation proposed with the TVQA
dataset, namely Multi-Stream (MS). This model
relies on bidirectional attention between context
(represented by subtitles and/or visual content)
and question answer pairs as queries to predict the
correct answer (Lei et al., 2018). Visual features
are included as textual labels of detected visual
concepts in the frames of the video clip. To mea-
sure the effect of the person names on the model,
we apply a named entity recognizer and replace
the names with a fixed randomly generated em-
bedding. Table 7 shows the results from the MS
method using Glove, Glove with removing names
from subtitles, and using a fine-tuned Glove using
our character embedding model. The use of our
character embeddings bring improvements over
the pre-trained Glove embeddings, which demon-
strates the usefulness of these character represen-
tations.

6 Conclusion

In this paper, we presented a novel unsupervised
embedding model to represent characters and their
interaction in a dialogue. Our embedding model
produces character representations that reflect the
language used by the characters as well as in-
formation about their relations with other charac-
ters. To evaluate the performance of our charac-
ter embeddings, we experimented with two tasks
on two datasets: (1) character relatedness, us-
ing a dataset we introduced consisting of a dense
character interaction matrix for 4,761 unique char-
acter pairs over 22 hours of dialogue extracted
from 18 movies; and (2) character relation classi-
fication, for fine- and coarse-grained relations, as
well as relation sentiment. Our experiments show
that our model significantly outperforms the tra-
ditional Word2Vec continuous bag-of-words and
skip-gram models, thus demonstrating the effec-
tiveness of the character embeddings we intro-
duced. We further showed how the character em-
beddings can be used in conjunction with a visual
question answering system to improve over previ-
ous results.

The dataset annotated with character related-
ness scores introduced in the paper is publicly
available from http://lit.eecs.umich.
edu/downloads.html.
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Abstract

Research on the bilingual lexicon has uncov-
ered fascinating interactions between the lex-
icons of the native language and of the sec-
ond language in bilingual speakers. In par-
ticular, it has been found that the lexicon of
the underlying native language affects the or-
ganisation of the second language. In the
spirit of interpreting current distributed repre-
sentations, this paper investigates two models
of cross-lingual word embeddings, compar-
ing them to the shared-translation effect and
the cross-lingual coactivation effects of false
and true friends (cognates) found in humans.
We find that the similarity structure of the
cross-lingual word embeddings space yields
the same effects as the human bilingual lexi-
con.

1 Introduction

Research on the bilingual lexicon has uncov-
ered fascinating interactions between the L1 (na-
tive language) and L2 (second language) lexicons
showing that both production and comprehension
coactivate lexical items in both languages, indi-
cating that bilinguals store lexical representations
from their native and their second language in the
same space (Kroll and Dijkstra, 2012; Williams,
2014).1

This paper presents the first bilingual investiga-
tion of models of cross-lingual word embeddings
and asks whether the bilingual spaces they define

1Throughout this paper, and following the current liter-
ature on the topic, we use the term ‘bilingual’ loosely, to
refer to any speaker of more than one language. Although
there has been much research on all aspects of bilingualism,
and at all stages of proficiency, the effects we model here
have been found in experiments testing speakers who began
to learn their second language after their first, usually in a
school context, and who are at an advanced level of profi-
ciency. The form German-English below will indicate, for
example, a native speaker of German who learnt English as a
second language (Williams, 2014).

have similar properties to the human bilingual lex-
icon. Among the many questions and results in
the vast bilingualism literature, we concentrate on
coactivation effects in items with shared transla-
tions. We also study interference or facilitatory ef-
fects in form-meaning mapping, the case of false
friends, words that share form but differ in mean-
ing across the two languages, and true friends,
words that share both form and meaning. We find
that the similarity structure of cross-lingual word
embeddings matches well with known experimen-
tal findings of the human bilingual lexicon.

2 The structure of the bilingual lexicon

The core findings about the bilingual lexicon con-
firm that the two languages occupy an integrated
space and they interact with each other (Wolter,
2001). For example, both in the monolingual and
bilingual lexicon the best predictor of the time
to recognise a word is the number of similarly
spelled words, within and across languages (John-
son and Pugh, 1994; van Heuven et al., 1998).2

This implies that, functionally, the bilingual lex-
icon is an integrated system. Specifically, it
has been proposed that languages do not simply
share graphemes or phonemes, but that the lexi-
con, monolingual, bilingual or multi-lingual, is a
space of distributed word representations where
word forms from different languages map onto a
common abstract conceptual code (Van Hell and
de Groot, 1998). This general structural and func-
tional assumption explains many findings. We
concentrate here on two sets of coactivation ef-
fects.

2Monolingual work has provided a finer-grained picture
of this result, modulated by number of word senses and the
semantic closeness of sense extensions, but the main result
remains valid (Rodd et al., 2002).
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2.1 The shared translation effect

Polysemous words that have many translations,
such as English bank translated as banca (fi-
nancial institution) or riva (river bank) in Ital-
ian, coactivate the correspondences for all the
word senses, with various effects. One-to-many
translations have been shown to slow down ac-
quisition and processing for Italian-English bilin-
guals (Degani and Tokowicz, 2010), and to slow
down response times of German-English speak-
ers in anomaly detection tasks (Elston-Güttler and
Williams, 2008).3

We are mainly interested in the result of De-
gani et al. (2011), as it concerns similarity spaces
in shared translations. Degani et al. (2011) asked
Hebrew-English bilinguals to rate the semantic re-
latedness of English word pairs that shared a trans-
lation in Hebrew (e.g., tool and dish both trans-
lated into Hebrew kli). Compared to both En-
glish pairs with different Hebrew translations, and
to ratings by monolingual English speakers, bilin-
guals judged shared-translation pairs as more re-
lated in meaning (the shared-translation effect).4

2.2 Form-meaning mappings in translation

Competition (and facilitation) effects have been
found both in comprehension and production de-
pending on convergence and divergence of form-
meaning mappings in translation. Recall that false
friends are cross-linguistically similar in form but
not in meaning, such as the English-Italian es-
tate, which in Italian means summer, and true
friends are words that share both (orthographic or
phonological) form and meaning, such as English-
French glucose or danger, in translation.

False friends effect In a cross-modal picture de-
cision task, Weber and Cutler (2004) find that
Dutch-English speakers are slower in matching
an English word (desk) with the corresponding
picture if the target picture’s word form matches
the Dutch form of one of the alternative pictures
(deskel = lid). It should be noted, however, that

3German-English speakers, compared to monolingual En-
glish speakers, are slower in recognising, for example, that
the word bubble is infelicitous in contexts where the word
blister is required, due to the fact that these two words are
translated as the same word Blase in German.

4Notice that this effect is robust as it was also replicated
for English-Hebrew bilinguals, who learned Hebrew as an
L2. Moreover, Degani et al. (2011) used as stimuli semanti-
cally unrelated word pairs, extending previously established
results for sense-related words, such as home-house (Jiang,
2002).

while the decision time was slower, the decision
accuracy was not. Bilingual speakers do know
which is the right word-picture match and perform
accurately. Also, for English-Dutch false friends
like rust (rest in Dutch) lexical decision times are
slower than expected, if the list in which they are
embedded also contains words from the other lan-
guage (Dijkstra et al., 1998; Smits et al., 2006).

True friends effects In recognition, Dutch-
English bilinguals performing a lexical decision
task in English were found to be faster than ex-
pected for words like type, a near true friend with
a slight difference in pronunciation (Dijkstra et al.,
1999; Smits et al., 2006; Dijkstra et al., 2010).
Similar cognate facilitation effects also occur in
production tasks, such as picture-naming. If an
advanced Catalan-Spanish bilingual is asked to
name pictures in Spanish, they are faster to do
so for true friends such as gato (gat in Catalan
‘cat’) than for non-cognates. The effect, although
smaller, can also be obtained when pictures are to
be named in the L1 (Costa et al., 2000). Simi-
lar effects have also been obtained for Japanese-
English bilinguals, despite the difference in the
scripts (Hoshino and Kroll, 2008).

3 Predictions

In this work, we ask if the structure of cross-
lingual word embeddings spaces have the proper-
ties that would be expected given human bilingual
behaviour. Assuming the distributed, integrated
model of the lexicon proposed in the bilingualism
literature, the underlying linking hypothesis is that
coactivation effects (whether expressed as simi-
larity judgments or measured as reaction times)
are the expression of greater or smaller proximity
in a multi-dimentional space. On this basis, sev-
eral hypotheses are proposed. The first hypothesis
aims to establish whether cross-lingual word em-
beddings are sensitive to a bilingual situation and
generate an integrated cross-lingual space. Sec-
ondly, we test if cross-lingual word embeddings
show the shared-translation effect. Finally we test
the cross-linguistic competition/priming of lexical
forms from the L1 to the L2 language, comparing
cross-lingual to monolingual spaces in true friends
and false friends scenarios.

We will often talk about a word and its transla-
tion. By this term, we mean the pair of words that
a bilingual dictionary would indicate as equivalent
lexical entries, a translations pair.
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3.1 The integrated bilingual lexicon

We test the idea that the bilingual lexicon is an
integrated system by looking at effects of such a
system in one-to-one mappings and one-to-many
mappings.

The simplest and most basic prediction that a
model of the integrated bilingual lexicon needs to
be able to confirm is that words in the bilingual
lexicon are “closer” to each other than word map-
pings across two aligned mono-lingual lexicons.

HYPOTHESIS 1 Given an L1 word w1 and
its translation w2 in L2, the similarity between
the word embeddings pair in a cross-lingual
space (wcr

1 , w
cr
2 ) is higher than their similarity

between their aligned monolingual counterparts
(wm1

1 , wm2
2 ).

sim(wcr1
1 , wcr2

2 ) > sim(wm1
1 , wm2

2 ) (1)

The second prediction is based on the finding of
shared translations, where a shared translation in
L1 affects L2 similarity judgments.

HYPOTHESIS 2 Given an L1 word w1 and its
translations w2a and w2b in L2, the similarity be-
tween the cross-lingual embeddings of the trans-
lation pair will be greater than the similarity be-
tween their monolingual counterparts.

sim(wcr2
2a , w

cr2
2b ) > sim(wm2

2a , w
m2
2b ) (2)

3.2 Form-meaning competitions in the
biligual lexicon

The following experiments investigate the compe-
tition faced by words with a high level of lexi-
cal similarity. Simplifying, words across two lan-
guages can be similar in form or meaning, or both
or neither. For the following predictions, then, we
define five different types of word pairs. Examples
are shown in Figure 3.
FALSE FRIENDS: words that share the same form,
but are semantically different.
REAL TRANSLATIONS of the false friends: the
real L2 translations of the L1 word that also has
a false friend.
TRUE FRIENDS: words sharing form and mean-
ing.
NORMAL TRANSLATIONS: words semantically
equivalent, but with a different form.
UNCORRELATED WORDS: words lexically and
semantically uncorrelated.

False and true friends coactivation In bilin-
gual speakers, false friends show an inhibitory ef-
fect of the L1 meaning in L2 tasks, but they do
not affect the final accuracy of the task comple-
tion. Consequently, in our cross-lingual vecto-
rial space, false friends should not have higher
similarity score than their real translations, but
they should be included in the top translations,
i.e. the difference in similarity score between the
real translation and the false friends should be
smaller than the difference between the real trans-
lations and other words (appropriately matched to
the false friends). This in turn can be demonstrated
by two expected inequalities: false friends are not
closer than real translations but false friends are
significantly more similar than (matching) uncor-
related words.

Precisely, given an L1 word w1, and its real L2
translation w2 and the false friend w2ff in cross-
lingual space, we expect the similarity score be-
tween the pair (w1, w2) not to be lower than the
similarity score between the pair (w1, w2ff ).

HYPOTHESIS 3 Real translations have a better
or equal similarity score than their corresponding
false friends.

sim(w1, w2) >= sim(w1, w2ff ) (3)

Moreover, false friends (w1, w2ff ) have a simi-
larity score that is higher than uncorrelated words
(w1, w2nc). This is because the false friends pair
(w1, w2ff ) shares similarity of form even if it is, in
fact, semantically uncorrelated.

HYPOTHESIS 4 False friends have a better sim-
ilarity score than pairs with no correlation.

sim(w1, w2ff ) > sim(w1, w2nc) (4)

Lexical similarity can also work in the opposite
direction. L1 words that are similar to the L2 word
both in form and meaning, true friends, have been
shown, in bilinguals speakers, to facilitate tasks in
L2. In cross-lingual word embeddings, we expect
that true friends (w1tf , w2tf ) have a higher similar-
ity score than normal translation pairs (w1n, w2n),
whose interaction is not enhanced by lexical or
morphological resemblances.

HYPOTHESIS 5 True friends have a better simi-
larity score than normal translation pairs.

sim(w1tf , w2tf ) > sim(w1n, w2n) (5)

112



HYP. 1 Cross-lingual word embeddings pairs are more sim-
ilar than their aligned monolingual counterparts

sim(wcr1
1 , wcr2

2 ) > sim(wm1
1 , wm2

2 )

HYP. 2 For two L2 words sharing a translation in L1, cross-
lingual word embeddings are more similar than monolingual
word embeddings

sim(wcr2
2a , w

cr2
2b ) > sim(wm2

2a , w
m2
2b )

HYP. 3 Real translations are more similar than their corre-
sponding false friends

sim(w1, w2) >= sim(w1, w2ff )

HYP. 4 False friends are more similar than uncorrelated pairs sim(w1, w2ff ) > sim(w1, w2nc)

HYP. 5 True friends are more similar than normal translation
pairs

sim(w1tf , w2tf ) > sim(w1n, w2n)

HYP. 6 Normal translation pairs are more similar than real
translations of false friends

sim(w1n, w2n) > sim(w1, w2)

Figure 1: The six experimental predictions.

Another hypotheses can also be formulated that
follows logically from these preceding ones. Con-
sider the pair (w1, w2) where w2, as seen before,
is the real translation of w1 in a pair that also
has a false translation. In this case, it is impor-
tant to remember that w1 has a false friend w2ff ,
so we know that accessing w2 is more effortful
since, for a bilingual speaker, w2ff will also be ac-
tivated. Consequently, we can assume that a nor-
mal pair of words (w1n, w2n), a pair of translated
words that have no false friend, are closer in space
than (w1, w2) precisely because (w1n, w2n) is not
inhibited by a false translation as in the case of
(w1, w2).

HYPOTHESIS 6 Normal translation pairs have
a higher similarity score than real translations of
false friends.

sim(w1n, w2n) > sim(w1, w2) (6)

The predictions are summarised in Figure 1. If
confirmed, they give us a fairly detailed view of
the structure of the lexicon conceived as a multi-
dimensional, integrated multilingual space. In par-
ticular, they inform us on the respective impor-
tance of formal and meaning properties of words
in this cross-lingual similarity space.

4 Experiments 1 and 2

We test our hypotheses using two different cross-
lingual word embeddings models. (The number-
ing of the experiments corresponds to the number-
ing of the hypotheses.)

One model is VECMAP, a word-level cross-
lingual word embedding method, developed by
Artetxe et al. (2018), which offers different op-

translation pairs shared translation pairs
wood-legno legno bosco
wood-bosco
grade-grado grado voto
grade-voto
block-blocco blocco ceppo
block-ceppo blocco bloccare
block-bloccare blocco ostacoalre
block-ostacolare ceppo bloccare

ceppo ostacolare

Figure 2: Sample of translation pairs and sample of
shared translation pairs used in experiments 1 and 2.

tions, ranging from fully supervised to weakly su-
pervised or unsupervised, the state-of-the-art for
bilingual lexicon induction. This method, unlike
other models, does not use an existing dictionary
for initialization. The values of the word vectors
in both the source and the target distribution are
sorted, vectors that have similar permutations are
identified as possible translations and are used to
initialize a dictionary that is then further improved
by self-iterative training.

We also test M2VEC, a weakly-supervised,
concept-based adversarial model (Wang et al.,
2019). This method is based on the idea that lan-
guages use similar words to express similar con-
cepts (Søgaard et al., 2015). The adversarial train-
ing uses concepts, drawn from Wikipedia, rather
than words, to learn competitive cross-lingual
word embeddings. The alignments are learnt by
a generative adversarial networks (GAN) adapted
to the cross-lingual mapping objective.
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FALSE FRIENDS REAL TRANSLATIONS TRUE FRIENDS NORMAL TRANSLATIONS UNCORRELATED PAIRS
arrange arrangiare arrange disporre family famiglia jam marmellata arrange tagliare

arrange sistemare fantastic fantastico january gennaio attend guardare
arrange organizzare future futuro journey viaggio attic luna

attend attendere attend frequentare general generale keep tenere attitude canale
attend assistere generation generazione kind tipo barrack tazza

bald baldo bald calvo guide guida leave partire brave forchetta
bald pelato historial storica light luce camera traduzione

brave bravo brave coraggioso industry industria mean significare caution muro
brave valoroso local locale mood umore code pistola

canteen cantina canteen mensa melody melodia overview panoramica confetti vitamine
canteen borraccia minor minore pattern modello confidence treno

Figure 3: Sample of five word pair types used in experiments 3, 4, 5, and 6.

4.1 Data

Word-embeddings data For training VECMAP,
we use the English-Italian portion of the data
used in Artetxe et al. (2018), which is based on
the dataset described in Dinu et al. (2015). The
English-Italian dataset provided by Dinu et al.
(2015) contains 300-dimensional CBOW mono-
lingual word embeddings for a total of 200K
words trained on the WacKy crawling corpora.5

The English word embeddings use 2.8 billion to-
kens (ukWAC + Wikipedia + BNC) and the Italian
word embeddings use 1.6 billion tokens (itWAC).
An English-Italian gold standard bilingual dictio-
nary built from Europarl 6 word alignments is also
provided with a training set of 5000 entries or-
dered by English frequency. For M2VEC, 300-
dimensional monolingual word embeddings are
trained with FastText. The training corpus is taken
from a Wikipedia dump.7 The word embeddings
are augmented to include concept-aligned articles
extracted from the Linguatools Wikipedia compa-
rable corpus.8 VECMAP uses word-level embed-
dings and M2VEC character-level embeddings.

Word lists For testing, we build lists of English
words that have multiple translations in Italian.
The lists of polysemous words were validated with
the support of the Cambridge Bilingual Dictio-
nary9 and by two bilingual speakers. Some ex-
ample pairs are shown in Figure 2. Word lists are
available as supplementary materials.

5https://wacky.sslmit.unibo.it/
6https://www.statmt.org/europarl/
7https://dumps.wikimedia.org/
8http://linguatools.org/tools/corpora/wikipedia-

comparable-corpora/
9https://dictionary.cambridge.org/dictionary/english-

italian/

Mono Cross-lingual
lingual VECMAP M2VEC

E1
Mean 0.02 0.371 0.345
Variance 0.03 0.044 0.044
T(104) −17.059 −15.937
p 0.000 0.000

E2
Mean 0.153 0.163 0.184
Variance 0.019 0.025 0.044
T(109) −2.050 −2.835
p 0.021 0.003

Table 1: Results of experiments 1 and 2.

4.2 Results

The results are shown in Table 1. Recall the two
hypotheses, hypothesis 1 and hypothesis 2 sum-
marised in Figure 1.

The results confirm both hypotheses for both
cross-lingual models and are statistically signifi-
cant under a one-tailed pairwise t-test with α =
0.25. Cross-lingual word embeddings have a
higher mean similarity score than aligned mono-
lingual word embeddings. Also, cross-lingual
word embeddings, like humans, show a shared-
translation effect. Both cross-lingual models show
higher mean similarity scores for L2-words that
share a common L1 source than the monolingual
model.

5 Experiments 3, 4, 5 and 6

The next four experiments test whether the hy-
potheses concerning true and false friends in word
embeddings are confirmed. The numbering of the
experiments corresponds to the numbering of the
hypotheses.

5.1 Data

Word embedding data In this set of experi-
ments, we use the same data from the previous
two experiments (the dataset described in Dinu
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et al. (2015)) with the addition of the FastText pre-
trained word embeddings for English and Italian
(Bojanowski et al., 2017).10 These publicly avail-
able vectors are obtained by a 5-word window, for
300 resulting dimensions, on CommonCrawl and
Wikipedia data using the Skip-gram model. Every
word is represented as an n-grams of characters,
for n training between 3 and 6. Each n-gram is
represented by a vector and the sum of these vec-
tors forms the vector representing the given word.
So we have three cross-lingual models: two ver-
sions of VECMAP, one trained on CBOW (word-
level) and the other on FastText (character-level),
and the concept-based adversarial model M2VEC,
which also uses character-based FastText repre-
sentations. The inclusion of FastText embeddings
is important for these experiments, as the embed-
dings need to be sensitive to character-level se-
quences to detect similarity of form in false and
true friends. VECMAP was used to obtain the
cross-lingual word embeddings. Having two ver-
sions of VECMAP, one that use Skip-gram and one
that uses CBOW is based on their different perfor-
mance on rare words. The CBOW model predicts
a word from its context and is better in accuracy
for frequent words, but encounters problems with
rare words, while the Skip-gram model predicts
the context from a target word, and so has good
representation of rare words or phrases (Mikolov
et al., 2013a,c). In the figures they will be indi-
cated, respectively, as Vecmap, FastText and Con-
cepts.

Word lists The data required for the following
experiments comprise five lists of word pairs, de-
fined in section 3.2: false friends, real translations,
true friends, normal translations and uncorrelated
words. Examples are shown in Figure 3 and the
complete lists are available in the appendix, with
their similarity scores.

These word lists have been constructed from
various online resources, adding also words that
were found serendipitously by the authors in dif-
ferent texts.11 The normal translations and uncor-
related word pairs were built by one of the authors.

10https://github.com/facebookresearch/fastText
11The false friends list was built starting

from http://www.lifemilan.it/en/
false-friends-a-must-learn-list/ and
https://www.reference.tjtaylor.net/
false-friends/. The true friends list was
started from https://takelessons.com/blog/
italian-grammar-cognates-z09.

Judge 1
Judge 2 FF TF RT NT UN Total

FF 93 1 0 0 0 94
TF 3 127 0 0 0 130
RT 0 2 130 8 1 141
NT 1 3 7 133 0 144
UN 0 0 0 0 97 97

Total 97 133 137 141 98 606

Table 2: Inter-judge partition of the five lists of words,
rounded to closest integer. TF = true friends; FF = false
friends; RT = real translations; NT = normal transla-
tions; UN = uncorrelated.

Normal translations were selected by the bilingual
dictionary excluding those that had true or false
friends. The uncorrelated words were selected en-
suring that they were entirely uncorrelated. They
were validated with the help of the Cambridge
Bilingual dictionary,12 where each translation of
each pair of words was checked to ensure correct-
ness and complete disjunction in meaning. The
online English-Italian dictionary was not compre-
hensive: not all the meanings were reported, un-
like the English-Spanish or English-French dictio-
naries. Therefore, sometimes a false friend was
not reported by the English-Italian dictionary, but
was found with the help of the other bilingual dic-
tionaries.

Once the lists were constructed, we run an inter-
judge agreement validation. The words were shuf-
fled and the two authors, who master both lan-
guages well, classified them in the five types dis-
cussed above. Cohen’s Kappa was 94.6, show-
ing very high agreement. Fractional numbers were
distributed in the few cases of multiple classifica-
tion by one or both judges. The main source of dis-
agreement were those words that are, at the same
time, false friends and true friends depending on
the context. The inter-judge agreemeent table is
shown in Table 2.

As can be seen in Figure 3, the real translations
list (151 pairs of words) is larger than the false
friends list (97 pairs of words) due to the differ-
ent meanings that an L1 word can have in L2.

As for the uncorrelated list, the same L1 words
from the false friends list have been used for a di-
rect comparison between the false friends similar-
ity and the uncorrelated words similarity. Since

12https://dictionary.cambridge.org/
dictionary/english-italian/
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Figure 4: Experiment 3: false friends compared to real
translations.

Figure 5: Experiment 4: false friends compared to pairs
without correlation.

the real translations list contains the largest num-
ber of pairs, for the comparison between real trans-
lations and normal translations, the real transla-
tions have been sampled to have equal size.

5.2 Results

As shown in the Figures 4 to 7, overall the three
methods are consistent as they show the same pat-
tern of results. In terms of cosine similarity, the
Vecmap+FastText word embeddings tend to have
higher means than the other methods.

HYPOTHESIS 3 The first hypothesis concern-
ing false friends —real translations have a bet-
ter similarity score than their corresponding false
friends— is confirmed. Figure 4 shows a cosine
similarity that is 0.2 points higher for real trans-
lations pairs (p < 0.0001 in all three cases for a
paired one-tailed t-test).

HYPOTHESIS 4 Based on the scores shown in
Figure 5, the second hypothesis concerning false
friends is also confirmed. False friends are sig-
nificantly more similar in the cross-lingual space
than uncorrelated words, as the similarity scores
for false friends, in all three systems, are higher

Figure 6: Experiment 5: true friends compared to nor-
mal translations.

Figure 7: Experiment 6: Normal translations compared
to real translations of false friends.

by more than 0.2 points (p < 0.0001 in all three
cases).

HYPOTHESIS 5 The hypothesis that true friends
have a better similarity score than normal transla-
tion pairs is also confirmed. Figure 6 shows that
the mean true friends similarity is higher than the
mean similarity of the normal translations (p <
0.001 in all three cases).

HYPOTHESIS 6 The hypothesis that normal
pairs of words have a higher similarity score than
real translations of false friends is confirmed, see
Figure 7. The mean similarity score for real trans-
lations is lower than the mean score for normal
translations. This difference is statistically signifi-
cant for Vecmap and FastText (p < 0.01). For the
concept-based system, on the other hand, we do
not have enough evidence to reject the null hypoth-
esis as p > 0.025 and T(296)<t-value. Thus, in
this case, we must conclude that the normal trans-
lations are as similar as the real translations.

BONFERRONI CORRECTION As Hypotheses 3
and 4, hypotheses 3 and 6 and hypotheses 5 and
6 use the same data (respectively false friends,
real translations and normal translations), we run
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the Bonferroni correction not to incur in α infla-
tion. All hypotheses are further confirmed, except
for hypothesis 6 where the concept-based system
again shows a non-significant result (Bonferroni
correction higher than α (0.106>0.025)).

6 Discussion

Cross-lingual word embeddings show a lexical
structure matching the bilingual lexicon for the
three properties that we tested.

They are an integrated multi-lingual space and
exhibit the shared-translation effect. This suggests
that the initial monolingual embeddings, in our
case the Italian ones, are affected by the cross-
lingual mapping as word vectors are changed
to accommodate cross-lingual interactions. Intu-
itively, this is similar to the behavior of bilinguals
when they gradually learn a new language and se-
mantic links are created by associating the new
words to an existing one in their native language.

Cross-lingual word embeddings did not show
interference effects of false friends. They are
not as affected by the lexical or morphological
level when there is a semantic correlation between
words. However, false friends show more similar-
ity than uncorrelated words, showing that, like for
humans, they have a different status from ortho-
graphically and semantically uncorrelated words.
True friends in cross-lingual space behave like the
lexicon of bilinguals, when the semantic, lexical
and morphological level are aligned.

The last hypothesis shows varying results, as
only two systems accept the bilingual hypothe-
sis: Vecmap and FastText have a higher simi-
larity score for normal translations, confirming
the assumption that real translations are inhibited
by false friends. Notice that this result argues
again that cross-lingual word embeddings are in-
directly affected by false friends, as there is no
other difference between real translations and nor-
mal translations. Interestingly, on the other hand,
the concept-based system is not sensitive to the in-
direct effect of false friends in the cross-lingual
space. This is not unexpected as the concept-based
model is less affected by surface form. The differ-
ence between word-based models and the concept-
based model could yield an hypothesis to be tested
for the human lexicon with precise underlying for-
mal models.

Because our predictions are confirmed, they
also confirm that the similarity structure defined

by current cross-lingual word embedding models
is promising as a view of the structure of the lex-
icon conceived as a multi-dimensional, integrated
multilingual space. In particular, our results in-
form us on the respective importance of formal
and meaning properties of words in this cross-
lingual similarity space. Notice that the pairwise
results described so far define, by transitivity, a to-
tal order of similarity: true friends> normal trans-
lations > real translations > false friends > un-
correlated pairs. True friends match both in form
and meaning, normal and real translations match
only in meaning, and false friends match only in
form. Thus, this order clearly indicates that while
both form and meaning matter, similarity based on
meaning is more important that similarity based on
form.

7 Related work

The related work for the investigation reported
here comprises work on the human bilingual lex-
icon, cross-lingual word embeddings models and
computational models of the bilingual lexicon. As
the relevant work on the first topic has already
been discussed, we concentrate here on the latter
two.

Vectors of words that are semantically or syn-
tactically similar have been shown to be close
to each other in the same space (Mikolov et al.,
2013a,c; Pennington et al., 2014), making them
widely useful in many natural language process-
ing tasks such as machine translation and parsing
(Bansal et al., 2014; Mi et al., 2016), both in a sin-
gle language and across different languages.

Mikolov et al. (2013b) first observed that the ge-
ometric positions of similar words in different lan-
guages were related by a linear relation. Zou et al.
(2013) showed that a cross-lingually shared word
embedding space is more useful than a monolin-
gual space in an end-to-end machine translation
task. However, traditional methods for mapping
two monolingual word embeddings require high
quality aligned sentences or dictionaries (Faruqui
and Dyer, 2014; Ammar et al., 2016).

Reducing the need for parallel data, then, has
become the main issue for cross-lingual word em-
bedding mapping. Methods that rely on sentence-
alignments and also document-alignments have
been proposed. Hermann and Blunsom (2014)
present a method that, given enough data, train
bilingual word embeddings from a sentence-
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aligned corpus. Luong et al. (2015) propose a
model, BiSkip, that takes as input a parallel corpus
with both sentence and word-level alignment. Un-
like other methods, BiSkip tries to learn not only
target word representations from source words
but also source word representations from target
words. Vulic and Moens (2016) induces bilingual
word embeddings from document-aligned compa-
rable data that have been merged and shuffled pro-
ducing a pseudo-bilingual document.

Some recent work aiming at reducing re-
sources has shown competitive cross-lingual map-
pings across similar languages, using a pseudo-
dictionary, such as identical character strings be-
tween two languages (Smith et al., 2017), or a
simple list of numerals, thanks to a self-learning
iterative framework (Artetxe et al., 2017). Fur-
thermore, as indicated in section 4, Artetxe et al.
(2018) extend their self-learning framework to un-
supervised models, and build the state-of-the-art
for bilingual lexicon induction. Another weakly-
supervised model is proposed by Wang et al.
(2019), a weakly-supervised concept-based adver-
sarial method, used in our experiments, as also in-
dicated in section 4.

Several computational models of human bilin-
gualism exist, see Li (2013) for an overview. More
relatedly to the current work that uses distribu-
tional approaches, aspects of the bilingual lexicon
have been proposed for word associations (Matu-
sevych et al., 2018). These associations are dif-
ferent in bilingual and monolingual speakers. For
example, cognates, collocations and phonological
responses are produced more frequently by non-
native speakers. This work proposes a model of
word association in bilinguals, implemented as a
semantic network paired with a retrieval mecha-
nism. Computational models of the influence of
the native language on second language learning
have also been investigated in Matusevych (2016),
specifically for argument structure.

8 Conclusion

In the spirit of better understanding distributed
representations and how well they match what we
know about the structure and processing of lan-
guage in humans (Linzen et al., 2016), this pa-
per investigates two models of cross-lingual word
embeddings comparing them to the shared trans-
lation effect and cross-lingual coactivation effects
involving true and false friends found in humans.

We find that predictions about cross-lingual word
embeddings are mostly confirmed, making them
promising functional models of at least some as-
pects of the bilingual lexicon, despite their struc-
tural simplicity.
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Abstract

We propose algorithms to train production-
quality n-gram language models using feder-
ated learning. Federated learning is a dis-
tributed computation platform that can be used
to train global models for portable devices
such as smart phones. Federated learning is
especially relevant for applications handling
privacy-sensitive data, such as virtual key-
boards, because training is performed with-
out the users’ data ever leaving their devices.
While the principles of federated learning are
fairly generic, its methodology assumes that
the underlying models are neural networks.
However, virtual keyboards are typically pow-
ered by n-gram language models for latency
reasons.

We propose to train a recurrent neural net-
work language model using the decentral-
ized FederatedAveraging algorithm and
to approximate this federated model server-
side with an n-gram model that can be de-
ployed to devices for fast inference. Our
technical contributions include ways of han-
dling large vocabularies, algorithms to cor-
rect capitalization errors in user data, and effi-
cient finite state transducer algorithms to con-
vert word language models to word-piece lan-
guage models and vice versa. The n-gram lan-
guage models trained with federated learning
are compared to n-grams trained with tradi-
tional server-based algorithms using A/B tests
on tens of millions of users of a virtual key-
board. Results are presented for two lan-
guages, American English and Brazilian Por-
tuguese. This work demonstrates that high-
quality n-gram language models can be trained
directly on client mobile devices without sen-
sitive training data ever leaving the devices.

Figure 1: Glide trails are shown for two spatially-
similar words: “Vampire” (in red) and “Value” (in or-
ange). Viable decoding candidates are proposed based
on context and language model scores.

1 Introduction

1.1 Virtual keyboard applications

Virtual keyboards for mobile devices provide a
host of functionalities from decoding noisy spatial
signals from tap and glide typing inputs to provid-
ing auto-corrections, word completions, and next-
word predictions. These features must fit within
tight RAM and CPU budgets, and operate under
strict latency constraints. A key press should re-
sult in visible feedback within about 20 millisec-
onds (Ouyang et al., 2017; Alsharif et al., 2015).
Weighted finite-state transducers have been used
successfully to decode keyboard spatial signals us-
ing a combination of spatial and language mod-
els (Ouyang et al., 2017; Hellsten et al., 2017).
Figure 1 shows the glide trails of two spatially-
similar words. Because of the similarity of the
two trails, the decoder must rely on the language
model to discriminate between viable candidates.
For memory and latency reasons, especially on
low-end devices, the language models are typi-
cally based on n-grams and do not exceed ten
megabytes. A language model (LM) is a prob-
abilistic model on words. Given previous words
x1, x2, . . . , xm−1, an LM assigns a probability to
the new words, i.e. p(xm|xm−1, . . . , x1). An
n-gram LM is a Markovian distribution of order
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Figure 2: An illustration of the federated learning pro-
cess from McMahan and Ramage (2017): (A) client
devices compute SGD updates on locally-stored data,
(B) a server aggregates the client updates to build a new
global model, (C) the new model is sent back to clients,
and the process is repeated.

n− 1, defined by

p(xm|xm−1, . . . , x1) = p(xm|xm−1, . . . , xm−n+1),

where n is the order of the n-gram. For compu-
tation and memory efficiency, keyboard LMs typ-
ically have higher-order n-grams over a subset of
the vocabulary, e.g. the most frequent 64K words,
and the rest of the vocabulary only has unigrams.
We consider n-gram LMs that do not exceed 1.5M
n-grams and include fewer than 200K unigrams.

N-gram models are traditionally trained by ap-
plying a smoothing method to n-gram counts from
a training corpus (Chen and Goodman, 1999). The
highest quality n-gram models are trained over
data that are well-matched to the desired out-
put (Moore and Lewis, 2010). For virtual key-
boards, training over users’ typed text would lead
to the best results. Of course, such data are very
personal and need to be handled with care.

1.2 Federated learning
We propose to leverage Federated Learning
(FL) (Konečnỳ et al., 2016; Konečný et al., 2016),
a technique where machine learning models are
trained in a decentralized manner on end-users’
devices, so that raw data never leaves these de-
vices. Only targeted and ephemeral parameter up-
dates are aggregated on a centralized server. Fig-
ure 2 provides an illustration of the process. Fed-
erated learning for keyboard input was previously
explored in Hard et al. (2018), in which a feder-
ated recurrent neural network (RNN) was trained
for next-word prediction. However, latency con-
straints prevent the direct use of an RNN for de-
coding. To overcome this problem, we propose

to derive an n-gram LM from a federated RNN
LM model and use that n-gram LM for decod-
ing. Specifically, the approximation algorithm is
based on SampleApprox , which was recently
proposed in Suresh et al. (2019a,b). The proposed
approach has several advantages:
Improved model quality: Since the RNN LM is
trained directly on domain-matched user data, its
predictions are more likely to match actual user
behavior. In addition, as shown in Suresh et al.
(2019a), an n-gram LM approximated from such
an RNN LM is of higher quality than an n-gram
LM trained on user data directly.
Minimum information transmission: In FL,
only the minimal information necessary for model
training (the model parameter deltas) is transmit-
ted to centralized servers. The model updates
contain much less information than the complete
training data.
Additional privacy-preserving techniques: FL
can be further combined with privacy-preserving
techniques such as secure multi-party computa-
tion (Bonawitz et al., 2017) and differential pri-
vacy (McMahan et al., 2018; Agarwal et al., 2018;
Abadi et al., 2016). By the post-processing theo-
rem, if we train a single differentially private re-
current model and use it to approximate n-gram
models, all the distilled models will also be differ-
entially private with the same parameters (Dwork
et al., 2014).

For the above reasons, we have not pro-
posed to learn n-gram models directly using
FederatedAveraging of n-gram counts for
all orders.

2 Outline

The paper is organized along the lines of chal-
lenges associated with converting RNN LMs to n-
gram LMs for virtual keyboards: the feasibility of
training neural models with a large vocabulary, in-
consistent capitalization in the training data, and
data sparsity in morphologically rich languages.
We elaborate on each of these challenges below.
Large vocabulary: Keyboard n-gram models are
typically based on a carefully hand-curated vocab-
ulary to eliminate misspellings, erroneous capital-
izations, and other artifacts. The vocabulary size
often numbers in the hundreds of thousands. How-
ever, training a neural model directly over the vo-
cabulary is memory intensive as the embedding
and softmax layers require space |V| ×Ne, where
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|V| is the vocabulary size andNe is the embedding
dimension. We propose a way to handle large vo-
cabularies for federated models in Section 3.
Incorrect capitalization: In virtual keyboards,
users often type with incorrect casing (e.g. “She
lives in new york” instead of “She lives in New
York”). It would be desirable to decode with
the correct capitalization even though the user-
typed data may be incorrect. Before the discussion
of capitalization, the SampleApprox algorithm
is reviewed in Section 4. We then modify
SampleApprox to infer capitalization in Sec-
tion 5.
Language morphology: Many words are com-
posed of root words and various morpheme com-
ponents, e.g. “crazy”, “crazily”, and “craziness”.
These linguistic features are prominent in mor-
phologically rich languages such as Russian. The
presence of a large number of morphological vari-
ants increases the vocabulary size and data sparsity
ultimately making it more difficult to train neural
models. Algorithms to convert between word and
word-piece models are discussed in Section 6.

Finally, we compare the performance of word
and word-piece models and present the results of
A/B experiments on real users of a virtual key-
board in Section 7.

3 Unigram distributions

Among the 200K words in the vocabulary, our vir-
tual keyboard models only use the top 64K words
in the higher-order n-grams. We train the neu-
ral models only on these most frequent words and
train a separate unigram model over the entire vo-
cabulary. We interpolate the two resulting models
to obtain the final model for decoding.

3.1 Collection

Unigrams are collected via a modified version
of the FederatedAveraging algorithm. No
models are sent to client devices. Instead of re-
turning gradients to the server, counting statistics
are compiled on each device and returned. In our
experiments, we aggregate over groups of approx-
imately 500 devices per training round. We count
a unigram distribution U from a whitelist vocabu-
lary by U =

∑
iwiCi, where i is the index over

devices, Ci are the raw unigram counts collected
from a single device i, and wi is a weight applied
to device i.

To prevent users with large amounts of data

(a) (b)

Figure 3: Unigram distribution convergence. Note that
by 3000 rounds, the unigram distribution is stable, but
the model is still learning new tail unigrams.

from dominating the unigram distribution, we ap-
ply a form of L1-clipping:

wi =
λ

max(λ,
∑
Ci)

, (1)

where λ is a threshold that caps each device’s con-
tribution. When λ = 1, L1-clipping is equivalent
to equal weighting. The limit λ → ∞ is equiva-
lent to collecting the true counts, since wi → 1.

3.2 Convergence

Convergence of the unigram distribution is mea-
sured using the unbiased chi-squared statistic (for
simplicity, referred to as the Z-statistic) defined
in Bhattacharya and Valiant (2015), the number of
unique unigrams seen, and a moving average of
the number of rounds needed to observe new uni-
grams.

Figure 3(a) shows the overall distributional con-
vergence based on the Z-statistic. At round k, uni-
gram counts after k/2 and k rounds are compared.
Figure 3(b) plots the number of whitelist vocabu-
lary words seen and a moving average of the num-
ber of rounds containing new unigrams. New un-
igrams are determined by comparing a round k
with all rounds through k−1 and noting if any new
words are seen. The shaded bands range from the
LM’s unigram capacity to the size of the whitelist
vocabulary.

3.3 Experiments

Since the whitelist vocabulary is uncased, capital-
ization normalization is applied based on an ap-
proach similar to Section 5. We then replace the
unigram part of an n-gram model with this distri-
bution to produce the final LM.

In A/B experiments, unigram models with
different L1-clipping thresholds are compared
against a baseline unigram model gathered from
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Model acc@1 [%] OOV rate [%]
baseline 8.14 18.08
λ = 1 +0.19± 0.21 −1.33± 0.75
λ = 1K +0.11± 0.24 −1.06± 0.66
λ = 5K −0.08± 0.26 −0.78± 0.93

Table 1: Relative change with L1-clipped unigrams
on live traffic of en US users on the virtual keyboard.
Quoted 95% confidence intervals are derived using the
jackknife method with user buckets.

centralized log data. Results are presented in Ta-
ble 1. Accuracy is unchanged and OOV rate is
improved at λ = 1 and λ = 1K.

Before we discuss methods to address in-
consistent capitalization and data sparsity in
morphologically rich languages, we review
SampleApprox .

4 Review of SampleApprox

SampleApprox , proposed in Suresh et al.
(2019a,b), can be used to approximate a RNN as
a weighted finite automaton such as an n-gram
model. A weighted finite automaton (WFA) A =
(Σ, Q,E, i, F ) over R+ (probabilities) is given by
a finite alphabet Σ (vocabulary words), a finite set
of statesQ (n-gram contexts), an initial state i ∈ Q
(sentence start state), a set of final states F ∈ Q
(sentence end states), and a set of labeled transi-
tions E and associated weights that represent the
conditional probability of labels (from Σ) given
the state (list of n-grams and their probabilities).
WFA models allow a special backoff label ϕ for
succinct representation as follows. Let L[q] be
the set of labels on transitions from state q. For
x ∈ L[q], let wq[x], be the weight of the transition
of x at state q and dq[x] be the destination state.
For a label x and a state q,

p(x|q) = wq[x] if x ∈ L[q],

= wq[ϕ] · p(x|dq[ϕ]) otherwise.

In other words, ϕ is followed if x /∈ L[q]. The
definition above is consistent with that of backoff
n-gram models (Chen and Goodman, 1999). Let
B(q) denote the set of states from which q can be
reached by a path of backoff labels and let q[x]
be the first state at which label x can be read by
following a backoff path from q.

Given an unweighted finite automaton A and a
neural model, SampleApproxfinds the proba-

bility model on A that minimizes the Kullback-
Leibler (KL) divergence between the neural model
and the WFA. The algorithm has two steps: a
counting step and a KL minimization step. For
the counting step, let x̄(1), x̄(2), . . . , x̄(k) be k in-
dependent samples from the neural model. For a
sequence x̄, let xi denote the ith label and x̄i =
x1, x2, . . . , xi denote the first i labels. For every
q ∈ Q and x ∈ Σ, the algorithm computes C(x, q)
given by

∑

q′∈B(q)

m∑

j=1

∑

i≥0

1q(x̄i(j))=q′,q=q′[x] · pnn(x|x̄i(j)).

We illustrate this counting with an example.
Suppose we are interested in the count of
the bi-gram New York. Given a bi-gram
LM, SampleApprox generates m sentences and
computes

C(York,New) =
∑

j,i:xi(j)=New

pnn(York|x̄i(j)).

In other words, it finds all sentences that have the
word New, observes how frequently York appears
subsequently, and computes the conditional prob-
ability. After counting, it uses a difference of con-
vex (DC) programming based algorithm to find the
KL minimum solution. If ` is the average num-
ber of words per sentence, the computational com-
plexity of counting is Õ(k · ` · |Σ|) 1 and the com-
putational complexity of the KL minimization is
Õ(|E|+ |Q|) per iteration of DC programming.

5 Capitalization

As mentioned in Section 2, users often type with
incorrect capitalization. One way of handling in-
correct capitalization is to store an on-device capi-
talization normalizer (Beaufays and Strope, 2013)
to correctly capitalize sentences before using them
to train the neural model. However, capitalization
normalizers have large memory footprints and are
not suitable for on-device applications. To over-
come this, the neural model is first trained on un-
cased user data. SampleApprox is then modi-
fied to approximate cased n-gram models from un-
cased neural models.

As before, let x̄(1), x̄(2), . . . , x̄(k) be k in-
dependent (uncased) samples from the neural
model. We capitalize them correctly at the
server using Beaufays and Strope (2013). Let

1an = Õ(bn), means an ≤ bn · poly log(n), ∀n ≥ n0.
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ȳ(1), ȳ(2), . . . ȳ(k) represent the corresponding k
correctly capitalized samples. Let pcap be another
probability model on non-user data that approxi-
mates the ratio of uncased to cased probabilities
given a context. Given a label y, let u(y) be the un-
cased symbol. For example, if y is York, then u(y)
is york. With the above definitions, we modify the
counting step of SampleApprox as follows:

∑

q′∈B(q)

m∑

j=1

∑

i≥0

1q(ȳi(j))=q′,q=q′[y] · p̃(y|ȳi(j)),

where p̃(y|ȳi(j)) is given by

pnn(u(y)|u(ȳi(j))) · pcap(y|ȳi(j))∑
y′:u(y′)=u(y) pcap(y′|ȳi(j)) .

We refer to this modified algorithm as
CapSampleApprox . We note that word-
piece to word approximation incurs an additional
computation cost of Õ((|E|+ |Q|+ |∆|)`), where
∆ is the number of words, E and Q are the set of
arcs and set of states in the word n-gram model,
and ` is the maximum number of word-pieces per
word.

6 Morphologically rich languages

To train neural models on morphologically rich
languages, subword segments such as byte-pair
encodings or word-pieces (Shibata et al., 1999;
Schuster and Nakajima, 2012; Kudo, 2018) are
typically used. This approach assigns conditional
probabilities to subword segments, conditioned on
prior subword segments. It has proved successful
in the context of speech recognition (Chiu et al.,
2018) and machine translation (Wu et al., 2016).
Following these successes, we propose to train
RNN LMs with word-pieces for morphologically
rich languages.

We apply the word-piece approach of Kudo
(2018), which computes a word-piece unigram
LM using a word-piece inventory VP . Each word-
piece xi ∈ VP is associated with a unigram prob-
ability p(xi). For a given word y and its possible
segmentation candidates, the word is encoded with
the segmentation that assigns the highest probabil-
ity.

Throughout this paper we apply 4K, 16K, and
30K as the word-piece inventory sizes. These val-
ues lie within a range that provides good trade-off
between the LSTM embedding size and the rich-
ness of the language morphology. We apply 100%
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Figure 4: The (a) WFA A and WFSTs (b) T and (c) B
for the word vocabulary {ab, ac} and word-piece vo-
cabulary {a, b, c}. Initial states are represented by bold
circles and final states by double circles.

character coverage to include all the symbols that
appeared in the unigram distribution (Section 3),
including the common English letters, accented
letters e.g. é, ô, and digits. Accented letters are
important for languages like Portuguese. For fast
decoding, the n-gram models still need to be at
the word-level, since word-piece n-gram models
increase the depth of the beam-search during de-
coding. We convert the word n-gram topology to
an equivalent word-piece WFA topology and use
SampleApprox to approximate the neural word-
piece model on the word-piece WFA topology. We
then convert the resulting word-piece WFA LM to
the equivalent n-gram LM. The remainder of this
section outlines efficient algorithms for converting
between word and word-piece WFA models.

A natural way to represent the transduction
from word-piece sequences to word sequences is
with a finite-state transducer. Given the properties
of our word-piece representation, that transducer
can be made sequential (i.e., input deterministic).

A sequential weighted finite-state transducer
(WFST) is a deterministic WFA where each tran-
sition has an output label in addition to its (input)
label and weight. We will denote by oq[x] the
output label of the transition at state q with input
label x, oq[x] ∈ ∆ ∪ {ε}, where ∆ denotes the
output alphabet of the transducer and ε the empty
string/sequence.

Let M be the minimal sequential (unweighted)
finite-state transducer (FST) lexicon from word-
piece sequences in Σ∗ to word sequences in ∆∗,
where Σ denotes our word-piece inventory, ∆ de-
notes our vocabulary, and ∗ is Kleene closure.
A word-piece topology B equivalent to the word
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Algorithm 1 Approximating a Neural Model as an N-Gram with a Supplemental Topology.

Train Ru
W , Ru

P with FederatedAveraginga

Train AW from supplemental corpus C
AWe ,AWi ,AWm ,AWr ← Gen(Ru

W , AW , ø,NN2WFA W)
APe ,APi ,APm ,APr ← Gen(Ru

P , AW , AWi ,NN2WFA P)

function Gen(Ru, AW , AWi , function NN2WFA )
Ae← NN2WFA (Ru, AW )
if NN2WFA ==NN2WFA W then

Ai← NN2WFA (Ru, AW , self infer=true)
else

Ai← NN2WFA (Ru, AWi )
end if
Am← Interpolate(Ae, Ai)

aT denotes an unweighted topology and A denotes the
weighted n-gram model. Superscript u represents uncased
models.

Ar ← NN2WFA (Ru, Am)
return Ae, Ai, Am, Ar

end function
function NN2WFA W(Ru

W , AW , self infer=false)
if self infer then

return CapSampleApprox (Ru
W , ø, AW )

else
return CapSampleApprox (Ru

W , AW , AW )
end if

end function
function NN2WFA P(Ru

P , AW )
Tu
W ← ConvertToLowercaseTopology(AW )

Tu
P ← ConvertToWordPieceTopology(Tu

W )
Au

P ← SampleApprox (Ru
P , Tu

P )
Au

W ← ConvertToWordTopology(Au
P )

return CapSampleApprox (Au
W , AW , AW )

end function

topology A can be obtained by composing the
word-piece-to-word transducer M with A:

B = M ◦A.

Since A has backoff transitions, the generic com-
position algorithm of (Allauzen et al., 2011) is
used with a custom composition filter that ensures
the result, B, is deterministic with a well-formed
backoff structure, and hence is suitable for the
counting step of SampleApprox . We give an
explicit description of the construction of B, from
which readers familiar with Allauzen et al. (2011)
can infer the form of the custom composition filter.

The states inB are pairs (q1, q2), with q1 ∈ QM

and q2 in QA, initial state iB = (iM , iA), and final
state fB = (fM , fA). Given a state (q1, q2) ∈ QB ,
the outgoing transitions and their destination states
are defined as follows. If x ∈ L[q1], then an x-
labeled transition is created if one of two condi-
tions holds:

1. if oq1 [x] ∈ L[q2], then

d(q1,q2)[x] = (dq1 [x], dq2 [oq1 [x]]) and

o(q1,q2)[x] = oq1 [x];

2. if oq1 [x] = ε and R[dq1 [x]] ∩ L[q2] 6= ∅, then

d(q1,q2)[x] = (dq1 [x], dq2 [oq1 [x]]) and

o(q1,q2)[x] = ε

where R[q] denotes the set of output non-ε labels
that can be emitted after following an output-ε
path from q. Finally if ϕ ∈ L[q1], a backoff tran-
sition is created:

d(q1,q2)[ϕ] = (q1, dq2 [ϕ]) and oq1,q2 [ϕ] = ε.

The counting step of SampleApprox is applied
toB, and transfers the computed counts fromB to
A by relying on the following key property of M .
For every word y in ∆, there exists a unique state
qy ∈ QM and unique word-piece xy in Σ such that
oqy [xy] = y. This allows us to transfer the counts
from B to A as follows:

wq[y] = w(qy ,q)[xy]

The KL minimization step of SampleApprox to
A is applied subsequently.

As an alternative, the unweighted word automa-
ton A could be used to perform the counting step
directly. Each sample x̄(j) could be mapped to
a corresponding word sequence ȳ(j), mapping
out-of-vocabulary word-piece sequences to an un-
known token. However, the counting steps would
have become much more computationally expen-
sive, since pnn(y|ȳi(j)) would have to be evalu-
ated for all i, j and for all words y in the vocabu-
lary, where pnn is now a word-piece RNN.

7 Experiments

7.1 Neural language model

LSTM models (Hochreiter and Schmidhuber,
1997) have been successfully used in a variety of
sequence processing tasks. LSTM models usually
have a large number of parameters and are not suit-
able for on-device learning. In this work, we use
various techniques to reduce the memory footprint
and to improve model performance.

We use a variant of LSTM with a Coupled Input
and Forget Gate (CIFG) (Greff et al., 2017) for the
federated neural language model. CIFG couples
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Model Nl Nh Ne Se Stotal

W30K 1 670 96 2.91M 3.40M
P4K-S 1 670 96 0.38M 0.85M
P4K-L 2 1080 140 0.56M 2.70M
P4K-G 2 1080 280 1.12M 2.71M
P16K-S 1 670 96 1.54M 2.00M
P16K-L 1 670 160 2.56M 3.33M
P30K 1 670 96 2.91M 3.40M

Table 2: Parameters for neural language models. W
and P refer to word and word-piece models, respec-
tively. Nl, Nh, Ne, Se and Stotal refer to the number
of LSTM layers, the number of hidden states in LSTM,
the embedding dimension size, the number of param-
eters in the embedding layer and in total, respectively.
The suffixes “S” and “L” indicate small and large mod-
els. “G” represents GLSTM. The suffixes 4K, 16K and
30K represent the vocabulary sizes.

the forget and input decisions together, which re-
duces the number of LSTM parameters by 25%.
We also use group-LSTM (GLSTM) (Kuchaiev
and Ginsburg, 2017) to reduce the number of train-
able variables of an LSTM matrix by the number
of feature groups, k. We set k = 5 in experi-
ments. Table 2 lists the parameter settings of the
word (W) and word-piece (P) models used in this
study. Due to the memory limitations of on-device
training, all models use fewer than 3.5M parame-
ters. For each vocabulary size, we first start with a
base architecture consisting of one LSTM layer, a
96-dimensional embedding, and 670 hidden state
units. We then attempt to increase the represen-
tational power of the LSTM cell by increasing
the number of hidden units and using multi-layer
LSTM cells (Sutskever et al., 2014). Residual
LSTM (Kim et al., 2017) and layer normaliza-
tion (Lei Ba et al., 2016) are used throughout ex-
periments, as these techniques were observed to
improve convergence. To avoid the restriction that
Nh = Ne in the output, we apply a projection
step at the output gate of the LSTM (Sak et al.,
2014). This step reduces the dimension of the
LSTM hidden state from Nh to Ne. We also share
the embedding matrix between the input embed-
ding and output softmax layer, which reduces the
memory requirement by |V| × Ne. We note that
other recurrent neural models such as gated recur-
rent units (Chung et al., 2014) can also be used
instead of CIFG LSTMs.

The federated RNN LMs are trained on two
language settings of the virtual keyboard: Amer-

ican English (en US) and Brazilian Portuguese
(pt BR). Following McMahan et al. (2017), 500
reporting clients are used to compute the gradi-
ent updates for each round. A server-side learn-
ing rate of 1.0, a client-side learning rate of 0.5,
and Nesterov momentum of 0.9 are used. Both
the word and word-piece models are trained over
the same time range and with the same hyperpa-
rameters. Prior to federated training of the RNN
LM, the word-piece inventory is constructed from
the unigram distribution collected via the feder-
ated approach introduced in Section 3.

A common evaluation metric for both word and
word-piece models is desirable during federated
training. Such a metric can be used to monitor the
training status and select models to be used for the
CapSampleApprox algorithm. Neither cross-
entropy nor accuracy serves this need due to the
mismatch in vocabularies used. Word-level accu-
racy is hard to compute for the word-piece model,
since it requires hundreds of inference calls to tra-
verse all combinations of a word from the word-
piece vocabulary. In this study, we apply sentence
log likelihood (SLL) in the evaluation. Given a
sentence x̄m = {x1, x2, . . . , xm} composed of m
units (either words or word-pieces), SLL is eval-
uated as

∑m
i=1 log(pnn(xi|x̄i−1)). One issue that

arises is the handling of out-of-vocabulary (OOV)
words. The OOV probability of the word model is
about 8%. The comparable probability of an OOV
word (according to V) for word-piece models is
the product of the corresponding word-piece con-
ditional probabilities, which is much smaller than
8%. To mitigate this issue, we define SLL exclud-
ing OOV as:

SLLe =
m∑

i:xi 6=OOV

log(pnn(xi|x̄i−1)),

where the OOV in the equation includes word-
pieces that are components of OOV words. In the
following, SLLe is used as model selection metric.

7.2 Approximated n-gram model
Algorithm 1 illustrates the workflow we use to
generate different n-gram models for evaluation.
Recall that CapSampleApprox takes a RNN
LM, an n-gram topology, and a reweighting FST
for capitalization normalization. The n-gram
topology is empty under self-inference mode.
Suresh et al. (2019a) showed that inferring topol-
ogy from the RNN LM does not perform as well as
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Figure 5: Sentence log likelihood excluding OOV token for en US (left) and pt BR (right).

Model en US pt BR
Baseline 10.03% 8.55%

AWe 10.52± 0.03% 9.66± 0.02%
AWi 10.47± 0.02% 9.67± 0.02%
AWm 10.27± 0.03% 9.40± 0.02%
AWr 10.49± 0.03% 9.65± 0.02%

Table 3: Result of top-1 prediction accuracy on the
live traffic of the virtual keyboard for en US and pt BR
populations. Quoted 95% confidence intervals for fed-
erated models are derived using the jackknife method.

using the true n-gram topology obtained from the
training corpus. Hence, we supplement the neural-
inferred topology with the topology obtained by a
large external large corpus denoted by AW . We
use CapSampleApprox on four topologies and
compare the resulting models: an n-gram model
obtained from an external corpus’s topology Ae,
an n-gram model obtained from a neural inferred
topology Ai, an n-gram model obtained by in-
terpolating (merging) the two models above Am,
and an n-gram model obtained by approximating
on the interpolated topology Ar. We repeat this
experiment for both word and word-piece RNN
LMs and use subscripts W and P , respectively.
We evaluate all eight produced n-gram models di-
rectly on the traffic of a production virtual key-
board, where prediction accuracy is evaluated over
user-typed words.

7.3 Results

Figure 5 shows the SLLe metric for all the exper-
iments listed in Table 2. In general, larger models
generate better results than smaller baseline mod-
els. For the baseline architectures with same RNN
size, having a larger vocabulary leads to some
gains. For the larger architectures that have similar

Model top-1
Baseline 10.03%

APe 10.49± 0.03%
APi 10.46± 0.03%
APm 10.48± 0.04%
APr 10.53± 0.03%

Table 4: Result of top-1 prediction accuracy on the live
traffic of the virtual keyboard for en US derived using
word-piece models.

total numbers of parameters, 4K word-piece mod-
els are shown to be superior to 16K and 30K. For
4K word-piece models, GLSTM is in general on-
par with its P4K-L counterpart. The word model is
better than all the word-piece models in both lan-
guages in SLLe. We were surprised by this result,
and hypothesize that it is due to the SLLe metric
discounting word-piece models’ ability to model
the semantics of OOV words. The solid lines are
the best models we pick for A/B experiment eval-
uation for the virtual keyboard (P4K-L and W30K).

Table 3 shows the A/B evaluation result on both
en US and pt BR populations. The baseline model
is an n-gram model trained directly from central-
ized logs. All of the federated trained models
perform better than the baseline model. We re-
peated the A/B evaluation with word-piece mod-
els on en US and the results are in Table 4. The
performance of word-piece models is similar to
that of word models. Among the federated mod-
els for en US, APr has the best result. This meets
our expectation that the supplemental corpus helps
improve the performance of the topology inferred
from the RNN LM.
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8 Conclusion

We have proposed methods to train production-
quality n-gram language models using federated
learning, which allows training models without
user-typed text ever leaving devices. The proposed
methods are shown to perform better than tradi-
tional server-based algorithms in A/B experiments
on real users of a virtual keyboard.
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Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017,
Fort Lauderdale, FL, USA, pages 1273–1282.

Brendan McMahan and Daniel Ramage. 2017.
Federated learning: Collaborative machine
learning without centralized training data.
https://ai.googleblog.com/2017/04/
federated-learning-collaborative.
html.

Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning differentially private
recurrent language models. In International Confer-
ence on Learning Representations (ICLR).

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, ACLShort ’10, pages 220–224, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Tom Ouyang, David Rybach, Françoise Beaufays,
and Michael Riley. 2017. Mobile keyboard in-
put decoding with finite-state transducers. CoRR,
abs/1704.03987.
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Abstract
Conceptual spaces are geometric represen-
tations of meaning that were proposed by
Gärdenfors (2000). They share many similari-
ties with the vector space embeddings that are
commonly used in natural language process-
ing. However, rather than representing entities
in a single vector space, conceptual spaces are
usually decomposed into several facets, each
of which is then modelled as a relatively low-
dimensional vector space. Unfortunately, the
problem of learning such conceptual spaces
has thus far only received limited attention. To
address this gap, we analyze how, and to what
extent, a given vector space embedding can
be decomposed into meaningful facets in an
unsupervised fashion. While this problem is
highly challenging, we show that useful facets
can be discovered by relying on word embed-
dings to group semantically related features.

1 Introduction

Conceptual spaces (Gärdenfors, 2000) are vec-
tor space models that are aimed at representing
the entities of a given kind (e.g. movies), to-
gether with their associated properties (e.g. scary)
and concepts (e.g. thrillers). As such, they are
similar in spirit to the vector space models that
have been proposed in information retrieval (Deer-
wester et al., 1990) and natural language pro-
cessing (Turney and Pantel, 2010; Mikolov et al.,
2013), but there are also notable differences. First,
in the context of conceptual spaces, an explicit dis-
tinction is made between the entities from the do-
main of discourse, which are represented as vec-
tors, and the corresponding properties and con-
cepts, which are represented as regions (e.g. poly-
topes) or soft regions (e.g. characterized by a
Gaussian). Second, conceptual spaces are organ-
ised into a set of facets1, each of which captures

1These facets are often referred to as domains in the con-
text of conceptual spaces. However, we will use the term

a different aspect of meaning. For instance, in a
conceptual space of movies, we may have facets
such as genre, language, geographic location, etc.

Each facet is associated with its own vector
space, which intuitively captures similarity w.r.t.
the corresponding facet. For instance, in a concep-
tual space of movies, the vector space for the bud-
get facet would only capture whether two movies
had a similar budget. Most of these facet spaces
tend to be low-dimensional (e.g. modelling budget
only needs a single dimension). This clearly dif-
ferentiates them from traditional semantic spaces,
which often have hundreds of dimensions. From
an application point-of-view, the separation of
vector space models into facets is appealing for
several reasons. One key advantage is that it al-
lows us to model similarity in a more flexible,
and cognitively more plausible way. A related
advantage is that the low-dimensional nature of
the facet-specific spaces should make it easier to
learn from few examples. Finally, the separation
into facets can also make conceptual spaces more
interpretable. However, the study of conceptual
spaces has mostly focused on modelling cogni-
tive and linguistic phenomena, such as metaphor
(Gärdenfors, 1996) and vagueness (Douven et al.,
2013), with only few works addressing the chal-
lenge of learning such representations from data.

Decomposing conceptual spaces into facets is
similar to the problem of disentangled representa-
tion learning (DRL), which has recently received
considerable interest. However, empirical stud-
ies suggest that purely unsupervised DRL methods
are unlikely to be successful without a strong in-
ductive bias. In fact, Locatello et al. (2018) found
that what mostly matters was how such methods
are initialized, rather than what particular opti-
mization objective is used. Moreover, much of

facets to avoid confusion with domains of discourse.
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the work in DRL has focused on image process-
ing rather than textual data (which is what we use
in this paper). Finally, existing work in DRL is fo-
cused on learning factors which are uncorrelated.
In our setting, however, the different facets are of-
ten highly correlated (e.g. natural disaster movies
typically have a high budget).

In this paper, we explore a strategy for decom-
posing a given vector space embedding into sep-
arate facet spaces by first determining which in-
terpretable features are modelled by the vector
space and then clustering the word vectors corre-
sponding to these features. Despite being intuitive,
given that word embeddings are known to group
together functionally similar words, we found this
strategy to perform poorly in its basic form. First,
simply looking for clusters in word embeddings
often leads to thematic clusters, e.g. grouping hor-
ror together with words such as scary and zom-
bie rather than other genres such as western and
drama. To address this, we explicitly prevent two
words from ending up in the same cluster if the
features they are modelling are too similar. Sec-
ond, in most domains, there are one or two cen-
tral facets which tend to be highly correlated with
most of the other facets (e.g. genre in the movie
domain). To ensure that the resulting facet spaces
are sufficiently different (rather than capturing mi-
nor variations of the most central facets), we found
it useful to use an iterative approach, where pre-
viously found facets are “removed” from the vec-
tor space embedding before proceeding to find fur-
ther facets. With these two modifications, we find
that useful facets can indeed be found, which con-
sistently lead to better classification performance
compared to the original vector space embedding.

2 Related Work

Conceptual Spaces. A conceptual space
(Gärdenfors, 2000) is a vector representation of
the entities from some domain, where the dimen-
sions tend to capture salient features. It is usu-
ally assumed that the dimensions of a conceptual
space can be grouped into semantic domains, or
facets. From a cognitive point of view, this group-
ing is important because it affects how similar-
ity scores are computed. Intuitively, this is be-
cause the dimensions from the same facet tend to
interact with each other whereas the dimensions
from different facets can be considered in isola-
tion. The problem of learning conceptual spaces

from data has only received limited attention to
date. One exception is the work of Derrac and
Schockaert (2015), which we build on in this pa-
per. In their work, textual descriptions of the con-
sidered entities are used to find dimensions that
model salient semantic features in a given seman-
tic space. For instance, in a semantic space of
movies they found dimensions corresponding to
features such as scary, horror and zombie. Note
that because these features tend to be correlated,
the corresponding dimensions are typically not or-
thogonal in the input semantic space. For this
reason, they refer to these dimensions as inter-
pretable directions. More recently, (Ager et al.,
2018) proposed a post-processing method to fine-
tune these interpretable directions. The main chal-
lenge which we address in this paper is to group
the features that are found by the method from
Derrac and Schockaert (2015) into semantically
meaningful facets. A supervised variant of this
problem was considered by Banaee et al. (2018).
Their approach relies on feature selection meth-
ods to find subsets of features that are predictive
of particular class labels, based on a set of labelled
training examples. In contrast, our focus in this pa-
per is on unsupervised methods, as suitable train-
ing data is often not available.

Disentangled Representation Learning (DRL).
In the last few years, a large number of genera-
tive neural network models have been proposed,
with variational autoencoders (VAEs) (Kingma
and Welling, 2014) and generative adversarial net-
works (GANs) (Goodfellow et al., 2014) being the
best-known examples. The main underlying idea
behind these models is that high-dimensional data
(e.g. images) can often be described in terms of a
much lower-dimensional latent vector space. Each
object can thus be compactly described by its la-
tent code, i.e. the corresponding vector in this la-
tent space. The problem of DRL is to learn such
a latent vector representation which is such that
(groups of) the dimensions of the latent codes cor-
respond to meaningful interpretable factors. A
variety of unsupervised and semi-supervised ap-
proaches for learning such disentangled represen-
tations have been proposed, such as InfoGAN
(Chen et al., 2016), which is based on a modifi-
cation of the loss function for GANs, and β-VAE
(Higgins et al., 2017), which instead uses VAEs as
the base model. Conceptually, these approaches
modify the loss function of a given generative
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model by insisting that the dimensions of the la-
tent vector space are in some sense independent.
In principle, the latent vector spaces learned by
DRL methods can be viewed as conceptual spaces.
It is unclear, however, whether purely statistical
measures of independence can be sufficient for
learning semantically meaningful factors. While
interesting results have been obtained for particu-
lar applications, after a thorough empirical analy-
sis Locatello et al. (2018) concluded that such re-
sults were highly sensitive to the random initial-
ization of the neural network models and the value
of hyper-parameters. Their results suggest that,
in absence of a suitable supervision signal, high-
quality factors can only be learned in the presence
of a strong inductive bias. Going beyond unsu-
pervised approaches, (Jain et al., 2018) propose a
supervised approach for DRL for text. As supervi-
sion signal, they use triplets of the form (s, d, o)a
which encode that relative to aspect a, it holds that
s and d are more similar than d and o. Then they
use a Convolutional Neural Network (CNN) based
model to obtain low-dimensional document em-
beddings for each considered aspect.

3 Decomposing Conceptual Spaces

Let E be a set of entities of some particular type
(e.g. movies) for which a vector space embedding
is given. In the following, we will write e ∈ Rn

for the embedding of entity e. The first step of
our approach consists in applying the method from
Derrac and Schockaert (2015), which provides us
with a set of words F , each corresponding to a
feature that can be modelled as a direction in the
vector space. For f ∈ F we write df for the
vector characterizing this direction. Formally, this
means that e1 · df < e2 · df iff e2 has the fea-
ture f to a higher extent than e1 (e.g. if f denotes
the feature scary, then this would mean that movie
e2 is scarier than movie e1). We briefly recall
the method from Derrac and Schockaert (2015)
in Section 3.1. Our hypothesis is that we can
group these features into meaningful facets and
that we can represent these facets as subspaces of
the given vector space embedding. Section 3.2 dis-
cusses our approach for finding these subspaces.

3.1 Identifying Feature Directions

The method proposed in Derrac and Schockaert
(2015) aims to finds a set of features F which
can be modelled as directions in the given vector

space. The input to their method consists of a text
description De of each entity e, but they assume
no other prior knowledge. In particular, each word
w which occurs sufficiently frequently in the doc-
ument collection D = {De | e ∈ E} is considered
as a candidate feature. To determine whether w
should be added as a feature, they train a linear
SVM classifier to separate the vector representa-
tions of the entities e for which w is mentioned
in De from the vector representations of the other
entities. If this SVM classifier is sufficiently ac-
curate2, they assume that the word w captures a
salient feature. The corresponding feature direc-
tion is then characterized by the normal vector df

of the hyperplane that was learned by the SVM
classifier. We will use the notation posw to refer
to the set of entities from E which are classified
as positive. In our experiments, we used logistic
regression classifiers instead of SVMs, which we
found to perform similarly but were faster to train.

3.2 Finding Facets

Our aim is to group the features from F into mean-
ingful facets. For instance, in the movies domain,
we might expect to see facets corresponding to e.g.
genre, language and release date. It does not seem
possible (nor desirable) to formally define what
constitutes a good facet, a typical problem in un-
supervised learning. Intuitively, however, a facet
should group features which are of the same kind
(e.g. genres) and should in some sense be exhaus-
tive (i.e. all genres, rather than a set of features that
refer to one or a few particular genres).

Using subspace clustering. The aim of subspace
clustering is to decompose a high-dimensional
space into the union of lower-dimensional spaces.
This problem has found numerous applications,
especially in computer vision. One may won-
der whether we can learn useful facets by apply-
ing subspace clustering to feature directions df .
Unfortunately, in our initial experiments, this ap-
proach did not prove successful. This is illustrated
for the movies domain in Table 1, where we used
the state-of-the-art SSC-OMP subspace clustering
method (You et al., 2016). For this comparison, we
first manually grouped the features from F to ob-
tain a gold standard. The first column of the table
shows two of the resulting facets: one correspond-
ing to genres and one corresponding to different

2Because of class imbalance, they used Cohen’s Kappa
instead of classification accuracy.
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MOVIES

Gold standard IncHDB SSC-OMP

blu, ray, cgi, dolby, sur-
round, computer, technology,
theaters, theatre, purchased,
ordered, purchase, dvds, ama-
zon, bought, copy, audio, disc,
edition, widescreen, transfer,
digital, print, vhs, discs

Initial cluster Xi: audio, disc, dvds, digital, vhs, dolby, technology,
discs, computer, version

Top additional features Yi: transfer, edition, blu, cgi, ray, widescreen,
amazon, extras, awesome, computer, purchased, purchase, buying, sur-
round, price, trailer, included, favorites, theaters, alot, previews, extra,
player

blu, arts, disc, purchased, edition, ordered, crime,
british, creepy, disturbing, fighting, charm, rent, hon-
estly, reviewers, oscar, personally, excited, questions,
budget, england, education, victims, packed, marriage,
tense, detail, fell, hell, deeply, culture, situation, accu-
rate, trailers

thriller, comedic, com-
edy, documentary, comic,
satire, documentaries, drama,
melodrama, horror,action,
adults, animation, crime, fan-
tasy,family, musical, mystery,
romance, war, western

Initial cluster Xi: thriller, comedic, comedy, documentary, comic,
satire, documentaries, humor, humour, cheesy, adaptation, wit, melo-
drama, campy, parody

Top additional features Yi: hilarious, gags, laughs, jokes, slapstick,
funniest, thrillers, funnier, suspense, witty, unfunny, amusing, suspense-
ful, historical, horror, romance, interviews, psychological

horror, thriller, political, charming, funnier, slapstick,
documentaries, hilarious, killed, seat, issue, cheesy,
gory, mystery, effects, amazon, widescreen, transfer,
realistic, relationship, monster, epic, portrayed, glad,
premise, hearing, evil, car, formula, decision, violent,
villain, gun, goofy, game, teens, garbage, humor, ruin,
product, amount, dad, loving, personality, award, folks

Table 1: Comparison of learned facets with gold standard for the movies domain.

media types (which indirectly captures the time
period during which a movie was released). The
right-most column shows the closest facets that
were found with SSC-OMP. As can be seen, these
facets are largely non-sensical. For instance, in
the first case, words such as blu and disc are clus-
tered together with semantically unrelated words
such as fighting, england and accurate. In the sec-
ond example, genres such as horror and thriller
are grouped together with unrelated words such as
cheesy, widescreen and award. This negative re-
sult seems in accordance to the findings from Lo-
catello et al. (2018) that unsupervised disentangled
representation learning seems impossible without
a strong inductive bias. We also tried several other
subspace clustering methods, for a wide range of
different configurations, without obtaining better
results. Similarly, we experimented with neural
approaches for learning disentangled representa-
tions directly from the bag-of-words representa-
tions of the entities, but again unsuccessfully.

Using word embeddings. These negative results
strongly suggest that some kind of external knowl-
edge is needed to find meaningful facets. To this
end, we focus on the use of word embeddings,
which seems natural given the fact that words of
the same kind (e.g. different names of genres) tend
to be used in similar contexts, and can thus be
expected to have similar word vectors. In par-
ticular, our basic approach for identifying facets
consists in clustering the word vectors, from some
standard pre-trained word embedding model, cor-
responding to the features in F . One important
drawback of this basic strategy, however, is that
it often leads to thematic clusters. For instance,
while we would want horror to be clustered to-

gether with other names of genres, when simply
clustering word vectors without any further guid-
ance, horror may be clustered together with the-
matically similar words such as scary and zombie.
To avoid such clusters, we rely on the insight that
if a and b are thematically similar words (e.g. hor-
ror and zombie) then the corresponding feature di-
rections da and db will also be similar. However,
for paradigmatically similar words, such as horror
and comedy, this should not be the case. In other
words, two words should intuitively end up in the
same clusters if they have similar word vectors but
dissimilar feature directions.

While there are many ways to implement this
intuition, we found that using the cosine similarity
between da and db was not always reliable. In-
stead we rely on the following measure of overlap
between the sets posa and posb:

o(a, b) = min

( |posa ∩ posb|
|posa|

,
|posa ∩ posb|
|posb|

)

The dissimilarity between features a and b from F
is then defined as follows:

d(a, b) =

{
1− cos(wa,wb) if o(a, b) ≤ λ
1 otherwise

where the overlap threshold λ is a hyperparameter
and wf denotes the word vector for feature f .

The aim of the clustering step is to find a num-
ber of disjoint subsets of F , each of which intu-
itively corresponds to a facet. We will denote these
facets by X1, ..., Xk. To avoid finding redundant
facets, we identify them in an incremental fash-
ion. In particular, from the clusters obtained by
the clustering algorithm, we only select the sin-
gle most important one, i.e. the one which is most
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likely to describe a salient facet. For this purpose,
we rank clusters according to the following score:

score(Xi) = |
⋃

f∈Xi

posf | (1)

This score reflects the intuition that we prefer clus-
ters with features that are general and diverse, i.e.
such that most of the entities would have at least
one of the features from the cluster. As will be ex-
plained below, after the subspace corresponding to
this facet has been determined, we iteratively ap-
ply the same method on a reduced vector space to
find the next most important facet, until the desired
number of facets k has been found.

3.3 Modelling Facets as Subspaces
We model each facetXi as a linear subspace of the
given vector space embedding. To find this sub-
space, we learn new feature directions cf for each
f ∈ Xi, which still capture these features but lie
in a low-dimensional subspace. In particular, we
minimize the following objective:

∑

e∈E

∑

f∈Xi

log σ(cfe+ bf ) (2)

where

cf = λf1a
i
1 + λf2a

i
2 + ...+ λfra

i
r (3)

with r the desired number of dimensions of the
subspace. Note that (2) essentially expresses that
for each f ∈ Xi, we want to train a logistic regres-
sion classifier with coefficient vector cf . However,
as expressed in (3), rather than learning these coef-
ficient vectors independently, they are constrained
such that they can be written as a linear combina-
tion of the vectors ai1, ...,a

i
r. The resulting fea-

ture directions thus span a subspace of (at most) r
dimensions. Let Mi ∈ Rr×n be an orthonormal
basis for this subspace. Then ei = Mie is the r-
dimensional facet-specific embedding of entity e.

There may be some features from F which are
not contained in Xi but can nonetheless be mod-
elled well in the resulting subspace (i.e. if they
are semantically related to the features in Xi). To
identify these features, we apply the method from
(Derrac and Schockaert, 2015) to the facet-specific
embeddings. We write Yi to denote the features
that were thus identified, beyond the ones fromXi.

Next we determine a null space of the basis Mi,
i.e. an (n−r)×n dimensional matrix Ri satisfying

MiR
T
i = 0

Dataset Entities Attribute Classes

Movies 13978 Keywords 100
Genre 23

Ratings 6

place-types 1383 Foursquare (Fours.) 9
Geonames (Geo.) 7

OpenCYC (OpenC.) 20

Organisation 11800 Country 4
Headquarter Location(HL) 2

Building 3721 Country 2
Administrative Location(AL) 2

Table 2: Overview of considered datasets.

This matrix Ri is a basis for the orthogonal com-
plement of the subspace spanned by Mi. Intu-
itively, it defines what remains of the vector space
embedding after we remove (i.e. project away) the
subspace modelling the facet Xi.

To find the remaining facets, we repeat the same
procedure, but with two changes. First, the n − r
dimensional remainder space is used instead of the
original embedding space, i.e. we use Rie as the
vector representation of e. Second, the features in
Xi ∪ Yi are no longer considered by the clustering
algorithm. This process is repeated until the de-
sired number of facets has been found, each time
considering an increasingly lower-dimensional re-
mainder space and clustering only those features
that are not already modelled in a previously iden-
tified facet. Intuitively, by learning the facets in
this incremental way, we should be able to avoid
finding multiple variants of the same facets.

The middle column of Table 1 shows two of the
facets that were found with this approach. Intu-
itively, these facets are clearly more meaningful
than those that were found with SSC-OMP.

4 Experimental Analysis

Methods. We have experimented with two clus-
tering algorithms: agglomerative hierarchical av-
erage link clustering and HDBSCAN (Campello
et al., 2013). However, in the case of HDBSCAN
we noticed that when using overlap-based dissimi-
larity, we typically ended up without any clusters3.
For HDBSCAN we therefore used cosine similar-
ity instead. We refer to our method with agglomer-
ative clustering as IncAgg and to the variant with
HDBSCAN as IncHDB. In addition, we consid-
ered a variant of the method with agglomerative
clustering which relies on cosine similarity instead
of the overlap-based dissimilarity (CosIncAgg).

3Note that HDBSCAN does not cluster all the data points,
as it removes data points which are considered as noise.
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Place types Movies Organisations Buildings
Fours. Geo. OpenC. KeyW. Genre Rating Country HL. Country AL.

D
T-

D
1

MDS 0.34 0.26 0.26 0.26 0.38 0.43 0.67 0.24 0.47 0.47
IncAgg 0.45 0.30 0.30 0.25 0.40 0.47 0.76 0.26 0.50 0.50
CosIncAgg 0.45 0.26 0.30 0.24 0.38 0.43 0.75 0.23 0.43 0.42
IncHDB 0.43 0.26 0.28 0.25 0.38 0.40 0.50 0.22 0.46 0.46
NonIncHDB 0.30 0.20 0.27 0.23 0.34 0.40 0.50 0.20 0.46 0.47
NonIncAgg 0.33 0.24 0.27 0.23 0.33 0.42 0.40 0.21 0.48 0.47

D
T-

D
3

MDS 0.52 0.27 0.32 0.27 0.43 0.47 0.70 0.27 0.47 0.46
IncAgg 0.58 0.34 0.34 0.27 0.41 0.47 0.77 0.30 0.54 0.52
CosIncAgg 0.54 0.28 0.34 0.25 0.40 0.45 0.78 0.26 0.47 0.45
IncHDB 0.57 0.26 0.31 0.27 0.41 0.45 0.70 0.27 0.49 0.50
NonIncHDB 0.43 0.24 0.27 0.26 0.38 0.44 0.60 0.21 0.48 0.49
NonIncAgg 0.36 0.30 0.29 0.24 0.38 0.45 0.65 0.22 0.51 0.50

SV
M

MDS 0.65 0.31 0.35 0.25 0.54 0.54 0.71 0.26 0.38 0.39
IncAgg 0.73 0.33 0.37 0.26 0.54 0.55 0.76 0.26 0.52 0.51
CosIncAgg 0.62 0.33 0.34 0.25 0.52 0.53 0.80 0.12 0.50 0.50
IncHDB 0.65 0.30 0.36 0.23 0.50 0.51 0.70 0.20 0.51 0.51
NonIncHDB 0.60 0.35 0.37 0.24 0.46 0.52 0.68 0.24 0.52 0.51
NonIncAgg 0.58 0.35 0.35 0.24 0.48 0.51 0.72 0.26 0.50 0.51

G
au

ss
ia

n MDS 0.81 0.45 0.46 0.26 0.58 0.48 0.74 0.27 0.53 0.51
IncAgg 0.87 0.48 0.45 0.28 0.60 0.51 0.81 0.27 0.54 0.55
CosIncAgg 0.81 0.45 0.46 0.28 0.60 0.51 0.81 0.28 0.53 0.53
IncHDB 0.84 0.43 0.43 0.27 0.60 0.51 0.80 0.28 0.54 0.53
NonIncHDB 0.75 0.41 0.40 0.23 0.51 0.47 0.75 0.27 0.59 0.53
NonIncAgg 0.71 0.46 0.45 0.22 0.52 0.46 0.77 0.27 0.58 0.53

Table 3: Classification tasks performance (in terms of F1 score) when using the MDS space and four variation of
the facet-based representations.

Finally, we also report results for variants of our
methods in which we did not obtain the facets
incrementally (NonIncAgg and NonIncHDB). In
these cases, we simply extract r clusters from the
initial set of features F and determine the corre-
sponding facets directly. In all cases, we use 50-
dimensional pre-trained GloVe word vectors (Pen-
nington et al., 2014) for clustering the features.

To generate the initial vector space embedding,
we follow the approach proposed in (Derrac and
Schockaert, 2015) based on multi-dimensional
scaling. In all cases, we used 100-dimensional
vector spaces and learned 10 facets, each being
modelled as a 10-dimensional subspace. To select
the set of features F , we initially consider the 500
highest scoring words according to the Kappa met-
ric. However, if we end up without any clusters (in
the case of HDBSCAN), we expand the set of fea-
tures to the 1000 top words. The overlap threshold
λ is selected based on held-out tuning data, con-
sidering values from {0.3, 0.5, 0.7}. To flatten the
agglomerative clustering, we tune the number of
clusters from {50, 100, 200}4.

4The source code is available online at
https://github.com/rana-alshaikh/
Disentangled-Facets.

Evaluation tasks. Intrinsic evaluation of the
learned facets is difficult, among others because
what we might consider to be a natural facet is
highly subjective. Therefore, in our quantita-
tive evaluation, we will focus on the impact of
the learned facets in a number of classification
tasks. This is also motivated by the view that
some types of classifiers need semantically mean-
ingful features to perform well. For example,
Ager et al. (2018) used low-depth decision trees
to evaluate a method for learning feature direc-
tions in vector space embeddings. Specifically, if
F = {f1, ..., fm} is the set of features that were
identified, then they represent each entity e using
the feature vector (df1 · e, ...,dfm · e), with df

the direction modelling feature f as before. Given
that a depth-1 decision tree can only use one of
these features, the performance of such a decision
tree essentially tells us to what extent the classes
that are considered in the supervised classification
task have been discovered as features. In our ex-
periments, we will report the result of depth-1 and
depth-3 decision trees. As the baseline method,
referred to as MDS, we will use the top-2000 fea-
tures that we obtained with the method from Der-
rac and Schockaert (2015). To evaluate the facets,
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ORGANISATIONS

Cosine similarity Overlap-based dissimilarity

union, europe, protection,
aid, spain, right, cross, war,
players, black, defenders,
german, european

canadian, australian, australia, africa, na-
tions, african, canada, states, countries, asia,
united, british, european, competition, world,
europe, asian, britain, country, german

PLACE TYPES

landscapes, serene, tranquil,
closeup, surreal, greenery,
scenery, scenic, breathtak-
ing, picturesque

sculptures, decoration, churches, fauna, his-
torical, landscapes, st, archeology, small,
sculpture, basilica, monuments, convent,
heritage, artistic, monument, sacred, forgot-
ten, cemetery, baroque, festival, promenade,
renaissance, hall, flora, pavilion, memorial

Table 4: Examples of clusters when standard cosine
similarity is used (left) and with the proposed overlap
based dissimilarity score (right).

we instead apply this method to find the top-200
features for each of the facet subspaces.

The performance of the decision trees will al-
low us to evaluate whether we are able to learn
higher-quality feature directions thanks to the de-
composition of the vector space into facet sub-
spaces. To evaluate the quality of the facets inde-
pendently of the quality of the feature directions,
we also consider classifiers which use as input the
facet-specific vector representations ei of the en-
tities. Specifically, we train a support vector ma-
chine (SVM) for each of the facets, leading to the
predictions p1, ...pk. These predictions are then
aggregated to a final prediction using a logistic
regression meta-classifier. As baseline, we sim-
ply train a single SVM classifier in the full vec-
tor space. As our final classifier, we estimate a
Gaussian model from the positive training exam-
ples. In particular, we estimate a univariate Gaus-
sian for each dimension and multiply the corre-
sponding probabilities. We chose this method be-
cause it is sensitive to how well the dimensions
of the space are aligned with semantically mean-
ingful properties, and because such Gaussians are
commonly used for representing categories in con-
ceptual spaces (Bouraoui and Schockaert, 2018).
For the baseline, we use the dimensions of the full
vector space. For the facet-based representations,
we use the dimensions of the facet subspaces.

Dataset. We have carried out experiments with
vector space embeddings for four different do-
mains. First, we used the movies and place
type domains from (Derrac and Schockaert, 2015),
where the embeddings are learned respectively
from movie reviews and from Flickr tag co-
occurrence distributions. We also considered two
additional domains, for which we used Wikipedia

Figure 1: Projection of a 100-dimensional semantic
space and 10-dimensional facets of buildings. Top:
showing the full space. Bottom: showing the 10-
dimensional representations for the facet Xi = { cam-
puses, students, offices, centers, facilities, area, hotels,
homes, bridges, hospitals, cities, shops, stations}

articles: buildings and organisations. In partic-
ular, we retrieved all Wikipedia pages whose se-
mantic type on WikiData corresponds to build-
ing or organisation. Wikipedia pages containing
fewer than 200 words were removed. The bag-
of-words (BoW) representation of the remaining
Wikipedia concepts were obtained using a stan-
dard preprocessing strategy (e.g. removing HTML
tags and references), including stopword removal
with NLTK (Bird and Loper, 2004). Furthermore,
we POS tagged the documents and only retained
the nouns and adjectives. Finally, frequent words
that occurred in more than 60% of the Wikipedia
articles about buildings (resp. organisations) were
removed, as well as words that occurred fewer
than 10 times. This approach was taken to stay
broadly in line with the strategy that was used in
(Derrac and Schockaert, 2015). As classification
tasks, we used two attributes from WikiData in
both domains (being the only attributes for which
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BUILDINGS

Initial cluster Xi: Top additional features Yi:

architecture, art, history, lit-
erature, architectural, society,
culture, ancient, scholars, ver-
nacular, classical, historical,
contemporary, cultural, me-
dieval

structure, floors, county, architect, graduate,
palace, revival, property, hall, united, floor,
farm, design, art, space, style, states, down-
town, interior, mansion, arena, architectural,
architecture, chemistry, entrance.

city, district, town, rural, cen-
tral, cities, neighborhood, ar-
eas, part, section, province,
village, north, western, por-
tion, middle, residents, be-
tween, branch

company, wife, headquarters, firm, area,
events, estate, people, facility, streets, avenue,
schools, hotel, commercial, former, states, ar-
chitects, original, farm, example, residence,

Table 5: Examples of the facets from the Buildings
dataset (using IncAgg method).

a sufficient number of entities per attribute value
was found). The full datasets will be released upon
acceptance. The properties of the considered do-
mains and associated classification problems are
summarized in Table 2. For each classification
problem, we randomly split the labelled examples
into 2/3 for training and 1/3 for testing. For tun-
ing we use 5-fold cross-validation over the training
set. In the movies domain, where more labelled
data is available, we have used fixed splits of 60%
for training, 20% for tuning and 20% testing.
Results. The results are summarized in Table
3. Our main method IncAgg outperforms the
MDS baseline for almost all classification tasks
and types of classifiers. For the HDBSCAN based
variant, the results are more mixed, which seems
related to the fact that the overlap based dissimilar-
ity could not be used in that case. Indeed, the co-
sine based variant of IncAgg, i.e. CosIncAgg, also
performs consistently worse than IncAgg. Look-
ing at the performance of NonIncAgg and Non-
IncHDB reveals that learning facets in an iterative
fashion is critical, given that these two variants
perform worse than the baseline in many cases.

Looking more closely at the results of our main
method IncAgg, it is interesting to note that large
improvements are obtained for depth-1 decision
trees, which shows that our facet subspaces make
it easier to identify features that correspond to the
categories from the corresponding classification
problems. However, large improvements can also
be seen for SVMs, which shows that the actual de-
composition of the space is also helpful.

Qualitative Analysis. Figure 1 illustrates how
our subspaces capture similarity in a facet-specific
way, showing the two first principal components
of the embedding of Birmingham School of Art in

the full space and in the subspace of a facet that in-
tuitively captures building type. While the neigh-
bours in the full space are a mixture of different
building types (hotels, commercial buildings, mu-
seum, and educational buildings), in the facet sub-
space all nearest neighbors are universities.

Table 4 illustrates the impact of using overlap-
based dissimilarity, where the clusters obtained
with cosine similarity are clearly more thematic,
while the ones obtained with the overlap-based
metric intuitively capture a facet (i.e. geographic
location and the natural–cultural opposition). Fi-
nally, Table 5 shows some of the facets obtained
in the buildings domains. The first example shows
a facet which intuitively captures the historical–
contemporary opposition, while the second exam-
ple shows a facet that captures the rural–city op-
position.

5 Conclusions

We considered the problem of decomposing a vec-
tor space embedding into facets, which are char-
acterized by a set of semantically related features
and a corresponding subspace of the embedding.
In particular, we focused on unsupervised meth-
ods, considering both approaches that rely on the
vector space itself (i.e. using subspace clustering)
and approaches that additionally take into account
the information about word meaning that is cap-
tured by pre-trained word vectors. Overall, we
found this problem to be highly challenging, in
accordance with the findings from Locatello et al.
(2018) regarding unsupervised disentangled repre-
sentation learning. However, we were still able to
obtain useful facets based on two crucial modifica-
tions to a standard clustering based strategy. First,
we measure the similarity between features based
on two factors: the similarity between their word
vectors and the dissimilarity between their mean-
ing in the vector space embedding (measured in
terms of overlap). Second, we found it essential
to learn facets in an iterative fashion, to avoid too
much redundancy between the different facets.
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Abstract
We conduct a manual error analysis of the
CoNLL–SIGMORPHON 2017 Shared Task
on Morphological Reinflection. In this task,
systems are given a word in citation form (e.g.,
hug) and asked to produce the corresponding
inflected form (e.g., the simple past hugged).
This design lets us analyze errors much like
we might analyze children’s production errors.
We propose an error taxonomy and use it to
annotate errors made by the top two systems
across twelve languages. Many of the ob-
served errors are related to inflectional patterns
sensitive to inherent linguistic properties such
as animacy or affect; many others are failures
to predict truly unpredictable inflectional be-
haviors. We also find nearly one quarter of the
residual “errors” reflect errors in the gold data.

1 Introduction
A huge amount of work in natural language pro-
cessing treats words as indivisible units, but the
vast majority of the world’s languages have rich
word-internal structure. For instance, 80% of the
languages analyzed in the World Atlas of Linguis-
tic Structure (Dryer and Haspelmath 2013) inflect
verbs for tense and 65% inflect nouns for case.
Generating and processing complex words is thus
crucial for multilingual speech and language tech-
nologies.
Recent work on large-scale, multilingual com-

putational modeling of morphology (e.g., Durrett
and DeNero 2013, Cotterell et al. 2016) targets
supervised inflection generation. Such tasks re-
quire variable-length outputs, so they are less
constrained than earlier segmentation-based tasks
(e.g., Kurimo et al. 2010), but appear to be tractable
with existing neural network–based models. For
example, in the CoNLL–SIGMORPHON 2017
Shared Task (sub-task 1 and the “high-data condi-
tion”), the focus of this study, the best-ranked sys-

tem generates novel inflectional forms with 90%
accuracy or better for 46 out of the 52 target lan-
guages, It achieves perfect accuracy for four lan-
guages (Cotterell et al. 2017).
In light of these apparent success, we examine

the failure modes of existing models for morpho-
logical generation. We first propose and motivate
an error taxonomy for this task, inspired by sim-
ilar proposals for other natural language genera-
tion and processing technologies such as grammat-
ical error correction (e.g., Rozovskaya and Roth
2016) and machine translation (e.g., Popović and
Ney 2011, Fishel et al. 2012, Irvine et al. 2013).
We then use this taxonomy to perform a manual er-
ror analysis of the CoNLL–SIGMORPHON 2017
Shared Task. Such analyses can help to identify
strengths and weaknesses of existing systems, sug-
gest future improvements, and guide development
of strong ensemble models, but are often neglected
or treated as an afterthought. This annotation also
allows us to measure the quality of the gold data.
Generating morphologically complex forms is a

skill typically-developing children effortlessly ac-
quire, so this task, and systems’ error patterns, may
have implications for the theory of language acqui-
sition. While the shared task training paradigm
is quite unlike human language learning, infer-
ence and evaluation resemble the classic wug-test
(Berko 1958), inwhich speakers are presentedwith
a word—either real or nonce—in citation form and
prompted to provide a particular inflectional form
of that word. Therefore, one can analyze inflec-
tion generation errors much like how one might
analyze errors made by a child acquiring their first
language. And, one can ask whether humans’ and
artificial learners’ errors are in any way alike.
To answer these questions, we examine errors

made by the two top-performing systems in the
CoNLL–SIGMORPHON 2017 Shared Task for
twelve languages.
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2 Materials and methods

Here, we describe the shared task, data sources,
and the targeted systems.

2.1 The task
The CoNLL–SIGMORPHON 2017 Shared Task
(Cotterell et al. 2017) consists of two supervised
morphological generation sub-tasks across 52 lan-
guages. In sub-task 1, the training data consists of
triples of lemma, inflectional bundle, and inflected
form, as in Table 1. At inference time, the sys-
tem is given lemmata and inflectional bundles and
asked to produce the appropriate inflected forms.
In sub-task 2, training data consists of complete
inflectional paradigms, and at inference time, the
system is asked to produce full paradigms for un-
seen lemmata. We focus on the results from sub-
task 1, primarily because only two of the twelve
teams chose to compete in sub-task 2. However,
the proposed error taxonomy could easily be ap-
plied to sub-task 2, or to later morphological gener-
ation challenges such as sub-task 2 of the CoNLL–
SIGMORPHON 2018 shared task (Cotterell et al.
2018) or sub-task 1 of the SIGMORPHON 2019
shared task (McCarthy et al. 2019).

2.1.1 Data
The data in both sub-tasks is primarily sampled
from UniMorph (Kirov et al. 2016, 2018), a
free morphological database. In turn, UniMorph
data for our twelve languages is automatically ex-
tracted from Wiktionary, a collaborative multilin-
gual online dictionary. UniMorph pairs the cells
of Wiktionary morphological paradigms, which
bear prose labels like “genitive plural”, to fea-
ture bundles in a language-independent morpho-
logical schema (Sylak-Glassman et al. 2015; also
see Sylak-Glassman 2016). The data consist of
the aforementioned triples of lemma, inflectional
bundle, and inflected form. For sub-task 1, these
triples were sampled from UniMorph paradigms
according to frequencies of inflected forms as es-
timated from Wikipedia. Because of this sam-
pling procedure, the data is sparse in the sense
that there are rarely more than a few inflected
forms per lemma. As such, this roughly mim-
ics the statistical properties of the primary linguis-
tic data encountered by child language learners
(e.g., Chan 2008:71–100). Systems were evalu-
ated under three training data conditions: low (100
triples), medium (1,000 triples) and high (10,000

triples). We focus on the high-data condition be-
cause nearly all systems performed poorly in the
low- and medium-data conditions.

2.2 Systems
In sub-task 1, systems were ranked using the
macro-averaged “per form” (i.e., full-token match)
accuracy across all 52 target languages.1 We ana-
lyze errors made by the two top-ranked systems,
briefly described below.

ue-lmu-1 (Bergmanis et al. 2017) This system
uses a recurrent neural network (RNN) with a bidi-
rectional gated recurrent unit (GRU) encoder, a
unidirectional GRU decoder, and a standard atten-
tionmechanism. It enhances a closely-related com-
petitor system (Kann and Schütze 2017) by aug-
menting the provided training data with identical
input-output pairs so as to create a bias toward
copying the input stem. It is ranked as the best-
performing system on sub-task 1 (macro-average
accuracy 95.32%).

cluzh-7 (Makarov et al. 2017) This system
also uses a neural encoder-decoder but replaces the
“soft” attention mechanism with hard monotonic
attention (Aharoni and Goldberg 2017) and special
edit operations. It is ranked second-best overall
on sub-task 2 (macro-average accuracy 95.12%)
and also achieves the highest per form accuracy on
eight languages including Hungarian and Spanish.

3 Error taxonomy
One major distinction in the proposed taxon-
omy of inflection generation errors is between
those errors which can be given a linguistic
characterization—i.e., in terms of misapplication
of inflectional patterns independently attested in
the target language—from those which cannot.
As such we are inspired by a long and con-
tentious debate in computational morphology re-
search. Rumelhart andMcClelland (1986) propose
an early neural network model trained to generate
the phonological form of English simple past tense
verbs given the present tense. They claim that
under in certain conditions, their model produces
errors that are similar to those made by children
acquiring English, such as *catched for caught.2

1 The other metric used in sub-task 1, average Levenshtein
distance between word and target averaged over languages,
ranks systems nearly identically (Cotterell et al. 2017:11).

2 Such errors are known as overregularizations in the lan-
guage acquisition literature (e.g., Marcus et al. 1992).
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Language Lemma Inflection Inflected form
English hug V;PST hugged

spark V;V.PTCP;PRS sparking
German aufbauen V;IND;PRS;2;SG baust auf

Ärtzin N;DAT;PL Ärtzinnen
Spanish descomponer V;NEG;IMP;2;PL no descompagáis

liberar V;IND;FUT;2;SG liberarás

Table 1: Sample training data for sub-task of the CoNLL–SIGMORPHON 2017 Shared Task. Each training exam-
ple maps a lemma (a citation form) and inflection (a bundle of UniMorph morphosyntactic features) to an inflected
form. At inference time, the inflected form is predicted given a lemma and inflection.

SILLYTARGET ALLOMORPHY SPELLING

Free variation

Extraction

Wiktionary

Figure 1: Overview of our annotation scheme, includ-
ing subcategories. Annotators are instructed to proceed
through the taxonomy from left to right.

Pinker and Prince (1988) and Sproat (1992:216f.)
dispute this characterization, pointing out bizarre
errors like *membled for mailed. More recently,
Kirov and Cotterell (2018) claim that modern neu-
ral network architectures—such as those used in
the CoNLL–SIGMORPHON 2017 Shared Task—
generalize reasonably well while largely eliminat-
ing these bizarre errors. However, Corkery et al.
(2019) argue that the Kirov and Cotterell model
predictions align poorly with human productions,
and suggest that the reported results may be unchar-
acteristic due to fortuitous random seeding.
We desired a somewhat richer set of errors

than this prior work. The final taxonomy—
incorporating feedback from a ten-language pi-
lot study—consists of four major error categories,
with several additional sub-categories. The cate-
gories are applied sequentially, as in Figure 1. We
now describe these categories.

Target errors This category consists of cases
where the gold data is incorrect or incomplete.3
We discern three sub-categories of target errors.

3 This label is applied regardless of whether the predicted
inflected form is correct or not, and therefore is independent
of system predictions. Furthermore, it is possible that both
the gold data and prediction have the same incorrect inflected
form, but detecting such cases is challenging.

Free variation errors occur when more than one
acceptable inflected form exists, but only one is
present in the UniMorph data. Extraction er-
rors indicate flaws in UniMorph’s parsing of Wik-
tionary inflectional paradigms. Wiktionary er-
rors represent errors in the Wiktionary data itself.

Silly errors This category consists of those
“bizarre” errors which defy any purely linguistic
characterization. In addition to the aforementioned
case of *membled, such errors have also been re-
ported for other language generation tasks such as
machine translation (Arthur et al. 2016) and text
normalization (Gorman and Sproat 2016, Sproat
and Jaitly 2017, Zhang et al. 2019).

Allomorphy errors This category consists of
those errors which are characterized by misappli-
cation of existing (i.e., independently attested) al-
lomorphic patterns in the target language. Our an-
notation scheme recognizes four sub-categories of
allomorphy error, but we set aside their their de-
scription for reasons of space.

Spelling errors This category includes inflected
forms that do not follow language-specific ortho-
graphic conventions but are otherwise correct.

4 Results
We performed full error annotation on twelve
of the 52 languages. Several other languages
were initially targeted for annotation but pro-
duced too few errors to draw meaningful con-
clusions. Annotations were performed by the
authors, all specialists in computational linguis-
tics.4 Of these, four languages—English, Finnish,
Polish, and Russian—were annotated by native

4 We do not claim that this level of expertise is strictly
necessary; it might be the case that linguistically naïve native
speakers could be trained to produce reliable annotations.
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speakers; the remaining eight were annotated by
second-language speakers. In addition to the
annotation guidelines, annotators were encour-
aged to consult authoritative dictionaries and refer-
ence grammars—such as the Iso suomen kielioppi
(Hakulinen et al. 2008) for Finnish, the Duden
for German, the Oxford Latin Dictionary (Lee
1968), or the Diccionario de la lengua española
for Spanish—and native speakers. Table 2 reports
summary statistics for fully-annotated languages.

4.1 Inter-annotator agreement
Table 3 provides raw agreement and Krippendorf’s
α (Artstein and Poesio 2008) for those languages
known to two annotators. As mentioned above,
each annotator is a specialist in computational lin-
guistics, and annotated at least one other language
as well. Raw agreement is high, and while chance-
corrected agreement statistics like α are notori-
ously difficult to interpret, α ≥ 0.8, a threshold
obtained for all three double-coded languages, is
generally considered to indicate substantial relia-
bility (Krippendorff 2004:241f.).

4.2 Errors
Table 4 provides the counts of the four major cat-
egories of error for all twelve languages and for
both systems. We now proceed to describe some
patterns observed within these categories.

4.2.1 Target errors
Table 5 gives counts for the three sub-categories of
target errors.5

Free variation errors Finnish has several free
variation errors, many involving vowel harmony.
For example, the abessive suffix has two allo-
morphs, namely the the back-harmonic -tta and the
front-harmonic -ttä. The lemma progestiini ‘pro-
gestin’ can take the back allomorph, giving pro-
gestiinitta, but, vowel harmony often fails to ap-
ply when there are many intervening neutral vow-
els (i and e) between the harmonic trigger and the
suffix (Hakulinen et al. 2008:§17), as is the case
here. Therefore, the form progestiinittä, predicted
by both systems, is grammatical, though not the
form given by UniMorph. Another type of free
variation error affects allomorphs of the Finnish
genitive plural (gen.pl.). For instance, omenoiden,
omenoitten, omenojen, omenien and omenain are

5 Some analyses conducted by Richard Sproat (p.c.) sug-
gest that sub-task 2 was also highly affected by target errors.

all possible gen.pl. forms of omena ‘apple’, but
only one is present in UniMorph.

Extraction errors The comparatively low accu-
racy on Hungarian—cluzh-7, the best perform-
ing system on this language, achieves 89.80% per
form accuracy—appears to be due to large num-
ber of extraction errors. In most cases, the error
comes from pairing one paradigm cell with another
cell’s inflectional bundle. For instance, UniMorph
incorrectly labels *lagúnák as the accusative plural
(acc.pl.) for lagúna ’lagoon’; it is in fact the nomi-
native plural (nom.pl.). In Romanian, a header for
the Wiktionary paradigms reading “definite artic-
ulation” is incorrectly taken as an inflected form
itself! Latin also suffers from pervasive extraction
errors. This language has a robust phonemic con-
trast between short and long monophthongs (e.g.,
malus ‘unpleasant’ vs. mālus ‘apple tree’). Long
monophthongs are—at least in modern editions—
indicated by the macron, a horizontal line above
the vowel. UniMorph extraction has somehow re-
moved macrons from all lemmata, though they are
still present in the inflected forms. Thus, systems
must attempt to predict an unpredictable phonemic
contrast while mapping from lemma to inflected
form. As a result, the vast majority of Latin errors
concern vowel length.

Wiktionary errors Errors in the Wiktionary
data itself are relatively rare and largely non-
systematic. For example, in Spanish, *demarce is
given as the first person singular (1sg.) present sub-
junctive of demarcar ‘to demarcate’ instead of the
correct form demarque.

4.2.2 Silly errors
Silly errors were found for all languages except
English; they also appear to be somewhat more
common for ue-lmu-1 (59) than for cluzh-7 (37).
ue-lmu-1 predicts praesōs as the acc.pl. of the
Latin noun praesul (a title used by Roman reli-
gious leaders); there is no obvious analogue for
the ul-ōs stem change. In German, cluzh-7 un-
expectedly truncates the gen.pl. form of the com-
pound noun Schädlingsbekämpfungsmittel ‘pesti-
cide’ to produce *Schädlingsbekämpfungsmit. For
the dative plural (dat.pl.) of the Russian compound
noun meaning ‘forced labor’, ue-lmu-1 inexpli-
cably deletes the r of rabóty ‘labor’, giving the
bizarre *prinudítel’nym abótam.6 And, in Spanish,

6 In the shared task, Russian data is given in the standard
Cyrillic orthography; we have taken the liberty of romanizing
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Language Noun Verb Adjective ue-lmu-1 errors cluzh-7 errors Overlap
Dutch 7 3 3 31 32 84%
English 7 3 7 28 32 24%
Finnish 3 3 3 49 65 44%
German 3 3 7 70 88 48%
Hungarian 3 3 7 136 132 65%
Italian 7 3 7 21 24 50%
Latin 3 3 3 187 190 56%
Polish 3 3 3 72 79 74%
Portuguese 7 3 7 9 10 73%
Romanian 3 3 3 109 122 59%
Russian 3 3 3 84 79 60%
Spanish 7 3 7 27 25 44%

Table 2: Raw error counts out of 1,000 test examples for the target languages. Checkmarks indicate whether
UniMorph data was available for a given major category in that language. Error overlap is the percentage of errors
made by both systems. There were 1,701 errors in total (823 from ue-lmu-1 and 878 from cluzh-7).

Language RA α
Dutch 0.949 0.907
English 0.861 0.855
Spanish 0.861 0.875

Table 3: Inter-annotator agreement statistics for three
double-coded languages. RA: raw agreement.

ue-lmu-1 gives *atuengáis as the second person
plural present subjunctive of atener ‘to maintain’.
There is no analogue for this e-ue stem change.

4.2.3 Allomorphy errors
With the exception of Hungarian and Latin—
which suffer from systematic extraction errors—
allomorphy errors are the largest category of error
in all languages.

Stem-final vowels in Finnish In Finnish nouns
and adjectives, stem-final vowels commonly dis-
appear or alternate with e or o when the plural
marker i is added to the stem (Hakulinen et al.
2008:§45). For instance, the inessive plural of
lasi ‘glass’ is laseissa. In principle, such alterna-
tions are predictable given the syllable count of
the nominal stem, the stem-final consonants and
the penultimate vowel, though the exact conditions
are rather complex (Hakulinen et al. 2008:§46–50).
For the compound noun pohjanpystykorva ‘nor-
rbottenspets’ (a breed of dog), cluzh-7 predicts an
incorrect gen.pl. form *pohjanpystykorvojen for in-
it here so as to make the data accessible to a wider audience.

tended pohjanpystykorvien; it has transformed the-
stem final a to o and then selected the wrong plural
marker (*-jen instead of -ien) as a result.

Ablaut inDutch andGerman Stem vowel alter-
nations in the Germanic strong verbs are known as
ablaut. Ablaut is robust in Dutch and German, and
in both languages, is occasionally misapplied. In
Dutch, for example, both systems overapply ablaut
to the 1sg. preterite indicative forms of printen ‘to
print’, producing *pront instead of printte. Sim-
ilar errors are found in German. Both systems
underapply ablaut to the 1sg. preterite indicative
form of saufen ‘to drink’, producing *saufte in-
stead of the expected soff, and ue-lmu-1 overap-
plies ablaut to the third person preterite subjunc-
tive of the weak verb versenken ‘to sink’, giving
*versächten in place of the expected versenkten.

Umlaut in German Another stem change seen
in German inflection is umlaut, which converts a
u, o, or a in the final syllable of a stem changes
to the corresponding front vowel ü, ö, or ä, re-
spectively. Umlaut applies in many different
morphological contexts (Hieble 1957), but most
saliently in many plural nouns. One or both sys-
tems underapply umlaut in otherwise-correct plu-
ral forms of Aasvogel ‘carrion bird’, Augenarzt
‘eye doctor’, Brunst ‘arousal’, Chalkogenidglas
‘chalcogenide glass’,Dachschaden ‘mental issues’
(lit. ‘roof damage’), Energiezustand ‘energy level’,
Hang ‘slope’, Stiefvater ‘stepfather’, Tibetfuchs
‘Tibetan fox’, andVertrag ‘treaty’. But the systems
also overapply umlaut in *Einwohnerzähle (from
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Target Silly Allomorphy Spelling
Language ue-lmu-1 cluzh-7 ue-lmu-1 cluzh-7 ue-lmu-1 cluzh-7
Dutch 8 1 1 19 16 5 7
English 3 0 0 18 18 7 11
Finnish 11 7 7 33 48 0 0
German 3 4 10 54 67 9 9
Hungarian 83 21 9 37 44 1 0
Italian 5 5 1 11 16 0 2
Latin 119 2 0 76 93 0 0
Polish 5 6 3 60 67 2 4
Portuguese 1 1 0 6 7 1 2
Romanian 54 3 5 61 69 1 2
Russian 7 7 0 48 45 23 28
Spanish 7 2 1 12 12 6 6
Total 306 59 37 435 502 55 71

Table 4: Error type counts by language and system; target error counts are combined across the two systems.

Language FV Extraction Wiktionary
Dutch 0 3 5
English 0 2 1
Finnish 7 2 2
German 0 0 3
Hungarian 0 83 0
Italian 0 0 5
Latin 0 118 1
Polish 0 4 1
Portuguese 0 1 0
Romanian 1 51 2
Russian 1 5 1
Spanish 2 3 2
Total 11 272 23

Table 5: A breakdown of target errors by sub-category;
counts are combined across the two systems. FV: free
variation errors; Extraction: extraction errors; Wik-
tionary: Wiktionary errors.

Einwohnerzahl ‘population’, *Förmer (fromForm
‘shape’), *Neuwähle (from Neuwahl ‘re-vote’),
and *Sprösse (from Spross ‘bud’).

Consonant gradation in Finnish Many Finnish
words undergo a set of unpredictable stem changes
known as consonant gradation. Here, a “strong
grade” of a consonant–normally a voiceless stop
like t—alternates with the weak grade—a voiced
stop like d—but the stop may also delete in the
weak grade (Hakulinen et al. 2008:§41). Gradation

leads to inflection errors because not all lexemes
participate in gradation, and because the weak
grade of the stem consonant is not predictable from
the lemma. For instance, cluzh-7 incorrectly ap-
plies the weak grade to the negated third person
singular *ei kiemurda (from kiemurtaa ‘to crawl’);
the proper gradation is t-r instead of the predicted
t-d. cluzh-7 also incorrectly produces the strong
grade where the weak grade is required, failing to
delete the k in the comitative *rikoslakein (from
rikoslaki ’criminal law’).
Linking vowels in Hungarian The Hungarian
noun plural suffix is -k, usually preceded by a
a, o, e, or ö linking vowel. For example, the
nom.pl. form of vér ’blood’ is vérek. The choice
of linking vowel is partly determined by vowel har-
mony: back vowel stems select a or o whereas
front vowel stems select e or ö. However, for back
vowel stems, it is largely unpredictable whether
a or o is used (Siptár and Törkenczy 2000:224f.,
Vago 1980:110f.), and there are several cases
where one or both systems predict an incorrect link-
ing vowel. For example, ue-lmu-1 predicts an in-
correct elative plural *masszázsakból formasszázs
‘massage’; the correct form is masszázsokból.
Yers in Polish Another sub-category of allomor-
phy error in Polish concerns the yers, the “fleet-
ing vowels” of Slavic. Oblique forms of the Pol-
ish nouns klęsek ‘defeat’ and żagiel ‘sail’, for ex-
ample lack a stem e or ie, respectively, in cer-
tain case forms, as seen in the gen.pl. klęsk and
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żagli. Because fleeting vowels’ position and qual-
ity are unpredictable, they cannot be analyzed as
epenthetic. Instead, they are assumed to be present
in the underlying form of certain roots and af-
fixes, but somehow represented distinctly from
the non-fleeting vowels (Lightner 1965, Rubach
1986). According to the analysis, a yer is deleted
except when the following syllable also contains
an yer, and the fleeting e and ie surface in
the nom.sg. forms above because the masculine
nom.sg. suffix is itself a yer (Gussman 1980:36f.,
Rubach 1984:41). It is impossible to predict the
position or quality of a yer without referring to
the rest of the inflectional paradigm,7 and this in-
determinacy contributes to several inflectional er-
rors. For instance, cluzh-7 predicts *żagieli in-
stead of the expected żagli, and both systems pre-
dict *klęsek for of the expected klęsk. Similar er-
rors are also found in Russian.

Spanish diphthongization Many Spanish verbs
exhibit a stem change in which mid vowels e and
o in the final syllable of the stem diphthongize
to ie [je] and ue [we], respectively, when they
bear primary stress. Whether or not a mid vowel
participates in diphthongization is largely unpre-
dictable (Brame and Bordelois 1974:132f., Harris
1969:74f.).8 For example, negar ‘to deny’ under-
goes diphthongization (e.g., 1sg. present indicative
niego), but pegar ‘to stick’ does not (1sg. present
indicative pego). Both models underapply diph-
thongization in *desplegue (from desplegar ‘to un-
fold’) and *recola (from recolar ‘to strain again’).
Interestingly, these are 1st conjugation (i.e., -ar)
verbs, and children acquiring Spanish tend to un-
derapply diphthongization in this class (Mayol
2007). But cluzh-7 also overapplies diphthon-
gization in *atañieres (from atañer ‘to concern’)
and *gañieseis (from gañir ‘to yelp’). Similar er-
rors occur in Portuguese, which also exhibits a
stress-conditioned stem vowel alternation.

Noun plural suffixes in German German has
five major noun plural suffixes, and many errors
involve the use of the wrong plural. The most
frequent pattern is the overapplication of the -(e)n
plural—traditionally regarded as the most produc-

7 Gouskova and Becker (2013) and Becker and Gouskova
(2016) develop formal models of yer-deletion in Russian, but
do not evaluate performance on actual held-out words.

8 Albright et al. (2001) and Albright (2003) develop a com-
putational model to predict Spanish diphthongization, but do
not report its performance on actual held-out verb forms.

tive plural suffix (Bech 1963, Wunderlich 1999)—
as in Eosin ‘eosin’, Fußballweltmeisterschaft-
squalifikationsspiel ‘football world championship
qualification game’, Hartung, a poetic term for
‘January’, Karbonatit ‘carbonatite’, Metallatom
‘metal atom’, and Vorjahr ‘last year’. Overapplica-
tion of -e is also common, as in Abonnement ‘sub-
scription’, Etat ‘budget’, Funke ‘spark’, Katholic
‘Catholic’, Königsgelb ‘yellow pigment’, Reak-
torbau ‘reactor construction’, Prinzess ‘princess’,
Toupet ‘toupee’. Interestingly, both types of error
are produced by children acquiring German (e.g.,
Clahsen 1999, Marcus et al. 1995, Szagun 2001).

Genitive singular suffixes in Polish Polish has
two gen.sg. suffixes, -a and -u. It is generally
impossible to predict which gen.sg. allomorph a
given stemwill select, and there is no evidence that
one is more productive than the other (Dąbrowska
2001, 2005, Kottum 1981, Maunsch 2003). This
unpredictable allomorphy causes many gen.sg. er-
rors to both systems, such as *ateuszu for ateusza
‘atheist’, *izotopa for izotopu ‘isotope’, *krzyka
for krzyku ‘scream’, and *legaru for legara ‘joist’.

Verbal prefixes in German Some verbal pre-
fixes in German are known as “separable” because
they separate (i.e., are postposed) from their host
verb when tensed. Others, the “inseparable” pre-
fixes, are always attached to their host verb with-
out exception. Finally, some prefixes, such as um-,
are separable or inseparable depending on the verb,
and this leads to several errors. For example, both
systems predict *umkehre for the 1sg. present in-
dicative of umkehren ‘to turn around’; the correct
form is the separable kehre um.

Animacy in Polish and Russian Case syn-
cretisms in inanimate (i.e., non-personal) nouns
are found in many Slavic languages. However, an-
imacy is an inherent feature of nouns and cannot
be predicted from the form of the lemma alone.
In Russian, for example, cluzh-7 wrongly pre-
dicts a syncretic acc.pl. for the animate sadist ‘id.’
and both systems incorrectly predict a distinct (i.e.,
non-syncretic) acc.sg. for the inanimate magazin
‘shop’. Similarly in Polish, both systems predict
incorrect syncretic accusatives for animates such
as śpiewak ‘singer’ and Żyd ‘Jew’, and incorrect
non-syncretic accusatives for inanimates such as
szampan ‘champagne’. Some Polish stem changes
are also conditioned by animacy. For example, for
the inanimate noun katalizator ‘catalyst’, both sys-
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tems incorrectly predict a nom.pl. *katalizatorzy
instead of katalizatory; the mutation of r to rz be-
fore the nom.pl. -y is restricted to masculine ani-
mates (Feldstein 2001:27).

Aspect in Russian Russian verbal inflection is
conditioned by an inherent feature known as as-
pect. For instance, the perfective verb sorvat’ ‘to
pick’ forms a synthetic future whereas the closely-
related imperfective sryvat’ forms a periphrastic
(i.e., multi-word) future formed using future-tense
forms of byt’ ‘to be’. Several errors involve the
wrong future form for a verb’s aspect. For exam-
ple, for the perfective sorvat’, cluzh-7 incorrectly
predicts a periphrastic second person singular fu-
ture *budeš’ sorvat’ instead of the expected syn-
thetic sorvëš’.

Vowel harmony in Finnish compounds In
Finnish, the first stem in a noun compound does
not participate in suffix harmony (Hakulinen et al.
2008:§14). For example, the partitive singular
of the compound lapinsirri ‘Temminck’s stint’ (a
type of bird) is the lapinsirriä. Because this lemma
is a compound of Lapin ‘of Lapland’ and sirri
‘stint’, and because all vowels in the second second
stem of the compound are neutral, front harmony—
the default—applies. However, cluzh-7 gener-
ates *lapinsirria, a form which would be correct
were the lemma not a compound.

Internal inflection in Russian compounds
Many Russian nouns in the shared task are
adjective-noun or noun-noun compounds, and
systems fail to appropriately inflect both com-
ponents of the compound. The acc.pl. of
lëgkaja promyšlennost’ ‘light industry’ is lëgkie
promyšlennosti, but ue-lmu-1 predicts *lëgkix
promyšlennosti, incorrectly placing the adjective
in the genitive case. Other adjective-noun com-
pounds for which one or both of the systems fail
to produce proper agreement morphology include
vizitnaja kartočka ‘business card’ and bulevo
množestvo ‘boolean domain’. Both stems of most
noun-noun compounds, particularly hyphenated
compounds, are inflected. For example, the prepo-
sitional plural of gosudarstvo-donor ‘donor state’
is gosudarstvax-donorax, but both systems predict
*gosudarstvo-donorax, in which only the second
stem is inflected. However, there are some cases
in which one stem of a compound is not declined.
For instance, in sindrom Aspergera ‘Asperger’s
syndrome’, only the head noun sindrom should be

inflected because Aspergera is a nominal modifier
and already in genitive case, but both systems
incorrectly inflect the second stem producing the
gen.pl. *sindromov Asperger.

4.2.4 Spelling errors
Spelling errors are relatively rare overall. In Dutch,
diaeresis is used to mark hiatus—adjacent vow-
els in consecutive syllables—and thus the past
participle of upgraden ‘to upgrade’ should be
geüpgraded, not the predicted *geupgraded. Sev-
eral English errors concern an orthographic dou-
bling of certain final consonants; for example, both
systems predict a past participle *disentered in-
stead of the expected disenterred. There are many
German spelling errors, including several concern-
ing the spelling of the gen.sg. suffix—written as
-es or -s depending on context—or s, ss, and ß,
all pronounced [s]. In Spanish, a g followed by
i or e is read as [x], not as [g], so the verb fungir
‘to service as’ has a 1sg. future indicative spelled
funjo rather than the predicted *fungo. Several Por-
tuguese and Spanish predictions omit the acute ac-
cent used to indicate exceptional primary stress;
e.g., Portuguese *influisse for the 1sg. imperfect
subjunctive influísse (from influir ‘to influence’).

5 Discussion
5.1 Target errors
Target errors heavily impact performance for Hun-
garian, Latin, and Romanian. Overall, nearly one
fourth of our sample’s errors were target errors,
and we suspect such errors also lurk in the train-
ing and development data. Clearly, the UniMorph
data used in this task requires further vetting.

5.2 Allomorphy errors
Overall, silly errors were far less common than
allomorphy errors. Many of the allomorphy er-
rors appear to result from unpredictable linguis-
tic behaviors rather than failures to extract reliable
generalizations. In some cases, errors reflect sys-
tems’ inability to predict inherent features such
as animacy and aspect in Slavic. Such features
are not encoded in UniMorph, although this in-
formation is often present on Wiktionary. Gener-
ally speaking, these features cannot be predicted
from the orthographic form of lemmata,9 but we

9 Certain prefixes and stress patterns are cues to aspect in
Russian verbs (Wade 2010:268), but this is not true of inherent
features in general.
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suspect that the relevant information could be in-
duced using either contextual or type-level word
embeddings. We leave this for future work.10
Systems also appear to struggle with lemmata
which are themselves internally complex due to
word-formation processes like prefixation or com-
pounding, including prefix verbs in German and
compounds in Finnish and Russian. Lemma-
internal structure, once again, is not currently en-
coded in UniMorph, though it could in princi-
ple be extracted from Wiktionary entries. Fi-
nally, we see that systems struggle with certain
lexically-specific morphophonological patterns—
Germanic ablaut and umlaut, Finnish consonant
gradation, Hungarian linking vowels, Slavic yers,
and Spanish diphthongization—and with lexically-
conditioned affix selection in German and Pol-
ish. We have seemingly rediscovered what lin-
guists have long known: certain allomorphic pat-
terns cannot be predicted from the form of lemmata
alone; they must be memorized. It is unreasonable
to expect any neural network, no matter how pow-
erful, to predict what is truly unpredictable.
Our analysis is limited to languages included the

shared task, those for which the top systems have
a non-trivial number of errors, and those for which
we have sufficient linguistic expertise. As a result,
our final sample of twelve languages only includes
two major language families, Indo-European and
Uralic, the latter represented by Finnish and Hun-
garian. However, this sample has some degree of
grammatical diversity. Linguists traditionally dis-
tinguish between two types of morphological ex-
ponence. In agglutination, each morphological
feature corresponds roughly to a single affix. For
instance, in the Hungarian form cinkosoknak, the
dat.pl. of cinkos ‘accomplice’, the -ok suffix marks
plurality and the -nak suffix indicates the dative
case. In fusion, on the other hand, single affixes
may realize many morphological features at once.
For instance, in the Russian form čabrecov, the
gen.pl. of čabrec ‘thyme’, the -ov suffix is both
genitive and plural (and its form also indirectly in-
dicates that the stem is masculine). Agglutination
is characteristic of the Uralic languages, whereas
Indo-European languages makes heavy use of fu-
sion. Furthermore, vowel harmony is limited to
the two Uralic languages.

10 Sub-task two of the SIGMORPHON 2019 Shared Task
(McCarthy et al. 2019) involves lemmatization and morpho-
logical analysis in sentential context, but the applicability of
this to the inflection task has not yet received much attention.

6 Conclusion
We propose an error taxonomy for morphologi-
cal inflection generation and apply it to the pre-
dictions of the two best systems in the CoNLL–
SIGMORPHON 2017 Shared Task. We estimate
a lower bound for the percentage of “target” er-
rors in the gold data. Over 80% of the remain-
ing (non-target) errors can be understood as mis-
application of language-specific morphological or
spelling principles. One potential remedy is to en-
rich the input linguistic representations with, e.g.,
compound structure and inherent grammatical fea-
tures; however, this is unlikely to avoid all errors;
some morphological patterns cannot be general-
ized but only memorized.
The above analysis depends on manual annota-

tion, but one might prefer to automate error classi-
fication. An automated system, for example, could
be integrated into a rapid development process, or
used as an additional objective during training and
tuning, so long as it has reasonably high agree-
ment with human experts. Ideally, such a sys-
tem would scale to arbitrary languages, not just
those for which linguistic expertise is readily avail-
able. A powerful ensemble model could help iden-
tify candidate target errors, and for certain high-
resource languages, it might be possible to lever-
age finite-state morphological analyzers and lexi-
cons to distinguish between silly, spelling, and al-
lomorphy errors. We leave these and many other
open questions for future work.
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Abstract

Bilingual word embeddings have been widely
used to capture the correspondence of lexi-
cal semantics in different human languages.
However, the cross-lingual correspondence
between sentences and words is less studied,
despite that this correspondence can signifi-
cantly benefit many applications such as cross-
lingual semantic search and textual inference.
To bridge this gap, we propose a neural em-
bedding model that leverages bilingual dictio-
naries1. The proposed model is trained to map
the lexical definitions to the cross-lingual tar-
get words, for which we explore with differ-
ent sentence encoding techniques. To enhance
the learning process on limited resources, our
model adopts several critical learning strate-
gies, including multi-task learning on differ-
ent bridges of languages, and joint learning of
the dictionary model with a bilingual word em-
bedding model. We conduct experiments on
two new tasks. In the cross-lingual reverse
dictionary retrieval task, we demonstrate that
our model is capable of comprehending bilin-
gual concepts based on descriptions, and the
proposed learning strategies are effective. In
the bilingual paraphrase identification task, we
show that our model effectively associates sen-
tences in different languages via a shared em-
bedding space, and outperforms existing ap-
proaches in identifying bilingual paraphrases.

1 Introduction

Cross-lingual semantic representation learning has
attracted significant attention recently. Various ap-
proaches have been proposed to align words of
different languages in a shared embedding space
(Ruder et al., 2017). By offering task-invariant se-

∗ Both authors contributed equally to this work.
1We refer the term dictionary to its common meaning, i.e.

lexical definitions of words. Note that this is different from
some papers on bilingual settings that refer dictionaries to
seed lexicons for one-to-one word mappings.

mantic transfers, these approaches critically sup-
port many cross-lingual NLP tasks including neu-
ral machine translations (NMT) (Devlin et al.,
2014), bilingual document classification (Zhou
et al., 2016), knowledge alignment (Chen et al.,
2018b) and entity linking (Upadhyay et al., 2018).

While many existing approaches have been pro-
posed to associate lexical semantics between lan-
guages (Chandar et al., 2014; Gouws et al., 2015;
Luong et al., 2015a), modeling the correspon-
dence between lexical and sentential semantics
across different languages is still an unresolved
challenge. We argue that learning to represent
such cross-lingual and multi-granular correspon-
dence is well desired and natural for multiple rea-
sons. One reason is that, learning word-to-word
correspondence has a natural limitation, consider-
ing that many words do not have direct transla-
tions in another language. For example, schaden-
freude in German, which means a feeling of joy
that comes from knowing the troubles of other
people, has no proper English counterpart word.
To appropriately learn the representations of such
words in bilingual embeddings, we need to capture
their meanings based on the definitions.

Besides, modeling such correspondence is also
highly beneficial to many application scenarios.
One example is cross-lingual semantic search of
concepts (Hill et al., 2016), where the lexemes
or concepts are retrieved based on sentential de-
scriptions (see Fig. 1). Others include discourse
relation detection in bilingual dialogue utterances
(Jiang et al., 2018), multilingual text summariza-
tion (Nenkova et al., 2012), and educational ap-
plications for foreign language learners. Finally,
it is natural in foreign language learning that a
human learns foreign words by looking up their
meanings in the native language (Hulstijn et al.,
1996). Therefore, learning such correspondence
essentially mimics human learning behaviors.
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A male descendent in relation to his parents. EN

Tout être humain du sexe masculin considéré
par rapport à son père et à sa mère, ou à un des 
deux seulement.                                                    FR

FilsFR
Cross-lingual Reverse 
Dictionary RetrievalCross-lingual Paraphrases

SonEN

Figure 1: An example illustrating the two cross-lingual
tasks. The cross-lingual reverse dictionary retrieval finds
cross-lingual target words based on descriptions. In terms
of cross-lingual paraphrases, the French sentence (which
means any male being considered in relation to his father
and mother, or only one of them) describes the same meaning
as the English sentence, but has much more content details.

However, realizing such a representation learn-
ing model is a non-trivial task, inasmuch as it re-
quires a comprehensive learning process to effec-
tively compose the semantics of arbitrary-length
sentences in one language, and associate that with
single words in another language. Consequently,
this objective also demands high-quality cross-
lingual alignment that bridges between single and
sequences of words. Such alignment information
is generally not available in the parallel and seed-
lexicon that are utilized by bilingual word embed-
dings (Ruder et al., 2017).

To incorporate the representations of bilingual
lexical and sentential semantics, we propose an
approach to capture the mapping from the defini-
tions to the corresponding foreign words by lever-
aging bilingual dictionaries The proposed model
BilDRL (Bilingual Dictionary Representation
Learning) first constructs a word embedding
space with pre-trained bilingual word embed-
dings. Based on cross-lingual word definitions,
a sentence encoder is trained to realize the map-
ping from literal descriptions to target words in
the bilingual word embedding space, for which
we investigate with multiple encoding techniques.
To enhance cross-lingual learning on limited re-
sources, BilDRL conducts multi-task learning on
different directions of a language pair. More-
over, BilDRL enforces a joint learning strategy
of bilingual word embeddings and the sentence
encoder, which seeks to gradually adjust the em-
bedding space to better suit the representation of
cross-lingual word definitions.

To show the applicability of BilDRL, we con-
duct experiments on two useful cross-lingual tasks
(see Fig. 1). (i) Cross-lingual reverse dictionary
retrieval seeks to retrieve words or concepts given
descriptions in another language. This task is use-

ful to help users find foreign words based on the
notions or descriptions, and is especially benefi-
cial to users such as translators, foreigner language
learners and technical writers using non-native
languages. We show that BilDRL achieves
promising results on this task, while bilingual
multi-task learning and joint learning dramatically
enhance the performance. (ii) Bilingual para-
phrase identification asks whether two sentences
in different languages essentially express the same
meaning, which is critical to question answering
or dialogue systems that apprehend multilingual
utterances (Bannard and Callison-Burch, 2005).
This task is challenging, as it requires a model to
comprehend cross-lingual paraphrases that are in-
consistent in grammar, content details and word
orders. BilDRL maps sentences to the lexicon
embedding space. This process reduces the prob-
lem to evaluate the similarity of lexicon embed-
dings, which can be easily solved by a simple clas-
sifier. BilDRL performs well with even a small
amount of data, and significantly outperforms pre-
vious approaches.

2 Related Work

We discuss two lines of relevant work.
Bilingual word embeddings. Various approaches
have been proposed for training bilingual word
embeddings. These approaches span in two fami-
lies: off-line mappings and joint training.

The off-line mapping based approach fixes the
structures of pre-trained monolingual embeddings,
and induces bilingual projections based on seed
lexicons (Mikolov et al., 2013a). Some variants
of this approach improve the quality of projec-
tions by adding constraints such as orthogonality
of transforms, normalization and mean centering
of embeddings (Xing et al., 2015; Artetxe et al.,
2016; Vulić et al., 2016). Others adopt canonical
correlation analysis to map separate monolingual
embeddings to a shared embedding space (Faruqui
and Dyer, 2014; Doval et al., 2018).

Unlike off-line mappings, joint training mod-
els simultaneously update word embeddings and
cross-lingual alignment. In doing so, such ap-
proaches generally capture more precise cross-
lingual semantic transfer (Ruder et al., 2017;
Upadhyay et al., 2018). While a few such mod-
els still maintain separated embedding spaces for
each language (Artetxe et al., 2017), more of them
maintain a unified space for both languages. The
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cross-lingual semantic transfer by these models is
captured from parallel corpora with sentential or
document-level alignment, using techniques such
as bilingual bag-of-words distances (BilBOWA)
(Gouws et al., 2015), Skip-Gram (Coulmance
et al., 2015) and sparse tensor factorization (Vyas
and Carpuat, 2016).
Neural sentence modeling. Neural sentence
models seek to capture phrasal or sentential se-
mantics from word sequences. They often adopt
encoding techniques such as recurrent neural en-
coders (RNN) (Kiros et al., 2015), convolutional
encoders (CNN) (Chen et al., 2018a), and atten-
tive encoders (Rocktäschel et al., 2016) to repre-
sent the composed semantics of a sentence as an
embedding vector. Recent works have focused
on apprehending pairwise correspondence of sen-
tential semantics by adopting multiple neural sen-
tence models in one learning architecture, includ-
ing Siamese models for detecting discourse rela-
tions of sentences (Sha et al., 2016), and sequence-
to-sequence models for tasks like style transfer
(Shen et al., 2017), text summarization (Chopra
et al., 2016) and translation (Wu et al., 2016).

On the other hand, fewer efforts have been put
to characterizing the associations between senten-
tial and lexical semantics. Hill et al. (2016) and
Ji et al. (2017) learn off-line mappings between
monolingual descriptions and lexemes to capture
such associations. Eisner et al. (2016) adopt a sim-
ilar approach to capture emojis based on descrip-
tions. At the best of our knowledge, there has been
no previous approach to learn to discover the cor-
respondence of sentential and lexical semantics in
a multilingual scenario. This is exactly the focus
of our work, in which the proposed strategies of
multi-task learning and joint learning are critical
to the corresponding learning process under lim-
ited resources. Utilizing such correspondence, our
approach also sheds light on addressing discourse
relation detection in a multilingual scenario.

3 Modeling Bilingual Dictionaries

We hereby begin our modeling with the formaliza-
tion of bilingual dictionaries. We use L to denote
the set of languages. For a language l ∈ L, Vl de-
notes its vocabulary, where for each word w ∈ Vl,
bold-faced w ∈ Rk denotes its embedding vec-
tor. A li-lj bilingual dictionaryD(li, lj) (or simply
Dij) contains dictionary entries (wi, Sj

w) ∈ Dij ,
in which wi ∈ Vli , and Sj

w = wj
1 . . . w

j
n (wj

· ∈

Vlj ) is a cross-lingual definition that describes the
word wi with a sequence of words in language
lj . For example, a French-English dictionary
D(Fr,En) could include a French word appétite
accompanied by its English definition desire for,
or relish of food or drink. Note that, for a word
wi, multiple definitions in lj may coexist.
BilDRL is constructed and improved through

three stages, as depicted in Fig. 2. A sentence en-
coder is first used to learn from a bilingual dic-
tionary the association between words and defini-
tions. Then in a pre-trained bilingual word em-
bedding space, multi-task learning is conducted on
both directions of a language pair. Lastly, joint
learning with word embeddings is enforced to si-
multaneously adjust the embedding space during
the training of the dictionary model, which further
enhances the cross-lingual learning process.

It is noteworthy that, NMT (Wu et al., 2016)
is considered as an ostensibly relevant method to
ours. NMT does not apply to our problem setting
bacause it has major differences from our work in
those perspectives: (i) In terms of data modali-
ties, NMT has to bridge between corpora of the
same granularity, i.e. either between sentences
or between lexicons. This is unlike BilDRL that
captures multi-granular correspondence of seman-
tics across different modalities, i.e. sentences and
words; (ii) As for learning strategies, NMT relies
on an encoder-decoder architecture using end-to-
end training (Luong et al., 2015b), while BilDRL
employs joint learning of a dictionary-based sen-
tence encoder and a bilingual embedding space.

3.1 Encoders for Lexical Definitions

BilDRL models a dictionary using a neural sen-
tence encoder E(S), which composes the mean-
ing of the sentence into a latent vector representa-
tion. We hereby introduce this model component,
which is designed to be a GRU encoder with self-
attention. Besides that, we also investigate other
widely-used neural sequence encoders.

3.1.1 Attentive GRU Encoder

The GRU encoder is a computationally efficient
alternative of the LSTM (Cho et al., 2014). Each
unit consists of a reset gate rt and an update gate zt
to track the state of the sequence. Given the vector
representation wt of an incoming item wt, GRU
updates the hidden state h

(1)
t as a linear combina-

tion of the previous state h
(1)
t−1 and the candidate
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Figure 2: Joint learning architecture of BilDRL.

state h̃
(1)
t of the new item wt as below.

h
(1)
t = zt � h̃

(1)
t + (1− zt)� h

(1)
t−1.

The update gate zt balances between the infor-
mation of the previous sequence and the new item,
where Mz and Nz are two weight matrices, bz is
a bias vector, and σ is the sigmoid function.

zt = σ
(
Mzxt + Nzh

(1)
t−1 + bz

)
.

The candidate state h̃
(1)
t is calculated similarly

to those in a traditional recurrent unit as below.
The reset gate rt thereof controls how much infor-
mation of the past sequence should contribute to
the candidate state.

h̃
(1)
t = tanh

(
Mswt + rt � (Nsh

(1)
t−1) + bs

)

rt = σ
(
Mrwt + Nrh

(1)
t−1 + br

)
.

While a GRU encoder can stack multiple of the
above GRU layers, without an attention mecha-
nism, the last state h(1)

S of the last layer represents
the overall meaning of the encoded sentence S.
The self-attention mechanism (Conneau et al.,
2017) seeks to highlight the important units in an
input sentence when capturing its overall meaning,
which is calculated as below:

ut = tanh
(
Mah

(1)
t + ba

)

at =
exp

(
u>t uS

)
∑

wm∈S exp (u>muS)

h
(2)
t = |S|atut.

ut is the intermediary representation of GRU out-
put h(1)

t , and uS = tanh(Mah
(1)
S + ba) is that

of the last GRU output h(1)
S . uS can be seen as

a high-level representation of the input sequence.

By measuring the similarity of each ut with uS ,
the normalized attention weight at, which high-
lights an input that contributes significantly to the
overall meaning, is produced through a softmax.
Note that a scalar |S| is multiplied along with at
to ut, so as to keep the weighted representation
h
(2)
t from losing the scale of h(1)

t . The sentence
encoding is calculated as the average of the last
attention layer E(1)(S) = 1

|S|
∑|S|

t=1 ath
(2)
t .

3.1.2 Other Encoders
We also experiment with other widely used neural
sentence modeling techniques2, which are how-
ever outperformed by the attentive GRU in our
tasks. These techniques include the vanilla GRU,
CNN (Kalchbrenner et al., 2014), and linear bag-
of-words (BOW) (Hill et al., 2016). We briefly in-
troduce the later two techniques in the following.
A convolutional encoder applies a kernel Mc ∈
Rh×k to produce the latent representation h

(3)
t =

tanh(Mcwt:t+h−1 +bc) from each h-gram of the
input vector sequence wt:t+h−1, for which h is the
kernel size and bc is a bias vector. A sequence of
latent vectors H(3) = [h

(3)
1 ,h

(3)
2 , ...,h

(3)
|S|−h+1] is

produced from the input, where each latent vector
leverages the significant local semantic features
from each h-gram. Following convention (Liu
et al., 2017), we apply dynamic max-pooling to
extract robust features from the convolution out-
puts, and use the mean-pooling results of the last
layer to represent the sentential semantics.
The Linear bag-of-words (BOW) encoder (Ji
et al., 2017; Hill et al., 2016) is realized by the

2Note that recent advances in monolingual contextualized
embeddings like multilingual ELMo (Peters et al., 2018; Che
et al., 2018) and M-BERT (Pires et al., 2019; Devlin et al.,
2018) can also be supported to represent sentences for our
setting. We leave them as future work, as they require non-
trivial adaption to both multilingual settings and joint train-
ing, and extensive pre-training on external corpora.
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sum of projected word embeddings of the input
sentence, i.e. E(2)(S) =

∑|S|
t=1Mbwt.

3.2 Basic Learning Objective

The objective of learning the dictionary model is
to map the encodings of cross-lingual word defini-
tions to the target word embeddings. This is real-
ized by minimizing the following L2 loss,

LST
ij =

1

|Dij |
∑

(wi,Sj
w)∈Dij

∥∥Eij(S
j
w)−wi

∥∥2
2

in which Eij is the dictionary model that maps
from descriptions in lj to words in li.

The above defines the basic model variants
of BilDRL that learns on a single dictionary.
For word representations in the learning process,
BilDRL initializes the embedding space using
pre-trained word embeddings. Note that, without
adopting the joint learning strategy in Section 3.4,
the learning process does not update word embed-
dings that are used to represent the definitions and
target words. While other forms of loss such as
cosine proximity (Hill et al., 2016) and hinge loss
(Ji et al., 2017) may also be used in the learning
process, we find that L2 loss consistently leads to
better performance in our experiments.

3.3 Bilingual Multi-task Learning

In cases where entries in a bilingual dictionary
are not amply provided, learning the above bilin-
gual dictionary on one ordered language pair may
fall short in insufficiency of alignment informa-
tion. One practical solution is to conduct a bilin-
gual multi-task learning process. In detail, given
a language pair (li, lj), we learn the dictionary
model Eij on both dictionaries Dij and Dji with
shared parameters. Correspondingly, we rewrite
the previous learning objective function as below,
in which D = Dij ∪Dji.

LMT
ij =

1

|D|
∑

(w,Sw)∈D
‖Eij(Sw)−w‖22 .

This strategy non-trivially requests the same
dictionary model to represent semantic transfer in
two directions of the language pair. To fulfill such
a request, we initialize the embedding space using
the BilBOWA embeddings (Gouws et al., 2015),
which provide a unified embedding space that re-
solves both monolingual and cross-lingual seman-
tic relatedness of words. In practice, we find this

simple multi-task strategy to bring significant im-
provement to our cross-lingual tasks. Note that,
besides BilBOWA, other joint-training bilingual
embeddings in a unified space (Doval et al., 2018)
can also support this strategy, for which we leave
the comparison to future work.

3.4 Joint Learning Objective
While above learning strategies are based on a
fixed embedding space, we lastly propose a joint
learning strategy. During the training process,
this strategy simultaneously updates the embed-
ding space based on both the dictionary model and
the bilingual word embedding model. The learn-
ing is through asynchronous minimization of the
following joint objective function,

J = LMT
ij + λ1(L

SG
i + LSG

j ) + λ2Ω
A
ij ,

where λ1 and λ2 are two positive hyperparameters.
LSG
i and LSG

j are the original Skip-Gram losses
(Mikolov et al., 2013b) to separately obtain word
embeddings on monolingual corpora of li and lj .
ΩA
ij , termed as below, is the alignment loss to min-

imize bag-of-words distances for aligned sentence
pairs (Si, Sj) in parallel corpora Cij .

ΩA
ij =

1

|Cij |
∑

(Si,Sj)∈Cij

dS(Si, Sj)

dS(Si, Sj) =

∥∥∥∥∥∥
1

|Si|
∑

wi
m∈Si

wi
m −

1

|Sj |
∑

wj
n∈Sj

wj
n

∥∥∥∥∥∥

2

2

The joint learning process adapts the embed-
ding space to better suit the dictionary model,
which is shown to further enhance the cross-
lingual learning of BilDRL.

3.5 Training
To initialize the embedding space, we pre-
trained BilBOWA on the parallel corpora Eu-
roparl v7 (Koehn, 2005) and monolingual cor-
pora of tokenized Wikipedia dump (Al-Rfou et al.,
2013). For models without joint learning, we use
AMSGrad (Reddi et al., 2018) to optimize the pa-
rameters. Each model without bilingual multi-task
learning thereof, is trained on batched samples
from each individual dictionary. Multi-task learn-
ing models are trained on batched samples from
two dictionaries. Within each batch, entries of
different directions of languages can be mixed to-
gether. For joint learning, we conduct an efficient
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multi-threaded asynchronous training (Mnih et al.,
2016) of AMSGrad. In detail, after initializing the
embedding space based on pre-trained BilBOWA,
parameter updating based on the four components
of J occurs across four worker threads. Two
monolingual threads select batches of monolin-
gual contexts from the Wikipedia dump of two lan-
guages for Skip-Gram, one alignment thread ran-
domly samples parallel sentences from Europarl,
and one dictionary thread extracts samples of en-
tries for a bilingual multi-task dictionary model.
Each thread makes a batched update to model pa-
rameters asynchronously for each term of J . The
asynchronous training of all threads keeps going
until the dictionary thread finishes its epochs.

4 Experiments

We present experiments on two multilingual tasks:
the cross-lingual reverse dictionary retrieval task
and the bilingual paraphrase identification task.

4.1 Datasets

The experiment of cross-lingual reverse dictio-
nary retrieval is conducted on a trilingual dataset
Wikt3l. This dataset is extracted from Wik-
tionary3, which is one of the largest freely avail-
able multilingual dictionary resources on the Web.
Wikt3l contains dictionary entries of language
pairs (English, French) and (English, Spanish),
which form En-Fr, Fr-En, En-Es and Es-En dic-
tionaries on four bridges of languages in total.
Two types of cross-lingual definitions are ex-
tracted from Wiktionary: (i) cross-lingual defini-
tions provided under the Translations sections of
Wiktionary pages; (ii) monolingual definitions for
words that are linked to a cross-lingual counterpart
with a inter-language link4 of Wiktionary. We ex-
clude all the definitions of stop words in construct-
ing the dataset, and list the statistics in Table 1.

Since existing datasets for paraphrase identi-
fication are merely monolingual, we contribute
with another dataset WBP3l for cross-lingual
sentential paraphrase identification. This dataset
contains 6,000 pairs of bilingual sentence pairs
respectively for En-Fr and En-Es settings. Within
each bilingual setting, positive cases are formed
as pairs of descriptions aligned by inter-language
links, which exclude the word descriptions in

3https://www.wiktionary.org/
4An inter-language link matches the entries of counterpart

words between language versions of Wiktionary.

Dictionary En-Fr Fr-En En-Es Es-En
#Target words 15,666 16,857 8,004 16,986
#Definitions 50,412 58,808 20,930 56,610

Table 1: Statistics of the bilingual dictionary dataset Wikt3l.

Positive Examples
En:Being remote in space.
Fr:Se trouvant à une grande distance.
En:The interdisciplinary science that applies theories and

methods of the physical sciences to questions of biology.
Es:Ciencia que emplea y desarrolla las teorias y métodos de

la fı́sica en la investigación de los sistemas biolgicos.
Negative Examples

En:A person who secedes or supports secession from a
political union.

Fr:Contrôle politique exercé par une grande puissance sur
une contre inféodée.

En:The fear of closed, tight places.
Es:Pérdida o disminución considerables de la memoria.

Table 2: Examples of bilingual paraphrases from WBP3l.

Wikt3l for training BilDRL. To generate negative
examples, given a source word, we first find its
15 nearest neighbors in the embedding space.
Within the nearest neighbors, we use ConceptNet
(Speer et al., 2017) to filter out the synonyms of
the source word, so as to prevent from generating
false negative cases. Then we randomly pick
one word from the filtered neighbors and pair
its cross-lingual definition with the English
definition of the source word to create a negative
case. This process ensures that each negative
case is endowed with limited dissimilarity of
sentence meanings, which makes the decision
more challenging. For each language setting,
we randomly select 70% for training, 5% for
validation, and the rest 25% for testing. Note
that each language setting of this dataset thereof,
matches with the quantity and partitioning of
sentence pairs in the widely-used Microsoft
Research Paraphrase Corpus benchmark for
monolingual paraphrase identification (Yin et al.,
2016; Das and Smith, 2009). Several examples
from the dataset are shown in Table 2. The
datasets and the processing scripts are available
at https://github.com/muhaochen/
bilingual_dictionaries.

4.2 Cross-lingual Reverse Dictionary
Retrieval

The objective of this task is to enable cross-lingual
semantic retrieval of words based on descriptions.
Besides comparing variants of BilDRL that adopt
different sentence encoders and learning strate-
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Languages En-Fr Fr-En En-Es Es-En
Metric P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR

BOW 0.8 3.4 0.011 0.4 2.2 0.006 0.4 2.4 0.007 0.4 2.6 0.007
CNN 6.0 12.4 0.070 6.4 14.8 0.072 3.8 7.2 0.045 7.0 16.8 0.088
GRU 35.6 46.0 0.380 38.8 49.8 0.410 47.8 59.0 0.496 57.6 67.2 0.604
ATT 38.8 47.4 0.411 39.8 50.2 0.425 51.6 59.2 0.534 60.4 68.4 0.629

GRU-mono 21.8 33.2 0.242 27.8 37.0 0.297 34.4 41.2 0.358 36.8 47.2 0.392
ATT-mono 22.8 33.6 0.249 27.4 39.0 0.298 34.6 42.2 0.358 39.4 48.6 0.414
GRU-MTL 43.4 49.2 0.452 44.4 52.8 0.467 50.4 60.0 0.530 63.6 71.8 0.659
ATT-MTL 46.8 56.6 0.487 47.6 56.6 0.497 55.8 62.2 0.575 66.4 75.0 0.687
ATT-joint 63.6 69.4 0.654 68.2 75.4 0.706 69.0 72.8 0.704 78.6 83.4 0.803

Table 3: Cross-lingual reverse dictionary retrieval results by BilDRL variants. We report P@1, P@10, and MRR on four
groups of models: (i) basic dictionary models that adopt four different encoding techniques (BOW, CNN, GRU and ATT); (ii)
models with the two best encoding techniques that enforce the monolingual retrieval approach by Hill et al. (2016) (GRU-
mono and ATT-mono); (iii) models adopting bilingual multi-task learning (GRU-MTL and ATT-MTL); (iv) joint learning that
employs the best dictionary model of ATT-MTL (ATT-joint).

gies, we also compare with the monolingual re-
trieval approach proposed by Hill et al. (2016).
Instead of directly associating cross-lingual word
definitions, this approach learns definition-to-
word mappings in a monolingual scenario. When
it applies to the multilingual setting, given a lexical
definition, it first retrieves the corresponding word
in the source language. Then, it looks for seman-
tically related words in the target language using
bilingual word embeddings. As discussed in Sec-
tion 3, NMT does not apply to this task due that it
cannot capture the multi-granular correspondence
between a sentence and a word.

Evaluation Protocol. Before training the mod-
els, we randomly select 500 word definitions from
each dictionary respectively as test cases, and
exclude these definitions from the training data.
Each of the basic BilDRL variants are trained
on one bilingual dictionary. The monolingual re-
trieval models are trained to fit the target words
in the original languages of the word definitions,
which are also provided in Wiktionary. BilDRL
variants with multi-task or joint learning use both
dictionaries of the same language pair. In the test
phase, for each test case (wi, Sj

w) ∈ Dij , the
prediction performs a kNN search from the defi-
nition encoding Eij(S

j
w), and record the rank of

wi within the vocabulary of li. We limit the vo-
cabularies to all words that appear in the Wikt3l
dataset, which involve around 45k English words,
44k French words and 36k Spanish words. To pre-
vent the surface information of the target word
from appearing in the definition, we have also
masked out any translation of the target word oc-
curring in the definition using a wildcard token
<concept>. We aggregate three metrics on test
cases: the accuracy P@1 (%), the proportion of

ranks no larger than 10 P@10 (%), and mean re-
ciprocal rank MRR.

We pre-train BilBOWA based on the original
configuration by Gouws et al. (2015) and obtain
50-dimensional initialization of bilingual word
embedding spaces respectively for the English-
French and English-Spanish settings. For CNN,
GRU, and attentive GRU (ATT) encoders, we
stack five of each corresponding encoding layers
with hidden-sizes of 200, and two affine layers are
applied to the final output for dimension reduction.
This encoder architecture consistently represents
the best performance through our tuning. Through
comprehensive hyperparameter tuning, we fix the
learning rate α to 0.0005, the exponential decay
rates of AMSGrad β1 and β2 to 0.9 and 0.999, co-
efficients λ1 and λ2 to both 0.1, and batch size
to 64. Kernel-size and pooling-size are both set
to 2 for CNN. Word definitions are zero-padded
(short ones) or truncated (long ones) to the se-
quence length of 15, since most definitions (over
92%) are within 15 words in the dataset. Training
is limited to 1,000 epochs for all models as well as
the dictionary thread of asynchronous joint learn-
ing, in which all models are able to converge.
Results. Results are reported in Table 3 in four
groups. The first group compares four different
encoding techniques for the basic dictionary mod-
els. GRU thereof consistently outperforms CNN
and BOW, since the latter two fail to capture the
important sequential information for descriptions.
ATT that weighs among the hidden states has no-
table improvements over GRU. While we equip
the two better encoding techniques with the mono-
lingual retrieval approach (GRU-mono and ATT-
mono), we find that the way of learning the dic-
tionary models towards monolingual targets and
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retrieving cross-lingual related words incurs more
impreciseness to the task. For models of the third
group that conduct multi-task learning in two di-
rections of a language pair, the results show sig-
nificant enhancement of performance in both di-
rections. For the final group of results, we in-
corporate the best variant of multi-task models
into the joint learning architecture, which leads
to compelling improvement of the task on all set-
tings. This demonstrates that properly adapting
the word embeddings in joint with the bilingual
dictionary model efficaciously constructs the em-
bedding space that suits better the representation
of both bilingual lexical and sentential semantics.

In general, this experiment has identified the
proper encoding techniques of the dictionary
model. The proposed strategies of multi-task and
joint learning effectively contribute to the precise
characterization of the cross-lingual correspon-
dence of lexical and sentential semantics, which
have led to very promising capability of cross-
lingual reverse dictionary retrieval.

4.3 Bilingual Paraphrase Identification
The bilingual paraphrase identification problem5

is a binary classification task with the goal to de-
cide whether two sentences in different languages
express the same meanings. BilDRL provides an
effective solution by transferring sentential mean-
ings to word-level representations and learning a
simple classifier. We evaluate three variants of
BilDRL on this task using WBP3l: the multi-task
BilDRL with GRU encoders (BilDRL-GRU-
MTL), the multi-task BilDRLwith attentive GRU
encoders (BilDRL-ATT-MTL), and the joint
learning BilDRL with with attentive GRU en-
coders (BilDRL-ATT-joint). We compare against
several baselines of neural sentence pair mod-
els that are proposed for monolingual paraphrase
identification. These models include Siamese
structures of CNN (BiCNN) (Yin and Schütze,
2015), RNN (BiLSTM) (Mueller and Thyagara-
jan, 2016), attentive CNN (ABCNN) (Yin et al.,
2016), attentive GRU (BiATT) (Rocktäschel et al.,
2016), and BOW (BiBOW). To support the rea-
soning of cross-lingual semantics, we provide the
baselines with the same BilBOWA embeddings.

5Paraphrases have similar meanings, but can largely dif-
fer in content details and word orders. Hence, they are essen-
tially different from translations. We have found that even the
well-recognized Google NMT frequently caused distortions
to short sentence meanings, and led to results that were close
to random guess by the baseline classifiers after translation.

Languages En&Fr En&Es
Metrics Acc. F1 Acc. F1
BiBOW 54.93 0.622 56.27 0.623
BiCNN 54.33 0.625 53.80 0.611
ABCNN 56.73 0.644 58.83 0.655
BiLSTM 59.60 0.662 57.60 0.637
BiATT 61.47 0.699 61.27 0.689

BilDRL-GRU-MTL 64.80 0.732 63.33 0.722
BilDRL-ATT-MTL 65.27 0.735 66.07 0.735
BilDRL-ATT-joint 68.53 0.785 67.13 0.759

Table 4: Accuracy and F1-scores of bilingual paraphrase
identification. For BilDRL, the results by three model
variants are reported: BilDRL-GRU-MTL and BilDRL-
ATT-MTL are models with bilingual multi-task learning, and
BilDRL-ATT-joint is the best ATT-based dictionary model
variant deployed with both multi-task and joint learning.

Evaluation protocol. BilDRL transfers each
sentence into a vector in the word embedding
space. Then, for each sentence pair in the train
set, a Multi-layer Perceptron (MLP) with a binary
softmax loss is trained on the subtraction of two
vectors as a downstream classifier. Baseline mod-
els are trained end-to-end, each of which directly
uses a parallel pair of encoders with shared param-
eters and an MLP that is stacked to the subtraction
of two sentence vectors. Note that some works use
concatenation (Yin and Schütze, 2015) or Manhat-
tan distances (Mueller and Thyagarajan, 2016) of
sentence vectors instead of their subtraction (Jiang
et al., 2018), which we find to be less effective on
small amount of data.

We apply the configurations of the sentence en-
coders from the last experiment to corresponding
baselines, so as to show the performance under
controlled variables. Training of a classifier is ter-
minated by early-stopping based on the validation
set. Following convention (Hu et al., 2014; Yin
et al., 2016), we report the accuracy and F1 scores.
Results. This task is challenging due to the hetero-
geneity of cross-lingual paraphrases and limited-
ness of learning resources. The results in Table 4
show that all the baselines, where BiATT con-
sistently outperforms the others, merely reaches
slightly over 60% of accuracy on both En-Fr and
En-Es settings. We believe that it comes down to
the fact that sentences of different languages are
often drastically heterogenous in both lexical se-
mantics and the sentence grammar that governs
the composition of words. Hence, it is not sur-
prising that previous neural sentence pair models,
which capture the semantic relation of bilingual
sentences directly from all participating words,
fall short at the multilingual task. BilDRL, how-
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ever, effectively leverages the correspondence of
lexical and sentential semantics to simplify the
task to an easier entailment task in the lexicon
space, for which the multi-task learning BilDRL-
ATT-MTL outperforms the best baseline respec-
tively by 3.80% and 4.80% of accuracy in both
language settings, while BilDRL-ATT-joint, em-
ploying the joint learning, further improves the
task by another satisfying 3.26% and 1.06% of ac-
curacy. Both also show notable increment in F1.

5 Conclusion and Future Work

In this paper, we propose a neural embedding
model BilDRL that captures the correspondence
of cross-lingual lexical and sentential semantics.
We experiment with multiple forms of neural
models and identify the best technique. The
two learning strategies, bilingual multi-task learn-
ing and joint learning, are effective at enhancing
the cross-lingual learning with limited resources,
and also achieve promising performance on cross-
lingual reverse dictionary retrieval and bilingual
paraphrase identification tasks by associating lex-
ical and sentential semantics. An important di-
rection of future work is to explore whether the
word-sentence alignment can improve bilingual
word embeddings. Applying BilDRL to bilingual
question answering and semantic search systems
is another important direction.
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Abstract

Recently, language models (LMs) or language
representation models are widely used in nat-
ural language understanding (NLU) tasks.
However, these LMs are usually trained on
large unlabeled text corpora, while the fine-
tuning process simply takes words or word-
pieces as model input. Because of the differ-
ences between language model and NLU task
objectives, the problem of lack of concern on
some key words exists. Thus in this paper,
we propose a method called reverse mapping
bytepair encoding, which maps named-entity
information and other word-level linguistic
features back to subwords during the encod-
ing procedure of bytepair encoding (BPE).
We employ this method to the Generative
Pre-trained Transformer (OpenAI GPT) (Rad-
ford et al., 2018) by adding a weighted linear
layer after the embedding layer. We also pro-
pose a new model architecture named as the
multi-channel separate transformer to evalu-
ate the effectiveness of the newly introduced
information by employing a training process
without parameter-sharing. Experiments on
Story Cloze, RTE, SciTail and SST-2 datasets
demonstrate the effectiveness of our approach.
Compared with the original results in GPT,
our approach gains 1.58% absolute increase on
Stories Cloze, 6.4% on RTE, 0.69% on SciTail
and 0.8% on SST-2.

1 Introduction

Recently, language models are widely used as the
feature extractor for many NLU tasks. Statistical
language models learn the joint probability func-
tion of sequences of words in a language (Bengio
et al., 2003). Trained on large corpora and differ-
ent domains give LMs generalization abilities, and
enable them to capture latent or deep senmantics.
Normally, statistical language models take the fol-

lowing objective to maximize:

L1(u) =
∑

i

logP (ui|ui−k, ..., ui−1; Θ) (1)

where k is the size of the context window, and the
conditional probability P is modeled using a neu-
ral network with parameters Θ.

However, this formal simplicity determines that
they can not deal well with the ambiguity of words
nor low-frequency words. In fact, low-frequency
words may appear once or little times in the whole
corpus, thus the embeddings of them may over-
fit or underfit the corpus. In practice, we usu-
ally truncate them from the vocabulary and re-
place them with an “UNK” label. In this situ-
ation, we partially lose their meanings. For ex-
ample, in “15 million tonnes of rubbish are pro-
duced daily in Cairo.”, the number “15” can hardly
be trained to gain its proper representation even
if it is replaced by a specific label representing
numbers. Besides, out of vocabulary (OOV) is
a big problem while predicting. Some kinds of
word segmentation technologies have been pro-
posed (Joulin et al., 2017; ray Su and yi Lee, 2017)
to solve these problems.

BPE (Sennrich et al., 2016) has been proposed
to handle these problems as well. It shows its pow-
erful effectiveness in many works (Sennrich and
Haddow, 2016; Radford et al., 2018; Devlin et al.,
2018). However, it is originally designed to handle
open-vocabulary problem in machine translation,
basing on the intuition that various word classes
are translatable via smaller units than words, for
instance names (via character copying or translit-
eration), compounds (via compositional transla-
tion), and cognates and loanwords (via phono-
logical and morphological transformations). Thus
compared with semantic characteristics, morpho-
logical and compounding characteristics are more
considered. The unique meanings of some proper

163



nouns are missing while simply applying it to
some NLU tasks. Consider the following textual
entailment example:

Example 1. t. Traditionally, the Brahui of the
Raisani tribe are in charge of the law and order
situation through the Pass area. This tribe is still
living in present day Balochistan in Pakistan.

h. The Raisani tribe resides in Pakistan.
t→h: entailment
BPE:
Brahui: bra hu i
Raisani: rai san i
Balochistan: bal o chi stan

In this example, proper nouns play an important
role, but they are divided into wordpieces shared
with other words. Especially they have common
pieces such as “i” and “o”. Therefore, inferring
from the encoded sequence can be quite difficult.

Apart from this, let us motivate the lack of
concern on some key words or phrases of such
method. Here is another example:

Example 2. t. Cairo is now home to some 15 mil-
lion people - a burgeoning population that pro-
duces approximately 10,000 tonnes of rubbish per
day, putting an enormous strain on public ser-
vices...

h. 15 million tonnes of rubbish are produced
daily in Cairo.

t→h: not entailment

In this case, “15 million tonnes” is the key
phrase while “15”, “million” and “tonnes” also ap-
pear in the context. Word-level or subword-level
information is obviously not enough.

To alleviate these issues, we propose a reverse
mapping bytepair encoding method to integrate
prior knowledge into subwords. The prior knowl-
edge mentioned here includes named-entity in-
formation, part-of-speech (POS) tags and depen-
dency parsing labels. Our method has two forms
and both of them modify the encoding procedure
of BPE. In the conventional form, firstly we tag
and parse the target sentence which needs to be
tagged with NER, POS taggers as well as a depen-
dency parser. After that, we handle the target sen-
tence with the original BPE algorithm. Note that
the taggers and the parser work on the word-level
while BPE works on the wordpiece-level. Finally,
we encode every wordpiece as a combination of
linguistic features of its parent word and itself. To
avoid over-reliance on the performance of external
tools and error propagation, we modify the former

as named-entity phrase based reverse mapping,
which adds named-entity phrases to the vocabu-
lary during the scanning process of the whole cor-
pus and encodes a wordpiece as the combination
of the named-entity phrase where the wordpiece
comes from and itself. We evaluate our method on
a set of NLU tasks by applying it to GPT. More
specifically, we add a weighted layer after the em-
bedding layer to get different weighted combina-
tions of the inputs. We also propose a new model
architecture named as the multi-channel separate
transformer to employ a training process without
parameter-sharing for wordpieces and additional
features. We evaluate our approach on two natural
language inference tasks (RTE, SciTail), a ques-
tion answering task (Story Cloze Test) and a clas-
sification task (SST-2), showing the benifits of our
approach.

2 Related Work

Improving natural language understanding re-
quires better techniques for modeling natural lan-
guage. There have been many researchers work-
ing on better capturing semantic and morpholog-
ical information of word vectors (Mikolov et al.,
2013a,b; Huang et al., 2012; Levy and Goldberg,
2014b; Pennington et al., 2014). Utilizing internal
information has been widely studied, and most of
these works employed structural information be-
tween words and smaller units (Chen et al., 2015;
Iacobacci et al., 2015; Bojanowski et al., 2017; Yu
et al., 2017; Xu et al., 2018). Another relative
research direction is to use external knowledge.
The researchers in Microsoft (Song et al., 2011)
employed a big and rich probabilistic knowledge-
base to machine learning algorithms, and got sig-
nificant improvement in terms of tweets cluster-
ing accuracy. However, such method needs huge
human and material resources to build up a high-
quality and extremely wide-coverage knowledge
base. Recently, a novel language representation
model called ERNIE (Zhang et al., 2019) has been
proposed. ERNIE introduces knowledge-related
tasks in the pre-training process. Besides, it uti-
lizes graph embedding methods to get the embed-
ded representation of entities. Compared with it,
our method does not rely upon external knowl-
edge bases and it can be a double-edged sword. In
addition, our method provides syntactic informa-
tion integration and allows principled integration
of named-entity information in an easier way.
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There is also a class of method, instead of re-
lying a lot on external knowledge, it takes advan-
tage of the linguistic features that exist in natural
language. Levy (Levy and Goldberg, 2014a) gen-
eralized the skip-gram model to include arbitrary
contexts by dependency parsing. The dependency-
based embeddings are less topical and exhibit
more functional similarity than the original skip-
gram embeddings. Multimodal representations of
chinese characters (ray Su and yi Lee, 2017) have
also been studied, and the research showed the ef-
fectiveness of glyph features in some cases. Sen-
nrich (Sennrich and Haddow, 2016) proposed an
approach to employ linguistic features for neu-
ral machine translation (NMT). These features in-
clude lemmas, subword tags, morphological fea-
tures, POS tags and dependency labels. Differ-
ent from us, they paid more attention on how to
improve NMT from the morphological level. Be-
sides, they did not consider named entities. An-
other work relevant to us is (Nallapati et al., 2016).
They proposed a feature-rich encoder to capture
keywords in summarization. Their model employs
a word-level vocabulary, and the words are embed-
ded by concatenating all kinds of features includ-
ing POS, NER tags and discretized TF and IDF
values. Different from them, our approach works
on the subword level and leverages linguistic fea-
tures at the semantic level.

There are many kinds of neural networks that
can deal with NLU tasks. Recently, pre-trained
language models or language representation mod-
els have been widely used and these works got sig-
nificant improvements (Peters et al., 2018; Rad-
ford et al., 2018; Devlin et al., 2018). Trained
on large corpora will inevitably face the big-
vocabulary problem and the OOV problem. Thus
researchers have proposed several methods to han-
dle them. FastText (Joulin et al., 2017) employed
n-grams thus it could predict the zero-shot word
embeddings. However, n-gram is an arbitrary
method of word segmentation. Sennrich (Sennrich
et al., 2016) adapted the original byte pair en-
coding (BPE) compression algorithm to NMT and
got significant success. This method iteratively
merges most frequent adjacent characters or char-
acter sequences in a word until it can not be done,
based on the well learned token rank. Therefore
it can encode any word with a pre-learned token
vocalulary. We give an illustration as Figure 1,
showing the ranking process of BPE. GPT (Rad-

ford et al., 2018) applied BPE to its training pro-
cess and got impressive achievements in a series
of NLU tasks. Due to the greedy nature of BPE
algorithm, the results produced by BPE are deter-
ministic, resulting in insufficient robustness in ma-
chine translation. Kudo (Kudo, 2018) located this
problem and proposed a subword regularization
method to handle it. He trained the NMT model
with multiple subword segmentations generated in
a probability manner and got improvements espe-
cially on low resource and out-of-domain settings.
This study provides an interesting insight, but we
argue that it may not bring significant improve-
ment in NLU tasks. In fact, BPE is proposed to
model open-vocabulary translation in NMT, which
is inconsistent with the goal of some natural lan-
guage understanding tasks. That motivates us to
start our work.

aaabdaaabac

ZabdZabac
Z=aa

ZYdZYac
Y=ab
Z=aa

The byte pair “aa” occurs most often, so it can be replaced by “Z”, which doesn’t 
appear in the corpus.

Similarly, replace “Ab” with “Y”.

XdXac
X=ZY, Y=ab, Z=aa

Finally, we got the sequence that can not be compressed further because there are 
no pairs of bytes that occur more than once.

Figure 1: Ranking process of bytepair encoding.

3 Methods

In this section, we introduce our reverse mapping
bytepair encoding method and the procedure of
applying it to GPT. The reverse mapping bytepair
encoding has two forms: label based (LB-BPE)
and named-entity phrase based (NPB-BPE). Fig-
ure 2 provides a visual illustration. We employ
them to the fine-tuning process of GPT by adding a
weighted layer after the embedding layer. Besides,
we propose a multi-channel separate transformer
(MCST) to evaluate the utility of introduced fea-
tures and give some insights into the semantic cap-
ture capabilities of the transformer. The model ar-
chitecture is shown in Figure 3.
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LB-BPE
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Figure 2: “tonnes” is encoded to be two tokens: “ton”, “nes〈/w〉”. (Left) LB-BPE result. Each token consists
of four parts: token, NER label, synactic dependency label and POS tag. Words in the original text pass their
linguistic features to the tokens generated from them. (Right) NPB-BPE∗ result. Each token consists of two parts:
token and corresponding entity.
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Figure 3: (Left) Parameter-sharing training procedure. (Right) Multi-channel separate transformer. Language
model loss is only generated by the left transformer. The input of the task specific head is the sum or concatenation
of both transformers outputs.

3.1 Label Based Reverse Mapping Bytepair
Encoding

We extend a token t generated by BPE to four
parts {t, tpos, tner, tdep}, where t is the same as
the original encoded token in BPE, tpos is the POS
tag of the word which generates this token, sim-

ilar with tner and tdep. Not all words are tagged
with named-entity labels, therefore we tag these
tokens without NER labels as “NaN”. We regard
tpos, tner, tdep as additional features that could
not be captured fully by language models. Table
1 shows the amount of features of various types.
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Feature type Amount
NER 20
POS 19
DEP 51

Table 1: Amount of different types of features.

Schemes come from Spacy Annotation Specifi-
cations1. We use spaCy2 to tokenize, tag and parse
the datasets during our experiments. We simply
use the dependency labels instead of the whole de-
pendency parsing tree because of two reasons: one
is it brings complex changes to the input architec-
ture, the other is that we assume the transformer
architecture has the ability to establish some kinds
of patterns to capure the dependencies between to-
kens generated by BPE.

3.2 Named-entity Phrase Based Bytepair
Encoding

Algorithm 1: Encoding process for NPB-
BPE

Input :
Given sentence S;
Pretrained lookup table T for tokens;
Lookup table Tne for named-entity phrases;
NER Scheme Θ := {B,I,O};

Output:
Encoded sequence S′;

1 Current named-entity token array e;
2 for each word w ∈ S do
3 Step1. if NER(wi) ∈ {B,I} then
4 Append wi to e;
5 i++;
6 Back to Step1;
7 end
8 else
9 e str := ARR2STR(e)

10 if e str 6∈ Tne then
11 Append e str to Tne;
12 end
13 for t′ ∈ BPE(e str) do
14 Append (t′, e str) to S′;
15 end
16 Empty e;
17 for t ∈ BPE(w) do
18 Append (t, “ UNE ”) to S′;
19 end
20 end
21 end

As we mentioned in Introduction 1, some
key words are low-frequency. Such as a per-
son name “Kevin Federline”, it can be encoded

1https://spacy.io/api/annotation# title
2https://spacy.io/

as “kevin〈/w〉”, “feder” and “line〈/w〉”, and the
meaning will be changed. Passing the keyword
information to tokens is a simple and feasible ap-
proach to solve this problem. There are many
ways of defining which words are key words and
thus the problem can be defined as following:

Definition 1. Find an algorithm A, ∀k∈S, A(k) =
1 if k is a key word, else A(k) = 0.

where S represents a sentence.
This is a two-category classification problem.

In fact, these key words usually perform as peo-
ple’s names, organizations or other types of named
entities. Therefore, we choose a NER algorithm3

as algorithm A and we modify the encoding pro-
cess of BPE algorithm as algorithm 1 to pass the
entity attribute to tokens. By reverse mapping
named-entity words or phrases appeared in the
corpus back to BPE tokens, key information has a
way to be preserved. Some kinds of named entities
(ep. DATE, TIME, PERCENT, MONEY, QUAN-
TITY, ORDINAL, etc) contain numbers and they
usually express general attributes, such as “22-
year-old”. We add a switch in practice to control
whether processing these words with NPB-BPE or
not.

The main difference between LB-BPE and
NPB-BPE is that LB-BPE makes ordinary use of
additional semantic information that can not be
easily captured by statistical language models in a
specific language, while NPB-BPE provides a way
to share important concepts within a corpus.

3.3 Training Process

GPT is followed by many studies for its excel-
lent generalization performance and we will give
a brief introduction to it in the first subsubsec-
tion. Due to the expensive cost of pre-training, we
reuse the OpenAI pre-trained language model4 pa-
rameters, and we train new embeddings and fine-
tune all parameters during the fine-tuning process.
Figure 4 shows the modified preprocess proce-
dure. Considering the input is enhanced by dif-
ferent kinds of new features, we propose two dif-
ferent processes for training.

Generative Pre-trained Transformer
The Generative Pre-trained Transformer (Radford
et al., 2018), also known as OpenAI GPT or called
as GPT, is a language representation model which

3https://spacy.io/api/entityrecognizer
4https://github.com/openai/finetune-transformer-lm
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Figure 4: The preprocess procedure of RTE dataset by LB-BPE (NER+POS). Others are similar with this example.

is pre-trained on large corpora and fine-tunes all
pre-trained parameters on the downsteam tasks.
Its main architechture was originally described in
(Vaswani et al., 2017). Unless otherwise stated,
the GPT mentioned in this paper refers to a 12-
layer decoder-only transformer with masked self-
attention heads (768 dimensional states and 12 at-
tention heads). For the position-wise feed-forward
networks, we use 3072 dimensional inner states.
Other hyperparameters are set as well as the GPT
paper (Radford et al., 2018) for comparison.

Sharing Parameters

With this method, we treat additional features like
positional encoding. We add these tags to the vo-
cabulary and random initialize their embeddings
in the embedding layer, thus the input can be de-
scribed as following:

h0 = wwtEt + wwpEp +
∑

i∈Clf

wwliEli (2)

where Et, Ep, Eli represent the token embed-
ding matrix, position embedding matrix and lin-
guistic feature embedding matrix, Cl is the col-
lection of all types of linguistic features and wwt,
wwp, wwli are the corresponding weight scalars.
The following data flow is the same as GPT (Liu
et al., 2018). We use the following objective to
minimize:

L3(C) = L2(C) + λL1(C) (3)

where C represents the labeled dataset, L2(C)
is the cross entropy loss of classification got on
C, L1(C) is the cross entropy loss of the language
model got on C and λ is a weight parameter be-
tween 0 and 1.

Multi-channel Separate Transformer
GPT uses a multi-layer transformer decoder as
the language model, and it learns patterns in the
language by simply observing the token-level se-
quences. In this part, we use LB-BPE to encode
sequences and with this method we have multi-
ple input channels. We employ two stand-alone
multi-layer transformer decoder to separate the pa-
rameters learned on different perspectives. One
is the 12-layer pre-trained transformer released by
OpenAI GPT, and the other is an entirely new one
which has different amount of layers with the for-
mer and takes responsibility for linguistic features.

4 Experiments and Analysis

4.1 Setup
We follow the model hyperparameters mentioned
in the GPT (Liu et al., 2018) paper. We use learned
position embeddings with variable length depend-
ing on downstream tasks. We perform a pilot ex-
periment and the result shows that it is almost the
best to set the weighted layer as 1.0 for each chan-
nel. We use a 16G ASPEED Graphics Family (rev
30) card for training.

4.2 Supervised Fine-tuning
Datasets
Story Cloze Test Story Cloze Test
(Mostafazadeh et al., 2017) is a new com-
monsense reasoning framework for evaluating
story understanding, story generation, and script
learning. This test requires a system to choose
the correct ending to a four-sentence story. We
choose it as a part of our evaluation corpora
because it requires the model to capture rich
linguistic phenomena.

RTE and SciTail RTE (Bentivogli et al., 2009)
and SciTail (Khot et al., 2018) are language in-
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Model Story Cloze(Acc%) RTE(Acc%) SciTail(Acc%) SST-2(Acc%)
jose.fonollosa’s model 87.60 - - -
BiLSTM+ELMo+Attn - 58.9 - 90.4

BigBird - - 93.84 -
GPT 86.5 56.0 88.3 91.3
NER 87.39 61.6 88.90 91.2

NER+POS 88.08 62.1 88.33 91.1
NER+DEP 87.55 62.0 88.99 90.2

NER+POS+DEP 87.07 60.4 87.54 92.1
POS 84.07 62.4 88.15 92.1

POS+DEP 86.05 61.5 87.63 91.7
DEP 86.48 62.0 87.82 91.3

NPB-BPE 87.76 58.8 88.43 91.1
NPB-BPE∗ 87.39 62.3 87.16 91.9

The details of the models for comparison in this table can be found in the leaderboards of the cor-
responding dataset official websites. Each row in the second block represents a LB-BPE result with
different combination of features. NER represents using named-entity labels, POS represents part of
speech tags and DEP represents synactic dependency parsing tags. NPB-BPE∗ represents filtering
out named entities within these types (DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL).

Table 2: Reverse mapping bytepair encoding results on Story Cloze Test, RTE, SciTail and SST-2.

ference also called textual entailment tasks which
given a text t and a hypothesis h, t entails h, if,
typically, a human reading t would infer that h is
most likely true. The relation is directional. These
two datasets differ from each other in size and do-
main.

SST-2 SST-2 (Socher et al., 2013) is related to
sentiment analysis, containing 56.4k movie re-
views and each of them has a binary label.

Evaluation of Label Based Reverse Mapping
Bytepair Encoding

We evaluate LB-BPE on these datatsets and con-
duct multiple controlled trials based on different
combinations of linguistic features by employing
the parameter-sharing training procedure. De-
tails is described in Table 2. The result shows
that incorporating named-entity features usually
works well, while utilizing POS tags sometimes
can bring significant performance improvement.
Besides, it is not a good way to use external fea-
tures as many as possible, most likely because of
the error propagation. However, combinations of
named-entity information and others may bring a
small boost. Compared with GPT, we achieved an
absolute increase of 1.58% on Story Cloze Test,
6.4% on RTE, 0.69% on SciTail and 0.8% on SST-
2 at our best.

Evaluation of Named-entity Phrase Based
Bytepair Encoding
We evaluate NPB-BPE with the parameter-sharing
training procedure. Details are shown in Table 2.
Overall, NPB-BPE improves the performances for
all datasets while not overly relying on external
features. On Story Cloze Test, both kinds of NPB-
BPE are not worse than LB-BPE (NER). On RTE,
NPB-BPE∗ nearly achieves the best performance
of LB-BPE. Little performance boost is shown on
SciTail, probably because sentences in SciTail are
more focused on the expressions of concepts and
knowledge, and thus key words are more about
verbs and nouns rather than named entities. How-
ever, as we unexpected, applying NPB-BPE∗ to
SST-2 gains a 0.6% absolute increase. We also
collect the statistics of named entities on these
datasets. Details is shown in Table 3. We ob-
serve that there is a positive correlation between
named entities percentage and performance im-
provement.

Evaluation of Different Training Processes
The parameters in GPT are all the same for all
wordpiece embeddings in the vocabulary. How-
ever, linguistic features contain different levels
of information compared with words and word-
pieces. Thus we evaluate two different training
processes mentioned in Section 3.3. As for MCST,
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Dataset Amount Percentage(%) Top10(non-numeric)
Story Cloze 2354 7.3 (“One day”, 241), (“John”, 196), (“Amy”, 195),

(“Bob”, 189), (“Joe”, 156), (“Tom”, 152), (“Tim”, 148),
(“Sam”, 114), (“Gina”, 101), (“Jim”, 95)

RTE 15548 21.9 (“U.S.”, 294), (“Iraq”, 262), (“US”, 243), (“the
United States”, 180), (“China”, 166), (“today”, 150),
(“France”, 148), (“Monday”, 144), (“American”, 144),
(“Bush”, 142)

SciTail 7631 4.8 (“Earth”, 670), (“earth”, 632), (“Sun”, 358), (“Mer-
cury”, 262), (“Oxygen”, 139), (“Hydrogen”, 134),
(“Venus”, 103), (“Jupiter”, 101), (“Weight”, 101),
(“Mars”, 92)

SST-2 728 1.6 (“american”, 141), (“years”, 128), (“summer”, 122),
(“the year”, 119), (“year”, 90), (“today”, 87), (“2002”,
60), (“this year”, 54), (“two hours”, 53), (“saturday”,
51)

Table 3: Statistics of named entities on Story Cloze Test, RTE, SciTail, SST-2.
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Figure 5: Accuracy of LB-BPE+MCST on all datasets. The red dotted line in each subgraph represents the best
result of LB-BPE+GPT got on that dataset.

we perform a series of experiments based on dif-
ferent amount of blocks in the new transformer.
As shown in Figure 5, employing non-parameter-
sharing training process will generally reduce the
performance. We infer that it is probably due to
the lack of pre-training procedure for newly intro-
duced features. However, MCST predicts labels
based on both transformers while the accuracy
rates do not drop too much, which suggests that
the newly introduced linguistic features work at
least to some extent and the transformer architec-

ture can capture some potential semantic informa-
tion from them independently. Besides, MCSTs
trained with 2, 4, 6 layers in the new transformer
perform best in our experiments, and they gain
similar or even better results compared with the
parameter-sharing training process, which means
training newly introduced features doesn’t need
as many parameters as the original transformer.
The main reason is that linguistic features act at a
higher level compared with words and wordpieces.
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[START] traditionally</w> ,</w>

tribe</w> are</w> in</w> charge</w> of</w>

through</w> the</w> pass</w> living</w> in</w>

present</w> day</w>

the</w> bra i</w>hu rai san i</w>

the</w> law</w> and</w> order</w> situation</w>

area</w> .</w> this</w> tribe</w> is</w> still</w>

bal o chi stan</w> in</w> pakistan</w> .</w> [SEP] the</w> rai san i</w>

tribe</w> resides</w> in</w> pakistan</w> .</w> [CLS]

of</w> the</w>

Figure 6: Attention weights of a textual entailment case in RTE. Yellow parts represent the attention weights of
our approach. Green arrows and boxes represent the weight changes compared with GPT.

4.3 Case Study

We compare the attention weights of GPT and our
LB-BPE (NER+POS) approach in a textual intail-
ment example as shown in Figure 6. GPT labels
it as not entailment while our approach labels it as
entailment which is the right answer. The atten-
tion weights come from the same attention head in
the last transformer block. Changes in some parts
lead to the correct answer.

5 Conclusion and Future Work

In this paper, we introduce a simple approach
called reverse mapping bytepair encoding to im-
prove natural language understanding based on
pre-trained language models. The reverse map-
ping bytepair encoding has two forms: One is
label based and the other is named-entity phrase
based. Both forms introduce extra information
to the tokens generated by BPE while the for-
mer ordinarily employs linguistic features, and the
latter provides a way to share concepts through
named-entity phrases. In addition, in the second
form, we summarize the problem we are trying
to solve into a two-category problem that judges
whether a word is a key word. By applying them
to the fine-tuning process of GPT, we gain about 1-
6% improvement on downsteam NLU tasks. We
also propose a new model architecture named as
MCST and experiments based on it shows its ef-
fectiveness in some cases. Besides, the experi-
mental results show that linguistic features usually
perform at a higher level compared with words and
wordpieces. It is quite easy to apply our method to
the existing language models.

There could be several directions to be explored
for future works. Language models have many

forms, we only test our approach on GPT, a fol-
low up direction is finding if it is generic enough.
In this paper, we don’t employ pre-training for lin-
guistic features, it might be better by doing this.
There are several researches focusing on incor-
porating knowledge into systems to improve their
performances, thus we are looking forward to find-
ing a smooth way to utilize named entities with
prior knowledge or knowledge graphs.
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Abstract

Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013) is
a typologically-informed, broad-coverage se-
mantic annotation scheme that describes
coarse-grained predicate-argument structure
but currently lacks semantic roles. We argue
that lexicon-free annotation of the semantic
roles marked by prepositions, as formulated
by Schneider et al. (2018), is complementary
and suitable for integration within UCCA. We
show empirically for English that the schemes,
though annotated independently, are compati-
ble and can be combined in a single semantic
graph. A comparison of several approaches to
parsing the integrated representation lays the
groundwork for future research on this task.

1 Introduction

A common thread in many approaches to mean-
ing representation is the idea that abstract struc-
tures can describe semantic invariants that hold
across paraphrasing or translation: for example,
semantic dependency relations capturing predicate-
argument structures or other types of semantic
relations that can be annotated within sentences
(e.g., Böhmová et al., 2003; Oepen et al., 2015;
Banarescu et al., 2013). These annotation schemes
can be distinguished by various design principles
such as language-specificity; the level of granu-
larity of meaning elements; the reliance on mor-
phosyntactic criteria to define the units of semantic
annotation; the extent to which human annotators
specify semantics from scratch; and many others
(Abend and Rappoport, 2017).

In this work, we seize an opportunity to unite
two previously unrelated—yet complementary—
meaning representations in NLP. On the one
hand, Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013) provides
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Figure 1: Semantic parse illustrating the integrated rep-
resentation proposed here. Solid edges are the UCCA
parse’s primary edges, and the dotted edge is a re-
mote edge. Dashed arrows show how SNACS labels
(green small caps) have been mapped onto edges of the
UCCA structure from the prepositions on which they
were originally annotated. The following UCCA cat-
egories are abbreviated: A = Participant, R = Relator,
H = Parallel scene, Q = Quantifier, Fxn = Function.

a skeletal structure of semantic units and rela-
tions, with typologically-based criteria for mark-
ing predicate-argument structures, based on “Basic
Linguistic Theory”, an established framework for
typological description (Dixon, 2010/2012). On
the other hand, a recent approach to annotation
of English prepositions and possessives (SNACS;
Schneider et al., 2018) provides an inventory of
labels that characterize semantic relations. UCCA
and SNACS follow similar design principles: they
are both language-neutral, with general-purpose
coarse-grained labels rather than lexically-specific
senses or roles; and they are both designed for
direct semantic annotation, without requiring a syn-
tactic parse as a foundation. The philosophy is that
these properties will facilitate annotation in many
languages and domains that may lack detailed lexi-
cons. But UCCA makes only the most rudimentary
role distinctions, while SNACS annotations thus far
have not made explicit which elements are being
brought into a semantic relation (§2).

We propose a design that achieves the best of
both worlds, as illustrated for an English example
in figure 1. Taking advantage of an English corpus
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that has been separately annotated for both UCCA
and SNACS, as well as dependency syntax, we
show that the SNACS role labels can be automat-
ically integrated within UCCA structures over a
range of syntactic constructions (§3). Then, we use
this corpus to test pipelined, multitask, and joint
approaches to parsing the integrated representation
(§4). Our findings (§5) set the stage for future En-
glish parsers as well as multi- and cross-lingual
extensions. §6 situates this work in the broader
landscape of computational meaning representa-
tions.

Our main contributions are:
• a typologically-oriented broad-coverage lin-

guistic representation that captures predicate-
argument structure and semantic roles, without
reference to any lexicon;

• a procedure to integrate UCCA and (token-
level) SNACS annotations for particular sen-
tences, mapping the SNACS labels to the ap-
propriate edge in the UCCA structure, by which
we create an integrated gold standard; and

• initial results for the integrated parsing task,
comparing several alternatives that couple the
learning/prediction of UCCA and SNACS in var-
ious ways. We find that optimizing for the two
objectives jointly works best.

Data and code from these experiments are open-
sourced to facilitate future work on this task.1

2 Background

To better understand the distinctions that we expect
to be captured by such a framework, consider the
following examples:

(1) a. Her picture was on the wall.
b. Her speech was on security.

Despite parallel syntax and overlapping vocabulary,
the sentences above vary in numerous aspects of
meaning:
• The NPs her picture and the wall denote entities

that stand in a certain locative relation to each
other, as signaled by the preposition on.

• In contrast, the relation between her speech
(which is an event, not an entity) and security is
a different one, TOPIC, despite being signaled by

1Integrated data: https://github.com/jakpra/
ucca-streusle; parser code: https://github.com/
jakpra/tupa; the integration routine and evaluation scripts
are being released as part of the UCCA PyPI package and
under https://github.com/jakpra/ucca.

the same preposition.
This is made explicit in the German translations

of these sentences:

(2) a. Ihr
Her

Bild
picture

hing
hung

an
at

der
the

Wand
wall

.

.

b. Ihre
Her

Rede
speech

war
was

über
over

Sicherheit
security

.

.

In addition, the possessive pronoun her (ihr/ihre)
signals a prototypical POSSESSION relation in (1a)/
(2a), but the core role of AGENT in (1b)/(2b).

As we can see, the natural lexical choices for
expressing the LOCATION relation between the pic-
ture and the wall and the TOPIC relation in German
have diverging literal translations to English. Thus,
the empirical study of cross-linguistic commonal-
ities and differences between form and meaning
calls for a common metalanguage to describe the
relations between mentioned events and entities, as
marked by case and adpositions.

Our approach to such a representation consists
of utilizing two existing semantic representations.
UCCA (§2.1) captures the structure of predicate-
argument and head-modifier relations at a high
level, crucially distinguishing units that evoke a
scene (event or state) from other units. SNACS
(§2.2) disambiguates semantic roles as signaled by
adpositions and possessives, but only directly an-
notates a function word, without formalizing the
semantic relation that it mediates.2 Both of these
schemas have the guiding principle to be language-
independent, eschewing a lexicon and defining a
closed inventory of semantic categories.

2.1 UCCA

UCCA is a semantic annotation scheme rooted
in typological and cognitive linguistic theory. It
aims to represent the main semantic phenomena
in the text, abstracting away from syntactic forms.
UCCA’s foundational layer, which is the only layer
annotated over text so far,3 reflects a coarse-grained
level of semantics that has been shown to be pre-
served remarkably well across translations (Sulem
et al., 2015). It has also been successfully used for
improving text simplification (Sulem et al., 2018b),

2Note that mapping between syntactic and semantic re-
lations varies by construction: in She spoke on security, the
semantic head of the relation between spoke and security corre-
sponds to the syntactic head (the verb), whereas in Her speech
was on security, UD treats security as the syntactic head (§3).

3Prange et al. (2019) have proposed and piloted a corefer-
ence layer that sits above the foundational layer.
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as well as to the evaluation of a number of text-
to-text generation tasks (Birch et al., 2016; Sulem
et al., 2018a; Choshen and Abend, 2018).

Formally, UCCA structures are directed acyclic
graphs over units (nodes covering a subset of to-
kens). Atomic units are the leaves of the graph:
individual tokens or unanalyzable MWEs. Nonter-
minal units represent larger semantic constituents,
such as scenes and compositional participants/
modifiers. The example in figure 1 has 5 nonter-
minal units. Each unit (save for the root) has a
single incoming primary edge, and may also have
incoming reentrant remote edges to express shared
argumenthood. The primary edges of a UCCA
structure thus form a tree, which along with the
remote edges, forms a DAG.4

Edges are labeled with one or more categories
indicating a kind of semantic relationship. The
small set of categories includes State and Process
for static or dynamic scene predicates, respectively;
Participant, Time, and Adverbial for dependents
of scenes; Center for the head of a non-scene unit
(usually an entity); and Elaborator and Quantity
for modifiers of entities. Scenes can be semantic
dependents (Participant of another scene, Elabora-
tor of a non-scene). Multiple scenes at the same
level are called Parallel Scenes, and connectives
between them are Linkers.

UCCA makes a distinction between different
functions of prepositions, the most common cases
of which are: (1) phrasal verbs (e.g., “give up”),
annotated as internally unanalyzable; (2) linkers be-
tween scenes; e.g., in figure 1, “after” links the go-
ing to ohm scene, and the reading scene); (3) main
relations in scenes (e.g., “The apple tree is in the
garden”); and (4) case markers within a scene or
a participant, or Relators in UCCA terms (e.g., in
figure 1, “to” and “of” are such markers).

However, apart from distinguishing temporal
modifiers, the UCCA scheme does not provide any
semantic role information: thus the analyses of
“the dark wizard defeated by Gandalf” and “the dark
wizard’s defeat of Gandalf” are nearly isomorphic—
obliterating the distinction between agents and pa-
tients in the semantics—though the grammatical en-
coding of the noun phrases in question (subject, by-
PP, possessive, of-PP) leaves no ambiguity about
the intended roles to a human reader.

4There is also the capability to annotate implicit units, but
these are ignored in the standard evaluation and we do not
address them here.

2.2 SNACS

SNACS is an inventory of 50 roles/relations used to
disambiguate adpositions and possessives in multi-
ple languages, including English (Schneider et al.,
2018, 2019), Mandarin Chinese (Zhu et al., 2019),
and to a lesser extent, Korean, Hindi, and Hebrew
(Hwang et al., 2017). Many of the SNACS labels,
such as AGENT, THEME, and TOPIC, are derived
from VerbNet’s (Kipper et al., 2008) core roles
of predicates. (Others, such as QUANTITY and
WHOLE, are for entity modification.) But unlike
VerbNet, FrameNet (Fillmore and Baker, 2009),
and PropBank (Palmer et al., 2005), SNACS does
not require a language-specific predicate lexicon
(hence Schneider et al. (2018) use the term “super-
senses”, which we adopt in the remainder of this
paper)—and is therefore compatible with UCCA’s
design principle of crosslinguistic applicability.5

Currently, SNACS labels are applied directly
to lexical items, without marking up underlying
structure on either the subword (morphological) or
the sentence-structure level.

3 Automatically Integrating Semantic
Roles with UCCA

With the benefit of a jointly annotated corpus, we
examined the data and determined that the proper
placement of adpositional semantic role labels is
fairly deterministic given certain syntactic patterns
and their structural counterparts in UCCA. Here
we present a rule-based method for automatically
integrating token-based semantic role annotations
from SNACS into an UCCA graph as edge refine-
ments. We use these rules to construct a gold
standard for analysis and parsing of the integrated
representation. The rules we use, though empiri-
cally grounded in the English Web Treebank cor-
pus (Bies et al., 2012), make no specific assump-
tions about language or lexicon, as they solely de-
pend on UCCA, SNACS, and Universal Depen-
dencies (UD; Nivre et al., 2016) annotation, all
of which are frameworks designed to be cross-
linguistically applicable. Thus, we expect the rules
could be adapted to other languages with only mi-
nor changes if the underlying annotations are ap-
plied consistently, though this will require testing
in future work.

5SNACS also annotates the function of a preposition
token—its lexical semantics which may be distinct from its
semantic role (Hwang et al., 2017). Only scene roles are taken
into account in the present analysis.

176



scene non-scene

verb I went [ to ohm ] Quit [ with the
overstatements ] !

noun

Wonderful service Cheapest drinks
[ for large group ] [ in Keene ]
[ 10 minutes ] of [ No amount ] of sugar
paperwork and milk can mask it .

Table 1: Syntactic and semantic dimensions of canon-
ical adpositional phrase constructions. The adposi-
tion is bolded, the semantic head is italicized, and the
semantic dependent is [ bracketed ]. Rows indicate
whether the semantic head is nominal or verbal, while
columns differentiate between scene-evoking and non-
scene-evoking heads. Scene-evokers are underlined.

3.1 Data

We use the STREUSLE 4.0 corpus (Schneider and
Smith, 2015; Schneider et al., 2018), which covers
the reviews section from the English_EWT tree-
bank of UD 2.3, and lexical semantic annotations
for the same text.6 The same corpus has been an-
notated with UCCA by Hershcovich et al. (2019a).
We use the standard train/dev/test split for this
dataset (table 2). §3.3 shows the distribution of
linguistic phenomena at issue here.

3.2 Procedure

Given an UCCA graph with annotated terminals,
the integration routine projects a SNACS annota-
tion of a token onto the appropriate edge repre-
senting a semantic relation. This is illustrated by
dashed arrows in figure 1. The procedure starts
with a single terminal node, traversing the graph
upwards until it finds an edge that satisfies the crite-
ria given by the rules. The rules concern canonical
prepositional phrase modifiers, plus a variety of
syntactically or otherwise anomalous constructions,
such as copulas and adverbs.

3.2.1 Canonical PPs
The adpositional constructions annotated in
STREUSLE can be adnominal or adverbial mod-
ifiers and arguments, where both the nouns and
verbs that are being elaborated on can evoke ei-
ther scenes or non-scene units in UCCA (table 1).
First, we take a look at expressions marked with
Relators in UCCA, which generally correspond to
prototypical syntactic PPs.

Modifiers of scenes. In general, if the adposition
marks a modifier of a scene—i.e., the adposition

6UD: https://github.com/UniversalDependencies/
UD_English-EWT; however, as described in §5.1, we use
automatic dependency parses in all experiments, to emphasize
generalizability.

train dev test total
sentences 2,723 554 535 3,812
tokens 44,804 5,394 5,381 55,579
SNACS-annotated 4,522 453 480 5,455
successful integ. 4,435 447 473 5,355
matches synt. obj 3,924 403 438 4,765

Table 2: Quantitative analysis of adpositional construc-
tions in the corpus.

is the first or last terminal in the modifier unit’s
yield—the supersense should refine the role of that
dependent. The adposition’s parent unit is refined
by the supersense (“to ohm” in figure 1 and table 1;
“for large group” in table 1).

Modifiers of non-scenes. Where the adposition
relates a modifying (elaborating or quantifying)
unit to a non-scene unit, the supersense refines the
modifying unit. If the adposition is the first or last
terminal in a non-Center unit, that unit gets refined
(“in Keene” in table 1). This includes the case
when the adposition marks the predicate evoking
the scene of which the syntactic governor is a mod-
ifier (“with the overstatements”: “Quit” is treated
as an aspectual modifier of the “overstatements”
event).

For partitive constructions like “the top of the
mountain”, both the syntactic governor and object
of the adposition are marked as UCCA Centers,
indicating that they are on a semantically equal
level—neither one is clearly only modifying or
being modified by the other. In this case, the super-
sense refines the syntactic object of the adposition.

Quantities. Another special case is where the
adposition is labeled as QUANTITY, in which case
the unit for its syntactic governor7 (“10 minutes” in
table 1) receives the refinement: e.g., “[ some ] of
the reviews” in figure 1; in table 1, “[ 10 minutes ]
of paperwork” and “[ no amount ] of sugar” (the
bracketed expression is the QUANTITY).

3.2.2 Non-canonical phenomena

For other, less prototypical constructions involving
SNACS-annotated expressions, such as copulas,
linked parallel scenes, possessive pronouns, and id-
iomatic PPs, we have additional rules, summarized
in supplementary material (appendix A).

7We determine the head noun of the syntactic gov-
ernor and object using a script released together with
the STREUSLE corpus: https://github.com/nert-nlp/
streusle/blob/master/govobj.py. Since semantic UCCA
units do not always align with syntactic phrases, we choose
the UCCA unit containing the head token of the syntactic
governor or object in its yield.
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train dev test total
total primary edges 54,204 6,628 6,623 67,455
total remote edges 2,881 349 387 3,617
refined 4,473 449 479 5,401≥ 1 edge refined 38 2 6 46
remote edges 33 2 5 40
canonical 2,468 242 270 2,980

scene mod 2,124 219 254 2,597
non-scene mod 344 23 16 383

non-canonical 2,005 207 209 2,421
predication 167 19 23 209
linkage 461 54 41 556
intransitive adp. 261 19 23 303

scn-mod nscn-mod 189 72 14 5 20 3 223 80
approximator 14 0 1 15
possessive pron. 897 81 95 1,073

scn-mod nscn-mod 774 123 72 9 87 8 933 140
infinitival 66 18 11 95

scn-mod nscn-mod 15 51 0 18 1 10 16 79
PP idiom 139 16 15 170

Table 3: Refined UCCA edges by construction type,
according to our heuristic. (The non-canonical subcat-
egories are mutually exclusive.)

3.3 Quantitative Analysis

We run the integration routine on our dataset and
report statistics in tables 2 and 3. The heuristic
rules have a coverage of 98% – 99% (row ‘success-
ful integ.’ divided by row ‘SNACS-annotated’ in
table 2). 88.5% (train) – 92.6% (test) of refined
units contain the syntactic complement8 (table 2),
indicating that while syntax may often give a good
approximation to the semantic relations marked by
adpositions, a direct mapping from syntactic into
semantic structure is not always trivial.

In table 3, we see that among the canonically ad-
positional SNACS targets, the vast majority mark
scene modifiers (including participants). The vari-
ous non-canonical targets modify both scenes and
non-scenes, except for linkages and predications,
which naturally only operate at the scene-level,
and approximators, which only elaborate on non-
scenes. Similar to canonical adpositional construc-
tions, possessive pronouns and intransitive adposi-
tions have a tendency to modify scenes rather than
non-scenes. Those infinitivals that are not inter-
scene Linkers (which are counted under linkage)
are mostly non-scene modifiers.

Remote edges are only rarely affected by the
SNACS integration, so we exclude them from eval-
uation in §5.

8We use the term ‘syntactic complement’ to include head
tokens of prepositional objects and subordinate clauses, as
determined by the script mentioned above. If no prepositional
object is given in the STREUSLE corpus, we consider the
adposition itself and only count towards this metric if the
refined edge is its incoming preterminal edge.

3.4 Difficult Cases & Limitations

Our heuristics are based solely on universal seman-
tic and syntactic annotations, with no assumptions
about the grammar or lexicon of any specific lan-
guage. However, there are some limitations to the
rules that deserve discussion. Most importantly, as
many rules are highly sensitive to UCCA structure
and categories, errors or inconsistencies in human
and automatic UCCA annotation are likely to throw
the system off. This can be mitigated with strict
constraints and careful reviewing during manual
annotation, but cannot be fully avoided when ap-
plying the rules to automatically generated UCCA.

Multiword expressions (MWEs) are another
source of difficulty. Both UCCA and STREUSLE
mark idiomatic MWEs, but follow slightly differ-
ent guidelines. The heuristic rules actually recover
from most MWE misalignments; however, con-
structions that are MWEs in UCCA and contain
multiple SNACS targets, such as as-as compara-
tives, are not fully resolved by our heuristic, as we
cannot assign individual edge refinements for the
adpositions’ competing supersenses, given that we
start traversing the UCCA graph from the shared
preterminal node.

4 Models

We hypothesize that our combined (lexical and
structural) semantic representation is not only lin-
guistically plausible, but also useful in practice, as
the annotations on both levels should be informa-
tive predictors for each other. That is, we expect
that knowing what semantic role is signaled by an
adposition informs the underlying semantic struc-
ture of the sentence, and vice versa.

In order to test this hypothesis, we use our anno-
tated corpus to parse into the integrated representa-
tion. We consider several different ways of orches-
trating the prediction of the foundational UCCA
structure and the prediction of SNACS roles: mod-
eling SNACS and UCCA in (i) a pipeline, (ii) a
multitask setup with shared parameters, (iii) a sin-
gle joint model.

4.1 Baseline: TUPA

We choose the neural transition-based graph parser
TUPA (Hershcovich et al., 2017, 2018) as a strong
baseline for UCCA parsing. It was the official base-
line in the recent SemEval shared task on UCCA
parsing (Hershcovich et al., 2019b).

TUPA’s transition system is defined to address
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Figure 2: Average F1-score on the test set over 5 random restarts with error bars indicating standard deviation. ter
stands for terminal-level and rel for relation-level SNACS refinement (prediction or features).

the different formal structural phenomena exhib-
ited by UCCA structures, notably reentrancies and
discontiguous units. There are transitions for cre-
ating nonterminal nodes, and for attaching termi-
nal and nonterminal nodes to a primary or remote
(reentrant) parent with an UCCA category label on
the edge. The transition system is general enough
to be able to tackle parsing into a variety of for-
malisms, including SDP (Oepen et al., 2015) and a
simplified form of AMR (Banarescu et al., 2013);
Hershcovich et al. (2018) take advantage of this
flexibility in their multitask learning framework.

TUPA’s learning architecture largely follows that
of Kiperwasser and Goldberg (2016). It encodes
the parser’s configuration (buffer, stack and inter-
mediate graph structure) using BiLSTMs, and pre-
dicts the next transition using an MLP, stacked on
top of them. Token-based features, including POS
tags, dependency parses, as well as NER and or-
thographic features, are embedded in the BiLSTM.
Another set of features, taking into account the par-
tially constructed graph and previously predicted
transition types, is fed into the MLP directly.

4.2 Pipeline

We extend TUPA by providing the SNACS label as
a feature on the adposition token.9 This is added
in preprocessing in the same way as the syntactic
features listed above (including the BiLSTM en-
coding). At testing time, we obtain SNACS labels
for automatically identified targets from the SVM
model of Schneider et al. (2018).

4.3 Multitask

Hershcovich et al. (2018) showed that UCCA pars-
ing performance can be improved with multitask

9We report here only results for the setting in which a
supersense is added as a feature of the preposition token. We
also experimented with using it as a feature of the syntactic
object token—which often, but not always, heads the semantic
object (cf. table 2)—but got similar or worse results.

learning (MTL; Caruana, 1997) on several se-
mantic and syntactic parsing tasks. We examine
whether alternately optimizing two objectives, one
for UCCA and one for SNACS, leads to mutually
favorable biases via shared parameters. There are
multiple ways the two tasks can be orchestrated:
Independent MTL. This is the multitask learn-
ing (MTL) setup from Hershcovich et al. (2018),
where separate transition classifiers are trained on
different tasks simultaneously, sharing and mutu-
ally updating the BiLSTM encoding.10 We con-
sider as auxiliary tasks (a) SNACS scene role clas-
sification and (b) the decision of which UCCA
unit is refined by a SNACS-annotated token. We
encode these tasks as parsing tasks analogous to
UCCA parsing as follows: for each training item
in (a), we create a graph consisting of a root and
up to 4 children: the syntactic governor (if avail-
able), the preposition token, the syntactic object (if
available)—all of which have dummy edge labels—
as well as a dummy terminal carrying the SNACS
supersense. For each training item in (b), we con-
sider the full UCCA structure, but the edge labels
are simply boolean values indicating whether an
edge is refined or not.

We also train a separate model with SNACS clas-
sification as the primary task and UCCA parsing
and SNACS integration as auxiliary tasks, whose
predictions are integrated in postprocessing for the
combined evaluation (table 4), and which is evalu-
ated independently in table 5.
Dependent MTL. Here we train the SNACS task
in direct interaction with the UCCA parsing task.

10Note that our setup differs from that of Hershcovich et al.
(2018) in two key points: In contrast to the auxiliary tasks used
in the aforementioned work, SNACS prediction as formulated
by Schneider et al. (2018) is not a structured, but a (per-token)
classification task (however, as described above, we transform
it into an artificially structured task to make it conform with
the input format expected by TUPA). Furthermore, we are
interested in both UCCA and SNACS performance, expect-
ing both tasks to benefit from each other’s complementary
semantic content.
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system Refined: exact Refined: SNACS Refined: UCCA Refined: unlabeled Full
setup ref P R F P R F P R F P R F P R F
BL – 30.2 29.7 30.0 39.3 38.7 38.9 45.7 45.1 45.4 57.4 56.6 57.0 68.2 67.6 67.8

(oracle SNACS) 45.4 45.1 45.2 62.7 62.3 62.5 48.9 48.6 48.7 62.7 62.3 62.5 69.5 68.9 69.2
pipeline ter 32.9 32.4 32.6 42.0 41.3 41.6 49.1 48.2 48.6 60.9 59.9 60.4 68.8 68.6 68.7

(oracle SNACS) 53.5 53.2 53.3 70.4 70.0 70.2 57.0 56.7 56.9 70.4 70.0 70.2 71.0 70.7 70.8
indep MTL ter 26.0 22.2 23.9 34.3 29.3 31.6 53.1 45.4 49.0 68.7 58.6 63.2 67.1 66.6 66.8

dep MTL ter 34.4 30.3 32.2 43.1 38.0 40.4 53.9 47.5 50.5 66.9 59.1 62.7 68.4 68.1 68.2
rel 32.7 30.6 31.6 39.6 37.2 38.3 51.8 48.6 50.1 64.0 60.1 61.9 68.3 67.6 67.9

joint ter 34.5 34.3 34.2 44.6 44.3 44.4 53.9 53.5 53.7 69.0 68.5 68.7 69.5 68.7 69.1
rel 34.0 28.1 30.8 40.4 33.4 36.5 56.1 46.4 50.7 70.3 58.2 63.7 69.1 68.3 68.7

Table 4: Experimental results, averaged over 5 random restarts. The baseline system (BL) for UCCA is TUPA
version 1.3.9 without any modifications, retrained on our data. For the sake of generalizability and consistency
with our own preprocessing, we use system-predicted SNACS categories from the auto-id/auto-syntax setting from
(Schneider et al., 2018) in the BL and pipeline setups. Results where the system has access to gold SNACS
annotations on adposition tokens are shown in small font.

We enhance TUPA with a separate MLP that, given
an edge, classifies its supersense refinement (a null
category can be chosen to indicate an unrefined
edge). This network is run after each edge-creating
transition. Its input features are the same as for
the transition classifier, including the BiLSTM en-
coding. Since the two classifiers alternate in mak-
ing forward passes and updating the shared BiL-
STM, they indirectly contribute to each other’s in-
put. Here we have an option of where in the UCCA
structure to initially predict the supersense label. In
the terminal-level (ter) setting, we predict super-
sense refinements only on preterminal edges, and
then apply the integration rules (§3) as postprocess-
ing. In the relation-level (rel) setting, we parse
directly into the integrated representation. To do
this, we preprocess the training data with our inte-
gration routine. However, during parsing, there is
no explicit restriction that supersense-refined edges
must have an adposition token in their yield—thus
the model could, in theory, learn to predict ade-
quate role supersenses even when it is not signaled
by a lexical marker (though it will get penalized for
that in our current evaluation).

4.4 Joint

Finally, we train a single classifier on the integrated
data, concatenating UCCA and SNACS categories,
to predict parsing transitions using the new com-
pound categories. We revisit the terminal-level and
the relation-level settings introduced in §4.3.

5 Experiments

5.1 Experimental Setup

Preprocessing. We follow Hershcovich et al.
(2018) in obtaining automatic POS and NE tags,
as well as syntactic dependency relations using

SpaCy 2.0, and pretrained word vectors from fast-
Text.11 For all setups that use or predict SNACS
supersenses, we include the gold standard scene
role categories for pre-identified targets from the
STREUSLE 4.0 corpus in our training and devel-
opment data. In the test data we identify adposition
targets using the heuristics introduced in Schneider
et al. (2018). For the joint prediction setup (§4.3),
we also include the head terminal of the syntactic
governor and object for each adposition as features,
using the same heuristics as in §3.
Architecture and hyperparameters. For classi-
fying the next transition, TUPA uses a multi-layer
perceptron (MLP) with 2 hidden layers and a soft-
max output layer, on top of a 2-layer BiLSTM
(Kiperwasser and Goldberg, 2016). Building on
previous work, we train for 100 epochs, using the
stochastic gradient descent optimizer for the first
50, and AMS-grad (Reddi et al., 2018) for the re-
maining 50 epochs,12 and apply early stopping
post-hoc by keeping the model with the highest
performance on the dev set as the final model.
Evaluation. For our main evaluation in §5.2, we
compare our systems along five new metrics: a full
structure score which evaluates precision and re-
call of all units and requires both the UCCA and
SNACS categories to be correct, where applica-
ble; and refined UCCA, SNACS, exact, and unla-
beled scores which only consider SNACS-refined
units. Here, the integrated representation obtained
via the rule-based integration (§3.2) serves as the
ground truth. We also report the standard labeled
and unlabeled UCCA scores.13 In addition, for sys-

11https://spacy.io/; https://fasttext.cc/
12Except for the independent MTL setting, where we stop

training after the first 50 epochs.
13All of the above metrics are F-scores over the edges, as

in Hershcovich et al. (2017).
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system UCCA labeled UCCA unlabeled
setup ref P R F P R F
BL – 72.5 ±0.6 71.9 ±.4 72.2 ±0.4 88.5 ±0.3 87.6 ±.5 88.0 ±.3

pipeline ter 72.4 ±0.3 72.0 ±.6 72.2 ±0.4 88.3 ±0.2 87.8 ±.6 88.1 ±.4
(oracle SNACS) 73.0 ±0.4 72.6 ±.7 72.8 ±0.5 88.8 ±0.2 88.3 ±.7 88.5 ±.4
indep MTL ter 71.0 ±1.2 70.2 ±.9 70.6 ±1.0 87.9 ±1.0 86.9 ±.8 87.3 ±.7
dep MTL ter 71.8 ±0.4 71.3 ±.2 71.5 ±0.3 88.1 ±0.4 87.6 ±.2 87.8 ±.2

rel 71.8 ±0.3 71.0 ±.1 71.4 ±0.1 88.0 ±0.3 87.0 ±.4 87.5 ±.3
joint ter 72.8 ±0.3 71.9 ±.4 72.3 ±0.3 88.7 ±0.3 87.6 ±.4 88.2 ±.3

rel 72.5 ±0.4 71.5 ±.2 72.0 ±0.3 88.5 ±0.2 87.2 ±.3 87.8 ±.2

SNACS
P R F

58.5 58.3 58.4− − −− − −
48.2 ±5.6 41.4 ±4.8 44.6 ±5.2
60.1 ±1.8 53.3 ±2.0 56.5 ±1.9− − −
60.5 ±3.0 60.3 ±3.4 60.4 ±3.2− − −

Table 5: Results on the respective tasks of UCCA parsing and token-level SNACS prediction, averaged over 5
random restarts, with standard deviation reported next to each average. The baseline system (BL) for UCCA is
TUPA version 1.3.9 without any modifications, retrained on our data. The SNACS baseline system is the SVM
classifier of Schneider et al. (2018).

tems which predict a terminal-level SNACS label
(before it is mapped to a higher relation in post-
processing), we compare SNACS disambiguation
performance against (Schneider et al., 2018) in
§5.3.

5.2 Integrated parsing results

Our MTL and joint systems outperform the base-
line and a feature pipeline on refined UCCA units
(figure 2 and table 4). The main benefit from con-
sidering UCCA and SNACS together in training is
that the parser is better at recovering the (unlabeled)
structure of units that should receive a SNACS re-
lation in the integrated representation. This is il-
lustrated in figure 3. This trend is confirmed in the
precision and recall of UCCA units that have a gold
SNACS token in their yield (unlabeled F-score: BL
= 93.1, dep-MTL/ter = 95.2, indep-MTL = 96.0, see
table 7 in the supplementary material). To the ex-
tent that these units are syntactic constituents (see
table 2), this suggests that multitask learning with
syntactic auxiliary tasks (Swayamdipta et al., 2018;
Hershcovich et al., 2018) might be particularly ben-
eficial for SNACS-augmented UCCA parsing. The
feature pipeline is competitive, but noisy features
from a previous classification step limit its perfor-
mance on refined units. The upper bounds given by
the oracle setting indicate that SNACS features are
generally beneficial. Indep-MTL and systems that
parse directly into the relation-refined representa-
tion struggle with predicting the correct SNACS
refinements—and thus also exact UCCA+SNACS
combinations—while the joint/ter model is consis-
tently the most accurate.

However, there is little effect on overall labeled
and unlabeled UCCA scores (table 5). Predict-
ing SNACS simultaneously or interactively with
UCCA (joint/rel and dep-MTL) apparently makes
the parsing task harder. Note that particularly in

Travelled 40 mins after calling to see if a product was in stock
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Figure 3: Simplified sample output. The joint/ter sys-
tem (top) generates the intended scene structure and
PURPOSE modifier attachment. The BL system (bot-
tom) does not, and misses the PURPOSE role altogether.

setup ref # params
BL − 78.9M

pipeline ter 78.9M

indep MTL ter UCCA SNACS
82.8M 81.8M

dep MTL ter 79.4M
rel 79.4M

joint ter 79.2M
rel 79.2M

Table 6: Number of parameters of each model.

the dep-MTL setting, erroneous decisions in one
task could negatively affect the other.

5.3 Token-based SNACS prediction results

Since some of our systems predict SNACS labels
at the terminal level, they are directly comparable
to previous work on SNACS classification. We
compare against the auto-id/auto-syntax baseline
from Schneider et al. (2018) in table 5.14 Both the
dep MTL and joint systems outperform the baseline
in precision; and the joint system also in recall,
leading to the overall best performance. The indep-
MTL system does not reach baseline performance.

5.4 Model capacity

We examine whether the differences in perfor-
mance can really be attributed to the linguistic in-

14Due to the diverging guidelines on multiword units in
UCCA (§3.4), we ignore MWE boundaries.
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formation in our data or merely to more powerful
models by inspecting the number of each model’s
parameters (table 6). While we observe some vari-
ance in model capacity, we consider these to be
minor differences. An exception is the indepen-
dent MTL setup, which consists of two independent
models, each dedicated to a specific task. However,
this does not seem to give it an advantage in terms
of final performance. The baseline has the fewest
parameters, and the overall best condition, joint/ter,
is neither the smallest nor the largest model, sug-
gesting that the particular linguistic signals and the
method of using them have a genuine effect on
performance.

6 Related Work

The benefits of integrating lexical analysis and sen-
tence semantic or syntactic structure have been pur-
sued by a vast body of work over the years. Com-
positional approaches to the syntax-semantics in-
terface, such as CCG (Steedman, 2000) and HPSG
(Pollard and Sag, 1994), usually integrate the lex-
icon at the leaves of the syntactic parse, but prop-
agate grammatically-relevant features up the tree.
A different approach is taken by OntoNotes (Hovy
et al., 2006), which consists of a number of sepa-
rate, albeit linked tiers, including syntactic and ar-
gument structure, but also the lexical tiers of word
senses and coreference.

Role semantics frequently features in structured
semantic schemes. Some approaches, such as Prop-
Bank and AMR (Palmer et al., 2005; Banarescu
et al., 2013), follow a lexical approach. The
Prague Dependency Treebank tectogrammatical
layer (Böhmová et al., 2003) uses a few lexicon-
free roles, but their semantics is determined by
virtue of their linkage to a lexicalized valency lexi-
con. Universal Decompositional Semantics (White
et al., 2016) instead defines roles as a bundle of
lexicon-free features, elicited by crowdsourcing.

The specific inventory for preposition/possessive
relations that we use is SNACS, but there is a wider
history of disambiguation of these items, especially
in English: disambiguation systems have been de-
scribed for possessives (Moldovan et al., 2004;
Badulescu and Moldovan, 2009; Tratz and Hovy,
2013), prepositions with lexicalized sense defini-
tions (e.g., Litkowski and Hargraves, 2007; Tratz
and Hovy, 2011), and prepositions with coarse-
grained classes (O’Hara and Wiebe, 2003, 2009;
Srikumar and Roth, 2013; Gonen and Goldberg,

2016). Such disambiguation has also been inves-
tigated in tandem with semantic role labeling and
parsing (Dahlmeier et al., 2009; Srikumar and Roth,
2011; Gong et al., 2018). Preliminary work sug-
gests that SNACS may be applicable to subjects
and objects, not just PPs, and thus in the future
this framework could be extended to all UCCA
participants (Shalev et al., 2019).

State-of-the-art results on UCCA parsing and
SNACS disambiguation are described in contem-
poraneous work by Jiang et al. (2019); Liu et al.
(2019), who achieve substantial gains using the
ELMo and BERT contextualized word embeddings
(Peters et al., 2018; Devlin et al., 2019). This is an
orthogonal direction to the one we pursue here, and
combining the two is left to future work.

7 Conclusion

We have introduced a new representation combin-
ing UCCA semantic structures and SNACS adpo-
sitional semantic roles; automatically merged ex-
isting annotations to create a gold standard; and
experimented with several alternatives for parsing
the integrated representation. Our results show that
models profit from having access to both structural
and lexical semantic information, confirming our
hypothesis that UCCA and SNACS are comple-
mentary and compatible.

Based on preliminary results from a German
corpus, we conjecture that this approach is appli-
cable to other languages with no or only minimal
changes—a direction we will explore further in
future work. In addition, we plan to investigate
the utility of the enhanced representation for down-
stream tasks involving meaning-preserving linguis-
tic variation.
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Abstract

Though languages can evolve slowly, they can
also react strongly to dramatic world events.
By studying the connection between words
and events, it is possible to identify which
events change our vocabulary and in what
way. In this work, we tackle the task of cre-
ating timelines—records of historical ‘turning
points’, represented by either words or events,
to understand the dynamics of a target word.
Our approach identifies these points by lever-
aging both static and time-varying word em-
beddings to measure the influence of words
and events. In addition to quantifying changes,
we show how our technique can help isolate
semantic changes. Our qualitative and quanti-
tative evaluations show that we are able to cap-
ture this semantic change and event influence.

1 Introduction

Languages respond to world events in many ways.
New words, phrases, and named entities are cre-
ated, new senses may develop, and valences may
change. Various approaches support the study of
historical linguistics (e.g., comparative linguistics,
etymology, etc.). In this work, we focus on a spe-
cific process for tracking the progression of mean-
ing over time in sense, semantics, and in relation to
other words and concepts. By leveraging changing
relationships in temporal corpora, we demonstrate
a way of ‘embedding’ words and world events.
Observing changes in this embedding allows us to
construct timelines that support the study of evolv-
ing languages.

The timeline of scientific and technical discov-
eries, for example, can drive the emergence of
new word senses as these discoveries are ‘named’.
Take the word “cell” which evolved from its 12th

century meaning (a small room or chamber) to a
new sense in the 17th century (a basic unit of an
organism) to the 19th century meaning (an elec-

tric battery) and most recently to a shorthand for a
mobile phone1. Critically, the dominant senses of
a word vary over time as some meanings become
less commonly used while others gain in popular-
ity. This dynamic need not be driven only by the
addition of certain senses. The prevalence of a hy-
ponym, for example, may also drive a change in
the ranking of senses. The word ‘disaster’ may
call to mind very different things depending on the
latest type of disaster. Thus, the word may evoke
‘nuclear disaster’ in a reader in 2011 (e.g., driven
by the Fukushima incident). However, in 2012 the
‘storm’ sense may be more salient (e.g., driven by
Superstorm Sandy).

Evolution of senses is but one way a language
can evolve. Broader semantic changes can also
occur. For example, the valence of the word may
move or even flip (e.g., terrific or bully). Of partic-
ular interest to us are those changes that are more
immediate and precipitated by key world events.
For example, a war may lead certain terms to take
on a negative connotation as a country or people
become the ‘enemy’. Large collections of text
from a given period can capture all of these lan-
guage changes as reflected by evolving context.
By mining this text, our goal is to support the study
of evolving languages.

Etymological studies allow us to understand the
origin of words and changes in meaning (Alinei,
1995). This work produces not only an account-
ing of change but also an explanation of the so-
cial, scientific, or other world events that drive
language shifts. Conventional production of et-
ymological analysis often requires a detailed and
laborious manual close-reading of historical texts
(Geeraerts et al., 1997). By applying computa-
tional methods, our focus is on detecting semantic
changes of words and events and producing possi-

1https://www.etymonline.com/word/cell
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Figure 1: A timeline generated by our framework for
Russia.

ble explanations from real-world drivers.
Problem Definition: In this work, we study

the problem of timeline generation for a word or
phrase. We use the term ‘word’ throughout the pa-
per for convenience. Given a timeline of a word, a
researcher should be able to understand the word’s
dynamics, i.e., the changes the word underwent
over time. A timeline is defined as a sequence
of time points and their descriptors (i.e., explana-
tions of the changes the word underwent at that
time point). A good timeline is such that enables
the researcher to gain a better understanding of the
word and its history (Althoff et al., 2015). It con-
tains time points of significant changes, with rele-
vant explanations of the changes, and with a mini-
mal number of missing or redundant information.

We define several building blocks for construct-
ing timelines. The first is the identification of time
points during which the target word underwent
significant semantic change (we refer to those as
Turning Points, see Section 4). Second, we con-
sider identifying associated descriptors of those
changes. These descriptors are associated with a
word’s change at a particular time and can serve to
explain its dynamics.

We experiment with two types of descriptors.
The first involves words associated with the tar-
get word or affected by it (Section 5). The above
‘cell’ and ‘disaster’ examples can serve as exam-
ples of timelines with word descriptors. The sec-
ond type is events (Section 6). One can explain
changes the target word underwent based on sig-
nificant world events. As an example, consider the
timeline generated by our framework for the word
“Russia” (Figure 1).

To identify events that are strongly associated
with the change, we utilize time-varying lan-
guage embeddings on both static snapshots (e.g.,
Wikipedia) and historical texts (35 years of the
New York Times), allowing us to capture both syn-

Figure 2: Flow diagram of timeline generation. The
two basic building blocks are detecting turning points
and generating descriptors, where the descriptors can
be either words or events.

tactic and semantic variation of words (Section 3).
We develop a mechanism for simultaneously em-
bedding words and events in the same space (Sec-
tion 6.1). We present several methods to leverage
those embeddings for key historical events detec-
tion by evaluating the distance between words and
events (Sections 6.2, 6.3).

Figure 2 presents the flow of the paper through
an example. Consider the word ‘Russia’. First,
we identify its turning points (Section 4), and then
generate descriptors – either words (Section 5) or
events (Section 6) – to construct its timeline. We
contribute several algorithms for identifying sig-
nificant events leveraging various types of embed-
dings, including a supervised learning approach.2

2 Related Work

Semantic Change: Most work on language evolu-
tion has focused on identifying semantic drifts and
word meaning changes (see Kutuzov et al. (2018)
for a recent survey). Various approaches have pur-
sued the task of detecting changes in word mean-
ing (Sagi et al., 2009; Mitra et al., 2014; Wijaya
and Yeniterzi, 2011; Mihalcea and Nastase, 2012;
Popescu and Strapparava, 2013; Jatowt and Duh,
2014; Kenter et al., 2015; Hamilton et al., 2016;

2Code and data available at https://github.com/
guyrosin/generating_timelines
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Azarbonyad et al., 2017). Specific approaches in-
clude: dynamic embedding models using a prob-
abilistic Bayesian version of Word2Vec (Bamler
and Mandt, 2017), pointwise mutual information
(PMI) (Yao et al., 2018), and exponential family
embeddings (Rudolph and Blei, 2018). Related-
ness over time between words has also been stud-
ied. Radinsky et al. (2012) showed that words that
co-occur in history have a stronger relation, Rosin
et al. (2017) introduced the supervised task of tem-
poral semantic relatedness, and Orlikowski et al.
(2018) studied diachronic analogies. In our work,
we focus on the world events behind the semantic
changes—and isolate those events that co-occur
with significant language change.

Change Detection for Semantic Shift Analy-
sis: Detecting major changes involves detecting
continuous peaks in time series. Kulkarni et al.
(2015) and Basile et al. (2016) offered a mean shift
model, and Rosin et al. (2017) used a threshold-
based method for this task. We utilize the latter
approach as it is simpler and more computation-
ally effective.

Timeline Generation: Past work focused on
generating timelines by leveraging information re-
trieval methods. Examples include the use of
Facebook data (Graus et al., 2013), Twitter (Li and
Cardie, 2014), and Wikipedia (Tuan et al., 2011)
to generate context-aware timelines by ranking re-
lated entities by co-occurrence with the main time-
line entity. Althoff et al. (2015) created timelines
by mining a knowledge base, based on submodu-
lar optimization and web-co-occurrence statistics.
Shahaf and Guestrin (2010) generated a chain of
events connecting two news articles. Our work
differs from the prior work in several ways. First,
we consider the semantic changes a word under-
goes and detect the events that influenced them.
We study several word embeddings to measure
change and relatedness between words and events
over time and construct a timeline.

3 Event and Temporal Word Embedding

We consider several methods to represent events
and words. These are used to identify seman-
tic changes and generate timeline descriptors. To
capture both words and events in the same space
we consider global embeddings, which are created
upon the English Wikipedia (see Section 7.1).

We also utilize the work of Rosin et al. (2017)
for temporal word embeddings. Timeline con-

struction requires modeling changes in words and
events over time. When looking at a specific word,
we wish to focus on its relevant meaning at a par-
ticular time. Thus, the temporal word embeddings
are created using data from a large temporal cor-
pus. Specifically, we leverage the New York Times
(NYT) archive. The embeddings are generated for
every time period (i.e., year) and enable us to in-
vestigate how words meanings and relatedness be-
tween words change over time (see Section 7.1).

Finally, in order to compare vectors of the same
word in different, independently-trained, vector
space models, we align every pair of models us-
ing Orthogonal Procrustes (Hamilton et al., 2016).

We use the following notations throughout the
paper:

Notation 3.1. vw is the vector representation of a
word w.

Notation 3.2. vtw is the vector representation of a
word w during time t.

Notation 3.3. NNk(w) is the set of k-nearest
neighbors (kNN) of a word w.

Notation 3.4. NN t
k(w) is the set of k-nearest

neighbors (kNN) of a word w during time t.

Notation 3.5. cos is cosine similarity, which we
use as a similarity function between embeddings.

4 Timeline Turning Points

A timeline is composed of time points that iden-
tify the changes a word underwent. We refer to
those as Turning Points, and experiment with sev-
eral methods to identify them. Formally, let w
be a target word, and t be a time point. Each
method approximates the probability dt(w) of t to
be a turning point of w. The turning points are
then selected by performing peak detection (Rosin
et al., 2017) on the series of dt(w) for every t.
We experiment with two methodologies for turn-
ing point detection, leveraging the embeddings we
introduce in Sections 3, 6.1:

(1) Neighborhood: Changes in the neighbor-
hood of a word over time can be used to capture
semantic changes of the word. This method mea-
sures the difference between the similar words sets
of w between two consecutive years. Formally:

dt(w) = 1−
∣∣NN t

k(w) ∩NN t−1
k (w)

∣∣
k

(1)

where NN t
k(w) is the set of k-nearest neighbors

(kNN) of w during time t.
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(2) EmbeddingSimilarity: Employing word
embeddings, we can also look at the change in the
embedding vectors of w:

dt(w) = 1− cos
(
vtw, v

t−1
w

)
(2)

5 Word Descriptors

The second building block of a timeline is explain-
ing what triggered the semantic changes. We re-
fer to such explanations as descriptors. One can
explain semantic changes with words—significant
associated words or terms that correlate to the tar-
get word’s meaning drift. Letting w be the target
word, and t be a time point, we are looking for
words that became closer to w in vector space dur-
ing t. Specifically, we look at the nearest neigh-
bors of w at times t and t − 1, and denote the set
of descriptors by Dt:

Dt(w) = NN t
k(w) \NN t−1

k (w) (3)

For example, using this method for ‘Russia’ re-
sults in Soviet Union and Soviet for 1989, when the
Soviet Union was dissolving, and Ukraine, Kyr-
gyzstan, and Latvia for 1990, when these countries
attempted to gain independence from the Union.

6 Event Descriptors

As an alternative for word descriptors, we consider
event descriptors. To generate these, given a target
word w, our task is to identify its change in time t
by a set of significant events E that likely affected
w. In this section, we first describe the embed-
dings we use (Section 6.1) and then present sev-
eral methods for detecting significant events (Sec-
tions 6.2, 6.3).

6.1 Projected Embedding for Events
Temporal word embeddings (Section 3) are cre-
ated for every time period. They enable us to in-
vestigate how word meaning and relatedness be-
tween words change over time. However, as it may
take some time until an event’s name is determined
and referred to in newspapers, the paper’s text may
not have meaningful embeddings for those events.
For example, the name “World War I” was used
only after WWII started. As a result, we are not
able to compare events and words.

To address this problem, we leverage the global
embeddings (Section 3). Since Wikipedia articles
typically contain balanced descriptions of events,
they can be a proper basis for event embeddings.

Recall that the way these embeddings are created
enables creating a common latent space for both
words and concepts (and specifically, events), al-
lowing us to compare both at the same time. Our
solution involves projecting the global model on
each temporal one. This way, we create a joint
vector space for words and events, which repre-
sents a specific time period. We refer to these em-
beddings as “Projected Embeddings”.

We assume that most words’ meanings do not
change over time and learn a transformation of
one embedding space onto another, minimizing
the distance between pairs of points. Let us define
Wwiki ∈ R|Vwiki|×dwiki as the matrix of embed-
dings learned from Wikipedia, where dwiki is the
embedding size and |Vwiki| is the vocabulary size

of Wikipedia. Similarly, W (t)
nyt ∈ R|V

(t)
nyt|×d

(t)
nyt is

the matrix of embeddings learned from the NYT at
time t, where d(t)nyt is the embedding size and |V (t)

nyt|
is the vocabulary size of the NYT at time t. We

seek a matrix W (t) ∈ R|Vwiki|×d(t)nyt that will con-
tain the transformation of Wwiki to W (t)

nyt for time
t. By making an additional simplifying assump-
tion that the vector spaces are equivalent under a
linear transformation, we are able to find W (t) by
optimizing the following linear regression model:

argmin
T

∑

wi∈Vwiki∩V
(t)
nyt

∥∥∥Wwiki(wi)T −W
(t)
nyt(wi)

∥∥∥
2

2
(4)

where T ∈ Rdwiki×d(t)nyt . We then obtain the pro-
jected matrix:

W (t) =WwikiT̂
(t) (5)

where T̂ (t) is the result of Equation 4. Similar
methods were used in the field of temporal seman-
tics to align embeddings of different time periods
to a unified coordinate system (Szymanski, 2017;
Kulkarni et al., 2015).

6.2 Similarity-Based Event Detection
We hypothesize that the events closest in vector
space to a word should be the most significant to
its timeline. We experiment with two score func-
tions that are based on semantic similarity. The
descriptors are chosen as the top-scoring events.

ByWord: Given a target wordw, we look for its
closest events in a specific time. We define a score
function of an event e: score(e) = cos(vw, ve)
where cos is cosine similarity, and vw and ve are
the respective embeddings of w and e.
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ByKNN: We wish to extend the “impact circle”
of the event, as events sometimes do not affect a
word directly but through other words. We look
for events that are closest not only to the target
word but also to its neighbors. We calculate the
following score for every possible event e:

score(e) = avg({cos(vn, ve) :
n ∈ {w} ∪NNk(w)}) (6)

6.3 Supervised Event Detection
The previous methods discuss only the semantic
similarity of words and events, where we are actu-
ally interested in the probability of events to affect
words. There are often multiple possible events
that can act as explanations. Consider the fol-
lowing example. In 2010, several events related
to Russia happened: New START (nuclear arms
reduction treaty between the USA and Russia)
was signed, there was a Winter Olympics, and the
ROKS Cheonan (a South Korean warship) sunk.
All relate to Russia, but only one appears to indi-
cate a meaningful change to it—the New START
event. Identifying the right events is a highly chal-
lenging task, as most usually all the candidate
events are impactful events, related to the target
word, and have an impact on various words due
to their significance. As another example, Nelson
Mandela’s death is semantically the closest event
to the word ‘Clinton’ during 2013, based on our
projected embeddings. Though it is surely a pow-
erful event and one that is related to many world
leaders, it is hard to describe it as a turning point
for either Bill or Hillary Clinton. Therefore, we at-
tempt to learn which are the most relevant events
for a given word. We present a classifier that re-
ceives an event and a word, and outputs the proba-
bility this event affected that word. This classifier
functions as a predictor of the probability of an
event e to cause a semantic change of a word w.

Training Data
To create training data for the classifier, we can use
any embedding model that embeds both events and
words, namely the global or the projected embed-
dings (Section 3 and 6.1). Given an event, we find
terms affected by it and terms that are not.

Affected Terms: We limit the set of possible af-
fected terms by an event and consider semantically
similar terms to the event (we consider cosine sim-
ilarity > 0.3). A term is considered to be affected
by an event if the term’s meaning changed during

the time of the event, and did not change in the
year before the event.

Unaffected Terms: Given an event, we sample
terms from its semantically similar terms that were
changed in the years after the event, and were not
changed during the year it happened. This way,
we try to capture terms that are related to the event
but were changed due to other reasons.

Machine Learning Approach
We consider several supervised machine learn-
ing approaches, experimenting with random for-
est, SVM, neural networks, etc. We also devise
several features leveraged by our classifiers:

• ve and vw, i.e., the embeddings of the event e
and the wordw. Any embedding model (Sec-
tions 3, 6.1) can be used.
• The semantic similarity between ve and vw.
• Categories of the event e, taken from DB-

pedia and represented using bag-of-words.
Each event is associated with one or more
categories in DBpedia (e.g., social event,
sports, military conflict). The bag-of-words
vector comprises the top 150 categories.
• Features that indicate the event’s popular-

ity: number of internal and external links in
e’s Wikipedia page, pageviews count of e’s
Wikipedia page3. Intuitively, a popular event
might be impactful.

7 Experimental Setup

We briefly describe our dataset and embeddings
before focusing on the evaluation.

7.1 Implementation Details

Embeddings: The global embeddings were cre-
ated based on the Wikipedia dump of May 2016,
using Word2Vec’s skip-gram with negative sam-
pling, with a window size of 10. Following
Sherkat and Milios (2017), we perform a pre-
processing step necessary for the embedding pro-
cess to capture Wikipedia concepts and not just
words: each inner link in the text (i.e., a link to a
Wikipedia article) is replaced by an ID, so that ev-
ery link to the same page is replaced by this page’s
ID. After filtering low-frequency words and con-
cepts, we find 3.2M unique embeddings, of which
1.7M are concepts.

3We used Wikimedia Foundation’s API to get pageviews
of a single month (specifically October 2017).
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For constructing temporal embeddings, we used
the NYT archive4, with articles from 1981 to 2016
(9GB of text in total). For each year of content, we
created embeddings using Word2Vec’s skip-gram
with negative sampling, with a window size of 5
and a dimensionality of 140, using the Gensim li-
brary (Rehurek and Sojka, 2010). We filtered out
words with less than 50 occurrences.

Events Data: We used DBpedia and
Wikipedia as sources for events. First, we
mined entities from DBpedia whose type
is ‘event’ (i.e., yago/Event100029378,
Ontology/Event), and that have an asso-
ciated Wikipedia page and associated year of
occurrence. Second, we mined 50K events from
Wikipedia’s monthly events pages5 and retained
the 30K events corresponding to our focus time
period of 1981 to 2016. In this work, we focus
on large, significant events, since these have the
most potential to affect language (Chieu and Lee,
2004). Thus, we retained events with over 6000
monthly views (in October 2017) and over 15
external references. Our final dataset contains
1233 events, most related to armed conflicts,
politics, disasters, and sports.

Classifier Dataset: To construct a “ground
truth” dataset for our classifier, we find pairs of
events (from the events dataset) and their affected
and unaffected terms, as described in Section 6.3.
For each event, we use either the global or pro-
jected embeddings to find 20 affected terms (there
may be less, depending on the sensitivity of the
change detection algorithm) and 20 unaffected
terms. The dataset contains 21K pairs in total.

7.2 Experimental Methodology
We perform both qualitative and quantitative eval-
uations. First, we conduct user studies to capture
the utility of our algorithms as they might be used
in practice (e.g., in search engine results). Twenty
evaluators participated using real events data (Sec-
tion 7.1). We select a set of target words based
on two criteria: popularity—so that most evalu-
ators would know them and preferably parts of
their history; and the number of significant related
events—so that meaningful timelines would be
produced. In practice, we selected 30 target words
based on popularity (as expressed in the number of
page views of the corresponding Wikipedia page).

4http://spiderbites.nytimes.com/
5For example, https://en.wikipedia.org/

wiki/Category:February_1992_events

For a given target word, evaluators were presented
with several timelines created by our algorithms
and baseline methods (see below). While we eval-
uated both word and event descriptors for time-
lines, our evaluation is focused on events, as they
proved to be more meaningful and interesting to
the evaluators (see Section 8.2). Each timeline
was accompanied by detailed descriptions and ref-
erences. Our evaluators were asked to indicate
whether an event was correct (‘true’) in its place-
ment in the timeline and whether it was likely to
have an impact on the target word. See Appendix
A for a screenshot of the questionnaire used in the
evaluation. Overall timeline quality was evaluated
as described below.

Evaluation Metrics
Each timeline is evaluated using the following
metrics (timelines with word descriptors are eval-
uated similarly—replacing ‘event’ with ‘word’):

Accuracy: Fraction of events that are relevant
to the target word (i.e., marked as true by the eval-
uators). #true events

#true events+#false events
Relevance: How relevant the timeline is to the

word. This is meant to approximate the precision
metric. Relevance was indicated as a rank score on
a scale from 1 to #timelines (#timelines being the
number of timelines presented for the given word)
and normalized as: relevance score

#timelines
Missing Events: Evaluators were asked how

many events they believed were missing from the
timeline. We then normalize by the total number
of events in the timeline. Intuitively, this measure
is meant to approximate 1-recall. #missing events

#events in timeline
Redundancy: Evaluators were asked how

many events in the timeline are redundant (nor-
malized by the total number of events in the time-
line): #redundant events

#events in timeline
Ranking: Evaluators were asked to subjec-

tively rank presented timelines from best to worst.
Effectiveness: Evaluators were asked to indi-

cate their familiarity with the event history both
before and after seeing the timeline. The differ-
ence between the two scores indicated the ‘effec-
tiveness’ (as a soft measure of whether the time-
line contained anything surprising or novel). The
pre-evaluation score also served to measure the
evaluator’s familiarity with the topic.

Methods Compared
We perform experiments for the two building
blocks of a timeline. First, we compare methods
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of identifying turning points (Section 4). We ap-
proximate a gold standard for turning points by
having evaluators mark years in which there is a
turning point. This is determined by looking at all
the events that took place during a specific year
and approximating whether any of them is signifi-
cant to the target word. We compare the identified
years of our methods to this gold standard.

Second, we evaluated different ways to produce
descriptors6:

WordDescriptors (Section 5): We use words as
descriptors. For every year t, we select words that
were added to the kNN of the target word during t
(with k = 20, chosen empirically).

BaseEvents: A baseline method for event de-
scriptors. We select events ‘close’ to the tar-
get word as descriptors—as measured by the fre-
quency of the target word’s appearance on the
event’s Wikipedia page.

WikiTimelines: Finally, we extract timelines
from crowd-created Wikipedia timeline pages7.

These baselines were compared to our algorith-
mic techniques:

ByWord and ByKNN are described in Sec-
tion 6.2.

ByKNNGlobCls: We first use ByKNN to find
30 close events (determined empirically), and then
use the events classifier (Section 6.3) to predict
each event’s influence. We rank the events by a
combination of this prediction and the score of
ByKNN. The classifier is trained on a dataset that
was created using the global embeddings.

ByKNNCls: Similar to ByKNNGlobCls, with
one difference: here the classifier’s training set
was created using the projected embeddings.

8 Results

8.1 Turning Point Evaluation

Comparing the two methods for turning point de-
tection, we observed that 23% of the years de-
tected by Neighborhood are false, compared to
15% by EmbeddingSimilarity. We believe this dif-
ference is due to the Neighborhood method captur-
ing only the local neighborhood of the word, while
an embedding can be more meaningful. For exam-
ple, a word can change semantically not by alter-
ing its neighbors, but by moving in space towards

6Refer to https://github.com/guyrosin/
generating_timelines for the source code.

7For example, https://en.wikipedia.org/
wiki/Timeline_of_Russian_history

other meanings, together with its neighbors.

8.2 Timeline Evaluation

We present the results of the timeline evaluation
(Table 1), where the turning points are detected us-
ing the EmbeddingSimilarity method, as it reached
the highest empirical performance (Section 8.1).

The WordDescriptors method achieves poor re-
sults, as expected. It is inaccurate and contains
many redundant descriptors. For example, it gen-
erated the following descriptors for the word “Ter-
ror” during 2012-2014: Islamic terror, brutality,
genocidal. They are all related to terror but do
not help us deduce why the word ‘Terror’ was im-
pacted, or what happened. Alternatively, the By-
Word method performs much better. Looking at its
generated timeline for ‘Terror’, we observe that it
successfully identifies highly relevant events: the
Benghazi attack (a terror attack against US gov-
ernment facilities in Libya), the mass shooting at
Westgate Shopping Mall in Kenya, and the inter-
national military intervention against ISIL (the Is-
lamic State organization). We find that ByKNN re-
sults and performance are similar to ByWord. As
both methods consider the similarity between an
event and a target word, we conjecture that the
similarity function has a less impact on the time-
line generation process. We empirically observe
that in most cases a word close to an event would
also be close to its neighbors.

The WikiTimelines method has the top accuracy.
Given these timelines are manually created by do-
main experts, this is unsurprising. Nonetheless,
the ByKNNCls method wins the three most impor-
tant metrics: relevance, ranking, and effectiveness.
Thus in the eyes of the evaluators, this method
gives the most relevant timelines compared to
all others, and maybe most importantly, provides
novel information. As an example, the timeline
created by ByKNNCls for ‘Russia’ contains sev-
eral significant events that are missing from the
same timeline created by WikiTimelines, such as
Chernobyl disaster, the Revolutions of 1989 and
the Dissolution of the Soviet Union.

The ByKNNCls method is more accurate than
the other embedding-based methods, likely be-
cause it can filter out events that are identified by
other methods but are in fact not impactful for the
particular target word. However, it has a higher
Missing Events score—suggesting true events are
occasionally filtered out as well.
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Method Accuracy Relevance Missing Redundancy Ranking Effectiveness

WordDescriptors 0.43 0.32 0.65 0.3 0.28 0.03
BaseEvents 0.49 0.76 0.04 0.03 0.72 0.23
WikiTimelines 0.81 0.67 0.03 0.03 0.65 0.07

ByWord 0.60 0.86 0.09 0.06 0.78 0.33
ByKNN 0.61 0.81 0.12 0.08 0.80 0.31
ByKNNGlobCls 0.63 0.62 0.38 0.1 0.53 0.17
ByKNNCls 0.67 0.89 0.20 0.09 0.86 0.33

Table 1: Timelines evaluation results. Methods and metrics described in Section 7.2.

To measure the correspondence between eval-
uators’ answers, we calculated Kendall’s Tau,
which resulted in an average value of 0.6.

8.3 Events Classifier Evaluation
We experiment with several supervised ap-
proaches for the events classifier (Section 6.3) and
evaluate their performance using stratified 10-fold
cross-validation. In this evaluation, the projected
embeddings were used to create the training and
test sets and for creating the classifier’s features,
since this configuration was found to result in the
best performance (Section 8.4). Specifically, the
parameters (optimized using grid search) and the
AUC are as follows:

Logistic regression produced an AUC of 0.75.
SVM with RBF kernel and C=1.0 produced 0.97.
Random Forest classifier with 800 trees produced
0.97 as well. Neural Network with a single hid-
den layer of 100 neurons and Adam as the opti-
mization algorithm achieved the best performance,
with an AUC score of 0.98.

8.4 Projection Contribution
We measure the embeddings projection’s contri-
bution (Section 6.1) to the tasks of timeline gener-
ation and learning influence of events on words.

Timeline Generation Performance
We refer the reader to Table 1 to discuss the com-
parison between ByKNNCls and ByKNNGlobCls.
These methods are almost identical—both use our
classifier for detecting significant events. They
differ in how the classifier is trained. ByKNN-
GlobCls’s training set is created using global em-
beddings, while ByKNNCls’s training set is cre-
ated using projected embeddings. We observe a
significant difference in the performance of these
two methods. ByKNNCls achieves the best perfor-
mance of all methods. It has far fewer false neg-

Embeddings Acc. Rec. Prec. F1 AUC

Glob/Glob 0.63 0.66 0.62 0.64 0.69
Glob/Proj 0.74 0.73 0.74 0.74 0.81
Proj/Glob 0.76 0.76 0.75 0.76 0.86
Proj/Proj 0.94 0.94 0.94 0.94 0.98

Table 2: Classifier performance using global and pro-
jected embeddings for creating its features/dataset.

atives than ByKNNGlobCls and higher accuracy.
The other important metrics—relevance, ranking,
and effectiveness—show improved performance
as well. We conclude that representing events us-
ing the projected embedding brings high perfor-
mance boosts for this task.

Events Classifier Performance
To better understand the embedding features on
the events classifier’s performance (Section 6.3)
we compared the impact of global and projected
embeddings. Additionally, the training data of the
classifier can be generated using any embedding.
Thus, we perform an empirical evaluation compar-
ing all combinations of embeddings for represent-
ing the features and the training data employed by
the classifier (Table 2). Using global embeddings,
we find an AUC of 0.69. Using global embed-
dings for the features and projected embeddings
for the dataset, or vice versa, resulted in AUC of
around 0.84. Using the projected embeddings for
both yielded an AUC of 0.98—significantly better
than any other combination—with p < 0.05 (us-
ing a Wilcoxon signed-rank test).

8.5 Events Classifier Contribution

Our main goal in developing the classifier (Sec-
tion 6.3) was to enable us to identify the rele-
vant events that affect a given word. As pre-
sented in Table 1, the main drawback of ByWord
and ByKNN is a high false positive ratio given
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this task. The ByKNNCls method is more ac-
curate than the other embedding-based methods,
probably due to the classifier filtering out many
events that are identified by the other methods
but are in fact not impactful for the particular tar-
get word. For example, we observe several false
events that appear in the ‘Israel’ timeline that was
generated by the ByKNN method and are all ig-
nored by ByKNNCls. Each one of them is related
to Israel, but not significant enough to make an
impact on it, e.g., the anthrax letters (2001) had
”death to Israel” written inside them. Hurricane
Katrina (2005) brought Israel to send a humanitar-
ian aid delegation to New Orleans. Furthermore,
the decrease in the false positive ratio results in
high ratings of the ByKNNCls timelines. Looking
at the results in Table 1, we observe significant dif-
ferences in multiple metrics: relevance, ranking,
and effectiveness (tested using paired t-test with
p < 0.05).

8.6 Discussion

Three main factors seem to affect the performance
of our approach. First, ambiguity harms per-
formance. For creating timelines for ambiguous
words, a contextual embedding approach would
be necessary. We leave that for future work. For
example, ambiguous target words such as ‘Oil’
had worse scores than other similar words (e.g.,
‘Tsunami’ and ‘Disaster’) and than expected. Sec-
ond, a sufficient amount of significant events rele-
vant to the target word is crucial, otherwise, the
timelines would be too short in the eyes of the
evaluators or the end users. For example, ‘ISIS’
which is a relatively new organization, has a few
significant relevant events and therefore had weak
results in our evaluation. Third, the available
amount of data about the target word makes a
difference. The more the better, as the temporal
embeddings would then be rich and meaningful.
We observed worse performance for relatively rare
words, such as ‘Bombing’, compared more com-
mon ones (e.g., ‘Attack’ and ‘Russia’).

9 Conclusions

In this work, we develop methods to model the
evolution of language in relation to world events.
We introduced the task of timeline generation,
which is composed of two components: identify-
ing turning points when semantic changes occur,
and representing descriptors (i.e., words or events

in our case). We presented several embeddings for
the task and studied their effect. We find that our
proposed method of projecting embeddings from
a large, static model to a temporal one (i.e., from
Wikipedia to the New York Times) yielded the best
performance. Given several baselines we deter-
mined that a supervised approach leveraging the
projected embeddings yields the best results. Us-
ing our method, high quality timeline generation
can be done automatically and at scale.
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Abstract
Phenomenon-specific “adversarial” datasets
have been recently designed to perform
targeted stress-tests for particular inference
types. Recent work (Liu et al., 2019a) pro-
posed that such datasets can be utilized for
training NLI and other types of models, of-
ten allowing to learn the phenomenon in fo-
cus and improve on the challenge dataset, in-
dicating a “blind spot” in the original training
data. Yet, although a model can improve in
such a training process, it might still be vul-
nerable to other challenge datasets targeting
the same phenomenon but drawn from a differ-
ent distribution, such as having a different syn-
tactic complexity level. In this work, we ex-
tend this method to drive conclusions about a
model’s ability to learn and generalize a target
phenomenon rather than to “learn” a dataset,
by controlling additional aspects in the adver-
sarial datasets. We demonstrate our approach
on two inference phenomena – dative alterna-
tion and numerical reasoning, elaborating, and
in some cases contradicting, the results of Liu
et al.. Our methodology enables building bet-
ter challenge datasets for creating more robust
models, and may yield better model under-
standing and subsequent overarching improve-
ments.

1 Introduction

To successfully recognize textual entailment
(RTE; Dagan et al., 2013), also known as natural
language inference (NLI) (MacCartney and Man-
ning, 2008; Bowman et al., 2015), a system needs
to model a broad range of inference phenomena.
Pre-neural systems often included explicit compo-
nents, such as engineered features or syntax-based
transformations (e.g. Stern and Dagan, 2012; Stern
et al., 2012; Bar-Haim et al., 2015), to address
particular inference types such as syntactic, lexi-
cal, and logical inferences. Today’s neural mod-
els do not explicitly model such inferences, but

instead attempt to learn them implicitly from the
training data. Despite their success on common
NLI dataset, recent challenge datasets designed
for probing different linguistic phenomena showed
that neural models often fail on particular infer-
ence types, like recognizing semantic relations and
negation (Poliak et al., 2018; Naik et al., 2018;
Glockner et al., 2018).

Recently, Liu et al. (2019a) showed that when
probing reveals a model’s failure on a specific lin-
guistic phenomenon, it is often possible to amend
this failure. They suggested to fine-tune the model
on (a training section of) the challenge dataset it-
self, in order to teach it to address the specific tar-
get phenomenon, or in other words, to “inoculate”
it against the adversarial data. Inoculation has two
possible outcomes. The first - a success to ad-
dress the phenomenon after fine-tuning - suggests
the original training set did not cover this phe-
nomenon sufficiently (“blind spot” of the dataset).
A failure, on the other hand, indicates an inherent
model weakness to handle the target phenomenon.
This was presented as a general methodology, and
was demonstrated on the NLI task, among others.

The inoculation approach seems an appealing
way to teach NLI models to properly address a
broad range of inference phenomena, by training
on a targeted inoculation dataset for each phe-
nomenon. However, the methodology as sug-
gested in Liu et al. (2019a) is not conclusive as
to whether inoculation succeeded thanks to the
model learning the target phenomenon in a general
manner or due to overfitting the particular distri-
bution of the inoculation data, possibly leveraging
superficial cues or artifacts. Accordingly, success-
ful inoculation may not reliably predict whether
the model would successfully address the same
target phenomenon when facing it on datasets
drawn from different distributions.

In this paper, we extend the inoculation method-
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ology, analyzing the ability of models to gener-
alize across different data distributions when ad-
dressing a specific inference phenomenon. In par-
ticular, we suggest varying both training and test
distributions along several linguistic dimensions,
like syntactic complexity or lexical diversity. In
addition to indicating the model generalization
ability, our methodology directs how to design the
inoculation data in order to sufficiently cover the
targeted phenomenon, when possible.

We demonstrate our methodology on two in-
ference types, picked from the GLUE benchmark
(Wang et al., 2019) diagnostic dataset: (1) da-
tive alternation, a syntactic phenomenon, and (2)
a specific type of numerical reasoning, pertaining
to logical and arithmetic inference. To create our
datasets, we introduce a templating method, by
which we generated hundreds of synthetic exam-
ples from a single original sentence, while con-
trolling the variance between the datasets.1 We
employ a recent NLI model, based on the pre-
trained BERT masked language model (Devlin
et al., 2019) fine-tuned on the MultiNLI dataset
(Williams et al., 2018). For the dative alternation
case, we find that the model struggles with gen-
eralizing over the syntactic dimension, requiring
training over a relatively large variety of syntacti-
cally complex sentences. For the numerical rea-
soning case, we find that the model notably fails
to generalize across diverse number ranges, a con-
clusion that might have been missed if we were
to use only the original inoculation methodology.
We hope our methodology will be adopted for ad-
ditional NLP tasks, and specifically to a broader
range of entailment inference types, as an avenue
for developing robust NLI systems that can ad-
dress specific inference phenomena.

2 Background

Neural NLI Models. Natural language infer-
ence is the task of identifying, given two text frag-
ments, whether the second (hypothesis) can be in-
ferred from the first (premise). While earlier mod-
els for these tasks relied on domain knowledge and
lexical resources like WordNet (e.g MacCartney
et al., 2008; Heilman and Smith, 2010), the release
of the large-scale Stanford natural language infer-
ence dataset (SNLI; Bowman et al., 2015) shifted
the focus to neural models which thrive given such

1All datasets and resources are available at
https://github.com/ohadrozen/generalization.

large datasets. Typically, these models encode
each of the premise and the hypothesis, combine
them into a feature vector, and feed it into a clas-
sifier to make the entailment prediction. The en-
coding of the two sentences can be either indepen-
dent of each other or dependent using an attention
mechanism. These models typically do not rely
on any external knowledge other than pre-trained
word embeddings.

Contextualized Word Embeddings. Recently,
the word embedding paradigm shifted from static
token-based embeddings to dynamic context-
sensitive ones. Notable contextual representations
are ELMo (Peters et al., 2018b), BERT (Devlin
et al., 2019), GPT (Radford et al., 2018) and XL-
Net (Yang et al., 2019), which are pre-trained as
language models on large corpora. Contextual-
ized word embeddings have been used across a
broad range of NLP tasks, outperforming the pre-
vious state-of-the-art models. Specifically, several
works showed that they capture various types of
linguistic knowledge, from syntactic to semantic
and discourse relations (e.g. Peters et al., 2018a;
Tenney et al., 2019; Shwartz and Dagan, 2019).
Among many other tasks, NLI has also benefited
from the use of contextualized word embeddings.
The current state-of-the-art models use pre-trained
contextualized word embeddings as their underly-
ing representations, while fine-tuning on the NLI
task (Liu et al., 2019b; Devlin et al., 2019). De-
spite their remarkable success on several datasets,
it still remains unclear how these models repre-
sent the various linguistic phenomena required for
solving the NLI tasks.

Existing Drawbacks and Challenge Datasets.
Training an NLI model in this end-to-end manner
assumes that any inference type involved in the
sentence-level decision may be learned from the
training data. However, recent work created chal-
lenge datasets which show that these models—
when trained on the original NLI datasets—fail
when they need to make inferences pertaining to
certain linguistic phenomena, often ones which
are not sufficiently represented in the training data.
In these challenge datasets, a model is trained
on the general NLI datasets, i.e. SNLI or the
Multi-Genre Natural Language Inference datasets
(MultiNLI; Williams et al., 2018). It is then used
as a black box to evaluate on a given test set.
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Glockner et al. (2018) showed that substituting
a single premise term with its hypernym (to cre-
ate entailment examples) or a mutually exclusive
term (for contradiction examples) challenges sev-
eral pre-trained NLI models that performed well
on the datasets on which they were trained. Naik
et al. (2018) constructed a suite of “stress-tests”,
each pertaining to some linguistic phenomenon,
and showed that NLI models fail on many of them
(e.g. numerical reasoning, logical negations, etc.).
Another line of work showed that NLI models may
reach a surprising performance level on the NLI
test sets just by exploiting artifacts in the gener-
ation of the hypotheses, rather than learning to
model the complex entailment relationship (Guru-
rangan et al., 2018; Tsuchiya, 2018; Poliak et al.,
2018).

Fine-tuning on Challenge Datasets. Recently,
Liu et al. (2019a) suggested that a model’s fail-
ure to address a specific linguistic phenomenon
may be attributed to one of the following cases:
either the NLI training data does not sufficiently
represent this phenomenon (“dataset blind spot”)
or the model is inherently incapable of learning
to address this phenomenon. They suggested to
fine-tune the NLI model on the specific challenge
dataset in order to find out which case is cur-
rently observed. Specifically, in the case of a
data blind spot, the performance on the challenge
dataset is expected to improve after fine-tuning
(i.e., the model is “inoculated” against the adver-
sarial data). Otherwise, if the performance does
not improve despite exposure to the phenomenon
by fine-tuning, this may be an inherent weakness
of the model. Finally, an additional possible out-
come is that the performance on the original NLI
test set is severely hurt after fine-tuning on the
specific phenomenon, which may be due to over-
fitting.

3 Methodology

We extend the inoculation approach of Liu et al.
(2019a) by additionally controlling for finer-
grained dimensions of the training and test data.
For a given inference type (Section 3.1), our
methodology consists of the following steps.
(1) First, we extract premises in the MultiNLI
(Williams et al., 2018) training set that in-
clude the targeted linguistic phenomenon (Sec-
tion 3.2). (2) For each found premise, we gener-
ate multiple diverse variations using our templat-

ing method (Section 3.3). (3) After generating
diverse premises, we generate multiple matching
synthetic hypotheses using a templating method
(Section 3.4). As we generate synthetic hypothe-
ses, we can make sure the premise-hypothesis
pairs differ along our proposed diversity dimen-
sions. (4) Finally, we define the train and test
sets so that the variance between them is con-
trolled with respect to the different dimensions
(Section 3.5). This facilitates probing the success
of the model to generalize a given inference type
with respect to a specific dimension of the data.

3.1 Inference Types
We focus on the following two inference types
from the diagnostic set of the GLUE benchmark
(Wang et al., 2019) as test cases for our methodol-
ogy.

Dative Alternation. This inference type refers
to the alternation between a double-object con-
struction (“I baked him a cake”) and a preposi-
tional indirect-object construction (“I baked a cake
for him”).

Numerical Reasoning. We focus on sentences
relating to numbers by the relational phrases
“more than” and “less than”, normalizing all num-
bers to numerals. For example, “There are 3 ap-
ples on the table” entails “There are more than 2
apples on the table”

3.2 Premise Extraction
For a given inference type, we start by finding
premises in the MultiNLI train set that include
the targeted linguistic phenomenon. We then con-
struct templates based on these premises which
are later used to generate synthetic premises and
hypotheses. We do so in a semi-automatic way:
we first use simple heuristics to track good can-
didates, and then manually select those that can
be used as premises of NLI pairs that include the
linguistic phenomenon in focus. For example, to
track premises for the numerical reasoning infer-
ence type, we search for premises containing num-
bers and then choose the ones in which adding
more than or less than before the number would
keep the premise grammatical and coherent (e.g.
“the U.S. economy added 45 million jobs.”), or
ones which already include these terms before the
number (e.g. “The Citigroup deal, from beginning
to end, took less than 5 weeks.”). We also make
sure that we have enough diversity in the premise
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Dative Alternation
(1) Extracted Premise: [Even our noble Saudi allies] [aren’t willing to] lend [us] [their air bases].
(2) Premise Template: ARG1 ARG2 lend ARG3 ARG4.
(3) Hypothesis Template (Ent. #1): ARG1 ARG2 lend ARG4 to ARG3.
(4) Gen. Premise: [The allies across the sea] [have promised to] lend [Italy] [some of their land].
(5) Gen. Hypothesis (Ent. #1): The allies across the sea have promised to lend some of their land to Italy.
(6) Gen. Hypothesis (Ent. #2): The allies across the sea have promised to lend some of their land.
(7) Gen. Hypothesis (Cont.): The allies across the sea have promised to lend Italy.

Numerical Reasoning
(8) Extracted Premise: [The Citigroup deal], [from beginning to end], [took] less than 5 [weeks].
(9) Premise Template: ARG1, ARG2, ARG3 RELp NUMp ARG4.
(10) Hypothesis Template (Ent.): ARG1, ARG2, ARG3 more than NUMsmaller ARG4.
(11) Gen. Premise: [My marriage], [despite much frustration], [lasted] more than 7 [years].
(12) Gen. Hypothesis (Ent.): [My marriage], [despite much frustration], [lasted] more than 2 [years].
(13) Gen. Hypothesis (Cont.): [My marriage], [despite much frustration], [lasted] less than 5 [years].
(14) Gen. Hypothesis (Neutral): [My marriage], [despite much frustration], [lasted] 8 [years].

Table 1: Examples for the premise-hypothesis generation process (notations are explained in Sections 3.3 and 3.4):
(a) Premises are extracted from the MultiNLI train set (rows 1 and 8) (b) Premise templates are manually created
(rows 2 and 9) (c) Hypothesis templates are automatically generated using the premise templates (rows 3 and 10)
(d) New premises are automatically generated by instantiating them with the turkers’ answers (rows 4 and 11) (e)
new hypotheses with same instantiations are generated (rows 5-7 and 12-14).

length and syntactic complexity (see Section 3.5).
Rows 1 and 8 in Table 1 exemplify such premises
for the dative alternation and numerical reasoning
inference types.

3.3 Premise Generation
To isolate the lexical dimension from the syntac-
tic one, for each target phenomenon we synthe-
size multiple new premises, all sharing a similar
syntactic structure by construction. To do so, we
manually generate a premise template by replac-
ing at least four spans in the premise with argu-
ments ARGi as placeholders. We do so while
keeping the words related to the phenomenon in
focus within the template. For example, from the
premise “Even our noble Saudi allies aren’t will-
ing to lend us their air bases.”, we generated the
template “ARG1 ARG2 lend ARG3 ARG4.” (see
rows 2 and 9 in Table 1). We then let crowd-
sourcing workers instantiate each of the arguments
to create new sentences. For the instantiations to
later construct coherent sentences with high like-
lihood, we ask the workers to instantiate each ar-
gument separately, leaving the rest of the sentence
unchanged, in a way that yields a new grammati-
cal and coherent sentence that can make sense in
some possible made up context (e.g. “Even our
noble Saudi allies 〈 span to fill in〉 lend us their
air bases.”). To maintain similar sentence lengths
and structures, we limit the instantiations to be at
most one word longer or shorter than the original
spans. For each argument we collected 6 instan-
tiations which were manually validated for gram-

maticality and semantic coherence. We used all
possible combinations of instantiations to gener-
ate hundreds of premises per template (rows 4 and
11 in Table 1). The annotation task was performed
in Amazon Mechanical Turk, where to control the
quality of the workers, we required that they have
at least 98% acceptance rate for prior HITs. We
paid $2.5 for two instantiations of all arguments
in a given sentence (at most 14 instantiations per
sentence).

3.4 Hypothesis Generation
For each premise template we automatically gen-
erate multiple hypothesis templates for each en-
tailment label (entailment, neutral and contradic-
tion), which differ from the premise only in the
phenomenon in focus, as detailed for each infer-
ence type below.

Dative Alternation. We generate the entailed
hypothesis templates by applying the inference
type. Specifically, for entailing dative alterna-
tion, we either switch to the alternate constructions
(row 5 in Table 1) or remove the first argument af-
ter the dative verb (row 6). For contradicting hy-
potheses templates, we remove the second argu-
ment, creating a grammatical yet contradictory hy-
pothesis template (row 7). For each premise tem-
plate we therefore generate 2 entailment hypothe-
ses and 1 contradictory (no neutral).

Numerical Reasoning. For a premise consist-
ing of a target numeric value NUMp pre-
ceded by a relational expression RELp ∈
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{less than,more than, ∅}, we generate mul-
tiple hypotheses by replacing the target number
by a random number (from a given target range,
see further below) and the relational expression by
each of the expressions. The sentence-pair label
is determined by the relation between the numeric
expressions in the premise and the hypothesis, and
may be any of entailment, neutral, or contradic-
tion. For example, consider the premise template
“[The union] [has] more than 4 [thousand mem-
bers] [in Canada]”. Replacing the numeric ex-
pression “more than 4” by “3” yields contradic-
tion, while the substitute “more than 3” is entail-
ing, and “more than 5” is neutral. This way, for
each premise template we generate 22 different
hypotheses: 4 entailment, 6 neutral and 12 contra-
diction. We used numeric values within the range
2-999.

3.5 Controlled Data Splits

The main motivation for our data splits is to con-
trol the variance between the train and test sets
with respect to certain data dimensions. Specifi-
cally, for both inference types, we create a vari-
ance along the syntactic complexity dimension.
Based on the premise template, we divided each
dataset into 3 subsets with different syntactic com-
plexity levels: simple, medium and complex, de-
noted by S, M and C respectively. We do so ac-
cording to two criteria: sentence length and the
depth in the constituency parsing tree in which the
inference type occurs, using the Stanford Parser
(Manning et al., 2014) (see Table 2).2

We also create a variance along different lexical
dimensions. From the simple subset S we gener-
ate two additional subsets SLex1 and SLex2 in the
following way. For each simple template, we first
split its original instantiations into two groups, and
then instantiate each such group separately into the
template, creating two sets of instantiations of the
same template s1 ∈ SLex1 and s2 ∈ SLex2, which
are syntactically similar by construction, yet lex-
ically different. We repeat this process for the
complex subset as well to create CLex1 and CLex2.
We further split the dative alternation datasets lex-
ically by the main verb, which allows testing how
well the model generalizes this inference type for

2For dative alternation we consider the depth of the dative
verb, while for the numeric reasoning data we look at the
depth of the number. We consider premise templates with
less than 16 words and depth < 4 as simple, more than 25
words and depth > 6 as complex, and the rest as medium.

Simple Medium Complex All

Number of Premise Templates
Datives 10 9 9 28
Numbers 9 12 9 30

Number of Examples
Datives 21K 36K 34K 91K
Numbers 181K 239K 182K 602K

Table 2: Statistics of the dative alternation and numeri-
cal reasoning datasets divided by syntactic complexity
level.

different dative verbs. This is done by changing
the main dative verb in SLex2 and CLex2 creating
new subsets S′

Lex2 and C ′
Lex2.3 We split the nu-

merical reasoning dataset similarly using different
numerical ranges in the training and test sets.

In Section 4 we experiment with various splits
of the training and test sets, which allow us to test
the model’s generalization over the various dimen-
sions. For example, we test whether the model can
learn an inference type on syntactically simple ex-
amples and generalize it to complex ones. See Ta-
ble 2 for the statistics of each dataset.

4 Experiments

We use a standard model based on BERT (Devlin
et al., 2019) as our NLI model. Specifically, we
used the base-uncased pre-trained model from the
pytorch-pretrained-bert library4, and fine-tuned it
for the NLI task on MultiNLI.5 We conduct several
experiments. First, we use our datasets for a typi-
cal probing task, i.e. testing how well the model
performs on each inference type, without being
trained to address the specific inference type (Sec-
tion 4.1). Then, similarly to Liu et al. (2019a), we
test the model’s ability to learn each inference type
by further fine-tuning on specific examples for it
(Section 4.2). Finally, incorporating our innova-
tion, we analyze the model’s generalization abil-
ity by introducing variance in the proposed data
dimensions between the train and test sets (Sec-
tion 4.3).

4.1 Probing

We randomly selected 4,000 examples from each
of the simple, medium and complex datasets, with

3For each template we choose a new dative verb that keeps
the sentence coherent and grammatical.

4https://github.com/huggingface/pytorch-pretrained-bert
5The MultiNLI dataset has domain-matched and mis-

matched development data. We use “matched” for our test-
ing.
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Figure 1: Average test accuracy on the dative alternation dataset (left) and the numerical reasoning dataset (right)
as a function of number of training examples, divided by label. The black lines represent the average accuracy of
the model on MultiNLI matched development set after fine-tuning. For numerical reasoning we use a larger range
on the x-axis to capture the near-perfect performance for 100k examples.

Complexity Ent. Neutral Cont. All

MultiNLI Matched Dev Set
All 83.56 84.12 86.37 84.66

Dative Alternation
Simple 100 - 4.22 52.63
Medium 100 - 2.16 49.27
Complex 99.77 - 0.36 50.45
All 99.92 - 2.25 50.78

Numerical Reasoning
Simple 38.14 0.66 69.53 45.04
Medium 57.14 1.36 50.14 38.11
Complex 55.48 3.04 46.26 36.15
All 50.25 1.69 55.31 39.77

Table 3: Accuracy of the model trained only on
MultiNLI on our datasets, which are used as probing
datasets. The Complexity column refers to the syntac-
tic complexity of the sentences.

balanced labels, to serve as a test set. Table 3
shows the accuracy of the model on each test set.

On our dative alternation dataset, the accu-
racy on our test sets is substantially lower than
on the MultiNLI development set (50.78% versus
84.66% respectively), suggesting that the model
has not learned to address this inference type from
the MultiNLI training data. The model has very
high accuracy on the entailment examples, while
close to zero on the contradiction ones. This is un-
derstandable considering that the sentence-pairs in
this dataset by construction have high lexical over-
lap between the premise and hypothesis, leading
the model to default to almost always predicting
entailment.

On the numerical reasoning dataset, the model
also seems to fail on this inference type with test
set accuracy much lower than on the MultiNLI de-
velopment set, suggesting that the model hasn’t
learned to address this inference type as well. The
model has relatively low accuracy on the entail-

ment and contradiction examples while close to
zero accuracy on the neutral ones. This is due
to the fact that the model classifies sentence-pairs
with high lexical overlap but with a different nu-
merical phrase as either entailment or contradic-
tion, but almost never as neutral.

4.2 Fine Tuning

We follow Liu et al. (2019a) and fine-tune the
model on the phenomenon-specific examples, test-
ing how many training examples the model needs
to observe before it performs reasonably well on
this inference type.6

We split each dataset to training (77%) and test
(23%) sets such that the same template is not used
in both training and test. Each set consists of tem-
plates from all syntactic complexities, and a bal-
anced number of examples from each label. We
experiment with a different number of training ex-
amples ranging from 0 to 4,000 for the dative al-
ternation sets and from 0 to 100,000 for numerical
reasoning. We repeat this experiment five times
with different training and test splits, while also
testing the performance on the original MultiNLI
matched development dataset. We report in Fig-
ure 1 the average accuracy across runs as a func-
tion of the number of training examples. In both
datasets, fine-tuning greatly improves the perfor-
mance.

On the dative alternation data, fine-tuning
brings the performance on contradiction from 0 to
90%, suggesting the model can now distinguish
well between the entailing and contradictory ex-
amples, reaching similar accuracy on both. The

6To fine-tune BERT, we use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 7 · 10−7, β1 = 0.9,
β2 = 0.999, and L2 weight decay of 0.01.
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good performance on this inference type indicates
a blind spot in the MultiNLI dataset rather than a
model weakness. As expected, the model reaches
slightly better performance on examples with sim-
pler syntactic structure than those with complex
ones. Fine-tuning with 4,000 examples reduces
the performance on the MultiNLI development set
in about 2%. As Liu et al. suggested, this could
result from the distribution of our dataset deviat-
ing from the distribution of the MultiNLI dataset,
and possibly from having the original model over-
fitting to that distribution.

With respect to numerical reasoning, though
only after a relatively large number of 10,000
training examples, the model seems to succeed
in learning the phenomenon. According to Liu
et al. (2019a), this result suggests that our chal-
lenge dataset did not reveal a weakness in the
model, but instead a blind spot in the original
dataset. Yet, this conclusion is challenged in the
next subsection. In the numerical reasoning case
we notice an even larger decrease in the perfor-
mance on MultiNLI after fine-tuning - up to 6.5%.
This may again result from different distributions
across the datasets, influencing the performance
more intensely due to the larger number of training
examples.

4.3 Generalization

We now analyze the model’s ability to general-
ize for each inference type across various data di-
mensions, using our proposed methodology. As
we will see, this type of analysis yields addi-
tional, more elaborate and sometimes contradic-
tory insights, which are not attainable by the prior
methodologies that we applied in the previous two
subsections.

Dative Alternation. First, we test the model’s
generalization ability at the syntactic complexity
dimension, by training it on a dataset belonging to
one category of syntactic complexity (among sim-
ple, medium and complex; see Section 3.5), and
testing it on a dataset belonging to either simple or
complex. We make sure examples in the training
and test sets were generated by different templates.

The left side of Figure 2 displays the perfor-
mance on the various experiments, revealing an
interesting pattern: on the simple syntax test set,
good performance is attainable regardless of the
training set, while for the complex syntax test set,
training on simple syntax performs inferiorly to

training on complex syntax. This suggests that
although the model is able to learn the dative al-
ternation phenomenon and generalize to a certain
extent, the model does not learn the phenomenon
on its own, decoupled from learning argument po-
sitions, but rather it needs to be trained with dative
alternation examples of high syntactic complexity
to perform well.

The second data dimension we test is lexical di-
versity. We test the model’s ability to generalize
across syntactically-similar examples with a dif-
ferent main dative verb. To isolate the lexical as-
pect from other aspects, we fix the syntax by using
the same templates for training and testing. For the
simple category, we train the model on the SLex1
subset and test it on both the SLex2 subset with
the same main dative verb, and on S′

Lex2 with a
different main verb that has not been seen in the
training examples (see Section 3.5). We repeat the
same process for the complex category.7

The right side of Figure 2 shows that when
tested on the same syntactic complexity level as
seen during training, the performance remains
similar regardless of the similarity between the
train and test dative verbs. This suggests that the
model generalizes well on the lexical dimension
and learns to recognize the dative alternation in-
ference independently of the specific verb. We
also observe that the model generalizes more eas-
ily from examples with simple syntax: on this cat-
egory, the performance gap between the two test
sets SLex2 and S′

Lex2 is smaller than the gap be-
tween the graphs of the complex category. This
suggests the conclusion that unlike syntactic diver-
sity, a large lexical diversity is not necessary when
inoculating for dative alternation.

Numerical Reasoning. Again, we test the
model’s generalization ability with respect to syn-
tactic complexity by splitting the train and test sets
based on this dimension (left side of Figure 3).
As opposed to dative alternation, here the gap
between the performance when testing examples
with more complex syntax than the training set
and the performance when testing on simpler ex-
amples is rather small after enough training exam-
ples (up to 3.2% difference after 3,000 examples).
We conjecture that the model learns to identify lo-
cal patterns (e.g. “more than X”) while the rela-

7For both SLex1 and CLex1 we sample 256 examples
from each of 5 manually chosen templates from the related
category.
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Figure 2: Test accuracy on the dative alternation dataset over the syntactic dimension (left) and average perfor-
mance on the lexical dimension (right) as a function of number of training examples. The larger gaps on the left
graph in comparison to the much smaller gaps on the right graph indicate a limited generalization ability over the
syntactic dimension and a better one over different dative verbs

Figure 3: Test accuracy on the numerical reasoning dataset over the syntactic dimension (left) and on the range
dimension (right) as a function of number of training examples. The gaps on the right graph comparing to the
convergence on the left one suggest a good generalization ability over the syntactic dimension and a poor one over
different number ranges.

tionships between them are less dependent on the
global syntactic structure of the sentence. More-
over, the difference between the premise and the
hypothesis is lexical and local (i.e. replacing the
relational operator and the number), while their
syntax remains otherwise identical, shifting the
model’s focus away from the syntax.

Regarding lexical diversity, we test whether the
model can be trained on one range of numbers
and perform well when tested on another. To that
end, we populate the number placeholders in the
templates with randomly sampled numbers from
within a certain range, among 30-49, 60-79 and
200-299. We train on the first range and test on
each of the ranges. To isolate the numeric aspect
from the syntactic one, we fix the syntax by using
the same templates for training and testing, while
using different argument instantiations (as we did
for the dative alternation when testing for lexical
diversity of the dative verb).

The right side of Figure 3 shows the perfor-
mance of each model as a function of training ex-
amples. Training and testing on the same range
yields substantially better performance, while test-

ing on a different range reaches accuracy of less
than 70% even after 20,000 training examples, and
seems to reach saturation. We also repeated the
same experiment with number range of 1000-9999
in the test sets, resulting in a graph very simi-
lar to the 200-299 range. This indicates an in-
herent weakness of the model to learn the phe-
nomenon and generalize it over different number
ranges. Given that the number of training exam-
ples is limited, it might be challenging to inocu-
late the model to perform well on a wide variety
of challenge datasets for this phenomenon. The
success within the same (narrow) number range,
when training gets large enough, might suggest
that the model mostly memorizes specific num-
ber pairs and the arithmetic relation between them,
rather than learning the arithmetic rules. These in-
sights contradict the conclusion of the original in-
oculation analysis of a blind spot in the original
dataset (in Section 4.2).

5 Conclusions

We presented a methodology to analyze the abil-
ity of NLI models to learn a specific inference
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phenomenon and successfully generalize its mod-
eling to datasets drawn from different distribu-
tions. By controlling the differences between
the training and test sets along syntactic and lex-
ical data dimensions, we were able to analyze
how well the model generalizes with respect to
each phenomenon over the different dimensions.
We demonstrated our methodology on a standard
model based on BERT, focusing on dative alter-
nation and numerical reasoning. We found that
high syntactic complexity is necessary for teach-
ing dative alternations, while being less important
for numerical reasoning. We also showed that the
model is incapable of generalizing over different
number ranges for numerical reasoning, indicating
an inherent modeling weakness.

We suggest that our work opens promising as
well as challenging research directions. A natu-
ral direction for future work would be to apply our
methodology to a broader range of inference types
and data dimensions. This would enable exten-
sive analysis of NLI models’ learning and gener-
alization abilities, and may yield models that can
truly address a range of inference phenomena in a
fairly general manner. One question that still re-
mains open at this point regards the models’ abil-
ity to handle multiple inference phenomena within
the same example, which is more representative of
real-world scenarios.

Finally, we observed that fine-tuning the
model on the phenomenon-specific data some-
times yields a decrease in the performance on
the original dataset. One potential direction to
avoid this in the future would be to perform
multi-task learning rather than fine-tuning on the
phenomenon-specific data. Better scheduling of
multi-task training as presented by Kiperwasser
and Ballesteros (2018) may also reduce the per-
formance loss in such scenarios.
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Abstract

We present a fully unsupervised crosslin-
gual semantic textual similarity (STS) met-
ric, based on contextual embeddings extracted
from BERT – Bidirectional Encoder Repre-
sentations from Transformers (Devlin et al.,
2019). The goal of crosslingual STS is to mea-
sure to what degree two segments of text in
different languages express the same mean-
ing. Not only is it a key task in crosslingual
natural language understanding (XLU), it is
also particularly useful for identifying paral-
lel resources for training and evaluating down-
stream multilingual natural language process-
ing (NLP) applications, such as machine trans-
lation. Most previous crosslingual STS meth-
ods relied heavily on existing parallel re-
sources, thus leading to a circular dependency
problem. With the advent of massively mul-
tilingual context representation models such
as BERT, which are trained on the concatena-
tion of non-parallel data from each language,
we show that the deadlock around parallel re-
sources can be broken. We perform intrinsic
evaluations on crosslingual STS data sets and
extrinsic evaluations on parallel corpus filter-
ing and human translation equivalence assess-
ment tasks. Our results show that the unsu-
pervised crosslingual STS metric using BERT
without fine-tuning achieves performance on
par with supervised or weakly supervised ap-
proaches.

1 Introduction

Crosslingual semantic textual similarity (STS)
(Agirre et al., 2016a; Cer et al., 2017) aims at mea-
suring the degree of meaning overlap between two
texts written in different languages. It is a key
task in crosslingual natural language understand-
ing (XLU), with applications in crosslingual in-
formation retrieval (Franco-Salvador et al., 2014;
Vulić and Moens, 2015), crosslingual plagiarism
detection (Franco-Salvador et al., 2016a,b), etc. It

is also particularly useful for identifying parallel
resources (Resnik and Smith, 2003; Aziz and Spe-
cia, 2011) for training and evaluating downstream
multilingual NLP applications, such as machine
translation systems.

Unlike in crosslingual textual entailment (Negri
et al., 2013) or crosslingual natural language infer-
ence (XNLI) (Conneau et al., 2018), which are di-
rectional classification tasks, in crosslingual STS,
continuous values are produced, to reflect a range
of similarity that goes from complete semantic
unrelatedness to complete semantic equivalence.
Machine translation quality estimation (MTQE)
(Specia et al., 2018) is perhaps the field of work
that is the most related to crosslingual STS: in
MTQE, one tries to estimate translation quality, by
comparing an original source-language text with
its machine translation. In contrast, in crosslin-
gual STS, neither the direction nor the origin (hu-
man or machine) of the translation is taken into
account. Furthermore, MTQE also typically con-
siders the fluency and grammaticality of the target
text; these aspects are usually not perceived as rel-
evant for crosslingual STS.

Many previous crosslingual STS methods rely
heavily on existing parallel resources to first build
a machine translation (MT) system and translate
one of the test sentences into the other language
for applying monolingual STS methods (Brychcı́n
and Svoboda, 2016). Methods that do not rely ex-
plicitly on MT, such as that in Lo et al. (2018), still
require parallel resources to build bilingual word
representations for evaluating crosslingual lexical
semantic similarity. It is clear that there is a circu-
lar dependency problem on parallel resources.

Massively multilingual context representation
models, such as MUSE (Conneau et al., 2017),
BERT (Devlin et al., 2019), and XLM (Lample
and Conneau, 2019), that are trained in an unsu-
pervised manner with non-parallel data from each
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language, have shown improved performance in
XNLI classification tasks using task-specific fine-
tuning.

In this paper, we propose a crosslingual STS
metric based on fully unsupervised contextual
embeddings extracted from BERT without fine-
tuning. In an intrinsic crosslingual STS evalua-
tion and extrinsic parallel corpus filtering and hu-
man translation error detection tasks, we show that
our BERT-based metric achieves performance on
par with similar metrics based on supervised or
weakly supervised approaches. With the availabil-
ity of the multilingual context representation mod-
els, we show that the deadlock around parallel re-
sources for crosslingual textual similarity can be
broken.

2 Crosslingual STS metric

Our crosslingual STS metric is based on YiSi (Lo,
2019). YiSi is a unified adequacy-oriented MT
quality evaluation and estimation metric for lan-
guages with different levels of available resources.
Lo et al. (2018) showed that YiSi-2, the crosslin-
gual MT quality estimation metric, performed al-
most as well as the “MT + monolingual MT evalu-
ation metric (YiSi-1)” pipeline for identifying par-
allel sentence pairs from a noisy web-crawled cor-
pus in the Parallel Corpus Filtering task of WMT
2018 (Koehn et al., 2018b).

To measure semantic similarity between pairs of
segments, YiSi-2 proceeds by finding alignments
between the words of these segments that maxi-
mize semantic similarity at the lexical level. For
evaluating crosslingual lexical semantic similarity,
it relies on a crosslingual embedding model, us-
ing cosine similarity of the embeddings from the
crosslingual lexical representation model. Follow-
ing the approach of Corley and Mihalcea (2005),
these lexical semantic similarities are weighed
by lexical specificity using inverse document fre-
quency (IDF) collected from each side of the
tested corpus.

As an MTQE metric, YiSi-2 also takes into ac-
count fluency and grammatically of each side of
the sentence pairs using bag-of-ngrams and the se-
mantic parses of the tested sentence pairs. But
since crosslingual STS focuses primarily on mea-
suring the meaning similarity between the tested
sentence pairs, here we set the size of ngrams to 1
and opt not to use semantic parses in YiSi-2. In ad-
dition, rather than compute IDF weights w(e) and

w(f) for lexical units e and f in each language di-
rectly on the texts under consideration, we rely on
precomputed weights from monolingual corpora E
and F of the two tested languages.

The YiSi metrics are formulated as an F-score:
by viewing the source text as a “query” and the
target as an “answer”, precision and recall can be
computed. Depending on the intended applica-
tion, precision and recall can be weighed differ-
ently. For example, in MT evaluation applications,
we typically assign more weight to recall (“every
word in the source should find an equivalent in
the target”). For this application, we give equal
weights to precision and recall.

Thus, the crosslingual STS of sentences e and
f using YiSi-2 in this work can be expressed as
follows:

v(u) = embedding of unit u

s(e, f) = cos(v(e), v(f))

w (e) = idf(e) = log(1 +
|E|+ 1

|E∃e|+ 1
)

w (f) = idf(f) = log(1 +
|F|+ 1

|F∃f |+ 1
)

precision =

∑
e∈e

max
f∈f

w (e) · s (e, f)
∑
e∈e

w (e)

recall =

∑
f∈f

max
e∈e

w (f) · s (e, f)
∑
f∈f

w (f)

YiSi-2 =
2 · precision · recall
precision + recall

where s(e, f) is the cosine similarity of the vec-
tor representations v(e) and v(f) in the bilingual
embeddings model.

In the following, we present the approaches we
experimented with to obtain the crosslingual em-
bedding space in supervised, weakly supervised
and unsupervised manners.

2.1 Supervised crosslingual word
embeddings with BiSkip

Luong et al. (2015) proposed BiSkip (with open
source implementation bivec1) to jointly learn
bilingual representations from the context cooc-
currence information in the monolingual data and
the meaning equivalent signals in the parallel data.
It trains bilingual word embeddings with the ob-
jective to preserve the clustering structures of

1https://github.com/lmthang/bivec
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words in each language. We train our crosslingual
word embeddings using bivec on the parallel re-
sources as described in each experiment.

2.2 Weakly supervised crosslingual word
embeddings with vecmap

Artetxe et al. (2016) generalized a framework to
learn the linear transformation between two mono-
lingual word embedding spaces by minimizing the
distances between equivalences listed in a collec-
tion of bilingual lexicons (with open source imple-
mentation vecmap2). We train our monolingual
word embeddings using word2vec3 (Mikolov
et al., 2013) on the monolingual resources and
then learn the linear transformation of the two
monolingual embedding space using vecmap on
the dictionary entries as described in each experi-
ment.

2.3 Unsupervised crosslingual contextual
embeddings with multilingual BERT

The above two mentioned embedding models pro-
duce static word embeddings that captures the se-
mantic space to represent the training data. The
shortcoming of these static embedding models is
that they provide the same embedding representa-
tion for the same word without reflecting the con-
text variation of them being used in different sen-
tences. In contrast, BERT (Devlin et al., 2019)
uses a bidirectional transformer encoder (Vaswani
et al., 2017) to capture the sentence context in the
output embeddings, such that the embedding for
the same word unit in different sentences would be
different and better represented in the embedding
space. Multilingual BERT model is trained on the
Wikipedia pages of 104 languages with a shared
subword vocabulary. Pires et al. (2019) showed
multilingual BERT works well on different mono-
lingual NLP tasks across different languages.

Following the recommendation in Devlin et al.
(2019), we use embeddings extracted from the
ninth layer of the pretrained multilingual cased
BERT-Base model4 to represent subword units in
the two sentences in assessment for the crosslin-
gual lexical semantic similarity.

2https://github.com/artetxem/vecmap
3https://code.google.com/archive/p/

word2vec/
4https://github.com/google-research/

bert

3 Experiment on crosslingual STS

We first evaluate the performance of YiSi-2 on the
intrinsic crosslingual STS task, before testing its
ability on the downstream task of identifying par-
allel data.

3.1 Setup
We use data from the SemEval-2016 Semantic
Textual Similarity (STS) evaluation’s crosslingual
track (task1) (Agirre et al., 2016b), in which the
goal was to estimate the degree of equivalence
between pairs of Spanish-English bilingual frag-
ments of text.5 The test data is partitioned into
two evaluation sets: the News data set has 301
pairs, manually harvested from comparable Span-
ish and English news sources; the Multi-source
data set consists of 294 pairs, sampled from En-
glish pairs of snippets used in the SemEval-2016
monolingual STS task, translated into Spanish.

We apply YiSi-2 directly to these pairs of
text fragments, using bilingual word embeddings
trained under three different conditions (details of
the training sets are given in Table 1):

bivec : BWE’s are produced with bivec, trained
on WMT 2013 ES-EN parallel training data.

vecmap : BWE’s are produced with vecmap,
trained on all WMT 2013 ES and WMT
2019 EN monolingual data, using Wikititles
as bilingual lexicon.6

BERT : BWE’s are obtained from pre-trained
multilingual BERT models.

We compare the YiSi-2 approach to direct co-
sine computations on sums of bilingual word em-
beddings (bivec sum, vecmap sum and bert sum).
We also compare our approach to an MT-based
approach, in which each Spanish fragment is first
machine-translated into English, then compared to
the original English fragment, using English word
embeddings, produced with word2vec trained on
WMT 2019 news translation task monolingual
data. Similarity is measured either as the cosine
of the sums of word vectors from each fragment
(w2v sum), or with YiSi using monolingual em-
beddings as if they were bilingual (YiSi-1w2v).

5In this task, the order of languages in pairs was random-
ized, so that it was first necessary to detect which fragment
was in which language. Here, we work from properly ordered
pairs.

6https://linguatools.org/tools/
corpora/wikipedia-parallel-titles-corpora/
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Model Training Data: Dictionary Embedding vocab
lang. domain #sent #words #pairs #words

bivec es WMT 2013: EU Parliament and web 3.8M 107M — 291k
en 102M 220k

vecmap es WMT 2013: News and EU Parliament 45M 1B 373k 883k
en WMT 2019: News 779M 13B 3M

Table 1: Statistics of data used in training the bilingual word embeddings for evaluating crosslingual lexical se-
mantic similarity in YiSi-2.

SemEval-16 crosslingual STS
system news multisource
MT + monolingual STS
UWB 0.9062 0.8190
MT+w2v sum 0.5883 0.2021
MT+YiSi-1w2v 0.8965 0.6212
crosslingual STS
bivec sum 0.5302 0.2684
vecmap sum 0.3075 0.5398
bert sum 0.7223 0.6071
YiSi-2bivec 0.8744 0.6550
YiSi-2vecmap 0.7854 0.7028
YiSi-2bert 0.8723 0.7190

Table 2: Pearson’s correlation of the system scores
with the gold standard on the two test sets from the
SemEval-16 crosslingual STS task.

The MT system used is a phrase-based SMT sys-
tem, trained using standard resources – Europarl,
Common Crawl (CC) and News & Commentary
(NC) – totaling approximately 110M words in
each language. We bias the SMT decoder to pro-
duce a translation that is as close as possible on
the surface to the English sentence. This is done
by means of log-linear model features that aim
at maximizing n-gram precision between the MT
output and the English sentence. More details on
this method can be found in Lo et al. (2016).

3.2 Results

The results of these experiments are presented
in Table 2, where performance is measured in
terms of Pearson’s correlation with the test sets’
gold standard annotations. For reference, we
also include results obtained by the UWB sys-
tem (Brychcı́n and Svoboda, 2016), which was
the best performing system in the SemEval 2016
crosslingual STS shared task. The UWB sys-
tem is an MT-based system with a STS sys-
tem trained on assorted lexical, syntactic and se-
mantic features. Globally, using the YiSi met-
ric to measure semantic similarity performs much

better than sentence-level cosine (“* sum” sys-
tems). On the News dataset, the best results are
obtained by combining an MT-based approach
with YiSi-1 using monolingual word embeddings
(MT+YiSi-1w2v), reflecting the in-domain nature
of the text for the MT system. However, this is fol-
lowed very closely by both the supervised BWE’s
(YiSi-2bivec) and BERT (YiSi-2bert), which yield
very similar results, and clearly outperform semi-
supervised BWE’s (YiSi-2vecmap). The nature of
the Multisource translations appears to be quite
different from what supervised BWE’s and the
MT system have been exposed to in training
(YiSi-2bivec and MT+YiSi-1w2v), which possibly
explains their much poorer performance on this
dataset. In contrast, weakly supervised BWE’s
and BERT behave much more reliably on this data.

Overall, while MT and supervised BWE’s seem
to work best with YiSi when large quantities of
in-domain training data is available, the fully un-
supervised alternative of using a pretrained BERT
model comes very close, and behaves much better
in the face of out-of-domain data.

4 Experiment on Parallel Corpus
Filtering

Next, we evaluate YiSi on the task of Parallel Cor-
pus Filtering (PCF). Quality – or “cleanliness” –
of parallel training data for MT has been shown
to affect MT quality at different degrees, and vari-
ous characteristics of the data – parallelism of the
sentence pairs and the grammaticality of target-
language data – impact MT systems in different
ways (Goutte et al., 2012; Simard, 2014; Khayral-
lah and Koehn, 2018).

Here, we use data from the WMT19 shared
task on PCF. In this shared task, participants were
challenged to find good quality translations from
noisy sentence-aligned parallel corpora, for the
purpose of training MT systems for translating
from two low-resource languages, Nepali and Sin-
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Model
Training Data: Dictionary Embedding vocab
lang. domain #sent #words #pairs #words

bivec
ne

IT and religious 563k
8M

—
34k

en 5M 46k

vecmap
ne wiki 92k 5M

9k
55k

en news 779M 13B 3M

Table 3: Statistics of data used in training the bilingual word embeddings for evaluating crosslingual lexical se-
mantic similarity in YiSi-2.

hala, into English.7 Both corpora were crawled
from the web, using ParaCrawl (Koehn et al.,
2018a). Specifically, the task is to produce a
score for each sentence pair in these noisy cor-
pora, reflecting the quality of that pair. The scor-
ing schemes are evaluated by extracting the top-
scoring sentence pairs from each corpus, then us-
ing them to train MT systems; these systems are
run on test sets of Wikipedia articles (Guzmán
et al., 2019), and the results are evaluated using
BLEU (Papineni et al., 2002). In addition to the
noisy corpora, participants are allowed to use a
few small sets of parallel data, covering different
domains, for each of the two low-resource lan-
guages, as well as a third, related language, Hindi
(which uses the same script as Nepali). The pro-
vided data also included much larger monolingual
corpora for each of English, Hindi, Nepali and
Sinhala.

4.1 Setup
In these experiments, we focus on the Nepali-
English corpus, and perform PCF in three steps:

1. pre-filtering: apply ad hoc filters to remove
sentences that are exact duplicates (mask-
ing numbers, emails and web addresses), that
contain mismatching numbers, that are in the
wrong language according to the pyCLD2
language detector8 or that are excessively
long (either side has more than 150 tokens).
We also filter out all pairs where over 50% of
the Nepali text is comprised of English, num-
bers or punctuation.

2. scoring: we score sentence pairs using YiSi-
2.

3. re-ranking: to optimize vocabulary cover-
age in the resulting MT system, we apply a

7http://www.statmt.org/wmt19/
parallel-corpus-filtering.html

8https://github.com/aboSamoor/pycld2

WMT19 parallel corpus filtering
system 1M-word 5M-word
random 1.30 3.01
Zipporah 4.14 4.42
YiSi-2bivec 3.86 3.76
YiSi-2vecmap 4.00 3.76
YiSi-2bert 3.77 3.77

Table 4: Uncased BLEU scores on the official WMT19
PCF dev (“dev-test”) sets achieved by the SMT systems
trained on the 1M- and 5M-word corpora subselected
by the scoring systems.

form of re-ranking: going down the ranked
list of scored sentence pairs, we apply a 20%
penalty to the pair’s score if it does not con-
tain at least one “new” source-language word
bigram, i.e., a pair of consecutive source-
language tokens not observed in previous
(higher-scoring) sentence pairs. This has the
effect of down-ranking sentences that are too
similar to previously selected sentences.

The scoring step is performed with YiSi-2, us-
ing bilingual word embeddings obtained under
three different conditions (details of the various
training sets used can be found in Table 3):

bivec : supervised BWE’s produced using bivec,
trained on the WMT19 PCF (clean) parallel
data.

vecmap : weakly supervised BWE’s are pro-
duced with vecmap, trained on all monolin-
gual WMT19 PCF data, using Wikititles and
the provided dictionary entries as bilingual
lexicon.

BERT : BWE’s obtained from pretrained multi-
lingual BERT models.

As in the WMT19 PCF shared task, we evalu-
ate the quality of our scoring by training MT sys-
tems and measuring their performance on the of-
ficial test set. We used the provided software to
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extract the 1M-word and 5M-word samples from
the original test corpora, using the scores of each
of our systems in turn. We then trained MT sys-
tems using the extracted data: our MT systems are
standard phrase-based SMT systems, with com-
ponents and parameters similar to the German-
English SMT system in Williams et al. (2016).

4.2 Results

BLEU scores of the resulting MT systems are
shown in Table 4. For comparison, we present
the results of random scoring, as well as results
obtained by the Zipporah PCF method (Xu and
Koehn, 2017). Zipporah combines fluency and ad-
equacy features to score sentence pairs; adequacy
features are derived from existing parallel corpora,
and the feature combination (logistic regression)
is optimized on in-domain parallel data. There-
fore, Zipporah can be seen as a fully supervised
method. The Zipporah-based MT systems were
trained similarly to other systems in the results re-
ported here.

All systems produced with YiSi-2 produce sim-
ilar results. Interestingly, the MT systems pro-
duced with YiSi-2 in the 5M-word condition are
not better than those of the 1M-word condition.
This is possibly explained by the large quantity of
noisy data in the WMT19 Nepalese-English cor-
pus: it is not even clear that there are 5M words
of proper translations in that corpus. In such harsh
conditions, pre- and post-processing steps become
crucially important, and deduplicating the data
may even turn out to be harmful, if that means
allowing more space for noise. The MT systems
produced with Zipporah all achieve higher BLEU
scores than YiSi-2, which may be explained by
Zipporah’s explicit modeling of target-language
fluency. This is especially apparent in the 5M-
word condition, but it may explain Zipporah’s
slightly better performance in the 1M-word con-
dition as well. Overall, the benefits of super-
vised and weakly supervised approaches over us-
ing a pre-trained BERT model for PCF appear to
be minimal, even in very low-resource conditions
such as this.

5 Experiments on Translation
Equivalence Error Detection

Given a text and its translation, Translation Equiv-
alence Error Detection (TEED) is the task of
identifying pairs of corresponding text segments

whose meanings are not strictly equivalent. Note
that, while in practice “translation errors” can take
many forms, here, we are strictly focusing on
meaning errors. In this formulation of the prob-
lem, we are also assuming that the source and tar-
get texts have been properly segmented into sen-
tences and aligned.

The TEED problem is essentially the same as
that of Parallel Corpus Filtering (PCF), discussed
in the previous section. However, the usage sce-
nario is quite different: in PCF, one is typically
dealing with a very large collection of segment
pairs, only a fraction of which are true translations;
the PCF task is then to filter out pairs which are not
proper translations, possibly with some tolerance
for pairs of segments that do share partial mean-
ing. In TEED, the data is mostly expected to be
high-quality translations; the task is then to iden-
tify those pairs that deviate from this norm, even
on small details.

5.1 Setup

We experiment the TEED task using a data set
obtained from the Canadian government’s Public
Service Commission (PSC). As part of its man-
date, the PSC periodically audits Canadian gov-
ernment job ads, to ensure that they conform with
Canada’s Official Languages Act: as such, job ads
must be posted in both of Canada’s official lan-
guages, English and French, and both versions
must be equivalent in meaning.

Our PSC data set consists of 175 000 “State-
ment of merit criteria” paragraphs, identifying any
skill, ability, academic specialization, relevant ex-
perience or any other essential or asset criteria re-
quired for a position to be filled. Of these, 3521
have been manually annotated for equivalence er-
rors by PSC auditors. Out of the 3521 pairs, 164
(4.6%) were reported to contain equivalence er-
rors. The majority of these errors result from
missing information in one language or the other
(45%). In a slightly smaller proportion (43%), we
find pairs of segments that don’t express exactly
the same meaning – a surprisingly large propor-
tion of this last group consists in cases where the
word and is translated as or or vice-versa. The
rest consist in terminology issues and untranslated
segments.

We experimented applying the YiSi-2 metric to
this task, using bilingual word embeddings ob-
tained under four different conditions:
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Model
Training Data: Dictionary Embedding vocab
lang. domain #sent #words #pairs #words

WMT.bivec
fr

News and EU Parliament 40.7M
1.2B

—
878k

en 1.4B 791k

PSC.bivec
fr

Job ads 175k
3.0M

—
10k

en 2.5M 11k

PSC.vecmap
fr Job ads 175k 3.0M

6k
10k

en Job ads 175k 2.5M 11k

Table 5: Statistics of data used in training the bilingual word embeddings for evaluating translation equivalence
assessment.

PSC Translation Error Detection
model ROC AUC mean F1 mean F2

PSC.bivec 0.807 0.160 0.281
PSC.vecmap 0.717 0.136 0.241
BERT 0.702 0.132 0.234
WMT.bivec 0.641 0.112 0.205

Table 6: Sentence-level translation error detection re-
sults on PSC test data, expressed in terms of Area under
the ROC curve, mean F1 and mean F2.

PSC.bivec : BWE’s are produced with bivec,
trained on all unannotated PSC data.

PSC.vecmap : BWE’s are produced with
vecmap, trained on all unannotated PSC data,
using wikititles as bilingual lexicon.

WMT.bivec : BWE’s are produced with bivec,
trained on all bilingual French-English data
provided for the WMT 2015 News translation
shared task.

BERT : BWE’s obtained from pretrained multi-
lingual BERT models.

Details about the training data can be found in Ta-
ble 5.

5.2 Results
For these experiments, we considered an applica-
tion scenario in which a text and its translation, in
the form of pairs of matching segments, are scored
using YiSi-2, and presented to a user, ranked in in-
creasing order of score, so that pairs most likely to
contain a translation error are presented first. The
performance of the system can then be measured
in terms of true and false positive rates, precision
and recall, over subsets of increasing sizes of the
test set. In Table 6, we report results in terms of
meanF -score, with β = 1 and β = 2, and in terms

Figure 1: ROC curves of Sentence-level translation er-
ror detection results on PSC test data.

of the Area under the ROC curve (ROC AUC),
which can be interpreted as the probability that a
system will score a randomly chosen faulty trans-
lation lower than a randomly chosen good transla-
tion. The ROC curves themselves can be seen in
Figure 1.

Globally, YiSi-2 clearly performs best at this
task when using BWE’s trained on domain-
specific parallel data (PSC.bivec), even when there
is very limited quantities of such data, as is the
case here. However, BERT models perform com-
parably to vector-mapped BWE’s trained with in-
domain data (PSC.vecmap), and substantially bet-
ter than BWE’s trained on large quantities of
generic, out-of-domain parallel data (WMT). We
conclude that, in the absence of in-domain paral-
lel data, for TEED applications, an unsupervised
YiSi-2 method will perform at least as well as su-
pervised methods trained on out-of-domain data.
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6 Conclusion

We presented a fully unsupervised crosslingual
semantic textual similarity (STS) metric, based
on contextual embeddings extracted from BERT
without fine-tuning. We perform intrinsic evalua-
tions on crosslingual STS data sets and extrinsic
evaluations on parallel corpus filtering and human
translation equivalence assessment tasks. Our re-
sults show that the unsupervised metric we pro-
pose achieves performance on par with supervised
or weakly supervised approaches. We show that
the circular dependency on the existence of paral-
lel resources for using crosslingual STS to identify
parallel data can be broken.

In this paper, we have only experimented with
the contextual embeddings extracted from pre-
trained multilingual BERT model. For domain-
specific applications, such as the job advertise-
ment domain in the PSC translation equivalence
error detection task, the performance of YiSi-
2 could potentially be improved by fine-tuning
BERT with in-domain data, something we plan to
examine in the near future. We will also want to
explore the use of other multilingual context repre-
sentation models, such as MUSE (Conneau et al.,
2017), XLM (Lample and Conneau, 2019), etc.
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Abstract

Recent work has validated the importance of
subword information for word representation
learning. Since subwords increase parameter
sharing ability in neural models, their value
should be even more pronounced in low-data
regimes. In this work, we therefore provide
a comprehensive analysis focused on the use-
fulness of subwords for word representation
learning in truly low-resource scenarios and
for three representative morphological tasks:
fine-grained entity typing, morphological tag-
ging, and named entity recognition. We con-
duct a systematic study that spans several
dimensions of comparison: 1) type of data
scarcity which can stem from the lack of task-
specific training data, or even from the lack
of unannotated data required to train word em-
beddings, or both; 2) language type by work-
ing with a sample of 16 typologically diverse
languages including some truly low-resource
ones (e.g. Rusyn, Buryat, and Zulu); 3) the
choice of the subword-informed word repre-
sentation method. Our main results show that
subword-informed models are universally use-
ful across all language types, with large gains
over subword-agnostic embeddings. They also
suggest that the effective use of subwords
largely depends on the language (type) and the
task at hand, as well as on the amount of avail-
able data for training the embeddings and task-
based models, where having sufficient in-task
data is a more critical requirement.

1 Introduction and Motivation

Recent studies have confirmed the usefulness of
leveraging subword-level information in learning
word representations (Peters et al., 2018; Heinz-
erling and Strube, 2018; Grave et al., 2018; Zhu
et al., 2019, inter alia), and in a range of tasks such
as sequence tagging (Lample et al., 2016; Akbik

∗Equal contribution, work partly done while at HITS.

et al., 2018; Devlin et al., 2019), fine-grained entity
typing (Zhu et al., 2019), neural machine transla-
tion (Sennrich et al., 2016; Luong and Manning,
2016; Lample et al., 2018; Durrani et al., 2019),
or general and rare word similarity (Pilehvar et al.,
2018; Zhu et al., 2019). The subword-informed
word representation architectures leverage the in-
ternal structure of words and assume that a word’s
meaning can be inferred from the meaning of its
constituent (i.e., subword) parts. Instead of treating
each word as an atomic unit, subword-informed
neural architectures reduce data sparsity by relying
on parameterization at the level of subwords (Bo-
janowski et al., 2017; Pinter et al., 2017; Chaudhary
et al., 2018; Kudo, 2018).

An increasing body of work focuses on various
aspects of subword-informed representation learn-
ing such as segmentation of words into subwords
and composing subword embeddings into word rep-
resentations (Lazaridou et al., 2013; Cotterell and
Schütze, 2015, 2018; Avraham and Goldberg, 2017;
Vania and Lopez, 2017; Kim et al., 2018; Zhang
et al., 2018; Zhao et al., 2018, inter alia).1 The in-
creased parameter sharing ability of such models is
especially relevant for learning embeddings of rare
and unseen words. Therefore, the importance of
subword-level knowledge should be even more pro-
nounced in low-data regimes for truly low-resource
languages. Yet, a systematic study focusing exactly
on the usefulness of subword information in such
settings is currently missing in the literature. In this
work, we fill this gap by providing a comprehen-
sive analysis of subword-informed representation
learning focused on low-resource setups.

Our study centers on the following axes of com-
parison, focusing on three representative tasks
where subword-level information can guide learn-

1An overview of a variety of subword-informed word rep-
resentation architectures and different segmentation and com-
position strategies is provided by Zhu et al. (2019).
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ing, namely fine-grained entity typing (FGET),
morphological tagging (MTAG), and named entity
recognition (NER): 1) Since data scarcity can stem
from unavailability of (i) task-specific training data
or (ii) unannotated corpora to train the embeddings
in the first place, or (iii) both, we analyse how
different data regimes affect the final task perfor-
mance. 2) We experiment with 16 languages rep-
resenting 4 diverse morphological types, with a fo-
cus on truly low-resource languages such as Zulu,
Rusyn, Buryat, or Bambara. 3) We experiment
with a variety of subword-informed representation
architectures, where the focus is on unsupervised,
widely portable language-agnostic methods such
as the ones based on character n-grams (Luong
and Manning, 2016; Bojanowski et al., 2017), Byte
Pair Encodings (BPE) (Sennrich et al., 2016; Heinz-
erling and Strube, 2018), Morfessor (Smit et al.,
2014), or BERT-style pretraining and fine-tuning
(Devlin et al., 2019) which relies on WordPieces
(Wu et al., 2016). We demonstrate that by tun-
ing subword-informed models in low-resource set-
tings we can obtain substantial gains over subword-
agnostic models such as skip-gram with negative
sampling (Mikolov et al., 2013) across the board.

The main goal of this study is to identify vi-
able and effective subword-informed approaches
for truly low-resource languages and offer mod-
eling guidance in relation to the target task, the
language at hand, and the (un)availability of gen-
eral and/or task-specific training data. As expected,
our key results indicate that there is no straightfor-
ward “one-size-fits-all” solution, although certain
approaches (e.g., BPE-based or character n-grams)
emerge as more robust in general. The optimal
subword-informed configurations are largely task-,
language-, and resource-dependent: their perfor-
mance hinges on a complex interplay of the multi-
ple factors mentioned above. For instance, we show
that fine-tuning pretrained multilingual BERT (De-
vlin et al., 2019; Wu and Dredze, 2019) is a viable
strategy for “double” low-resource settings in the
NER and MTAG tasks, but it fails for the FGET task
in the same setting; furthermore, its performance
can be matched or surpassed by other subword-
informed methods in NER and MTAG as soon as
they obtain sufficient embedding training data.

2 Methodology

In what follows, we further motivate our work by
analyzing two different sources of data scarcity:

embedding training data (termed WE data) and
task-specific training data (termed task data). Fol-
lowing that, we motivate our selection of test lan-
guages and outline the subword-informed represen-
tation methods compared in our evaluation.

Types of Data Scarcity. The majority of lan-
guages in the world still lack basic language tech-
nology, and progress in natural language processing
is largely hindered by the lack of annotated task
data that can guide machine learning models (Agić
et al., 2016; Ponti et al., 2018). However, many
languages face another challenge: the lack of large
unannotated text corpora that can be used to induce
useful general features such as word embeddings
(Adams et al., 2017; Fang and Cohn, 2017; Ponti
et al., 2018):2 i.e. WE data.

The absence of data has over the recent years
materialized the proxy fallacy. That is, methods
tailored for low-resource languages are typically
tested only by proxy, simulating low-data regimes
exclusively on resource-rich languages (Agić et al.,
2017). While this type of evaluation is useful for
analyzing the main properties of the intended low-
resource methods in controlled in vitro conditions,
a complete evaluation should also provide results
on true low-resource languages in vivo. In this
paper we therefore conduct both types of evalu-
ation. Note that in this work we still focus on
low-resource languages that have at least some dig-
ital footprint (see the statistics later in Table 1),
while handling zero-resource languages without
any available data (Kornai, 2013; Ponti et al., 2018)
is a challenge left for future work.

(Selection of) Languages. Both sources of data
scarcity potentially manifest in degraded task per-
formance for low-resource languages: our goal is
to analyze the extent to which these factors affect
downstream tasks across morphologically diverse
language types that naturally come with varying
data sizes to train their respective embeddings and
task-based models. Our selection of test languages
is therefore guided by the following goals: a) fol-
lowing recent initiatives (e.g. in language mod-
eling) (Cotterell et al., 2018; Gerz et al., 2018),
we aim to ensure coverage of different genealogi-
cal and typological properties; b) we aim to cover
low-resource languages with varying amounts of
available WE data and task-specific data.

We select 16 languages in total spanning 4 broad
2For instance, as of April 2019, Wikipedia is available only

in 304 out of the estimated 7,000 existing languages.
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Agglutinative Fusional Introflexive Isolating

BM BXR MYV TE TR ZU EN FO GA GOT MT RUE AM HE YO ZH

EMB 40K 372K 207K 5M 5M 69K 5M 1.6M 4.4M 18K 1.5M 282K 659K 5M 542K 5M
FGET 29K 760 740 13K 60K 36K 60K 30K 56K 289 2.7K 1.5K 2.2K 60K 15K 60K
NER 345 2.4K 2.1K 9.9K 167K 425 8.9M 4.0K 7.6K 475 1.9K 1.6K 1.0K 107K 3.4K –
MTAG – – – 1.1K 3.7K – 24K – – 3.4K 1.1K – – 5.2K – 4.0K

BERT X X X X X X X

Table 1: Overview of test languages and data availability. EMB denotes the maximum number of tokens in corre-
sponding Wikipedias used for training embeddings. Actual Wikipedia sizes are larger than 5M for (TE, TR, EN,
HE, ZH), but were limited to 5M tokens in order to ensure comparable evaluation settings for data scarcity simu-
lation experiments across different languages. FGET, NER, and MTAG rows show the number of instances for the
three evaluation tasks (see §3): number of entity mentions for FGET, number of sentences for NER and MTAG. In
MTAG, we omit languages for which UDv2.3 provides only a test set, but no training set. The BERT row shows the
languages supported by multilingual BERT. Languages are identified by their ISO 639-1 code.

morphological types, listed in Table 1. Among
these, we chose one (relatively) high-resource lan-
guage for each type: Turkish (agglutinative), En-
glish (fusional), Hebrew (introflexive), and Chinese
(isolating). We use these four languages to simulate
data scarcity scenarios and run experiments where
we control the degree of data scarcity related to
both embedding training data and task-related data.
The remaining 12 languages are treated as test lan-
guages with varying amounts of available data (see
Table 1. For instance, relying on the Wikipedia data
for embedding training, Gothic (GOT) is the lan-
guage from our set that contains the fewest number
of word tokens in its respective Wikipedia (18K, in
terms of Wikipedia size this ranks it as 273th out of
304 Wikipedia languages); Irish Gaelic (GA) with
4.4M tokens is ranked 87/304.

Subword-Informed Word Representations. We
mainly follow the framework of Zhu et al. (2019)
for the construction of subword-informed word rep-
resentations; the reader is encouraged to refer to
the original paper for more details. In short, to com-
pute the representation for a given word w ∈ V ,
where V is the word vocabulary, the framework
is based on three main components: 1) segmen-
tation of words into subwords, 2) interaction be-
tween subword and position embeddings, and 3)
a composition function that yields the final word
embedding from the constituent subwords. Zhu
et al. (2019) explored a large space of possible
subword-informed configurations. Based on their
findings, we select a representative subset of model
configurations. They can be obtained by varying
the components listed in Table 2.

Concretely, w is first segmented into an ordered
subword sequence from the subword vocabulary S
by a deterministic subword segmentation method.

To enable automatic language-agnostic segmenta-
tion across multiple languages, we focus on un-
supervised segmentation methods: we work with
Morfessor (Smit et al., 2014), character n-grams
(Bojanowski et al., 2017) and BPE (Gage, 1994).
We use the default parameters for Morfessor, and
the same 3 to 6 character n-gram range as Bo-
janowski et al. (2017). For BPE, the number of
merge operations is a tunable hyper-parameter. It
controls the segmentation “aggressiveness”: the
larger the number the more conservative the BPE
segmentation is. Following Heinzerling and Strube
(2018), we investigate the values {1e3, 1e4, 1e5}:
this allows us to test varying segmentation granu-
larity in relation to different language types.

After segmentation into subwords, each subword
is represented by a vector s from the subword em-
bedding matrix S ∈ R|S|×d, where d is the dimen-
sionality of subword embeddings. Optionally, the
word itself can be appended to the subword se-
quence and embedded into the subword space in
order to incorporate word-level information (Bo-
janowski et al., 2017). To encode subword order,
s can be further enriched by a trainable position
embedding p. We use addition to combine sub-
word and position embeddings, namely s := s+p,
which has become the de-facto standard method
to encode positional information (Gehring et al.,
2017; Vaswani et al., 2017; Devlin et al., 2019).

Finally, the subword embedding sequence is
passed to a composition function, which computes
the final word representation. Li et al. (2018) and
Zhu et al. (2019) have empirically verified that
composition by simple addition, among other more
complex composition functions, is a robust choice.
Therefore, we use addition in all our experiments.

Similar to Bojanowski et al. (2017); Zhu et al.
(2019), we adopt skip-gram with negative sampling
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Component Option Label
Segmentation Morfessor morf

BPE bpeX
char n-gram charn

Word token exclusion w-
inclusion w+

Position embedding exclusion p-
additive p+

Composition function addition add

Table 2: Components for constructing subword-
informed word representations. In the bpeX label
X ∈ {1e3, 1e4, 1e5} denotes the BPE vocabulary size.

(Mikolov et al., 2013) as our word-level distribu-
tional model: the target word embedding is com-
puted by our subword-informed model, and the
context word is parameterized by the (word-level)
context embedding matrix Wc ∈ R|V |×dc .

We compare subword-informed architectures to
two well-known word representation models, also
captured by the general framework of Zhu et al.
(2019): 1) the subword-agnostic skip-gram model
from the word2vec package (Mikolov et al.,
2013) (W2V), and 2) fastText (FT) (Bojanowski
et al., 2017). The comparison to W2V aims to
validate the potential benefit of subword-informed
word representations for truly low-resource lan-
guages, while the comparison to FT measures
the gains that can be achieved by more sophisti-
cated and fine-tuned subword-informed architec-
tures. We also compare with pretrained multilin-
gual BERTbase (Devlin et al., 2019) on the lan-
guages supported by this model.

3 Evaluation Tasks

Fine-Grained Entity Typing. FGET is cast as a
sequence classification problem, where an entity
mention consisting of one or more tokens (e.g. Lin-
colnshire, Bill Clinton), is mapped to one of the 112
fine-grained entity types from the FIGER inventory
(Ling and Weld, 2012; Yaghoobzadeh and Schütze,
2015; Heinzerling and Strube, 2018). Since entity
mentions are short token sequences and not full
sentences, this semi-morphological/semantic task
requires a model to rely on the subword informa-
tion of individual tokens in the absence of sentence
context. That is, subwords can provide evidence
useful for entity type classification in the absence
of context. For instance, Lincolnshire is assigned
the type /location/county as -shire is a suf-
fix that strongly indicates a location. Hence, FGET

is well-suited for evaluating subword-informed rep-

resentations, and can benefit from the information.

Morphological Tagging. MTAG is the task of an-
notating each word in a sentence with features such
as part-of-speech, gender, number, tense, and case.
These features are represented as a set of key-value
pairs. For example, classified is a finite (Fin) verb
(V) in indicative (Ind) mood, third person, past
tense, which is annotated with the morphological
tag {POS=V, Mood=Ind, Person=3, Tense=Past, Verb-
Form=Fin}, and the female singular third-person
possessive personal pronoun her with the morpho-
logical tag {Gender=Fem, Number=Sing, Person=3,
Poss=Yes, PronType=Prs}.
Named Entity Recognition. NER is the task of
annotating textual mentions of real-world entities
with their semantic type, such as person, location,
and organization: e.g., Barack Obama (person)
was born in Hawaii (location).

4 Experimental Setup

Embedding Training: WE Data. For train-
ing word and subword embeddings, we rely on
Wikipedia text for all 16 languages, with corre-
sponding Wikipedia sizes listed in Table 1. For
training embeddings in controlled low-resource set-
tings with our 4 “simulation” languages, we sample
nine data points to simulate low-resource scenarios
with WE data. Specifically, we sample 10K, 20K,
50K, 100K, 200K, 500K, 1M, 2M, and 5M tokens
of article text for each of the 4 languages. For the
other 12 languages we report results obtained by
training embedding on the full Wikipedia edition.

Task-Specific Data: Task Data. The maximum
number of training instances for all languages is
again provided in Table 1. As before, for 4 lan-
guages we simulate low-resource settings by taking
only a sample of the available task data: for FGET

we work with 200, 2K or 20K training instances
which roughly correspond to training regimes of
different data availability, while we select 300,3 1K,
and 10K sentences for NER and MGET. Again, for
the remaining 12 languages, we use all the avail-
able data to run the experiments. We adopt existing
data splits into training, development, and test por-
tions for MTAG (Cotterell and Heigold, 2017), and
random splits for FGET (Heinzerling and Strube,
2018; Zhu et al., 2019) and NER (Pan et al., 2017).

3With a smaller number of instances (e.g., 100), NER and
MGET model training was unstable and resulted in near-zero
performance across multiple runs.
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A large number of data points for scarcity sim-
ulations allow us to trace how performance on the
three tasks varies in relation to the availability of
WE data versus task data, and what data source is
more important for the final performance.

Embedding Training Setup. When training our
subword-informed representations, we argue that
keeping hyper-parameters fixed across different
data points will possibly result in underfitting for
larger data sizes or overfitting for smaller data
sizes. Therefore, we split data points into three
groups: [10K, 50K] (G1), (50K, 500K] (G2)
and (500K, 5M ] (G3), and use the same hyper-
parameters for word embedding training within the
same group. For G1, we train with batch size 32
for 60 epochs and set the minimum word frequency
threshold to 2. For G2 the values are: 128/30/3,
and 512/15/5 for G3. This way, we ensure that 1)
the difference of the absolute data sizes can be com-
pared within the same data group, and 2) for the
corresponding data points in different groups (10K,
100K, 1M ) the sample efficiency can be compared,
as the models trained on these data points undergo
roughly the same number of updates.4

Task-Specific Training Setup. For FGET, we use
the dataset of Heinzerling and Strube (2018) ob-
tained by mapping entity mentions from Wikidata
(Vrandečić and Krötzsch, 2014) to their associ-
ated FIGER-based most notable entity type (Ling
and Weld, 2012). For each language, we ran-
domly sample up to 100k pairs of entity mentions
with corresponding entity type and create random
60/20/20 train/dev/test splits. Our FGET model is
designed after the hierarchical architecture by Zhu
et al. (2019). For each entity token, we first use
our subword-informed model to obtain word rep-
resentations, and then feed the token embedding
sequence into a bidirectional LSTM with 2 hidden
layers of size 512, followed by a projection layer
which predicts the entity type. We initialize our
FGET model with the pretrained subword model,
and fine-tune it during training. With BERT, we
input the entire entity mention and then use the rep-
resentation of the special [CLS] token for classifi-
cation. We train with early stopping, using Adam
(Kingma and Ba, 2015) with default parameters
across all languages. As suggested by Wu and
Dredze (2019), BERT hyper-parameters are more

4We train fastText and skip-gram from word2vec
with the same number of epochs that is used to train our
subword-informed models on the corresponding data points.

sensitive to smaller data sizes, so we tune them on
the smallest data point with 200 training instances.
We follow Wu and Dredze (2019) to select hyper-
parameter candidates, i.e., 2e−5/3e−5/5e−5 for
learning rate, 16/32 for batch size and triangular
learning rate scheduler with first 10% of batches as
warm-up. We do an exhaustive search on four high
resource languages: EN, TR, HE, ZH and select the
hyper-parameter combination with the best average
score on the development sets.

For MTAG, we evaluate on the multilingual mor-
phological annotations provided by the Universal
Dependencies project (Nivre et al., 2016) and adopt
the experimental protocol of Cotterell and Heigold
(2017). Specifically, we cast MTAG as a sequence
labeling task by treating the concatenation of all
key-value pairs for a given word as the word’s label.
As sequence labeling model, we train a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997;
Plank et al., 2016), with two layers of size 1024 and
dropout 0.4, using early stopping on the develop-
ment set. For experiments involving multilingual
BERT, we fine-tune all of BERT’s layers and feed
the final layer into an LSTM before classification.
The evaluation metric is per-label accuracy, i.e., a
word’s morphological tag is either predicted cor-
rectly or not, and there is no partial credit for the
correct prediction of only a subset of features.

We evaluate NER performance on WikiAnn (Pan
et al., 2017), a multilingual dataset which provides
three-class entity type annotations which were au-
tomatically extracted from Wikipedia. We train
sequence labeling models using exactly the same
architectures and hyper-parameters as in MTAG,
and report F1 scores. As WikiAnn does not come
with predefined train/dev/test sets, we create ran-
dom 60/20/20 splits.

5 Results and Discussion

Results for data scarcity simulation experiments
are summarized in Figures 1-3, while the results on
the remaining 12 languages for all three tasks are
provided in Tables 3-4, with the best results among
different configurations of subword-informed meth-
ods reported. As the first main finding, the results
show that subword-informed architectures substan-
tially outperform the subword-agnostic skip-gram
W2V baseline, and the gaps are in some cases very
large: e.g., see the results in Figures 1-3 for the set-
tings with extremely scarce WE data. These scores
verify the importance of subword-level knowledge
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Figure 1: Test performance (accuracy) in the FGET task for different segmentation methods in data scarcity simu-
lation experiments across 4 languages representing 4 broad morphological types, averaged over 5 runs. Some data
points with Chinese (ZH) are not shown as in those cases the subword model is reduced to single characters only.

for low-resource setups.

Simulating Data Scarcity. Another general find-
ing concerns the importance of WE data versus task
data. The simulation results in Figure 1-3 suggest
that both types of data are instrumental to improved
task performance: This finding is universal as we
observe similar behaviors across tasks and across
different languages. While WE data is important,
considerably larger gains are achieved by collect-
ing more task data: e.g., see the large gains in FGET

when training on 200 versus 2K entity mentions.
In summary, both types of data scarcity decrease
performance, but the impact of scarce task data
seems more pronounced. Collecting more WE data
when dealing with scarce task data leads to larger
gains in the FGET task compared to MTAG or NER.

While subword models are generally better than
the baselines across different data points, less ag-
gressive segmentation models and token-based

models close the gap very quickly when increasing
WE data, which is in line with the findings of Zhu
et al. (2019), where morf eventually prevails in
this task with abundant WE data. This again veri-
fies the usefulness of subword-level knowledge for
low-(WE) data regimes. Similar trends emerge in
terms of task data, but the advantage of subword
models seems more salient with more task data.
The underlying task architectures start making use
of subword features more effectively: this shows
that subword-level knowledge is particularly useful
for the three chosen morphological tasks.

Performance of BERT. An interesting analysis re-
garding the (relative) performance of pretrained
multilingual BERT model emerges from Figures 1-
3. Fine-tuned BERT displays much stronger per-
formance in low-resources settings for the MTAG

and NER tasks than for the FGET task (e.g., com-
pare the sub-figures in the first columns of the
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Figure 2: Test performance in the MTAG task in data scarcity simulation experiments.

corresponding figures). The explanation of MTAG

and NER performance is intuitive. A pretrained
BERT model encodes a massive amount of back-
ground knowledge available during its (multilin-
gual) pretraining. However, as we supplement
other subword-informed representation learning
methods with more data for training the embed-
dings, the gap gets smaller until it almost com-
pletely vanishes: other methods now also get to
see some of the distributional information which
BERT already consumed in its pretraining.

BERT performance on FGET versus MTAG and
NER concerns the very nature of the tasks at hand.
The input data for FGET consist mostly of 2-4 word
tokens (i.e., entity mentions), while MTAG and NER

operate on full sentences as input. Since BERT
has been pretrained on sentences, this setting is a
natural fit and makes fine-tuning to these tasks eas-
ier: BERT already provides a sort of “contextual
subword composition function”. This stands in con-
trast with the other subword-informed approaches.

There, we might have good non-contextual sub-
word embeddings and a pretrained “non-contextual”
composition function, but we have to learn how
to effectively leverage the context for the task at
hand (i.e., by running an LSTM over the subword-
informed token representations) from scratch.5

Truly Low-Resource Languages. The results on
the 12 test languages in Table 3-4 suggest that
subword-informed models are better than the base-
lines in most cases: this validates the initial findings
from the simulation experiments. That is, lever-
aging subword information is important for WE
induction as well as for task-specific training. The

5Another factor at play is multilingual BERT’s limited vo-
cabulary size (100K WordPiece symbols), leaving on average a
bit under 1K symbols per language. Due to the different sizes
of Wikipedias used for pretraining BERT, some languages
might even be represented with far fewer than 1K vocabulary
entries, thereby limiting the effective language-specific model
capacity. Therefore, it is not that surprising that monolingual
subword-informed representations gradually surpass BERT
as more language-specific WE data becomes available. This
finding is also supported by the results reported in Table 3.
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Figure 3: Test performance (F1 score) in the NER task in data scarcity simulation experiments. We do not show
results for Chinese as the annotations of the Chinese NER are provided only on the character-level and thus impede
experimentation with most of the subword-informed methods used in our evaluation.

gains with subword methods become larger for lan-
guages with fewer WE data (e.g., ZU, BM, GOT);
this is again consistent with the previously reported
simulation experiments.

Tasks, Language Types, Subword Configura-
tions. The results further suggest that the optimal
configuration indeed varies across different tasks
and language types, and therefore it is required to
carefully tune the configuration to reach improved
performance. For instance, as agglutinative lan-
guages have different granularities of morpholog-
ical complexity, it is not even possible to isolate
a single optimal segmentation method within this
language type. Overall, the segmentation based
charn followed by BPE emerge as most robust
choices across all languages and tasks. However,
charn has the largest number of parameters and
is slower to train compared to other segmentations,
and in case of BPE its number of merge operations
must be tuned to yield competitive scores.

While we do not see extremely clear patterns
from the results in relation to particular language
types, the scores suggest that for agglutinative and
fusional languages a hybrid segmentation such as
charn or a moderate one (bpe1e4, bpe1e5)
is a good choice. For introflexive and isolating

languages, more aggressive segmentations seem
to be also competitive in FGET and MTAG, while
bpe1e4 being very effective for ZH, and charn
(again) and bpe1e5 seems to be preferred in NER.

Apart from segmentation methods, we also an-
alyzed the effect of word token embeddings (w+)
and position embeddings (p+) in the subword-
informed learning framework (Zhu et al., 2019)
(see before Table 2 in §2), shown in Figure 4. NER

can clearly benefit from both w+ and p+ and w+ is
also useful for MTAG. However, for other tasks, the
fluctuations between configurations are minimal
once the segmentation has been fixed, which sug-
gests that the most critical component is indeed the
chosen segmentation method: this is why we have
mostly focused on the analyses of the segmenta-
tion method and its impact on task performance in
this work. Regarding the composition functions, as
demonstrated in Zhu et al. (2019), more complex
composition functions do not necessarily yield su-
perior results in a range of downstream tasks. We
therefore leave the exploration of more sophisti-
cated composition functions for future work.

6 Conclusions and Future Work

We have presented an empirical study focused on
the importance of subword-informed word repre-
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Agglutinative Fusional Intro Isolat

BM BXR MYV TE ZU FO GA GOT MT RUE AM YO

FGET

morf 52.43 52.47 79.11 57.79 53.00 54.43 50.77 29.90 49.48 50.38 41.82 83.43
charn 56.09 57.33 81.69 58.83 56.34 58.44 52.62 34.02 54.46 58.59 45.65 84.85
bpe1e3 53.61 51.30 81.13 58.73 55.41 56.04 50.74 31.55 52.79 55.57 47.99 85.22
bpe1e4 54.20 53.81 81.93 59.24 55.67 56.67 51.47 26.39 52.15 54.81 47.05 84.42
bpe1e5 - 53.80 80.00 58.13 - 56.31 51.52 - 51.52 52.52 44.74 83.39

ft 51.91 57.96 81.05 57.79 52.62 53.74 49.67 31.96 53.95 53.64 44.80 83.71
w2v 52.28 42.19 76.86 56.99 52.95 53.07 49.07 24.53 46.61 47.36 36.81 82.56

bert - - - 49.20 - - 47.09 - - - - 81.76

NER

morf 73.29 76.58 83.40 77.01 65.22 84.29 86.94 59.49 74.37 81.87 66.67 90.01
charn 83.02 81.59 93.22 88.23 74.47 91.08 88.95 84.99 83.56 88.70 72.92 94.68
bpe1e3 77.22 79.33 89.00 85.82 71.91 89.73 89.18 81.03 81.63 85.30 70.84 92.35
bpe1e4 76.43 79.73 89.00 85.44 65.22 89.25 88.48 70.59 80.26 86.39 64.07 92.47
bpe1e5 - 80.65 89.36 84.02 - 88.66 89.48 - 81.64 86.12 68.95 93.07

ft 73.29 79.81 88.57 86.88 58.16 89.48 89.18 58.16 81.64 83.54 68.29 92.58
w2v 69.57 79.66 87.50 82.97 62.37 87.81 87.99 58.56 79.43 84.21 61.37 89.57

bert - - - 82.31 - - 88.45 - - - - 95.53

Table 3: Test accuracy for FGET and test F1 score NER for the 12 low-resource test languages. The results are
obtained by training on the full WE data (except for BERT) and the full task data of the corresponding languages.
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Figure 4: Comparisons of configurations with and without word token (w-, w+) and the position embedding (p-,
p+). The results are obtained by collecting all data points in the data scarcity simulation for four high resource
languages and the other 12 languages with both full WE data and task data.

Agg Fus Int

TE GOT MT

morf 87.79 76.94 92.80
charn 90.29 85.71 94.39
bpe1e3 90.01 82.07 94.16
bpe1e4 87.79 83.28 92.82
bpe1e5 87.10 - 92.51

ft 90.85 76.50 93.91
w2v 85.71 29.63 90.43

bert 87.45 - -

Table 4: Test accuracy for MTAG for low-resource lan-
guages from UD where train/dev/test sets are available.

sentation architectures for truly low-resource lan-
guages. Our experiments on three diverse mor-
phological tasks with 16 typologically diverse lan-
guages of varying degrees of data scarcity have
validated that subword-level knowledge is indeed
crucial for improved task performance in such low-
data setups. The large amount of results reported
in this work has enabled comparisons of differ-
ent subword-informed methods in relation to mul-
tiple aspects such as the degree of data scarcity
(both in terms of embedding training data and task-

specific annotated data), the task at hand, the actual
language, as well as the methods’ internal design
(e.g. the choice of the segmentation method). Our
results have demonstrated that all these aspects
must be considered in order to identify an optimal
subword-informed representation architecture for a
particular use case, that is, for a particular language
(type), task, and data availability. However, similar
paterns emerge: e.g., resorting to a segmentation
method based on character n-grams seems most
robust across the three tasks and across languages,
although there are clear outliers. In future work,
we will extend our focus to other target languages,
including the ones with very limited (Adams et al.,
2017) or non-existent digital footprint.
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Abstract

Recurrent neural network grammars (RNNGs)
generate sentences using phrase-structure syn-
tax and perform very well in terms of both
language modeling and parsing performance.
However, since dependency annotations are
much more readily available than phrase struc-
ture annotations, we propose two new gen-
erative models of projective dependency syn-
tax, so as to explore whether generative de-
pendency models are similarly effective. Both
models use RNNs to represent the deriva-
tion history with making any explicit indepen-
dence assumptions, but they differ in how they
construct the trees: one builds the tree bot-
tom up and the other top down, which pro-
foundly changes the estimation problem faced
by the learner. We evaluate the two mod-
els on three typologically different languages:
English, Arabic, and Japanese. We find that
both generative models improve parsing per-
formance over a discriminative baseline, but,
in contrast to RNNGs, they are significantly
less effective than non-syntactic LSTM lan-
guage models. Little difference between the
tree construction orders is observed for either
parsing or language modeling.

1 Introduction

Recurrent neural network grammars (Dyer et al.,
2016, RNNGs) are syntactic language models that
use predicted syntactic structures to determine the
topology of the recurrent networks they use to pre-
dict subsequent words. Not only can they learn
to model language better than non-syntactic lan-
guage models, but the conditional distributions
over parse trees given sentences produce excellent
parsers (Fried et al., 2017).

In this paper, we introduce and evaluate two
new dependency syntax language models which
are based on a recurrent neural network (RNN)

backbone (§2).1 Dependency syntax is particu-
larly appealing as many more languages have de-
pendency treebanks (e.g. the Universal Dependen-
cies Project (Nivre et al., 2017)) than have large
numbers of phrase structure annotations.

Like RNNGs, our proposed models predict
structure and words jointly, and the predicted syn-
tactic structure is used to determine the structure
of the neural network that is used to represent the
history of actions taken by the model and to make
a better estimate of the distribution over subse-
quent structure-building and word-generating ac-
tions. Because we use RNNs to encode the deriva-
tion history, our models do not make any explicit
independence assumptions, but instead condition
on the complete history of actions. The two pro-
posed models do, however, differ in the order that
they construct the trees. The first model operates
top down (§2.1), starting at the root and recur-
sively generating dependents until the last modi-
fier has been generated. The second operates bot-
tom up (§2.2), generating words from left to right
and interleaving decisions about how they fit to-
gether to form tree fragments and finally a fully
formed dependency tree.2

Because neither model makes explicit indepen-
dence assumptions, given enough capacity, infi-
nite data, and a perfect learner, both models would
converge to the same estimate. However, in our
limited, finite, and imperfect world, these two
models will impose different biases on the learner:
in one order, relevant conditioning information
may be more local (which could mean the neu-
ral networks have an easier time learning to ex-
ploit the relevant information rather than becom-

1We release code for these two models, which can
be found at https://github.com/armatthews/
dependency-lm.

2In this work, we limit ourselves to models that are capa-
ble only of generating projective dependency trees.
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Figure 1: Generation process for the same dependency tree under the top-down and bottom-up models. As the
indices of the generation events show, the top-down model generates recursively from the root, whereas the bottom-
up model generates from left to right.

ing distracted by accidental correlations), while in
the other it may be more distant. These differ-
ences thus imply that the two models will have
different structural biases, but it is not at all clear
whether one should out perform the other. We
therefore explore to what extent this choice of con-
struction order affects performance, and we eval-
uate the proposed models on language modeling
and parsing tasks across three typologically differ-
ent languages (§3).

Our findings (§4) show that, like RNNGs, gen-
erative dependency models make good parsers.
Given the small scale of the Universal Depen-
dency corpora, this result is also in line with previ-
ous work which shows that joint generative mod-
els offer very sample-efficient estimates of condi-
tional distributions (Yogatama et al., 2017). Sec-
ond, we find that both dependency models are less
effective as language models than phrase structure
RNNGs or than standard LSTM language mod-
els. This negative result is not entirely surprising.
Although information about syntactic dependen-
cies seems intuitively that it would be helpful for
defining good conditioning contexts for language
models, since its earliest days (Tesnière, 1959),
work on dependency syntax has largely focused
on discriminative models of existing sentences. In
contrast, the phrase structure annotations found in,
e.g., the Penn Treebank that were used to demon-
strate improved language modeling performance
with RNNGs are indebted to linguistic theories
(e.g., government and binding theory, X-bar the-
ory) which are broadly concerned with determin-
ing which sentences are grammatical and which
are not—a crucial aspect of language modeling

(Marcus et al., 1993). Finally, we observe only
minimal differences in language modeling perfor-
mance for top-down and bottom-up models. This
result is surprising in light of how different the es-
timation problems are, but it is a clear demonstra-
tion of the ability of RNNs to learn to extract rel-
evant features from data presented in any different
but consistent orders.

2 Models

We present two models for jointly generating pro-
jective dependency trees and sentences. The pro-
cesses are illustrated in Fig. 1. The first is a top-
down model (§2.1), which starts by generating the
root of the sentence, and then recursively gener-
ating its left and right modifiers. The second is
a bottom-up model (§2.2), which generates ter-
minals in a left to right order. In both cases,
there is a deterministic mapping from well-formed
sequences of generation actions into dependency
trees. Following convention in parsing literature,
we refer to such action sequences as oracles.

Both models both are parameterized with recur-
sively structured neural networks that have access
to the complete history of generation events. Thus,
the factorization of the tree probability is justified
by the chain rule. However, because of the differ-
ence in build orders, the conditional probabilities
being estimated are quite different, and we thus
expect these models might be more or less effec-
tive at either language modeling or (when used in
conjunction with Bayes’ rule) parsing.

To illustrate the different estimation problems
posed by the two models, consider the first gener-
ation event in both cases. In the top-down model,
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the root word (usually the main verb of the sen-
tence) is generated first; whereas in the bottom-up
model, the first probability modeled is the prob-
ability of the first word in the sentence. Also,
in the top-down model a verb always generates
its dependentents (which has implications for how
agreement is modeled), whereas in the bottom-up
model, it the left dependents (whatever their func-
tion) will be generated first, and then the verb gen-
eration will be conditional on them. Again, we
emphasize that these differences potentially result
in differences in the difficulty of the estimation
problem (or how much capacity the model needs
to represent accurate conditionals), but do not im-
pact the expressivity or correctness of the models.

2.1 Top-Down

Our first model is a top-down model. The model
begins with an empty root node.3 Starting from the
root the model recursively generates child nodes
using its GEN action. When the model chooses the
GEN action it then selects a new head word from
its vocabulary and creates a new node descended
from the most recent open constituent. Each node
created in this way is pushed onto a stack of open
constituents, and begins creating its left children.

To indicate that the current node (i.e. the top
node in the stack) is done generating left chil-
dren the model takes its STOP-L (“stop left”) ac-
tion, after which the current node begins generat-
ing its right children. Analogously, to indicate that
the current node is done generating right children
the model selects its STOP-R (“stop right”) action.
With this the current constituent is complete and
thus popped off the stack and attached as a child of
the new top-most constituent. See Figure 2 for ex-
amples of the effects of each of these three actions
on a partially built tree structure and Algorithm 1
for a sketch of their implementation.

At each decision point the model conditions on
the output of an LSTM over the partially com-
pleted constituents on the stack, beginning with
the root and ending with the top-most constituent.
The result is passed through an MLP and then
a softmax that decides which action to take next
(Figure 3). If the model chooses the GEN action,
the hidden vector from the MLP is used to sepa-
rately choose a terminal.

3The root node may never have left children. In this way
it is though the root node has already generated its STOP-L,
though this step is not explicitly modelled

Algorithm 1 Top-Down Tree Generation

1: procedure EMBEDTREE(node)
2: state = lstm_initial_state
3: for child in node do
4: if child is terminal then
5: state.add(WordEmbs[child])
6: else
7: state.add(EMBEDTREE(child))
8: return state
9: procedure PICKNEXTACTION(stack)

10: h = MLPaction(EmbedTree(stack))
11: action ∼ softmax(h)
12: return action
13: procedure PICKWORD(stack)
14: h = MLPword(EmbedTree(stack))
15: word ∼ softmax(h)
16: return word
17: procedure GENERATENODE(stack)
18: action = PICKNEXTACTION(stack)
19: if action == GEN then
20: word = PICKWORD(STACK)
21: stack.push(new Node(word))
22: else if action == STOP-L then
23: stack.back().add_child(STOP-L)
24: else if action == STOP-R then
25: stack.back().add_child(STOP-R)
26: child_emb = stack.pop()
27: stack.back().add_child(child_emb)

To embed each subtree on the stack we use an-
other LSTM. First we feed in the head word of the
constituent, followed by the embeddings of each
of the constituent’s children, including the spe-
cial STOP-L and STOP-R symbols. We then addi-
tionally add a gated residual connection from the
head word to final subtree representation to allow
salient information of the head word to be captured
without needing to pass through an arbitrary num-
ber of LSTM steps (Figure 4).

2.2 Bottom-Up

Our second model generates sentences bottom-up,
in the same manner as a shift-reduce parser. A
sentence is modeled as a series of actions (re-
lated to the arc-standard transitions used in pars-
ing (Nivre, 2013)) that manipulate a stack of em-
bedded tree fragments. There are three types of
actions: SHIFT(x), which pushes a new terminal
x onto the stack, REDUCE-L, which combines the
two top elements on the stack into one single sub-
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Before Action After

Alice gave the tall$ man giftstall GEN Alice gave the tall$ man giftstall

Alice gave the tall$ man giftstall STOP-L Alice gave the tall$ man giftstall

Alice gave the tall$ man giftstall STOP-R Alice gave the tall$ man giftstall

Figure 2: Examples of the three actions of our top-down model. The dotted arrow indicates where the new word
will go if the GEN action is chosen next. GEN creates a new terminal node and moves the dotted arrow to point to
the left of the new token. STOP-L moves the dotted arrow from the left of the current token to the right thereof.
STOP-R moves the dotted arrow from the right of the current token back up to its parent node.

M
L
P

Action
Softmax

GEN

Alice gave the$ old manvery tall
Vocab
Softmax

old
$ Alice gave the old manvery tall

LSTM

State
Embedding

Figure 3: To encode the history of generation events in the top-down process, we use an LSTM over subtree
embeddings (See Figure 4). The LSTM proceeds from the root of the tree down to the most recent open node.
Each item in the LSTM is an embedding of a word and its already generated descendants. STOP symbols have
been suppressed for clarity.

tree with the left of the two as the head (i.e. with a
leftward arrow), and REDUCE-R which again com-
bines the top two elements of the stack, this time
making the right one the head. See Figure 5 for ex-
amples of how these three actions affect the stack
of partially built tree structures during the parsing
of an example sentence.

At each time step the model conditions on the
state of the stack using an LSTM running over en-
tries from oldest to newest. The resulting vector h
is then passed through an MLP, and then a softmax
over the three possible action types. If the SHIFT

action is taken, the vector h is re-used and passed
through a separate MLP and softmax over the vo-
cabulary to choose an individual word to generate.
If one of the two REDUCE actions is chosen, the
top two elements from the stack are popped, con-
catenated (with the head-to-be first, followed by
the child), and passed through an MLP. The re-
sult is a vector representing a new subtree that is
then pushed onto the stack. Kuncoro et al. (2017)

showed that this type of stack-based representation
alone is sufficient for language modeling and pars-
ing, and indeed that more involved models actu-
ally damage model performance. See Figure 6 for
an example of how this bottom-up model chooses
an action.

2.3 Marginalization

Traditionally a language model takes a sentence
x and assigns it a probability p(x). Since our
syntax-based language models jointly predicts the
probability p(x,y) of a sequence of terminals x
and a tree y, we must marginalize over trees to
get the total probability assigned to a sentence x,
p(x) =

∑
y∈T (x) p(x,y), where T (x) represents

the set of all possible dependency trees over a sen-
tence x. Unfortunately the size of T (x) grows
exponentially in the length of x, making explicit
marginalization infeasible.

Instead we use importance sampling to approx-
imate the marginal (Dyer et al., 2016). We use the
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Figure 4: Examples of embedding two subtrees in the
top-down model. A subtree is embedded using an
LSTM over its child subtrees (solid lines) with a gated
residual connection from the root word to the final em-
bedding (dotted lines).

parser of Dyer et al. (2015), a discriminative neu-
ral stack-LSTM-based bottom-up parser, as our
proposal distribution q(x,y) and compute the ap-
proximate marginal using N = 1000 samples per
sentence: p(x) ≈ 1

N

∑N
i=1

p(x,y)
q(x,y) .

2.4 Parsing Evaluation through Reranking
In order to evaluate our model as a parser we
would ideally like to efficiently find the MAP
parse tree given an input sentence. Unfortunately,
due to the unbounded dependencies across the se-
quences of actions used by our models this infer-
ence is infeasible. As such, we instead rerank a list
of 1000 samples produced by the baseline discrim-
inative parser, a combination process that has been
shown to improve performance by combining the
different knowledge learned by the discriminative
and generative models (Fried et al., 2017).

For each hypothesis parse in the sample list
we query the discriminative parser, our top-down
model, and our bottom-up model to obtain a score
for the parse from each. We combine these scores
using weights learned to optimize performance on
the development set (Och, 2003).

3 Experimental Setup

Our primary goal is to discover whether
dependency-based generative neural models
are able to improve the performance of their
discriminative brethren, as measured on parsing
and language modeling tasks. We also seek to
determine the effect construction order and the
biases implicit therein has on performance on
these two tasks. To this end, we test a baseline
discriminative parser, our two models, and all

combinations of these three models on a parsing
task in several languages, and we test a baseline
and our two models’ performance on a language
modeling task on the same set of languages.

3.1 Data Sets

We use the Universal Dependency corpora (Nivre
et al., 2017) for three languages with very differ-
ent structures: English, Japanese, and Arabic, as
provided for the 2017 CoNLL shared task on uni-
versal dependency parsing. In all languages we
convert all singleton terminal symbols to a special
UNK token. See Table 1 for details regarding the
size of these data sets.

For language modeling we evaluate using the
gold sentence segmentations, word tokenizations,
and part of speech tags given in the data. For pars-
ing, we evaluate in two scenarios. In the first, we
train and test on the same gold-standard data using
in our language modeling experiments. In the sec-
ond, we again train on gold data, but use UDPipe
(Straka and Straková, 2017) to segment, tokenize,
and POS tag the dev and test sets starting from raw
text, following the default scenario and most par-
ticipants in the CoNLL 2017 shared task.

3.2 Baseline Models

On the language modeling task we compare
against a standard LSTM-based language model
baseline (Mikolov et al., 2010), using 1024-
dimensional 2-layer LSTM cells, and optimized
using Adam (Kingma and Ba, 2014).

For the parsing task we compare against the
discriminative parser of Dyer et al. (2015), a
bottom-up transition-based parser that uses stack-
LSTMs, as well as the overall top system (Dozat
et al., 2017) from the 2017 CoNLL shared task
on multilingual dependency parsing (Zeman et al.,
2017). That work uses a discriminative graph-
based parser that uses a biaffine scoring function
to score each potential arc. Moreover, it uses
character-level representations to deal with mor-
phology and a PoS tagger more sophisticated than
UDPipe – two major changes from the shared
task’s default pipeline. These two differences af-
ford them a substantial advantage over our ap-
proach which only modifies the parsing step of the
pipeline.

Finally, we show the results of an oracle system
looking at the 1000-best lists used for our rerank-
ing experiments. Note that since this oracle system
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Alice gave

$

the SHIFT

Alice gave

$

the

Alice gave

$

the

man

man

Alice gave

$

the man

REDUCE-L REDUCE-R

Figure 5: Examples of the three actions of our bottom-up model and their effects on the internal stack. SHIFT adds
a new terminal to the top of the stack. REDUCE-L combines the top two elements of the stack with a left arc from
the head of the top-most element to the head of the second element. REDUCE-R combines the top two elements
with a right arc from the head of the second element to the head of the top-most element.

Train Dev Test Vocab

Language Words Sents Words Sents Words Sents Singletons Non-S’tons

English 204585 12543 25148 2002 25096 2077 9799 9873
Japanese 161900 7164 11556 511 12615 557 13091 9222
Arabic 223881 6075 30239 909 28264 680 9907 13242

Table 1: Statistics of the universal dependency data sets used in this paper. Size of the train, dev, and test sets are
given in tokens. Vocabulary information is number of types.

Alice gave

$

the

L
S
T
M

Stack
Embedding Action Softmax

REDUCE-L

very tall

old man

Figure 6: Our bottom-up model emulates a shift-
reduce parser and maintains an explicit stack. At each
timestep, we use the output of an LSTM over the stack
to choose the next action, which is then executed to
produce a new stack state.

is constrained to using only this list of samples it
is not able to achieve 100% parsing accuracy.

3.3 Hyperparameters

All models use two-layer 1024-unit LSTMs and
1024-dimensional word/action embeddings. All
other MLPs have a single hidden layer, again with
1024 hidden units. We implement all models us-
ing DyNet (Neubig et al., 2017), and train using
Adam (Kingma and Ba, 2014) with a learning rate
of 0.001, dropout with p = 0.5, and minibatches
of 32 sentences. We evaluate the model on a held
out dev set after 150 updates, and save the model
to disk whenever the score is a new best. All other

settings use DyNet defaults.

4 Results

Parsing results Results on the parsing task can
be found in Table 2. We observe that in En-
glish with the gold-standard preprocessing our
models perform particularly well, showing an im-
provement of 1.16% UAS F1 for the top-down
and 0.82% UAS F1 for the bottom-up model
when individually combined with our discrimina-
tive parser. Combining all three models together
gives a total of 1.46% absolute improvement over
the baseline, indicating that the models capture
knowledge lacking in the baseline model, and
knowledge that is complementary to each other.

The story is similar in Japanese and Arabic,
though the gains are smaller in Japanese. We
hypothesize that this is due to the fact that pars-
ing Japanese is relatively easy because of its strict
head-final and left-branching nature, and thus our
baseline is already a remarkably strong parser.
This hypothesis is backed up by the fact that the
baseline parser alone is only 3-4% UAS away from
the oracle by itself, compared to about 10% away
on English and Arabic. Thus our relative improve-
ment, measured in terms of the percentage of pos-
sible improvement achieved, is quite consistent
across the three languages, at roughly 13%.

Results on the test set using UDPipe’s noisy
preprocessing also saw encouraging results from
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English Japanese Arabic

Gold→ Gold Gold→ UDPipe Gold→ Gold Gold→ UDPipe Gold→ Gold Gold→ UDPipe

Model Reranked? Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

CoNLL Baseline 7 - - - 79.24 - - - 74.40 - - - 70.14
Dozat et al. (2017) 7 - - - 84.74 - - - 75.42 - - - 76.59

Disc (Greedy) 7 87.00 85.92 78.85 78.12 96.16 95.20 76.67 75.70 82.14 82.39 69.74 70.34

Disc (Reranked) 3 87.48 86.30 78.99 78.23 96.04 95.17 76.66 75.58 81.70 81.34 69.20 68.79
Top-Down 3 82.94 82.48 76.73 76.88 92.99 92.51 74.84 74.18 80.99 80.85 69.78 69.64

Bottom-Up 3 83.11 82.70 76.79 77.13 94.56 93.25 75.85 74.18 80.61 80.70 69.30 69.24
Disc + TD 3 88.47 87.46 80.46 79.56 96.07 95.43 76.59 74.62 82.87 82.37 70.35 70.25
Disc + BU 3 88.29 87.12 80.09 79.33 96.17 95.54 76.82 75.92 82.48 82.18 70.18 69.99

TD + BU 3 84.93 84.56 78.71 78.72 94.87 94.03 76.15 75.30 81.84 81.56 70.52 70.03
Disc + TD + BU 3 88.74 87.76 80.49 80.22 96.18 95.58 76.86 75.98 83.06 82.58 70.85 70.40

Oracle 3 97.68 97.27 91.07 90.24 99.39 99.25 79.67 80.34 91.20 89.06 77.75 76.17

Table 2: Results of parsing using our baseline discriminative parser, our two generative models, combinations
thereof, and two contrastive systems from the CoNLL 2017 shared task. Scores in bold are the highest of our
models. Note that Dozat et al. (2017) use substantially different preprocessing. See §3.2 for details.

p(x,y) p(x)

Lang. Model Dev Test Dev Test

EN RNNLM - - 5.24 5.18
Top-Down 5.80 5.72 5.73 5.66
Bottom-Up 5.63 5.56 5.53 5.47

JA RNNLM - - 4.41 4.58
Top-Down 4.82 5.00 4.73 4.93
Bottom-Up 4.83 5.03 4.75 4.95

AR RNNLM - - 5.42 4.34
Top-Down 6.08 6.23 5.98 4.79
Bottom-Up 6.11 6.21 5.94 4.75

Table 3: Language modeling cross entropy of our
model and an RNNLM baseline. Lower is better. All
scores are expressed in nats.

the three-model ensemble gaining 1.99%, 0.40%,
and 1.61% on English, Japanese, and Arabic re-
spectively, solidly outperforming the 2017 CoNLL
shared task baselines across the board, and beating
Dozat et al. (2017), the overall shared task win-
ner’s, submission on Japanese.

Of particular note is that on both the gold and
non-gold data, and across all three languages, the
performance of the top-down and bottom-up mod-
els is quite similar; neither model consistently out-
performs the other. In Japanese we do find the
bottom-up parser beats the top-down one when
used alone, but when combined with the discrim-
inative model the lead evaporates, and in both of
the other languages there is no clear trend.

These results are consistent with Fried et al.
(2017) that has shown that generative models
are particularly good at improving discriminative
models through reranking, as they have an effect

similar to ensembling dissimilar models.

Language modeling results We find that de-
spite successes on parsing, our dependency mod-
els are not empirically suitable for language mod-
eling. Table 3 shows the performance of our mod-
els on the language modeling task. Across all three
languages, both of our models underperform a
baseline RNNLM by a consistent margin of about
0.5 nats per word.

Again we note that the two models perform re-
markably similarly, despite their completely dif-
ferent construction orders, and thus the completely
different sets of information they condition on at
each time step. Again neither model is a clear
overall victor, and in each individual language the
models are extremely close in performance.

5 Analysis

One of our most intriguing findings is that our two
proposed models perform remarkably similarly in
spite of their differing construction orders. One
would naturally assume that the differing orders,
as well as the wildly different history information
available at each decision point, would lead to per-
formance differences. We seek to hone in on why
the two models’ performances are so similar.

Unfortunately the fact that the models use dif-
ferent conditioning contexts makes direct compar-
ison of sub-sentential scores impossible. The top-
down model, which generates the verb before its
subject noun, may have large entropy when choos-
ing the verb, but an easier time choosing the sub-
ject since it can condition on the verb limiting its
choices to appropriate semantic classes, person,
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Structure Terminals
Top-Down 4.97 67.9

Bottom-Up 7.42 63.3

Table 4: Our models’ average negative log likelihoods
on the English dev set broken down into structure and
terminal components

number, et cetera. The bottom-up model, on the
other hand, will generate the subject noun from
the entire list of possible nouns first, and then will
focus its probability on relevant and agreeing verb
forms when generating the verb.

To this end we plot the scores (i.e. the nega-
tive log probabilities) the models assign to each
gold tree in the English dev set. The raw scores
between the top-down and bottom-up models are
highly correlated (Pearson’s r = 0.995), largely
due to the fact that longer sentences naturally have
lower probabilities than shorter sentences. As
such, we examine length-normalized scores, di-
viding each sentence’s score by its length. The
results are still largely correlated (r = 0.88), with
a few outliers, all of which are very short (<3 to-
kens) sentences.

We hypothesize that much of this correlation
stems from the fact that for a given sentence both
models must generate the same sequence of ter-
minal symbols. Some sentences will have rare se-
quences of terminals while others have more com-
mon words, leading to an obvious, but perhaps un-
informative, correlation. To examine this possibil-
ity we factor our models’ scores into a terminal
component and a structure component so that the
overall negative log likelihood of a sentence is de-
composed as NLL = NLLterminals + NLLstructure.
We then examine the correlation between the two
models’ scores’ terminal components and their
structure components separately. We find that the
terminal components are still strongly correlated
(r = 0.91), while the structure components are
largely uncorrelated (r = 0.09), hinting that in-
formation the two models learned about the cor-
rect structure of English sentences differs. See
Appendix Figure 7 for a visual representation of
these data. Overall the top-down model also as-
signs much higher probabilities to correct struc-
tures, but lower probabilities to the correct termi-
nal sequences (Table 4).

6 Related Work

Most work on discriminative dependency pars-
ing follows the bottom-up paradigm (Nivre, 2003;
Nivre et al., 2007; Dyer et al., 2015; Kiperwasser
and Goldberg, 2016), but top-down models have
also shown some promise (Zhang et al., 2015).

Generative dependency models go back to Hays
(1964), but most existing such models (Buys and
Blunsom, 2015; Jiang et al., 2016) have relied on
independence assumptions whether used for pars-
ing, unsupervised dependency induction, or lan-
guage modeling. Buys and Blunsom (2015) also
describe a generative bottom-up neural parser, but
use hand-crafted input features and limit the model
to third-order features. Titov and Henderson
(2010) explore a generative parsing model with no
independence assumptions based on sigmoid be-
lief networks (Neal, 1992) instead of RNNs.

The CoNLL 2017 shared task saw many differ-
ent models succeed at parsing Universal Depen-
dencies. Most of the top contenders, including the
best scoring systems on the languages discussed in
this work, use discriminative models.

Kanayama et al. (2017) had tremendous success
on Japanese using a wildly different approach.
They train a model to identify likely syntactic
heads, then assume that all other words simply at-
tach in a left-branching structure, which works due
to the strictly head-final nature of Japanese.

Dozat et al. (2017) train a discriminative neural
parser which uses a BiLSTM to generate hidden
representations of each word (Kiperwasser and
Goldberg, 2016). These representations are used
to score arcs, which are greedily added to the tree.

Björkelund et al. (2017) perform best on Ara-
bic, using an ensemble of many different types
of bottom-up discriminative parsers. They have
each of twelve parsers score potential arcs, learn
a weighting function to combine them, and use
the Chu-Liu-Edmonds algorithm (Chu, 1965; Ed-
monds, 1967) to output final parses.

All three of these discriminative models are
very effective for analysis of a sentence, none of
them are able to be converted into a similar gener-
ative model. At best, the biaffine model of Dozat
et al. (2017) could generate a bag of dependencies
without order information, which makes it imprac-
tical as the basis for a generative model.

There has been past work on building recurrent
neural models that condition on the buffer to make
parsing decisions in a shift-reduce parser. Hender-
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son (2004) was among the first to introduce such
a model. They introduce both a generative and
discriminative model based on Simple Synchrony
Networks (Lane and Henderson, 1998), and use
a pre-cursor to attention mechanisms to choose
which previous states are most relevant at the cur-
rent timestep. More recently Dyer et al. (2015)
created a similar model based on stack LSTMs.

There has also been past work on language
modelling with generation orders other than the
typical left-to-right. Ford et al. (2018) examine a
variety of possibilities, but stop short of syntax-
aware oderings. Buys and Blunsom (2018) inves-
tigate neural language models with latent depen-
dency structure, also concluding that while depen-
dencies perform well on parsing they underper-
form for language modelling.

7 Conclusion

In this paper we test our hypothesis that depen-
dency structures can improve performance on lan-
guage modeling and machine translation tasks, in
the same way that constituency parsers have been
shown to help. We conclude that generative de-
pendency models do indeed make very good pars-
ing models, and, as has been observed in phrase
structure parsing, combining a generative depen-
dency parser with a traditional discriminative one
does indeed improve parsing performance. We
however also find using dependency models in-
formation to structure the intermediate represen-
tations in language modeling does not easily lead
to better outcomes.

This pattern of results suggests that while de-
pendencies may be a useful tool for text analysis,
but are less suited to characterizing a generation
process of sentences than phrase structure gram-
mars area. Finally, we find that the choice of top-
down or bottom-up construction order affects per-
formance minimally on both the parsing and lan-
guage modeling tasks despite the large differences
in the local conditioning contexts of each action
choice.
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Chanev, Gülşen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95–135.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics-Volume 1, pages 160–167. As-
sociation for Computational Linguistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Lucien Tesnière. 1959. Eléments de linguistique struc-
turale. Paris, Klincksieck, 2.

Ivan Titov and James Henderson. 2010. A latent
variable model for generative dependency parsing.
In Trends in Parsing Technology, pages 35–55.
Springer.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text clas-
sification with recurrent neural networks. arXiv
preprint arXiv:1703.01898.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, et al.
2017. Conll 2017 shared task: multilingual parsing
from raw text to universal dependencies. Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 1–19.

Xingxing Zhang, Liang Lu, and Mirella Lapata. 2015.
Top-down tree long short-term memory networks.
In Proc. NAACL.

236



Graphs

Figure 7: Analysis of the structure (top) and terminal (bottom) scores of our two models’ performance on the
English development set. We find that the structure scores are not correlated, while the terminal scores of the two
models are highly correlated.

237



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 238–248
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

Representation Learning and Dynamic Programming for Arc-Hybrid
Parsing

Joseph Le Roux Antoine Rozenknop Mathieu Lacroix
Laboratoire d’Informatique de Paris Nord,
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Abstract

We present a new method for transition-based
parsing where a solution is a pair made of a
dependency tree and a derivation graph de-
scribing the construction of the former. From
this representation we are able to derive an ef-
ficient parsing algorithm and design a neural
network that learns vertex representations and
arc scores. Experimentally, although we only
train via local classifiers, our approach im-
proves over previous arc-hybrid systems and
reach state-of-the-art parsing accuracy.

1 Introduction

While transition-based dependency parsing is usu-
ally implemented as a beam-search procedure,
e.g. (Kiperwasser and Goldberg, 2016), some re-
cent work such as (Shi et al., 2017) showed that
global inference can be performed efficiently with
dynamic programming. To this end, the stack rep-
resenting pending subparses and the buffer repre-
senting the unconsumed input must both be ab-
stracted into equivalence classes, while remaining
rich enough to help with accurate predictions.

In this paper we first explicitly consider that a
solution in transition-based parsing is represented
as a pair made of a derivation graph and a derived
dependency tree allowing the scoring function to
be expressed naturally as a sum over these 2 struc-
tures. While we restrict our presentation to arc-
hybrid systems, our method can be applied quite
directly to other transition rule systems.

Secondly we show that this representation leads
to an exact O(n4) parsing algorithm using dy-
namic programming. This algorithm can be seen
as an extension of the minimal feature set arc-
hybrid parsing algorithm presented in (Shi et al.,
2017) where the contribution of the dependency
arcs can be explicitly added to the scoring function
as in the Eisner parsing algorithm (Eisner, 1996).

We then propose an alternative approach to
global inference where derivation steps are repre-
sented as dense vectors based on the number and
type of steps in a derivation. With this abstrac-
tion we design a neural architecture based on non-
local networks (Wang et al., 2017) related to self-
attention mechanism (Vaswani et al., 2017; Gu
et al., 2018) to learn these representations while
maintaining the possibility for exact decoding.

Our contribution can be summarized as follows:
(i) a representation of arc-hybrid parsing as max-
imum subgraphs selection where a solution con-
tains dependencies and derivation information; (ii)
a polynomial dynamic programming algorithm to
solve this problem exactly; (iii) a neural architec-
ture able to learn representations for the subgraph
vertices and compute arc scores without explicit
stack and buffer representations.

These contributions are validated empirically
by experimental results on the Penn Treebank
where our system reaches state-of-the-art accu-
racy (94.8% UAS) for arc-hybrid parsing with net-
works of comparable size.

We first review arc-hybrid dependency parsing
(§2) then present a deductive scheme to solve it
(§3). The neural architecture is presented in §4
and experiments reported in §5. Finally we discuss
some related work in §6.

2 Arc-Hybrid Dependency Parsing

2.1 Arc-Hybrid Derivations

Intuitively, the arc-hybrid parsing strat-
egy (Gómez-Rodrı́guez et al., 2008; Kuhlmann
et al., 2011) builds dependency parses incremen-
tally by reading the sentence from left to right.
The pending words are words which have been
given all their left modifiers but may have not
been given all their right dependents yet. The
pending words are stored in the stack which
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initially contains a dummy root word. The words
which have not been read yet are stored in order
in the buffer. The first word in the buffer is called
the frontier word.

The algorithm proceeds by reducing the most
recent pending word (the top of the stack) which
means assigning it a governor. This governor is
either the current frontier word, creating a left arc,
or the previously most recent pending word (be-
low in the stack), creating a right arc. Once given a
governor, the most recent pending word is popped
out. When the frontier word has been given all
his left dependents, it is shifted which means it
is pushed in the stack, becomes the most recent
pending word and the next word in the sentence
becomes the frontier word.

More formally, the arc-hybrid parsing algorithm
is defined using configurations. Following stan-
dard definition, a configuration is a triplet [σ, β,A]
where σ is a stack of indexes of words which have
not been given a governor yet, β a list (buffer) of
indexes of words still to be read1, and A the set of
dependency arcs that have been constructed so far.

Given sentence w = w1, ..., wn and dummy root
token w0, there are one initial configuration c1 =
[0, 1..., ∅] and many goal configurations of the form
[0, ∅, A]. There exist 3 transition rules to pass from
one configuration to another2:

shift [σ, b|β,A]→S [σ|b, β,A]

left [σ|d, h|β,A]→L [σ, h|β,A ∪ {(h, d)}]

right [σ|h|d, β,A]→R [σ|h, β,A ∪ {(h, d)}]

A derivation for w is a sequence γ =
c1, t1, c2, t2, . . . , t2n, c2n+1 of 2n transitions from
c1 leading to a goal configuration c2n+1.

The set of derivations for a sentence w is noted
Dw. It can be shown that derivations all gener-
ate projective dependency trees and that, for a sen-
tence with n words, they each contain n shift op-
erations and n left or right reductions3.

Shifts and reductions can be seen as forming a
well-parenthesized expression. Each word is as-
sociated with a kind of parenthesis and shifting
and reducing this word correspond to opening and
closing parentheses of this kind.

1A buffer containing (i, ..., n) will be denoted by “i...”.
2Shift and left transitions require a non-empty buffer and

the stack has to be of length at least 2 for left and right tran-
sitions since w0 cannot be the governor of a left arc.

3Note that derivation is not unique for a dependency tree.

For instance, in She wants to eat an apple, the
derivation (She)

L(wants(to)
L(eat(an)

L(apple)
R)R)R,

where shifting a word is represented by a sub-
scripted opening parenthesis and reductions are
closing parentheses typed either L or R, will gen-
erate the following dependency tree:

w0 She wants to eat an apple

Arc-hybrid parsing amounts to finding the
highest-scoring derivation for a sentence:

γ̂ = argmax
γ∈Dw

s(γ)

If we assume s decomposes over transition scores
s`(c`, t`), we retrieve the well-studied cumulative
sum of its transition scores.

s(γ) =
∑

1≤`≤2n
s`(c`, t`) (1)

2.2 General Formulation for Dynamic
Programming

We present a dynamic programming (DP) algo-
rithm for arc-hybrid parsing with cumulative tran-
sition scores as in Eq. 1. This algorithm cannot be
used as such since states references complete stack
contents, of which there is an exponential number,
leading to an intractable complexity. To use this
algorithm in practice we would need to resort to
beam search in order to approximate solutions, see
for instance (Dyer et al., 2015).

However, this constitutes a general framework
from which efficient algorithms can be derived
by considering various equivalence classes over
states and independence assumptions in the scor-
ing function. For instance we can retrieve the Min-
imal Feature Set algorithm of Shi et al. (2017), or
the new algorithm presented in Section 3.

In our algorithm, an item σ,A〈i, j〉B represents
the following set of subsequences of a derivation:

σ,A〈i, j〉B : [σ, i..., A] ∗−→ [σ|i, j..., B]

i.e. subsequences which start with shifting wi and
end withwi on top of the stack andwj on top of the
buffer4. As a special case, we will note ∅,∅〈0, j〉B
the set of subderivations starting from the initial
configuration [0, 1..., ∅] and leading to [0, j..., B].

4such a subderivation is only possible if i < j ≤ n+1
and A ⊂ B.
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Goal: Goal items have the form:
∅,∅〈0, n+1〉A : [∅, 0..., ∅] ∗−→ [0, ∅, A].
Axioms: The algorithm starts with the set
of items corresponding to possible shifts5:
σ,A〈i, i+1〉A : [σ, i..., A] → [σ|i, i+1..., A]. The
first axiom6 ∅,∅〈0,1〉∅ pictures a dummy sub-
derivation that would put w0 on top of the stack
and lead to the initial configuration [0, 1..., ∅].
DP Steps: A DP step consists in building
an item σ,A〈i, j〉B by composing σ,A〈i, k〉C ,
σ|i,C〈k, j〉D, and a reduce operation on word wk:

σ,A〈i, k〉C : [σ, i..., A] ∗−→ [σ|i, k..., C]
σ|i,C〈k, j〉D : [σ|i, k..., C] ∗−→ [σ|i|k, j..., D]

reduce : [σ|i|k, j..., D] → [σ|i, j..., B]

We thus have a right reduction rule:

σ,A〈i, k〉C σ|i,C〈k, j〉D
σ,A〈i, j〉D∪{(i,k)} [(i→ k)]

and a left reduction rule:

σ,A〈i, k〉C σ|i,C〈k, j〉D
σ,A〈i, j〉D∪{(k,j)} [(k ← j)]

Scoring Items: We trivially score an axiom
σ,A〈i, i+1〉A with the score of a shift transition
occurring in configuration [σ, i..., A].

We compute the score of a DP step as the sum
of the scores of the combined items and the score
of reducing wk from configuration [σ|i|k, j..., D].
When several DP steps produce the same item, it
is assigned the highest score.

2.3 Minimal Feature Set Algorithm
For this algorithm (Shi et al., 2017), the score of
a transition t` does not depend on the whole con-
figuration but only on the index on top of the stack
and the first index of the buffer. In other words, lo-
cal scores s` only depend on word indexes (i,j,k).
This assumption is crude but it allows for quite
large items equivalence classes. We can retrieve
this algorithm from the one above by removing
unnecessary information in the items. Items of the
form σ,A〈i, j〉B will simply reduce to 〈i, j〉, there
will be O(n2) such items, and the DP complexity
will be O(n3). More concretely, we have the fol-
lowing schemata:

5There is one axiom for each possible configuration
[σ, i..., A] with 0 ≤ i < n, σ a valid stack and A the set
of corresponding arcs.

6Other axioms can be generated lazily from stack and arcs
set pairs of items created by DP steps.

Goal: 〈0, n+1〉.

Axioms: 〈i, i+1〉.

DP Steps:

〈i, k〉 〈k, j〉
〈i, j〉 [(i→ k)]

and
〈i, k〉 〈k, j〉

〈i, j〉 [(k ← j)]

One of the issues with this parsing scheme is
the difficulty to interpret item scores consistently.
In the case of a left reduction (producing k ← j
above) the score of 〈k, j〉 can be interpreted as the
score of word j being the governor of word k and
the score of 〈i, k〉 as the score of shifting word k
in the context of i being the most recent pending
word.

On the contrary, in the case of a right reduction
(producing i → k above) if the score of 〈i, k〉
may well be interpreted analogously as the score
of having i as a governor of k, we cannot interpret
〈k, j〉 as the score of shifting k, and it may be
difficult to interpret this item score in terms of a
transition operation.

3 Parsing with Derivations and
Dependencies

3.1 A New Score for Derivations
We depart form previous work and make the de-
pendency arc contribution explicit in the score
function:

γ̂, τ̂ = argmax
γ,τ∈Sw

s(γ) + s(τ) (2)

where Sw is the set of pairs (γ, τ) with γ ∈ Dw

and τ the dependency tree corresponding to γ. We
use an arc-factored model for τ from now on and
discuss scores for γ.

We define an equivalence class (i, q) contain-
ing all configurations c` such that the first index i`
of β` equals i and the size of stack |σ`| equals q.
Thus, we rewrite cumulative transition scores as:

s(u)(γ) =
∑

1≤`≤2n
su(i`, |σ`|, t`). (3)

We also consider a score function based on the
nestedness property of shift/reduce derivations. A
score is given to each pair consisting of a shift and
its corresponding (left or right) reduction. In other
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words, we exploit the perfect matching induced
by a derivation between shift and reduce transi-
tions: if t` is a shift transition and t`′ its matching
reduction, we consider a score depending on the
equivalence classes of c` and c`′+1. Note that the
nestedness property implies that the stacks σ` and
σ`′+1 are equal. Moreover, i`′+1 = i`′ as t`′ is
a reduction, an operation which does not modify
the buffer. Denoting by M the set of matching
shift/reduce pairs (t`, t`′) in γ, this gives:

s(m)(γ) =
∑

(t`,t`′ )∈M
sm(i`, |σ`|, i`′). (4)

Note that sm(i`, |σ`|, i`′) can be seen as the
score of performing a reduction when i` is on the
top of the stack of size |σ`| and i`′ is the first word
position of the buffer. Hence, this gives a score
similar to the reduction score used in the minimal
feature set algorithm. The difference is that the
score takes into account the size of the stack but
not the type (left or right) of reduction that is per-
formed. The direction information will be given
by the dependency arc score.

Finally, the derivation score is:

s(γ) = s(u)(γ) + s(m)(γ) (5)

3.2 Graph Representation of a Derivation
In this section we represent the derivation of the
arc-hybrid parsing using graphs.

A derivation is a sequence of n shifts and n re-
ductions such that no more reductions than shifts
are performed at each step. Such a sequence is
a Dyck word and can then be represented as a
path in an (n + 1) × (n + 1) grid starting at the
lower left corner, ending at the lower right corner,
using only up-right diagonal arcs and downward
arcs (Roman, 2015). Such representation is the
starting point of our derivation graph.

Define the derivation graph G = (V,A) as fol-
lows. V = {vqi |1 ≤ q ≤ i ≤ n + 1} represents
the set of equivalence classes. A vertex vqi corre-
sponds to the class (i, q) of configurations, where
wi is the first word in the buffer7 and the stack is
of size q. The arc set A is given by A = T ∪ E
where T represents transitions between states and
E matches between shifts and reductions. We note
T = TS ∪ TL ∪ TR:

• TS = {(vqi , v
q+1
i+1 )|1 ≤ q ≤ i ≤ n},

7The value n+ 1 for i indicates that the buffer is empty.

• TL = {(vqi , v
q−1
i )L|2 ≤ q ≤ i ≤ n},

• TR = {(vqi , v
q−1
i )R|2 ≤ q ≤ i ≤ n+ 1}.

TS , TL and TR represent shifts and tagged reduc-
tions respectively. We set E = {(vqi , v

q
j )|1 ≤ q ≤

i < j ≤ n+ 1} because a shift can be matched to
a reduction only if the size of the stack is the same
before the shift and after the reduce. Note that for
a sentence with n words, G will have O(n2) ver-
tices and O(n3) arcs.

A derivation γ obtained by the arc-hybrid pars-
ing will be represented by a pair (P,M) where
P ⊆ T is a path representing the derivation γ and
M ⊆ E is the set of arcs matching the shifts with
their associated reductions in the derivation.

More formally, (P,M) is a solution if and only
if we have the following. P is a path from v11 to
v1n+1 in G using only arcs of T . By construction,
it contains n arcs of TS and n arcs of TL ∪ TR.
It then corresponds to the sequence of transitions
t1, . . . , t2n. Note that any arc (vqi , v

q+1
i+1 ) in P con-

sists in pushing wordwi on the top of the stack and
any arc (vqi , v

q−1
i ) in P consists in popping the top

of the stack. One can retrieve the sequence of con-
figurations c1, . . . , c2n+1 thanks to the transitions.

Remark that each vertex vqi covered by P cor-
responds to configuration c2i−q since i − 1 shifts
and i − q reduces have been performed. An arc
(vqi , v

q
j ) ofE belongs toM if the transition t2i−q is

a shift, transition t2j−q−1 is a reduction and these
shift and reduce operations are matched together.
Hence, (vqi , v

q
j ) ∈ M implies that (vqi , v

q+1
i+1 ) and

(vq+1
j , vqj ) belong to P .
One can associate a score su from Eq. (3) with

each arc of T and a score sm from Eq. (4) with
each arc of E. In this case, s(γ) corresponds to

s(γ) =
∑

a∈P
su(a) +

∑

a∈M
sm(a) (6)

As an illustration, the derivation presented in
the introduction can be represented by the set of
black arcs P and red arcs M in Figure 1.

3.3 Dynamic Programming Algorithm

From the graph representation above we can de-
rive a DP algorithm which computes the score of
the optimal solution subgraph. This algorithm can
be seen as a specialization of the general frame-
work presented in Section 2.2 for our scoring func-
tions.
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R

w0 She wants to eat an apple

Figure 1: A Derivation for She wants to eat an apple.
Shifts (resp. reductions) are represented in black diag-
onal (resp. vertical) arcs. Red curved edges represent
matchings. Vertices are configuration classes vqi .

Since score functions su and sm take the size of
the stack into account, items with different (initial)
stack sizes cannot be equivalent. Hence, items of
the form q〈i, j〉 are needed, where q = |σ| rep-
resents the size of the stack before shifting wi.
Leaving out the resulting dependency arcs, both
reduction rules can be written with these equiva-
lent items:

q〈i, k〉 q+1〈k, j〉
q〈i, j〉

There areO(n3) equivalent items and the DP com-
plexity will be O(n4). Such items will be scored
in the following way :

• the score of an axiom q〈i, i+1〉 is
su(i, q, shift). Axioms appear as black
diagonal arcs (vqi , v

q+1
i+1 ) in Figure 1.

• In a DP step, the score of the reduce transition
is su(j, q+2, reduce). The transition is repre-
sented as a black vertical arc (vq+2

j , vq+1
j ) in

Figure 1.

• Finally the matching score in a DP step is
sm(k, q+1, j). This score corresponds to red
curved arcs (vq+1

k , vq+1
j ) in Figure 1.

Figure 2 depicts both reduction rules. An item
is represented as an arrow for the initial shift, and a
triangle for the well-nested part of the subderiva-
tion. A reduction builds a new item by extend-
ing the well-nested part of the left antecedent with
a new matching arc obtained from the right an-
tecedent and the new reduction arc.

A dependency arc is added to assign a head to
k, the midpoint of the reduction rule, depending
on the direction of the reduction.

vqi

vq+1
i+1

q〈i, k〉

vq+1
k

vq+1
k

vq+2
k+1

q+1〈k, j〉

vq+2
j

q〈i, j〉

vqi

vq+1
i+1

vq+1
k

vq+2
k+1 vq+2

j

vq+1
j

L/R

wi wk wj
LR

Figure 2: Illustration of reduction rules. Items are rep-
resented by a diagonal arc (first shift) and an horizontal
edge (well-nested part). When combining two items in
a reduction rule, a (curved) matching edge and a (verti-
cal) reduction arc are added. The type of the reduction
leads to a new dependency arc for the modifier wk.

4 Learning Derivation Scores

We first present our network architecture inspired
by recent work on self attention (Vaswani et al.,
2017; Wang et al., 2017) which is able to learn rep-
resentations of arc-hybrid configuration classes,
that we call step representations. These represen-
tations are then used to compute derivation scores.

Our network is an encoder/decoder. The en-
coder computes word and step representations in
the specific context of the sentence to be parsed,
while the decoder computes arc scores.

We borrow from the transformer layer (Vaswani
et al., 2017) the idea of global attention but extend
it to the case where the size of the output is dif-
ferent from the size of the input. This has already
been explored in (Gu et al., 2018) in the context
of Machine Translation. However our problem is
simpler because the size of the output is always
twice the size of the input, in other words we do
not have to estimate the size of the output.

4.1 Notation

A feed-forward layer is a sequence of an affine
transformation, a ReLU filter and a linear trans-
formation, i.e. FF(x) = V (max(0, (Wx + b))),
with V,W, b trainable parameters.
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We call interpolation layers functions like
I(x,y) = C(x)·x+(1−C(x))·y whereC is a lin-
ear transformation followed by a sigmoid squash-
ing, and · denotes the component-wise product.

Combining the previous two, we define high-
way layers (Greff et al., 2017) as functions
H(x) = I(x, FF (x)), i.e. an interpolation of in-
put x and a feed-forward transformation of x.

We also make use of biaffine functions follow-
ing (Dozat and Manning, 2017) that we define as
functions of the formB(e, f) = e>M f+V e, with
matrix M and vector V learnable parameters.

4.2 Layer Structure

Each layer Li is the composition of two sublay-
ers Ai, computing a generalized attention, and Bi,
performing a feed-forward transformation. As is
the case in previous approaches, each sublayer is
followed by a layer normalization (Ba et al., 2016)
and a residual connection to prevent underflows.

In more details, each layer takes as input a se-
quence of size n of dense vectors of size d packed
as a matrix X in Rn×d and a query vector sequence
of size o, either equal to n or 2n depending on the
layer (see infra) packed as a matrix Y in Ro×d.
When X and Y are the same, we recover the self-
attention mechanism of the transformer layer. The
layer forward value is given by the following equa-
tions, where LN is a layer normalization:

ai(X,Y) = X+Ai(X,Y)

bi(X) = X+Bi(X)

Li(X,Y) = LN(bi(LN(ai(X,Y)))).

The first sublayer Ai computes for each output
position in Y a multi-head scaled dot-product at-
tention over input query Y and key/value X , with
m attention heads.

Ai(X,Y) =
m∑

h=1

(A(QhiY,K
h
i X, V

h
i X))

Each attention head A takes a query as input
queries, keys and values, and computes for each
query vector a convex combination of value vec-
tors, the coefficients of which are given by an op-
eration between the query and the key vectors:

A(Q,V,K) = softmax(µQK>)V

where softmax is applied row-wise and µ is a
smoothing factor between 0 and 1, which is set to
d−0.5, where d is the size of a query vector, fol-
lowing previous implementations of dot-product
attention (Luong et al., 2015).

The second sublayer Bi applies the same feed-
forward transformation to each element of the se-
quence of vectors returned by Ai.

4.3 Word and Position Embeddings
Each word in the train set is associated with a real
vector stored in a lookup table E. In order to cope
with unseen words, we follow (Kiperwasser and
Goldberg, 2016) and at training time words are
randomly UNK-ed with a probability inversely pro-
portional to their frequency in the train set.

Contrarily to recurrent networks such as
LSTMs, attention networks do not have a built-
in notion of position so it must be provided exter-
nally. In our systems, we have two types of po-
sitions, namely word positions and step positions.
We use position embeddings stored in lookup ta-
bles called respectively T and S.

4.4 Word Encoder and Dependency Scores
Our encoder is the composition of e self-attention
layers starting from word and position vectors.

X0 = [E(w1) + T (1); . . . ;E(wn) + T (n)]

Xi = Li(Xi−1, Xi−1), 1 ≤ i ≤ e
After encoding, we getXe that we interpret as a

sequence of contextualized word vectors. We can
use these vectors to predict arc scores. In the fol-
lowing, we use a biaffine function Bdep to define
the raw score between head at position i and mod-
ifier at position j: swi→wj = Bdep(Xe[i], Xe[j]).

These raw scores are used in two ways.First and
most obviously they score dependency arcs of the
derived tree in this model. Second, for each modi-
fier we use incoming arc scores to weigh potential
heads and compute an expected head vector. We
use normalized scores via softmax to interpolate
head vectors. As a result for each vector word
Xe[i] we obtain an expected head vector Ye[i],
which will be used hereafter.

4.5 Step Encoder
For steps, we distinguish the first layer from the
others. For the first layer, input is the sequence re-
turned by the last word encoder noted Xe and ex-
pected heads Ye, and the query is initialized with
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the increasing sequence of valid step position em-
beddings called P = [S(1); . . . ;S(2n)].

D0 = Xe + Ye, P1 = P, D1 = Le+1(D0, P1)

For k > 1, we set Dk = Le+k(Dk−1, Dk−1).
Given sentence w, we note h(w) the sequence

of vectors returned by the last decoder layer.

4.6 Decoders as Local Classifiers

In this section we present how the score function
can be decomposed as local probabilities. Given a
sentence w, we assume the probability of a deriva-
tion γ is conditioned upon its corresponding de-
rived tree τ . This condition prevents inconsisten-
cies between τ and γ but plays no other role in the
scoring function. The probability of a derived tree
decomposes as independent head predictions com-
puted by a logistic regression over head scores.

p(γ, τ |w) =p(γ|w, τ)× p(τ |w)
=p(γ|w, τ)×

∏

h→m∈τ
p(h|m,w)

The probability of a derivation in Dw is the
probability at each independent step ` of 2 events:
the transition t` and the step position r` of the cor-
responding reduction for a shift, or a dummy posi-
tion for a reduction. We consider these two events
to be independent but requiring the knowledge of
the difference q` between the number of shifts and
reductions already performed before the current
step. This difference can also be interpreted in the
context of the arc-hybrid algorithm as the depth of
the stack. The difference is then used as a param-
eter for the potentials. This gives:

p(γ|w) =
2|w|∏

`=1

p(t`, r`, q`|w, `)

=

2|w|∏

`=1

pd(q`|w, `)× p(t`, r`|w, `, q`)

=

2|w|∏

`=1

pd(q`|w, `)

× pu(t`|w, `, q`)× pm(r`|w, `, q`)

The condition on sentence and step index w, `
is implemented via functions taking the `th step
representation of w computed as described in the

previous section, denoted h(w)` or simply h` if
the sentence is clear from the context.

In practice we restrict the set of values for q` as
the set of natural numbers between one and nine,
and a special value for differences greater or equal
to ten8. We use a lookup table F to convert dis-
crete difference values to dense representations.

Note that although the 3 distributions are con-
ditioned on the same step representations intro-
duced in the previous section, these represen-
tations are first passed through highway layers,
{Hi}i=d,u,m, parameterized for each distribution.
This helps with the specialization of step repre-
sentations while keeping the possibility to share
information between tasks.

The first two distributions are categorical dis-
tributions of the exponential family. They are
computed as normalized potentials given by feed-
forward transformations of steps and differences.

pd(q|h`) ∝ expFFd(F (q) +Hd(h`)),

pu(t|q, h`) ∝ expFFt(F (q) +Hu(h`)).

The third distribution is computed with a bi-
affine function Bm followed by a softmax, as
in (Dozat and Manning, 2017). We reserve an ex-
tra value for the result random variable which en-
codes the absence of corresponding reduction.This
is used when s is not a shift step. Note the differ-
ence embedding is only used on the left side ofM .

pm(r|h`, q) ∝ expBm(F (q) +Hm(h`), h`+r)

Learning is performed by simply maximizing
the conditional log-likelihood of the 4 distribu-
tions over the correct derivations given a set of
sentences. Once parameterized, it is straightfor-
ward to see how these distributions can fit the
score model of Equation 5.

Conditional log-likelihood minimization re-
quires to compute values for each distribution
along gold solutions, which means it is a O(n2)
procedure, because of distributions on dependency
arcs and matching transitions, which both require
2 position parameters in order to be computed.

5 Experiments

Data We ran experiments on the Wall Street
sections of the English Penn Treebank (Marcus

8We found almost all train sentences could be parsed with
stack size below 10.
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POS embedding size 28
Other embedding size 100
Encoder input/output size 256
Decoder input/output size 256
Hidden layer size in B subnetworks 512
attention heads 8
Maximum step numbers 200
Maximum difference D (stack height) 10
Number of word encoder layers 4
Number of step encode layers 4

Table 1: Network hyperparameters

et al., 1994) converted to Stanford Dependencies
(de Marneffe and Manning, 2008). Transition se-
quences were obtained from dependencies and in
case of ambiguity right reductions were always
performed before shift if possible. We followed
the standard split (02-21 for training, 23 for test-
ing and 22 for development purposes) and used
POS tags predicted by the Stanford MaxEnt tagger
trained using 10-way jackknifing (Toutanova et al.,
2003). We evaluate on unlabeled attachment with-
out punctuation, with CoNLL evaluation script.

Implementation Hyperparameters are given in
Table 1. In addition to word embeddings parame-
terized on the PTB, we use pretrained Glove vec-
tors (Pennington et al., 2014). Our prototype is
written in c++ with DYNET9 for neural compu-
tations (Adam optimizer and default values) and
UDPIPE10 for reading and writing data files. Mini-
batches contain around 1,000 tokens. We train
each model for 100 epochs and select our best
model according to its development UAS. We fol-
low previous works with transformers to set the
learning rate (Vaswani et al., 2017). For the first
8, 000 updates the learning increases linearly with
the number of steps, then it decreases proportion-
ally to the squared root of the number of steps. We
use the formula of Strubell et al. (2018).

Results Results on the PTB test set are presented
in Table 2 and comparisons with previous work
on arc-hybrid parsing with comparable network
sizes. Parsing results are obtained by averaging
5 models initialized with different random seeds
and standard deviation is also provided. Our sys-
tem reaches 94.8% UAS and parses the whole sec-
tion 23 in 1.13 seconds (DP only) on an Intel Xeon
2.10 GHz. Although our system is trained via local
classifiers, we can see that it improves over global

9https://github.com/clab/dynet
10http://ufal.mff.cuni.cz/udpipe

Setting UAS
Ours 94.82± 0.10
Ours, joint training, but decoding with

dependency scores only 94.80± 0.09
derivation scores only 93.95

Ours, training and decoding with
dependency scores only 94.73± 0.06
derivation scores only (no stack size) 84.81

(Shi et al., 2017) best local (4 features) 93.89
(Shi et al., 2017) global (2 features) 94.43
(Shi et al., 2017) global Eisner 94.50
(Kiperwasser and Goldberg, 2016) greedy 93.8

Table 2: Comparisons on PTB test set

systems trained without step encodings.
Ablations indicate that the major part of scoring

comes from dependencies. We may also conclude
that (i) derivation information is useful per se but
most importantly as an auxiliary task to improve
dependencies and (ii) the stack size is paramount
in this model since otherwise the network has no
indication of the stack content. If not considered,
accuracy drop considerably: step indexes alone
are too vague as they can correspond to many dif-
ferent stack and buffer contents.

6 Discussion and Related Work

Derivation Parsing Maximum subgraph selec-
tion has played a central role in dependency pars-
ing since the MST reduction by McDonald et al.
(2005) and can also be traced back to the parsing-
as-intersection tradition in phrase-based parsing –
see for instance (Billot and Lang, 1989) – where
the goal is to find, starting from a generic gram-
mar, a graph-structure (a shared forest) that recog-
nizes the input presented as a string or an automa-
ton. In dependency parsing, this approach has
since been extended to more complex dependen-
cies such as non-crossing and 1-endpoint-crossing
dependencies (Kuhlmann and Jonsson, 2015; Cao
et al., 2017).

There is a long line of research which solve the
different variants of transition-based dependency
parsing algorithms with dynamic programming.
Recent work showed that this can be performed ef-
ficiently, inO(n3), for arc-hybrid parsers (Gómez-
Rodrı́guez et al., 2008) and have since been ex-
tended with non-linear classifiers (Kiperwasser
and Goldberg, 2016; Shi et al., 2017) to reach
state-of-the-art parsing accuracy.

We depart from both in the following way. In
most works on maximum subgraph selection, the
class of valid subgraph is a class defined only by
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properties on dependencies. Here we represent
derivations instead of derived structures. In that
respect, we are closer to approaches developed for
mildly-context sensitive formalisms such as Tree
Adjoining Grammars which work primarily on the
derivation tree (Corro et al., 2017) and consider
the derived tree, i.e. the parse structure, as a by-
product. Compared to other dynamic program-
ming approaches to arc-hybrid parsing, we there-
fore work on a richer model, and have more ex-
pressive power to take a representation of states
into account in the scoring scheme. This comes
at a cost since the time complexity of our pars-
ing algorithm is O(n4), an order of magnitude
higher. The stack information (size) is minimal
and is used to parameterize access to information
available from step embeddings.

Compared to joint parsing systems working on
both constituents and dependencies, our approach
doesn’t require external linguistic knowledge such
as head percolation rules. On the other hand, since
derivations don’t add new information, but merely
offer a new vision of the problem, the potential
accuracy gain is lower.

Machine Learning Aspects Self-attention net-
works have been used in parsing, see for instance
(Kitaev and Klein, 2018), whether based on de-
pendencies or syntagms. Curiously we found few
models of transition-based parsing based on these
networks, and bidirectional recurrent network are
still preferred in most architectures, where they
are believed to capture some information about the
sequential nature of transition-based algorithms.
Instead we present a non-sequential model of
transition-based parsing where representation vec-
tors are obtained via unrolled iterative estimation
(Greff et al., 2017).

Our encoder-decoder architecture together with
independence assumptions made in the probabilis-
tic model which decomposes a derivation score in
several subtasks can be seen as auxiliary tasks as
in (Coavoux et al., 2018).

The use of expected head vectors as input of
the step encoder is related to the syntactic head at-
tention of the SRL neural architecture in (Strubell
et al., 2018).

7 Conclusion

We presented the arc-hybrid parsing transition
rule system as a subgraph selection problem and
showed how this can be solved exactly by a dy-

namic programming algorithm. This theoretical
result is backed up by state-of-the-art results on
the PTB.

This new representation of the problem is the
basis of a novel neural architecture which learns
vertex representations (for derivation steps) and
edge scores (for derivation features).

From a parsing perspective, understanding why
derivation prediction is a good auxiliary task to
learn syntactic dependencies could prove insight-
ful to explain how transitions and dependencies
are related.

The derivation/derived pair is a very powerful
concept that remains to be fully exploited. In par-
ticular, there are two promising avenues for fu-
ture improvements. First, the learning framework
could be enriched in a setting where the derivation
graph is modeled as a latent variable and marginal-
ized over. It remains to be seen if this can be done
exactly or if sampling is required for efficiency.
Second, since the score of a solution is the sum of
the scores of elements in a pair, it should be pos-
sible to design an approximate solver based on la-
grangian decomposition more efficient in practice.
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Abstract

Debate motions (proposals) tabled in the
UK Parliament contain information about the
stated policy preferences of the Members of
Parliament who propose them, and are key to
the analysis of all subsequent speeches given
in response to them. We attempt to automat-
ically label debate motions with codes from a
pre-existing coding scheme developed by po-
litical scientists for the annotation and analy-
sis of political parties’ manifestos. We develop
annotation guidelines for the task of applying
these codes to debate motions at two levels of
granularity and produce a dataset of manually
labelled examples. We evaluate the annotation
process and the reliability and utility of the
labelling scheme, finding that inter-annotator
agreement is comparable with that of other
studies conducted on manifesto data. More-
over, we test a variety of ways of automati-
cally labelling motions with the codes, rang-
ing from similarity matching to neural classifi-
cation methods, and evaluate them against the
gold standard labels. From these experiments,
we note that established supervised baselines
are not always able to improve over simple lex-
ical heuristics. At the same time, we detect
a clear and evident benefit when employing
BERT, a state-of-the-art deep language repre-
sentation model, even in classification scenar-
ios with over 30 different labels and limited
amounts of training data.

1 Introduction

Commonly known as the Hansard record, tran-
scripts of debates that take place in the House of
Commons of the United Kingdom (UK) Parlia-
ment are of interest to scholars of political sci-
ence as well as the media and members of the
public who wish to monitor the actions of their

elected representatives. Debate motions (the pro-
posals tabled for debate) are expressions of the
policy positions taken by the governments, politi-
cal parties, and individual Members of Parliament
(MPs) who propose them. As all speeches given
and all votes cast in the House are responses to
one of these proposals, the motions are key to any
understanding and analysis of the opinions and po-
sitions expressed in the subsequent speeches given
in parliamentary debates.

By definition, debate motions convey the stated
policy preferences of the MPs or parties who pro-
pose them. They therefore express polarity—
positive or negative—towards some target, such as
a piece of legislation, policy, or state of affairs. As
noted by Thomas et al. (2006), the polarity of a
debate proposal can strongly affect the language
used by debate participants to either support or
oppose it, effectively acting as a polarity shifter
on the ensuing speeches. Analysis of debate mo-
tions is therefore a key first step in automatically
determining the positions presented and opinions
expressed by all speakers in the wider debates.

Additionally, there are further challenges asso-
ciated with this task that differentiate it from the
forms of sentiment analysis typically performed
in other domains. Under Parliament’s Rules of
Behaviour,1 debate participants use an esoteric
speaking style that is not only laden with opaque
procedural language and parliamentary jargon, but
is also indirect, containing few explicitly negative
words or phrases, even where negative positions
are being expressed (Abercrombie and Batista-
Navarro, 2018a).

The topics discussed in these debates revolve
1https://www.parliament.uk/documents/

rules-of-behaviour.pdf
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around policies and policy domains. Topic mod-
elling or detection methods, which tend to produce
coarse overviews and output neutral topics such
as ‘education’ or ‘transport’ (as in Menini et al.
(2017), for instance), are therefore not suitable for
our purposes. Rather, we seek to find the pro-
poser of a motion’s position or policy preference
towards each topic—in other words, an opinion-
topic. Topic labels do exist for the Hansard tran-
scripts, such as those produced by the House
of Commons Library or parliamentary monitor-
ing organsitions such as Public Whip.2 However,
these are unsuitable due to, in the former case,
the fact that they incorporate no opinion or pol-
icy preference information, and for the latter, be-
ing unsystematic, insufficient in both quantity and
coverage of the topics that appear in Hansard, and
not future-proof (that is, they do not cover unseen
topics that may arise (Abercrombie and Batista-
Navarro, 2018b)).

In this paper, we use the coding scheme devised
by the Manifesto Project,3 because: (a) it is sys-
tematic, having been developed by political scien-
tists over a 40 year period, (b) it is comprehen-
sive and designed to cover any policy preference
that may be expressed by any political party in the
world, (c) it has been devised to cover any poli-
cies that may arise in the future, and (d) there exist
many expert-coded examples of manifestos, which
we can use as reference documents and/or for val-
idation purposes.

We approach automatic policy preference la-
belling at both the motion and (quasi-)sentence
levels (see Section 2). We envisage that the out-
put could therefore be used for downstream tasks,
such as sentiment and stance analysis and agree-
ment assessment of debate speeches, which may
be performed at different levels of granularity.

Our contributions This paper makes the fol-
lowing contributions to the literature surround-
ing natural language processing of political doc-
uments and civic technology applications:

1. We develop a corpus of English language de-
bate motions from the UK Parliament, anno-
tated with policy position labels at two lev-
els of granularity. We also produce anno-
tation guidelines for this task, analysis of
inter-annotator agreement rates, and further

2https://www.publicwhip.org.uk
3https://manifestoproject.wzb.eu

evaluation of the difficulty of the task on
data from both parliamentary debates and the
manifestos. We make these resources pub-
licly available for the research community.

2. We test and evaluate two different ways of
automatically labelling debate motions with
Manifesto Project codes: lexical similarity
matching and supervised classification. For
the former, we compare a baseline of unigram
overlap with cosine similarity measurement
of vector representations of the texts. For the
latter, we test a range of established baselines
and state-of-the-art deep learning methods.

2 Background

Rather than being forums in which speakers at-
tempt to persuade one another of their points of
view, as the word ‘debate’ may imply, parlia-
mentary speeches are displays of position-taking
that MPs use to communicate their policy prefer-
ences to ‘other members within their own party, to
members of other parties, and, most important, to
their voters’ (Proksch and Slapin, 2015). Debate
motions are proposals put forward in Parliament,
and as such are the objects of all votes and deci-
sions made by MPs, and, in theory at least, of all
speeches and utterances made in the House.4 Each
parliamentary debate begins with such a motion,
and may include further amendment motions (usu-
ally designed to alter or reverse the meaning of the
original) as it progresses. Motions routinely begin
with the words ‘I beg to move That this House ...’,
and may include multiple parts, as in Example 1,5

which consists of two clauses, and appears to take
a positive position towards international peace:

I beg to move
That this House notes the worsening hu-
manitarian crisis in Yemen;
and calls upon the Government to take
a lead in passing a resolution at the UN
Security Council that would give effect to
an immediate ceasefire in Yemen.

(1)

The concept of policy preferences is widely
used in the political science literature (e.g. Budge

4https://www.parliament.uk/
site-information/glossary/motion

5https://hansard.parliament.
uk/commons/2017-03-28/debates/
F81005F8-5593-49F8-82F7-7A62CB62394A/
Yemen
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et al., 2001; Lowe et al., 2011; Volkens et al.,
2013) to represent the positions of political actors
expressed in text or speech. The Manifesto Project
is an ongoing venture that spans four decades of
work in this area and consists of a collection of
party political documents annotated by trained ex-
perts with codes (labels) representing such prefer-
ences. Organised under seven ‘domains’, the cod-
ing scheme comprises 57 policy preference codes,
all but one of which (408: Economic goals) are
‘positional’, encoding a positive or negative po-
sition towards a policy issue (Mikhaylov et al.,
2008). Indeed, many of these codes exist in polar
opposite pairs, such as 504: Welfare State Expan-
sion and 505: Welfare State Limitation. The in-
cluded manifestos are coded at the quasi-sentence
level—that is, units of text that span a sentence or
part of a sentence, and which have been judged by
the annotators to contain ‘exactly one statement or
“message”’ (Werner et al., 2011), as in Example 2,
in which a single sentence has been annotated as
four quasi-sentences:6

To secure your first job we will cre-
ate 3 million new apprenticeships;
411: Technology and Infrastructure

take everyone earning less than
12,500 out of Income Tax altogether
404: Economic Planning

and pass a law to ensure we have
a Tax-Free Minimum Wage in this
country;
412: Controlled Economy

and continue to create a fairer
welfare system where benefits are
capped to the level that makes work
pay so you are rewarded for work-
ing hard and doing the right thing.
505: Welfare State Limitation

(2)

3 Related work

There exists a large body of work concerning the
analysis of opinions and policy positions in the re-
lated domains of legislative debate transcripts (for
a survey, see Abercrombie and Batista-Navarro,
2019) and party political manifestos (see Volkens

6Conservative Party manifesto 2015.

et al., 2015). Inspired by work on analysis of text
from other domains, such as product reviews and
social media, much of the computer science re-
search in this area has concentrated on classify-
ing the sentiment polarity of individual speeches
(e.g. Burford et al., 2015; Thomas et al., 2006;
Yogatama et al., 2015). Political scientists mean-
while, have tended to focus on position scaling—
the task of placing the combined contributions of
a political actor on a (usually) one-dimensional
scale, such as Left–Right (e.g. Glavaš et al., 2017b;
Laver et al., 2003; Nanni et al., 2019a; Proksch and
Slapin, 2010). In either case, the majority of this
work does not take into consideration the topics or
policy areas addressed in the speeches.

Supervised classification approaches to
opinion-topic identification have been explored
in a number of papers. Abercrombie and Batista-
Navarro (2018b) obtain good performance in
classifying debate motions as belonging to one
of 13 ‘policies’ or opinion-topics. However, this
approach is somewhat limited in that they use a
set of pre-existing labelled examples which does
not extend to cover the whole Hansard corpus
or any new policies that may arise in the future.
A similar setting to ours is that of Herzog et al.
(2018), who use labels from the Comparative
Agendas Project (CAP).7 However, while they
seek to discover latent topics present in the corpus,
we wish to determine the policy-topic of each
individual debate/motion. Rather than employ
labelled manifesto data, as we do, they use the
descriptions of the CAP codes.

Concerning policy identification in party po-
litical manifestos, previous studies have focused
on topical segmentation (Glavaš et al., 2016) and
classification of sentences into the seven coarse-
grained policy domains (Glavaš et al., 2017a;
Zirn et al., 2016). Meanwhile, Subramanian
et al. (2018) recently presented a deep learn-
ing model that classifies manifesto sentences with
the finer-grained code-level scheme of the Mani-
festo Project, as well as placing them on a Left-
Right scale. In order to contribute to these re-
search efforts and following recent advancements
in deep language representation models (Devlin
et al., 2018; Peters et al., 2018), we test the po-
tential of BERT (Bidirectional Encoder Represen-
tations from Transformers) for policy-topic classi-
fication on both debate motions and manifestos.

7https://www.comparativeagendas.net
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There is also a growing body of research on the
evaluation of annotations for this domain. While
the Manifesto Project relies on trained individual
annotators to label manifestos, Mikhaylov et al.
(2008) report the results of experiments which
show that agreement between annotators is dif-
ficult to achieve, casting doubts on the reliabil-
ity of the Project’s codes. However, in similar
experiments, Lacewell and Werner (2013) report
greater inter-annotator agreement, and claim that
with ongoing training, annotators can produce re-
liable labels. An extended analysis of the valid-
ity and reproducibility of the coding scheme is of-
fered by Gemenis (2013), who remarks on the fact
that ‘the problem of unreliability does not lie with
the coders but with the complex nature of the CMP
(Comparative Manifesto Project) coding scheme’.
Aware of such challenges, and in order to offer
an additional comparison to these previous stud-
ies, in this work we provide a detailed analysis of
the agreement rates of our annotators on both man-
ifestos and debate motions.

4 Data

In the experimental section we report on the use of
codes from the Manifesto Project as policy pref-
erence labels, with the goal of applying them to
debate motions. These labels are convenient be-
cause: (a) like debate transcripts, they have been
collected over time; and (b) the Project is ongoing,
meaning that new example manifestos will con-
tinue to be added to it, mitigating potential concept
drift problems (in which the language used to re-
fer to aspects of different policy areas may change
diachronically).

To construct our corpus, we made use of the
data sources described below:

The Manifesto Project

We used annotated manifestos (1) as reference
texts for labelling of debate motions by simi-
larity matching, and (2) training a neural net-
work for cross-domain classification of the mo-
tions. We downloaded all fifteen of the anno-
tated United Kingdom (including Northern Ire-
land) manifestos from the Manifesto Corpus Ver-
sion 2018-1 (Krause et al., 2018)—that is those
that have been coded under version 4 of the cod-
ing scheme.8

8https://manifestoproject.wzb.eu/
coding_schemes/mp_v4

Domain Manifestos Debates
QSs Motions QSs

1: External 1,436 50 186
Relations

2: Freedom & 767 30 106
Democracy

3: Political 1,627 47 220
System

4: Economy 4,296 87 380
5: Welfare & 2,235 118 528

Quality of 528
Life

6: Fabric of 1,574 33 153
Society

7: Social 1,180 21 110
Groups

0: No 166 0 0
meaningful
category

Table 1: The number of quasi-sentences (QSs) coded
under each domain in the UK manifestos that we use
as reference texts and training data and the number of
debate motions and quasi-sentences that we label under
each domain in the motion policy preference corpus.

Party Year(s) QSs
Conservative 2015 1589
DUP 2015 229
Green Party 2015 2235
Labour 2001, 2015 2503
Liberal Democrats 1997, 2015 2759
Plaid Cymru 2015 776
SDLP 2015 407
Sinn Féin 2015 272
SNP 1997, 2001, 2015 2309
UKIP 2015 1349
UUP 2015 417

Table 2: The parties and years of publication of the
manifestos that we use as reference texts and training
data, and the number of labelled quasi-sentences (QSs)
by party in this subset of the manifesto data.

In this subset, the number of UK manifesto
quasi-sentences labelled with codes in each do-
main varies considerably (see Table 1). These
manifestos were written by a variety of political
parties for elections over an 18 year period (Table
2). The most prevalent code in these manifestos is
504: Welfare State Expansion (2,691 examples),
and the least used is 103: Anti-Imperialism (3 ex-
amples). Two codes, 102: Foreign Special Rela-
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tionships: Negative and 415: Marxist Analysis:
Positive, do not appear at all in manifestos from
the United Kingdom.

Debate transcripts

The Hansard record of House of Commons
debates is available for each day on which
debates have taken place from 1919 to the
present day in xml format at https://www.
theyworkforyou.com, where it is updated
daily with the most recent debates. As the record
is more complete for recent years, we downloaded
all files from May 7th 1997 (the start of that year’s
session of Parliament) to February 28th 2019.
From these we extracted 1,156 motions together
with the titles of the debates and the dates on
which they were tabled. We manually removed
procedural motions (those concerned solely with
the workings of Parliament) from the dataset as
these do not concern policy preferences and have
no equivalents in political manifestos.

In order to approximate the format of the data
in the Manifesto Project, and to investigate policy
preference detection at different levels of granular-
ity, we divided each motion into smaller units. For
convenience, we approximated quasi-sentences in
the Hansard data by automatically dividing mo-
tions into clauses, which are separated by semi-
colons in the transcripts.

5 Annotation

We adapt the Project’s Coding Instructions
(Werner et al., 2011) to provide guidelines for the
annotation of debate motions. We use version 4 of
these instructions because, although a more recent,
more finely grained version exists, there are as yet
few example manifestos coded under the newer
scheme. To complete the annotation task, we re-
cruited three Political Science Master’s students
from the University of Mannheim, who worked for
a total of 40 hours each over a two month period.

Debate motions

Annotations were carried out in two stages: an
initial training phase, followed by labelling of the
main dataset. We used the coding instructions of
version 4 of the Manifesto Project handbook9 sup-
plemented by debate motion-specific guidelines

9Available at https://manifestoproject.wzb.
eu/down/papers/handbook_2011_version_4.
pdf

including notes based on the annotators’ discus-
sions during training.10 For the training phase,
after being introduced to the data and the coding
instructions, the annotators individually labelled
three batches of motions and their quasi-sentences.
In addition to labelling each of these with one
of the codes, they were instructed to note exam-
ples which they found difficult to decide upon.
Between each batch we met to discuss these in-
stances, as well as other examples on which the an-
notators disagreed, adding notes to the annotation
guidelines based on the observations made. Inter-
annotator agreement during training ranged from
‘fair’ to ‘substantial’, following common interpre-
tation of Fleiss’ kappa scores (Landis and Koch,
1977) (see Table 3).

The final corpus includes 386 hand-annotated
motions and 1,683 quasi-sentences.11 The major-
ity of these have been labelled by two of the three
annotators. Inter-annotator agreement is within
the ranges generally interpreted as being ‘mod-
erate’ to ‘substantial’ (see Table 4). The slightly
higher agreement at the quasi-sentence level than
on overall motion labels suggests that it may be
difficult in some cases to select a single policy
preference code for a whole motion. A subsection
of the corpus (41 motions, 180 quasi-sentences)
was labelled by all three annotators. Fleiss’ kappa
scores for this subsection are 0.46 at both levels,
which indicates ‘moderate’ agreement. Following
Pustejovsky and Stubbs (2012), the gold standard
label for each example is obtained by adjudication,
which was carried out by the first author.

Manifestos

To validate our labelling procedure, and for com-
parison with other work, we also asked the an-
notators to label a small quantity (120) of quasi-
sentences from the Manifesto Project. We calcu-
late Fleiss’ kappa for these annotations to be 0.48,
which is comparable to that obtained on the main
dataset of debate motions, and higher than those
reported by Mikhaylov et al. (2008) on manifestos.

Again, we asked the annotators to mark any ex-
amples which they considered to be difficult to de-
cide upon. Agreement (Fleiss’ kappa) on these
‘difficult’ cases is only 0.17, with only one ex-

10These guidelines are available along with the corpus.
11These constitute examples with ‘gold standard’ labels.

The corpus also includes examples labelled by a sole anno-
tator (‘silver standard’) and further unlabelled motions (see
Table 5).
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Motion level Quasi-sentence level
Iteration No. of examples k Interpretation No. of examples k Interpretation
Training 1 15 0.41 ‘moderate’ 60 0.35 ‘fair’
Training 2 12 0.65 ‘substantial’ 60 0.56 ‘moderate’
Training 3 16 0.48 ‘moderate’ 60 0.40 ‘fair’

Table 3: Annotator agreement (Fleiss’s kappa) at two levels of granularity during three iterations of training and
development of annotation guidelines for labelling debate motions with codes from the Manifesto Project.

Annotators No. k
Motion All 3 41 0.46

QS All 3 180 0.46

Motion

1 & 2 139 0.51
2 & 3 155 0.50
1 & 3 169 0.49

All pairs 463 0.50

QS

1 & 2 622 0.58
2 & 3 650 0.51
1 & 3 731 0.62

All pairs 2003 0.58

Table 4: Fleiss’ kappa scores for three-way agreement
and Cohen’s kappa scores for two-way agreement on
the debate motions dataset.

ample marked as such by all three annotators. In
this case, two of them used the ‘correct’ Mani-
festo Project gold label, while the third annota-
tor applied a different code from the same domain.
Overall, of the 47 examples (39.2%) on which all
three annotators agree, 36 of these agree with the
gold label (30% of the total). Domain-level agree-
ment is 0.56, which is also similar to that achieved
on the debate motions.

The Motion Policy Preference Corpus

We make the corpus available for download at
https://madata.bib.uni-mannheim.
de/308. The number of labelled and unlabelled
examples it contains can be seen in Table 5. For
the gold-labelled data, motions range in length
from one to 13 quasi-sentences (mean = 4.3),
with each of these consisting of between four and
163 tokens (mean = 28.7).

6 Automatic Labelling Methods

We investigated two ways of automatically la-
belling debate motions with the codes from the
Manifesto Project: (1) similarity matching and
(2) supervised classification. We tested both at
the quasi-sentence level and we additionally ex-

Labels Motion Quasi-sentence
Gold standard 386 1,683
Silver standard 87 361
Total labelled 473 2,044
Unlabelled 593 2,587
Overall total 1,066 4,631

Table 5: Statistics for the motion policy preference cor-
pus. Gold standard examples have been labelled by two
or three annotators initially and adjudicated on in a fi-
nal round of annotation. Silver standard examples have
been labelled by a single annotator only.

periment with similarity matching methods at the
whole motion level, where the lack of sufficient
training data prevents application of supervised
learning methods. In pre-processing we filtered
out any motions that have gold standard labels that
appear less than ten times in the corpus, leaving
370 motions and 1,634 quasi-sentences, each an-
notated with one of the 32 remaining class labels.

Similarity matching
We tested two methods of matching debate mo-
tions to codes from the Manifesto Project, com-
paring a baseline of unigram overlap scores with
cosine similarity measurement. In each case, we
measured the similarity of the list of tokens A =
A1, A2, ..., An in each motion or quasi-sentence
text and the list of tokens in each collection of con-
catenated manifesto extracts B = B1, B2, ...Bn.

For unigram overlap, we simply counted the
union of the sets of tokens from A and B. For
the latter method, each text was represented by its
term frequency-inverse document frequency vec-
tor (tf-idf), and cosine similarity calculated as:

~A · ~B
|| ~A|||| ~B||

With both of these approaches, we explored the
use of the following combinations of sources of
textual unigram features: the debate titles, which
have been shown to be highly predictive of a
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motion’s opinion-topic in a supervised classifi-
cation setting (Abercrombie and Batista-Navarro,
2018b), the debate motions themselves, and both
the titles and motions together.

Supervised Classification
We tested a range of supervised machine learn-
ing algorithms for the policy preference classifi-
cation task, ranging from traditional approaches
to recently developed pre-trained deep language
representation models. We were particularly in-
terested in assessing the performance of such ap-
proaches: (1) despite the limited training data
available (1.6k motion quasi-sentences); and (2) in
a cross-domain application (training on over 16k
manifesto quasi-sentences, and testing on the mo-
tion quasi-sentences).

First, we examined the performance of Support
Vector Machines (SVM) trained using lexical (tf-
idf) or word embedding (w-emb) features, which
act as strong traditional baselines. We tested
both pre-trained general purpose word embed-
dings from https://fasttext.cc (Mikolov
et al., 2018) and in-domain vectors generated on
the Hansard transcripts from Nanni et al. (2019b).

We also report the results of a widely adopted
neural network baseline for topic classification
(see for instance Glavaš et al. (2017a) and Sub-
ramanian et al. (2018) in the context of mani-
festo quasi-sentences classification): a Convolu-
tional Neural Network (CNN) with single convo-
lution layer and a single max-pooling layer. We
again tested the CNN with general purpose and in-
domain embeddings.

As final skyline comparisons, we present the
performance of (1) a pre-trained BERT (large,
cased) model (Devlin et al., 2018), with a final
soft-max layer; and (2) the same pre-trained BERT
model, with a CNN and max-pooling layers before
the soft-max layer. We additionally experimented
with the latter two models in a fine-tuning setting:
after training on manifestos, they have been fur-
ther fine-tuned on motions.

We tested all approaches with a 80/20 split of
the dataset, and trained all the neural models for
three iterations.

7 Results

We evaluated the predicted labels of each experi-
mental model against the gold standard labels pro-
duced by the annotation process. For the machine
learning methods, we report F1 scores with both

macro and micro weightings in order to offer an
understanding of the quality overall, as well as for
the different classes.

Motions: Similarity Matching

We evaluate labelling of motions by similarity
matching at two levels of granularity: quasi-
sentence and whole motion. Cosine similarity
matching comfortably outperforms the baseline at
both levels of granularity and at both the policy
and domain levels (see Figure 1).

Unlike the findings of Abercrombie and Batista-
Navarro (2018b), in most settings, we do not find
the debate titles to be as powerful indicators of
class labels as features derived from the texts of
the motions, perhaps due to our larger set of class
labels containing more similar (same domain) pol-
icy preference codes.

Best performances at both policy and domain
levels (F1 macro = 0.59) are obtained using tf-idf
features derived from both motion titles and texts,
although performance using the texts only is com-
parable. For most combinations of feature input
and similarity measurement method, F1 scores are
around twice as good at the domain level as at the
policy level.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 macro

text+title
title
text

text+title
title
text

text+title
title
text

text+title
title
text

QS level

Motion level

Unigram overlap (policy)
Unigram overlap (domain)
Cosine similarity (policy)
Cosine similarity (domain)

Figure 1: F1 macro scores for unigram overlap and co-
sine similarity matching at the policy and domain lev-
els using textual features from whole motions. Use
of cosine similarity leads to markedly better perfor-
mance than unigram overlap, and the best performance
is achieved using features derived from both the titles
and motion texts at policy and domain levels.

Motions: Quasi-sentence Classification

We tested the supervised pipelines at the quasi-
sentence level and at the two levels of class la-
bel granularity (policy and domain), which allows
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Model Text Data Source Policy Domain
representation Macro Micro Macro Micro

Unigram overlap BOW
Motion titles 0.09 0.15 0.26 0.31
Motions 0.09 0.21 0.23 0.38
Titles+motions 0.10 0.23 0.25 0.39

Cosine similarity Tf-idf
Motion titles 0.23 0.34 0.44 0.49
Motions 0.30 0.36 0.50 0.51
Titles+motions 0.32 0.41 0.51 0.56

SVM

Tf-idf
Motions 0.33 0.48 0.58 0.63
Manifestos 0.29 0.40 0.53 0.56

Domain w-emb
Motions 0.32 0.50 0.53 0.62
Manifestos 0.25 0.41 0.45 0.53

Wiki w-emb
Motions 0.35 0.51 0.55 0.65
Manifestos 0.21 0.38 0.45 0.52

CNN
Domain w-emb

Motions 0.15 0.38 0.58 0.64
Manifestos 0.19 0.30 0.37 0.51

Wiki w-emb
Motions 0.13 0.29 0.50 0.57
Manifestos 0.21 0.36 0.48 0.56

BERT Large, cased
Motions 0.26 0.47 0.42 0.58
Manifestos 0.32 0.47 0.52 0.57

+ Motions fine-tuning 0.39 0.50 0.60 0.67

BERT+CNN Large, cased
Motions 0.27 0.48 0.42 0.56
Manifestos 0.29 0.44 0.54 0.60

+ Motions fine-tuning 0.47 0.57 0.61 0.69

Table 6: F1 scores for similarity matching and classification of debate motions at the quasi-sentence level.

us to compare the results with previous work on
the Manifesto Project (e.g., Zirn et al. (2016)). As
can be seen in Table 6, the use of machine learn-
ing methods generally (but not always) leads to
a substantial improvement (especially for Micro
F1), in comparison to the heuristics that we have
discussed above.

Concerning the SVM and CNN baselines, train-
ing the classifiers on the large collection of an-
notated manifestos and then applying them to the
motions does not lead to improvements in compar-
ison to the performance of the same architectures
on the motions alone. Similarly, we notice that in
most cases the use of in-domain embeddings does
not improve the results. These two findings might
be due to the fact that the style of communication
and vocabulary of the employed resources are very
different. The size of the training data may also
play a role, as can be noticed in particular with
the weak performances of the CNNs, especially in
comparison to more traditional approaches; in the
next section, we return to this issue.

Finally, to further confirm the large potential of
BERT, even in tasks which involve many labels,

a lack of training data, and a very specific style
of communication, we have obtained a clear im-
provement over all other systems when employing
this state-of-the-art architecture, trained on man-
ifesto quasi-sentences and further fine-tuned on
motions.

Manifestos: Quasi-sentence Classification

As a final comparison of the presented systems for
quasi-sentence classification, we report their per-
formance on the corpus of 16k manifesto quasi-
sentences, again with an 80/20 train-test split. The
results (see Table 7) are consistent with the perfor-
mance of supervised pipelines on the Manifesto
Corpus presented in previous literature (Glavaš
et al., 2017a; Subramanian et al., 2018; Zirn et al.,
2016) and in line with the performances we ob-
tained on the motion corpus in Table 6.

Interestingly, we once again notice the weak
performances of the CNNs on the collection, even
with ten times as much training data. This could
be due to a necessity to extend the architecture
(for example, by adding more convolutional lay-
ers) rather than a simple lack of training data. Con-
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Model Text representation Policy Domain
Macro Micro Macro Micro

SVM
Tf-idf 0.39 0.54 0.58 0.66
Domain w-emb 0.35 0.53 0.52 0.64
Wiki w-emb 0.38 0.54 0.54 0.66

CNN
Domain w-emb 0.28 0.47 0.54 0.58
Wiki w-emb 0.27 0.44 0.52 0.56

BERT Large, cased 0.42 0.58 0.58 0.64
BERT + CNN Large, cased 0.42 0.58 0.60 0.70

Table 7: F1 scores for classification of party political manifestos at the quasi-sentence level.

versely, traditional SVM baselines offer reason-
able results, and we achieve state-of-the-art per-
formances when employing BERT.

8 Discussion and Conclusion

Through this work we have been able to make a
number of observations about the validity and re-
liability of the annotations produced and the diffi-
culty of the tasks of labelling both debate motions
and manifestos.

In labelling the manifestos, our annotators
agreed with each other to roughly the same ex-
tent that they agree with the gold labels provided
by the Manifesto Project’s expert annotators. This
level of agreement is also similar to that reported
in Mikhaylov et al. (2008), though not as good as
that of MARPOR12 itself (Lacewell and Werner,
2013).

The task does seem to be transferable to parlia-
mentary debate motions, with our inter-annotator
agreement scores comparable on both domains.
Although automatic labelling with lexical simi-
larity matching is more succesful at the quasi-
sentence level than at the motion level, the anno-
tators do not seem to find the coarser grained task
much easier.

Overall, this is a hard task for humans. How-
ever, despite the issue of annotation reproducibil-
ity, political scientists continue to find these labels
useful—as evidenced by Volkens et al. (2015),
who find 230 articles that use this data in the eight
journals they examine. With comparable reliabilty
(inter-annotator agreement), the labelled motions
could prove equally suitable for many automatic
analysis applications.

Concerning automation of the labeling process,
we can derive three general findings. The first

12Manifesto Research on Political Representation, the re-
search team behind the Manifesto Project.

is that a very simple approach—matching debate
motions to coded manifestos using cosine similar-
ity measurement—appears to produce potentially
useful outputs, particularly at the domain level,
with supervised baselines not necessarily offer-
ing consistently better results (especially the CNN
architectures). The second is that cross-domain
applications (from manifestos to motions) seem
to necessitate a further fine-tuning step, perhaps
due to the very different styles of communication
involved. The third is the significant contribu-
tion that the use of BERT provides our supervised
pipelines, which are able to achieve state-of-the-
art performance on both the motions and mani-
festo quasi-sentences.

The generated dataset of topically labelled mo-
tions along with the trained BERT+CNN classi-
fier can now pave the way for further work at
the intersection of natural language processing and
political science, which can benefit from these
fine-grained policy position annotations: from
analysing the sentiment of the motions to measur-
ing the level of disagreement between members of
the same party, and up to full-blown argumenta-
tion mining of each debate.
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Abstract

Neural Machine Translation (NMT) optimized
by Maximum Likelihood Estimation (MLE)
lacks the guarantee of translation adequacy. To
alleviate this problem, we propose an NMT
approach that heightens the adequacy in ma-
chine translation by transferring the seman-
tic knowledge learned from bilingual sentence
alignment. Specifically, we first design a
discriminator that learns to estimate sentence
aligning score over translation candidates, and
then the learned semantic knowledge is trans-
fered to the NMT model under an adversarial
learning framework. We also propose a gated
self-attention based encoder for sentence em-
bedding. Furthermore, an N -pair training loss
is introduced in our framework to aid the dis-
criminator in better capturing lexical evidence
in translation candidates. Experimental results
show that our proposed method outperforms
baseline NMT models on Chinese-to-English
and English-to-German translation tasks. Fur-
ther analysis also indicates the detailed seman-
tic knowledge transfered from the discrimina-
tor to the NMT model.

1 Introduction

Recently, with the renaissance of deep learn-
ing, end-to-end Neural Machine Translation
(NMT) (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014a; Sutskever et al., 2014; Bahdanau
et al., 2014) has gained remarkable perfor-
mance (Wu et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017). Early NMT solutions are
typically optimized to maximize the likelihood es-
timation (MLE) of each word in the ground truth
translations during the training procedure. How-
ever, such an objective cannot guarantee the suffi-
ciency of the generated translations in the NMT
model, due to the lack of quantitative measure-

∗Corresponding author: Ping Jian

yi zhi maoxiao pa zai cao shang

a little layscat on grass pitch

a small layscat on a straw mat

Source

NMT1

NMT2

dian

Figure 1: Comparison between two Chinese-to-
English translation examples of two independent
NMT systems. Lines between Source and NMTs rep-
resent model generated alignments (each source word
cannot be covered more than once). Words in boxes
are key words and red dotted dashed boxes indicate in-
correct translations. Based on the model generated at-
tention weights, NMT2 covers more source words than
NMT1, which is opposite to human judgments.

ment for the information transformational com-
pleteness from the source side to the target side.

Some existing work alleviates this problem by
directly incorporating coverage or fertility mech-
anisms to an NMT model (Tu et al., 2016; Feng
et al., 2016; Kong et al., 2019). However, the prob-
lem is that attention weights based coverage calcu-
lation for NMT is insensitive and sometimes even
inaccurate to translation errors. Furthermore, it is
unreasonable to consider the coverage of all kinds
of source words equally, since various words con-
tribute differently to sentences in semantics and
syntax. For example, as illustrated in Fig. 1, trans-
lation errors are recorded as positive examples,
and the alignments between function words also
dilute the impact of key words alignments.

In this paper, we address the problem of inade-
quate translation by introducing a novel sentence
alignment constrain under an adversarial training
framework (Goodfellow et al., 2014; Lu et al.,
2017; Yang et al., 2018). Specifically, our ap-
proach contains two sub-models: i) a sentence
alignment oriented discriminator D learns to esti-
mate the alignment score and sort the translation
candidates by mainly considering the weighted
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alignment pairs (Ma, 2006) at a sentence repre-
sentation level; and ii) a standard NMT model G
aims to produce an appropriate translation with the
highest ranking score (assigned by D) in the can-
didate list. To better capture the semantic align-
ment evidence of the input data, we also propose a
novel gated self-attention based encoder for bilin-
gual sentences encoding in discriminatorD. Then,
an N -pair training loss (Sohn, 2016) is introduced
to select appropriate translation results from the
candidates. We also leverage Gumbel-Softmax
(GS) (Jang et al., 2017; Kusner and Hernández-
Lobato, 2016) approximation for G to solve the
problem of discrete samples, making the response
from D to G differentiable.

To sum up, the proposed approach has the fol-
lowing advantages:

• We apply a novel end-to-end NMT adver-
sarial training framework that heightens ad-
equacy in translation. Under the framework,
an NMT model is encouraged to generate
translations that match semantic knowledge
learned by a discriminator for sentence align-
ing, which can be viewed as an instance of
“knowledge transfer”.

• Benefited from the gated self-attention mech-
anism, the proposed encoder learns to focus
on important lexical evidence for sentence
aligning and enhance the contribution of the
key words. This knowledge will be transfered
to G through the proposed framework.

• The N -pair loss (Sohn, 2016; Lu et al.,
2017) encourages samples closed to the gold-
standard one to get higher score. Unlike a bi-
nary classification used in previous work (Yu
et al., 2017; Yang et al., 2018; Wu et al.,
2018), translations that are correct but dif-
ferent from the ground-truth ones will not be
over penalized.

We use one of the state-of-the-art NMT models,
Transformer (Vaswani et al., 2017), as the baseline
model architecture and conduct experiments on
Chinese-to-English and German-to-English trans-
lation tasks. Experimental results show that our
proposed approach achieves significant improve-
ments on both language pairs. We also evalu-
ate the performance of the discriminator on both
sentence alignment and translation candidate re-
ranking tasks, which proves its independence and

transferability. Further analyses show the specific
alignment-oriented knowledge that the discrimi-
nator transfers to the NMT model.

2 Related Work

Most of the state-of-the-art NMT models are opti-
mized by MLE-based objectives (Wu et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017), but
likelihood fails to measure whether the source in-
formation is completely transformed to the target
side. Thus, it cannot handle translation adequacy
problem (Tu et al., 2017).

One way to alleviate these problems is to apply
coverage and fertility to NMT model. Feng et al.
(2016) aim at controlling the fertilities of source
words by appending additional additive terms to
train objectives. Tu et al. (2016) employ coverage
vector or coverage ratio as a lexical-level indicator
to represent whether a source word is translated or
not.

On the other hand, some recent efforts introduce
additional source side constraints and explore du-
ality properties of NMT (He et al., 2016; Cheng
et al., 2016; Xia et al., 2017; Tu et al., 2017).
Cheng et al. (2016) present a semi-supervised ap-
proach to train bidirectional NMT models and re-
construct the monolingual corpora using an auto-
encoder (Socher et al., 2011). Tu et al. (2017) add
a re-constructor to traditional NMT model, which
introduces an auxiliary score to measure the ad-
equacy of translation. Dual learning (He et al.,
2016) and dual supervised learning (Xia et al.,
2017) are also proposed to exploit the probabilis-
tic correlation between dual tasks to regularize the
training process. These previous approaches apply
a reconstruction reward by comparing the source
input and the reconstructed sentence, while we use
alignment score directly to model the discrepancy
between the source and the translation.

GAN (Goodfellow et al., 2014) is another
promising framework to leverage sentence-level
objectives in NMT. Recently, there is some re-
markable work in NMT (Wu et al., 2018; Yang
et al., 2018). The framework comprises of two
sub-models: i) an NMT model aims to produce
sentences which are hard to be discriminated from
the gold-standard sentences; and ii) a discrimina-
tor makes efforts to differentiate the model gener-
ated translations from the ground-truth ones. A
policy gradient method is leveraged to co-train
the NMT model and the discriminator. However,
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those approaches rarely take account of transla-
tion adequacy. Furthermore, the discriminators of
those work refer the target sentence in the corpus
as the single gold-standard regardless the quality
of model generated translations, which will pun-
ish too much to the good model generated trans-
lations. Kong et al. (2019) propose an adequacy-
oriented discriminator which is trained to estimate
the Coverage Difference Ratio (CDR) given the
source and the generated translation. However,
CDR is unable to distinguish translation errors and
it also neglects the importance of diversity be-
tween different words (as the examples shown in
Fig. 1).

Unlike the discriminators in (Wu et al., 2018;
Yang et al., 2018; Kong et al., 2019), our
alignment-oriented discriminator learns a specific
function to measure alignment score between
source and target sentences, which is trained to-
tally independently by the NMT generator. The
proposed discriminator assigns different weights
to words and is sensitive to translation errors. We
also apply N -pair loss for training D to ensure
that D will not punish the translations closed to
the gold-standard overly.

3 Approach

In this section, we describe our approach that can
transfer knowledge from a sentence alignment ori-
ented discriminator D to an NMT model G. Our
approach mainly consists of two sub-models: i)
a discriminator D learns to estimate the alignment
score and sort the translation candidates, and ii) an
NMT model G aims to generate translations with
higher score assigned by D. A sketch of the pro-
posed training framework is shown in Fig. 2: for
each sentence pair (X,Y) sampled from the train-
ing corpus, the NMT model G generates a trans-
lation Ŷ given X, and queries the discriminator D
with Ŷ to get feedback and update itself. In or-
der to obtain more stable training, we also lever-
age a teacher-forcing (Li et al., 2017) step to our
approach.

3.1 NMT Generator

In this paper, we take the Transformer (Vaswani
et al., 2017), one of the popular state-of-the-art
NMT models, as the specific implementation of
the NMT model G. This helps to better illus-
trate the effectiveness of the proposed method.
The Transformer in this paper follows the con-

1: Pre-train a generator G (see section 3.1) and
a discriminator D (see section 3.2), individu-
ally.

2: for number of training iterations do
3: Sample (X,Y+) from training corpus
4: Sample Ŷ∼G(X) with a Gumbel-Softmax

sampler (see section 3.4)
5: Compute loss LG for (X, Ŷ) using D (see

section 3.3)
6: Update G with the learning rate η:

θG ← θG − η5θGLG (1)

7: Teacher-Forcing: update G on (X,Y+)
(see section 3.5)

8: end for

Figure 2: A brief overview of the proposed training
framework. See section 3 for more details.

ventional encoder-decoder framework (Cho et al.,
2014b). Specifically, the encoder contains a stack
of six identical layers. Each layer is consist of two
sub-layers: i) a multi-head self-attention mecha-
nism, and ii) a position-wise fully connected feed-
forward network. A residual connection is applied
around each of the two sub-layers, followed by
layer normalization (Ba et al., 2016). The decoder
is also composed of a stack of six identical lay-
ers. Besides the two sub-layers stated above, a
third sub-layer is inserted in each layer that per-
forms multi-head attention over the output of the
encoder.

Following the base model setups of the Trans-
former (Vaswani et al., 2017), we use 8 atten-
tion heads, 512-dimensional output vectors for
each layer, and 2048-dimensional inner-layer of
the feed-forward network.

3.2 Discriminator

For the discriminator D, we propose a gated
self-attention based sentence encoder to perform
source and target sentence encoding, and then cal-
culate the alignment score using the encodings
pair.
Gated Self-Attention Sentence Encoder. As
depicted in Fig. 3, we opt a shallow network ar-
chitecture: one gated hidden layer and one self-
attention layer as the sentence encoder. This
lightweight encoder mainly captures the lexical
meanings of the sentence. The self-attention
mechanism helps the encoder select more impor-

262



Input One-hot 

Encoded Sequence

Attention Layer

σ

...

...

...

...

      

      

Figure 3: Model architecture of the gated self-
attention sentence encoder. See section 3.2 for more
details.

tant lexical evidences to estimate the alignment
score between two sentences.

Given a one-hot encoded input sequence X and
a word embedding lookup table D ∈ R|V |×d,
where d is the model dimension. The input X
will be represented as a corresponding word em-
bedding matrix E ∈ RTx×d. We apply a gating
mechanism (Dauphin et al., 2017) to compute the
hidden layer H:

H = (UhE + bh)⊗ σ(UgE + bg), (2)

where Uh and Ug ∈ Rd×d, σ(·) is a logistic sig-
moid function and ⊗ is element-wise product be-
tween matrices. Then the self-attention weights W
is computed as:

W = softmax(tanh(UaH)), (3)

where Ua ∈ Rd×d. The output of the gated self-
attention encoder is formulated as:

e = Uo(W ×H) + bo, (4)

where e ∈ Rd, and Uo ∈ Rd×d. We add layer
normalization (Ba et al., 2016) to the output layer.
The model dimension d is set to 512.
Alignment Score and Discriminator Loss. With
the source and target sentence encodings ex and
ey, the alignment score s(X,Y) can be computed
as:

s(X,Y) = e>x ey. (5)

Given the candidate target sentences list Y , the
discriminator produces a distribution over Y and
aims to maximize the log-likelihood of the gold-
standard alignment sentence Y+. Since sentence-
level alignments in automatic extracted corpora
are usually not very precise, we expect the loss
function for training D not to be too strict with
candidates that are closed to the gold-standard
one. Therefore, following Lu et al. (2017),
we apply a metric-learning multi-class N -pair
loss (Sohn, 2016) to our model, which can be de-
fined as:

LD = LN−pair({X,Y+, {Y−n }N−1n=1 })

= log(1 +

N∑

n=1

exp(s(X,Y−
n )−s(X,Y+))),

(6)

where Y+ is alignment target sentence to the
source language X, and Y−n is one of the N −1
unaligned samples.

Compared to cross entropy loss used in previous
work (Yu et al., 2017; Yang et al., 2018; Wu et al.,
2018), the N -pair objective encourages the score
of target sentences which are similar to the given
golden-standard one to be higher than the dissim-
ilar ones. In this way, translations that are correct
but different from the ground truth will not be over
penalized, and thus this can be useful to provide a
reliable signal for the generator.

In later sections, we will analyze the semantic
information learned by the model through some
visualization examples, shown in section 5.1, and
the experimental results show that it achieves suf-
ficient accuracy for scoring the alignment between
source and target sentences.

3.3 Discriminative Losses for Generative
Training

In our framework, G aims to generate a transla-
tion score higher than the golden-standard, under
the premise of encoders and the scoring function
learned by D. Specifically, for each sentence pairs
(X,Y+) in training sets, first, G samples transla-
tion Ŷ given X with greedy searching. Second,
D takes Ŷ as well as (X,Y+) as inputs to com-
pute alignment scores, and then G gets the feed-
back from D. Eq. (7) gives the perceptual loss
that G aims to optimize.

LG = L1−pair({X,Y+, Ŷ})
= log(1 + exp(s(X,Y+) − s(X,Ŷ))).

(7)
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Intuitively, updating generator parameters to
minimize LG can be interpreted as learning to pro-
duce a translation Ŷ that “fools” the discriminator
into believing that this answer should score higher
than the human response Y + under the D’s scor-
ing function.

3.4 Gumbel-Softmax Sampler
The process of sampling a translation Ŷ with G is
not differentiable, since it includes argmax(·) op-
erator to perform one-hot encoding. We leverage
the Gumbel-softmax (Jang et al., 2017) sampler to
solve this problem. Formally, at the decoding step
j, suppose that pj ∈ RVy contains the model out-
put log-probabilities over target vocabulary, and
gj ∈ RVy includes i.i.d samples drawn from the
standard distribution Gumbel(0, 1). A sample yj
is transformed as:

ŷj = softmax((pj + gj)/τ), (8)

where τ is a temperature parameter and is set to
0.5 in our experiments.

3.5 Teacher-forcing Step
Since LG in Eq. (7) mainly considers the discrep-
ancy of alignment and integrity between the model
output and the ground-truth, it rarely inspects
grammar correctness and language fluency. To al-
leviate this problem, following (Li et al., 2017; Lu
et al., 2017), we adopt the similar teacher-forcing
step to our training process.

We perform two different teacher-forcing ob-
jectives for comparison: i) a likelihood objective
OLM and ii) a BLEU score reward (RBLEU), un-
der the training strategies of MLE and MRT (Shen
et al., 2016), respectively.

4 Experiments

4.1 Datasets and Setups1

We evaluate the proposed approach on Chinese-to-
English (Zh-En) and English-to-German (En-De)
translation tasks. For both of the two translation
tasks, we tokenize all corpora with the Moses to-
kenizer2. Sentences longer than 100 words are
discarded, and all the sentences are encoded with
byte-pair encoding (bpe) (Sennrich et al., 2016).

1The demo data and source codes will be re-
leased online at https://github.com/PolarLion/
Sentence-Alignment-Learning

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

Chinese-to-English. For Chinese-to-English
translation, our training data are extracted from
four LDC corpora3. The training set contains to-
tally 1.3M parallel sentence pairs. For prepro-
cessing, the Chinese part for both training and
testing sets is segmented by the LTP Chinese
word segmentor (Che et al., 2010) before applying
bpe (Sennrich et al., 2016) to the corpus. We get
a Chinese vocabulary of about 39K tokens, and an
English vocabulary of about 30K tokens. We use
NIST2005 dataset for validation and NIST2002,
NIST2003, and NIST2004 datasets for testing. In
the following parts of the paper, the Chinese exam-
ples are presented by segmented italic romanized
form, and different Chinese characters are delim-
ited by single quotation marks.

English-to-German. For English-to-German
translation, we conduct experiments on the pub-
licly available corpora WMT’14 En-De. The train-
ing set of En-De task totally contains 4.5M sen-
tence pairs, and we use a shared source-target
vocabulary of about 39K tokens. We use new-
stest2013 as the validation set and report the re-
sults on newstest2014.

Discriminative Corpus Construction. Differ-
ent from parallel sentence pairs for training gen-
erative models, the corpus for training D needs
to provide a candidate translations list for each
source sentence. Therefore, we need to manually
construct the corpus for training D using the orig-
inal parallel corpus. For each source sentence, we
set the size of candidate list to 100. The trans-
lation candidates are preferentially obtained from
the context of the golden standard translation in
the comparable paragraph. If the context sentence
number Nc is less than 99, we will randomly sam-
ple another 99−Nc sentences from the whole rest
target corpus. As for the data format, we follow
most of Das et al. (2019).

Evaluation. As for generative models, follow-
ing Vaswani et al. (2017), we report the result of
a single model obtained by averaging the 5 check-
points around the best model selected on the de-
velopment set. We apply beam search during de-
coding with the beam size of 6. The transla-
tion results in this paper are measured in case-
insensitive BLEU (Papineni et al., 2002) by the

3LDC2005T10, LDC2003E14, LDC2004T08 and
LDC2002E18. Since LDC2003E14 is a document-level
alignment comparable corpus, we use Champollion Tool
Kit (Ma, 2006) to extract parallel sentence pairs from it.
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multi-bleu.perl script4. For the discriminator, the
performance is evaluated on recall@k and mean
rank score.

4.2 Training Details

Pre-train discriminator and NMT model. Dur-
ing the training procedure, we first pre-train the
discriminator and the generator separately for a
warm start. We pre-train the model until the per-
formance of D and G on development set dose
not improve. For training discriminator on all lan-
guage pairs, we use the Adam optimizer with β1 =
0.8, β2 = 0.99 and a base learning rate of 4 ×
10−4. The mini-batch size is 100 and the dropout
rate is set to 0.1. As for the NMT model, we fol-
low the base model of Transformer (Vaswani et al.,
2017) for most of training setups, except the label
smoothing (Szegedy et al., 2016).

Frozen discriminator v.s. adversarial dis-
criminator. We also study the effects of two
training setups of the discriminator: updating D
(adversarial D) or not (frozen D) with the NMT
model. When we perform frozen D, the NMT
model is learned with a combination discrimina-
tive perceptual loss (Lu et al., 2017) and teacher-
forcing loss (Li et al., 2017; Lu et al., 2017). Each
mini-batch contains 30 sentence pairs due to the
limitation of memory size of a single GPU. For the
adversarial discriminator, We alternately update
G and D under the adversarial learning frame-
work (Yang et al., 2018; Wu et al., 2018; Kong
et al., 2019). An adversarial D is to maximize the
score of the human translation Y+ and minimize
the score of the generated translation Ŷ. Then the
training loss for adversarial D can be represented
as: LD = −LG.

4.3 Machine Translation Results

We report the experimental results on machine
translation in this section. Table 1 shows the
BLEU scores of Zh-En and En-De translation
tasks. Our approach achieves an improvement up
to +0.76 BLEU points averagely on Zh-En test-
ing sets and +0.64 BLEU points on En-De test-
ing set. It should be noted that we do not ap-
ply label smoothing (Szegedy et al., 2016) due to
using Gumbel-Softmax approximation, which re-
sults in a decline in En-De translation performance

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

compared to the reported result of BLEU 27.3 in
Vaswani et al. (2017).

We compare two setups of frozen D (Row 3-4)
and adversarial D (Row 5-6) for the discrimina-
tor. Experimental results show that continuing to
update D along with G gains best BLEU score for
the both translation tasks. It means that fine-tuning
D with the model generated data can further im-
prove training quality. We also evaluate two dif-
ferent training objectives for the teacher-forcing
step (Row 3,5 vs Row 4,6) and Row 2 is another
baseline for training only on RBLEU (similar to
MRT (Shen et al., 2016)). We can see from the
results that applying MLE or BLEU reward does
not make much difference. These results indicate
that the proposed method makes up for the short-
comings of MLE training.

4.4 Discriminative Results

The format of the test datasets for discriminator is
similar to the training set described in section 4.1,
where each input corresponds to one hundred can-
didate translations extracted from the document
context. The goal of the discriminator is to rank
the correct translation as high as possible. We
present recall@k and mean rank of the discrimi-
nator on Zh-En and En-De test sets in Table 2. It
shows that for all test sets of both language pairs,
our proposed discriminator performs steadily at
high recall rate of more than 96% on recall@1 and
nearly 100% on recall@5 and recall@10. Both of
the high recall@k and ranking mean closed to 1
indicate that the ground-truth translations are al-
ways assigned to high alignment score.

Empirical and principled studies indicate that
high initial accuracy of binary classification based
discriminator may lead to worse model perfor-
mance for GANs (Salimans et al., 2016; Arjovsky
and Bottou, 2017; Yang et al., 2018). In this pa-
per, G is trained with a specific 1-pair loss defined
on sentence alignment score, instead of Jensen-
Shannon divergence (Arjovsky and Bottou, 2017;
Arjovsky et al., 2017) between two data distribu-
tions, which could avoid the vanishing gradient
problem in GANs. Therefore, the high accuracy of
the proposed discriminator would not make nega-
tive impact on G.

5 Analysis

In this section, we will study characteristics of the
proposed approach and report some detailed ex-
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# Model
Zh-En En-De

NIST2002 NIST2003 NIST2004 Average newstest2014
1 Transformer 41.56 39.95 42.05 41.19 26.52
2 +RBLEU 42.30 40.47 42.46 41.74 26.73
3 + frozen D + OLM 42.51 40.74 42.42 41.89 27.10
4 + frozen D + RBLEU 41.63 40.06 42.16 41.28 26.77
5 + adversarial D +OLM 42.67 40.67 42.51 41.95 27.16
6 + adversarial D +RBLEU 42.75 40.28 42.67 41.90 27.05

Table 1: BLEU scores on Zh-En and En-De translation task. Transformer is the baseline model. “Average” is
the averaged BLEU scores on testing sets. Following Vaswani et al. (2017), we report the result of a single model
obtained by averaging the 5 checkpoints around the best model selected on the development set. See section 4.3
for more details.

Testset R@1 R@5 R@10 Mean
NIST2002 97.04 99.77 99.89 1.06
NIST2003 97.50 99.34 99.67 1.10
NIST2004 97.25 99.94 99.94 1.05

newstest2014 96.60 99.43 99.73 1.12

Table 2: Discriminator performance on Zh-En and
En-De test sets. R@k and Mean are abbreviations for
recall@k score and mean rank score, respectively. See
section 4.4 for more details.

perimental results. We also give a specific transla-
tion example to illustrate how knowledge transfer-
ring improves NMT performance.

5.1 What kind of Knowledge Does D
Transfer to G?

In this paper, we propose a discriminator that di-
rectly learns to measure alignment and then trans-
fers the learned knowledge to an NMT model.
D is designed to capture lexical evidence for
sentence alignment by learning a self-attention
encoder. We give averaged sentence alignment
scores between translations and source inputs on
different model setups in Table 3. Those align-
ment scores are estimated by a pre-trained D. Ta-
ble 3 shows that the output alignment scores of the
proposed approaches are all higher than the base-
line methods, which illustrates thatG can learn the
knowledge on measuring alignment from D under
the proposed training frameworks.

In order to illustrate the lexical-level knowledge
learned by D, we give a visual example in Fig. 4.
It shows self-attention weights of the encoders for
the given source and the target sentence. In the
example, the source sentence is “bao’wei’er 12’ri
yu sha’long ju’xing le hui’tan” and the target sen-
tence is “Powell hold a talk with Sharon on the

Model setups Align
Transformer 11.15

+RBLEU 11.18
+ frozen D + OLM 11.31

+ frozen D + RBLEU 11.38
+ adversarial D +OLM 11.34

+ adversarial D +RBLEU 11.36

Table 3: Averaged sentence alignment scores on Zh-
En NIST2002∼2004 test sets. “Align” means the av-
eraged sentence alignment score estimated by D. The
higher score represents the better alignment quality in
D’s view. See section 5.1 for more details.

12th .” We notice that the source language words
“bao’wei’er”, “12’ri” and “sha’long”, and their
corresponding target language words “Powell”,
“12th” and “Sharon” are assigned higher atten-
tion weights than others. This means that the en-
coders regard those words as important lexical ev-
idences for estimating the alignment score. Those
self-learned attention weights share the same spirit
with the weighted translation pairs in Champol-
lion (Ma, 2006). During the training process, G
leans to treat those important words carefully and
avoid missing them to get higher score with the
judgment of D. This process can be considered as
transferring the semantic knowledge leaned by D
to G.

5.2 Can discriminator distinguish good and
bad translation results?

Since D is trained independently in our frame-
work, it is difficult to estimate whether the dis-
criminator can correctly distinguish the good and
bad translations generated by the NMT model.
Therefore, to verify whether an individual dis-
criminator is suitable for the model generated data,
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Figure 4: Example of the self-attention weights for
the source (lower) and the target (upper) language
encoders. Sentences in the example are selected from
NIST2002 Zh-En test set. All weights in this exam-
ple are scaled by Min-Max scaling method for better
visualization and darker colors represent higher atten-
tion weights. Aligned words are manually connected
by dashed lines. See section 5.1 for more details.

we conduct further experiments on translation re-
ranking task on the baseline Transformer (Vaswani
et al., 2017) model on Zh-En translation. More-
over, in order to obtain more translation candi-
dates, we expand the beam size to 24 and then
re-order the N -best translation candidates by D.
Experimental results are shown in Table 4. We
can observe that the larger beam search size leads
to the worse performance, since the likelihood
score for decoding tends to score short transla-
tions higher than long sentences. Larger search-
ing space also brings more good translation can-
didates, and D re-orders them by alignment score
and gains better BLEU scores than most baseline
setups as shown in Table 4. The above observa-
tion indicates that D can successfully handle the
unseen data generated by NMT models. Previous
work (Wu et al., 2016; Koehn and Knowles, 2017)
introduces length normalization to solve the above
beam search decoding problem, whose results are
also presented in Table 4 for a fair comparison.

5.3 Example Translations

We provide example translations on Zh-En trans-
lation task in Fig. 5. From Fig. 5, we can see that
though the translation results of the baseline model
is correct in syntax, its logic is wrong on account
of missing an important source information of
“went to Hong Kong on Saturday for a visa”. All
the translations generated by our proposed method
do not make this mistake, since it is learned and

Setups NIST02 NIST03 NIST04
beam 6 41.56 39.95 42.05
beam 24 40.72 38.64 41.13

+length penalty 41.93 40.26 42.49
+re-ranking 42.22 40.20 42.56

Table 4: BLEU scores on Zh-En translation re-
ranking task. The “beam N” represents the decoding
beam search size. The “+length penalty” means using
length normalization (Wu et al., 2016) when perform-
ing beam search. The “+re-ranking” represents that the
translation candidates are re-ranked by D. See sec-
tion 5.2 for more details.

transfered from the discriminator where the verb
“went”, nouns ‘Saturday’ and “visa” are important
lexical evidence for estimating alignment score.
We also show a translation re-ranking example,
which gains a similar result to other proposed
methods. An alignment score evaluated by the dis-
criminator and a sentence-level BLEU5 (Papineni
et al., 2002) score are also shown under the corre-
sponding translations. Both the golden reference
and the model generated translations gain higher
alignment score from D, which illustrates the ra-
tionality of discriminator design.

6 Conclusion

In this work, we propose a novel training frame-
work which achieves sentence alignment oriented
knowledge transfer to improve the NMT. We de-
sign a discriminator to measure sentence align-
ment by mainly considering lexical evidence via
a gated self-attention mechanism. Then, a dis-
criminative loss as well as a teacher-forcing ob-
jective is used to make NMT model generate suf-
ficient and fluent translations during training pro-
cedure. Experimental results on different lan-
guage pairs show that our proposed approach out-
performs standard NMT models. Further analy-
sis indicates the proposed discriminator well cap-
tures the weighted lexical relationships among
sentences and successfully transfers the knowl-
edge to the NMT model.

In the future, we would like to make dis-
criminator learn more semantic related knowledge
like dependency, and combine our approach with
other advanced techniques in reinforcement learn-
ing and adversarial learning (Yu et al., 2017; Yang
et al., 2018; Kong et al., 2019).

5Evaluated by Moses (Koehn et al., 2007) sentence-bleu
script.
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Source
chen’jin’de xing’qi’liu fu xiang’gang
qu’de qian’zheng , zuo’tian di jing
fang’wen 10 tian .

Reference

Chen Chin-teh went to Hong Kong on
Saturday for his visa and arrived in
Beijing yesterday for his 10-day visit .

(align: 11.15)

Transformer
Chen Jinde arrived in Beijing yesterday
for a 10-day visit to Hong Kong .

(align: 9.91, BLEU: 28.33)

+frozen D
re-ranking

after receiving a visa in Hong Kong on
Saturday , Chen Jinde arrived in Bei-
jing yesterday for a 10-day visit .

(align: 10.75, BLEU: 39.32)

+frozen D
+OLM

Chen Jinde went to Hong Kong to ob-
tain a visa on Saturday and yesterday
arrived in Beijing for a 10-day visit .

(align: 10.97, BLEU: 29.55)

+frozen D
+RBLEU

Chen Jinde went to Hong Kong on Sat-
urday to obtain a visa , and yesterday
arrived in Beijing for a 10-day visit .

(align: 10.99, BLEU: 37.49)

+adversarial D
+OLM

Chen Jinde went to Hong Kong on Sat-
urday to obtain a visa and yesterday
arrived in Beijing for a 10-day visit .

(align: 10.92, BLEU: 40.19)

+adversarial D
+RBLEU

Chen Jinde went to Hong Kong on Sat-
urday for a visa , and yesterday arrived
in Beijing for a 10-day visit .

(align: 11.01, BLEU: 44.53)

Figure 5: Example translations on the Zh-En trans-
lation task. The example is selected from the
NIST2002 testing set. “Source” and “Reference” are
the source input and one of the four given references.
Words in red bold fonts represent the missing part
of the translation generated by the baseline model. A
alignment score (align) and a sentence-level BLEU are
given below the target sentence. See section 5.3 for
more details.
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Abstract

Training code-switched language models is
difficult due to lack of data and complexity
in the grammatical structure. Linguistic con-
straint theories have been used for decades to
generate artificial code-switching sentences to
cope with this issue. However, this require ex-
ternal word alignments or constituency parsers
that create erroneous results on distant lan-
guages. We propose a sequence-to-sequence
model using a copy mechanism to gener-
ate code-switching data by leveraging paral-
lel monolingual translations from a limited
source of code-switching data. The model
learns how to combine words from parallel
sentences and identifies when to switch one
language to the other. Moreover, it captures
code-switching constraints by attending and
aligning the words in inputs, without requiring
any external knowledge. Based on experimen-
tal results, the language model trained with
the generated sentences achieves state-of-the-
art performance and improves end-to-end au-
tomatic speech recognition.

1 Introduction

Code-switching is a common linguistic phe-
nomenon in multilingual communities, in which
a person begins speaking or writing in one lan-
guage and then switches to another in the same
sentence.1 It is motivated in response to social fac-
tors as a way of communicating in a multicultural
society. In its practice, code-switching varies due
to the traditions, beliefs, and normative values in
the respective communities. Linguists have stud-
ied the code-switching phenomenon and proposed
a number of linguistic theories (Poplack, 1978;
Pfaff, 1979; Poplack, 1980; Belazi et al., 1994).
Code-switching is not produced indiscriminately,

1Code-switching refers to mixing of languages following
the definitions in Poplack (1980). We use “intra-sentential
code-switching" interchangeably with “code-mixing".

but follows syntactic constraints. Many linguists
have formulated various constraints to define a
general rule for code-switching (Poplack, 1978,
1980; Belazi et al., 1994). However, these con-
straints cannot be postulated as a universal rule
for all code-switching scenarios, especially for
languages that are syntactically divergent (Berk-
Seligson, 1986), such as English and Mandarin
since they have word alignments with an inverted
order.

Building a language model (LM) and an auto-
matic speech recognition (ASR) system that can
handle intra-sentential code-switching is known to
be a difficult research challenge. The main rea-
son lies in the unpredictability of code-switching
points in an utterance and data scarcity. Creating
a large-scale code-switching dataset is also very
expensive. Therefore, code-switching data gener-
ation methods to augment existing datasets are a
useful workaround.

Existing methods that apply equivalence con-
straint theory to generate code-switching sen-
tences (Li and Fung, 2012; Pratapa et al., 2018)
may suffer performance issues as they receive er-
roneous results from the word aligner and the part-
of-speech (POS) tagger. Thus, this approach is
not reliable and effective. Recently, Garg et al.
(2018) proposed a SeqGAN-based model to gen-
erate code-switching sentences. Indeed, the model
learns how to generate new synthetic sentences.
However, the distribution of the generated sen-
tences is very different from real code-switching
data, which leads to underperforming results.

To overcome the challenges in the exist-
ing works, we introduce a neural-based code-
switching data generator model using pointer-
generator networks (Pointer-Gen) (See et al.,
2017) to learn code-switching constraints from a
limited source of code-switching data and lever-
age their translations in both languages. Intu-
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itively, the copy mechanism can be formulated as
an end-to-end solution to copy words from parallel
monolingual sentences by aligning and reordering
the word positions to form a grammatical code-
switching sentence. This method solves the two is-
sues in the existing works by removing the depen-
dence on the aligner or tagger, and generating new
sentences with a similar distribution to the orig-
inal dataset. Interestingly, this method can learn
the alignment effectively without a word aligner
or tagger. As an additional advantage, we demon-
strate its interpretability by showing the attention
weights learned by the model that represent the
code-switching constraints. Our contributions are
summarized as follows:

• We propose a language-agnostic method to
generate code-switching sentences using a
pointer-generator network (See et al., 2017)
that learns when to switch and copy words
from parallel sentences, without using exter-
nal word alignments or constituency parsers.
By using the generated data in the language
model training, we achieve the state-of-the-
art performance in perplexity and also im-
prove the end-to-end ASR on an English-
Mandarin code-switching dataset.

• We present an implementation applying the
equivalence constraint theory to languages
that have significantly different grammar
structures, such as English and Mandarin, for
sentence generation. We also show the effec-
tiveness of our neural-based approach in gen-
erating new code-switching sentences com-
pared to the equivalence constraint and Seq-
GAN (Garg et al., 2018).

• We thoroughly analyze our generation results
and further examine how our model identi-
fies code-switching points to show its inter-
pretability.

2 Generating Code-Switching Data

In this section, we describe our proposed model
to generate code-switching sentences using a
pointer-generator network. Then, we briefly list
the assumptions of the equivalence constraint (EC)
theory, and explain our application of EC theory
for sentence generation. We call the dominant lan-
guage the matrix language (L1) and the inserted
language the embedded language (L2), following

the definitions from Myers-Scotton (2001). Let us
define Q = {Q1, ..., QT } as a set of L1 sen-
tences and E = {E1, ..., ET } as a set of L2 sen-
tences with T number of sentences, where each
Qt = {q1,t, ..., qm,t} and Et = {e1,t, ..., en,t} are
sentences with m and n words. E is the corre-
sponding parallel sentences of Q.

2.1 Pointer-Gen
Initially, Pointer-Gen was proposed to learn when
to copy words directly from the input to the output
in text summarization, and they have since been
successfully applied to other natural language pro-
cessing tasks, such as comment generation (Lin
et al., 2019). The Pointer-Gen leverages the infor-
mation from the input to ensure high-quality gen-
eration, especially when the output sequence con-
sists of elements from the input sequence, such as
code-switching sequences.

We propose to use Pointer-Gen by leveraging
parallel monolingual sentences to generate code-
switching sentences. The approach is depicted in
Figure 1. The pointer-generator model is trained
from concatenated sequences of parallel sentences
(Q,E) to generate code-switching sentences, con-
strained by code-switching texts. The words of the
input are fed into the encoder. We use a bidirec-
tional long short-term memory (LSTM), which,
produces hidden state ht in each step t. The de-
coder is a unidirectional LSTM receiving the word
embedding of the previous word. For each decod-
ing step, a generation probability pgen ∈ [0,1] is
calculated, which weights the probability of gen-
erating words from the vocabulary, and copying
words from the source text. pgen is a soft gating
probability to decide whether to generate the next
token from the decoder or to copy the word from
the input instead. The attention distribution at is
a standard attention with general scoring (Luong
et al., 2015). It considers all encoder hidden states
to derive the context vector. The vocabulary distri-
bution Pvoc(w) is calculated by concatenating the
decoder state st and the context vector h∗t :

pgen = σ(wT
h∗h∗t + wT

s st + wT
x xt + bptr), (1)

where wh∗ , ws, and wx are trainable parameters
and bptr is the scalar bias. The vocabulary dis-
tribution Pvoc(w) and the attention distribution at

are weighted and summed to obtain the final dis-
tribution P (w), which is calculated as follows:

P (w) = pgenPvoc(w)+(1−pgen)
∑

i:wi=w

ati. (2)
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pgen

× (1 − )pgen

我 要 去 check
(I 'm going to check) 

Attention

Vocabulary
Distribution

context vector

Attention
Distribution

Final
Distribution 

Codeswitching sentence

i         'm      going       to      check       我         要        去         检         查          <SOS>     我         要         去

RNN
Encoder

× pgen

RNN
Decoder

Parallel sentence  Decoder input 

Figure 1: Pointer-Gen model, which includes an RNN encoder and RNN decoder. The parallel sentence is the
input of the encoder, and in each decoding step, the decoder generates a new token.

this is actually belonged to simplified chinese

这个 其实 是 属于 简体 中⽂

this 是 其实 belonged to simplified chinese

这个 其实 是 belonged to 简体 中⽂
这个 其实 是 belonged to simplified chinese

Permissible switching

Impermissible switching

Figure 2: Example of equivalence constraint (Li and
Fung, 2012). Solid lines show the alignment be-
tween the matrix language (top) and the embedded lan-
guage (bottom). The dotted lines denote impermissible
switching.

We use a beam search to select the N -best code-
switching sentences.

2.2 Equivalence Constraint
Studies on the EC (Poplack, 1980, 2013) show that
code-switching only occurs where it does not vi-
olate the syntactic rules of either language. An
example of a English-Mandarin mixed-language
sentence generation is shown in Figure 2, where
EC theory does not allow the word “其实" to come
after “是" in Chinese, or the word “is" to come af-
ter “actually". Pratapa et al. (2018) apply the EC in
English-Spanish language modeling with a strong
assumption. We are working with English and
Mandarin, which have distinctive grammar struc-
tures (e.g., part-of-speech tags), so applying a con-
stituency parser would give us erroneous results.
Thus, we simplify sentences into a linear struc-
ture, and we allow lexical substitution on non-

crossing alignments between parallel sentences.
Alignments between an L1 sentence Qt and an
L2 sentence Et comprise a source vector with in-
dices ut = {a1, a2, ..., am} ∈ Wm that has a cor-
responding target vector vt = {b1, b2, ..., bm} ∈
Wm, where u is a sorted vector of indices in an
ascending order. The alignment between ai and
bi does not satisfy the constraint if there exists a
pair of aj and bj , where (ai < aj , and bi > bj)
or (ai > aj , and bi < bj). If the switch occurs
at this point, it changes the grammatical order in
both languages; thus, this switch is not acceptable.
During the generation step, we allow any switches
that do not violate the constraint. We propose to
generate synthetic code-switching data by the fol-
lowing steps:

1. Align the L1 sentences Q and L2 sen-
tences E using fast_align2 (Dyer et al.,
2013). We use the mapping from the L1 sen-
tences to the L2 sentences.

2. Permute alignments from step (1) and use
them to generate new sequences by replacing
the phrase in the L1 sentence with the aligned
phrase in the L2 sentence.

3. Evaluate generated sequences from step (2) if
they satisfy the EC theory.

3 End-to-End Code-Switching ASR

To show the effectiveness of our proposed method,
we build a transformer-based end-to-end code-

2The code implementation can be found at
https://github.com/clab/fast_align.
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switching ASR system. The end-to-end ASR
model accepts a spectrogram as the input, instead
of log-Mel filterbank features (Zhou et al., 2018),
and predicts characters. It consists of N layers of
an encoder and decoder. Convolutional layers are
added to learn a universal audio representation and
generate input embedding. We employ multi-head
attention to allow the model to jointly attend to in-
formation from different representation subspaces
at a different position.

For proficiency in recognizing individual lan-
guages, we train a multilingual ASR system
trained from monolingual speech. The idea is
to use it as a pretrained model and transfer the
information while training the model with code-
switching speech. This is an effective method
to initialize the parameters of low-resource ASR
such as code-switching. The catastrophic forget-
ting issue arises when we train one language after
the other. Therefore, we solve the issue by ap-
plying a multi-task learning strategy. We jointly
train speech from both languages by taking the
same number of samples for each language in ev-
ery batch to keep the information of both tasks.

In the inference time, we use beam search, se-
lecting the best sub-sequence scored using the
softmax probability of the characters. We define
P (Y ) as the probability of the sentence. We incor-
porate language model probability plm(Y ) to se-
lect more natural code-switching sequences from
generation candidates. A word count is added to
avoid generating very short sentences. P (Y ) is
calculated as follows:

P (Y ) = αPtrans(Y |X) + βplm(Y ) + γ
√
wc(Y )

(3)
where α is the parameter to control the decod-
ing probability from the probability of characters
from the decoder Ptrans(Y |X), β is the parameter
to control the language model probability plm(Y ),
and γ is the parameter to control the effect of the
word count wc(Y ).

4 Experiments

4.1 Data Preparation

We use speech data from SEAME Phase
II, a conversational English-Mandarin Chinese
code-switching speech corpus that consists of
spontaneously spoken interviews and conversa-
tions (Nanyang Technological University, 2015).
We split the corpus following information

from Winata et al. (2018a). The details are de-
picted in Table 1. We tokenize words using the
Stanford NLP toolkit (Manning et al., 2014). For
monolingual speech datasets, we use HKUST (Liu
et al., 2006), comprising spontaneous Mandarin
Chinese telephone speech recordings, and Com-
mon Voice, an open-accented English dataset col-
lected by Mozilla.3 We split Chinese words into
characters to avoid word boundary issues, simi-
larly to Garg et al. (2018). We generate L1 sen-
tences and L2 sentences by translating the train-
ing set of SEAME Phase II into English and Chi-
nese using the Google NMT system (To enable re-
production of the results, we release the translated
data).4 Then, we use them to generate 270,531
new pieces of code-switching data, which is thrice
the number of the training set. Table 2 shows
the statistics of the new generated sentences. To
calculate the complexity of our real and gener-
ated code-switching corpora, we use the following
measures:

Switch-Point Fraction (SPF) This measure
calculates the number of switch-points in a sen-
tence divided by the total number of word bound-
aries (Pratapa et al., 2018). We define “switch-
point" as a point within the sentence at which the
languages of words on either side are different.

Code Mixing Index (CMI) This measure
counts the number of switches in a corpus (Gam-
bäck and Das, 2014). At the utterance level, it
can be computed by finding the most frequent lan-
guage in the utterance and then counting the fre-
quency of the words belonging to all other lan-
guages present. We compute this metric at the cor-
pus level by averaging the values for all the sen-
tences in a corpus. The computation is shown as
follows:

Cu(x) =
N(x)−max(`i ∈ `{t`i(x)}) + P (x)

N(x)
,

(4)
where N(x) is the number of tokens of utterance
x, t`i is the tokens in language `i, and P (x) is
the number of code-switching points in utterance
x. We compute this metric at the corpus-level by
averaging the values for all sentences.

3The dataset is available at https://voice.mozilla.org/.
4We have attached the translated data in the Supplemen-

tary Materials.
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4.2 LM Training Strategy Comparison
We generate code-switching sentences using three
methods: EC theory, SeqGAN (Garg et al., 2018),
and Pointer-Gen. To find the best way of leverag-
ing the generated data, we compare different train-
ing strategies as follows:

(1) rCS, (2a) EC, (2b) SeqGAN,

(2c) Pointer-Gen, (3a) EC & rCS,

(3b) SeqGAN & rCS, (3c) Pointer-Gen & rCS

(4a) EC→ rCS (4b) SeqGAN→ rCS,

(4c) Pointer-Gen→ rCS

(1) is the baseline, training with real code-
switching data. (2a–2c) train with only augmented
data. (3a–3c) train with the concatenation of aug-
mented data with rCS. (4a–4c) run a two-step
training, first training the model only with aug-
mented data and then fine-tuning with rCS. Our
early hypothesis is that the results from (2a) and
(2b) will not be as good as the baseline, but when
we combine them, they will outperform the base-
line. We expect the result of (2c) to be on par
with (1), since Pointer-Gen learns patterns from
the rCS dataset, and generates sequences with sim-
ilar code-switching points.

4.3 Experimental Setup
In this section, we present the settings we use to
generate code-switching data, and train our lan-
guage model and end-to-end ASR.

Pointer-Gen The pointer-generator model has
500-dimensional hidden states. We use 50k words
as our vocabulary for the source and target. We
optimize the training by Stochastic Gradient De-
scent with an initial learning rate of 1.0 and decay
of 0.5. We generate the three best sequences using
beam search with five beams, and sample 270,531
sentences, thrice the amount of the code-switched
training data.

EC We generate 270,531 sentences, thrice the
amount of the code-switched training data. To
make a fair comparison, we limit the number of
switches to two for each sentence to get a sim-
ilar number of code-switches (SPF and CMI) to
Pointer-Gen.

SeqGAN We implement the SeqGAN model us-
ing a PyTorch implementation5, and use our best

5To implement SeqGAN, we use code from
https://github.com/suragnair/seqGAN.

Train Dev Test
# Speakers 138 8 8

# Duration (hr) 100.58 5.56 5.25
# Utterances 90,177 5,722 4,654

# Tokens 1.2M 65K 60K
CMI 0.18 0.22 0.19
SPF 0.15 0.19 0.17

Table 1: Data statistics of SEAME Phase II. The
dataset is split by speaker ID.

EC SeqGAN Pointer-Gen
# Utterances 270,531 270,531 270,531

# Words 3,040,202 2,981,078 2,922,941
new unigram 13.63% 34.67% 4.67%

new bigram 69.43% 80.33% 46.57%
new trigram 99.73% 141.56% 69.38%

new four-gram 121.04% 182.89% 85.07%
CMI 0.25 0.13 0.25
SPF 0.17 0.2 0.17

Table 2: Statistics of the generated data. The ta-
ble shows the number of utterances and words, code-
switches ratio, and percentage of new n-grams.

trained LM baseline as the generator in SeqGAN.
We sample 270,531 sentences from the generator,
thrice the amount of the code-switched training
data (with a maximum sentence length of 20).

LM In this work, we focus on sentence genera-
tion, so we evaluate our data with the same two-
layer LSTM LM for comparison. It is trained us-
ing a two-layer LSTM with a hidden size of 200
and unrolled for 35 steps. The embedding size is
equal to the LSTM hidden size for weight tying
(Press and Wolf, 2017). We optimize our model
using SGD with an initial learning rate of 20. If
there is no improvement during the evaluation, we
reduce the learning rate by a factor of 0.75. In
each step, we apply a dropout to both the embed-
ding layer and recurrent network. The gradient is
clipped to a maximum of 0.25. We optimize the
validation loss and apply an early stopping pro-
cedure after five iterations without any improve-
ments. In the fine-tuning step of training strategies
(4a–4c), the initial learning rate is set to 1.

End-to-end ASR We convert the inputs into
normalized frame-wise spectrograms from 16-
kHz audio. Our transformer model consists of
two encoder and decoder layers. An Adam op-
timizer and Noam warmup are used for training
with an initial learning rate of 1e-4. The model
has a hidden size of 1024, a key dimension of 64,
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Training Strategy Overall en-zh zh-en en-en zh-zh
valid test valid test valid test valid test valid test

Only real code-switching data
(1) rCS 72.89 65.71 7411.42 7857.75 120.41 130.21 29.31 29.61 244.88 246.71
Only generated data
(2a) EC 115.98 96.54 32865.62 30580.89 107.22 109.10 28.24 28.2 1893.77 1971.68
(2b) SeqGAN 252.86 215.17 33719 37119.9 174.2 187.5 91.07 88 1799.74 1783.71
(2c) Pointer-Gen 72.78 64.67 7055.59 7473.68 119.56 133.39 27.77 27.67 234.16 235.34
Concatenate generated data with real code-switching data
(3a) EC & rCS 70.33 62.43 8955.79 9093.01 130.92 139.06 26.49 26.28 227.57 242.30
(3b) SeqGAN & rCS 77.37 69.58 8477.44 9350.73 134.27 143.41 30.64 30.81 260.89 264.28
(3c) Pointer-Gen & rCS 68.49 61.57 7146.08 7667.82 127.50 139.06 26.75 26.96 218.27 226.60
Pretrain with generated data and fine-tune with real code-switching data
(4a) EC→ rCS 68.46 61.42 8200.78 8517.29 101.15 107.77 25.49 25.78 247.3 258.95
(4b) SeqGAN→ rCS 70.61 64.03 6950.02 7694.2 114.82 122.84 28.5 28.73 236.94 244.62
(4c) Pointer-Gen→ rCS 66.08 59.74 6620.76 7172.42 114.53 127.12 26.36 26.40 216.02 222.49

Table 3: Results of perplexity (PPL) on a valid set and test set for different training strategies. We report the
overall PPL, and code-switching points (en-zh) and (zh-en), as well as the monolingual segments PPL (en-en) and
(zh-zh).
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Figure 3: Results of perplexity (PPL) on different numbers of generated samples. The graph shows that Pointer-
Gen attains a close performance to the real training data, and outperforms SeqGAN and EC.

and a value dimension of 64. The training data
are randomly shuffled every epoch. Our charac-
ter set is the concatenation of English letters, Chi-
nese characters found in the corpus, spaces, and
apostrophes. In the multilingual ASR pretraining,
we train the model for 18 epochs. Since the sizes
of the datasets are different, we over-sample the
smaller dataset. The fine-tuning step takes place
after the pretraining using code-switching data. In
the inference time, we explore the hypothesis us-
ing beam search with eight beams and a batch size
of 1.

4.4 Evaluation Metrics

We employ the following metrics to measure the
performance of our models.

Token-level Perplexity (PPL) For the LM, we
calculate the PPL of characters in Mandarin Chi-
nese and words in English. The reason is that
some Chinese words inside the SEAME corpus
are not well tokenized, and tokenization results are

not consistent. Using characters instead of words
in Chinese can alleviate word boundary issues.
The PPL is calculated by taking the exponential
of the sum of losses. To show the effectiveness
of our approach in calculating the probability of
the switching, we split the perplexity computation
into monolingual segments (en-en) and (zh-zh),
and code-switching segments (en-zh) and (zh-en).

Character Error Rate (CER) For our ASR, we
compute the overall CER and also show the indi-
vidual CERs for Mandarin Chinese (zh) and En-
glish (en). The metric calculates the distance of
two sequences as the Levenshtein Distance.

5 Results & Discussion

LM In Table 3, we can see the perplexities of
the test set evaluated on different training strate-
gies. Pointer-Gen consistently performs better
than state-of-the-art models such as EC and Se-
qGAN. Comparing the results of models trained
using only generated samples, (2a-2b) leads to
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Figure 4: The visualization of pointer-generator attention weights on input words in each time-step during the
inference time. The y-axis indicates the generated sequence, and the x-axis indicates the word input. In this figure,
we show the code-switching points when our model attends to words in the L1 and L2 sentences: left: (“no",“没
有") and (“then",“然后"), right: (“we",“我们"), (“share", “一起") and (“room",“房间").

the undesirable results that are also mentioned
by Pratapa et al. (2018), but it does not apply to
Pointer-Gen (2c). We can achieve a similar re-
sults with the model trained using only real code-
switching data, rCS. This demonstrates the qual-
ity of our data generated using Pointer-Gen. In
general, combining any generated samples with
real code-switching data improves the language
model performance for both code-switching seg-
ments and monolingual segments. Applying con-
catenation is less effective than the two-step train-
ing strategy. Moreover, applying the two-step
training strategy achieves the state-of-the-art per-
formance.

As shown in Table 2, we generate new n-grams
including code-switching phrases. This leads us
to a more robust model, trained with both gener-
ated data and real code-switching data. We can
see clearly that Pointer-Gen-generated samples
have a distribution more similar to the real code-
switching data compared with SeqGAN, which
shows the advantage of our proposed method.

Effect of Data Size To understand the impor-
tance of data size, we train our model with dif-
ferent amounts of generated data. Figure 3 shows
the PPL of the models with different amounts
of generated data. An interesting finding is that
our model trained with only 78K samples of
Pointer-Gen data (same number of samples as
rCS) achieves a similar PPL to the model trained
with only rCS, while SeqGAN and EC have a sig-
nificantly higher PPL. We can also see that 10K
samples of Pointer-Gen data is as good as 270K
samples of EC data. In general, the number of
samples is positively correlated with the improve-
ment in performance.

Model Overall en zh
Baseline 34.40% 41.79% 35.94%
+ Pre-training 32.76% 40.06% 32.44%

+ LM (rCS) 32.25% 39.45% 31.90%
+ LM (Pointer-Gen→ rCS) 31.07% 38.39% 30.85%

Table 4: ASR evaluation, showing the performance
on all sequences (Overall), English segments (en), and
Mandarin Chinese segments (zh).

ASR Evaluation We evaluate our proposed sen-
tence generation method on an end-to-end ASR
system. Table 4 shows the CER of our ASR sys-
tems, as well as the individual CER on each lan-
guage. Based on the experimental results, pre-
training is able to reduce the error rate by 1.64%,
as it corrects the spelling mistakes in the predic-
tion. After we add LM (rCS) to the decoding step,
the error rate can be reduced to 32.25%. Finally,
we replace the LM with LM (Pointer-Gen→ rCS),
and it further decreases the error rate by 1.18%.

Model Interpretability We can interpret a
Pointer-Gen model by extracting its attention ma-
trices and then analyzing the activation scores. We
show the visualization of the attention weights
in Figure 4. The square in the heatmap corre-
sponds to the attention score of an input word.
In each time-step, the attention scores are used
to select words to be generated. As we can ob-
serve in the figure, in some cases, our model at-
tends to words that are translations of each other,
for example, the words (“no",“没有"), (“then",“然
后") , (“we",“我们"), (“share", “一起"), and
(“room",“房间"). This indicates the model can
identify code-switching points, word alignments,
and translations without being given any explicit
information.
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rCS Pointer-Gen
POS tags ratio POS tags ratio examples

English
NN

(noun)
56.16%

NN
(noun)

55.45%
那个 consumer是不
(that consumer is not)

RB
(adverb)

10.34%
RB

(adverb)
10.14%

okay so其实
(okay so its real)

JJ
(adjective)

7.04%
JJ

(adjective)
7.16%

我很 jealous的每次
(i am very jealous every time)

VB
(verb)

5.88%
VB

(verb)
5.89%

compared这个
(compared to this)

Chinese
VV

(other verbs)
23.77%

VV
(other verbs)

23.72%
讲的要用用用 microsoft word
(i want to use microsoft word)

M
(measure word)

16.83%
M

(measure word)
16.49%

我们有这个个个 god of war
(we have this god of war)

DEG
(associative)

9.12%
DEG

(associative)
9.13%

我们的的的 result
(our result)

NN
(common noun)

9.08%
NN

(common noun)
8.93%

我应该不会讲话话话 because intimidated by another
(i shouldn’t talk because intimidated by another)

Table 5: The most common English and Mandarin Chinese part-of-speech tags that trigger code-switching. We
report the frequency ratio from Pointer-Gen-generated sentences compared to the real code-switching data. We
also provide an example for each POS tag.

Code-Switching Patterns Table 5 shows the
most common English and Mandarin Chinese
POS tags that trigger code-switching. The distri-
bution of word triggers in the Pointer-Gen data are
similar to the real code-switching data, indicating
our model’s ability to learn similar code-switching
points. Nouns are the most frequent English word
triggers. They are used to construct an optimal in-
teraction by using cognate words and to avoid con-
fusion. Also, English adverbs such as “then" and
“so" are phrase or sentence connectors between
two language phrases for intra-sentential and inter-
sentential code-switching. On the other hand, Chi-
nese transitional words such as the measure word
“个" or associative word “的" are frequently used
as inter-lingual word associations.

6 Related Work

Code-switching language modeling research has
been focused on building a model that handles
mixed-language sentences and on generating syn-
thetic data to solve the data scarcity issue. The first
statistical approach using a linguistic theory was
introduced by Li and Fung (2012), who adapted
the EC on monolingual sentence pairs during the
decoding step of an ASR system. Ying and
Fung (2014) implemented a functional-head con-
straint lattice parser with a weighted finite-state
transducer to reduce the search space on a code-
switching ASR system. Then, Adel et al. (2013a)

extended recurrent neural networks (RNNs) by
adding POS information to the input layer and
a factorized output layer with a language identi-
fier. The factorized RNNs were also combined
with an n-gram backoff model using linear inter-
polation (Adel et al., 2013b), and syntactic and se-
mantic features were added to them (Adel et al.,
2015). Baheti et al. (2017) adapted an effective
curriculum learning by training a network with
monolingual corpora of two languages, and sub-
sequently trained on code-switched data. A fur-
ther investigation of EC and curriculum learning
showed an improvement in English-Spanish lan-
guage modeling (Pratapa et al., 2018), and a multi-
task learning approach was introduced to train the
syntax representation of languages by constrain-
ing the language generator (Winata et al., 2018a).
Garg et al. (2018) proposed to use SeqGAN (Yu
et al., 2017) for generating new mixed-language
sequences. Winata et al. (2018b) leveraged char-
acter representations to address out-of-vocabulary
words in the code-switching named entity recog-
nition. Finally, Winata et al. (2019) proposed a
method to represent code-switching sentence us-
ing language-agnostic meta-representations.

7 Conclusion

We propose a novel method for generating syn-
thetic code-switching sentences using Pointer-Gen
by learning how to copy words from parallel cor-
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pora. Our model can learn code-switching points
by attending to input words and aligning the paral-
lel words, without requiring any word alignments
or constituency parsers. More importantly, it can
be effectively used for languages that are syntacti-
cally different, such as English and Mandarin Chi-
nese. Our language model trained using outper-
forms equivalence constraint theory-based mod-
els. We also show that the learned language model
can be used to improve the performance of an end-
to-end automatic speech recognition system.

Acknowledgments

This work has been partially funded by
ITF/319/16FP and MRP/055/18 of the Inno-
vation Technology Commission, the Hong Kong
SAR Government, and School of Engineering
Ph.D. Fellowship Award, the Hong Kong Uni-
versity of Science and Technology, and RDC
1718050-0 of EMOS.AI. We sincerely thank the
three anonymous reviewers for their insightful
comments on our paper.

References

Heike Adel, Ngoc Thang Vu, Katrin Kirchhoff, Do-
minic Telaar, and Tanja Schultz. 2015. Syntactic
and semantic features for code-switching factored
language models. IEEE Transactions on Audio,
Speech, and Language Processing, 23(3):431–440.

Heike Adel, Ngoc Thang Vu, Franziska Kraus, Tim
Schlippe, Haizhou Li, and Tanja Schultz. 2013a.
Recurrent neural network language modeling for
code switching conversational speech. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 8411–
8415. IEEE.

Heike Adel, Ngoc Thang Vu, and Tanja Schultz. 2013b.
Combination of recurrent neural networks and fac-
tored language models for code-switching language
modeling. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 206–211.

Ashutosh Baheti, Sunayana Sitaram, Monojit Choud-
hury, and Kalika Bali. 2017. Curriculum design for
code-switching: Experiments with language iden-
tification and language modeling with deep neural
networks. Proceedings of ICON, pages 65–74.

Hedi M Belazi, Edward J Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar the-
ory: The functional head constraint. Linguistic in-
quiry, pages 221–237.

Susan Berk-Seligson. 1986. Linguistic constraints on
intrasentential code-switching: A study of span-
ish/hebrew bilingualism. Language in society,
15(3):313–348.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648. Associa-
tion for Computational Linguistics.

Björn Gambäck and Amitava Das. 2014. On measuring
the complexity of code-mixing. In Proceedings of
the 11th International Conference on Natural Lan-
guage Processing, Goa, India, pages 1–7. Citeseer.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
rnns and same-source pretraining. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3078–3083.

Ying Li and Pascale Fung. 2012. Code-switch lan-
guage model with inversion constraints for mixed
language speech recognition. Proceedings of COL-
ING 2012, pages 1671–1680.

Zhaojiang Lin, Genta Indra Winata, and Pascale Fung.
2019. Learning comment generation by leveraging
user-generated data. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7225–7229.
IEEE.

Yi Liu, Pascale Fung, Yongsheng Yang, Christopher
Cieri, Shudong Huang, and David Graff. 2006.
Hkust/mts: A very large scale mandarin telephone
speech corpus. In Chinese Spoken Language Pro-
cessing, pages 724–735. Springer.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Carol Myers-Scotton. 2001. The matrix language
frame model: Development and responses. Trends
in Linguistics Studies and Monographs, 126:23–58.

Universiti Sains Malaysia Nanyang Technological Uni-
versity. 2015. Mandarin-english code-switching in
south-east asia ldc2015s04. web download. philadel-
phia: Linguistic data consortium.

Carol W Pfaff. 1979. Constraints on language mix-
ing: intrasentential code-switching and borrowing in
spanish/english. Language, pages 291–318.

279



Shana Poplack. 1978. Syntactic structure and social
function of code-switching, volume 2. Centro de
Estudios Puertorriqueños,[City University of New
York].

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espanol: toward a typology
of code-switching1. Linguistics, 18(7-8):581–618.

Shana Poplack. 2013. “sometimes i’ll start a sentence
in spanish y termino en español”: Toward a typology
of code-switching. Linguistics, 51(Jubilee):11–14.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1543–1553.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, volume 2, pages 157–163.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Genta Indra Winata, Zhaojiang Lin, and Pascale Fung.
2019. Learning multilingual meta-embeddings for
code-switching named entity recognition. In Pro-
ceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 181–
186.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2018a. Code-switching
language modeling using syntax-aware multi-task
learning. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 62–67. Association for Computa-
tional Linguistics.

Genta Indra Winata, Chien-Sheng Wu, Andrea
Madotto, and Pascale Fung. 2018b. Bilingual char-
acter representation for efficiently addressing out-
of-vocabulary words in code-switching named entity
recognition. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 110–114.

LI Ying and Pascale Fung. 2014. Language model-
ing with functional head constraint for code switch-
ing speech recognition. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 907–916.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Shiyu Zhou, Linhao Dong, Shuang Xu, and Bo Xu.
2018. Syllable-based sequence-to-sequence speech
recognition with the transformer in mandarin chi-
nese. In Interspeech.

280



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 281–290
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

Unsupervised Neural Machine Translation with Future Rewarding

Xiangpeng Wei1,2, Yue Hu1,2∗, Luxi Xing1,2, Li Gao3

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3Platform & Content Group, Tencent, Beijing, China
{weixiangpeng, huyue, xingluxi}@iie.ac.cn

leolgao@tencent.com

Abstract

In this paper, we alleviate the local optimality
of back-translation by learning a policy (takes
the form of an encoder-decoder and is defined
by its parameters) with future rewarding under
the reinforcement learning framework, which
aims to optimize the global word predictions
for unsupervised neural machine translation.
To this end, we design a novel reward function
to characterize high-quality translations from
two aspects: n-gram matching and semantic
adequacy. The n-gram matching is defined
as an alternative for the discrete BLEU met-
ric, and the semantic adequacy is used to mea-
sure the adequacy of conveying the meaning
of the source sentence to the target. During
training, our model strives for earning higher
rewards by learning to produce grammatically
more accurate and semantically more ade-
quate translations. Besides, a variational infer-
ence network (VIN) is proposed to constrain
the corresponding sentences in two languages
have the same or similar latent semantic code.
On the widely used WMT’14 English-French,
WMT’16 English-German and NIST Chinese-
to-English benchmarks, our models respec-
tively obtain 27.59/27.15, 19.65/23.42 and
22.40 BLEU points without using any labeled
data, demonstrating consistent improvements
over previous unsupervised NMT models.

1 Introduction

Neural Machine Translation (Sutskever et al.,
2014; Bahdanau et al., 2015) directly models
the entire translation process through training an
encoder-decoder model that has achieved remark-
able performance (Wu et al., 2016; Gehring et al.,
2017; Vaswani et al., 2017) when provided with
massive amounts of parallel corpora. However, the
lack of large-scale parallel data is a serious prob-
lem for the vast majority of language pairs.

∗Corresponding Author.

As a result, several works have recently tried to
get rid of the dependence on parallel corpora us-
ing unsupervised setting, in which the NMT model
only has access to two independent monolingual
corpora with one for each language (Lample et al.,
2018a; Artetxe et al., 2018b; Yang et al., 2018).
Among these works, the encoder and decoder act
as a standard auto-encoder (AE) that are trained to
reconstruct the inputs from their noised versions.
Due to the lack of cross-language signals, unsu-
pervised NMT usually requires pseudo parallel
data generated with the back-translation method
for achieving the final goal of translating between
source and target languages.

Back-translation typically uses beam
search (Sennrich et al., 2016a) or just greedy
search (Lample et al., 2018a,b) to generate
synthetic sentences. Both are approximate al-
gorithms to identify the maximum a posteriori
(MAP) output, i.e. the sentence with the highest
estimated probability given an input. Although
back-translation with MAP prediction has been
proved to be successful, it suffers from several
apparent issues when trained with maximum
likelihood estimation (MLE) only, including ex-
posure bias and loss-evaluation mismatch. Thus,
this method often fails to produce the optimal
synthetic sentences for the subsequent training.

In this paper, we address the problem men-
tioned above with future rewarding for unsuper-
vised NMT. The basic idea is to model the future
direction of a translation and optimize the global
word predictions under the policy gradient rein-
forcement learning framework. More concretely,
we sample N translations via the policy for each
input sentence and build a new objective func-
tion by combining the cross-entropy loss used in
prior works with sequence-level rewards from pol-
icy gradient reinforcement learning. We consider
the sequence-level reward from two aspects: 1) n-
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gram matching, which is the precision or recall
of all sub-sequences of 1, 2, 3 and 4 tokens in
generated sequence and is responsible for mea-
suring the accuracy of surface word predictions;
2) semantic adequacy, which is the similarity be-
tween the underlying semantic representations of
the generated translation and the input sentence.
These two aspects of rewards are inspired by the
general criteria of what properties a high-quality
translation should have and are complementary to
each other. Additionally, a variational inference
network (VIN) is proposed to model the under-
lying semantics of monolingual sentences explic-
itly. It is used to map the source and target lan-
guages into a shared semantic space during auto-
encoding, as well as constrain the sentences and
their translated counterparts have the same or sim-
ilar semantic code during cross-language training.

The major contributions of this paper can be
summarized as follows:

• We propose a novel learning paradigm for un-
supervised NMT that models future rewards
to optimize the global word predictions via
policy gradient reinforcement learning. To
enforce the underlying semantic space, we in-
troduce a VIN into our model.

• We introduce an effective reward function
that jointly accounts for the n-gram match-
ing and the semantic adequacy of generated
translations.

• We conduct extensive experiments on
English-French, English-German and NIST
Chinese-to-English translation tasks. Ex-
perimental results show that the proposed
approach achieves significant improvements
across different language pairs.

2 Unsupervised Neural Machine
Translation

In this section, we first describe the composition of
the introduced model and then give details of the
newly proposed unsupervised training method.

2.1 Model Composition
The introduced translation model consists of six
components: including two encoders with shar-
ing last few layers, two completely independent
decoders with one for each language, and two
newly introduced VINs with one for each lan-
guage. For the encoders and decoders, we follow

Figure 1: Illustration of Variational Denosing Auto-
Encoding. The newly introduced VIN is highlighted in
red. Two aspects of losses are respectively abbreviated
as Ll

z and Ll
rec.

the recently emerged Transformer (Vaswani et al.,
2017). Specifically, each encoder is composed of
a stack of four identical layers, and each layer con-
sists of a multi-head self-attention sub-layer and a
fully connected feed-forward sub-layer. The en-
coders of the source and target languages are re-
spectively parameterized as Θenc

src and Θenc
tgt , and

the encoding operation is denoted as e(xl; Θenc
l ),

xl is the input sequence of word embeddings,
l ∈ {src, tgt}. The decoders are also composed
of four identical layers. In addition to the two sub-
layers in each encoder layer, the decoder inserts a
third sub-layer, which performs multi-head atten-
tion over the output of the encoder stack, the de-
tails we refer the reader to (Vaswani et al., 2017).
Similar to encoders, we denote source decoder as
Θdec

src, target decoder as Θdec
tgt , and decoding oper-

ation as d(xl; Θdec
l ), l ∈ {src, tgt}. For VINs,

each of them is composed of a standard Gaussian
distributionN (0,1) as the prior, and a neural pos-
terior that is implemented as feed-forward neural
network and parameterized by ψl, l ∈ {src, tgt}.

In this work, the entire model is trained in an un-
supervised manner by optimizing two objectives:
1) variational denoising auto-encoding; 2) cross-
language training with future rewarding.

2.2 Variational Denoising Auto-Encoding

Firstly, two auto-encoders are respectively trained
to learn to reconstruct their inputs. In this form,
each encoder should learn to compose the input
sentence of its corresponding language, and each
decoder is expected to learn to recover the original
input sentence from this composition. However,
without any constraint, the auto-encoder would
make very literal word-by-word copies, without
capturing any internal structure of the input sen-
tence involved. To address this issue, prior works
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often adapt the same strategy as Denosing Auto-
Encoding (DAE) (Vincent et al., 2008), and add
some noise to the input sentences (Hill et al.,
2016). As shown in Figure 1, we augment the
DAE with a variational inference network (VIN)
to model underlying semantics of monolingual
sentences explicitly, which assumes that there ex-
ists a latent variable z from this semantic space.
And this variable, together with the noised input
sentence, guides the decoding process. With this
assumption, we define the objective function of re-
construction as follow:

Llrec = logPΘl→l
(xl|z, C(xl)) (1)

where Θl→l = Θenc
l ◦Θdec

l ◦ψl represents the com-
bination of Θenc

l , Θdec
l and ψl, l ∈ {src, tgt}. C

denotes a stochastic noise model, in which we ap-
ply the same method as in (Lample et al., 2018a).

The continuous latent variable z, acts as the un-
derlying semantics here, is approximated by a neu-
ral posterior inference network qψl

(z|xl). Fol-
lowing (Kingma and Welling, 2014; Kingma et al.,
2014), the posterior approximation is regarded as a
diagonal Gaussian N (µ, diag(σ2)), and its mean
µ and variance σ2 are parameterized with deep
neural networks. We also reparameterize z as a
function of µ and σ (i.e., z = µ + σ � ε, ε is
a standard Gaussian variable that plays a role of
introducing noises) rather than using the standard
sampling method. We aim to map source and tar-
get languages into a shared semantic space and use
the following objective function for VINs:

Llz = −KL(qψl
(z|xl)||N (0,1)) (2)

where l ∈ {src, tgt}. KL(Q||P ) is the Kullback-
Leibler divergence between Q and P .

We finally incorporate the auto-encoder and the
VIN into an end-to-end neural network, and the
overall training objective of auto-encoding is to
minimize the following loss function:

Llae = −(Llz + Llrec) (3)

2.3 Cross-language Training with Future
Rewarding

In spite of the auto-encoding, the second objective
of unsupervised NMT is to constrain the model to
be able to map an input sentence from the source
(target) language to the target (source) language.

Due to the lack of alignment information be-
tween two independent monolingual corpora, the

back-translation (Sennrich et al., 2016a) method
is used to synthetise a pseudo parallel corpus for
cross-language training. More concretely, given
an input sentence in one language, which can be
firstly translated into the other language (i.e. use
the corresponding encoder and the decoder of the
other language) by applying the model in infer-
ence mode with greedy decoding. And then, the
model is trained to reconstruct the original sen-
tence from this translation. The most widely used
method in previous works to train the model for
sequence generation, called maximum likelihood
estimation (MLE for short), it assumes that the
ground-truth is provided at each step during train-
ing. The objective of MLE is defined as the maxi-
mization of the following log-likelihood:

Ll1mle = logPΘl2→l1
(xl1 |zp, x̃l2) (4)

where Θl2→l1 = Θenc
l2
◦ Θdec

l1
◦ ψl2 represents

the combination of Θenc
l2

, Θdec
l1

and ψl2 . zp is ap-
proximated by the introduced VIN (i.e., reparam-
eterized from the Gaussian qψl2

(zp|x̃l2)). x̃l2 =

d(e(xl1 ; Θenc
l1

); Θdec
l2

) is obtained by greedy de-
coding in inference mode (l1 = src, l2 = tgt or
l1 = tgt, l2 = src).

2.3.1 Future Rewarding
Unfortunately, maximizing Ll1mle does not always
produce the best results on discrete evaluation
metrics such as BLEU (Papineni et al., 2002), as
the accumulation of errors caused by exposure
bias as well as the inconsistency between train-
ing and testing measurements lead to the models
tend to be short-sighted. We bridge the discrep-
ancy between training and testing modes caused
by MLE through learning a policy to model future
rewards, which can directly optimize the global
word predictions and is made possible with rein-
forcement learning, as illustrated in Figure 2. To
reduce the variance of the model, we use the self-
critical policy gradient learning algorithm (Rennie
et al., 2017).

For self-critical policy gradient learning, we
produce two separate output sequences at each
training iteration: x̂, the sampled translation,
which is obtained by sampling from the final out-
put probability distribution, and x̂g, the baseline
output, obtained by performing a greedy search.
Thus, the objective function of cross-language
training can be redefined as the expected advan-
tages of the sampled sequence over the baseline
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Figure 2: Illustration of the proposed method for cross-language training with future rewarding. Three aspects
of losses are respectively abbreviated as Ll1

z′ , Ll1
mle and Ll1

rl. And Ll1
z′ is an auxiliary function that constrains the

sentences and their translated counterparts in other language have the same or similar semantic codes.

sequence:

Ll1rl =EPΘl2→l1
(x̂l1
|zp,x̃l2

)[r(x̂l1)− r(x̂g
l1

)]

=logPΘl2→l1
(x̂l1 |zp, x̃l2)× [r(x̂l1)− r(x̂g

l1
)]

(5)

where a terminal reward r is observed after the
generation reaches the end of each sentence. It
is worth noting that considering a baseline reward
into training objective can reduce the variance of
the model. And we can see that maximizing Lrl
is equivalent to maximizing the conditional like-
lihood of the sampled sequence x̂ if it obtains a
higher reward than the baseline x̂g, thus increas-
ing the expected reward of our model.

2.3.2 Reward
r in Equation 5 denotes the sequence-level reward
that evaluates the quality of generated translations.
In this subsection, we discuss two major factors
that contribute to the success of a translation, that
is, n-gram matching and semantic adequacy, and
describe how to approximate these factors through
computable reward functions.

N-gram matching For a translation generated
by a NMT model, we need to measure the accu-
racy of surface word predictions. For that purpose,
the BLEU (Papineni et al., 2002) score is often
utilized in previous works. However, the BLEU
score has some undesirable properties when used
for single sentences, as it was designed to be a cor-
pus measure. Thus, we apply the smoothed ver-
sion of GLEU (Wu et al., 2016) as the reward for
measuring n-gram precision or recall. More con-
cretely, given a generated translation x̂l1 in one
language and the ground-truth reference xl1 , we
record all sub-sequences of 1, 2, 3 and 4 tokens in
x̂l1 and xl1 , and start all n-gram counts from 1 in-
stead of 0. Then we compute a recallRgleu, which
is the ratio of the number of matching n-grams to

the number of total n-grams in xl1 (ground-truth),
and a precision Pgleu, which is the ratio of the
number of matching n-grams to the number of to-
tal n-grams in x̂l1 (generated output). Finally, the
reward of the generated translation x̂l1 on n-gram
matching is defined as:

r1(x̂l1) = min{Rgleu, Pgleu} (6)

where r1 ranges from zero to one and it is sym-
metrical when switching x̂ and x.

Semantic adequacy We want the model can ad-
equately convey the meaning of the source sen-
tence to the target as much as possible. Thus, we
introduce another crucial reward function that is
used to measure the semantic adequacy of the gen-
erated translations. More concretely, for a gener-
ated translation x̂l1 in one language, we compute
the representation of x̂l1 as:

ei = TFIDF(wi), wi ∈ x̂l1

wi = ei/Sum(e1, e2, ..., eTx̂l1
)

cx̂l1
=

Tx̂l1∑

i=1

wix̂
i
l1

(7)

Identically, for the corresponding input sen-
tence in another language, its representation cx̃l2

can be extracted from the embedding matrix x̃l2 .
As the source and target word embeddings are of-
ten mapped to a shared-latent space in unsuper-
vised NMT, we therefore can directly use the fol-
lowing cosine similarity as the reward for semantic
adequacy:

r2(x̂l1) =
(cx̂l1

, cx̃l2
)

‖cx̂l1
‖ · ‖cx̃l2

‖ (8)

where (, ) indicates the dot product operation.
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The final reward for a translation x̂l1 is a linear
combination of the rewards discussed above:

r(x̂l1) = r1(x̂l1) + r2(x̂l1) (9)

where r1(x̂l1) and r2(x̂l1) complement to each
other and work jointly to guide the learning of our
model. Note that the combination of these two as-
pects of rewards helps because it can prevent the
cases that the generated translation with high n-
gram matching but low semantic adequacy to have
relatively high rewards, and vice versa.

2.3.3 Overall Objective Function
In addition to the aforementioned MLE objective
function (Eq. 4) and the RL objective function
(Eq. 5), there is an auxiliary function that con-
strains the sentences and their translated counter-
parts have the same or similar semantic code and
is defined as:

Ll1
z′

= −KL(qψl1
(zq|xl1)||qψl2

(zp|x̃l2)) (10)

Finally, the overall training objective of cross-
language training is to minimize the following loss
function with hyperparameters η:

Ll1cl = −((1− η)(Ll1mle + Ll1
z′

) + ηLl1rl) (11)

where η is a scaling factor. In the beginning of
the training η = 0, while as we move on with the
training we can increase the η to slowly reduce the
effect of MLE loss. And η is updated as follows:

η = min(0.8,max(0.0,
steps− ns
ne − ns

)) (12)

where steps is the global steps that the model has
been updated, ns and ne are the start and end steps
for increasing η respectively.

2.4 Training Procedure
There are two stages in the proposed unsupervised
training. In the first stage, we pre-train the pro-
posed model with denoising auto-encoding and
cross-language training, until no improvement is
achieved on the development set. This ensures
that the model starts with a much better policy
than random because now the model can focus on
the good part of the search space. In the second
state, we use an annealing schedule to teach the
model to produce stable sequences gradually. That
is, after the initial pre-training steps, we continue
training the model with future rewarding. During

each iteration, we perform one batch of denoising
auto-encoding and cross-language training for the
source as well as target languages alternately.

For model selection, we randomly extract 3000
source and target sentences to form a development
set. Following (Lample et al., 2018a), we trans-
late the source sentences to the target language and
then convert the resulting sentences back to the
source language. The quality of the model is then
evaluated by computing the BLEU score over the
original inputs and their reconstructions via this
two-step translation process. The performance is
finally averaged over two directions, and the se-
lected model is the one with the highest score.

3 Experiments

We mainly evaluate the proposed approach on the
widely used English-German, English-French and
NIST Chinese-to-English1 translation tasks.

3.1 Datasets

For English-French and English-German, we use
30M sentences from the WMT monolingual News
Crawl datasets from years 2007 through 2017.
We use the publicly available implementation of
Moses2 scripts for tokenization. Besides, we use a
shared vocabulary for source and target languages
with 60K subword tokens based on byte-pair en-
coding (Sennrich et al., 2016b). We remove sen-
tences longer than 50 subword-tokens. Experi-
mental results are reported on newstest2014 for
English-French translation and newstest2016 for
English-German translation. We adopt the same
method as in (Lample et al., 2018b) to obtain
cross-lingual embeddings.

For NIST Chinese-to-English translation, our
training data consists of 1.6M sentence pairs ran-
domly extracted from LDC corpora3, which has
been widely utilized by previous works. Simi-
lar to (Yang et al., 2018), we build the monolin-
gual dataset by randomly shuffling the Chinese
and English sentences respectively since the data
set is not big enough. We set the vocabulary size
to 30K for both Chinese and English. The av-
erage BLEU score over NIST02∼06 is reported

1The reason that we do not conduct experiments on
English-to-Chinese translation is that we do not get public
test sets for English-to-Chinese.

2http://www.statmt.org/moses/
3LDC2002E18, LDC2003E07, LDC2003E14, the

Hansards portion of LDC2004T07, LDC2004T08, and
LDC2005T06
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en→fr fr→en en→de de→en zh→en
Existing Unsupervised NMT

Artetxe et al. (2018b) 15.13 15.56 - - -
Lample et al. (2018a) 15.05 14.31 9.64 13.33 -
Yang et al. (2018) 16.97 15.58 10.86 14.62 14.52
Lample et al. (2018b), NMT 25.14 24.18 17.16 21.00 -
Wu et al. (2019) 27.56 26.90 19.55 23.29 -
Song et al. (2019) 27.41 27.09 18.21 23.37 -

This work
MLE 25.47 24.51 17.04 21.13 18.26
(+Future Rewarding) 27.59 27.15 19.65 23.42 22.40

Table 1: Results of the proposed method in comparison to existing unsupervised NMT systems (BLEU).

in this paper. To pre-train cross-lingual embed-
dings, we utilize the monolingual corpora to train
the embeddings for each language independently
by using word2vec (Mikolov et al., 2013). Then
we apply the public implementation4 proposed
by Artetxe et al. (2017) to map these embeddings
into a shared latent space and keep the mapped
embeddings fixed during training.

For NIST Chinese-to-English, we apply case-
insensitive NIST BLEU computed by the script
mteval-v13a.pl to evaluate the translation perfor-
mance. For English-German and English-French,
we evaluate the translation performance with the
script multi-belu.pl.

3.2 Hyper-parameters
We set the following hyper-parameters: word em-
bedding dimension as 512, hidden size of self-
attention as 512, hidden size of fully connected
layers as 1024 and the head number as 8. We
share the last one layer of encoders in both lan-
guages. The dropout rate is set as 0.1, 0.3 and
0.2 during the training for En-Fr, En-De and Zh-
to-En, respectively. We perform a fixed number
of iterations (500K) to train each model, and set
ns = 300K, ne = 400K, for gradually increasing
the effect of future rewarding. We use the Adam
optimizer with a simple learning rate schedule: we
start with a learning rate of 10−4, after 300K up-
dates, we begin to halve the learning rate every
100K steps. We set the mini-batch size as 64. At
decoding time, we use greedy search.

3.3 Overall Results
Our method is compared with several previous un-
supervised NMT systems (Artetxe et al., 2018b;

4https://github.com/artetxem/vecmap

Lample et al., 2018a,b; Yang et al., 2018; Wu et al.,
2019; Song et al., 2019). Although, Song et al.
(2019) have achieved comparable results with su-
pervised NMT systems with larger monolingual
data (Wikipedia data) and bigger model5, we still
list the results that obtained with the same data
and model as ours for fair comparison. We also
consider a “Baseline” model, with the same ar-
chitecture as described in Section 2.1 except for
the variational inference network and is trained
using MLE only. We directly copy the experi-
mental results of previous models reported in their
papers and report the BLEU scores on English-
French, English-German and NIST Chinese-to-
English test sets in Table 1.

As shown in Table 1, our approach achieves
BLEU score of 27.59 and 27.15 on En→Fr and
Fr→En translations respectively, which outper-
forms Lample et al. (2018b) by more than 2 BLEU
points on both En→Fr and Fr→En. For the En-
De, we achieve 19.65 and 23.42 BLEU scores
on En→De and De→En respectively, with up to
+10.09 BLEU points improvement over previous
unsupervised NMT models. For the Chinese-to-
English translation, the proposed method leads to
a substantial improvement (up to 54%) over the
previous system showed in Yang et al. (2018).
Compared to baseline, our approach demonstrates
significant improvements by more than 2 BLEU
points over three benchmarks. These results indi-
cate that the newly proposed training method that
models future rewards to optimize global word
predictions for unsupervised NMT is promising
and enables the model to generate quality trans-
lations.

5Our model can also adopt such an advanced pre-training
technique, we leave this for feature work.
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3.4 Analysis

In this section, we conduct some analysis over the
proposed method by taking English-French trans-
lation as an example.

3.4.1 Ablation Study
To understand the importance of different compo-
nents of the proposed system, we perform an ab-
lation study by training multiple versions of our
model with some missing components: the varia-
tional inference network and the future rewarding
method. Results are reported in Table 2. From
the table, we can see that removing the future
rewarding, and the accuracy drops by 0.98/1.02
BLEU points. Without the variational inference
networks, the accuracy decreases with 0.62/0.69
BLEU points. These findings demonstrate that
both the future rewarding and the VIN are impor-
tant, and both contribute to the improvement of
translation accuracy. The more critical component
is the future rewarding technology, which is vital
to optimize the global word predictions.

en-fr fr-en
Full Model 27.59 27.15
Without VINs 26.97 26.46
Without Future Rewarding 26.61 26.13

Table 2: Ablation study of our method on English-
French translation task.

3.4.2 Qualitative Comparison of
Back-translating

We perform qualitative evaluation on the pseudo
parallel data generated with the back-translation
method. To this end, we conduct a “round-trip”
translation (e.g., src → ˜tgt → ˆsrc), where src
and ˜tgt form a pseudo parallel corpus, ˆsrc is the
reconstruction from ˜tgt. We explore three settings
for qualitative evaluation: 1) UNKs, the ratio of the
number of unknown words to the number of total
words in ˜tgt; 2) the average over all sentences in
˜tgt with respect of their semantic adequacy, de-

noted as SA; 3) the BLEU scores over the origi-
nal inputs and their reconstructions, denoted as r-
BLEU. All settings are finally averaged over two
directions.

Results are shown in Table 3. The proposed
training method introduces significant boosts in all
of the three settings, with reducing 1.34% of un-
known words, increasing the semantic adequacy

UNKs SA r-BLEU
Baseline 3.51% 0.794 54.23
+Future Rewarding 2.17% 0.882 60.08

Table 3: Qualitative comparison of the generated
pseudo parallel sentences from the models trained with
MLE only and with the proposed training method on
English-French test set.

Better than Baseline
S: He put together a real feast for his fans to mark the

occasion.
R: Pour l’occasion, il a concocté un vrai festin pour

ses fans.
B: Il a mis en scène un vrai festin pour son public pour

marquer le souvenir.
O: Il a mis un vrai festin pour ses fans pour marquer

la circonstance.
S: Des scientifiques viennent de mettre en lumière la

façon dont les mouvements de la queue d’un chien
sont liés à son humeur.

R: Scientists have shed more light on how the move-
ments of a dog’s tail are linked to its mood.

B: Scientists come out of light the way the movements
of the tail of a dog are linked to his spirits.

O: Scientists come to light the way of the movements
of a dog’s tail are related to its mood.

Worse than Baseline
S: The recalled models were built between August 1

and September 10.
R: Les modèles rappelés ont été construits entre le 1er

août et le 10 septembre.
B: Les modèles rappelés ont été construits entre le 1er

août et le 10 septembre.
O: Les modèles de raconté ont été construits entre le

1er août et le 10 septembre.
S: Elles connaissent leur entreprise mieux que per-

sonne.
R: They know their business better than anyone else.
B: They know their business better than anyone else.
O: They know their company better than anyone.

Table 4: Translation examples from English-French
test set (English-to-French is above the dotted line and
French-to-English is below the dotted line). B: the
baseline model; O: our proposed model.

by 0.088 and improving r-BLEU points by 5.85.
This is in line with our expectations, as the pro-
posed future rewarding method is not optimized to
predict the next token, but rather to increase long-
term reward.

3.4.3 Example Translations
Table 4 shows four example translations. The
first part shows examples for which the proposed
model reached a higher BLEU score than the base-
line model. We find that the translation produced
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by the baseline model doesn’t adequately con-
vey the meaning of the source sentence to the
target. By contrast, the proposed future reward-
ing method enables the model to generate trans-
lations that are more diversity while ensuring the
meaning of the source sentences, such as “circon-
stance” and “come to light”. The possible rea-
son is that we apply the semantic adequacy to re-
ward translations that have different syntax struc-
tures and expressions but share the same meaning
as the ground-truth sentence. The second part con-
tains examples where the baseline achieved better
BLEU score than our model, that is, in a few cases,
our model chooses inappropriate words that under
the same topic as reference words.

4 Related Work

In order to reduce the exposure bias and opti-
mize the metrics used to evaluate sequence mod-
eling tasks (like BLEU, ROUGE or METEOR)
directly, reinforcement learning (RL) has been
widely used in many of recent works on machine
translation (Ranzato et al., 2016; Shen et al., 2016;
He et al., 2017; Bahdanau et al., 2017; Li et al.,
2017), text summarization (Paulus et al., 2018; Wu
and Hu, 2018; Li et al., 2018; Wang et al., 2018),
dialogue generation (Li et al., 2016), and question
answering (Hu et al., 2018). However, our pro-
posed method is the first use in combination with
reinforcement learning for unsupervised NMT to
explicitly enhance back-translation.

Recently, motivated by the success of cross-
lingual embeddings (Artetxe et al., 2016; Zhang
et al., 2017; Conneau et al., 2017), several works
have tried to train NMT or SMT models using un-
supervised setting, in which the model only has
access to unlabeled data. For example, Lample
et al. (2018a) propose a model that consists of
a single encoder and a single decoder for both
languages, respectively responsible for encoding
source and target sentences to a shared latent space
and to decode from that latent space to the source
or target domain. Different from (Lample et al.,
2018a), Artetxe et al. (2018b) introduce a shared
encoder but two independent decoders with one
for each language. Both of these two works
mentioned above utilize denoising auto-encoding
to reconstruct their noisy inputs and incorporate
back-translation into cross-language training pro-
cedure. Further, Yang et al. (2018) extend the sin-
gle encoder by using two independent encoders

but sharing some partial weights, which are re-
sponsible for alleviating the weakness in keep-
ing language-specific characteristics of the shared
encoder. And the entire system is fine-tuned by
introducing two global GANs with one for each
language. More recently, Artetxe et al. (2018a)
and Lample et al. (2018b) propose an alternative
approach based on phrase-based statistical ma-
chine translation, which profits from the modu-
lar architecture of SMT. In addition, Lample et al.
(2018b) also introduce a novel cross-lingual em-
bedding training method which is particularly suit-
able for related languages (e.g., English-French
and English-German). Ren et al. (2019) intro-
duce SMT models as posterior regularization, in
which SMT and NMT models boost each other
through iterative back-translation in a unified EM
training algorithm. Wu et al. (2019) propose an
alternative for back-translation, , extract-edit, to
extract and then edit real sentences from the tar-
get monolingual corpora. Lample and Conneau
(2019) and Song et al. (2019) propose to pretrain
cross-lingual language models for the initializa-
tion stage of unsupervised neural machine trans-
lation, which is critical to the performance of their
proposed model. In contrast to theirs, we pro-
pose an effective training method for unsupervised
NMT that models future rewards to optimize the
global word predictions via neural policy rein-
forcement learning, which can be applied to arbi-
trary architectures and language pairs easily.

5 Conclusion

In this paper, we have proposed a novel learning
paradigm for unsupervised NMT that models fu-
ture rewards to optimize the global word predic-
tions via reinforcement learning, in which we de-
sign an effective reward function that jointly ac-
counts for the n-gram matching and the seman-
tic adequacy of generated translations. To con-
strain the corresponding sentences in two lan-
guages have the same or similar semantic code,
we also introduce a variational inference network
into the proposed model.

We test the proposed model on WMT’14
English-French, WMT’16 English-German and
NIST Chinese-to-English translation tasks. Ex-
periment results show that our approach leads to
significant improvements over various language
pairs, especially on distantly-related languages
such as Chinese and English.
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Abstract

We show that the state-of-the-art Transformer
MT model is not biased towards monotonic
reordering (unlike previous recurrent neural
network models), but that nevertheless, long-
distance dependencies remain a challenge for
the model. Since most dependencies are short-
distance, common evaluation metrics will be
little influenced by how well systems perform
on them. We therefore propose an automatic
approach for extracting challenge sets replete
with long-distance dependencies, and argue
that evaluation using this methodology pro-
vides a complementary perspective on system
performance. To support our claim, we com-
pile challenge sets for English-German and
German-English, which are much larger than
any previously released challenge set for MT.
The extracted sets are large enough to allow re-
liable automatic evaluation, which makes the
proposed approach a scalable and practical so-
lution for evaluating MT performance on the
long-tail of syntactic phenomena.1

1 Introduction

The assumption that proximate source words are
more likely to correspond to proximate target
words has often been introduced as a bias (hence-
forth, locality bias) into statistical MT systems
(Brown et al., 1993; Koehn et al., 2003; Chiang,
2005). While reordering phenomena, abundant for
some language pairs, violate this simplifying as-
sumption, it has often proved to be a useful in-
ductive bias in practice, especially when comple-
mented with targeted techniques for addressing
non-monotonic translation (e.g., Och, 2002; Chi-
ang, 2005). For example, if an adjective precedes
a noun in one language and modifies it syntacti-
cally, it is likely that their corresponding words

1Our extracted challenge sets and codebase are found in
https://github.com/borgr/auto_challenge_
sets.

will appear close to each other in the translation
— i.e., they may not be immediately adjacent or
even in the same order in the translation, but it is
unlikely that they will be arbitrarily distant from
one another.

In the era of Neural Machine Translation
(NMT), such biases are implicitly introduced by
the sequential nature of the LSTM architecture
(Bahdanau et al., 2015, see §2). The influential
Transformer model (Vaswani et al., 2017) replaces
the sequential LSTMs with self-attention, which
does not seem to possess this bias. We show
that the default implementation of the Transformer
does retain some bias, but that it can be relieved by
using learned positional embeddings (§3).

Long-distance dependencies (LDD) between
words and phrases present a long-standing prob-
lem for MT (Sennrich, 2016), as they are gener-
ally more difficult to detect (indeed, they pose an
ongoing challenge for parsing as well (Xu et al.,
2009)), and often result in non-monotonic transla-
tion if the target differs from the source in terms
of its word order and lexicalization patterns. The
Transformer’s indifference to the absolute position
of the tokens raises the question of whether long-
distance dependencies are still an open problem.

We address this question by proposing an auto-
matic method to compile challenge sets for evalu-
ating system performance on LDD (§4). We dis-
tinguish between two main LDD types: (1) re-
ordering LDD, namely cases where source and tar-
get words largely correspond to one another but
are ordered differently; (2) lexical LDD, where the
way a word or a contiguous expression on the tar-
get side is translated is dependent on non-adjacent
words on the source side.

We define a methodology for extracting both
LDD types. For reordering LDD, we build on
Birch (2011), whereas for lexical LDD we com-
pile a list of linguistic phenomena that yield LDD,
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and use a dependency parser to find instances of
these phenomena in the source side of a paral-
lel corpus. As a test case, we apply this method
to construct challenge sets (§4.2) for German-
English and English-German. The approach can
be easily scaled to other languages for which a
good enough parser exists.

Experimenting both with RNN and self-
attention NMT architectures, we find that although
the latter presents no locality bias, LDD remain
challenging. Moreover, lexical LDD become in-
creasingly challenging with their distance, sug-
gesting that syntactic distance remains an impor-
tant determinant of performance in state-of-the-art
(SoTA) NMT.

We conclude that evaluating LDD using tar-
geted challenge sets gives a detailed picture of MT
performance, and underscores challenges the field
has yet to fully address. As particular types of
LDD are not frequent enough to significantly af-
fect coarse-grained measures, such as BLEU (Pa-
pineni et al., 2002) or TER (Snover et al., 2006),
our evaluation approach provides a complemen-
tary perspective on system performance.

2 Related Work

2.1 Long-distance Dependencies in MT

A common architecture for text-to-text genera-
tion tasks is the (Bi)LSTM encoder-decoder (Bah-
danau et al., 2015). This architecture consists of
several LSTM layers for the encoder and the de-
coder and a thin attention layer connecting them.
LSTM is a recurrent network with a state vec-
tor it updates. At every step, it discards some of
the current and past information and aggregates
the rest into the state. Any information about
the past comes from this state, which is a learned
“summary” of the previous states (cf. Greff et al.,
2017). Hence, for information to reach a cer-
tain prediction step, it should be stored and then
kept throughout the intermediate steps (tokens).
While theoretically information could be kept in-
definitely (Hochreiter and Schmidhuber, 1997),
practical evidence shows that LSTMs performance
decreases with the distance between the trigger
and the prediction (Linzen et al., 2016; Liu et al.,
2018), and that they have difficulties generalizing
over sequence lengths (Suzgun et al., 2018).

Despite being affected by absolute distances
between syntactically dependent tokens (Linzen
et al., 2016), LSTMs tend to learn to a certain

extent structural information even without being
instructed to do so explicitly (Gulordava et al.,
2018). Futrell and Levy (2018) discuss similar lin-
guistic phenomena to what we discuss in §4.2, and
show that LSTM encoder-decoder systems handle
them better than previous N-gram based systems,
despite being profoundly affected by distance.

Transformer (Vaswani et al., 2017) models are
also encoder-decoder, but instead of LSTMs, they
use self-attention. Self-attention is based on gat-
ing all outputs of the previous layer as inputs for
the current one; put differently, it aggregates all
the input in one step. This approach makes infor-
mation from all parts of the input sequence equally
reachable. While this is not the only architecture
with such attributes (van den Oord et al., 2016),
we focus on it due to its SoTA results for MT
(Lakew et al., 2018). The Transformer’s use of
self-attention inspired other works in related fields
(Devlin et al., 2018), some of which attributed
their performance gains to the model’s ability to
capture long-range context (Müller et al., 2018).

As the Transformer does not aggregate input
sequentially, token positions must be represented
through other means. For that purpose, the embed-
ding of each input token W is concatenated with
an embedding of its position in the source sentence
P . While positional embeddings can generally be
any vectors, two implementations are commonly
used (Tebbifakhr et al., 2018; Guo et al., 2018):
learned positional embeddings (learnedPEs; P is
randomly initialized), and sine positional embed-
dings (SinePEs) defined as:

P(pos,2i) = sin(pos/10, 0002i/dim)

P(pos,2i+1) = cos(pos/10, 0002i/dim)

where dim is the dimension of the embedding.
Vaswani et al. (2017) report that they see no ben-
efit in learnedPEs, and hence use SinePEs, which
have much fewer parameters.

Most of the dependencies between words are
short. Short-distance linguistic dependencies in-
clude some of the most common phenomena in
language, such as determination, modification by
an adjective and compounding. For example, 62%
of the dependencies in the standard UD EWT
training set (Silveira et al., 2014) are between to-
kens that are up to one word apart. It stands to rea-
son that the locality bias is useful in these cases.
Nevertheless, as system quality improves, rarer,
more challenging dependencies become a priority,
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and languages present a countless number of long-
distance reordering phenomena (Deng and Xue,
2017). One example is subject-verb agreement,
where a correct translation requires that the verb
is inflected according to the headword of the sub-
ject (e.g., in English “dogs that ..., bark”, while “a
dog that ..., barks”). When translating such cases,
a locality bias may impede performance, by bias-
ing the model not to attend to both the subject’s
head and the main verb (which may be arbitrarily
distant), thereby disallowing it to correctly inflect
the main verb.

Due to the benefits of the locality bias, it
featured prominently in statistical MT, including
in the IBM models, where alignments are con-
strained not to cross too much (Brown et al.,
1993), and in predicting probabilities of reorder-
ings (Koehn et al., 2003; Chiang, 2005). Diffi-
culties in handling LDD have motivated the devel-
opment of syntax-based MT (Yamada and Knight,
2001), that can effectively represent reordering at
the phrase level, such as when translating between
VSO and SOV languages. However, syntax-
based MT models remain limited in their ability
to map between arbitrarily different word orders
(Sun et al., 2009; Xiong et al., 2012). For exam-
ple, reorderings that violate the assumption that
the trees form contiguous phrases would be dif-
ficult for most such models to capture. In the next
section (§3) we show that the Transformer, when
implemented with learnedPEs, presents no locality
bias, and hence can, in principle, learn dependen-
cies between any two positions of the source, and
use them at any step during decoding.

2.2 MT Evaluation

With major improvements in system performance,
crude assessments of performance are becoming
less satisfying, i.e., evaluation metrics do not give
an indication on the performance of MT systems
on important challenges for the field (Isabelle and
Kuhn, 2018). String-similarity metrics against
a reference are known to be partial and coarse-
grained aspects of the task (Callison-Burch et al.,
2006), but are still the common practice in vari-
ous text generation tasks. However, their opaque-
ness and difficulty to interpret have led to efforts
to improve evaluation measures so that they will
better reflect the requirements of the task (Ander-
son et al., 2016; Sulem et al., 2018; Choshen and
Abend, 2018b), and to increased interest in defin-

ing more interpretable and telling measures (Lo
and Wu, 2011; Hodosh et al., 2013; Birch et al.,
2016; Choshen and Abend, 2018a).

A promising path forward is complement-
ing string-similarity evaluation with linguistically
meaningful challenge sets. Such sets have the ad-
vantage of being interpretable: they test for spe-
cific phenomena that are important for humans
and are crucial for language understanding. In-
terpretability also means that evaluation artefacts
are more likely to be detected earlier. So far,
such challenge sets were constructed for French-
English (Isabelle et al., 2017; Isabelle and Kuhn,
2018) and English-Swedish (Ahrenberg, 2018) 2.
Previous challenge sets were compiled by manu-
ally searching corpora for specific phenomena of
interest (e.g., yes-no questions which are formu-
lated differently in English and French). These
corpora are carefully made but are small in size
(ten examples per phenomenon), which means that
evaluation must be done manually as well.

As our methodology extracts sentences auto-
matically based on parser output, we are able to
compile much larger challenge sets, which allows
us to apply standard MT measures to each sub-
corpus corresponding to a specific phenomenon.
The methodology is, therefore, more flexible, and
can be straightforwardly adapted to accommodate
future advances in MT evaluation.

3 Locality in SoTA NMT
In this section we show that encoder-decoder mod-
els based on BiLSTM with attention (see §2), do
exhibit a locality bias, but that the Transformer,
whose encoder is based on self-attention, and in
which token position is encoded only through
learnedPEs, does not present any such bias.

3.1 Methodology

In order to test whether an NMT system presents
a locality bias in a controlled environment, we
examine a setting of arbitrary absolute order of
the source-side tokens. In this case, systems that
are predisposed towards monotonic decoding are
likely to present lower performance, while sys-
tems that have no predisposition as to the order
of the target side tokens relative to the source-side
tokens are not expected to show any change in per-

2In WMT 2019 English-German phenomena were tested
with a new corpus, using both human and automatic evalua-
tion. It is not possible, however, to use this evaluation outside
the competition (Avramidis et al., 2019).

293



formance. In order to create a controlled setting,
where source-side token order is arbitrary, we ex-
tract fixed length sentences, and apply the same
permutation to all of them. We then train systems
with the permuted source-side data (and the same
target-side data), and compare results to a control
condition where no permutation is applied.

Concretely, we experiment on a German-
English setting, extracting all sentences of the
most common length (18) from the WMT2015
(Bojar et al., 2015) training data. This results in
130,983 sentences, of which we hold out 1,000
sentences for testing. It is comparable in training
set size to a low-resource language setting.

We set a fixed permutation σ : [18] → [18] and
train systems on three versions of the training data
(settings): (1) REGULAR, to be used for control;
(2) PERMUTED source-side, in which we apply
σ over all source-side tokens; (3) PERPOSEMB

where the positional embeddings of the source-
side tokens are permuted;3 and (4) REVERSED,
where tokens are input in a reverse order.

We apply the following permutation, σ, to the
source-side tokens:
(
11
0

5
1
9
2
15
3

8
4
14
5

10
6

1
7
3
8
16
9

12
10

2
11

0
12

6
13

17
14

4
15

13
16

7
17
)

We did not find any property that would deem this
permutation special (examining, e.g., its decom-
position into cycles). We therefore assume that
similar results will hold for other σs as well.

We train a Transformer model, optimizing us-
ing Adam (Kingma and Ba, 2015). We set the em-
bedding size to 512, dropout rate of 0.1, 6 stack
layers in both the encoder and the decoder and 8
attention heads. We use tokenization, truecasing
and BPE (Sennrich et al., 2016) as preprocessing,
following the same protocol as (Yang et al., 2018).

We experiment both with learnedPEs, and with
SinePEs. We train the BiLSTM model using the
Nematus implementation (Sennrich et al., 2017b),
and use their supplied scripts for preprocessing,
training and testing, changing only the datasets
used. For all models, we report the highest BLEU
score on the test data for any epoch during train-
ing, and perform early stopping after 10 consecu-
tive epochs without improvement.

In the Transformer with learnedPEs, 5 repeti-
tions were done in the REGULAR setting, and 5 for

3 Formally, if the source sentence is
(t1, ..., t18), then the input to the Transformer is([
W (t1);P (tσ(1))

]
, ...,

[
W (t18);P (tσ(18))

])
.

Model Positional Setting BLEU

Transformer

LearntPE REGULAR 24.81
LearntPE PERMUTED 24.87 (+0.06)
LearntPE REVERSE 24.84 (+0.03)
LearntPE PERPOSEMB 24.82 (+0.01)

Transformer
SinePEs REGULAR 25.08
SinePEs PERMUTED 23.90 (-1.18)

Nematus
REGULAR 22.32
PERMUTED 19.67 (-2.65)

Table 1: BLEU score for various Transformer settings
on regular and permuted data. In brackets are the dif-
ferences from REGULAR. Nematus and Transformer
using SinePEs show decreased performance when per-
muting the input. Transformer with learnedPEs does
not. Rows correspond to the different models used
(Model), which positional embeddings are fed to the
Transformer (Positional), and the order of the input to-
kens (Setting; see text).

the other settings: 5 repetitions for PERMUTED, 1
for PERPOSEMB and 1 for REVERSED. In addi-
tion, we trained the BiLSTM model and the Trans-
former with SinePEs both in the REGULAR condi-
tion and in PERMUTED, each was trained once.

3.2 Results

Table 1 presents our results. We find that Nematus
BiLSTM suffers substantially from permuting the
source-side tokens, but that the Transformer does
not exhibit a locality bias. Indeed, for learned-
PEs in all settings (REGULAR, PERMUTED, RE-
VERSED and PERPOSEMB), BLEU scores are es-
sentially the same. We also find that the com-
mon practice of using fixed SinePEs does intro-
duce some bias, as attested by the small perfor-
mance drop between REGULAR and PERMUTED.
Like Vaswani et al. (2017), we find that in the
REGULAR settings, learnedPEs are not superior in
performance to SinePEs, despite having more ex-
pressive power. However, our results suggest that
the decision between learnedPEs and SinePEs is
not without consequences: learnedPEs are prefer-
able if a locality bias is undesired (this is poten-
tially the case for highly divergent language pairs).

3.3 Discussion

Finding that Transformers do not present a local-
ity bias has implications on how to construct their
input in MT settings, as well as in other tasks that
use self-attention encoders, such as image caption-
ing (You et al., 2016). It is common practice to
augment the source-side with globally-applicable
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information, e.g., the target language in multi-
lingual MT (Johnson et al., 2017). Having no lo-
cality bias implies this additional information can
be added at any fixed point in the sequence fed
to a Transformer, provided that the positional em-
beddings do not themselves introduce such a bias.
This is not the case with BiLSTMs, which often
require introducing the same information at each
input token to allow them to be effectively used by
the system (Yao et al., 2017; Rennie et al., 2017).

4 LDD Challenge Sets

One of the stated motivations of the Transformer
model is to effectively tackle long-distance depen-
dencies, which are “a key challenge in many se-
quence transduction tasks” (Vaswani et al., 2017).
Our results from the previous section show that
indeed fixed reordering patterns are completely
transparent for Transformers. This, however, still
leaves the question of how Transformers handle
linguistic reordering patterns, which may involve
varying distances between dependent tokens.

4.1 Methodology

We propose a method for scalably compiling chal-
lenge sets to support fine-grained MT evaluation
for different types of LDD. We address two main
types:

Reordering LDD are cases where the words on
the two sides of the parallel corpus largely corre-
spond to one another, but are ordered differently.
These cases may require attending to source words
in a highly non-monotonic order, but the gener-
ation of each target word is localized to a spe-
cific region in the source sentence. For exam-
ple, in English-German, the verb in a subordinated
clause appears in a final position, while the verb in
the English source appears right after the subject.
Consider “The man that is sitting on the chair”,
and the corresponding German “Der Mann, der
auf dem Stuhl sitzt” (lit. the man, that on the
chair sits) — while the verb is placed at different
clause positions in the two cases, the words mostly
have direct correspondents. Our methodology fol-
lows Birch (2011) in detecting such phenomena
based on alignment. Concretely, we extract a word
alignment between corresponding sentences, and
collect all sentences that include a pair of aligned
words in the source and target sides, whose indices
have a difference of at least d ∈ N.

Lexical LDD are cases where the translation of
a single word or phrase is determined by non-
adjacent words on the source side. This requires
attending to two or more regions that can be arbi-
trarily distant from one another. Several phenom-
ena, such as light verbs (Isabelle and Kuhn, 2018),
are known from the linguistic and MT literature to
yield lexical LDD. Our methodology takes a pre-
defined set of such phenomena, and defines rules
for detecting each of them over dependency parses
of the source-side. See §4.2 for the list of phenom-
ena we experiment on in this paper.

Focusing on LDD, we restrict ourselves to in-
stances where the absolute distance between the
word and the dependent is at least d ∈ N. Select-
ing large enough d entails that the extracted phe-
nomena are unlikely to be memorized as a phrase
with a specific meaning (e.g., encode “make the
whole thing up” [d = 3] as a phrase, rather than
as a discontiguous phrase “make ... up” with an
argument “the whole thing”). This increases the
probability that such cases, if translated correctly,
reflect the MT systems’ ability to recognize that
such discontiguous units are likely to be translated
as a single piece.

We note, that by extracting the challenge set
based on syntactic parses, we by no means assume
these representations are internally represented by
the MT systems in any way, or assume such a
representation is required for succeeding in cor-
rectly translating such constructions. The extrac-
tion method is merely a way of finding phenomena
we have a reason to believe are difficult to trans-
late, and meaningful for language understanding.
We use Universal Dependencies (UD; Nivre et al.,
2016) as a syntactic representation, due to its
cross-lingual consistency (about 90 languages are
supported so far), which allows research on diffi-
cult LDD phenomena that recur across languages.

Our extraction methods resemble previous chal-
lenge set approaches (Isabelle et al., 2017; Isabelle
and Kuhn, 2018; Ahrenberg, 2018), in using lin-
guistically motivated sets of sentence pairs to as-
sess translation quality. However, as our extraction
method is fully automatic, it allows for the compi-
lation of much larger challenge sets over many lan-
guage pairs. The challenge sets we extract contain
hundreds or thousands of pairs (§4.2). The size
of the sets allows using any MT evaluation mea-
sures to measure performance, and is thus a much
more scalable solution than manual inspection, as
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is commonly done in challenge set approaches.
On the other hand, an automatic methodology

has the side-effect of being noisier, and not neces-
sarily selecting the most representative sentences
for each phenomenon. For instance befinden sich
(lit. to determine) includes a verb and a reflexive
pronoun, which do not necessarily appear contigu-
ously in German. However, as befinden always ap-
pears with the reflexive sich, it might not pose a
challenge to NMT systems, which can essentially
ignore the reflexive pronoun upon translation.

4.2 A Test Case on Extracting Sets

Next, we discuss the compilation of German-
English and English-German corpora. We select
these pairs, as they are among the most studied in
MT, and comparatively high results are obtained
for them (Bojar et al., 2017). Hence, they are more
likely to benefit from a fine-grained analysis.

For the reordering LDD corpus, we align each
source and target sentences using FastAlign (Dyer
et al., 2013) and collect all sentences with at least
one pair of source-side and target-side tokens,
whose indices have a difference of at least d = 5.
For example:

Source: Wäre es ein großer Misserfolg, nicht
den Titel in der Ligue 1 zu gewinnen, wie dies
in der letzten Saison der Fall war?
Gloss: Would-be it a big failure, not the title
in the Ligue 1 to win, as this in the last season
the case was?
Target: In Ligue 1, would not winning the
title, like last season, be a big failure?

We extract lexical LDD using simple rules
over source-side parse trees, parsed with UDPipe
(Straka and Straková, 2017). For a sentence to
be selected, at least one word should separate the
detected pair of words. We picked several well-
known challenging constructions for translation
that involve discontiguous phrases: reflexive-verb,
verb-particle constructions and preposition strand-
ing. We note that while these constructions often
yield lexical LDDs, and are thus expected to be
challenging on average, some of their instances
can be translated literally (e.g., amuse oneself is
translated to amüsieren sich).

Reflexive Verbs. Prototypically, reflexivity is
the case where the subject and object corefer. Re-
flexive pronouns in English end with self or selves
(e.g., yourselves) and in German include sich,

dich, mich and uns among others. However, reflex-
ive pronouns can often change the meaning of a
verb unpredictably, and may thus lead to different
translations for non-reflexive instances of a verb,
compared to reflexive ones. For example, abheben
in German means taking off (as of a plane), but
sich abheben means standing out. Similarly, in the
example below, drängte sich translates to intrude,
while drängte normally translates to pushed.

A source sentence is said to include a reflexive
verb if one of its tokens is parsed with a reflexive
morphological feature (refl=yes).
For example:

Source: [...] es ertragen zu müssen, daß eine
unsympathische Fremde sich unaufhörlich in
ihren Familienkreis drängte.
Target: [...] to see an uncongenial alien per-
manently intruded on her own family group.

Phrasal Verbs are verbs that are made up of a
verb and a particle (or several particles), which
may change the meaning of the verb unpre-
dictably. Examples of English phrasal verbs in-
clude run into (in the sense of meet) and give in,
and in German they include examples such as ein-
laden (invite), consisting morphologically of the
particle ein and the verb laden (load).

A source sentence is said to include a phrasal
verb if a particle dependent (UD labels of
compound:prt or prt) exists in the parse. trat
in itself means stepped, but in the extracted exam-
ple below, trat. . . entgegen translates to received.
For example:

Source: [...] ich trat ihm in wahnsinniger
Wut entgegen.
Target: [...] I received him in frantic sort.

Preposition Stranding is the case where a
preposition does not appear adjacent to the ob-
ject it refers to. In English, it will often appear
at the end of the sentence or a clause. For ex-
ample, The banana she stepped on or The boy I
read the book to. Preposition stranding is common
in English and other languages such as Scandina-
vian languages or Dutch (Hornstein and Weinberg,
1981). However, in German, it is not a part of
standard written language (Beermann and Ik-Han,
2005), although it does (rarely) appear (Fanselow,
1983). We, therefore, extract this challenge set
only with English as the source side.

While preposition stranding is often regarded
as a syntactic phenomenon, we consider it here a
lexical LDD, since the translation of prepositions
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Phenomena Books Newstest2013

De↔En
Reorder 7,457 306
Baseline (full dataset) 51,467 3,000

Table 2: Sizes of reordering and baseline corpora.

Min Distance

Phenomena All ≥1 ≥2 ≥3 News

De→En
Particle 8,361 7,584 6,261 4,780 232
Reflexive 13,207 8,122 5,598 4,226 281

En→De
Particle 4,636 786 111 36 17
Reflexive 3,225 1,188 460 274 11
Preposition Stranding 682 191 85 40 8

Table 3: Sizes of Lexical LDD corpora. Challenge sets
are partitioned (in order of appearance) by the language
pairs, the phenomenon type, and the minimal distance
between the head and the dependent. Phenomenon ap-
pears in the source. Statistics for the Newstest2013 cor-
pora with miminal distance ≥ 1 are at the rightmost
column, the rest are on Books.
(and in some cases their accompanying verbs) is
dependent on the prepositional object, which in
the case of preposition stranding, may be distant
from the preposition itself. For example, translat-
ing the car we looked for into German usually uses
the verb suchen (search), while translating the car
we looked at does not. Translating prepositions is
difficult in general (Hashemi and Hwa, 2014), but
preposition stranding is especially so, as there is
no adjacent object to assist disambiguation.

A source sentence is said to include preposition
stranding if it contains two nodes with an edge of
the type obl (oblique) or a subcategory thereof
between them, and the UD POS tag of the depen-
dent is adposition (ADP).
For example,

Source: [...] wherever she wanted to send
the hedgehog to [...]
Gloss: [...] where she the hedgehog rolled-
towards wanted [...]
Target: [...] wo sie den Igel hinrollen wollte
[...]

4.3 Experiments
We turn to evaluate SoTA NMT performance on
the extracted challenge sets.

Experimental Setup. We trained the Trans-
former on WMT2015 training data (Bojar et al.,
2015), for parameters see §3.1. For Nematus we
used the non-ensemble pre-trained model from
(Sennrich et al., 2017a). Each of the test sets, ei-
ther a baseline or a challenge sets, for the Trans-
former and Nematus used a maximum of 10k and

Transformer Nematus

Books News Books News

De→En

Baseline 9.02 28.23 16.26 26.32
Reorder 7.16 22.68 13.88 22.73
Particle 7.52 27.46 15.41 23.98
Reflexive 8.15 27.84 14.91 27.04

En→De

Baseline 6.33 23.7 12.25 22.03
Reorder 4.31 19.4 9.02 20.38
Particle 5.30 17.83 9.55 16.72
Reflexive 5.07 15.77 9.97 21.81
Preposition
Stranding

5.37 11.82 9.73 6.27

Table 4: BLEU scores on the challenge sets. Mini-
mum distance between head and dependent d ≥ 1.
A clear, consistent drop from the Baseline (full cor-
pus) score is observed in all cases. The top part of
the table corresponds to German-to-English (De→En)
sets, and bottom part to English-to-German (En→De)
sets. Within each part, rows correspond to various
linguistic phenomena (second column), including re-
ordering LDD (Reorder), Verb-Particle Constructions
(Particle), Reflexive Verbs (Reflexive) and Preposition
Stranding. Columns correspond to the models (Tran-
former/Nematus), and the domains (Books/News).

1k sentences per set respectively.4

Two parallel corpora were used for extracting
the challenge sets. One is newstest2013 (Bojar
et al., 2015) from the news domain that is com-
monly used as a development set for English-
German. The other is the relatively unused Books
corpus (Tiedemann, 2012) from the more chal-
lenging domain of literary translation. The cor-
pora are of sizes 51K and 3K respectively. For
lexical LDD, we took the distance (d) between the
relevant words to be at least 1, meaning there is at
least one word separating them. See Tables 2, 3
for the sizes of the extracted corpora.

For evaluation, we use the MOSES implemen-
tation of BLEU (Papineni et al., 2002; Koehn
et al., 2007), and for reordering LDD, also RIBES
(Isozaki et al., 2010), which focuses on reorder-
ing. RIBES measures the correlation of n-gram
ranks between the output and the reference, where
n-gram appears uniquely and in both.

Manual Validation. To assess the ability of our
procedure to extract relevant LDDs, we manually
analyzed over 180 source German sentences ex-

4We subsample a smaller test set for Nematus, since
the most competitive model for the language pair requires
Theano. As Theano is deprecated for two years now, it cannot
run on our GPUs, which entails long inference time.
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BLEU Spearman
Language Phenomena All ≥1 ≥2 ≥3

Transformer

German
Particle 7.56 7.52 7.5 7.49 -0.96
Reflexive 8.26 8.15 8.04 - -1

English
Particle 4.96 5.3 4.96 6.01 0.73
Reflexive 5.41 5.07 5.25 5.04 -0.63
Preposition
Stranding

5 5.37 4.42 4.64 -0.63

Nematus

German
Particle 15.48 15.41 14.45 12.36 -0.92
Reflexive 15.27 14.91 15.13 13.14 -0.80

English
Particle 10.14 9.55 9.36 8.82 -0.98
Reflexive 9.46 9.97 9.54 9.35 -0.36
Preposition
Stranding

10.01 9.73 9.14 9.04 -0.97

Table 5: The effect of dependency distance for lexical LDDs on SoTA performance . Results are in BLEU over the
Books challenge sets. Columns correspond to the minimum distance, where All does not restrict distance (control).
The rightmost column presents the Spearman correlation of the phenomena’s score with the minimum distance
used. All correlations but one are highly negative, implying that distance has a negative effect on performance.

tracted from Books, and 81 English ones includ-
ing all the instances extracted from News and 45
extracted from Books, where instances are evenly
distributed between phenomena and distance of
exactly 1,2 or 5. We find that 85% of German sen-
tences, 87% of the English News sentences and
86% of the Books ones indeed contain the target
phenomenon. For details of the manual evaluation
of the extraction procedure, see Appendix 1.

News Books

German
Baseline 0.82 0.57
Reorder 0.79 0.54

English
Baseline 0.79 0.56
Reorder 0.77 0.53

Table 6: RIBES scores on the reordering LDD chal-
lenge sets. Sentences extracted as being challenging to
reorder are harder for the Transformer (lower score).
This trend is consistent with our experiments with
BLEU. First column indicates the source language.

Results. Comparison of the overall BLEU
scores of the NMT models (Table 4) against their
performance on the challenge sets, shows that the
phenomena are challenging for both models. Both
in the small development set of newstest2013 and
the large set of Books, the challenge subparts are
more challenging across the board. For reordering
LDD, we further apply RIBES and find a similar
trend: RIBES score is lower for the reorder chal-
lenge set than the baseline (see Table 6).

In order to confirm that the distance between the
head and dependent (the “length” of the depen-

dency) is related to the observed performance drop
in the case of lexical LDD, we partition each of the
challenge sets according to their length (d), and
compare the results to a control condition, where
all instances of the phenomena listed in §4.2 are
extracted, including non-LDD instances, i.e., sen-
tences where the head and the dependent are ad-
jacent. System performance on the sliced chal-
lenge sets (Table 5) shows that performance in-
deed decreases with d. Results thus indicate that
it is not only the presence of the phenomena that
make these sets challenging, but that the challenge
increases with the distance.

We validate this main finding using manual an-
notation of German to English cases. Using two
annotators (with high agreement between them;
κ=0.79), we find that the decrease in performance
with d is replicated. We measure how many of the
detected lexical LDD are correctly translated, ig-
noring the rest of the source and output, as done
in manual challenge set approaches. We find that
60%, 54% and 38% of the cases are translated cor-
rectly for d ∈ (1, 2, 5), respectively. This suggests
that the extracted phenomena and the distance in-
deed pose a challenge, and that the automatic met-
ric we use shows the correct trend in these cases.
See Appendix 2 for details.

Discussion. Interestingly, these results hold true
for the Transformer despite its indifference to the
absolute word order. Therefore, word distance in
itself is not what makes such phenomena chal-
lenging, contrary to what one might expect from
the definition of LDD. It seems then that these
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phenomena are especially challenging due to the
non-standard linguistic structure (e.g., syntactic
and lexical structure), and the varying distances
in which LDD manifest themselves. The models,
therefore, seem to be unable to learn the linguis-
tic structure underlying these phenomena, which
may motivate more explicit modelling of linguis-
tic biases into NMT models, as proposed by, e.g.,
Eriguchi et al. (2017) and Song et al. (2019).

We note that our experiments were not designed
to compare the performance of BiLSTM and self-
attention models. We, therefore, do not see the
Transformer’s inferior performance on Books, rel-
ative to Nematus as an indication of the general
ability of this model in out-of-domain settings.
What is evident from the results is that translat-
ing Books is a challenge in itself, probably due to
the register of the language, and the presence of
frequent non-literal translations.

A potential confound is that performance might
change with the length of the source in BiLSTMs
(Carpuat et al., 2013; Murray and Chiang, 2018),
in Transformers it was reported to increase (Zhang
et al., 2018). Length is generally greater in the
challenge set than in the full test set, and generally
increases with d, showing if anything a decrease
of performance by length. To assess whether our
corpora are challenging due to a length bias, we
randomly sample from Books 1,000 corpora with
1,000, 100 and 10 sentences each. The correla-
tion between their corresponding average length
and the Transformers’ BLEU score on them was
0.06,0.09 and 0.03 respectively. While this sug-
gests length is not a strong predictor of perfor-
mance, to verify that difficulty is not a result of
the distribution of lengths in the challenge sets we
conduct another experiment.

For each challenge set and each value of d (0–
3), we sample 100 corpora. For each sentence in a
given challenge set, we sample a sentence of no
more than a difference of 1 in length. This re-
sults in a corpus with a similar length distribution,
but sampled from the overall population of Books
sentences. Results show that the BLEU score of
the challenge sets in all German to English cases
is lower than any randomly sampled corpus.5 In
the English-German cases, trends are similar, al-
beit less pronounced. This may be due to the low
number of long English sentences, which lead to

5Most sampled corpora actually had better scores than the
baseline. We believe this is because very short sentences
which are mostly noise, are never sampled.

more homogeneous samples. Overall, results sug-
gest that length is extremely unlikely to be the only
cause for the observed trends.

5 Conclusion

As NMT system performance is constantly im-
proving, more reliable methods for identifying
and classifying their failures are needed. Much
research effort is therefore devoted to develop-
ing more fine-grained and interpretable evaluation
methods, including challenge-set approaches. In
this paper, we showed that, using a UD parser, it
is possible to extract challenge sets that are large
enough to allow scalable MT evaluation of impor-
tant and challenging phenomena.

An accumulating body of research is devoted to
the ability of modern neural architectures such as
LSTMs (Linzen et al., 2016) and pretrained em-
beddings (Hewitt and Manning, 2019; Liu et al.,
2019; Jawahar et al., 2019) to represent linguis-
tic features. This paper makes a contribution to
this literature in confirming that the Transformer
model can indeed be made indifferent to the ab-
solute order of the words, but also shows that this
does not entail that the model can overcome the
difficulties of LDD in naturalistic data. We may
carefully conclude then that despite the remark-
able feats of current NMT models, inducing lin-
guistic structure in its more evasive and challeng-
ing instances is still beyond the reach of state-
of-the-art NMT, which motivates exploring more
linguistically-informed models.
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Abstract

Despite advances in dependency parsing, lan-
guages with small treebanks still present chal-
lenges. We assess recent approaches to
multilingual contextual word representations
(CWRs), and compare them for crosslingual
transfer from a language with a large tree-
bank to a language with a small or nonexistent
treebank, by sharing parameters between lan-
guages in the parser itself. We experiment with
a diverse selection of languages in both sim-
ulated and truly low-resource scenarios, and
show that multilingual CWRs greatly facilitate
low-resource dependency parsing even with-
out crosslingual supervision such as dictionar-
ies or parallel text. Furthermore, we exam-
ine the non-contextual part of the learned lan-
guage models (which we call a “decontextual
probe”) to demonstrate that polyglot language
models better encode crosslingual lexical cor-
respondence compared to aligned monolingual
language models. This analysis provides fur-
ther evidence that polyglot training is an effec-
tive approach to crosslingual transfer.

1 Introduction

Dependency parsing has achieved new states of
the art using distributed word representations in
neural networks, trained with large amounts of an-
notated data (Dozat and Manning, 2017; Dozat
et al., 2017; Ma et al., 2018; Che et al., 2018).
However, many languages are low-resource, with
small or no treebanks, which presents a severe
challenge in developing accurate parsing systems
in those languages. One way to address this prob-
lem is with a crosslingual solution that makes
use of a language with a large treebank and raw
text in both languages. The hypothesis behind
this approach is that, although each language is
unique, different languages manifest similar char-

⇤ Equal contribution. Random order.

acteristics (e.g., morphological, lexical, syntac-
tic) which can be exploited by training a single
polyglot model with data from multiple languages
(Ammar, 2016).

Recent work has extended contextual word rep-
resentations (CWRs) multilingually either by train-
ing a polyglot language model (LM) on a mix-
ture of data from multiple languages (joint train-
ing approach; Mulcaire et al., 2019; Lample and
Conneau, 2019) or by aligning multiple monolin-
gual language models crosslingually (retrofitting
approach; Schuster et al., 2019; Aldarmaki and
Diab, 2019). These multilingual representations
have been shown to facilitate crosslingual trans-
fer on several tasks, including Universal Depen-
dencies parsing and natural language inference.
In this work, we assess these two types of meth-
ods by using them for low-resource dependency
parsing, and discover that the joint training ap-
proach substantially outperforms the retrofitting
approach. We further apply multilingual CWRs
produced by the joint training approach to diverse
languages, and show that it is still effective in
transfer between distant languages, though we find
that phylogenetically related source languages are
generally more helpful.

We hypothesize that joint polyglot training is
more successful than retrofitting because it in-
duces a degree of lexical correspondence be-
tween languages that the linear transformation
used in retrofitting methods cannot capture. To test
this hypothesis, we design a decontextual probe.
We decontextualize CWRs into non-contextual
word vectors that retain much of CWRs’ task-
performance benefit, and evaluate the crosslingual
transferability of language models via word trans-
lation. In our decontextualization framework, we
use a single LSTM cell without recurrence to ob-
tain a context-independent vector, thereby allow-
ing for a direct probe into the LSTM networks in-
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dependent of a particular corpus. We show that de-
contextualized vectors from the joint training ap-
proach yield representations that score higher on a
word translation task than the retrofitting approach
or word type vectors such as fastText (Bojanowski
et al., 2017). This finding provides evidence
that polyglot language models encode crosslingual
similarity, specifically crosslingual lexical corre-
spondence, that a linear alignment between mono-
lingual language models does not.

2 Models

We examine crosslingual solutions to low-
resource dependency parsing, which make crucial
use of multilingual CWRs. All models are imple-
mented in AllenNLP, version 0.7.2 (Gardner et al.,
2018) and the hyperparameters and training details
are given in the appendix.

2.1 Multilingual CWRs

Prior methods to produce multilingual contextual
word representations (CWRs) can be categorized
into two major classes, which we call joint train-
ing and retrofitting.1 The joint training approach
trains a single polgylot language model (LM) on
a mixture of texts in multiple languages (Mulcaire
et al., 2019; Lample and Conneau, 2019; Devlin
et al., 2019),2 while the retrofitting approach trains
separate LMs on each language and aligns the
learned representations later (Schuster et al., 2019;
Aldarmaki and Diab, 2019). We compare example
approaches from these two classes using the same
LM training data, and discover that the joint train-
ing approach generally yields better performance
in low-resource dependency parsing, even without
crosslingual supervision.

Retrofitting Approach Following Schuster
et al. (2019), we first train a bidirectional LM with
two-layer LSTMs on top of character CNNs for
each language (ELMo, Peters et al., 2018), and
then align the monolingual LMs across languages.
Denote the hidden state in the jth layer for word i

in context c by h
(j)
i,c . We use a trainable weighted

average of the three layers (character-CNN and
1This term was originally used by Faruqui et al. (2015) to

describe updates to word vectors, after estimating them from
corpora, using semantic lexicons. We generalize it to capture
the notion of a separate update to fit something other than the
original data, applied after conventional training.

2Multilingual BERT is documented in https:
//github.com/google-research/bert/blob/
master/multilingual.md.

two LSTM layers) to compute the contextual rep-
resentation ei,c for the word: ei,c =

P2
j=0 �jh

(j)
i,c

(Peters et al., 2018).3 In the first step, we compute
an “anchor” h

(j)
i for each word by averaging h

(j)
i,c

over all occurrences in an LM corpus. We then
apply a standard dictionary-based technique4 to
create multilingual word embeddings (Mikolov
et al., 2013; Conneau et al., 2018). In particular,
suppose that we have a word-translation dictio-
nary from source language s to target language
t. Let H

(j)
s ,H

(j)
t be matrices whose columns are

the anchors in the jth layer for the source and
corresponding target words in the dictionary. For
each layer j, find the linear transformation W⇤(j)

such that

W⇤(j) = argmin
W

||WH(j)
s �H

(j)
t ||F

The linear transformations are then used to map
the LM hidden states for the source language
to the target LM space. Specifically, contex-
tual representations for the source and target lan-
guages are computed by

P2
j=0 �jW

⇤(j)h(j)
i,c and

P2
j=0 �jh

(j)
i,c respectively. We use publicly avail-

able dictionaries from Conneau et al. (2018)5 and
align all languages to the English LM space, again
following Schuster et al. (2019).

Joint Training Approach Another approach to
multilingual CWRs is to train a single LM on mul-
tiple languages (Tsvetkov et al., 2016; Ragni et al.,
2016; Östling and Tiedemann, 2017). We train a
single bidirectional LM with charater CNNs and
two-layer LSTMs on multiple languages (Rosita,
Mulcaire et al., 2019). We then use the polyglot
LM to provide contextual representations. Sim-
ilarly to the retrofitting approach, we represent
word i in context c as a trainable weighted aver-
age of the hidden states in the trained polyglot LM:P2

j=0 �jh
(j)
i,c . In contrast to retrofitting, crosslin-

guality is learned implicitly by sharing all network
parameters during LM training; no crosslingual
dictionaries are used.

3Schuster et al. (2019) only used the first LSTM layer,
but we found a performance benefit from using all layers in
preliminary results.

4Conneau et al. (2018) developed an unsupervised align-
ment technique that does not require a dictionary. We found
that their unsupervised alignment yielded substantially de-
graded performance in downstream parsing in line with the
findings of Schuster et al. (2019).

5https://github.com/facebookresearch/
MUSE#ground-truth-bilingual-dictionaries
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Refinement after Joint Training It is possible
to combine the two approaches above; the align-
ment procedure used in the retrofitting approach
can serve as a refinement step on top of an already-
polyglot language model. We will see only a lim-
ited gain in parsing performance from this refine-
ment in our experiments, suggesting that polyglot
LMs are already producing high-quality multilin-
gual CWRs even without crosslingual dictionary
supervision.

FastText Baseline We also compare the multi-
lingual CWRs to a subword-based, non-contextual
word embedding baseline. We train 300-
dimensional word vectors on the same LM data us-
ing the fastText method (Bojanowski et al., 2017),
and use the same bilingual dictionaries to align
them (Conneau et al., 2018).

2.2 Dependency Parsers

We train polyglot parsers for multiple languages
(Ammar et al., 2016) on top of multilingual
CWRs. All parser parameters are shared between
the source and target languages. Ammar et al.
(2016) suggest that sharing parameters between
languages can alleviate the low-resource problem
in syntactic parsing, but their experiments are lim-
ited to (relatively similar) European languages.
Mulcaire et al. (2019) also include experiments
with dependency parsing using polyglot contex-
tual representations between two language pairs
(English/Chinese and English/Arabic), but focus
on high-resource tasks. Here we explore a wider
range of languages, and analyze the particular ef-
ficacy of a crosslingual approach to dependency
parsing in a low-resource setting.

We use a strong graph-based dependency parser
with BiLSTM and biaffine attention (Dozat and
Manning, 2017), which is also used in related
work (Schuster et al., 2019; Mulcaire et al., 2019).
Crucially, our parser only takes as input word
representations. Universal parts of speech have
been shown useful for low-resource dependency
parsing (Duong et al., 2015; Ammar et al., 2016;
Ahmad et al., 2019), but many realistic low-
resource scenarios lack reliable part-of-speech
taggers; here, we do not use parts of speech as in-
put, and thus avoid the error-prone part-of-speech
tagging pipeline. For the fastText baseline, word
embeddings are not updated during training, to
preserve crosslingual alignment (Ammar et al.,
2016).

Lang Code Genus WALS 81A Size
English ENG Germanic SVO –
Arabic ARA Semitic VSO/SVO
Hebrew HEB Semitic SVO 5241

Croatian HRV Slavic SVO
Russian RUS Slavic SVO 6983

Dutch NLD Germanic SOV/SVO
German DEU Germanic SOV/SVO 12269

Spanish SPA Romance SVO
Italian ITA Romance SVO 12543

Chinese CMN Chinese SVO
Japanese JPN Japanese SOV 3997

Hungarian HUN Ugric SOV/SVO 910
Finnish FIN Finnic SVO 12217
Vietnamese VIE Viet-Muong SVO 1400
Uyghur UIG Turkic SOV 1656
Kazakh KAZ Turkic SOV 31
Turkish TUR Turkic SOV 3685

Table 1: List of the languages used in our UD v2.2 ex-
periments. Each shaded/unshaded section corresponds
to a pair of “related” languages. WALS 81A denotes
Feature 81A in WALS, Order of Subject, Object, and
Verb (Dryer and Haspelmath, 2013). “Size” represents
the downsampled size in # of sentences used for source
treebanks. The four languages in bold face are truly
low resource languages (< 2000 trees).

3 Experiments

We first conduct a set of experiments to assess the
efficacy of multilingual CWRs for low-resource de-
pendency parsing.

3.1 Zero-Target Dependency Parsing

Following prior work on low-resource depen-
dency parsing and crosslingual transfer (Zhang
and Barzilay, 2015; Guo et al., 2015; Ammar
et al., 2016; Schuster et al., 2019), we conduct
multi-source experiments on six languages (Ger-
man, Spanish, French, Italian, Portuguese, and
Swedish) from Google universal dependency tree-
bank version 2.0 (McDonald et al., 2013).6 We
train language models on the six languages and
English to produce multilingual CWRs. For each
tested language, we train a polyglot parser with
the multilingual CWRs on the five other languages
and English, and apply the parser to the test data
for the target language. Importantly, the parsing
annotation scheme is shared among the seven lan-
guages. Our results will show that the joint train-
ing approach for CWRs substantially outperforms
the retrofitting approach.

6http://github.com/ryanmcd/uni-dep-tb
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3.2 Diverse Low-Resource Parsing

The previous experiment compares the joint train-
ing and retrofitting approaches in low-resource
dependency parsing only for relatively similar
languages. In order to study the effectiveness
more extensively, we apply it to a more typo-
logically diverse set of languages. We use five
pairs of languages for “low-resource simulations,”
in which we reduce the size of a large treebank,
and four languages for “true low-resource experi-
ments,” where only small UD treebanks are avail-
able, allowing us to compare to other work in
the low-resource condition (Table 1). Following
de Lhoneux et al. (2018), we selected these lan-
guage pairs to represent linguistic diversity. For
each target language, we produce multilingual
CWRs by training a polyglot language model with
its related language (e.g., Arabic and Hebrew) as
well as English (e.g., Arabic and English). We
then train a polyglot dependency parser on each
language pair and assess the crosslingual transfer
in terms of target parsing accuracy.

Each pair of related languages shares features
like word order, morphology, or script. For exam-
ple, Arabic and Hebrew are similar in their rich
transfixing morphology (de Lhoneux et al., 2018),
and Dutch and German share most of their word
order features. We chose Chinese and Japanese
as an example of a language pair which does not
share a language family but does share characters.

We chose Hungarian, Vietnamese, Uyghur, and
Kazakh as true low-resource target languages be-
cause they had comparatively small amounts of
annotated text in the UD corpus (Vietnamese:
1,400 sentences, 20,285 tokens; Hungarian: 910
sentences, 20,166 tokens; Uyghur: 1,656 sen-
tences, 19,262 tokens; Kazakh: 31 sentences,
529 tokens;), yet had convenient sources of text
for LM pretraining (Zeman et al., 2018).7 Other
small treebanks exist, but in most cases another
larger treebank exists for the same language, mak-
ing domain adaptation a more likely option than
crosslingual transfer. Also, recent work (Che
et al., 2018) using contextual embeddings was top-
ranked for most of these languages in the CoNLL
2018 shared task on UD parsing (Zeman et al.,
2018).8

7The one exception is Uyghur where we only have 3M
words in the raw LM data from Zeman et al. (2018).

8In Kazakh, Che et al. (2018) did not use CWRs due to the
extremely small treebank size.

We use the same Universal Dependen-
cies (UD) treebanks (Nivre et al., 2018) and
train/development/test splits as the CoNLL 2018
shared task (Zeman et al., 2018).9 The annota-
tion scheme is again shared across languages,
which facilitates crosslingual transfer. For each
triple of two related languages and English, we
downsample training and development data to
match the language with the smallest treebank
size. This allows for fairer comparisons because
within each triple, the source language for any
parser will have the same amount of training data.
We further downsample sentences from the target
train/development data to simulate low-resource
scenarios. The ratio of training and development
data is kept 5:1 throughout the simulations, and
we denote the number of sentences in training
data by |D⌧ |. For testing, we use the CoNLL
2018 script on the gold word segmentations.
For the truly low-resource languages, we also
present results with word segmentations from the
system outputs of Che et al. (2018) (HUN, VIE,
UIG) and Smith et al. (2018) (KAZ) for a direct
comparison to those languages’ best previously
reported parsers.10

4 Results and Discussion

In this section we describe the results of the vari-
ous parsing experiments.

4.1 Zero-Target Parsing
Table 2 shows results on zero-target dependency
parsing. First, we see that all CWRs greatly im-
prove upon the fastText baseline. The joint train-
ing approach (Rosita), which uses no dictionaries,
consistently outperforms the dictionary-dependent
retrofitting approach (ELMos+Alignment). As
discussed in the previous section, we can ap-
ply the alignment method to refine the already-
polyglot Rosita using dictionaries. However, we
observe a relatively limited gain in overall per-
formance (74.5 vs. 73.9 LAS points), suggest-
ing that Rosita (polyglot language model) is al-
ready developing useful multilingual CWRs for
parsing without crosslingual supervision. Note
that the degraded overall performance of our
ELMo+Alignment compared to Schuster et al.
(2019)’s reported results (71.2 vs. 73.1) is likely

9See Appendix for a list of UD treebanks used.
10System outputs for all shared task systems are available

at https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-2885
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Model DEU SPA FRA ITA POR SWE AVG
Schuster et al. (2019) (retrofitting) 61.4 77.5 77.0 77.6 73.9 71.0 73.1
Schuster et al. (2019) (retrofitting, no dictionaries) 61.7 76.6 76.3 77.1 69.1 54.2 69.2
fastText + Alignment 45.2 68.5 62.8 58.9 61.1 50.4 57.8
ELMos + Alignment (retrofitting) 57.3 75.4 73.7 71.6 75.1 74.2 71.2
Rosita (joint training, no dictionaries) 58.0 81.8 75.6 74.8 77.1 76.2 73.9
Rosita + Refinement (joint training + retrofitting) 61.7 79.7 75.8 76.0 76.8 76.7 74.5

Table 2: Zero-target results in LAS. Results reported in prior work (above the line) use an unknown amount of LM
training data; all models below the line are limited to approximately 50M words per language.

Model DEU SPA FRA ITA POR SWE AVG
Zhang and Barzilay (2015) 54.1 68.3 68.8 69.4 72.5 62.5 65.9
Guo et al. (2016) 55.9 73.1 71.0 71.2 78.6 69.5 69.9
Ammar et al. (2016) 57.1 74.6 73.9 72.5 77.0 68.1 70.5
Schuster et al. (2019) (retrofitting) 65.2 80.0 80.8 79.8 82.7 75.4 77.3
Schuster et al. (2019) (retrofitting, no dictionaries) 64.1 77.8 79.8 79.7 79.1 69.6 75.0
Rosita (joint training, no dictionaries) 63.6 83.4 78.9 77.8 83.0 79.6 77.7
Rosita + Refinement (joint training + retrofitting) 64.8 82.1 78.7 78.8 84.1 79.1 77.9

Table 3: Zero-target results in LAS with gold UPOS.

due to the significantly reduced amount of LM
data we used in all of our experiments (50M
words per language, an order of magnitude re-
duction from the full Wikipedia dumps used in
Schuster et al. (2019)). Schuster et al. (2019) (no
dictionaries) is the same retrofitting approach as
ELMos+Alignment except that the transformation
matrices are learned in an unsupervised fashion
without dictionaries (Conneau et al., 2018). The
absence of a dictionary yields much worse perfor-
mance (69.2 vs. 73.1) in contrast with the joint
training approach of Rosita, which also does not
use a dictionary (73.9).

We also present results using gold universal part
of speech to compare to previous work in Ta-
ble 3. We again see Rosita’s effectiveness and a
marginal benefit from refinement with dictionar-
ies. It should also be noted that the reported results
for French, Italian and German in Schuster et al.
(2019) outperform all results from our controlled
comparison; this may be due to the use of abun-
dant LM training data. Nevertheless, joint train-
ing, with or without refinement, performs best on
average in both gold and predicted POS settings.

4.2 Diverse Low-Resource Parsing
Low-Resource Simulations Figure 1 shows
simulated low-resource results.11 Of greatest in-
terest are the significant improvements over mono-
lingual parsers when adding English or related-
language data. This improvement is consistent
across languages and suggests that crosslingual

11A table with full details including different size simula-
tions is provided in the appendix.

ARA HEB HRV RUS NLD DEU SPA ITA CMN JPN
50

60

70

80

mono. +ENG +rel.

Figure 1: LAS for UD parsing results in a simulated
low-resource setting where the size of the target lan-
guage treebank (|D⌧ |) is set to 100 sentences.

transfer is a viable solution for a wide range of
languages, even when (as in our case) language-
specific tuning or annotated resources like parallel
corpora or bilingual dictionaries are not available.
See Figure 2 for a visualization of the differences
in performance with varying training size. The
polyglot advantage is minor when the target lan-
guage treebank is large, but dramatic in the condi-
tion where the target language has only 100 sen-
tences. The fastText approaches consistently un-
derperform the language model approaches, but
show the same pattern.

In addition, related-language polyglot (“+rel.”)
outperforms English polyglot in most cases in the
low-resource condition. The exceptions to this
pattern are Italian (whose treebank is of a differ-
ent genre from the Spanish one), and Japanese and
Chinese, which differ significantly in morphology
and word order. The CMN/JPN result suggests
that such typological features influence the degree
of crosslingual transfer more than orthographic
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Figure 2: Plots of parsing performance vs. target language treebank size for several example languages. The
size 0 target treebank point indicates a parser trained only on the source language treebank but with polyglot
representations, allowing transfer to the target test treebank using no target language training trees. See Appendix
for results with zero-target-treebank and intermediate size data (|D⌧ | 2 {0, 100, 500, 1000}) for all languages.

properties like shared characters. This result in
crosslingual transfer also mirrors the observation
from prior work (Gerz et al., 2018) that typological
features of the language are predictive of monolin-
gual LM performance. The related-language im-
provement also vanishes in the full-data condition
(Figure 2), implying that the importance of shared
linguistic features can be overcome with sufficient
annotated data. It is also noteworthy that varia-
tions in word order, such as the order of adjec-
tive and noun, do not affect performance: Ital-
ian, Arabic, and others use a noun-adjective order
while English uses an adjective-noun order, but
their +ENG and +rel. results are comparable.

The Croatian and Russian results are notable
because of shared heritage but different scripts.
Though Croatian uses the Latin alphabet and Rus-
sian uses Cyrillic, transfer between HRV+RUS is
clearly more effective than HRV+ENG (82.00 vs.
79.21 LAS points when |D⌧ | = 100). This
suggests that character-based LMs can implicitly
learn to transliterate between related languages
with different scripts, even without parallel super-
vision.

Truly Low Resource Languages Finally we
present “true low-resource” experiments for four
languages in which little UD data is available
(see Section 3.2). Table 4 shows these results.
Consistent with our simulations, our parsers on
top of Rosita (multilingual CWRs from the joint
training approach) substantially outperform the
parsers with ELMos (monolingual CWRs) in all
languages, and establish a new state of the art

Model gold pred.
Hungarian (HUN)
Che et al. (2018) (HUN, ensemble) – 82.66
Che et al. (2018) (HUN) – 80.96
ELMo (HUN) 81.89 81.54
Rosita (HUN +ENG) 85.34 84.89
Rosita (HUN +FIN) 85.40 84.96
Vietnamese (VIE)
Che et al. (2018) (VIE, ensemble) – 55.22
ELMo (VIE) 62.67 55.72
Rosita (VIE +ENG) 63.07 56.42
Uyghur (UIG)
Che et al. (2018) (UIG, ensemble) – 67.05
Che et al. (2018) (UIG) – 66.20
ELMo (UIG) 66.64 63.98
Rosita (UIG +ENG) 67.85 65.55
Rosita (UIG +TUR) 68.08 65.73
Kazakh (KAZ)
Rosa and Mareček (2018) (KAZ +TUR) – 26.31
Smith et al. (2018) (KAZ +TUR) – 31.93
Schuster et al. (2019) (KAZ +TUR) – 36.98
Rosita (KAZ +ENG) 48.02 46.03
Rosita (KAZ +TUR) 53.98 51.96

Table 4: LAS (F1) comparison for truly low-resource
languages. The gold and pred. columns show re-
sults under gold segmentation and predicted segmen-
tation. The languages in the parentheses indicate the
languages used in parser training.
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in Hungarian, Vietnamese, and Kazakh. Con-
sistent with our simulations, we see that train-
ing parsers with the target’s related language is
more effective than with the more distant lan-
guage, English. It is particularly noteworthy that
the Rosita models, which do not use a parallel
corpus or dictionary, dramatically improve over
the best previously reported result from Schuster
et al. (2019) when either the related language of
Turkish (51.96 vs. 36.98) or even the more dis-
tant language of English (46.03 v.s. 36.98) is used.
Schuster et al. (2019) aligned the monolingual EL-
Mos for Kazakh and Turkish using the KAZ-TUR

dictionary that Rosa and Mareček (2018) derived
from parallel text. This result further corroborates
our finding that the joint training approach to mul-
tilingual CWRs is more effective than retrofitting
monolingual LMs.

4.3 Comparison to Multilingual BERT
Embeddings

We also evaluate the diverse low-resource lan-
guage pairs using pretrained multilingual BERT
(Devlin et al., 2019) as text embeddings (Figure
3). Here, the same language model (multilingual
cased BERT,12 covering 104 languages) is used
for all parsers, with the only variation being in the
training treebanks provided to each parser. Parsers
are trained using the same hyperparameters and
data as in Section 3.2.13

There are two critical differences from our pre-
vious experiments: multilingual BERT is trained
on much larger amounts of Wikipedia data com-
pared to other LMs used in this work, and the
WordPiece vocabulary (Wu et al., 2016) used
in the cased multilingual BERT model has been
shown to have a distribution skewed toward Latin
alphabets (Ács, 2019). These results are thus not
directly comparable to those in Figure 1; never-
theless, it is interesting to see that the results ob-
tained with ELMo-like LMs are comparable to and
in some cases better than results using a BERT
model trained on over a hundred languages. Our
results broadly fit with those of Pires et al. (2019),
who found that multilingual BERT was useful for
zero-shot crosslingual syntactic transfer. In partic-
ular, we find nearly no performance benefit from
cross-script transfer using BERT in a language
pair (English-Japanese) for which they reported

12Available at https://github.com/google-
research/bert/

13AllenNLP version 0.9.0 was used for these experiments.

ARA HEB HRV RUS NLD DEU SPA ITA CMN JPN
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mono. +ENG +rel.

Figure 3: LAS for UD parsing results in a simulated
low-resource setting ((|D⌧ | = 100) using multilingual
BERT embeddings in place of Rosita. Cf. Figure 1.

poor performance in zero-shot transfer, contrary
to our results using Rosita (Section 4.2).

5 Decontextual Probe

We saw the success of the joint polyglot train-
ing for multilingual CWRs over the retrofitting ap-
proach in the previous section. We hypothesize
that CWRs from joint training provide useful repre-
sentations for parsers by inducing nonlinear sim-
ilarity in the vector spaces of different languages
that we cannot retrieve with a simple alignment of
monolingual pretrained language models. In order
to test this hypothesis, we conduct a decontextual
probe comprised of two steps. The decontextu-
alization step effectively distills CWRs into word
type vectors, where each unique word is mapped
to exactly one embedding regardless of the con-
text. We then conduct linear transformation-based
word translation (Mikolov et al., 2013) on the de-
contextualized vectors to quantify the degree of
crosslingual similarity in the multilingual CWRs.

5.1 Decontextualization
Recall from Section 2 that we produce CWRs from
bidirectional LMs with character CNNs and two-
layer LSTMs. We propose a method to remove the
dependence on context c for the two LSTM layers
(the CNN layer is already context-independent by
design). During LM training, the hidden states of
each layer ht are computed by the standard LSTM
equations:

it = � (Wixt + +Uiht�1 + bi)

ft = � (Wfxt + Ufht�1 + bf )

c̃t = tanh (Wcxt + Ucht�1 + bc)

ot = � (Woxt + Uoht�1 + bo)

ct = ft � ct�1 + it � c̃t

ht = ot � tanh (ct)
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Representations UD SRL NER
GloVe 83.78 80.01 83.90
fastText 83.93 80.27 83.40
Decontextualization 86.88 81.41 87.72
ELMo 88.71 82.12 88.65

Table 5: Context independent vs. dependent per-
formance in English. All embeddings are 512-
dimensional and trained on the same English corpus
of approximately 50M tokens for fair comparisons.
We also concatenate 128-dimensional character LSTM
representations with the word vectors in every config-
uration to ensure all models have character input. UD
scores are LAS, and SRL and NER are F1.

We produce contextless vectors from pretrained
LMs by removing recursion in the computation
(i.e. setting ht�1 and ct�1 to 0):

it = � (Wixt + bi)

ft = � (Wfxt + bf )

c̃t = tanh (Wcxt + bc)

ot = � (Woxt + bo)

ct = it � c̃t

ht = ot � tanh (ct)

This method is fast to compute, as it does not re-
quire recurrent computation and only needs to see
each word once. This way, each word is associ-
ated with a set of exactly three vectors from the
three layers.

Performance of decontextualized vectors We
perform a brief experiment to find what informa-
tion is successfully retained by the decontextu-
alized vectors, by using them as inputs to three
tasks (in a monolingual English setting, for sim-
plicity). For Universal Dependencies (UD) pars-
ing, semantic role labeling (SRL), and named
entity recognition (NER), we used the standard
train/development/test splits from UD English
EWT (Zeman et al., 2018) and Ontonotes (Prad-
han et al., 2013). Following Mulcaire et al. (2019),
we use strong existing neural models for each task:
Dozat and Manning (2017) for UD parsing, He
et al. (2017) for SRL, and Peters et al. (2017) for
NER.

Table 5 compares the decontextualized vectors
with the original CWRs (ELMo) and the conven-
tional word type vectors, GloVe (Pennington et al.,
2014) and fastText (Bojanowski et al., 2017). In
all three tasks, the decontextualized vectors sub-
stantially improve over fastText and GloVe vec-
tors, and perform nearly on par with contextual

Vector DEU SPA FRA ITA POR SWE
fastText 31.6 54.8 56.7 50.2 55.5 43.9

ELMos
Layer 0 19.7 41.5 41.1 36.9 44.6 27.5
Layer 1 24.4 46.4 47.6 44.2 48.3 36.3
Layer 2 19.9 40.5 41.9 38.1 42.5 30.9

Rosita
Layer 0 37.9 56.6 58.2 57.5 56.6 50.6
Layer 1 40.3 56.3 57.2 58.1 56.5 53.7
Layer 2 38.8 51.1 52.7 53.6 50.7 50.8

Table 6: Crosslingual alignment results (precision at 1)
from decontextual probe. Layers 0, 1, and 2 denote the
character CNN, first LSTM, and second LSTM layers
in the language models respectively.

ELMo. This suggests that while part of the advan-
tage of CWRs is in the incorporation of context,
they also benefit from rich context-independent
representations present in deeper networks.

5.2 Word Translation Test

Given the decontextualized vectors from each
layer of the bidirectional language models, we
can measure the crosslingual lexical correspon-
dence in the multilingual CWRs by performing
word translation. Concretely, suppose that we
have training and evaluation word translation pairs
from the source to the target language. Using
the same word alignment objective discussed as in
Section 2.1, we find a linear transform by align-
ing the decontextualized vectors for the training
source-target word pairs. Then, we apply this lin-
ear transform to the decontextualized vector for
each source word in the evaluation pairs. The clos-
est target vector is found using the cross-domain
similarity local scaling (CSLS) measure (Conneau
et al., 2018), which is designed to remedy the hub-
ness problem (where a few “hub” points are near-
est neighbors to many other points each) in word
translation by normalizing the cosine similarity
according to the degree of hubness.

We again take the dictionaries from Conneau
et al. (2018) with the given train/test split, and al-
ways use English as the target language. For each
language, we take all words that appear three times
or more in our LM training data and compute de-
contextualized vectors for them. Word translation
is evaluated by choosing the closest vector among
the English decontextualized vectors.

5.3 Results

We present word translation results from our de-
contextual probe in Table 6. We see that the first
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LSTM layer generally achieves the best crosslin-
gual alignment both in ELMos and Rosita. This
finding mirrors recent studies on layerwise trans-
ferability; representations from the first LSTM
layer in a language model are most transferable
across a range of tasks (Liu et al., 2019). Our de-
contextual probe demonstrates that the first LSTM
layer learns the most generalizable representations
not only across tasks but also across languages.
In all six languages, Rosita (joint LM training
approach) outperforms ELMos (retrofitting ap-
proach) and the fastText vectors. This shows that
for the polyglot (jointly trained) LMs, there is
a preexisting similarity between languages’ vec-
tor spaces beyond what a linear transform pro-
vides. The resulting language-agnostic represen-
tations lead to polyglot training’s success in low-
resource dependency parsing.

6 Further Related Work

In addition to the work mentioned above, much
previous work has proposed techniques to trans-
fer knowledge from a high-resource to a low-
resource language for dependency parsing. Many
of these methods use an essentially (either lex-
icalized or delexicalized) joint polyglot training
setup (e.g., McDonald et al., 2011; Cohen et al.,
2011; Duong et al., 2015; Guo et al., 2016; Vi-
lares et al., 2016; Falenska and Çetinoğlu, 2017
as well as many of the CoNLL 2017/2018 shared
task participants: Lim and Poibeau (2017); Vania
et al. (2017); de Lhoneux et al. (2017); Che et al.
(2018); Wan et al. (2018); Smith et al. (2018); Lim
et al. (2018)). Some use typological information to
facilitate crosslingual transfer (e.g., Naseem et al.,
2012; Täckström et al., 2013; Zhang and Barzi-
lay, 2015; Wang and Eisner, 2016; Rasooli and
Collins, 2017; Ammar et al., 2016). Others use bi-
text (Zeman et al., 2018), manually-specified rules
(Naseem et al., 2012), or surface statistics from
gold universal part of speech (Wang and Eisner,
2018a,b) to map the source to target. The meth-
ods examined in this work to produce multilin-
gual CWRs do not rely on such external informa-
tion about the languages, and instead use relatively
abundant LM data to learn crosslinguality that ab-
stracts away from typological divergence.

Recent work has developed several probing
methods for (monolingual) contextual represen-
tations (Liu et al., 2019; Hewitt and Manning,
2019; Tenney et al., 2019). Wada and Iwata

(2018) showed that the (contextless) input and out-
put word vectors in a polyglot word-based lan-
guage model manifest a certain level of lexical cor-
respondence between languages. Our decontex-
tual probe demonstrated that the internal layers of
polyglot language models capture crosslinguality
and produce useful multilingual CWRs for down-
stream low-resource dependency parsing.

7 Conclusion

We assessed recent approaches to multilingual
contextual word representations, and compared
them in the context of low-resource dependency
parsing. Our parsing results illustrate that a joint
training approach for polyglot language models
outperforms a retrofitting approach of aligning
monolingual language models. Our decontextual
probe showed that jointly trained LMs learn a bet-
ter crosslingual lexical correspondence than the
one produced by aligning monolingual language
models or word type vectors. Our results provide a
strong basis for multilingual representation learn-
ing and for further study of crosslingual transfer
in a low-resource setting beyond dependency pars-
ing.
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Natalia Kotsyba, Simon Krek, Sookyoung Kwak,
Veronika Laippala, Lorenzo Lambertino, Tatiana
Lando, Septina Dian Larasati, Alexei Lavrentiev,
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Abstract

Recently, pre-trained language models have
achieved remarkable success in a broad range
of natural language processing tasks. How-
ever, in multilingual setting, it is extremely
resource-consuming to pre-train a deep lan-
guage model over large-scale corpora for each
language. Instead of exhaustively pre-training
monolingual language models independently,
an alternative solution is to pre-train a pow-
erful multilingual deep language model over
large-scale corpora in hundreds of languages.
However, the vocabulary size for each lan-
guage in such a model is relatively small, es-
pecially for low-resource languages. This lim-
itation inevitably hinders the performance of
these multilingual models on tasks such as se-
quence labeling, wherein in-depth token-level
or sentence-level understanding is essential.

In this paper, inspired by previous methods
designed for monolingual settings, we in-
vestigate two approaches (i.e., joint mapping
and mixture mapping) based on a pre-trained
multilingual model BERT for addressing the
out-of-vocabulary (OOV) problem on a vari-
ety of tasks, including part-of-speech tagging,
named entity recognition, machine translation
quality estimation, and machine reading com-
prehension. Experimental results show that
using mixture mapping is more promising. To
the best of our knowledge, this is the first work
that attempts to address and discuss the OOV
issue in multilingual settings.

1 Introduction

It has been shown that performance on many
natural language processing tasks drops dramati-
cally on held-out data when a significant percent-
age of words do not appear in the training data,

* This work was done when H. W. and K. S. were at
Tencent AI Lab, Bellevue, WA.

i.e., out-of-vocabulary (OOV) words (Søgaard and
Johannsen, 2012; Madhyastha et al., 2016). A
higher OOV rate (i.e., the percentage of the unseen
words in the held-out data) may lead to a more
severe performance drop (Kaljahi et al., 2015).
OOV problems have been addressed in previous
works under monolingual settings, through replac-
ing OOV words with their semantically similar in-
vocabulary words (Madhyastha et al., 2016; Ko-
lachina et al., 2017) or using character/word infor-
mation (Kim et al., 2016, 2018; Chen et al., 2018)
or subword information like byte pair encoding
(BPE) (Sennrich et al., 2016; Stratos, 2017).

Recently, fine-tuning a pre-trained deep lan-
guage model, such as Generative Pre-Training
(GPT) (Radford et al., 2018) and Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018), has achieved re-
markable success on various downstream natural
language processing tasks. Instead of pre-training
many monolingual models like the existing En-
glish GPT, English BERT, and Chinese BERT, a
more natural choice is to develop a powerful mul-
tilingual model such as the multilingual BERT.

However, all those pre-trained models rely on
language modeling, where a common trick is
to tie the weights of softmax and word embed-
dings (Press and Wolf, 2017). Due to the expen-
sive computation of softmax (Yang et al., 2017)
and data imbalance across different languages, the
vocabulary size for each language in a multilingual
model is relatively small compared to the mono-
lingual BERT/GPT models, especially for low-
resource languages. Even for a high-resource lan-
guage like Chinese, its vocabulary size 10k in the
multilingual BERT is only half the size of that in
the Chinese BERT. Just as in monolingual settings,
the OOV problem also hinders the performance of
a multilingual model on tasks that are sensitive to
token-level or sentence-level information. For ex-
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ample, in the POS tagging problem (Table 2), 11
out of 16 languages have significant OOV issues
(OOV rate ≥ 5%) when using multilingual BERT.

According to previous work (Radford et al.,
2018; Devlin et al., 2018), it is time-consuming
and resource-intensive to pre-train a deep lan-
guage model over large-scale corpora. To address
the OOV problems, instead of pre-training a deep
model with a large vocabulary, we aim at enlarg-
ing the vocabulary size when we fine-tune a pre-
trained multilingual model on downstream tasks.

We summarize our contributions as follows: (i)
We investigate and compare two methods to allevi-
ate the OOV issue. To the best of our knowledge,
this is the first attempt to address the OOV prob-
lem in multilingual settings. (ii) By using English
as an interlingua, we show that bilingual informa-
tion helps alleviate the OOV issue, especially for
low-resource languages. (iii) We conduct exten-
sive experiments on a variety of token-level and
sentence-level downstream tasks to examine the
strengths and weaknesses of these methods, which
may provide key insights into future directions1.

2 Approach

We use the multilingual BERT as the pre-trained
model. We first introduce the pre-training proce-
dure of this model (Section 2.1) and then introduce
two methods we investigate to alleviate the OOV
issue by expanding the vocabulary (Section 2.2).
Note that these approaches are not restricted to
BERT but also applicable to other similar models.

2.1 Pre-Trained BERT

Compared to GPT (Radford et al., 2018) and
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018) uses a bidirectional transformer, whereas
GPT pre-trains a left-to-right transformer (Liu
et al., 2018); ELMo (Peters et al., 2018) in-
dependently trains left-to-right and right-to-left
LSTMs (Peters et al., 2017) to generate represen-
tations as additional features for end tasks.

In the pre-training stage, Devlin et al. (2018) use
two objectives: masked language model (LM) and
next sentence prediction (NSP). In masked LM,
they randomly mask some input tokens and then
predict these masked tokens. Compared to unidi-
rectional LM, masked LM enables representations
to fuse the context from both directions. In the

1Improved models will be available at https://
github.com/sohuren/multilingul-bert.

NSP task, given a certain sentence, it aims to pre-
dict the next sentence. The purpose of adding the
NSP objective is that many downstream tasks such
as question answering and language inference re-
quire sentence-level understanding, which is not
directly captured by LM objectives.

After pre-training on large-scale corpora like
Wikipedia and BookCorpus (Zhu et al., 2015), we
follow recent work (Radford et al., 2018; Devlin
et al., 2018) to fine-tune the pre-trained model on
different downstream tasks with minimal architec-
ture adaptation. We show how to adapt BERT to
different downstream tasks in Figure 1 (left).

2.2 Vocabulary Expansion

Devlin et al. (2018) pre-train the multilingual
BERT on Wikipedia in 102 languages, with a
shared vocabulary that contains 110k subwords
calculated from the WordPiece model (Wu et al.,
2016). If we ignore the shared subwords be-
tween languages, on average, each language has
a 1.1k vocabulary, which is significantly smaller
than that of a monolingual pre-trained model such
as GPT (40k). The OOV problem tends to be less
serious for languages (e.g., French and Spanish)
that belong to the same language family of En-
glish. However, this is not always true, especially
for morphologically rich languages such as Ger-
man (Ataman and Federico, 2018; Lample et al.,
2018). OOV problem is much more severe in low-
resource scenarios, especially when a language
(e.g., Japanese and Urdu) uses an entirely differ-
ent character set from high-resource languages.

We focus on addressing the OOV issue at
subword level in multilingual settings. For-
mally, suppose we have an embedding Ebert

extracted from the (non-contextualized) embed-
ding layer in the multilingual BERT (i.e., the
first layer of BERT). And suppose we have an-
other set of (non-contextualized) sub-word em-
beddings {El1 , El2 , . . . , Eln} ∪ {Een}, which are
pre-trained on large corpora using any standard
word embedding toolkit. Specifically, Een repre-
sents the pre-trained embedding for English, and
Eli represents the pre-trained embedding for non-
English language li at the subword level. We de-
note the vocabulary of Ebert, Een, and Eli by
Vbert, Ven, and Vli , respectively. For each subword
w in Vbert, we use Ebert(w) to denote the pre-
trained embedding of word w in Ebert. Eli(·) and
Een(·) are defined in a similar way asEbert(·). For
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Figure 1: Left: fine-tuning BERT on different kinds of end tasks. Right: illustration of joint and mixture mapping
(in this example, during mixture mapping, we represent e(cer) = 0.7 ∗ e(er) + 0.2 ∗ e(or) + 0.1 ∗ e(ch)).

each non-English language l ∈ {l1, l2, . . . , ln}, we
aim to enrich Ebert with more subwords from the
vocabulary in Eli since Eli contains a larger vo-
cabulary of language li compared to Ebert.

As there is no previous work to address multi-
lingual OOV issues, inspired by previous solutions
designed for monolingual settings, we investigate
the following two methods, and all of them can
be applied at both word/subword level, though we
find subword-level works better (Section 3).
Joint Mapping For each non-English language
l, we first construct a joint embedding space E′

l

through mappingEl toEen by an orthogonal map-
ping matrix Bl (i.e., E′

l = ElBl). When a bilin-
gual dictionary fl : Vl → Ven is available or can
be constructed based on the shared common sub-
words (Section 3.1), we obtain Bl by minimizing:

∑

w′∈Vl∩{w:fl(w)∈Ven}

∥∥El(w
′)Bl − Een(fl(w

′))
∥∥2
F

where ‖·‖F denotes the Frobenius norm. Other-
wise, for language pair (e.g., English-Urdu) that
meets neither of the above two conditions, we
obtain Bl by an unsupervised word alignment
method from MUSE (Conneau et al., 2018).

We then mapE′
l toEbert by an orthogonal map-

ping matrix A′
l, which is obtained by minimizing

∑

w∈fl(Vl)∩Vbert

∥∥E′
l(w)A

′
l − Ebert(w)

∥∥2
F

We denote this method by MJ in our discussion
below, where the subscript J stands for “joint”.
Mixture Mapping Following the work of Gu et al.
(2018) where they use English as “universal to-
kens” and map all other languages to English

to obtain the subword embeddings, we represent
each subword in E′

l (described in joint mapping)
as a mixture of English subwords where those En-
glish subwords are already in the BERT vocab
Vbert. This method, denoted by MM , is also a
joint mapping without the need for learning the
mapping from E′

l to Ebert. Specifically, for each
w ∈ Vl, we obtain its embedding e(w) in the
BERT embedding space Ebert as follows.

e(w) =
∑

u∈T (w)

p(u |w)Ebert(u)

where T (w) is a set to be defined later, and the
mixture coefficient p(u|w) is defined by

p(u |w) = exp(CSLS(El(u), Een(w)))∑
v∈T (w) exp(CSLS(El(v), Een(w)))

where CSLS refers to the distance metric Cross-
domain Similarity Local Scaling (Conneau et al.,
2018). We select five v ∈ Ven ∪ Vbert with the
highest CSLS(El(v), Een(w)) to form set T (w).
In all our experiments, we set the number of near-
est neighbors in CSLS to 10. We refer readers
to Conneau et al. (2018) for details. Figure 1
(right) illustrates the joint and mixture mapping.

3 Experiment

3.1 Experiment Settings
We obtain the pre-trained embeddings of a specific
language by training fastText (Bojanowski et al.,
2017) on Wikipedia articles in that language, with
context window 5 and negative sampling 5. Be-
fore training, we first apply BPE (Sennrich et al.,
2016) to tokenize the corpus with subword vocab-
ulary size 50k. For joint mapping method MJ ,
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we use bilingual dictionaries provided by Conneau
et al. (2018). For a language pair where a bilingual
dictionary is not easily available, if two languages
share a significant number of common subwords
(this often happens when two languages belong to
the same language family), we construct a bilin-
gual dictionary based on the assumption that iden-
tical subwords have the same meaning (Søgaard
et al., 2018). We add all unseen subwords from
50k vocabulary to BERT. We define a word as an
OOV word once it cannot be represented as a sin-
gle word. For example, in BERT, the sentence “Je
sens qu’ entre ça et les films de médecins et sci-
entifiques” is represented as “je sens qu ##’ en-
tre [UNK] et les films de [UNK] et scientifiques”,
where qu’ is an OOV word since it can only be
represented by two subword units: qu and ##’, but
it is not OOV at subword level; ça and médecins
cannot be represented by any single word or com-
bination of subword units, and thus they are OOV
at both word and subword level.

We use the multilingual BERT with default pa-
rameters in all our experiments, except that we
tune the batch size and training epochs. To have
a thorough examination about the pros and cons
of the explored methods, we conduct experiments
on a variety of token-level and sentence-level clas-
sification tasks: part of speech (POS) tagging,
named entity recognition (NER), machine transla-
tion quality estimation, and machine reading com-
prehension. See more details in each subsection.

3.2 Discussions about Mapping Methods

Previous work typically assumes a linear map-
ping exists between embedding spaces of differ-
ent languages if their embeddings are trained using
similar techniques (Xing et al., 2015; Madhyastha
et al., 2016). However, it is difficult to map em-
beddings learned with different methods (Søgaard
et al., 2018). Considering the differences between
BERT and fastText: e.g., the objectives, the way to
differentiate between different subwords, and the
much deeper architecture of BERT, it is very un-
likely that the (non-contextualized) BERT embed-
ding and fastText embedding reside in the same
geometric space. Besides, due to that BERT has
a relatively smaller vocabulary for each language,
when we map a pre-trained vector to its por-
tion in BERT indirectly as previous methods, the
supervision signal is relatively weak, especially
for low-resource languages. In our experiment,

we find that the accuracy of the mapping from
our pre-trained English embedding to multilingual
BERT embedding (English portion) is lower than
30%. In contrast, the accuracy of the mapping
between two regular English embeddings that are
pre-trained using similar methods (e.g., CBOW or
SkipGram (Mikolov et al., 2013)) could be above
95% (Conneau et al., 2018).

Besides the joint mapping method MJ (Sec-
tion 2.2), another possible method that could
be used for OOV problem in multilingual set-
ting is that, for each language l, we map
its pre-trained embedding space El to em-
bedding Ebert by an orthogonal mapping ma-
trix Al, which is obtained by minimizing∑

w∈Vl∩Vbert
‖El(w)Al − Ebert(w)‖2F . This ap-

proach is similar to (Madhyastha et al., 2016), and
is referred as independent mapping method be-
low. However, we use examples to demonstrate
why these kind of methods are less promising. In
Table 1, the first two rows are results obtained by
mapping our pre-trained English embedding (us-
ing fastText) to the (non-contextualized) BERT
embedding. In this new unified space, we align
words with CSLS metric, and for each subword
that appears in English Wikipedia, we seek its
closest neighbor in the BERT vocabulary. Ideally,
each word should find itself if it exists in the BERT
vocabulary. However, this is not always true. For
example, although “however” exists in the BERT
vocabulary, independent mapping fails to find it
as its own closest neighbor. Instead, it incorrectly
maps it to irrelevant Chinese words “盘” (“plate”)
and “龙” (“dragon”). A similar phenomenon is
observed for Chinese. For example, “册” is incor-
rectly aligned to Chinese words “书” and “卷”.

Source Lang Source Target probability

English however 盘(plate) 0.91
however 龙(dragon) 0.05

Chinese 册(booklet) 书(book) 0.49
册(booklet) 卷(volume) 0.46

Table 1: Alignment from Independent Mapping.

Furthermore, our POS tagging experiments
(Section 3.3) further show that joint mapping MJ

does not improve (or even hurt) the performance
of the multilingual BERT. Therefore, we use mix-
ture mapping MM to address and discuss OOV
issues in the remaining sections.
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BTS♣ BiLSTM♦ FREQ♦ BERT BERToov BERToovR BERToovMJ OOVw OOVsw

ar - 98.23 90.06 53.34 56.70 56.57 56.23 89.8 70.6
bg 97.84 98.23 90.06 98.70 98.22 94.41 97.21 45.7 1.2
da 95.52 96.16 96.35 97.16 96.53 94.15 94.85 38.9 2.8
de 92.87 93.51 93.38 93.58 93.81 91.77 93.12 43.2 5.6
es 95.80 95.67 95.74 96.04 96.92 95.10 95.77 29.4 6.0
fa 96.82 97.60 97.49 95.62 94.90 94.35 95.82 35.6 6.5
fi 95.48 95.74 95.85 87.72 93.35 84.75 89.39 64.9 10.4
fr 95.75 96.20 96.11 95.17 96.59 94.84 95.24 33.9 10.3
hr - 96.27 96.82 95.03 96.49 89.87 93.48 49.5 8.3
it 97.56 97.90 97.95 98.22 98.00 97.63 97.85 30.3 2.3
nl - 92.82 93.30 93.89 92.89 91.30 91.71 35.5 0.3
no - 98.06 98.03 97.25 95.98 94.21 95.83 38.7 4.4
pl - 97.63 97.62 91.62 95.95 87.50 92.56 56.5 13.6
pt - 97.94 97.90 96.66 97.63 95.93 96.90 34.0 8.3
sl - 96.97 96.84 95.02 96.91 89.55 93.97 49.2 7.8
sv 95.57 96.60 96.69 91.23 96.66 90.45 91.92 48.2 17.7

average - 96.60 95.64 92.27 93.60 90.15 92.20 45.2 11.0

Table 2: POS tagging accuracy (%) on the Universal Dependencies v1.2 dataset. BERToov: BERT with method
MM . BERToovR: BERT with randomly picked embedding from BERT. BERToovMJ: BERT with method MJ .
OOVw: word-level OOV rate. OOVsw: subword-level OOV rate. ♣: Gillick et al. (2016), ♦: Plank et al. (2016).

Approach Precision Recall F1 score

DomainMask (Peng and Dredze, 2017a) 60.8 44.9 51.7
Linear Projection (Peng and Dredze, 2017a) 67.2 41.2 51.1
Updates (Peng and Dredze, 2017b) - - 56.1
Updates (Peng and Dredze, 2017b) - - 59.0

BERT 56.6 61.7 59.0
BERToov 60.2 62.8 61.4
BERTzh 63.4 70.8 66.9

Table 3: Performance of various models on the test set of Weibo NER. BERTzh: Chinese BERT pre-trained over
Chinese Wikipedia. We use scripts conlleval for evaluation on NER.

3.3 Monolingual Sequence Labeling Tasks

POS Tagging: We use the Universal Dependen-
cies v1.2 data (McDonald et al., 2013). For lan-
guages with token segmentation ambiguity, we
use the gold segmentation following Plank et al.
(2016). We consider languages that have suffi-
cient training data and filter out languages that
have unsatisfying embedding alignments with En-
glish (accuracy is lower than 20.0% measured by
word alignment accuracy or 0.25 by unsupervised
metric in MUSE (Conneau et al., 2018)). Fi-
nally, we keep 16 languages. We use the original
multilingual BERT (without using CRF (Lafferty
et al., 2001) on top of it for sequence labeling) to
tune hyperparameters on the dev set and use the
fixed hyperparameters for the expanded multilin-
gual model. We do not tune the parameters for
each model separately. As shown in Table 2, at
both the word and subword level, the OOV rate in
this dataset is quite high. Mixture mapping im-
proves the accuracy on 10 out of 16 languages,

leading to a 1.97% absolute gain in average. We
discuss the influence of alignments in Section 3.6.

Chinese NER: We are also interested in investi-
gating the performance gap between the expanded
multilingual model and a monolingual BERT that
is pre-trained on a large-scale monolingual corpus.
Currently, pre-trained monolingual BERT mod-
els are available in English and Chinese. As En-
glish has been used as the interlingua, we compare
the expanded multilingual BERT and the Chinese
BERT on a Chinese NER task, evaluated on the
Weibo NER dataset constructed from social media
by Peng and Dredze (2015). In the training set, the
token-level OOV rate is 2.17%, and the subword-
level OOV rate is 0.54%. We tune the hyperpa-
rameters of each model based on the development
set separately and then use the best hyperparame-
ters of each model for evaluation on the test set.

As shown in Table 3, the expanded model out-
performs the multilingual BERT on the Weibo
NER dataset. We boost the F1 score from 59.0%
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to 61.4%. Compared to the Chinese BERT
(66.9%), there still exists a noticeable perfor-
mance gap. One possible reason could be the
grammatical differences between Chinese and En-
glish. As BERT uses the language model loss
function for pre-training, the pre-trained Chinese
BERT could better capture the language-specific
information comapred to the multilingual BERT.

3.4 Code-Mixed Sequence Labeling Tasks

As the multilingual BERT is pre-trained over 102
languages, it should be able to handle code-mixed
texts. Here we examine its performance and the
effectiveness of the expanded model in mixed lan-
guage scenarios, using two tasks as case studies.
Code-Switch Challenge: We first evaluate on the
CALCS-2018 code-switched task (Aguilar et al.,
2018), which contains two NER tracks on Twit-
ter social data: mixed English&Spanish (en-es)
and mixed Modern Standard Arabic&Egyptian
(ar-eg). Compared to traditional NER datasets
constructed from news, the dataset contains a sig-
nificant portion of uncommon tokens like hash-
tags and abbreviations, making it quite challeng-
ing. For example, in the en-es track, the token-
level OOV rate is 44.6%, and the subword-level
OOV rate is 3.1%; in the ar-eg track, the token-
level OOV rate is 64.0%, and the subword-level
OOV rate is 6.0%. As shown in Table 4, on ar-
eg, we boost the F1 score from 74.7% to 77.3%.
However, we do not see similar gains on the en-es
dataset, probably because that English and Span-
ish share a large number of subwords, and adding
too many new subwords might prevent the model
from utilizing the well pre-trained subwords em-
bedding. See Section 3.6 for more discussions.

en-es ar-eg
Model Prec Rec F1 Prec Rec F1

FAIR♣ - - 62.4 - - 71.6
IIT♣ - - 63.8 - - -

FAIR♦ - - 67.7 - - 81.4
BERT 72.7 63.6 67.8 73.8 75.6 74.7
BERToov 74.2 60.9 66.9 76.9 77.8 77.3

Table 4: Accuracy (%) on the code-switch challenge.
The top two rows are based on the test set, and the
bottom three rows are based on the development set.
♣: results from Aguilar et al. (2018). ♦: results
from Wang et al. (2018).

Machine Translation Quality Estimation: All
previous experiments are based on well-curated

data. Here we evaluate the expanded model on
a language generation task, where sometimes the
generated sentences are out-of-control.

We choose the automatic Machine Translation
Quality Estimation task and use Task 2 – word-
level quality estimation – in WMT18 (Bojar et al.,
2018). Given a source sentence and its translation
(i.e., target), this task aims to estimate the trans-
lation quality (“BAD” or “OK”) at each position:
e.g., each token in the source and target sentence,
each gap in the target sentence. We use English to
German (en-de) SMT translation. On all three cat-
egories, the expanded model consistently outper-
forms the original multilingual BERT (Table 5)2.

3.5 Sequence Classification Tasks

Finally, we evaluate the expanded model on se-
quence classification in a mixed-code setting,
where results are less sensitive to unseen words.
Code-Mixed Machine Reading Comprehen-
sion: We consider the mixed-language machine
reading comprehension task. Since there is no
such public available dataset, we construct a
new Chinese-English code-mixed machine read-
ing comprehension dataset based on 37,436 undu-
plicated utterances obtained from the transcrip-
tions of a Chinese and English mixed speech
recognition corpus King-ASR-065-13. We gen-
erate a multiple-choice machine reading compre-
hension problem (i.e., a question and four an-
swer options) for each utterance. A question is
an utterance with an English text span removed
(we randomly pick one if there are multiple En-
glish spans) and the correct answer option is the
removed English span. Distractors (i.e., wrong
answer options) come from the top three closest
English text spans, which appear in the corpus,
based on the cosine similarity of word embed-
dings trained on the same corpus. For example,
given a question “突然听到 21 ，那强劲的鼓
点，那一张张脸。” (“Suddenly I heard 21 ,
and the powerful drum beats reminded me of the
players.”) and four answer options { “forever”,
“guns”, “jay”, “twins” }, the task is to select
the correct answer option “guns” (“21 Guns” is a
song by the American rock band Green Day). We
split the dataset into training, development, and
testing of size 36,636, 400, 400, respectively. An-

2Our evaluation is based on the development set since the
test set is only available to participants, and we could not find
the submission teams’ performance on the developmenet set.

3http://kingline.speechocean.com.
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Words in MT Gaps in MT Words in SRC
Model F1-BAD F1-OK F1-multi F1-BAD F1-OK F1-multi F1-BAD F1-OK F1-multi

Fan et al. (2018) 0.68 0.92 0.62 - - - - - -
Fan et al. (2018) 0.66 0.92 0.61 0.51 0.98 0.50 - - -
SHEF-PT♣ 0.51 0.85 0.43 0.29 0.96 0.28 0.42 0.80 0.34

BERT 0.58 0.91 0.53 0.47 0.98 0.46 0.48 0.90 0.43
BERToov 0.60 0.91 0.55 0.50 0.98 0.49 0.49 0.90 0.44

Table 5: WMT18 Quality Estimation Task 2 for the en→de SMT dataset. ♣: result from Specia et al. (2018). MT:
machine translation, e.g., target sentence, SRC: source sentence. F1-OK: F1 score for “OK” class; F1-BAD: F1
score for “BAD” class; F1-multi: multiplication of F1-OK and F1-BAD.

notators manually clean and improve the quality
problems by generating more confusing distrac-
tors in the dev and testing sets to guarantee that
these problems are error-free and challenging.

In this experiment, for each BERT model, we
follow its default hyperparameters. As shown in
Table 6, the expanded model improves the multi-
lingual BERT (38.1%) by 1.2% in accuracy. Hu-
man performance (81.4%) indicates that this is not
an easy task even for human readers.

Accuracy
Model Development Test

BERTen 38.2 37.3
BERT 38.7 38.1

BERToov 39.4 39.3
BERTzh 40.0 45.0

Table 6: Accuracy (%) of models on the code-mixed
reading comprehension dataset. BERTen: pre-trained
English BERT. BERTzh: pre-trained Chinese BERT.

3.6 Discussions
In this section, we first briefly investigate whether
the performance boost indeed comes from the re-
duction of OOV and then discuss the strengths and
weaknesses of the methods we investigate.

First, we argue that it is essential to alleviate
the OOV issue in multilingual settings. Taking the
POS tagging task as an example, we find that most
errors occur at the OOV positions (Table 7 in Sec-
tion 3.3). In the original BERT, the accuracy of
OOV words is much lower than that of non-OOV
words, and we significantly boost the accuracy of
OOV words with the expanded BERT. All these re-
sults indicate that the overall improvement mostly
comes from the reduction of OOV.

We also observe that the following factors may
influence the performance of the expanded model.
Subwords: When expanding the vocabulary, it is
critical to add only frequent subwords. Currently,

BERT BERToov
Lang non-OOV OOV non-OOV OOV

fi 98.1 81.3 98.5 90.2
fr 97.0 90.2 97.2 95.6
hr 97.8 91.9 97.7 94.5
pl 98.8 84.6 99.0 93.2
pt 98.8 91.5 98.6 94.8
sl 98.6 91.6 98.7 95.1
sv 97.4 82.9 98.2 94.8

average 98.1 87.7 98.3 94.0

Table 7: POS tagging accuracy (%) for OOV tokens
and non-OOV tokens on the Universal Dependencies
v1.2 dataset, where the OOV/non-OOV are defined at
word level with the original BERT vocabulary.

we add all unseen subwords from the 50k vocab-
ulary (Section 3.1), which may be not an optimal
choice. Adding too many subwords may prevent
the model from utilizing the information from pre-
trained subword embedding in BERT, especially
when there is a low word-level overlap between
the training and test set.
Language: We also find that languages can influ-
ence the performance of the vocabulary expansion
through the following two aspects: the alignment
accuracy and the closeness between a language
and English. For languages that are closely re-
lated to English such as French and Dutch, it is
relatively easy to align their embeddings to En-
glish as most subword units are shared (Søgaard
et al., 2018; Conneau et al., 2018). In such
case, the BERT embedding already contains suf-
ficient information, and therefore adding addi-
tional subwords may hurt the performance. On
the other hand, for a distant language such as Pol-
ish (Slavic family), which shares some subwords
with English (Germanic family), adding subwords
to BERT brings performance improvements. In
the meantime, as Slavic and Germanic are two
subdivisions of the Indo-European languages, we
find that the embedding alignment methods per-
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form reasonably well. For these languages, vo-
cabulary expansion is usually more effective, indi-
cated by POS tagging accuracies for Polish, Por-
tuguese, and Slovenian (Table 2). For more dis-
tant languages like Arabic (Semitic family) that
use different character sets, it is necessary to add
additional subwords. However, as the grammar of
such a language is very different from that of En-
glish, how to accurately align their embeddings is
the main bottleneck.
Task: We see more significant performance gains
on NER, POS and MT Quality Estimation, pos-
sibly because token-level understanding is more
critical for these tasks, therefore alleviating OOV
helps more. In comparison, for sequence level
classification tasks such as machine reading com-
prehension (Section 3.5), OOV issue is less severe
since the result is based on the entire sentence.

4 Related Work

OOV poses challenges for many tasks (Pinter
et al., 2017) such as machine translation (Razmara
et al., 2013; Sennrich et al., 2016) and sentiment
analysis (Kaewpitakkun et al., 2014). Even for
tasks such as machine reading comprehension that
are less sensitive to the meanings of each word,
OOV still hurts the performance (Chu et al., 2017;
Zhang et al., 2018). We now discuss previous
methods in two settings.

4.1 Monolingual Setting

Most previous work address the OOV problems in
monolingual settings. Before more fine-grained
encoding schema such as BPE (Sennrich et al.,
2016) is proposed, prior work mainly focused
on OOV for token-level representations (Taylor
et al., 2011; Kolachina et al., 2017). Besides
simply assigning random embeddings to unseen
words (Dhingra et al., 2017) or using an unique
symbol to replace all these words with a shared
embedding (Hermann et al., 2015), a thread of
research focuses on refining the OOV represen-
tations based on word-level information, such as
using similar in-vocabulary words (Luong et al.,
2015; Cho et al., 2015; Tafforeau et al., 2015;
Li et al., 2016), mapping initial embedding to
task-specific embedding (Rothe et al., 2016; Mad-
hyastha et al., 2016), using definitions of OOV
words from auxiliary data (Long et al., 2016;
Bahdanau et al., 2017), and tracking contexts to
build/update representations (Henaff et al., 2016;

Kobayashi et al., 2017; Ji et al., 2017; Zhao et al.,
2018).

Meanwhile, there have been efforts in repre-
senting words by utilizing character-level (Zhang
et al., 2015; Ling et al., 2015a,b; Kim et al.,
2016; Gimpel and Livescu, 2016) or subword-
level representations (Sennrich et al., 2016; Bo-
janowski et al., 2017). To leverage the advan-
tages in character and (sub)word level represen-
tation, some previous work combine (sub)word-
and character-level representations (Santos and
Zadrozny, 2014; dos Santos et al., 2015; Yu et al.,
2017) or develop hybrid word/subword-character
architectures (Chung et al., 2016; Luong and Man-
ning, 2016; Pinter et al., 2017; Bahdanau et al.,
2017; Matthews et al., 2018; Li et al., 2018). How-
ever, all those approaches assume monolingual
setting, which is different from ours.

4.2 Multilingual Setting

Addressing OOV problems in a multilingual set-
ting is relatively under-explored, probably because
most multilingual models use separate vocabular-
ies (Jaffe, 2017; Platanios et al., 2018). While
there is no direct precedent, previous work show
that incorporating multilingual contexts can im-
prove monolingual word embeddings (Zou et al.,
2013; Andrew et al., 2013; Faruqui and Dyer,
2014; Lu et al., 2015; Ruder et al., 2017).

Madhyastha and España-Bonet (2017) increase
the vocabulary size for statistical machine trans-
lation (SMT). Given an OOV source word, they
generate a translation list in target language, and
integrate this list into SMT system. Although
they also generate translation list (similar with us),
their approach is still in monolingual setting with
SMT. Cotterell and Heigold (2017) train char-
level taggers to predict morphological taggings
for high/low resource languages jointly, alleviat-
ing OOV problems to some extent. In contrast, we
focus on dealing with the OOV issue at subword
level in the context of pre-trained BERT model.

5 Conclusion

We investigated two methods (i.e., joint mapping
and mixture mapping) inspired by monolingual
solutions to alleviate the OOV issue in multilin-
gual settings. Experimental results on several
benchmarks demonstrate the effectiveness of mix-
ture mapping and the usefulness of bilingual in-
formation. To the best of our knowledge, this is

323



the first work to address and discuss OOV issues
at the subword level in multilingual settings. Fu-
ture work includes: investigating other embedding
alignment methods such as Gromov-Wasserstein
alignment (Alvarez-Melis and Jaakkola, 2018)
upon more languages; investigating approaches to
choose the subwords to be added dynamically.

Acknowledgments

We thank the anonymous reviewers for their en-
couraging and helpful feedback.

References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona

Diab, Julia Hirschberg, and Thamar Solorio. 2018.
Overview of the CALCS 2018 Shared Task: Named
Entity Recognition on Code-switched Data. In Pro-
ceedings of the Third Workshop on Computational
Approaches to Linguistic Code-Switching, pages
138–147, Melbourne, Australia.

David Alvarez-Melis and Tommi Jaakkola. 2018.
Gromov-wasserstein alignment of word embedding
spaces. In Proceedings of the EMNLP, pages 1881–
1890, Brussels, Belgium.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen
Livescu. 2013. Deep canonical correlation analysis.
In Proceedings of the ICML, pages 1247–1255, At-
lanta, GA.

Duygu Ataman and Marcello Federico. 2018. Compo-
sitional representation of morphologically-rich input
for neural machine translation. In Proceedings of
the ACL, pages 305–311, Melbourne, Australia.

Dzmitry Bahdanau, Tom Bosc, Stanisław Jastrzebski,
Edward Grefenstette, Pascal Vincent, and Yoshua
Bengio. 2017. Learning to compute word embed-
dings on the fly. arXiv preprint arXiv:1706.00286.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.
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Abstract

Long sentences have been one of the ma-
jor challenges in neural machine translation
(NMT). Although some approaches such as
the attention mechanism have partially reme-
died the problem, we found that the current
standard NMT model, Transformer, has diffi-
culty in translating long sentences compared
to the former standard, Recurrent Neural Net-
work (RNN)-based model. One of the key
differences of these NMT models is how the
model handles position information which is
essential to process sequential data. In this
study, we focus on the position information
type of NMT models, and hypothesize that rel-
ative position is better than absolute position.
To examine the hypothesis, we propose RNN-
Transformer which replaces positional encod-
ing layer of Transformer by RNN, and then
compare RNN-based model and four vari-
ants of Transformer. Experiments on ASPEC
English-to-Japanese and WMT2014 English-
to-German translation tasks demonstrate that
relative position helps translating sentences
longer than those in the training data. Further
experiments on length-controlled training data
reveal that absolute position actually causes
overfitting to the sentence length.

1 Introduction

Sequence to sequence models for neural machine
translation (NMT) are now utilized for various text
generation tasks including automatic summariza-
tion (Chopra et al., 2016; Nallapati et al., 2016;
Rush et al., 2015) and dialogue systems (Vinyals
and Le, 2015; Shang et al., 2015); the models are
required to take inputs of various length. Early
studies on recurrent neural network (RNN)-based
model analyze the translation quality with respect
to the sentence length, and show that their mod-
els improve translations for long sentences, using
the long short-term memory (LSTM) (Sutskever

et al., 2014) or introducing the attention mecha-
nism (Bahdanau et al., 2015; Luong et al., 2015).
However, Koehn and Knowles (2017) report that
even RNN-based model with the attention mecha-
nism performs worse than phrase-based statistical
machine translation (Koehn et al., 2007) in trans-
lating very long sentences, which challenges us
to develop an NMT model that is robust to long
sentences or more generally, variations in input
length.

Have the recent advances in NMT achieved the
robustness to the variations in input length? NMT
has been advancing by upgrading the model ar-
chitecture: RNN-based model (Cho et al., 2014;
Sutskever et al., 2014; Bahdanau et al., 2015; Lu-
ong et al., 2015) followed by convolutional neural
network (CNN)-based model (Kalchbrenner et al.,
2016; Gehring et al., 2017) and attention-based
model (Vaswani et al., 2017) called Transformer
(§ 2). Transformer is the de facto standard NMT
model today for its better performance compared
to the former standard RNN-based model. We
thus came up with a question whether Transformer
have acquired the robustness to the variations in
input length.

On the length of input sentence(s), the key dif-
ference between existing NMT models is how they
incorporate information on word positions in the
input. RNN or CNN-based NMT captures rela-
tive positions which stem from sequential opera-
tion of RNN or convolution operation of CNN. On
the other hand, position embeddings or positional
encodings (vector representations of positions) are
used to handle absolute positions in Transformer.
Gehring et al. (2017) integrate position embed-
dings, which are induced together with the other
model parameters, into the CNN-based model, and
showed that absolute position is still beneficial for
their model in addition to the relative position cap-
tured by CNN. By contrast, Transformer only em-

328



ploys positional encodings, which give fixed vec-
tors to positions using sine and cosine functions.

In this study, we suspect that these differences
in position information types of the models have
an impact on the accuracy of translating long sen-
tences, and investigate the impact of position in-
formation on translating long sentences to realize
an NMT model that is robust to variations in input
length. We reveal that RNN-based model (rela-
tive position) is better than Transformer with po-
sitional encodings (absolute position) in translat-
ing longer sentences than those in the training data
(§ 5.2). Motivated from this result, we propose a
simple modification to Transformer, using RNN as
relative positional encoder (§ 4).

Whereas RNN and CNN-based models are in-
separable from relative position inside of RNN or
CNN, Transformer allows us to change the po-
sition information type. We therefore compare
the RNN-based model and four variants of Trans-
former: vanilla Transformer, the modified Trans-
former using self-attention with relative positional
encodings (Shaw et al., 2018), our modified Trans-
former with RNN instead of positional encoding
layer, and a mixture of the last two models (§ 5).
On ASPEC English-to-Japanese and WMT2014
English-to-German translation tasks, we show that
relative information improves Transformer to be
more robust to variations in input length.

Our contribution is as follows:

• We identified a defect in Transformer. Use of
absolute position makes it difficult to trans-
late very long sentences.
• We proposed a simple method to incorporate

relative position into Transformer; it gives an
additive improvement to the existing model
by Shaw et al. (2018) which also incorporates
relative position.
• We revealed the overfitting property of Trans-

former to both short and long sentences.

2 Related Work

Early studies on NMT, at that time RNN-based
model, analyze the translation quality in terms of
sentence length (Sutskever et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015), and a few studies
shed light on the details. Shi et al. (2016) examine
why RNN-based model generates translations of
the right length without special mechanism for the
length, and report how LSTM regulates the out-
put length. Koehn and Knowles (2017) reveal that

RNN-based model has lower translation quality on
very long sentences. Although researchers have
proposed various new NMT architecture, they usu-
ally evaluate their models only in terms of the
overall translation quality and rarely mention how
the translation has changed (Gehring et al., 2017;
Kalchbrenner et al., 2016; Vaswani et al., 2017).
Only a few studies do the analysis on the transla-
tion quality in terms of sentence length (Elbayad
et al., 2018; Zhang et al., 2019). The robustness
of the recent NMT models on very long sentences
remains to be assessed.

What we focus on in this study is the word
position information which will closely relate to
the decodable sentence length. Relative informa-
tion has been implicitly used in the models us-
ing RNN or CNN. Gehring et al. (2017) in-
troduce position embeddings which represent ab-
solute position information to their CNN-based
model. Sukhbaatar et al. (2015) introduce an-
other absolute position information, positional en-
codings, which need no parameter training, and
Vaswani et al. (2017) adopt them in their model,
Transformer, which has neither RNN nor CNN.

Recently, Shaw et al. (2018) propose to incor-
porate relative position into Transformer by mod-
ifying the self-attention layer while removing po-
sitional encodings. Lei et al. (2018) propose a fast
RNN named Simple Recurrent Units (SRU) and
replace the feed-forward layers of Transformer by
SRU considering that recurrent process would bet-
ter capture sequential information. Although both
approaches succeeded in improving BLEU score,
the researchers did not report in what respect the
models improved the translation.

Chen et al. (2018) propose a RNN-based model,
RNMT+, which is based on stacked LSTMs and
incorporates some components from Transformer
such as layer normalization and multi-head atten-
tion. On the other hand, our model is based on
Transformer and incorporates RNN into Trans-
former.

3 Preliminaries

3.1 Transformer

Transformer (Vaswani et al., 2017) is a sequence
to sequence model that has an encoder to pro-
cess and represent input sequence and a decoder
to generate output sequence from the encoder out-
puts. Both the encoder and decoder have a word
embedding layer, a positional encoding layer, and
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Figure 1: The architectures of all the Transformer-based models we compare in this study; for simplicity, we show
the encoder architectures here since the same modification is applied to their decoders.

stacked encoder/decoder layers. The encoder ar-
chitecture is shown in Figure 1a.

Word embedding layers encode input words
into continuous low-dimension vectors, followed
by positional encoding layers that add position in-
formation to them. Encoder/decoder layers con-
sist of a few sub-layers, self-attention layer, atten-
tion layer (decoder only) and feed-forward layer,
with layer normalization (Ba et al., 2016) for each.
Both self-attention layer and attention layer em-
ploy the same architecture, and we explain the de-
tails in § 3.3. Feed-forward layer consists of two
linear transformations with a ReLU activation in
between. As for the decoder, a linear transforma-
tion and a softmax function follow the stacked lay-
ers to calculate probabilities of words to output.

Figure 1 illustrates the architectures of all the
Transformer-based models we compare in this
study including our porposed model which will be
introduced in § 4. The model in Shaw et al. (2018)
modifies the self-attention layer (§ 3.3).

3.2 Word Position Information
Transformer has positional encoding layers which
follow the word embedding layers and capture ab-
solute position. The process of positional encod-
ing layer is to add positional encodings (position
vectors) to input word embeddings. The positional
encodings are generated using sinusoids of vary-
ing frequencies, which is designed to allow the
model to attend to relative positions from the pe-
riodicity of positional encodings (sinusoids). This
is in contrast to the position embeddings (Gehring
et al., 2017), a learned position vectors, which are
not meant to attend to relative positions. Vaswani

et al. (2017) report that both approaches produced
nearly identical results in their experiments, and
also mentioned that the model with positional en-
codings may handle longer inputs in testing than
those in training, which implies that absolute posi-
tion approach might have problems at this point.1

3.3 Self-attention with Relative Position

Some studies modify Transformer to consider rel-
ative position instead of absolute position. Shaw
et al. (2018) propose an extension of self-attention
mechanism which handles relative position inside
in order to incorporate relative position into Trans-
former. We hereafter refer to their model as Rel-
Transformer. In what follows, we explain the self-
attention mechanism and their extension.

Self-attention is a special case of general atten-
tion mechanism, which uses three elements called
query, key and value. The basic idea is to com-
pute weighted sum of values where the weights are
computed using the query and keys. Each weight
represents how much attention is paid to the cor-
responding value. In the case of self-attention, the
input set of vectors behaves as all of the three ele-
ments (query, key and value) using three different
transformations. When taking a sentence as input,
it is processed as a set in the self-attention.

Self-attention operation is to compute output
sequence z = (z1, ..., zn) out of input sequence
x = (x1, ..., xn), where both sequences have the
same langth n and xi ∈ Rdx , zi ∈ Rdz . The output

1Our preliminary experiment confirmed that positional
encodings perform better for longer sentences than those in
the training data, while position embeddings perform slightly
better for the other length.
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element zi is computed as follows.

zi =
n∑

j=1

αij(xjW
V ) (1)

αij =
exp eij∑n
k=1 exp eik

(2)

eij =
xiW

Q(xjW
K)T√

dz
, (3)

where WQ,WK ,W V ∈ Rdx×dz are the matrices
that transform input elements into querys, keys,
and values, respectively.

The extension proposed by Shaw et al. (2018)
adds only two terms to the original self-attention:
the relative position vectors wK

j−i, w
V
j−i ∈ Rdz .

zi =

n∑

j=1

αij(xjW
V + wV

j−i) (4)

αij =
exp eij∑n
k=1 exp eik

(5)

eij =
xiW

Q(xjW
K + wK

j−i)
T

√
dz

, (6)

Note that when using the relative position vectors,
the input is processed as a directed graph instead
of a set. Maximum distance k is employed to
clip the relative distance within a certain distance
so that the value of relative distance is limited as
−k < j − i < k.

4 RNN as a Relative Positional Encoding

The approach by Shaw et al. (2018) is not the only
way to incorporate relative position into Trans-
former. Lei et al. (2018) replace feed-forward lay-
ers by their proposed SRU which also incorpo-
rates relative position. Both approaches modify
the encoder and decoder layers that are repeatedly
stacked, which means their models handle position
information multiple times. However, the origi-
nal Transformer does only once at the positional
encoding layer which locates shallow layer of the
deep layered network.

To conduct a clear comparison of the posi-
tion information types, we propose another simple
method that replaces the positional encoding layer
of Transformer by RNN. As the RNN has the na-
ture to handle a sequence using relative position
information, it can be used not only as a main pro-
cessing unit of RNN-based model, but also as a
relative positional encoder. While Lei et al. (2018)
also employ RNN, they use position embeddings.

Our approach is a pure replacement of position in-
formation type for Transformer.

In the original Transformer, the positional en-
coding layer adds the i-th position vector pe(i) ∈
Rdwv to the i-th input word vector wvi ∈ Rdwv

and outputs the position informed word vector
wv′i ∈ Rdwv :

wv′i = wvi + pe(i) (7)

In our approach, we adopt RNN, specifically
GRU (Cho et al., 2014) in this study, as a relative
positional encoder. GRU computes its output or
its i-th time hidden state hi ∈ Rdwv given the in-
put word vector wvi and the previous hidden state
hi−1 ∈ Rdwv , and we take hi as the position in-
formed word vector wv′i:

hi = GRU(wvi, hi−1) (8)

wv′i = hi (9)

Although LSTM (Hochreiter and Schmidhuber,
1997) is more often used as an RNN module in
RNN-based models, we employed GRU which has
less parameters. This is because, in our approach,
RNN is just a positional encoder which we do not
expect to work more, even though it can. We refer
to our proposed model as RNN-Transformer.

We also consider the mixture of Shaw et al.
(2018) and our method to investigate whether the
two methods of considering relative position have
additive improvements. Although both methods
are intended to incorporate relative position into
Transformer, they modify different parts of Trans-
former. By combining both, we can see either of
modification suffices to incorporate relative posi-
tion. We refer to this model as RR-Transformer.

5 Experiments

We conduct two experiments to evaluate our mod-
ification to Transformer and to investigate the im-
pact of using relative position in NMT models.
The first experiment is a basic translation experi-
ment which uses all the training data. We carry out
analysis on the translations generated by the NMT
models in terms of sentence length, especially fo-
cusing on long sentences. In the second experi-
ment, we control the training data by the sentence
length so that the NMT models are trained only
on sentences with lengths in a certain range. We
also analyze the result in terms of sentence length,
focusing on the short sentences.
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Train (orig.) Dev Test

ASPEC (En-Ja) 1,166,725 (3,008,500) 1790 1812
WMT2014 (En-De) 3,661,035 (4,468,840) 3000 2737

Table 1: Number of sentence pairs in the preprocessed
corpus.

5.1 Setup

Dataset and Preprocess: We perform a se-
ries of experiments on English-to-Japanese and
English-to-German translation tasks. For English-
to-Japanese translation task, we exploit ASPEC
(Nakazawa et al., 2016), a parallel corpus com-
piled from abstract sections of scientific papers.
For English-to-German translation task, we ex-
ploit a dataset in WMT2014, which is one of the
most common dataset for translation task.

For ASPEC English-to-Japanese data, we used
scripts of Moses toolkit2(ver. 2.2.1) (Koehn et al.,
2007) for English tokenization and truecasing,
and KyTea3 (ver. 0.4.2) (Neubig et al., 2011) for
Japanese segmentations. Following those word-
level preprocess, we further applied Sentence-
Piece (Kudo and Richardson, 2018) to segment
texts down to subword level with shared vocab-
ulary size of 16,000. Finally we selected the first
1,500,000 sentence pairs for the poor quality of
the latter part, and filtered out sentence pairs with
more than 49 subwords in either of the languages.

For WMT2014 English-to-German translation
task, we used preprocessed data provided from
the Stanford NLP Group,4 and used newstest2013
and newstest2014 as development and test data,
respectively. We also applied SentencePiece to
this data to segment into subwords with shared vo-
cabulary size of 40,000. We filtered out the sen-
tence pairs in the same way as the ASPEC. Ta-
ble 1 shows the number of sentence pairs of pre-
processed data.

Figure 2 shows the distributions of the sentences
plotted against the length of input sentence. Al-
thought ASPEC data has slightly larger peak at
sentence length of 20-29 subwords, both datasets
have no big difference in length distributions. The
training and test data have almost identical curves.

Model: We compare the following five NMT
models:

2http://www.statmt.org/moses/
3http://www.phontron.com/kytea/
4https://nlp.stanford.edu/projects/

nmt/
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Figure 2: Sentence length ratio of preprocessed corpus.

RNN-NMT is a RNN-based NMT model with
dot-attention and input-feeding (Luong et al.,
2015). This model consists of four layered
bi-directional LSTM for encoder and three
layered uni-directional LSTM for decoder.

Transformer is a vanilla Transformer model (the
base model in Vaswani et al. (2017)). This
model consists of six-layered Transformer
encoder and decoder.

Rel-Transformer is a modified version of Trans-
former by Shaw et al. (2018). Since the
modifications do not increase the number of
model parameter much, this model consists
of the same number of encoder/decoder lay-
ers as Transformer, with the modified self-
attention layer. We set the hyperparameter
k, relative distance limit, to 16 following the
base model in Shaw et al. (2018).

RNN-Transformer is another modified version
of Transformer proposed in § 4. Because the
replacement of the original positional encod-
ing layer with RNN increases the number of
model parameter, we employ uni-directional
GRU as relative positional encoder for both
encoder and decoder and reduced the num-
ber of decoder layer instead. Our RNN-
Transformer model consists of six layered en-
coder and five layered decoder with one GRU
layer for each.5

RR-Transformer is the mixture model of Rel-
Transformer and RNN-transformer. With the
same logic as Rel-Transformer, this model

5This configuration was chosen because it performed bet-
ter than a model with five-layered encoder and six-layered
decoder, and was comparable to five-layred encoder and de-
coder with bi-directional (instead of uni-directional) GRU for
the relative position encoder in preliminary experiments.
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ASPEC (En-Ja) WMT2014 (En-De)

RNN-NMT 70,521,476 107,409,476
Transformer 68,736,644 105,624,644
Rel-Transformer 68,787,332 105,675,332
RNN-Transformer 67,684,484 104,572,484
RR-Transformer 67,730,948 104,618,948

Table 2: Number of the model parameters.

consists of the same number of encoder and
decoder layers as RNN-Transformer model,
with the modified self-attention layer.

We implemented all the models using PyTorch6

(ver. 0.4.1). Taking the base model of Trans-
former (Vaswani et al., 2017) which consists of
six-layered encoder and decoder as a reference
model, we built the other models to have almost
the same number of model parameters for a fair
comparison. For all models, we set word embed-
ding dimension and model dimension (or hidden
size for RNNs) to 512. For the Transformer-based
models, we set feed-forward layer dimension to
2048, and the number of attention head to 8.

Table 2 shows the total number of model param-
eters for all the models in our implementation. The
difference of the numbers by the datasets comes
from the difference in vocabulary size.

Training: We used Adam optimizer (Kingma
and Ba, 2015) with initial learning rate of 0.0001,
and set dropout rate of 0.2 and gradient clip-
ping value of 3.0. We adopted warm-up strategy
(Vaswani et al., 2017) for fast convergence with
warm-up step of 4k, and trained all the model for
300k steps. The mini-batch size was set to 128.

Evaluation: We performed greedy search for
translation with the models, and evaluated the
translation quality in terms of BLEU score (Pa-
pineni et al., 2002) using multi-bleu.perl
in the Moses toolkit. We checked model’s BLEU
score on the development data at every 10k steps
during the training, and took the best performing
model for evaluation on the test data.

5.2 Long Sentence Translation

Table 3 shows the BLEU scores of the NMT mod-
els on the test data of ASPEC English-to-Japanese
and WMT2014 English-to-German when using all
the preprocessed training data for training. Ta-
ble 4 lists the results of statistical significance

6https://pytorch.org/

ASPEC (En-Ja) WMT2014 (En-De)
newstest2014

RNN-NMT 36.67 19.95
Transformer 38.44 21.00
Rel-Transformer 39.58 22.51
RNN-Transformer 39.17 22.35
RR-Transformer 40.34 23.01

Table 3: BLEU scores on test data.

RNN-NMT Trans Rel RNN RR

RNN-NMT << << << <<
Trans >> << << <<
Rel >> >> ∼ <

RNN >> >> ∼ <<
RR >> >> >> >>

Table 4: Results of statistical significance test on AS-
PEC English-to-Japanese (lower-left) and WMT2014
English-to-German (upper-right): “>>” or “<<”
means p < 0.01, “>” or “<” means p < 0.05 and
”∼” means p ≥ 0.05.

test using bootstrapping of 10,000 samples. The
evaluation is done on word-level, which means
that we converted the outputs of NMT mod-
els from subword-level into word-level before
scoring. On both datasets, Transformer outper-
forms RNN-NMT, and all of the three modified
versions of Transformer outperform the Trans-
former. RNN-Transformer was comparable to
Rel-Transformer, and RR-Transformer, the mix-
ture of RNN-Transformer and Rel-Transformer,
gives the best score.

In order to see the capability of translating long
sentences of the models, we split the test data
into different bins according to the length of in-
put sentences, and then calculated BLEU scores
on each bin. The following evaluation uses the
raw subword-level outputs of the models since the
sentence length is based on subwords.

Figure 3a and 3b show the BLEU scores on the
split test data of ASPEC English-to-Japanese and
WMT2014 English-to-German, respectively. The
BLEU score of Transformer, the only model that
uses absolute position, more sharply drops than
the BLEU scores of the other models at the in-
put length of 50-59, which is outside of the length
range of the training data. As for the input length
of 60-, Transformer performs the worst among all
the models. These results indicate that relative po-
sition works better than absolute position in trans-
lating sentences longer than those of the training
data. Meanwhile, for the lengths with enough
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Figure 3: BLEU scores on test data split by the sentence length (no training data in the gray-colored area).
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Figure 4: Averaged difference of sentence length between NMT model’s output and the reference translation (no
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Figure 5: Distributions of output sentence length of Transformer and RR-Transformer.

amount of training data, both position information
types seem to work almost equally. On WMT2014
English-to-German, all the models except Trans-
former successfully keep as good performance in
50-59 and 60- bins as the other bins.

To figure out the effect of position information
on the ability of the models to generate output of
proper length, we look into the difference of sen-
tence length between the model’s output and the
reference translation. Figure 4a and 4b show the
averaged differences plotted against the input sen-
tence length on both language pairs. We can ob-

serve that all the models tend to output shorter sen-
tence than the reference. However, Transformer
shows the largest drop at the input length of 50-59
again among all the models, which is even more
than RNN-NMT. The difference between Trans-
former and RNN-Transformer indicates the advan-
tage of relative position against absolute position,
while the difference between the three modified
Transformer-based models and RNN-NMT indi-
cates the structural advantage of Transformer to
RNN-based model in generating translations with
appropriate lengths.
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min len. max len. # of sentences # of tokens

Short 2 26 555,922 10,392,775
Middle 26 34 350,176 10,392,797
Long 34 49 260,626 10,392,729

(a) ASPEC English-to-Japanese

min len. max len. # of sentences # of tokens

Short 1 24 1,878,354 29,841,533
Middle 24 34 1,041,794 29,841,531
Long 34 49 740,887 29,841,519

(b) WMT2014 English-to-German

Table 5: Statistics of the split training data.

The above result that the models tend to out-
put shorter sentences suggests that the models may
have a limit in the range of output length. To con-
firm this possibility, we look into the distributions
of the model’s output length. Figure 5a and 5b
show distributions of output length of Transformer
and RR-Transformer for the input length of 40-49
(length within the training data) and 50-59 (length
outside of the training data). For the input length
of 40-49, the distributions of both models are flat
and have no big difference. For the input length
of 50-59, on the other hand, we can see a sharp
peak in the distribution of Transformer in which
most of the values distribute around 50 tokens or
less. These results indicate that Transformer tends
to overfit to a range of length of input sentences.

5.3 Length-Controlled Training Data

The above experiments focus on trainslation of
long sentences, or, strictly speaking, sentences
longer than those in the training data. With the
use of absolute position, it is no surprise that the
model fails to handle longer sentences since those
sentences demand the model to handle the position
vectors which are never seen during training.

In this section, we focus on short sentences
to investigate whether Transformer overfits to the
length of input sentences in the training data. Note
that position vectors of small numbers are in-
cluded in long sentences. If the problem is only
unseen position vectors, then the model shall be
able to handle short sentences because short sen-
tences do not include any unseen position num-
bers.

To figure out how the NMT models behave
on sentences shorter than those in the training
data, we conduct another experiment in which
the length of the training data is controlled. We
split the training data of both ASPEC English-to-
Japanese and WMT2014 English-to-German into
three portions according to the length of input sen-
tences so that each of them has almost the same
number of tokens. We then trained the five NMT

models on each of the three training data. We here-
after refer to these three length-controlled training
data as Short, Middle and Long. The statistics of
these data is summarized in Table 5a and 5b.

To see how the translation quality changes be-
tween inside and outside of the length within
the training data, we split the test data with re-
spect to the lengths of split training data. Fig-
ure 6a and 6b show the BLEU scores on all the
three training data of both language pairs. Trans-
former shows the worst performance among the
four Transformer-based models on the sentences
longer than those in the training data for any con-
trolled length. However, on the shorter sentences
than those in the training data, RNN-Transformer
scores almost the same as Transformer on the Mid-
dle and Long training data of ASPEC English-to-
Japanese and also shows a larger drop than RNN-
NMT at length of -24 on the Long training data
of WMT2014 English-to-German. This implies
that our proposed method to replace absolute posi-
tional encoding layer by RNN does not work well
in translating shorter sentences.

We can also see that Rel-Transformer and RR-
Transformer are quite competitive across all the
situations. This suggests that one Transformer
decoder layer and two GRUs contribute almost
equally to the translation quality.

Figure 7a and 7b show the averaged difference
of length between NMT model’s output and the
reference translation on Long training data of both
datasets.7 These figures indicate that Transformer
and RNN-Transformer tend to generate inappro-
priately long sentences in translating much shorter
sentences than those in the training data. As men-
tioned above, when translating short sentences,
there is no unseen positions in Transformer, while
there is no concrete position representation in
RNN-Transformer; the above results suggest that
these two models overfit to the (longer) length of
input sentences. In contrast, the result of Rel-

7Note that Figure 7a and 7b use different x-axis scale from
Figure 6a and 6b in order to show the difference clearly.
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Figure 6: BLEU scores of models trained on three length-controlled training data on test data split in the same way
as the training data (almost no training data in the gray-colored area).
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Figure 7: Averaged difference of sentence length between NMT model’s output translation and reference transla-
tion (almost no training data in the gray-colored area).

Transformer and RR-Transformer indicates that
self-attention with relative position prevents this
overfitting.

6 Conclusions

In this paper, we examined the relation between
position information and the length of input sen-
tences by comparing absolute position and relative
position using RNN-based model and variations of
Transformer models. Experiments on all the pre-
processed training data revealed the crucial weak-
ness of the original Transformer, which uses abso-
lute position, in translating sentences longer than
those of the training data. We also confirmed that
incorporating relative position into Transformer
helps to handle those long sentences and improves
the translation quality. Another experiment on the

length-controlled training data revealed that abso-
lute position of Transformer causes overfitting to
the input sentence length. To conclude, all the ex-
periments suggest to use relative position and not
to use absolute position.

Considering that the available data is not bal-
anced in terms of the sentence length in practice,
preventing the overfitting is useful for building a
practical NMT system.

Acknowledgments

We deeply thank Satoshi Tohda for proofread-
ing the draft of our paper. This work was par-
tially supported by JST CREST Grant Number JP-
MJCR19A4, Japan. This research was also par-
tially supported by NII CRIS Contract Research
2019.

336



References
Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton.

2016. Layer normalization. CoRR, abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the third International Conference on Learning Rep-
resentations (ICLR).

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 76–86.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with
attentive recurrent neural networks. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 93–98.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2018. Pervasive attention: 2D convolutional neural
networks for sequence-to-sequence prediction. In
Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
97–107.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), pages 1243–1252.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. CoRR, abs/1610.10099.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the third International Conference on Learning
Representations (ICLR).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract
In this paper, we study how word-like units are
represented and activated in a recurrent neu-
ral model of visually grounded speech. The
model used in our experiments is trained to
project an image and its spoken description in
a common representation space. We show that
a recurrent model trained on spoken sentences
implicitly segments its input into word-like
units and reliably maps them to their correct
visual referents. We introduce a methodology
originating from linguistics to analyse the rep-
resentation learned by neural networks – the
gating paradigm – and show that the correct
representation of a word is only activated if the
network has access to first phoneme of the tar-
get word, suggesting that the network does not
rely on a global acoustic pattern. Furthermore,
we find out that not all speech frames (MFCC
vectors in our case) play an equal role in the
final encoded representation of a given word,
but that some frames have a crucial effect on
it. Finally, we suggest that word representation
could be activated through a process of lexical
competition.

1 Introduction

Neural models of Visually Grounded Speech
(VGS) sparked interest in linguists and cognitive
scientists as they are able to incorporate multi-
ple modalities in a single network and allow the
analysis of complex interactions between them.
Analysing these models does not only help to un-
derstand their technological limitations, but may
also yield insight on the cognitive processes at
work in humans (Dupoux, 2018) who learn from
contextually grounded speech utterances (either
visually, haptically, socially, etc.). This is with
this idea in mind that one of the first computa-
tional model of visually grounded word acquisi-
tion was introduced by Roy and Pentland (2002).
More recently, Harwath et al. (2016) and Chrupała
et al. (2017) were among the first to propose neural
models integrating these two modalities.

While Chrupała et al. (2017) and Alishahi et al.
(2017) focused on analysing speech representa-
tions learnt by speech-image neural models from
a phonological and semantic point of view, the
present work focuses on lexical acquisition and the
way speech utterances are segmented into lexical
units by a neural model.

More precisely, we aim at understanding how
word-like units are processed by a VGS architec-
ture. First, we study if such models are robust
to isolated word stimuli. As such networks are
trained on raw speech utterances, robustness to
isolated word stimuli would indicate that a seg-
mentation process was implicitly carried out at
training time. We also explore which factors in-
fluence the most such word recognition. In a
second step, to better understand how individual
words are activated by the network, we adapt the
gating paradigm initially introduced to study hu-
man word recognition (Grosjean, 1980) where our
neural model is inputted with speech segments
of increasing duration (word activation). Finally,
as some linguistic models assume that the first
phoneme of a target word activates all the words
starting by the same phoneme, we investigate if
such a pattern holds true for our neural model as
well (word competition). As far as we know, no
other study has examined patterns of word recog-
nition, activation and competition in models of
VGS.

This paper is organised as follows: section 2
presents related works and section 3 details our
experimental material (data and model). Our con-
tributions follow in section 4 (word recognition),
section 5 (word activation) and section 6 (word
competition). Section 7 concludes this work.

2 Related Work

In this section we explore what is known about
word recognition in humans. We then review re-
cent works related to the representation of lan-
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guage in VGS models. A few words are also said
about modified inputs and adversarial attacks as
they are related to the analysis methodology used
in part of this work.

2.1 Word Recognition in Humans

Many psycholinguistic models try to account for
how words are activated and recognised from flu-
ent speech. The process of word recognition
“requires matching the spoken input with men-
tal representations associated with word candi-
dates” (Dahan and Magnuson, 2006). One of
the first model trying to account for how humans
recognise and extract words from fluent speech is
the COHORT model by Marslen-Wilson and Welsh
(1978). In this model, word recognition proceeds
in 3 steps: access, selection and integration. Ac-
cess denotes the process by which a set of words (a
cohort) becomes activated if their onsets are con-
sistent with the perceived spoken input. As soon as
a word form becomes inconsistent with the spoken
input, it is removed from the initial cohort (selec-
tion phase). A word is deemed recognised as soon
it is the last one standing in the cohort. Integration
consists in checking if the word’s syntactic and se-
mantic properties are consistent with the rest of
the utterance. However, COHORT supposes a full
match between the perceived input and the word
forms and does not account for word frequency
in the access phase. REVISED COHORT (Marslen-
Wilson, 1987) later relaxed the constraints on the
cohort formation to take into account these facts.
There is no active competition per se between
words in the COHORT model. That is, the strength
of activation of a word does not depend on the
value of the activation of the other words, but only
on how well the internalised word form matches
the perceived spoken input. TRACE (McClelland
and Elman, 1986) is a connectionist model of spo-
ken word recognition consisting of three layers of
nodes, where each layer represents a particular lin-
guistic unit (feature, phoneme and word). Lay-
ers are linked by exitatory connections (e.g. frica-
tive feature node would activate /f/ phoneme node
which would, in turn, activate words starting with
this sound), and nodes within a layer are linked by
inhibitory connections, thus inducing a real com-
petition between activated words. Contrary to the
COHORT model which does not allow words em-
bedded in longer words to be activated, TRACE al-
lows such activation. SHORTLIST (Norris, 1994)

is another model which builds upon COHORT and
TRACE by taking into consideration other features
such as word stress.1

To sum up, models of spoken word recognition
consider that a set of words matching to a certain
extent the spoken input is simultaneously activated
and these models involve at some point a form of
competition between the set of activated words be-
fore reaching the stage of recognition.

2.2 Computational Models of VGS
Roy and Pentland (2002) were among the first
to propose a computational model, known as
CELL, that integrates both speech and vision
to study child language acquisition. However,
CELL required both speech and images to be
pre-processed, where canonical shapes were first
extracted from images and further represented
as histograms; and speech was discretised into
phonemes. More recently, CNN-based VGS mod-
els (Harwath et al., 2016, 2018; Kamper et al.,
2019) and RNN-based VGS models (Chrupała
et al., 2017) which do not require speech to be dis-
cretised into sub-units were introduced. Chrupała
et al. (2017) investigated how RNN-based mod-
els encode language, and showed such models
tend to encode semantic information in higher lay-
ers, while form is better encoded in lower lay-
ers. Alishahi et al. (2017) studied if such mod-
els capture phonological information and showed
that some layers do capture such information more
accuratly than others. Kádár et al. (2017) intro-
duced omission scores to interpret the contribu-
tion of individual tokens in text-based VGS mod-
els. More recently, Havard et al. (2019) stud-
ied the behaviour of attention in RNN-based VGS
models and showed that these models tend to fo-
cus on nouns and could display language-specific
patterns, such as focusing on particules when
prompted with Japanese. Recently, Harwath et al.
(2018) showed that CNN-based models could reli-
ably map word-like units to their visual referents,
and Harwath and Glass (2019) showed such net-
works were sensitive to diphone transitions and
that these were useful for the purpose of word
recognition. However, none of the aforementioned
works studied the process by which words are
recognised and activated. This present work aims
at bridging what is known about word activation

1For a review of spoken word recognition model, reader
can consult Dahan and Magnuson (2006) and Weber and
Scharenborg (2012)
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and recognition in humans and the computations
at work in VGS models.

2.3 Modified Inputs and Adversarial Attacks

As will be shown later, the gating method used in
this article modifies the input stimulus to better un-
derstand the behaviour of the neural model.

We can draw a parallel with approaches recently
introduced to show the vulnerability of deep net-
works to strategically modified samples (adversar-
ial examples) and to detect their over-sensitivity
and over-stability points. It was shown that im-
perceptible perturbations can fool the neural mod-
els to give false predictions. Inspired by the re-
searches for images (Su et al., 2019), efforts on
attacking neural networks for NLP applications
emerged recently (see Zhang et al. (2019) for a
survey). However, while a lot of references can be
found for textual adversarial examples, fewer pa-
pers addressed adversarial attacks for speech (we
can however mention the work of Wu et al. (2014)
addressing spoofing attacks in speaker verification
and of Carlini and Wagner (2018) attacking Deep-
Speech end-to-end ASR system).

3 Experimental Settings

3.1 Model Type

Even though the methodologies developed in this
work could also be applied to CNN-based VGS
models, the present work will solely focus on the
analysis of the representations learned by a RNN-
based VGS model. Indeed, from a cognitive per-
spective, RNN-based models are more realistic
than CNN-based models as the speech signal – or
in our case, a sequence of MFCC vectors – is se-
quentially processed from left-to-right, whereas in
CNN-based models the network processes multi-
ple frames at the same time. This will thus al-
low us to explore if RNN-based models display
human-like behaviour or not.

3.2 Model Architecture

The model we use for our experiment is based on
that of Chrupała et al. (2017) and later modified by
Havard et al. (2019). It is trained to solve an im-
age retrieval task: given a speech query, the model
should retrieve the closest matching image. The
model consists of two parts: an image encoder
and a speech encoder. The image encoder takes
VGG-16 pre-calculated vectors as input instead of

raw images. It consists of a dense layer which re-
duces the 4096 dimensional VGG-16 input vec-
tor into a 512 dimensional vector which is then
L2 normalised. The speech encoder takes 13 Mel
Frequency Cepstral Coefficients (MFCC) vectors
instead of raw speech.2 It consists of a convo-
lutional layer (64 filters of length 6 and stride 3)
followed by 5 stacked unidirectional GRU layers
(Cho et al., 2014), with 512 units each. Two atten-
tion mechanisms (Bahdanau et al., 2015) are used:
one after the 1st recurrent layer and one after the
5th recurrent layer. The final vector produced by
the speech encoder corresponds to the dot product
of the weighted vectors outputted by each atten-
tion mechanism. The model is trained to minimise
the following triplet loss function as implemented
by Chrupała et al. (2017):

L(u, i, α) =
∑

u,i

(∑

u′
max[0, α+ d(u, i)− d(u′, i)]

+
∑

i′
max[0, α+ d(u, i)− d(u, i′)]

)

(1)
The loss function encourages the network to

minimise the cosine distance d between an image
i and its corresponding spoken description u by a
given margin α while maximising the distance be-
tween mismatching image/utterance pairs. For our
experiments, we set α = 0.2.

3.3 Data

The data set used for our experiments is based on
MSCOCO (Lin et al., 2014). MSCOCO is a data
set used to train computer vision systems, and fea-
tures annotated images, each paired with 5 human
written descriptions in English. MSCOCO’s im-
ages where selected so that the images would con-
tain instances of 80 possible object categories. We
trained our model on the spoken extension intro-
duced by Chrupała et al. (2017). This extension
provides spoken version of the human written cap-
tions. It is worth mentioning that this extended
data set features synthetic speech (female voice
generated using Google’s Text-To-Speech (TTS)
system) and not real human speech.

212 mel frequency cepstral coefficients + log of total
frame energy, vectors extracted every 10ms on a 25ms win-
dow
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3.4 Model Training and Results

We trained our model for 15 epochs with Adam
optimiser and an initial learning rate of 0.0002.
The training set comprises 113,287 images with 5
spoken captions per image. Validation and test set
comprise 5000 images each.3 Model is evaluated
in term of Recall@k (R@k) and median rank r̃.
That is, given a spoken query, which corresponds
to a full utterance, we evaluate the model’s abil-
ity to rank the unique paired image in the top k
images. We obtain a r̃ of 28.

Full results are shown in Table 1. Even though
our results are lower than the original implementa-
tion by Chrupała et al. (2017), our model still per-
forms far above chance level, showing it did learn
how to map an image and its spoken description.

Model R@1 R@5 R@10 r̃

Synth. COCO 0.056 0.182 0.284 28

Table 1: Recall at 1, 5, and 10 results and median
rank r̃ on a speech-image retrieval task (test part of our
datasets with 5k images). Chrupała et al. (2017) with
RHN reports median rank r̃ = 13. Chance median rank
r̃ is 2500.5.

4 Word Recognition

Harwath et al. (2018) observed that CNN-based
models can reliably map word-like units to their
corresponding visual reference. Chrupała et al.
(2017) and more recenlty Merkx et al. (2019)
showed that RNN-based utterance embeddings
contain information about individual words, but
did not show for what type of words this behaviour
holds true and if the model had learnt to map these
individual words to their visual referents. Havard
et al. (2019) showed that the attention mechanism
of RNN-based VGS models tends to focus on the
end of words that correspond to the main concept
of the target image. This suggests that such mod-
els are able to isolate the target word forms from
fluent speech and thus segment their inputs into
sub-units. In the following experiment we test if
a RNN-based VGS network can reliably map iso-
lated word-like units to their visual referents and
explore the factors that could influence such map-
ping.

3The train/dev/test correspond to those used in (Chrupała
et al., 2017)

4.1 Isolated Word Mapping

We selected a set of 80 words corresponding to the
name of 80 object categories in the MSCOCO data
set.4 We expect our model to be very efficient with
the selected 80 words, as these are the main ob-
jects featured in MSCOCO. We generated speech
signals for these 80 isolated words using Google’s
TTS system and then extracted MFCC features
for each of the generated words. We evaluate the
ability of the model to rank images containing an
object instance corresponding to the target word
among the first 10 images (P@10).5 Contrary to
(Chrupała et al., 2017) who uses Recall@k, we
use Precision@k as there are several images that
correspond to a single target word. It is to be
noted that at training time, the network was only
given full captions and not isolated words. Thus,
if the network is able to retrieve images featuring
instances of the target word, it shows that implicit
segmentation was carried out at training time.

Results are shown in Figure 1. 40 words out
of the 80 target words have a P@10≥ 0.8. This
shows that the network is able to map isolated
words to their visual referent despite never having
seen them in isolation and that the network implic-
itly segmented its input into sub-units.

Figure 1: Precision@10 for the 80 isolated words cor-
responding to MSCOCO categories.

4.2 Factors Influencing Word Mapping

We explore here the factors that could come at play
in the recognition of isolated words. We explore
2 types of factors: speech related factors and im-
age related factors. For the former we consider

4List available at https://github.com/
amikelive/coco-labels/blob/master/
coco-labels-2014_2017.txt

5Evaluation is performed on the test set containing 5000
images
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Spearman’s ρ p-value Effect

Images
Avg. Neighbour -0.3906 0.0003 *** Weak

Avg. Size 0.3154 0.0043 ** Weak
Avg. Freq 0.1187 0.4675 None

Text Word Freq. 0.5514 1.148e-07 *** Moderate
# Syllables -0.1211 0.2844 None

Table 2: Factors influencing word recognition perfor-
mance in our model. Spearman’s ρ between Preci-
sion@10 and mentioned variables as well as p-value.

word frequency (Word Freq.) and word length (#
syllables). Concerning image related factors we
consider object instances frequency in the images
(Avg. Freq.), average number of neighbouring ob-
ject instances (Avg. Neighbour), average area of
each object (Avg. Size). Results are shown in Ta-
ble 2. We observe a weak negative correlation be-
tween precison and average number of neighbour-
ing objects, thus suggesting that objects that have
a low number of neighbouring objects are better
recognised by the network. It also seems that big-
ger objects yield better precison than smaller ob-
jects as we observe a weak positive correlation.
Word frequency seems to play an important role as
we observe a moderate positive correlation. How-
ever, we observe no correlation between precison
and the length of the target words nor with object
frequency in the images. Correlation values, how-
ever, remain relatively low, suggesting some other
factors could also influence word recognition.

5 Word Activation

In this section we describe how individual words
are activated by the network. To do so, we perform
an ablation experiment (similar to that of Grosjean
(1980) which was conducted on humans) where
the neural model is inputted only with a truncated
version of the 80 target words (see Section 5.1).
Such a method is also called gating in the litera-
ture.

5.1 Gating

The gating paradigm “involves the repeated pre-
sentation of a spoken stimulus (in this case, a
word) such that its duration from onset is in-
creased with each successive presentation” (Cot-
ton and Grosjean, 1984). In our case, it means
the neural model is fed with truncated version of
a target word, each truncated version comprising a
larger part of the target word. Truncation is either
done left-to-right (model only has access to the
end of the word) or right-to-left (model only has

access to the beginning of the word). Truncation is
operated on the MFCC vectors computed for each
individual word, meaning that MFCC vectors are
iteratively removed either from the beginning of
the word or the end of the word, but not from both
sides at the same time. Each truncated version of
the word is then fed to the speech encoder which
outputs an embedding vector. As in our previous
experiment, model is evaluated in terms of P@10.

COHORT model, in its initial version (Marslen-
Wilson, 1987), stipulates that word onset plays
a crucial role in word recognition whereas other
models of spoken word recognition give less im-
portance to word onset. This importance of exact
word onset matching was later revised in later CO-
HORT models. The aim of this experiment is to test
whether word onset plays a role in word recogni-
tion for the network or not. If it is the case, we ex-
pect the network to fail recovering images of the
target word if the word is truncated left-to-right.

Figure 2a shows evolution of P@10 averaged
over the 80 test words. As can be seen from the
graph, precision evolves differently according to
which part of the word was truncated. When the
target words are truncated left-to-right, precision
drops quickly. However, when truncated right-to-
left, precision remains high before gradually drop-
ping. These results show that the model is robust
to truncation when it is carried out right-to-left
but not when it is carried out left-to-right. Fig-
ure 2b shows the evolution of P@10 for one of
the target words (“giraffe”). When MFCC vectors
corresponding to the first phoneme are removed
(/Ã/), precision plummets from 1 to 0. How-
ever, when MFCC vectors belonging to the end
of the word are removed, precision plateaus at 1
until /Ç/ is reached and then plunges to 0. This
shows the model successfully retrieved giraffe im-
ages when only prompted with /ÃÇ/ but not when
prompted with /Çæf/ even though the latter com-
prises a longer part of the target word.

These results suggest that the model does not
rely on a vague acoustic pattern to activate the
semantic representation of a given concept, but
needs to have access to the first phoneme in order
to yield an appropriate representation.

5.2 Activated Pseudo-Words

Such ablation experiments also enables us to infer
on what units the network relies to make its pre-
dictions. Indeed, Figure 3 allows us to see what
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(a)
(b)

Figure 2: 2a Evolution of Precision@10 averaged over 80 test words as a function of the percentage of MFCC
vector removed for each word. 2b Evolution of Precision@10 for each ablation step of the word “giraffe”, with
time-aligned phonemic transcription /ÃÇæf/ at the bottom. “SIL” signals silences. For both 2a and 2b, blue line
displays scores when ablation was carried out left-to-right, meaning that at any given part on the blue curve, model
has only had access to the rightmost part of the word. (e.g. /Çæf/ without initial /Ã/). Red line displays scores
when ablation was carried out right-to-left, meaning that at any given part on the red curve, model has only had
access to the leftmost part of the word. (e.g. /ÃÇ/ without final /æf/ ).

Figure 3: Evolution of P@10 for each ablation step of
the word “baseball bat” with time aligned phonemic
transcription /beizbO:l#bæt/ at the bottom.

are the pseudo-words that were internalised by the
network for the word “baseball bat”. When trun-
cation is done left-to-right (blue curve), we no-
tice that at the beginning precision is quite high
(≈ 0.6), then reaches 0 when only /O:lbæt/ is left,
but suddenly increases up to 0.9 when the only
part left is /bæt/. This suggests that the network
mapped both “baseball bat” as a whole and “bat”
as referring to the same object. We observed the

same pattern for the word “fire hydrant” where
both “fire hydrant” and “hydrant” are mapped to
the same object.

However, Figure 2b shows that when only
prompted with /ÃÇ/ the network manages to find
pictures of giraffes. This suggests that the pseudo-
words internalised by the network could be /ÃÇæf/
as a whole but might also be /ÃÇ/. We thus need
to take caution when stating that the network has
isolated words, as the words internalised by the
network might not always match the human gold
reference.

5.3 Gradual or Abrupt Activation?

Figure 2b shows that removing or adding one
MFCC vector may yield large differences in the
network performance. Precision decreases steeply
and not steadily. This suggests that little acoustic
differences yield wide differences in the final rep-
resentation. Thus, in this section we analyse how
representation is being constructed over time and
explore if some MFCC vectors play a more impor-
tant role than others in the activation of the final
representation.

We progressively let the network see more and
more of the MFCC vectors composing the word,
iteratively feeding it with MFCC vectors starting
from the beginning of the word until the network
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Figure 4: Figure 4a shows evolution of the cosine similarity between the embeddings produced for each truncated
version of the target word and the embedding for the full word using a model with randomly initialised weights.
Figure 4c shows the same measure with the embeddings produced by a trained model. Figure 4b shows peaks
indicating the inflection points of curve 4a (green) and 4c (red). For our experiments, we only considered inflection
point to be significant if the resulting peak was higher than 0.025 (blue).

has had access to the full word. We then com-
pute the cosine similarity between the embedding
computed for each of the truncated version of the
word and the embedding corresponding to the full
word. The closer the cosine similarity is to 1, the
more similar the two representations are. Thus, if
each MFCC vector equally contributes to the final
representation of the word, we expect cosine simi-
larity to evolve linearly. However, if some MFCC
vectors have a determining factor in the final rep-
resentation we expect cosine similarity to evolve
in steps rather than linearly. To detect steps that
could occur in the evolution of cosine similarity,
we approximate its derivative by computing first
order difference. High steps should thus translate
into peaks (e.g. Figure 4b). We compute the evolu-
tion of cosine similarity for the 80 target words en-
coded with the best trained model (e.g. Figure 4c)
and also consider a baseline evolution by encod-
ing the 80 target words with an untrained model
(e.g. Figure 4a).6 To avoid micro-steps of yield-
ing peaks and thus creating noise, we smooth co-
sine evolution curves with a gaussian filter. We
consider peaks higher than 0.025 as translating a
high step in the evolution of cosine similarity.

On average, they are 1.35 peaks per word for
the trained model against 0.1 peak per word for
our baseline condition (untrained model), showing
that cosine evolution is linear in the latter but not
in the former. Thus, in our baseline condition (un-
trained model), each MFCC vector equally con-
tributes to the final representation, whereas in our
trained model some MFCC vectors are more de-

6Thus consisting only of randomly initialised weights

cisive for the final representation than others. In-
deed, some MFCC vectors trigger a high step in
the cosine evolution suggesting that the embed-
ding suddenly gets closer to its final value. Figure
4c shows the evolution of the cosine similarity for
the word “giraffe”. As it can be seen, cosine sim-
ilarity does not tend linearly towards 1, but rather
evolves in steps. Adding the MFCC vectors cor-
responding to the transition from /Ç/ to /æ/ trig-
gers a large difference in the embedding as the co-
sine similarity suddenly jumps to a higher value,
showing it is getting closer to its final represen-
tation. However, cosine similarity plateaus once
/æ/ is reached up until final silence, suggesting the
final /æf/ plays little to no role in the final repre-
sentation of the word.

6 Word Competition

As presented in Section 2.1, some linguistic
models assume that the first phoneme of target
word activates all the words starting by the same
phoneme. The words that are activated but which
do not correspond to the target words are called
“competitors”. As the listener perceives more
and more of the target word some competitors are
deactivated as they do not match what is being
perceived. For example, considering the follow-
ing lexicon: /beIbi/ (baby), /beIzIk/ (basic), and
/beIzbO:l/ (baseball), the first sound /b/ would acti-
vate all three words, once /beIz/ is reached, “baby”
would not be considered a competitor anymore,
and once /beIzb/ is reached the only word activated
would be “baseball” as it is the only word whose
beginning corresponds the perceived sounds.
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Figure 5: Illustration of lexical competition between 5a “meat” and “meter” (target) and 5b “plate” and “player”
(target). Numbers in 1st x-axis corresponds to the number of MFCC frames; 2nd x-axis corresponds to time-
aligned phonemic transcription of the target word; y-axis shows number of images for which at least one caption
(out of 5) contains the target or competitor word. Vertical colour bars are projection of phoneme boundaries of the
target word. Horizontal colour bars show chance score for each word (<2).

We test if the network displays such lexical
competition patterns. To do so, we select a set
of 29 word pairs according to the following cri-
teria: i) words should at least appear 400 times
or more in the captions of the training set, so that
the network would have been able to learn a map-
ping between this word and its referent; ii) words
forming a pair should at least start with the same
phoneme;7 iii) words should not be synonyms and
clearly refer to a different visual object (thus ex-
cluding pairs such as “motorcycle” and “motor-
bike”).

For each word pair, we select the longest word
as target and progressively let the network see
more and more of the MFCC vectors composing
this word (as in Section 5.3). At each time step the
network produces an embedding, which we use to
rank the images from the closest matching image
to the least matching image.8 Then, for the 50
closest matching images, we check if at least one
of the caption contains either the target word or the
competitor. As the competitor is embedded in the
longer word, we expect the network to produce an
embedding close to that of the competitor at the
beginning and then when the acoustic signal does

7Phonemic transcription found in CMU Pronouncing Dic-
tionnary was used

8That is, we compute the cosine distance between the em-
bedding produced at time step t and all the images (5000) of
our collection.

not match the competitor anymore, we expect the
network to be able to find only the target word.

Figure 5 shows example of competition be-
tween two word pairs. Figure 5a shows that
when prompted with the beginning of the word
“meter” /mi:t/ the representation activated by the
network is close to that of “meat” as the clos-
est maching images’s captions contain the word
“meat”. Representation of the word “meter”
seems to be activated only when /Ç/ is reached,
and consequently triggers the total deactivation of
the word “meat”. Figure 5b displays a different
pattern. As in the previous example, the begin-
ning of the word “player” /pleI/ triggers the acti-
vation of the word “plate”. When /Ç/ is reached,
the target word becomes activated and competitor
“plate” starts to deactivate. However, the deacti-
vation is not full, so that when the whole word
“player” is entirely processed by the network,
the word “plate” still remains highly activated.
(REVISED) COHORT (Marslen-Wilson and Welsh,
1978; Marslen-Wilson, 1987) and TRACE (Mc-
Clelland and Elman, 1986) both state that compet-
ing words are all activated at the same time, that
is when the first phoneme is perceived. However
here, the two competing words are activated se-
quentially but not at the same time. Also, in some
cases, competing words that do not match the in-
put anymore still remain highly activated.

346



7 Conclusion

In this paper, we analysed the behaviour of a
model of VGS and showed that a RNN-based
model of VGS is able to map isolated words
to their visual referents. This result is in line
with previous results, such as that of Harwath
and Glass (2019) which uses a CNN-based net-
work. This shows that such models perform an
implicit segmentation of the spoken input in order
to extract the target words. However, the mech-
anism by which implicit segmentation is carried
out and what cues are being used is still to be ex-
plained. We also demonstrated that not all words
are equally well recognised and showed that word
frequency and number of neighbouring object in
an image partly explain this phenomenon.

Also, we introduced a methodology originat-
ing from linguistics to analyse the representation
learned by neural networks: the gating paradigm.
This enabled us to show that the beginning of a
word can activate the representation of a given
concept (e.g. /ÃÇ/ for “giraffe”). We explain this
by the fact that the network has to handle a very
small lexicon, where word forms rarely overlap
and thus the network needs not see the full word to
make its decision. More importantly, we showed
that the network needs to have access to the first
phoneme in order to activate the representation of
the target word, thus showing that it does not re-
spond to a vague acoustic pattern. Word onsets
thus play a crucial role in the process of word ac-
tivation and recognition for our network. Though
word onsets are also important for humans, they
are not as crucial as for our network. Indeed, hu-
mans are able to recover the missing information.
In future work, we would like to test if sentential
context has an effect in word recognition. We also
demonstrated that our model is able to map multi-
ple pseudo-words to the same referent such as hu-
mans do (Section 5.2). However, it is not clear
how and when acoustics interface with meaning
and this still remains an open question.

Finally, we showed that there is a form of lexical
competition in the network. Indeed, small words
embedded in longer words are activated. However,
we showed that, contrary to humans where words
sharing the same beginning are all activated at the
same time, words are activated sequentially by the
network. Also, some stay partially activated even-
though the input does not match that of the acti-
vated word.

Ultimately, we would like to highlight the fact
that the gating paradigm could also by applied to
understand the temporal dynamics of the represen-
tations learned by other speech architectures such
as those used in speech recognition for instance.
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Abstract

Quantitative reasoning is a higher-order reaso-
ning skill that any intelligent natural language
understanding system can reasonably be ex-
pected to handle. We present EQUATE1 (Eva-
luating Quantitative Understanding Aptitude
in Textual Entailment), a new framework for
quantitative reasoning in textual entailment.
We benchmark the performance of 9 published
NLI models on EQUATE, and find that on ave-
rage, state-of-the-art methods do not achieve
an absolute improvement over a majority-class
baseline, suggesting that they do not implicitly
learn to reason with quantities. We establish a
new baseline Q-REAS that manipulates quan-
tities symbolically. In comparison to the best
performing NLI model, it achieves success on
numerical reasoning tests (+24.2%), but has
limited verbal reasoning capabilities (-8.1%).
We hope our evaluation framework will sup-
port the development of models of quantitative
reasoning in language understanding.

1 Introduction

Numbers play a vital role in our lives. We re-
ason with numbers in day-to-day tasks ranging
from handling currency to reading news articles to
understanding sports results, elections and stock
markets. As numbers are used to communicate in-
formation accurately, reasoning with them is an
essential core competence in understanding natu-
ral language (Levinson, 2001; Frank et al., 2008;
Dehaene, 2011). A benchmark task in natural lan-
guage understanding is natural language inference
(NLI)(or recognizing textual entailment (RTE))
(Cooper et al., 1996; Condoravdi et al., 2003; Bos
and Markert, 2005; Dagan et al., 2006), wherein a
model determines if a natural language hypothesis

∗*The first two authors contributed equally to this work.
1Code and data available at https://github.com/

AbhilashaRavichander/EQUATE.

RTE-QUANT

P: After the deal closes, Teva will generate sales of about
$ 7 billion a year, the company said.

H: Teva earns $ 7 billion a year.
AWP-NLI
P: Each of farmer Cunningham’s 6048 lambs is either

black or white and there are 193 white ones.
H: 5855 of Farmer Cunningham’s lambs are black.
NEWSNLI
P: Emmanuel Miller, 16, and Zachary Watson, 17, are

charged as adults, police said.
H: Two teen suspects charged as adults.
REDDITNLI
P: Oxfam says richest one percent to own more than rest

by 2016.
H: Richest 1% To Own More Than Half Worlds Wealth

By 2016 Oxfam.

Table 1: Examples from evaluation sets in EQUATE

can be justifiably inferred from a given premise2.
Making such inferences often necessitates reaso-
ning about quantities.

Consider the following example from Table 1,

P: With 99.6% of precincts counted , Dewhurst
held 48% of the vote to 30% for Cruz .
H: Lt. Gov. David Dewhurst fails to get 50% of
primary vote.

To conclude the hypothesis is inferable, a model
must reason that since 99.6% precincts are coun-
ted, even if all remaining precincts vote for De-
whurst, he would fail to get 50% of the primary
vote. Scant attention has been paid to building da-
tasets to evaluate this reasoning ability. To address
this gap, we present EQUATE (Evaluating Quanti-
ty Understanding Aptitude in Textual Entailment)
(§3), which consists of five evaluation sets, each

2Often, this is posed as a three-way decision where the
hypothesis can be inferred to be true (entailment), false (con-
tradiction) or cannot be determined.
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featuring different facets of quantitative reasoning
in textual entailment (Table 1) (including verbal
reasoning with quantities, basic arithmetic com-
putation, dealing with approximations and range
comparisons.).

We evaluate the ability of existing state-of-the-
art NLI models to perform quantitative reasoning
(§4.1), by benchmarking 9 published models on
EQUATE. Our results show that most models are
incapable of quantitative reasoning, instead rely-
ing on lexical cues for prediction. Additionally,
we build Q-REAS , a shallow semantic reasoning
baseline for quantitative reasoning in NLI (§4.2).
Q-REAS is effective on synthetic test sets which
contain more quantity-based inference, but shows
limited success on natural test sets which require
deeper linguistic reasoning. However, the hardest
cases require a complex interplay between lingui-
stic and numerical reasoning. The EQUATE eva-
luation framework makes it clear where this new
challenge area for textual entailment stands.

2 Related Work

NLI has attracted community-wide interest as a
stringent test for natural language understanding
(Cooper et al., 1996; Fyodorov; Glickman et al.,
2005; Haghighi et al., 2005; Harabagiu and Hickl,
2006; Romano et al., 2006; Dagan et al., 2006;
Giampiccolo et al., 2007; Zanzotto et al., 2006;
Malakasiotis and Androutsopoulos, 2007; Mac-
Cartney, 2009; de2; Dagan et al., 2010; Angeli
and Manning, 2014; Marelli et al., 2014). Recent-
ly, the creation of large-scale datasets (Bowman
et al., 2015; wil; Khot et al., 2018) spurred the de-
velopment of many neural models (Parikh et al.,
2016; Nie and Bansal, 2017; Conneau et al., 2017;
Balazs et al., 2017; Chen et al., 2017a; Radford
et al., 2018; Devlin et al., 2018).

However, state-of-the-art models for NLI treat
the task like a matching problem, which appears
to work in many cases, but breaks down in others.
As the field moves past current models of the mat-
ching variety to ones that embody more of the
reasoning we know is part of the task, we need
benchmarks that will enable us to mark progress
in the field. Prior work on challenge tasks has al-
ready made headway in defining tasks for subpro-
blems such as lexical inference with hypernymy,
co-hyponymy, antonymy (Glockner et al., 2018;
Naik et al., 2018). In this work, we specifically
probe into quantitative reasoning.

De Marneffe et al. (2008) find that in a corpus
of real-life contradiction pairs collected from Wi-
kipedia and Google News, 29% contradictions ari-
se from numeric discrepancies, and in the RTE-
3 (Recognizing Textual Entailment) development
set, numeric contradictions make up 8.8% of con-
tradictory pairs. Naik et al. (2018) find that model
inability to do numerical reasoning causes 4% of
errors made by state-of-the-art models. Sammons
et al. (2010); Clark (2018) argue for a systema-
tic knowledge-oriented approach in NLI by eva-
luating specific semantic analysis tasks, identify-
ing quantitative reasoning in particular as a focus
area. Bentivogli et al. (2010) propose creating spe-
cialized datasets, but feature only 6 examples with
quantitative reasoning. Our work bridges this gap
by providing a more comprehensive examination
of quantitative reasoning in NLI.

While to the best of our knowledge, prior work
has not studied quantitative reasoning in NLI, Roy
(2017) propose a model for a related subtask cal-
led quantity entailment, which aims to determine
if a given quantity can be inferred from a sen-
tence. In contrast, our work is concerned with
general-purpose textual entailment which consi-
ders if a given sentence can be inferred from ano-
ther. Our work also relates to solving arithme-
tic word problems (Hosseini et al., 2014; Mitra
and Baral, 2016; Zhou et al., 2015; Upadhyay
et al., 2016; Huang et al., 2017; Kushman et al.,
2014a; Koncel-Kedziorski et al., 2015; roy; Roy,
2017; Ling et al., 2017a). A key difference is
that word problems focus on arithmetic reasoning,
while the requirement for linguistic reasoning and
world knowledge is limited as the text is conci-
se, straightforward, and self-contained (Hosseini
et al., 2014; Kushman et al., 2014b). Our work
provides a testbed that evaluates basic arithmetic
reasoning while incorporating the complexity of
natural language.

Recently, Dua et al. (2019) also recognize the
importance of quantitative reasoning for text un-
derstanding. They propose DROP, a reading com-
prehension dataset focused on a limited set of
discrete operations such as counting, comparison,
sorting and arithmetic. In contrast, EQUATE fea-
tures diverse phenomena that occur naturally in
text, including reasoning with approximation, or-
dinals, implicit quantities and quantifiers, requi-
ring NLI models to reason comprehensively about
the interplay between quantities and language. Ad-
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ditionally, through EQUATE we suggest the in-
clusion of controlled synthetic tests in evaluation
benchmarks. Controlled tests act as basic validati-
on of model behaviour, isolating model ability to
reason about a property of interest.

3 Quantitative Reasoning in NLI

Our interpretation of “quantitative reasoning”
draws from cognitive testing and education (Staf-
ford, 1972; Ekstrom et al., 1976), which considers
it “verbal problem-solving ability”. While inextri-
cably linked to mathematics, it is an inclusive skill
involving everyday language rather than a specia-
lized lexicon. To excel at quantitative reasoning,
one must interpret quantities expressed in langua-
ge, perform basic calculations, judge their accura-
cy, and justify quantitative claims using verbal and
numeric reasoning. These requirements show a re-
ciprocity: NLI lends itself as a test bed for quan-
titative reasoning, which conversely, is important
for NLI (Sammons et al., 2010; Clark, 2018). Mo-
tivated by this, we present the EQUATE (Evalua-
ting Quantity Understanding Aptitude in Textual
Entailment) framework.

3.1 The EQUATE Dataset
EQUATE consists of five NLI test sets featuring
quantities. Three of these tests for quantitative re-
asoning feature language from real-world sources
such as news articles and social media (§3.2; §3.3;
§3.4). We focus on sentences containing quantities
with numerical values, and consider an entailment
pair to feature quantitative reasoning if it is at least
one component of the reasoning required to de-
termine the entailment label (but not necessarily
the only reasoning component). Quantitative rea-
soning features quantity matching, quantity com-
parison, quantity conversion, arithmetic, qualitati-
ve processes, ordinality and quantifiers, quantity
noun and adverb resolution3 as well as verbal re-
asoning with the quantity’s textual context4. Ap-
pendix B gives some examples for these quanti-
tative phenomena. We further filter sentence pairs
which require only temporal reasoning, since spe-
cialized knowledge is needed to reason about time.
These three test sets contain pairs which conflate
multiple lexical and quantitative reasoning pheno-
mena. In order to study aspects of quantitative rea-

3Such as the quantities represented in dozen, twice, teena-
gers.

4For example, 〈Obama cuts tax rate to 28%, Obama wants
to cut tax rate to 28% as part of overhaul〉.

soning in isolation, EQUATE further features two
controlled synthetic tests (§3.5; §3.6).

3.2 RTE-Quant

This test set is constructed from the RTE sub-
corpus for quantity entailment (Roy, 2017), ori-
ginally drawn from the RTE2-RTE4 datasets (Da-
gan et al., 2006). The original sub-corpus conflates
temporal and quantitative reasoning. We discarded
pairs requiring temporal reasoning, obtaining a set
of 166 entailment pairs.

3.3 NewsNLI

This test set is created from the CNN corpus (Her-
mann et al., 2015) of news articles with abstrac-
tive summaries. We identify summary points with
quantities, filtering out temporal expressions. For
a summary point, the two most similar sentences5

from the article are chosen, flipping pairs whe-
re the premise begins with a first-person pronoun
(eg:〈“He had nine pears”, “Bob had nine pears”〉
becomes 〈“Bob had nine pears”, “He had nine
pears”〉). The top 50% of similar pairs are retai-
ned to avoid lexical overlap bias. We crowdsource
annotations for a subset of this data from Ama-
zon Mechanical Turk. Crowdworkers6 are shown
two sentences and asked to determine whether the
second sentence is definitely true, definitely fal-
se, or not inferable given the first. We collect 5
annotations per pair, and consider pairs with lo-
west token overlap between premise and hypo-
thesis and least difference in premise-hypothesis
lengths when stratified by entailment label. Top
1000 samples meeting these criteria form our fi-
nal set. To validate crowdsourced labels, experts
are asked to annotate 100 pairs. Crowdsourced
gold labels match expert gold labels in 85% cases,
while individual crowdworker labels match expert
gold labels in 75.8%. Disagreements are manual-
ly resolved by experts and examples not featuring
quantitiative reasoning are filtered, leaving a set of
968 samples.

3.4 RedditNLI

This test set is sourced from the popular soci-
al forum \reddit7. Since reasoning about quanti-

5According to Jaccard similarity.
6We require crowdworkers to have an approval rate of

95% on at least 100 tasks and pass a qualification test.
7According to the Reddit User Agreement, users grant

Reddit the right to make their content available to other or-
ganizations or individuals.
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Source Test Set Size Classes Data Source Annotation
Source

Quantitative Phenomena

RTE-Quant 166 2 RTE2-RTE4 Experts Arithmetic, Ranges, Quan-
tifiers

Natural NewsNLI 968 2 CNN Crowdworkers Ordinals, Quantifiers,
Arithmetic, Approximati-
on, Magnitude, Ratios

RedditNLI 250 3 Reddit Experts Range, Arithmetic, Appro-
ximation, Verbal

Stress Test 7500 3 AQuA-RAT Automatic Quantifiers
Synthetic AwpNLI 722 2 Arithmetic Word

Problems
Automatic Arithmetic

Table 2: An overview of test sets included in EQUATE. RedditNLI and Stress Test are framed as 3-class (entail-
ment, neutral, contradiction) while RTE-Quant, NewsNLI and AwpNLI are 2-class (entails=yes/no). RTE 2-4 for-
mulate entailment as a 2-way decision. We find that few news article headlines are contradictory, thus NewsNLI is
similarly framed as a 2-way decision. For algebra word problems, substituting the wrong answer in the hypothesis
necessarily creates a contradiction under the event coreference assumption (De Marneffe et al., 2008), thus it is
framed as a 2-way decision as well.

ties is important in domains like finance or eco-
nomics, we scrape all headlines from the posts
on \r\economics, considering titles that contain
quantities and do not have meta-forum informa-
tion. Titles appearing within three days of each
other are clustered by Jaccard similarity, and the
top 300 pairs are extracted. After filtering out
nonsensical titles, such as concatenated stock pri-
ces, we are left with 250 sentence pairs. Similar
to RTE, two expert annotators label these pairs,
achieving a Cohen’s kappa of 0.82. Disagreements
are discussed to resolve final labels.

3.5 Stress Test

We include the numerical reasoning stress test
from (Naik et al., 2018) as a synthetic sanity
check. The stress test consists of 7500 entail-
ment pairs constructed from sentences in algebra
word problems (Ling et al., 2017b). Focusing on
quantifiers, it requires models to compare entities
from hypothesis to the premise while incorpora-
ting quantifiers, but does not require them to per-
form the computation from the original algebra
word problem (eg: 〈“NHAI employs 100 men to
build a highway of 2 km in 50 days working 8
hours a day”,“NHAI employs less than 700 men
to build a highway of 2 km in 50 days working 8
hours a day”〉).

3.6 AwpNLI

To evaluate arithmetic ability of NLI models, we
repurpose data from arithmetic word problems
(roy). They have the following characteristic struc-
ture. First, they establish a world and optional-
ly update its state. Then, a question is posed

about the world. This structure forms the basis
of our pair creation procedure. World building
and update statements form the premise. A hy-
pothesis template is generated by identifying mo-
dal/auxiliary verbs in the question, and subsequent
verbs, which we call secondary verbs. We iden-
tify the agent and conjugate the secondary verb
in present tense followed by the identified unit
to form the final template (for example, the al-
gebra word problem ‘Gary had 73.0 dollars. He
spent 55.0 dollars on a pet snake. How many dol-
lars did Gary have left?’ would generate the hy-
pothesis template ‘Agent(Gary) Verb(Has) Ans-
wer(18.0) Unit(dollars) left’). For every templa-
te, the correct guess is used to create an entailed
hypothesis. Contradictory hypotheses are created
by randomly sampling a wrong guess (x ∈ Z+ if
correct guess is an integer, and x ∈ R+ if it is a
real number) 8. We check for grammaticality, fin-
ding only 2% ungrammatical hypotheses, which
are manually corrected leaving a set of 722 pairs.

4 Models

We describe the 9 NLI models9 used in this study,
as well as our new baseline. The interested reader
is invited to refer to the corresponding publicati-
ons for further details.

4.1 NLI Models
1) Majority Class (MAJ): Simple baseline that
always predicts the majority class in test set.

8From a uniform distribution over an interval of 10 around
the correct guess (or 5 for numbers less than 5), to identify
plausible wrong guesses.

9Accuracy of all models on MultiNLI closely matches ori-
ginal publications (numbers in appendix A).
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Figure 1: Overview of Q-REAS baseline.

2) Hypothesis-Only (HYP): FastText classifier
(Mikolov et al., 2018) trained on only hypotheses
(Gururangan et al., 2018).
3) ALIGN: A bag-of-words alignment model in-
spired by MacCartney (2009).10

4) CBOW: A simple bag-of-embeddings sentence
representation model (wil).
5) BiLSTM: The simple BiLSTM model descri-
bed by wil.
6) Chen (CH): Stacked BiLSTM-RNNs with
shortcut connections and character word embed-
dings (Chen et al., 2017b).
7) InferSent: A single-layer BiLSTM-RNN mo-
del with max-pooling (Conneau et al., 2017).
8) SSEN: Stacked BiLSTM-RNNs with shortcut
connections (Nie and Bansal, 2017).
9) ESIM: Sequential inference model proposed
by Chen et al. (2017a) which uses BiLSTMs with
an attention mechanism.
10) OpenAI GPT: Transformer-based language
model (Vaswani et al., 2017), with finetuning on
NLI (Radford et al., 2018).
11) BERT: Transformer-based language model
(Vaswani et al., 2017), with a cloze-style and next-
sentence prediction objective, and finetuning on
NLI (Devlin et al., 2018).

4.2 Q-REAS Baseline System

Figure 1 describes the Q-REAS baseline for
quantitative reasoning in NLI. The model manipu-
lates quantity representations symbolically to ma-
ke entailment decisions, and is intended to serve
as a strong heuristic baseline for numerical reaso-
ning on the EQUATE benchmark. This model has

10Model accuracy on RTE-3 test is 61.12%, comparable to
the reported average model performance in the RTE compe-
tition of 62.4% .

INPUT
Pc Set of “compatible” single-valued premise quanti-

ties
Pr Set of “compatible” range-valued premise quanti-

ties
H Hypothesis quantity
O Operator set {+,−, ∗, /,=,∩,∪, \,⊆}
L Length of equation to be generated
SL Symbol list (Pc ∪ Pr ∪H ∪O)
TL Type list (set of types from Pc, Pr, H)
N Length of symbol list
K Index of first range quantity in symbol list
M Index of first operator in symbol list
OUTPUT
ei Index of symbol assigned to ith position in postfix

equation
VARIABLES
xi Main ILP variable for position i
ci Indicator variable: is ei a single value?
ri Indicator variable: is ei a range?
oi Indicator variable: is ei an operator?
di Stack depth of ei
ti Type index for ei

Table 3: Input, output and variable definitions for the
Integer Linear Programming (ILP) framework used for
quantity composition

four stages: Quantity mentions are extracted and
parsed into semantic representations called NUM-
SETS (§4.2.1, §4.2.2); compatible NUMSETS are
extracted (§4.2.3) and composed (§4.2.4) to form
justifications; Justifications are analyzed to deter-
mine entailment labels (§4.2.5).

4.2.1 Quantity Segmenter
We follow Barwise and Cooper (1981) in defining
quantities as having a number, unit, and an optio-
nal approximator. Quantity mentions are identified
as least ancestor noun phrases from the constituen-
cy parse of the sentence containing cardinal num-
bers.

4.2.2 Quantity Parser
The quantity parser constructs a grounded repre-
sentation for each quantity mention in the premise
or hypothesis, henceforth known as a NUMSET 11.
A NUMSET is a tuple (val, unit, ent, adj, loc, verb,
freq, flux)12 with:

1. val ∈ [R,R]: quantity value represented as a
range
2. unit ∈ S: unit noun associated with quantity
3. ent ∈ Sφ: entity noun associated with unit (e.g.,
donations worth 100$)

11A NUMSET may be a composition of other NUMSETS .
12As in (Koncel-Kedziorski et al., 2015) S denotes all pos-

sible spans in the sentence, φ represents the empty span, and
Sφ=S ∪ φ
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Definitional Constraints
Range restriction xi < K or xi = M − 1 for i ∈ [0, L− 1] if ci = 1

xi ≥ K and xi < M for i ∈ [0, L− 1] if ri = 1
xi ≥M for i ∈ [0, L− 1] if oi = 1

Uniqueness ci + ri + oi = 1 for i ∈ [0, L− 1]
Stack definition d0 = 0 (Stack depth initialization)

di = di−1 − 2oi + 1 for i ∈ [0, L− 1] (Stack depth update)
Syntactic Constraints

First two operands c0 + r0 = 1 and c1 + r1 = 1
Last operator xL−1 ≥ N − 1 (Last operator should be one of {=,⊆})
Last operand xL−2 = M − 1 (Last operand should be hypothesis quantity)
Other operators xi ≤ N − 2 for i ∈ [0, L− 3] if oi = 1
Other operands xi < K for i ∈ [0, L− 3] if ci = 1

xi < M for i ∈ [0, L− 3] if ri = 1
Empty stack dL−1 = 0 (Non-empty stack indicates invalid postfix expression)
Premise usage xi 6= xj for i, j ∈ [0, L− 1] if oi 6= 1, oj 6= 1

Operand Access
Right operand op2(xi) = xi−1 for i ∈ [0, L− 1] such that oi = 1
Left operand op1(xi) = xl for i, l ∈ [0, L − 1] where oi = 1 and l is the largest index such that

l ≤ (i− 2) and dl = di

Table 4: Mathematical validity constraint definitions for the ILP framework. Functions op1() and op2() return the
left and right operands for an operator respectively. Variables defined in table 3.

Type Consistency Constraints
Type assignment ti = TL[k] for i ∈ [0, L− 1] if ci + ri = 1 and type(SLi) = k
Two type match ti = ta = tb for i ∈ [0, L − 1] such that oi = 1, xi ∈ {+,−, ∗, /,=,∩,∪, \,⊆}, a =

op1(xi), b = op2(xi)
One type match ti ∈ {ta, tb}, ta 6= tb for i ∈ [0, L − 1] such that oi = 1, xi = ∗, a = op1(xi), b =

op2(xi)
ti = ta 6= tb for i ∈ [0, L− 1] such that oi = 1, xi = /, a = op1(xi), b = op2(xi)

Operator Consistency Constraints
Arithmetic operators ca = cb = 1 for i ∈ [0, L − 1] such that oi = 1, xi ∈ {+,−, ∗, /,=}, a = op1(xi), b =

op2(xi)
Range operators ra = rb = 1 for i ∈ [0, L−1] such that oi = 1, xi ∈ {∩,∪, \}, a = op1(xi), b = op2(xi)

rb = 1 for i ∈ [0, L− 1] such that oi = 1, xi =⊆, b = op2(xi)

Table 5: Linguistic consistency constraint definitions for the ILP framework. Functions op1() and op2() return the
left and right operands for an operator respectively. Variables defined in table 3.

4. adj ∈ Sφ: adjective associated with unit if
any13,
5. loc ⊆ Sφ: location of unit (e.g.,’in the bag’)14

6. verb ∈ Sφ: action verb associated with quanti-
ty15.
7. freq ⊆ Sφ: if quantity recurs16 (e.g, ’per hour’),
8. flux ∈ {increase to, increase from, decrease to,
decrease from}φ: if quantity is in a state of flux17.

To extract values for a quantity, we extract car-
dinal numbers, recording contiguity. We norma-
lize the number18. We also handle simple ratios

13Extracted as governing verb linked to entity by an amod
relation.

14Extracted as prepositional phrase attached to the quantity
and containing noun phrase.

15Extracted as governing verb linked to entity by dobj or
nsubj relation.

16extracted using keywords per and every
17using gazetteer: increasing, rising, rose, decreasing, fal-

ling, fell, drop
18(remove “,”s, convert written numbers to float, decide the

such as quarter, half etc, and extract bounds (eg:
fewer than 10 apples is parsed to [−∞, 10] app-
les.)

To extract units, we examine tokens adjacent
to cardinal numbers in the quantity mention and
identify known units. If no known units are found,
we assign the token in a numerical modifier re-
lationship with the cardinal number, else we as-
sign the nearest noun to the cardinal number as
the unit. A quantity is determined to be approxi-
mate if the word in an adverbial modifier relation
with the cardinal number appears in a gazetteer19.
If approximate, range is extended to (+/-)2% of the

numerical value, for example hundred fifty eight thousand
is 158000, two fifty eight is 258, 374m is 3740000 etc.). If
cardinal numbers are non-adjacent, we look for an explicitly
mentioned range such as ‘to’ and ‘between’.

19roughly, approximately, about, nearly, roundabout,
around, circa, almost, approaching, pushing, more or less,
in the neighborhood of, in the region of, on the order
of,something like, give or take (a few), near to, close to, in
the ballpark of
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M
D RTE-Q ∆ NewsNLI ∆ RedditNLI ∆ NR ST ∆ AWPNLI ∆

Nat.
Avg. ∆

Synth.
Avg. ∆

All
Avg. ∆

MAJ 57.8 0.0 50.7 0.0 58.4 0.0 33.3 0.0 50.0 0.0 +0.0 +0.0 +0.0
HYP 49.4 -8.4 52.5 +1.8 40.8 -17.6 31.2 -2.1 50.1 +0.1 -8.1 -1.0 -5.2
ALIGN 62.1 +4.3 56.0 +5.3 34.8 -23.6 22.6 -10.7 47.2 -2.8 -4.7 -6.8 -5.5
CBOW 47.0 -10.8 61.8 +11.1 42.4 -16.0 30.2 -3.1 50.7 +0.7 -5.2 -1.2 -3.6
BiLSTM 51.2 -6.6 63.3 +12.6 50.8 -7.6 31.2 -2.1 50.7 +0.7 -0.5 -0.7 -0.6
CH 54.2 -3.6 64.0 +13.3 55.2 -3.2 30.3 -3.0 50.7 +0.7 +2.2 -1.2 +0.9
InferSent 66.3 +8.5 65.3 +14.6 29.6 -28.8 28.8 -4.5 50.7 +0.7 -1.9 -1.9 -1.9
SSEN 58.4 +0.6 65.1 +14.4 49.2 -9.2 28.4 -4.9 50.7 +0.7 +1.9 -2.1 +0.3
ESIM 54.8 -3.0 62.0 +11.3 45.6 -12.8 21.8 -11.5 50.1 +0.1 -1.5 -5.7 -3.2
GPT 68.1 +10.3 72.2 +21.5 52.4 -6.0 36.4 +3.1 50.0 +0.0 +8.6 +1.6 +5.8
BERT 57.2 -0.6 72.8 +22.1 49.6 -8.8 36.9 +3.6 42.2 -7.8 +4.2 -2.1 +1.7

Q-REAS 56.6 -1.2 61.1 +10.4 50.8 -7.6 63.3 +30 71.5 +21.5 +0.5 +25.8 +10.6

Table 6: Accuracies(%) of 9 NLI Models on five tests for quantitiative reasoning in entailment. M and D repre-
sent models and datasets respectively. ∆ captures improvement over majority-class baseline for a dataset. Column
Nat.Avg. reports the average accuracy(%) of each model across 3 evaluation sets constructed from natural sources
(RTE-Quant, NewsNLI, RedditNLI), whereas Synth.Avg. reports the average accuracy(%) on 2 synthetic evalua-
tion sets (Stress Test, AwpNLI). Column Avg. represents the average accuracy(%) of each model across all 5
evaluation sets in EQUATE.

current value.

4.2.3 Quantity Pruner
The pruner constructs “compatible” premise-
hypothesis NUMSET pairs. Consider the pair “In-
surgents killed 7 U.S. soldiers, set off a car bomb
that killed four Iraqi policemen” and “7 US sol-
diers were killed, and at least 10 Iraqis died”. Our
parser extracts NUMSETS corresponding to “four
Iraqi policemen” and “7 US soldiers” from pre-
mise and hypothesis respectively. But these NUM-
SETS should not be compared as they involve dif-
ferent units. The pruner discards such incompa-
tible pairs. Heuristics to identify unit-compatible
NUMSET pairs include three cases- 1) direct string
match, 2) synonymy/hypernymy relations from
WordNet, 3) one unit is a nationality/ job20 and the
other unit is synonymous with person (Roy, 2017).

4.2.4 Quantity Composition
The composition module detects whether a hypo-
thesis NUMSET is justified by composing “compa-
tible” premise NUMSETS . For example, consider
the pair “I had 3 apples but gave one to my bro-
ther” and “I have two apples”. Here, the premise
NUMSETS P1 (“3 apples”) and P2 (“one apple”)
must be composed to deduce that the hypothesis
NUMSET H1 (“2 apples”) is justified. Our fra-
mework accomplishes this by generating postfix
arithmetic equations21 from premise NUMSETS ,

20Lists of jobs, nationalities scraped from Wikipedia.
21Note that arithmetic equations differ from algebraic

equations in that they do not contain unknown variables

that justify the hypothesis NUMSET 22. In this ex-
ample, the expression < P1, P2,−, H1,=> will
be generated.

The set of possible equations is exponential in
number of NUMSETS , making exhaustive genera-
tion intractable. But a large number of equations
are invalid as they violate constraints such as unit
consistency. Thus, our framework uses integer li-
near programming (ILP) to constrain the equation
space. It is inspired by prior work on algebra word
problems (Koncel-Kedziorski et al., 2015), with
some key differences:

1. Arithmetic equations: We focus on arithmetic
equations instead of algebraic ones.
2. Range arithmetic: Quantitative reasoning in-
volves ranges, which are handled by representing
then as endpoint-inclusive intervals and adding
the four operators (∪,∩, \,⊆)
3. Hypothesis quantity-driven: We optimize an
ILP model for each hypothesis NUMSET because
a sentence pair is marked “entailment” iff every
hypothesis quantity is justified.

Table 3 describes ILP variables. We impose the
following types of constraints:
1. Definitional Constraints: Ensure that ILP
variables take on valid values by constraining
initialization, range, and update.
2. Syntactic Constraints: Assure syntactic vali-
dity of generated postfix expressions by limiting

22Direct comparisons are incorporated by adding “=” as an
operator.

355



operator-operand ordering.
3. Operand Access: Simulate stack-based
evaluation correctly by choosing correct operator-
operand assignments.
4. Type Consistency: Ensure that all operations
are type-compatible.
5. Operator Consistency: Force range operators
to have range operands and mathematical opera-
tors to have single-valued operands.

Definitional, syntactic, and operand access
constraints ensure mathematical validity while ty-
pe and operator consistency constraints add lingui-
stic consistency. Constraint formulations are pro-
vided in Tables 4 and 5. We limit tree depth to 3
and retrieve a maximum of 50 solutions per hypo-
thesis NUMSET , then solve to determine whether
the equation is mathematically correct. We discard
equations that use invalid operations (division by
0) or add unnecessary complexity (multiplication/
division by 1). The remaining equations are consi-
dered plausible justifications .

4.2.5 Global Reasoner
The global reasoner predicts the final entailment
label as shown in Algorithm 123, on the assumpti-
on that every NUMSET in the hypothesis has to be
justified 24 for entailment.

5 Results and Discussion

Table 6 presents results on EQUATE. All models,
except Q-REAS are trained on MultiNLI. Q-
REAS utilizes WordNet and lists from Wikipedia.
We observe that neural models, particularly
OpenAI GPT excel at verbal aspects of quantita-
tive reasoning (RTE-Quant, NewsNLI), whereas
Q-REAS excels at numerical aspects (Stress Test,
AwpNLI).

5.1 Neural Models on NewsNLI:

To tease apart contributory effects of numerical
and verbal reasoning in natural data, we expe-
riment with NewsNLI. We extract all entailed
pairs where a quantity appears in both premise

23MaxSimilarityClass() takes two quantities and returns a
probability distribution over entailment labels based on unit
match. Similarly, ValueMatch() detects whether two quanti-
ties match in value (this function can also handle ranges).

24This is a necessary but not sufficient condition for entail-
ment. Consider the example, 〈‘Sam believed Joan had 5 app-
les’, ‘Joan had 5 apples’〉. The hypothesis quantities of 5 app-
les is justified but is not a sufficient condition for entailment.

Algorithm 1 PredictEntailmentLabel(P,H,C,E)
Input: Premise quantities P , Hypothesis quanti-

ties H , Compatible pairs C, Equations E
Output: Entailment label l ∈ { e, c, n }

1: if C = ∅ then return n
2: J ← ∅
3: L← []
4: for qh ∈ H do
5: Jh ← {qp | qp ∈ P, (qp, qh) ∈ C}
6: J ← J ∪ {(qh, Jh)}
7: L← L+ [false]

8: for (qh, Jh) ∈ J do
9: if Jh = ∅ then return n

10: for qp ∈ Jh do
11: s←MaxSimilarityClass(qp, qh)
12: if s = e then
13: if ValueMatch(qp, qh) then
14: L[qh] = true
15: if !ValueMatch(qp, qh) then
16: L[qh] = false
17: if s = c then
18: if ValueMatch(qp, qh) then
19: L[qh] = c
20: for qh ∈ H do
21: Eq ← {ei ∈ E | hyp(ei) = qh}
22: if Eq 6= ∅ then
23: L[qh] = true
24: if c ∈ L then return c
25: if count(L, true) = len(L) then return e
26: return n

and hypothesis, and perturb the quantity in the
hypothesis generating contradictory pairs. For
example, the pair 〈‘In addition to 79 fatalities ,
some 170 passengers were injured.’〉 ‘The crash
took the lives of 79 people and injured some 170’,
‘entailment’ is changed to 〈‘In addition to 79
fatalities , some 170 passengers were injured.’,
‘The crash took the lives of 80 people and injured
some 170’, ‘contradiction’〉, assuming scalar
implicature and event coreference. Our perturbed
test set contains 218 pairs. On this set, GPT25

achieves an accuracy of 51.18%, as compared to
72.04% on the unperturbed set, suggesting the
model relies on verbal cues rather than numerical
reasoning. In comparison, Q-REAS achieves an
accuracy of 98.1% on the perturbed set, compared
to 75.36% on the unperturbed set, highlighting

25the best-performing neural model on EQUATE.
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reliance on quantities rather than verbal infor-
mation. Closer examination reveals that OpenAI
switches to predicting the ‘neutral’ category for
perturbed samples instead of entailment, accoun-
ting for 42.7% of its errors, possibly symptomatic
of lexical bias issues (Naik et al., 2018).

5.2 What Quantitative Phenomena Are
Hard?

We sample 100 errors made by Q-REAS on
each test in EQUATE, to identify phenomena not
addressed by simple quantity comparison. Our
analysis of causes for error suggest avenues for
future research:

1. Multi-step numerical-verbal reasoning:
Models do not perform well on examples
requiring interleaved verbal and quantitative
reasoning, especially multi-step deduction. Con-
sider the pair 〈“Two people were injured in the
attack”, “Two people perpetrated the attack”〉.
Quantities “two people” and “two people” are
unit-compatible, but must not be compared.
Another example is the NewsNLI entailment
pair in Table 1. This pair requires us to identify
that 16 and 17 refer to Emmanuel and Zachary’s
ages (quantitative), deduce that this implies they
are teenagers (verbal) and finally count them
(quantitative) to get the hypothesis quantity “two
teens”. Numbers and language are intricately
interleaved and developing a reasoner capable
of handling such complex interplay is challenging.

2. Lexical inference: Lack of real world know-
ledge causes errors in identifying quantities
and valid comparisons. Errors include mapping
abbreviations to correct units (“m” to “meters”),
detecting part-whole coreference (“seats” can be
used to refer to “buses”), and resolving hyperny-
my/hyponymy (“young men” to “boys”).

3. Inferring underspecified quantities: Quantity
attributes can be implicitly specified, requiring
inference to generate a complete representation.
Consider “A mortar attack killed four people
and injured 80”. A system must infer that the
quantity “80” refers to people. On RTE-Quant,
20% of such cases stem from zero anaphora, a
hard problem in coreference resolution.

4. Arithmetic comparison limitations: These ex-
amples require composition between incompatible
quantities. For example, consider 〈“There were 3
birds and 6 nests”, “There were 3 more nests than
birds”〉. To correctly label this pair “3 birds” and
“6 nests” must be composed.

6 Conclusion

In this work, we present EQUATE, an evaluation
framework to estimate the ability of models to re-
ason quantitatively in textual entailment. We ob-
serve that existing neural approaches rely heavily
on the lexical matching aspect of the task to suc-
ceed rather than reasoning about quantities. We
implement a strong symbolic baseline Q-REAS
that achieves success at numerical reasoning, but
lacks sophisticated verbal reasoning capabilities.
The EQUATE resource presents an opportuni-
ty for the community to develop powerful hy-
brid neuro-symbolic architectures, combining the
strengths of neural models with specialized rea-
soners such as Q-REAS . We hope our insights
lead to the development of models that can more
precisely reason about the important, frequent, but
understudied, phenomena of quantities in natural
language.
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Appendix

A Baseline performance on
MultiNLI-Dev Matched

Model MultiNLI Dev
Hyp Only 53.18%
ALIGN 45.0%
CBOW 63.5%
BiLSTM 70.2%
Chen 73.7%
NB 74.2%
InferSent 70.3%
ESIM 76.2%
OpenAI Transformer 81.35%
BERT 83.8%

Table 7: Performance of all baseline models used in the
paper on the matched subset of MultiNLI-Dev

Table 7 presents classification accuracies of all
baseline models used in this work on the matched
subset of MultiNLI-Dev. These scores are very
close to the numbers reported by the original pu-
blications, affirming the correctness of our baseli-
ne setup.

B Examples of quantitative phenomena
present in EQUATE

Table 8 presents some examples from EQUATE
which demonstrate interesting quantitative pheno-
mena that must be understood to label the pair cor-
rectly.
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Phenomenon Example

Arithmetic
P: Sharper faces charges in Arizona and California
H: Sharper has been charged in two states

Ranges
P: Between 20 and 30 people were trapped in the casino
H: Upto 30 people thought trapped in casino

Quantifiers
P: Poll: Obama over 50% in Florida
H: New poll shows Obama ahead in Florida

Ordinals
P: Second-placed Nancy celebrated their 40th anniversary with a win
H: Nancy stay second with a win

Approximation
P: Rwanda has dispatched 1917 soldiers
H: Rwanda has dispatched some 1900 soldiers

Ratios
P: Londoners had the highest incidence of E. Coli bacteria (25%)
H: 1 in 4 Londoners have E. Coli bacteria

Comparison
P: Treacherous currents took four lives on the Alabama Gulf coast
H: Rip currents kill four in Alabama

Conversion
P: If the abuser has access to a gun, it increases chances of death by 500%
H: Victim five times more likely to die if abuser is armed

Numeration
P: Eight suspects were arrested
H: 8 suspects have been arrested

Implicit
Quantities

P: The boat capsized two more times
H: His sailboat capsized three times

Table 8: Examples of quantitative phenomena present in EQUATE
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Abstract

In the field of metaphor detection, deep learn-
ing systems are the ubiquitous and achieve
strong performance on many tasks. However,
due to the complicated procedures for manu-
ally identifying metaphors, the datasets avail-
able are relatively small and fraught with com-
plications. We show that using syntactic fea-
tures and lexical resources can automatically
provide additional high-quality training data
for metaphoric language, and this data can
cover gaps and inconsistencies in metaphor an-
notation, improving state-of-the-art word-level
metaphor identification. This novel applica-
tion of automatically improving training data
improves classification across numerous tasks,
and reconfirms the necessity of high-quality
data for deep learning frameworks.

1 Introduction

Humans use metaphors to conceptualize abstract
and often difficult concepts by employing knowl-
edge of more concrete domains. They are preva-
lent in speech and text, and allow us to communi-
cate more effectively and more imaginatively. The
fact that they are commonplace and easily under-
stood by humans makes appropriate interpretation
of them essential for high quality natural language
processing applications.

The primary linguistic and cognitive theory of
metaphor is conceptual metaphor theory (Lakoff
and Johnson, 1980; Lakoff, 1993), which theo-
rizes that metaphors are primarily a mental activ-
ity, and the language is merely a side effect of
these ”conceptual” metaphors. From this, it is
posited that metaphors are agnostic with regard to
syntactic structure: a conceptual mapping can be
expressed through whatever syntax the speaker de-
sires. This is apparent from evidence that many
metaphoric predications have the same syntactic
properties as their literal counterparts. Goldberg

(1995) observes that metaphorical ditransitive sen-
tences like ”It gave me a headache” do not dif-
fer syntactically from literal ditransitive sentences
like ”She gave me the account.” Accordingly, to
find syntactic hallmarks of metaphorical meaning
we do not look generally for particular syntactic
constructions, but rather for mismatches of vari-
ous kinds between specific verbs’ ordinary syntac-
tic behavior and their behavior under metaphoric
interpretation.

Perhaps the primary source of verbal syntactic
variability is the set of argument-structure con-
structions identified by Goldberg (1995). One
such construction is Caused Motion (CM), illus-
trated by the sentence ”They pushed it down the
hall”. CM can augment the array of semantic
roles supplied by the verb, as in ”They laughed
me out of the room”. Augmentation often entails
a metaphoric construal: here the verb ”laugh”,
otherwise a single-argument verb, is paired with
both a theme argument (the direct object) and a
PP location argument, and the resulting predica-
tion expresses metaphorical rather than literal mo-
tion (Hwang, 2014).

Despite this connection between verbal syntax
and metaphoric properties, most computational
approaches to metaphor eschew syntax for more
semantic features. While these have proven effec-
tive, metaphor detection remains a difficult task.
This could be due to many factors, but a primary
reason is the lack of adequate training data. An-
notation of metaphor has proven to be extremely
difficult, as is evident by the variety of schemes
used to attempt to achieve consistent annotation.1

This has led to a lack of “big data” for training
models, as well as inconsistencies and gaps in the
data that is available.

In this work, we show that syntactic properties

1For a review of systems, see Veale et al. (2016)
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can be used to improve training data, which is
beneficial to metaphor processing systems. Deep
learning models require sufficient quality data,
which is lacking for many metaphorical expres-
sions. We automatically fill gaps in metaphor
training data by exploiting syntax in two ways:
first, we use the syntactically-motivated lexical re-
source VerbNet to identify additional data through
metaphoric and literal sense identification, and
second, we use syntactic properties of certain lex-
emes, which allow us to identify relevant sen-
tences via dependency parses. These methods
yield training data that improves performance for
metaphor classification across a variety of tasks.

2 Related Work

While most computational metaphor processing
methods rely heavily on lexical semantics, many
previous approaches also employ syntactic struc-
tures to varying degrees. Most prior work involv-
ing argument structure is based on the idea of se-
lectional preferences: certain verbs prefer certain
arguments when used literally, and others when
used metaphorically. This idea is captured by de-
termining what kinds of arguments fill syntactic
and semantic roles for specific verbs.

The CorMet system (Mason, 2004) employs
this paradigm, and is similar to ours in their col-
lection of key verbs and analysis of syntactic ar-
guments and semantic roles. They automatically
collect documents for particular domains based
on key words, and identify selectional preferences
based on the WordNet hierarchy for verbs in these
particular domains. For example, they find that as-
sault typically takes direct objects of the type for-
tification in the MILITARY domain. This allows
them to make inferences about when selectional
preferences are adhered to, and they can then iden-
tify mappings between different domains. While
their task is fundamentally different, their usage
of syntactic frames to identify relevant arguments
is very similar to our work. However, rather than
identify preferences, we are using syntactic frames
to identify whether the verbs are possibly used
metaphorically. Our methods require less adher-
ence to semantic properties, which they retrieve
from WordNet. Our methods are also inherently
somewhat more noisy: while there is evidence that
syntactic frames can be indicative of metaphoric
properties, these properties are rarely observed de-
terministically.

Gedigian et al. (2006) use FrameNet and Prop-
Bank annotation to collect data, focusing on the
FrameNet frames MOTION and CURE. They use
PropBank argument annotations as features, re-
sulting in metaphoric classification accuracy on
these domains of over 95%, although this is only
slightly above the most frequent class baseline
(92%). They collect data from lexical resources
and then annotate it for metaphoricity, which is
similar to our approach of analyzing the resources
and word senses for metaphors.

Shutova et al. (2013) also employs selectional
preferences based on argument structure, identi-
fying verb-subject and verb-direct object pairs in
corpora. They begin with a seed set of metaphoric
pairs, similar to our methods of collecting in-
stances based on syntactic information. They use
these seed pairs to identify new metaphors, sim-
ilar to our usage of syntactic patterns to identify
training data. Their methods are based on the se-
lectional preferences of verbs, and thus are less
concerned with the variety of syntactic patterns
metaphors can participate in. We will identify
much more complex syntactic patterns, and we
then use the data for training metaphor systems
rather than identifying selectional preferences.

Stowe et al. (2018) use syntactic structures di-
rectly for feature-based machine learning meth-
ods. They highlight the distribution of various
syntactic patterns in corpora, and extract features
based on dependency parses to improve classifier
performance. While their results outperform lexi-
cal baselines, they still lag behind other metaphor
detection systems, with F1 scores of 53.1 for verbs
and 50.5 for nouns on the Vrije Universtat Ams-
terdam Metaphor Corpus (VUAMC) (Steen et al.,
2010). We improve on their work by employing
deep learning architecture while still attempting
to leverage syntactic information. As many deep
learning algorithms (including the recurrent neural
networks used here) natively capture long-distance
dependencies, direct inclusion of syntactic fea-
tures is likely not productive. By capturing ad-
ditional data, we can take advantage of linguistic
analysis to improve deep learning-based metaphor
detection.

With regard to datasets and tasks, metaphor pro-
cessing has suffered from a lack of consistent eval-
uation methods. The metaphor shared task pro-
vided a standard evaluation procedure that has
greatly helped with system comparison (Leong
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et al., 2018). They use the VUAMC, providing
a train/test split that has been used to regular-
ize the evaluation of metaphor identification sys-
tems. For both sections of the task (identifying all
metaphoric words and identifying verbs), four of
the top five systems use some form of long short-
term memory network (LSTM). The system of Wu
et al. (2018) performed best on both tasks (F1 of
.651 on all parts of speech, and .672 for verbs) us-
ing a combination of a convolutional neural net-
work (CNN) and bidirectional LSTM.

Since the shared task, a variety of other ap-
proaches have been developed using similar deep
learning techniques. Most recently, the work of
Gao et al. (2018) achieved state-of-the-art perfor-
mance on the shared task data as well as a vari-
ety of other datasets, including the TroFi (Birke
and Sarkar, 2006) and Mohammad et al. (2016)
datasets, using Bi-LSTM models coupled with
GloVe (Pennington et al., 2014) and ELMo (Pe-
ters et al., 2018) embeddings. For the VUAMC
shared task, they report F1 scores of .726 for all
parts of speech and .697 for verbs. For the Mo-
hammad et al. dataset, they report an average F1
score of .791, and for the Trofi they report an F1
score of .72, slightly lower than the current state
of the art (.75 of Köper et al. (2017)).

Despite recent advances in evaluation and algo-
rithm performance, the task still remains difficult,
with the highest F1 scores nearing only .73 on the
VUAMC data. This is likely due to the relatively
small dataset size (app. 200,000 words), which
is in part caused by difficulties in annotation. We
aim to overcome some of this difficulty by auto-
matically extracting additional training data with
lexical and syntactic methods.

3 Methods

We aim to improve training data for metaphor pro-
cessing by performing linguistic analysis on diffi-
cult verbs to uncover the syntactic properties that
can potentially influence their metaphoricity. Our
work is focused on verbs: they form the foun-
dation of many metaphoric expressions, and evi-
dence from construction grammar and frame se-
mantics has shown that syntactic properties can of-
ten influence the types of metaphors that are pro-
duced (Sullivan, 2013). We show that identifica-
tion of anomalous syntactic structures can provide
evidence towards metaphoricity, and can be lever-
aged to automatically extract training data that im-

proves classification performance.
This is done through two paths: first, we explore

the lexical semantic resource VerbNet, an ontol-
ogy of English verbs that contains rich syntactic
and semantic information. From VerbNet we ex-
plore verb senses that can potentially be determin-
istically metaphoric or literal, and extract train-
ing data from existing VerbNet annotation. Sec-
ond, we analyze syntactic patterns from Wikipedia
data. We identify patterns that indicate metaphoric
or literal senses of verbs, and then extract addi-
tional data based on these patterns.

3.1 Finding Difficult Verbs
First, we need to select verbs to analyze. Our goal
is to find verbs that are likely difficult for classi-
fiers, as well as those that are frequent enough to
have a significant impact. This is accomplished
through two avenues: first, we examine all the
verbs in the training data, and analyze those that
have the most even class balance between literal
and metaphoric uses. We refer to these verbs as
our most “ambiguous” verbs. For our preliminary
experiments, we selected the ten most ambiguous
verbs which occurred at least ten times in the train-
ing data.

Second, we employed the metaphor detection
system of Gao et al. (2018). We trained the system
on the provided VUAMC shared task training data
and ran it on their validation set. We then analyzed
which verbs were most frequently misclassified in
the validation data, to determine where additional
data would be most effective. We chose to use the
VUAMC data for this task due to its size and sta-
tus as the standard for metaphor identification. As
with the most ambiguous verbs, we selected the
ten verbs with the lowest F1 score that occurred at
least ten times in the data for analysis. The verbs
chosen through these analyses are shown in Table
1. In theory, expanding the number of verbs ana-
lyzed would yield more data and improve perfor-
mance, but as an experimental baseline ten verbs is
sufficient for analysis and classifier improvement.

For each of these verbs, we performed two
kinds of analysis. First, we explored their
metaphoric and literal usage in VerbNet. Sec-
ond, we examined their syntactic properties for
metaphoric and literal patterns.

3.2 VerbNet
VerbNet is a lexical resource that currently cate-
gorizes 6,791 verbs into 329 verb classes based
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Most Ambiguous Verbs Most Misclassified Verbs
Verb Met Tokens Lit Tokens % Met Verb FP FN Correct % Correct
encourage 6 6 .5 spend 7 0 4 .363
blow 5 5 .5 include 8 1 10 .526
conduct 5 5 .5 play 3 3 8 .571
show 34 33 .49 hold 3 3 8 .571
find 60 62 .49 stop 7 1 12 .600
fall 18 19 .51 reduce 2 2 6 .600
hold 28 30 .52 get 15 21 74 .673
bring 36 33 .48 suggest 4 0 9 .692
put 57 52 .48 meet 2 1 7 .700
allow 19 21 .48 discuss 1 2 7 .700

Table 1: Difficult Verbs from the VUAMC data: on the left, the verbs with the most even split between literal and
metaphoric. On the right, verbs in the validation set that were most misclassified. Restricted to verbs where count
≥ 10.

on their syntactic and semantic behavior (Kipper-
Schuler, 2005).2 These verb classes are based
on the work of Levin (1993), who shows that for
many verbs their semantics can be determined by
the syntactic alternations they participate in, argu-
ing that ”the behavior of a verb, particularly with
respect to the expression and interpretation of its
arguments, is to a large degree determined by its
meaning.” (pg 1)

VerbNet is primarily composed of verb
”classes”: these classes are a hierarchically struc-
turing of verb senses based on their syntactic and
semantic behavior. Each class contains a list of
verb senses, the syntactic frames that these verbs
can participate in, a first-order semantic predicate
representation for the class’s meaning, and the
thematic roles the verb takes as arguments. These
thematic roles, which are fairly coarse-grained
roles such as Agent, Theme, and Patient, are often
marked with selectional restrictions. For example,
many classes have Agents that are marked as
+ANIMATE, indicating the Agent of the verb must
be an animate entity.

VerbNet has practical applications for word
sense disambiguation and semantic role labelling,
and numerous annotation projects have been done
to tag data with the correct VerbNet senses. Our
goal is to identify which particular VerbNet senses
are typically metaphoric or literal, and extract sen-
tences tagged with these VerbNet senses.

For each verb, we examined the VerbNet classes
in which it appears. We looked at VerbNet anno-
tation, the example sentences, the selectional pref-

2https://verbs.colorado.edu/verbnet/

erences on the class’s thematic roles, and the se-
mantic predicates. From this we assessed whether
the sense of the verb in each class was typi-
cally metaphoric or literal. Consider the verb
”grow”. It is present in two particular VerbNet
classes: GROW-26.2 and CALIBRATABLE COS-
45.6. The GROW-26.2 class has an animate
Agent role, and produces a concrete Product out
of a concrete Material:

1. A private farmer in Poland is free to buy and
sell land, hire help, and decide what to grow.

2. It’s the kind of fruit that grew freely and that
you could help yourself to.

We note from the semantics and annotated ex-
amples, we expect this sense of grow to typically
be literal. However, in the CALIBRATABLE COS-
45.6 class, it contains a Value role that moves
along a scale by a certain Extent. These examples
all appear to be metaphoric, evoking the MORE IS

UP mapping3:

1. Exports in the first eight months grew only
9%.

2. Non-interest expenses grew 16% to $496
million.

This allows us to extract new training data us-
ing these classes. We use a repository of manu-
ally annotated VerbNet senses, containing approx-
imately 150,000 annotated verbs (Palmer et al.,

3Examples from the VerbNet annotation data from Palmer
et al. (2017)
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2017). We found all annotated instances of
”grow” in the GROW-26.2 class, and considered
them to be literal, and all instances of ”grow”
from CALIBRATABLE COS-45.6 were consid-
ered metaphoric. This process was completed for
all of the verbs in Table 1. This analysis only
includes the particular verb in question. We be-
lieve ”grow” in the GROW-26.2 class is typically
literal, and ”grow” in the CALIBRATABLE COS-
45.6 class is typically metaphoric, but this does
not necessarily extend to other verbs in these
classes. We will discuss the possibility of expand-
ing this analysis to include all verbs for particular
classes in Section 6.

Note that we only consider the verbs in these in-
stances: we have no knowledge of the metaphoric-
ity of the verbs’ arguments. For each verb, we ex-
tracted up to 100 annotations for each sense that
we determined to be largely metaphoric or literal.

3.3 Syntactic Patterns

As a second path for finding additional data, we
explore the syntactic properties of metaphoric ex-
pressions. While metaphors are traditionally seen
as cognitive, and relatively unaffected by sur-
face syntactic realizations, there is recent evi-
dence based in construction grammar that syn-
tactic structures can influence the source and tar-
get domain elements of metaphoric expressions
(Sullivan, 2013; David and Matlock, 2018; David,
2017). We expand on this idea: we believe that
not only can syntactic structures indicate source
and target elements, but they can also indicate
metaphoricity.

We see this in English with verbs like hemor-
rhage, which is almost always used metaphorically
when it is used transitively4:

• GM was supporting this event even as they
were hemorrhaging cash.
• For 30 straight years, American organized la-

bor has been hemorrhaging members.

When used intransitively, hemorrhage is almost
always literal:

• Cerebral AVMs often have no symptoms un-
til they rupture and hemorrhage.
• Michael hemorrhaged and sustained a mas-

sive stroke to the left side of his brain.
4Examples from SketchEngine (Kilgarriff et al., 2014)

http://www.sketchengine.eu/

This is likely due to the fact that literal use of
“hemorrhage” contains an understood argument,
blood, which is the most natural object of the verb.
If the use is intended in a less literal way, which
requires on over syntactic object, the null “blood”
object needs to be overridden. While not all verbs
have this direct relation between argument num-
ber and metaphoricity, we believe that the type and
number of syntactic arguments of a verb can be in-
dicative of unmarked usage, and may be utilized as
a method for automatically extracting training data
for metaphor classification. This analysis doesn’t
reflect linguistic facts: it is possible to construct
sentences in which the intransitive use of ”hem-
orrhage” is metaphoric (”after the stock market
crashed, the company hemorrhaged”), as well as
transitive usages that are literal (”after the surgery,
the patient hemorrhaged blood”). However, we
find that in the majority of cases, metaphoricity
aligns with the argument structure, and these con-
trived examples are exceedingly rare.

For each verb in our list, we analyzed all the
sentences from the VUAMC training data as well
as 50 additional sentences from Wikipedia that
contained the verb, and attempted to discover syn-
tactic patterns that are indicative of metaphoric-
ity. We examined argument structure, active vs
passive voice, prepositional complements, aspect,
idiomatic combinations and other surface syntac-
tic properties. We created a short list of the most
likely candidates for literal and metaphoric syntac-
tic patterns. We then extracted up to 100 sentences
from Wikipedia that matched these syntactic pat-
terns.

A brief overview of the syntactic patterns and
VerbNet class analysis is shown in Table 2; the full
extraction rules, code, and data will be released
upon publication.

Note that for many cases, it was difficult to de-
termine what was literal and what was metaphoric.
Highly polysemous verbs like ”get” in particu-
lar are problematic: they contain many different
meanings and usages that can often be annotated
inconsistently, so strong metaphoric or literal pat-
terns were impossible to identify.

As with the ”hemorrhage” examples above,
these patterns are not deterministic. The syntac-
tic structures analyzed aren’t always metaphoric or
literal, but they are consistent enough to be useful
for extracting additional training data. For each
verb we attempted to extract up to 100 samples
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Verb Lit. Syn. Patterns Met. Syn. Patterns Lit. VerbNet Classes Met. VerbNet Classes
encourage NP V NP {TO} VP NP V NP advise-37.9 amuse-31.1

find NP V PRO VP
find out, find dead NP V NP {TO BE} ADJ get-13.5.1 declare-29.4

fall NP V ADV, NP V
WH NP V

fall in, fall to escape-51.1

calibratable cos-45.6
convert-26.6.2

long-32.2
acquiesce-95.1

die-42.4

spend NP V
NP V {ON} NP

spend time
spend life pay-68 consume-66

spend time-104

play NP V PP
play with -

meet-36.3
performance-36.7

play-114.2

trifle-105.3
use-105.1

suggest negation - say-37.7 reflexive appearance-48.1.2

meet NP V
meet for/at/to - contiguous location-47.8 satisfy-55.7

Table 2: Example analysis of syntactic patterns and VerbNet classes.

From VerbNet From Syn. Patterns
Verb Count % Met Count % Met
encourage 86 .611 200 .497
blow - - 99 .946
conduct - - 200 .503
show - - - -
find 407 .300 255 .047
fall 314 .601 600 .749
hold 913 .445 487 .560
bring - - 500 .601
put - - - -
allow 2 1 300 .334
spend 439 .630 341 .553
play 52 .196 343 0
stop 482 .208 - -
reduce - - - -
suggest 307 .003 12 0
meet 455 .229 399 0
Total 3985 .442 3736 .424

Table 3: Total samples extracted from VerbNet classes
and syntactic patterns, along with the percentage of ex-
tracted samples that are metaphoric.

for each VerbNet sense and each syntactic pattern.
This is to prevent the extracted data becoming sat-
urated with extremely common senses or patterns.
Many senses and patterns are rare, and fewer than
100 instances were collected. A summary of the
extracted data by verb is shown in Table 3.

In total, we extracted 3,985 samples from Verb-
Net annotation and 3,736 samples from Wikipedia
based on syntactic samples for our analyzed verbs.
Each sample is an entire sentence containing the
verb in question, for which we can provide au-
tomatic annotation based on our VerbNet and
syntactic analyses. We can treat this as dis-
tantly supervised data: we have beliefs about the
metaphoric and literal labels for the verbs in each
sentence extracted, but these aren’t always de-

terministic: errors in syntactic pattern matching,
anomalous examples, and other factors introduce
inaccuracies in these samples.

4 Tasks

In order to show the efficacy of our extracted data,
we add this data to the standard datasets and eval-
uate performance on a variety of metaphor pro-
cessing tasks. For a relevant comparison to con-
temporary research, we evaluate our results using
the baseline system of Gao et al. on five differ-
ent tasks. As per their work, we experiment with
two different models: a sequence based model
(dubbed ”SEQ”) that performs best when all parts
of speech contain metaphor tags, and a ”classifica-
tion” model (”CLS”), which tags individual verbs
as metaphoric or not.

4.1 Sequential Model (SEQ)

The sequential model takes as input sentences
from VUAMC data, each with a binary metaphor
tag. They represent each word as the concatena-
tion of a 300 dimension GloVe embeddings with
an ELMo vector. These are then input to a bidirec-
tional LSTM. These sequential models are partic-
ularly useful for encoding relations among distant
words, and have proven effective on a large num-
ber of tasks for which each word in a sentence has
a tag.

4.2 Classification Model (CLS)

The classification model represents each verb in
the VUAMC data as its own instance, maintaining
the sentential context, and these each retain their
annotation as either metaphoric or not. As with the
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sequential model, they are input to a bidirecitonal
LSTM using GloVe and ELMo vectors. They also
include an index embedding and attention layer to
encode the location of the target word.5

These models are used over a variety of
datasets: the dataset from Mohammad et al.
(2016), the Trofi dataset (Birke and Sarkar, 2006),
and the VUA metaphor corpus which is the ba-
sis for the metaphor shared task (Steen et al.,
2010). They use a section of the Mohammad et al.
dataset dubbed ”MOH-X”, consisting of 636 ex-
ample sentences from 214 verbs taken from Word-
Net, annotated as metaphoric or literal. The Trofi
dataset contains 3,737 sentences from 50 differ-
ent verbs which were automatically clustered into
metaphoric or literal clusters. The sequence tag-
ger shows best performance when all words in
the sentence are metaphoric, as is the case with
the VUAMC data. The classification model per-
forms best when only a single word is metaphoric,
as in the MOH-X and Trofi datasets. While the
VUAMC is the basis of our analysis, we will
also examine how adding additional impacts re-
sults on the MOH-X and Trofi datasets; their setup
as classification tasks more accurately mirrors the
additional data, as there is only one potentially
metaphoric word per sample.

4.3 Architecture
We replicate the architectures of Gao et al., us-
ing the same experimental set-up. For the clas-
sification model, we can include our extra data as-
is, with metaphor annotations based on our anal-
ysis. For the sequential model, we consider only
the verb analyzed as metaphoric, leaving the rest
of the words tagged as literal. In order to judge
performance, we run three experimental setups:
one with the additional VerbNet samples, one with
the additional samples generated via syntactic pat-
terns, and one with both. We experimented with
tuning hyperparameters (learning rate, dropout,
and the size of the hidden layer), but found no
significant improvements over their experimental
setup. We did make one modification: we in-
creased the amount of training epochs in propor-
tion to the amount of training data added. This
allows for the model to be sufficiently trained over
all the data.

The VUAMC data has been split into training
5Full details and code for each of these mod-

els can be found at https://github.com/gao-g/
metaphor-in-context/

and test sections for the shared task, and these sec-
tions are also used by Gao et al. We will adopt this
split. For the MOH-X and Trofi datasets, they run
10-fold cross validation and report the mean F1
score. Due to the variable nature of neural mod-
els and the relatively small dataset size, we include
experiments to calculate the statistical significance
of our methods. We split these datasets into 75%
training, 25% test, mirroring the VUAMC data,
and ran classification 10 times. We then calcu-
lated the means and standard deviations. We also
ran bootstrap estimation for all tasks, reevaluat-
ing using random replacement over 106 iterations
(Efron, 1979; Berg-Kirkpatrick et al., 2012). We
consider improvement significant when the mean
and standard deviation from both methods yield p
values of less than .01.

5 Results

The results from our additions on the original tasks
are shown in Figure 1, and the improvements over
the baseline for each method are outlined in Table
4. For each task, we display the results of the orig-
inal Gao baseline, along with the addition of Verb-
Net samples, syntactic pattern-based samples, and
both. For each of these, we show the mean and
standard deviation from running the task 10 times.

We find that adding VerbNet samples, syntac-
tic patterns, and both datasets all always pro-
duces a significant improvement over the baseline.
Adding this additional data outperforms the Gao et
al. sequence tagging algorithm on the VUA shared
task data for both verbs and all parts of speech. We
also see improvements in the classification model,
and on the Trofi dataset. It is important to note
that the extreme variability in the results for these
smaller datasets. We found our improvements on
the Trofi dataset to be significant, while the MOH-
X results were not significant. This is likely due
to the size of the dataset: the MOH-X data con-
tains only 636 samples, leading to high variance
in performance. Further evaluation is necessary to
determine the consistent effect of this data.

For verb sequence tagging, the VerbNet data
yielded the best performance, while for all parts
of speech the additional syntactic data performed
best. This may be because the VerbNet data
comes specifically from VerbNet annotation, re-
lying strictly on VerbNet senses. VerbNet is
grounded in syntactic alternations, but individu-
ally VerbNet senses occasionally encode metaphor
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Task
Additional Data MOH-X Trofi VUA CLS (Verbs) VUA SEQ (Verbs) VUA SEQ (All)
Baseline .653 .658 .665 .682 .728
+VN Data .681* .672 .673 .696 .736
+SYN Data .704* .672 .677 .694 .738
+Both .683* .684 .679 .695 .735

Table 4: Mean F1 scores over 10 iterations, for each model and dataset added. Bootstrap sampling indicated that
these improvements are all significant over the baseline, excepting the MOH-X dataset. Due to high variability,
the MOH-X results (*) were not significant improvements over the baseline (p > .01)

.

Figure 1: Results for each task. Results shown are the mean with standard deviations from running 10 iterations of
each model for each task.

without direct relation to the verb’s arguments.
The syntactic data directly relies on patterns which
include other parts of speech: arguments, preposi-
tions, and idiomatic expressions. These extra com-
ponents of the analysis may make the data more
broadly applicable to all parts of speech, driving
the improvement in the sequence tagging of all
words.

Adding both distantly supervised datasets im-
proved performance over adding either individu-
ally only for the classification-based tasks, where
only one word per sentence has a tag (the Trofi and
VUAMC verb classification tasks). Only on the
Trofi dataset was the improvement from adding
both datasets significantly higher than the im-
provement from adding the best individual dataset.
For the sequence-based tagging of the VUAMC,
adding both yielded negligible improvements. As
adding both datasets was effective for classifica-
tion tasks, we believe the difficulty in combin-
ing both datasets in the sequence models is due

to excessive noise from the non-target words of
the samples. We default to marking every word
other than the target verb in the sentence as literal,
so the additional data is understandably less infor-
mative for sequence tagging problems. It is likely
that the combination of VerbNet data and syntac-
tic pattern-based data caused additional noise: the
two datasets may in places be contradictory, par-
ticularly with regard to these non-target elements.

6 Conclusions

We show that using external data found through
syntactic structures and lexical resources can
be used to improve deep learning methods for
metaphoric classification. This is due to regular
syntactic patterns of metaphoric usage, and the
idea that the semantics of verbs can be depen-
dent on the syntactic patterns that it participates in.
For future improvements, there are other resources
available that could be leveraged in the same way.
PropBank (Palmer et al., 2005), FrameNet (Baker
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et al., 1998), and WordNet (Fellbaum, 2010) all
offer some syntactic and/or semantic information,
and data annotated with these resources could
prove another valuable source of additional sam-
ples.

We also only examine some basic syntactic pat-
terns for a small number of verbs, and this was
done manually. Improved methods for automati-
cally detecting relevant syntactic patterns as well
as further effort in manual identification of syn-
tactic properties of metaphoric samples could in-
crease the amount of data extracted. Further lin-
guistic analysis of constructions that either re-
quire or prohibit metaphoric interpretations could
improve both automatic metaphor processing and
our broader understanding of linguistic metaphors.
Additionally, we only look at specific verbs within
VerbNet classes. All verbs within VerbNet classes
share syntactic and semantic properties, so it is
likely that we can extend our verb-level analysis
to a broader class-level analysis. A straightfor-
ward extension of this work would be to analyze
VerbNet classes as being metaphoric or literal, and
extracting data for all verbs within a given class.

Finally, while they have proven invaluable for
the standardization of metaphor processing, there
are still gaps and inconsistencies in our metaphor
datasets. Extracting additional training data based
on syntactic patterns likely was effective in this
case in part due to the idiosyncrasies of the pre-
vious datasets, which may over-annotate possible
metaphors. This procedure yields a large number
of conventional metaphors, which lack novelty,
are very frequent, and are perhaps more amenable
to being discovered via syntactic patterns. More
data annotated for metaphor is essential to im-
prove deep learning methods for metaphor pro-
cessing, and while we are attempting to overcome
these gaps with outside resources, further quality
metaphor annotation would prove especially valu-
able to the field.
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Abstract

Cross-lingual transfer learning has become an
important weapon to battle the unavailabil-
ity of annotated resources for low-resource
languages. One of the fundamental tech-
niques to transfer across languages is learn-
ing language-agnostic representations, in the
form of word embeddings or contextual en-
codings. In this work, we propose to lever-
age unannotated sentences from auxiliary lan-
guages to help learning language-agnostic rep-
resentations. Specifically, we explore adver-
sarial training for learning contextual encoders
that produce invariant representations across
languages to facilitate cross-lingual transfer.
We conduct experiments on cross-lingual de-
pendency parsing where we train a depen-
dency parser on a source language and trans-
fer it to a wide range of target languages. Ex-
periments on 28 target languages demonstrate
that adversarial training significantly improves
the overall transfer performances under several
different settings. We conduct a careful analy-
sis to evaluate the language-agnostic represen-
tations resulted from adversarial training.

1 Introduction

Cross-lingual transfer, where a model learned
from one language is transferred to another, has
become an important technique to improve the
quality and coverage of natural language process-
ing (NLP) tools for languages in the world. This
technique has been widely applied in many ap-
plications, including part-of-speech (POS) tagging
(Kim et al., 2017), dependency parsing (Ma and
Xia, 2014), named entity recognition (Xie et al.,
2018), entity linking (Sil et al., 2018), coreference
resolution (Kundu et al., 2018), and question an-
swering (Joty et al., 2017). Noteworthy improve-
ments are achieved on low resource language ap-
plications due to cross-lingual transfer learning.

In this paper, we study cross-lingual transfer for
dependency parsing. A dependency parser con-
sists of (1) an encoder that transforms an input text
sequence into latent representations and (2) a de-
coding algorithm that generates the corresponding
parse tree. In cross-lingual transfer, most recent
approaches assume that the inputs from different
languages are aligned into the same embedding
space via multilingual word embeddings or multi-
lingual contextualized word vectors, such that the
parser trained on a source language can be trans-
ferred to target languages. However, when train-
ing a parser on the source language, the encoder
not only learns to embed a sentence but it also car-
ries language-specific properties, such as word or-
der typology. Therefore, the parser suffers when it
is transferred to a language with different language
properties. Motivated by this, we study how to
train an encoder for generating language-agnostic
representations that can be transferred across a
wide variety of languages.

We propose to utilize unlabeled sentences of
one or more auxiliary languages to train an en-
coder that learns language-agnostic contextual
representations of sentences to facilitate cross-
lingual transfer. To utilize the unlabeled auxil-
iary language corpora, we adopt adversarial train-
ing (Goodfellow et al., 2014) of the encoder and
a classifier that predicts the language identity of
an input sentence from its encoded representation
produced by the encoder. The adversarial training
encourages the encoder to produce language in-
variant representations such that the language clas-
sifier fails to predict the correct language identity.
As the encoder is jointly trained with a loss for the
primary task on the source language and adversar-
ial loss on all languages, we hypothesize that it
will learn to capture task-specific features as well
as generic structural patterns applicable to many
languages, and thus have better transferrability.
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To verify the proposed approach, we conduct
experiments on neural dependency parsers trained
on English (source language) and directly trans-
fer them to 28 target languages, with or without
the assistance of unlabeled data from auxiliary lan-
guages. We chose dependency parsing as the pri-
mary task since it is one of the core NLP appli-
cations and the development of Universal Depen-
dencies (Nivre et al., 2016) provides consistent an-
notations across languages, allowing us to investi-
gate transfer learning in a wide range of languages.
Thorough experiments and analyses are conducted
to address the following research questions:

• Does encoder trained with adversarial train-
ing generate language-agnostic representa-
tions?
• Does language-agnostic representations im-

prove cross-language transfer?

Experimental results show that the proposed ap-
proach consistently outperform a strong baseline
parser (Ahmad et al., 2019), with a significant
margin in two family of languages. In addition,
we conduct experiments to consolidate our find-
ings with different types of input representations
and encoders. Our experiment code is publicly
available to facilitate future research.1

2 Training Language-agnostic Encoders

We train the encoder of a dependency parser in
an adversarial fashion to guide it to avoid captur-
ing language-specific information. In particular,
we introduce a language identification task where
a classifier predicts the language identity (id) of
an input sentence from its encoded representation.
Then the encoder is trained such that the classifier
fails to predict the language id while the parser de-
coder predicts the parse tree accurately from the
encoded representation. We hypothesize that such
an encoder would have better cross-lingual trans-
ferability. The overall architecture of our model is
illustrated in Figure 1. In the following, we present
the details of the model and training method.

2.1 Architecture

Our model consists of three basic components, (1)
a general encoder, (2) a decoder for parsing, and
(3) a classifier for language identification. The en-
coder learns to generate contextualized represen-
tations for the input sentence (a word sequence)

1https://github.com/wasiahmad/cross lingual parsing

Figure 1: An overview of our experimental model con-
sists of three basic components: (1) Encoder, (2) (Pars-
ing) Decoder, and (3) (Language) Classifier. We also
show how parsing and adversarial losses (Lp and Ld)
are back propagated for parameter updates.

which are fed to the decoder and the classifier to
predict the dependency structure and the language
identity (id) of that sentence.

The encoder and the decoder jointly form the
parsing model and we consider two alternatives2

from (Ahmad et al., 2019): “SelfAtt-Graph” and
“RNN-Stack”. The “SelfAtt-Graph” parser con-
sists of a modified self-attentional encoder (Shaw
et al., 2018) and a graph-based deep bi-affine
decoder (Dozat and Manning, 2017), while the
“RNN-Stack” parser is composed of a Recur-
rent Neural Network (RNN) based encoder and a
stack-pointer decoder (Ma et al., 2018).

We stack a classifier (a linear classifier or a
multi-layer Perceptron (MLP)) on top of the en-
coder to perform the language identification task.
The identification task can be framed as either a
word- or sentence-level classification task. For
the sentence-level classification, we apply average
pooling3 on the contextual word representations
generated by the encoder to form a fixed-length
representation of the input sequence, which is fed
to the classifier. For the word-level classification,
we perform language classification for each token
individually.

2Ahmad et al. (2019) studied order-sensitive and order-free
models and their performances in cross-lingual transfer. In
this work, we adopt two typical ones and study the effects of
adversarial training on them.

3We also experimented with max-pooling and weighted pool-
ing but average pooling resulted in stable performance.
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Algorithm 1 Training procedure.
Parameters to be trained: Encoder (θg), Decoder
(θp), and Classifier (θd)
Xa = Annotated source language data
Xb = Unlabeled auxiliary language data
I = Number of warm-up iterations
k = Number of learning steps for the discriminator
(D) at each iteration
λ = Coefficient of Ld
α1, α1 = learning rate; B = Batch size
Require:

1: for j = 0, · · · , I do
2: Update θg := θg − α1∇θgLp
3: Update θp := θp − α1∇θpLp
4: for j = I, · · · , num iter do
5: for k steps do
6: (xia)

B/2
i=1 ← Sample a batch from Xa

7: (xib)
B/2
i=1 ← Sample a batch from Xb

8: Update θd := θd − α2∇θdLd
9: Total loss L := Lp − λLd

10: Update θg := θg − α1∇θgL
11: Update θp := θp − α1∇θpL

In this work, following the terminology in ad-
versarial learning literature, we interchangeably
call the encoder as the generator, G and the classi-
fier as the discriminator, D.

2.2 Training

Algorithm 1 describes the training procedure. We
have two types of loss functions: Lp for the pars-
ing task and Ld for the language identification
task. For the former, we update the encoder and
the decoder as in the regular training of a parser.
For the latter, we adopt adversarial training to up-
date the encoder and the classifier. We present the
detailed training schemes in the following.

2.2.1 Parsing
To train the parser, we adopt both cross-entropy
objectives for these two types of parsers as in
(Dozat and Manning, 2017; Ma et al., 2018). The
encoder and the decoder are jointly trained to op-
timize the probability of the dependency trees (y)
given sentences (x):

Lp = − log p(y|x).
The probability of a tree can be further factor-
ized into the products of the probabilities of each
token’s (m) head decision (h(m)) for the graph-

based parser, or the probabilities of each transition
step decision (ti) for the transition-based parser:

Graph: Lp = −
∑

m
log p(h(m)|x,m),

Transition: Lp = −
∑

i
log p(ti|x, t<i).

2.2.2 Language Identification
Our objective is to train the contextual encoder
in a dependency parsing model such that it en-
codes language specific features as little as pos-
sible, which may help cross-lingual transfer. To
achieve our goal, we utilize adversarial training by
employing unlabeled auxiliary language corpora.

Setup We adopt the basic generative adversarial
network (GAN) for the adversarial training. We
assume that Xa and Xb be the corpora of the
source and auxiliary language sentences, respec-
tively. The discriminator acts as a binary classifier
and is adopted to distinguish the source and auxil-
iary languages. For the training of the discrimina-
tor, weights are updated according to the original
classification loss:

Ld = Ex∼Xa [log D(G(x)]+

Ex∼Xb [log (1−D(G(x))].

For the training of dependency parsing, the gen-
erator,G collaborates with the parser but acts as an
adversary with respect to the discriminator. There-
fore, the generator weights (θg) are updated by
minimizing the loss function,

L = Lp − λLd,
where λ is used to scale the discriminator loss
(Ld). In this way, the generator is guided to build
language-agnostic representations in order to fool
the discriminator while being helpful for the pars-
ing task. Meanwhile, the parser can be guided to
rely more on the language-agnostic features.

Alternatives We also consider two alternative
techniques for the adversarial training: Gradient
Reversal (GR) (Ganin et al., 2016) and Wasser-
stein GAN (WGAN) (Arjovsky et al., 2017). As
opposed to GAN based training, in GR setup, the
discriminator acts as a multiclass classifier that
predicts language identity of the input sentence,
and we use multi-class cross-entropy loss. We also
study Wasserstein GAN (WGAN), which is pro-
posed by Arjovsky et al. (2017) to improve the sta-
bility of GAN based learning. Its loss function is
shown as follows.

Ld = Ex∼Xa [D(G(x)]− Ex∼Xb [D(G(x)],
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Language
Families

Languages

Afro-Asiatic Arabic (ar), Hebrew (he)
Austronesian Indonesian (id)

IE.Baltic Latvian (lv)
IE.Germanic Danish (da), Dutch (nl), English (en),

German (de), Norwegian (no),
Swedish (sv)

IE.Indic Hindi (hi)
IE.Latin Latin (la)

IE.Romance Catalan (ca), French (fr), Italian (it),
Portuguese (pt), Romanian (ro),

Spanish (es)
IE.Slavic Bulgarian (bg), Croatian (hr), Czech

(cs), Polish (pl), Russian (ru), Slovak
(sk), Slovenian (sl), Ukrainian (uk)

Korean Korean (ko)
Uralic Estonian (et), Finnish (fi)

Table 1: The selected 29 languages for experiments
from UD v2.2 (Nivre et al., 2018).

here, the annotations are similar to those in the
GAN setting.

3 Experiments and Analysis

In this section, we discuss our experiments
and analysis on cross-lingual dependency parsing
transfer from a variety of perspectives and show
the advantages of adversarial training.

Settings. In our experiments, we study single-
source parsing transfer, where a parsing model is
trained on one source language and directly ap-
plied to the target languages. We conduct experi-
ments on the Universal Dependencies (UD) Tree-
banks (v2.2) (Nivre et al., 2018) using 29 lan-
guages, as shown in Table 1. We use the publicly
available implementation4 of the “SelfAtt-Graph”
and “RNN-Stack” parsers.5 Ahmad et al. (2019)
show that the “SelfAtt-Graph” parser captures less
language-specific information and performs bet-
ter than the ‘RNN-Stack” parser for distant tar-
get languages. Therefore, we use the “SelfAtt-
Graph” parser in most of our experiments. Be-
sides, the multilingual variant of BERT (mBERT)
(Devlin et al., 2019) has shown to perform well
in cross-lingual tasks (Wu and Dredze, 2019) and
outperform the models trained on multilingual
word embeddings by a large margin. Therefore,
we consider conducting experiments with both
multilingual word embeddings and mBERT. We
use aligned multilingual word embeddings (Smith
4https://github.com/uclanlp/CrossLingualDepParser
5We adopt the same hyper-parameters, experiment settings
and evaluation metrics as those in (Ahmad et al., 2019).

et al., 2017; Bojanowski et al., 2017) with 300 di-
mensionss or contextualized word representations
provided by multilingual BERT6 (Devlin et al.,
2019) with 768 dimensions as the word represen-
tations. In addition, we use the Gold universal
POS tags to form the input representations.7 We
freeze the word representations during training to
avoid the risk of disarranging the multilingual rep-
resentation alignments.

We select six auxiliary languages8 (French, Por-
tuguese, Spanish, Russian, German, and Latin) for
unsupervised language adaptation via adversarial
training. We tune the scaling parameter λ in the
range of [0.1, 0.01, 0.001] on the source language
validation set and report the test performance with
the best value. For gradient reversal (GR) and
GAN based adversarial objectives, we use Adam
(Kingma and Ba, 2015) to optimize the discrim-
inator parameters, and for WGAN, we use RM-
SProp (Tieleman and Hinton, 2012). The learning
rate is set to 0.001 and 0.00005 for Adam and RM-
SProp, respectively. We train the parsing models
for 400 and 500 epochs with multilingual BERT
and multilingual word embeddings respectively.
We tune the parameter I (as shown in Algorithm
1) in the range of [50, 100, 150].

Language Test. The goal of training the con-
textual encoder adversarially with unlabeled data
from auxiliary languages is to encourage the en-
coder to capture more language-agnostic represen-
tations and less language-dependent features. To
test whether the contextual encoders retain lan-
guage information after adversarial training, we
train a multi-layer Perceptron (MLP) with softmax
on top of the fixed contextual encoders to perform
a 7-way classification task.9 If a contextual en-
coder performs better in the language test, it in-
dicates that the encoder retains language specific
information.

3.1 Results and Analysis

Table 2 presents the main transfer results of the
“SelfAtt-Graph” parser when training on only En-
glish (en, baseline), English with French (en-
fr), and English with Russian (en-ru). The re-

6https://github.com/huggingface/pytorch-transformers
7We concatenate the word and POS representations. In our
future work, we will conduct transfer learning for both POS
tagging and dependency parsing.

8We want to cover languages from different families and with
varying distances from the source language (English).

9With the source (English) and six auxiliary languages.
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Lang Multilingual Word Embeddings Multilingual BERT
(en) (en-fr) (en-ru) (en) (en-fr) (en-ru)

en 90.23/88.23 90.01/88.08 89.93/87.93 93.19/91.21 92.81/90.97 92.77/90.86
no 80.82/72.94 80.60/72.83 80.98/73.10 85.81/79.03 85.50/78.64 85.43/78.76
sv 80.33/72.54 79.90/72.16 80.43/72.68 85.61/78.34 85.64/78.58 85.44/78.33
fr 77.71/72.35 78.49†/73.30† 78.31/73.29 85.22/80.78 84.76/80.26 85.91†/81.63†

pt 76.41/67.35 76.88†/67.74 77.09†/67.81 82.93/73.33 82.71/73.13 83.43†/73.88†

da 76.58/68.11 75.99/67.64 76.25/68.03 82.36/73.53 82.40/73.68 82.36/73.86†

es 73.76/65.46 74.14/65.78 74.08/65.84 80.81/72.66 81.11/72.80 81.38†/73.29†

it 80.89/75.61 81.33†/76.14† 80.70/75.57 87.07/82.38 86.90/82.22 87.41/82.67
hr 62.21/52.67 63.38†/53.83† 63.11†/53.62† 72.96/62.65 73.39†/62.20 74.20†/63.55†

ca 73.18/64.53 73.46†/64.71 73.40/64.90† 80.40/71.42 80.30/71.42 80.75/71.78
pl 74.65/62.72 75.65†/63.31† 75.93/63.60 81.51/69.25 82.33†/69.91† 82.48†/70.54†

uk 59.25/51.92 60.58†/52.72† 60.81†/52.66† 69.98/61.52 70.24/61.61 71.21†/62.84†

sl 67.51/56.42 68.14/56.52 68.40/56.87 75.15/63.12 74.60/62.52 75.50/63.65†

nl 68.54/59.99 68.80/60.23 69.23†/60.51† 76.76/68.35 76.94/68.28 76.89/68.76†

bg 79.09/67.61 80.01†/68.42 79.72/68.39 86.82/75.47 87.08/75.40 87.61†/75.94†

ru 60.91/52.03 61.42†/52.27† 61.67†/52.41† 71.92/62.09 72.31/62.15 72.88†/62.94†

de 71.41/61.97 70.70/61.41 71.05/61.84 78.66/69.81 78.04/69.23 79.08†/70.26†

he 55.70/48.08 57.33†/49.37† 57.15†/49.36† 64.46/55.82 64.97†/55.63 65.30†/55.76
cs 63.30/54.14 63.94†/54.63† 64.37†/55.08† 73.78/63.52 74.57†/63.86 74.56†/64.17†

ro 65.13/53.98 65.86/54.76 65.57/54.42 75.10/62.99 75.85†/63.92† 76.06†/63.78†

sk 66.79/58.23 67.46†/58.77 67.42†/58.70 76.30/67.38 77.08†/67.57 77.86†/68.28†

id 49.85/44.09 52.05†/45.76† 51.57/45.31 56.80/50.24 57.45†/50.27 57.30†/50.70†

lv 70.45/49.47 70.03/49.38 70.67†/49.61† 75.63/53.93 75.27/53.78 75.62/54.29
fi 66.11/48.73 65.84/48.61 66.28/48.82 71.59/53.81 71.35/53.63 71.74/53.79
et 65.01/44.78 65.31†/45.12† 65.38†/45.32† 71.55/50.98 71.73/51.27 71.25/51.16
ar 37.63/27.48 38.72†/28.00† 38.98†/27.89† 49.27/37.62 50.37†/39.37† 50.95†/39.57†

la 47.74/34.90 48.80†/35.64† 49.17†/35.73† 51.83/38.20 51.48/38.00 52.20/38.28
ko 34.44/16.18 33.98/15.93 34.23/16.08 38.10/20.62 38.03/20.59 38.98†/21.54†

hi 36.34/27.43 36.72/27.40 37.37†/28.01† 45.40/35.03 47.74†/35.90† 46.10†/34.74
Average 65.92/55.86 66.40†/56.22† 66.53†/56.32† 73.34/62.93 73.55/62.99 73.88†/63.43†

Table 2: Cross-lingual transfer performances (UAS%/LAS%, excluding punctuation) of the SelfAtt-Graph parser
(Ahmad et al., 2019) on the test sets. In column 1, languages are sorted by the word-ordering distance to English.
(en-fr) and (en-ru) denotes the source-auxiliary language pairs. ‘†’ indicates that the adversarially trained model
results are statistically significantly better (by permutation test, p< 0.05) than the model trained only on the source
language (en). Results show that the utilization of unlabeled auxiliary language corpora improves cross-lingual
transfer performance significantly.

sults demonstrate that the adversarial training with
the auxiliary language identification task benefits
cross-lingual transfer with a small performance
drop on the source language. When multi-lingual
embedding is employed, the performance signifi-
cantly improves, in terms of UAS of 0.48 and 0.61
over the 29 languages when French and Russian
are used as the auxiliary language, respectively.
When richer multilingual representation technique
like mBERT is employed, adversarial training can
still improve cross-lingual transfer performances
(0.21 and 0.54 UAS over the 29 languages by us-
ing French and Russian, respectively).

Next, we apply adversarial training on the
“RNN-Stack” parser and show the results in Ta-
ble 3. Similar to the “SelfAtt-Graph”parser, the
“RNN-Stack” parser resulted in significant im-
provements in cross-lingual transfer from unsu-

pervised language adaptation. We discuss our de-
tailed experimental analysis in the following.

3.1.1 Impact of Adversarial Training
To understand the impact of different adversar-
ial training types and objectives, we apply adver-
sarial training on both word- and sentence-level
with gradient reversal (GR), GAN, and WGAN
objectives. We provide the average cross-lingual
transfer performances in Table 4 for different ad-
versarial training setups. Among the adversar-
ial training objectives, we observe that in most
cases, the GAN objective results in better per-
formances than the GR and WGAN objectives.
Our finding is in contrast to Adel et al. (2018)
where GR was reported to be the better objective.
To further investigate, we perform the language
test on the encoders trained via these two objec-
tives. We find that the GR-based trained encoders
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perform consistently better than the GAN based
ones on the language identification task, show-
ing that via GAN-based training, the encoders be-
come more language-agnostic. In a comparison
between GAN and WGAN, we notice that GAN-
based training consistently performs better.

Comparing word- and sentence-level adversar-
ial training, we observe that predicting language
identity at the word-level is slightly more use-
ful for the “SelfAtt-Graph” model, while the
sentence-level adversarial training results in better
performances for the “RNN-Stack” model. There
is no clear dominant strategy.

In addition, we study the effect of using a lin-
ear classifier or a multi-layer Perceptron (MLP) as
the discriminator and find that the interaction be-
tween the encoder and the linear classifier resulted
in improvements.10

3.1.2 Adversarial v.s. Multi-task Training
In section 3.1.1, we study the effect of learning
language-agnostic representation by using auxil-
iary language with adversarial training. An al-
ternative way to leverage auxiliary language cor-
pora is by encoding language-specific information
in the representation via multi-task learning. In
the multi-task learning (MTL) setup, the model
observes the same amount of data (both labeled
and unlabeled) as the adversarially trained (AT)
model. The only difference between the MTL and
AT models is that in the MTL models, the contex-
tual encoders are encouraged to capture language-
dependent features while in the AT models, they
are trained to encode language-agnostic features.

The experiment results using multi-task learn-
ing in comparison with the adversarial training are
presented in Table 5. Interestingly, although the
MTL objective sounds contradiction to adversar-
ial learning, it has a positive effect on the cross-
lingual parsing, as the representations are learned
with certain additional information from new (un-
labeled) data. Using MTL, we sometimes observe
improvements over the baseline parser, as indi-
cated with the † sign, while the AT models consis-
tently perform better than both the baseline and the
MTL model (as shown in Columns 2–5 in Table
5). The comparisons on parsing performances do
not reveal whether the contextual encoders learn to
10This is a known issue in GAN training as the discriminator

becomes too strong, it fails to provide useful signals to the
generator. In our case, MLP as the discriminator predicts
the language labels with higher accuracy and thus fails.

Lang (en) (en-fr) (en-ru)
en 89.65/87.43 89.88/87.66 89.67/87.56
no 80.20/72.11 80.42/72.49 80.73†/72.65†

sv 81.02/72.95 81.14/73.44† 81.20/73.37
fr 77.42/72.27 77.45/72.72 77.78/73.10
pt 75.94/67.40 76.09/67.47 76.39†/67.85†

da 76.87/68.06 77.43†/68.62† 77.92†/69.24†

es 73.92/65.95 74.32†/66.35† 74.83†/66.83†

it 80.09/75.36 80.98†/76.00† 81.04†/76.06†

hr 59.53/49.19 60.00†/50.02† 60.16†/50.16†

ca 73.62/64.97 73.73/65.11 74.18†/65.59†

pl 71.48/57.43 72.48†/59.19† 72.55†/58.38†

uk 57.23/49.67 58.38†/51.04† 58.57†/50.88†

sl 65.48/53.40 66.11†/54.21† 66.23†/54.09†

nl 67.13/59.15 67.57/59.71† 67.76†/59.96†

bg 77.28/65.77 77.79†/66.66† 78.02†/66.53†

ru 58.70/49.34 59.77†/50.77† 59.98†/50.51†

de 69.71/58.51 70.03/59.45† 70.05/59.38†

he 52.97/45.73 53.63†/46.49† 54.72†/47.34†

cs 60.99/51.63 61.60†/52.41† 61.81†/52.45†

ro 62.01/51.03 62.49/51.30 63.22†/51.91†

sk 64.44/56.01 65.03†/56.65† 65.36†/56.67†

id 45.08/40.00 45.46/40.61† 46.82†/41.63†

lv 70.22/48.46 71.08†/49.10† 70.76/48.86
fi 65.39/47.78 65.59/48.31† 65.42/47.84
et 64.73/43.84 65.01/44.27 65.04/44.16
ar 30.98/23.83 31.91†/24.72† 32.83†/25.34†

la 45.28/33.08 44.94/32.94 45.12/33.11
ko 33.50/14.36 32.87/14.10 32.60/14.11
hi 27.63/19.16 27.66/19.22 26.72/18.96

Average 64.09/53.93 64.51†/54.52† 64.74†/54.64†

Table 3: Cross-lingual transfer results (UAS%/LAS%,
excluding punctuation) of the RNN-Stack parser on the
test sets. ‘†’ indicates that the adversarially trained
model results are statistically significantly better (by
permutation test, p < 0.05) than the model trained only
on the source language (en).

encode language-agnostic or dependent features.
Therefore, we perform language test with the

MTL and AT (GAN based) encoders, and the re-
sults are shown in Table 5, Columns 6–7. The re-
sults indicate that the MTL encoders consistently
perform better than the AT encoders, which veri-
fies our hypothesis that adversarial training moti-
vates the contextual encoders to encode language-
agnostic features.

3.1.3 Impact of Auxiliary Languages
To analyze the effects of the auxiliary languages
in cross-language transfer via adversarial train-
ing, we perform experiments by pairing up11 the
source language (English) with six different lan-
11We also conduct experiments on multiple languages as the

auxiliary language. For GAN and WGAN-based training,
we concatenate the corpora of multiple languages and treat
them as one auxiliary language. In these set of experiments,
we do not observe any apparent improvements.
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AT
SelfAtt-Graph RNN-Stack

en-fr en-ru en-fr en-ru
word sent word sent word sent word sent

GR 66.19 66.21 66.38 66.38 64.51 64.51 64.52 64.52
GAN 66.40 66.29 66.53 66.41 64.40 64.51 64.63 64.74

WGAN 66.24 66.18 66.40 66.27 64.29 64.34 64.57 64.57

Table 4: Average cross-lingual transfer performances (UAS%, excluding punctuation) on the test sets using differ-
ent adversarial training objective and setting. Multilingual word embeddings are used for these experiments.

Lang Auxiliary Language Perf. Average Cross-lingual Perf. Lang. Test Perf.
(Src. + Aux.) AT MTL AT MTL AT MTL

en + fr 78.49/73.30† 78.26/72.98† 66.40/56.22 66.18/56.04 62.25 59.94
en + pt 76.53/67.45† 75.88/66.75 66.40/56.22 66.27/56.08 60.17 72.02
en + es 73.66/65.48 74.04/65.83† 66.38/56.24 66.22/56.12 56.78 74.52
en + ru 61.67/52.41† 61.08/52.04 66.53/56.32 66.35/56.20 37.34 60.56
en + de 71.65/62.11† 71.17/61.88 66.41/56.13 66.18/56.12 61.22 72.08
en + la 49.22/35.94† 48.04/35.09† 66.45/56.20 66.17/56.05 50.04 64.91

Table 5: Comparison between adversarial training (AT) and multi-task learning (MTL) of the contextual encoders.
Columns 2–5 demonstrate the parsing performances (UAS%/LAS%, excluding punctuation) on the auxiliary lan-
guages and average of the 29 languages. Columns 6–7 present accuracy (%) of the language label prediction test.
‘†’ indicates that the performance is higher than the baseline performance (shown in the 2nd column of Table 2).

Aux. Avg. Dist. multilingual multilingual
lang to other lang Word Emb. BERT
pt 0.144 66.40/56.22 73.47/63.11
ru 0.146 66.53/56.32 73.88/63.43
de 0.151 66.41/56.13 73.92/63.56
es 0.151 66.38/56.24 71.71/62.49
fr 0.160 66.40/56.22 73.55/62.99
la 0.242 66.45/56.20 73.69/63.29

Table 6: Average cross-lingual transfer performances
(UAS%/LAS%, w/o punctuation) on the test sets using
SelfAtt-Graph parser when different languages play the
role of the auxiliary language in adversarial training.

guages (spanning Germanic, Romance, Slavic,
and Latin language families) as the auxiliary lan-
guage. The average cross-lingual transfer perfor-
mances are presented in Table 6 and the results
suggest that Russian (ru) and German (de) are bet-
ter candidates for auxiliary languages.

We then dive deeper into the effects of auxil-
iary languages trying to understand whether aux-
iliary languages particularly benefit target lan-
guages that are closer to them12 or from the same
family. Intuitively, we would assume when the
auxiliary language has a smaller average distance
to all the target languages, the cross-lingual trans-
fer performance would be better. However, from
the results in Table 6, we do not see such a pattern.
For example, Portuguese (pt) has the smallest av-
erage distance to other languages among the aux-

12The language distances are computed based on word order
characteristics as suggested in Ahmad et al. (2019).

iliary languages we tested, but it is not among the
better auxiliary languages.

We further zoom in the cross-lingual trans-
fer improvements for each language families as
shown in Table 7. We hypothesis that the auxil-
iary languages to be more helpful for the target
languages in the same family. The experimen-
tal results moderately correlate with our expecta-
tion. Specifically, the Germanic family benefits
the most from employing German (de) as the aux-
iliary language; similarly Slavic family with Rus-
sian (ru) as the auxiliary language (although Ger-
man as the auxiliary language brings similar im-
provements). The Romance family is an exception
because it benefits the least from using French (fr)
as the auxiliary language. This may due to the fact
that French is too closed to English, thus is less
suitable to be used as an auxiliary language.

4 Related Work

Unsupervised Cross-lingual Parsing. Unsu-
pervised cross-lingual transfer for dependency
parsing has been studied over the past few years
(Agić et al., 2014; Ma and Xia, 2014; Xiao and
Guo, 2014; Tiedemann, 2015; Guo et al., 2015;
Aufrant et al., 2015; Rasooli and Collins, 2015;
Duong et al., 2015; Schlichtkrull and Søgaard,
2017; Ahmad et al., 2019; Rasooli and Collins,
2019; He et al., 2019). Here, “unsupervised trans-
fer” refers to the setting where a parsing model
trained only on the source language is directly
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Lang (en,ru) - en (en,fr) - en (en,de) - en (en,la) - en
IE.Slavic Family

hr 1.24/0.90 0.43/-0.45 1.52/1.02 0.06/-0.13
sl 0.35/0.53 -0.55/-0.60 -0.04/0.14 -0.17/-0.50
uk 1.23/1.32 0.26/0.09 1.54/1.33 -0.29/-0.09
pl 0.97/1.29 0.82/0.66 0.82/0.98 1.03/0.98
bg 0.79/0.47 0.26/-0.07 0.49/0.41 0.01/0.04
ru 0.96/0.85 0.39/0.06 1.07/1.11 0.20/0.34
cs 0.78/0.65 0.79/0.34 0.91/0.81 -0.08/0.05
sk 1.56/0.90 0.78/0.19 1.88/1.04 0.56/0.66

Avg. 0.98/0.86 0.4/0.03 1.02/0.86 0.17/0.17
IE.Romance Family

pt 0.50/0.55 -0.22/-0.20 0.54/0.80 0.49/0.60
fr 0.69/0.85 -0.46/-0.52 0.49/0.16 0.95/0.86
es 0.57/0.63 0.30/0.14 0.45/0.39 0.44/0.51
it 0.34/0.29 -0.17/-0.16 -0.22/-0.17 0.26/0.18
ca 0.35/0.36 -0.10/0.00 0.64/0.70 0.10/0.28
ro 0.96/0.79 0.75/0.93 1.32/1.32 1.62/1.73

Avg. 0.57/0.58 0.02/0.03 0.54/0.53 0.64/0.69
IE.Germanic Family

en -0.42/-0.35 -0.38/-0.24 -0.35/-0.25 -0.15/-0.20
no -0.38/-0.27 -0.31/-0.39 -0.41/-0.15 -0.22/-0.24
sv -0.17/-0.01 0.03/0.24 -0.12/0.35 -0.02/0.18
da 0.00/0.33 0.04/0.15 -0.15/0.08 -0.46/-0.25
nl 0.13/0.41 0.18/-0.07 0.95/0.89 0.57/0.42
de 0.42/0.45 -0.62/-0.58 1.41/1.40 0.25/0.43

Avg. -0.07/0.09 -0.18/-0.15 0.22/0.39 0.00/0.06

Table 7: Average cross-lingual performance difference
between the SelfAtt-Graph parser trained on the source
(en) and an auxiliary (x) language and the SelfAtt-
Graph parser trained only on English (en) language
(UAS%/LAS%, excluding punctuation). We use multi-
lingual BERT in this set of experiments.

transferred to the target languages. In this work,
we relax the setting by allowing unlabeled data
from one or more auxiliary (helper) languages
other than the source language. This setting has
been explored in a few prior works. Cohen et al.
(2011) learn a generative target language parser
with unannotated target data as a linear interpo-
lation of the source language parsers. Täckström
et al. (2013) adopt unlabeled target language data
and a learning method that can incorporate di-
verse knowledge sources through ambiguous la-
beling for transfer parsing. In comparison, we
leverage unlabeled auxiliary language data to learn
language-agnostic contextual representations to
improve cross-lingual transfer.

Multilingual Representation Learning. The
basic of the unsupervised cross-lingual parsing is
that we can align the representations of differ-
ent languages into the same space, at least at the
word level. The recent development of bilingual
or multilingual word embeddings provide us with
such shared representations. We refer the readers

to the surveys of Ruder et al. (2017) and Glavaš
et al. (2019) for details. The main idea is that
we can train a model on top of the source lan-
guage embeddings which are aligned to the same
space as the target language embeddings and thus
all the model parameters can be directly shared
across languages. During transfer to a target lan-
guage, we simply replace the source language em-
beddings with the target language embeddings.
This idea is further extended to learn multilin-
gual contextualized word representations, for ex-
ample, multilingual BERT (Devlin et al., 2019),
have been shown very effective for many cross-
lingual transfer tasks (Wu and Dredze, 2019). In
this work, we show that further improvements can
be achieved by adaptating the contextual encoders
via unlabeled auxiliary languages even when the
encoders are trained on top of multilingual BERT.

Adversarial Training. The concept of adversar-
ial training via Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014; Szegedy et al.,
2014; Goodfellow et al., 2015) was initially in-
troduced in computer vision for image classifica-
tion and received enormous success in improving
model’s robustness on input images with pertur-
bations. Later many variants of GANs (Arjovsky
et al., 2017; Gulrajani et al., 2017) were proposed
to improve its’ training stability. In NLP, adver-
sarial training was first utilized for domain adap-
tation (Ganin et al., 2016). Since then adversarial
training has started to receive an increasing inter-
est in the NLP community and applied to many
NLP applications including part-of-speech (POS)
tagging (Gui et al., 2017; Yasunaga et al., 2018),
dependency parsing (Sato et al., 2017), relation ex-
traction (Wu et al., 2017), text classification (Miy-
ato et al., 2017; Liu et al., 2017; Chen and Cardie,
2018), dialogue generation (Li et al., 2017).

In the context of cross-lingual NLP tasks, many
recent works adopted adversarial training, such
as in sequence tagging (Adel et al., 2018), text
classification (Xu and Yang, 2017; Chen et al.,
2018), word embedding induction (Zhang et al.,
2017; Lample et al., 2018), relation classification
(Zou et al., 2018), opinion mining (Wang and Pan,
2018), and question-question similarity reranking
(Joty et al., 2017). However, existing approaches
only consider using the target language as the aux-
iliary language. It is unclear whether the lan-
guage invariant representations learned by previ-
ously proposed methods can perform well on a
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wide variety of unseen languages. To the best of
our knowledge, we are the first to study the effects
of language-agnostic representations on a broad
spectrum of languages.

5 Conclusion

In this paper, we study learning language invari-
ant contextual encoders for cross-lingual trans-
fer. Specifically, we leverage unlabeled sentences
from auxiliary languages and adversarial training
to induce language-agnostic encoders to improve
the performances of the cross-lingual dependency
parsing. Experiments and analysis using English
as the source language and six foreign languages
as the auxiliary languages not only show improve-
ments on cross-lingual dependency parsing, but
also demonstrates that contextual encoders suc-
cessfully learns not to capture language-dependent
features through adversarial training. In the future,
we plan to investigate the effectiveness of adver-
sarial training for multi-source transfer to parsing
and other cross-lingual NLP applications.
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Željko Agić, Jörg Tiedemann, Kaja Dobrovoljc, Si-
mon Krek, Danijela Merkler, and Sara Može. 2014.
Cross-lingual dependency parsing of related lan-
guages with rich morphosyntactic tagsets. In
EMNLP 2014 Workshop on Language Technology
for Closely Related Languages and Language Vari-
ants.

Wasi Uddin Ahmad, Zhisong Zhang, Zuezhe Ma, Ed-
uard Hovy, Kai-Wei Chang, and Nanyun Peng.
2019. On difficulties of cross-lingual transfer with
order differences: A case study on dependency pars-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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Abstract

Recognising dialogue acts (DA) is important
for many natural language processing tasks
such as dialogue generation and intention
recognition. In this paper, we propose a dual-
attention hierarchical recurrent neural network
for DA classification. Our model is partially
inspired by the observation that conversational
utterances are normally associated with both
a DA and a topic, where the former captures
the social act and the latter describes the sub-
ject matter. However, such a dependency be-
tween DAs and topics has not been utilised
by most existing systems for DA classifica-
tion. With a novel dual task-specific atten-
tion mechanism, our model is able, for utter-
ances, to capture information about both DAs
and topics, as well as information about the
interactions between them. Experimental re-
sults show that by modelling topic as an auxil-
iary task, our model can significantly improve
DA classification, yielding better or compara-
ble performance to the state-of-the-art method
on three public datasets.

1 Introduction

Dialogue Acts (DA) are semantic labels of utter-
ances, which are crucial to understanding com-
munication: much of a speaker’s intent is ex-
pressed, explicitly or implicitly, via social actions
(e.g., questions or requests) associated with utter-
ances (Searle, 1969). Recognising DA labels is
important for many natural language processing
tasks. For instance, in dialogue systems, know-
ing the DA label of an utterance supports its in-
terpretation as well as the generation of an appro-
priate response (Searle, 1969; Chen et al., 2018).
In the security domain, being able to detect inten-
tion in conversational texts can effectively support
the recognition of sensitive information exchanged
in emails or other communication channels, which

is critical to timely security intervention (Verma
et al., 2012).

A wide range of techniques have been inves-
tigated for DA classification. Early works on
DA classification are mostly based on general
machine learning techniques, framing the prob-
lem either as multi-class classification (e.g., us-
ing SVMs (Liu, 2006) and dynamic Bayesian net-
works (Dielmann and Renals, 2008)) or a struc-
tured prediction task (e.g., using Conditional Ran-
dom Fields (Kim et al., 2010; Chen et al., 2018;
Raheja and Tetreault, 2019, CRF)). Recent stud-
ies to the problem of DA classification have seen
an increasing uptake of deep learning techniques,
where promising results have been obtained. Deep
learning approaches typically model the depen-
dency between adjacent utterances (Ji et al., 2016;
Lee and Dernoncourt, 2016). Some researchers
further account for dependencies among both con-
secutive utterances and consecutive DAs, i.e.,
both are considered factors that influence natu-
ral dialogue (Kumar et al., 2018; Chen et al.,
2018). There is also work exploring different deep
learning architectures (e.g., hierarchical CNN or
RNN/LSTM) for incorporating context informa-
tion for DA classification (Liu et al., 2017).

It has been observed that conversational utter-
ances are normally associated with both a DA
and a topic, where the former captures the so-
cial act (e.g., promising) and the latter describes
the subject matter (Wallace et al., 2013). It is
also recognised that the types of DA associated
with a conversation are likely to be influenced by
the topic of the conversation (Searle, 1969; Wal-
lace et al., 2013). For instance, conversations
relating to topics about customer service might
be more frequently associated with DAs of type
Wh-question (e.g., Why my mobile is not work-
ing?) and a complaining statement (Bhuiyan et al.,
2018); whereas meetings covering administrative
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topics about resource allocation are likely to ex-
hibit significantly more defending statements and
floor grabbers (e.g., Well I mean - is the handheld
really any better?) (Wrede and Shriberg, 2003).
However, such a reasonable source of informa-
tion, surprisingly, has not been explored in the
deep learning literature for DA classification. We
assume that modelling the topics of utterances as
additional contextual information may effectively
support DA classification.

In this paper, we propose a dual-attention hi-
erarchical recurrent neural network with a CRF
(DAH-CRF) for DA classification. Our model is
able to account for rich context information with
the developed dual-attention mechanism, which,
in addition to accounting for the dependencies be-
tween utterances, can further capture, for utter-
ances, information about both topics and DAs.
Topic is a useful source of context information
which has not previously been explored in existing
deep learning models for DA classification. Sec-
ond, compared to the flat structure employed by
existing models (Khanpour et al., 2016; Ji et al.,
2016), our hierarchical recurrent neural network
can represent the input at the character, word, ut-
terance, and conversation levels, preserving the
natural hierarchical structure of a conversation. To
capture the topic information of conversations, we
propose a simple automatic utterance-level topic
labelling mechanism based on LDA (Blei et al.,
2003), which avoids expensive human annotation
and improves the generalisability of our model.

We evaluate our model against several strong
baselines (Wallace et al., 2013; Ji et al., 2016;
Kumar et al., 2018; Chen et al., 2018; Raheja
and Tetreault, 2019) on the task of DA classifica-
tion. Extensive experiments conducted on three
public datasets (i.e., Switchboard Dialog Act Cor-
pus (SWDA), DailyDialog (DyDA), and the Meet-
ing Recorder Dialogue Act corpus (MRDA)) show
that by modelling the topic information of utter-
ances as an auxiliary task, our model can signif-
icantly improve DA classification for all datasets
compared to a base model without modelling topic
information. Our model also yields better or com-
parable performance to state-of-the-art deep learn-
ing method (Raheja and Tetreault, 2019) in classi-
fication accuracy.

To summarise, the contributions of our paper
are three-fold: (1) we propose to leverage topic
information of utterances, a useful source of con-

textual information which has not previously been
explored in existing deep learning models for DA
classification; (2) we propose a dual-attention hi-
erarchical recurrent neural network with a CRF
which respects the natural hierarchical structure
of a conversation, and is able to incorporate rich
context information for DA classification, achiev-
ing better or comparable performance to the state-
of-the-art; (3) we develop a simple topic labelling
mechanism, showing that using the automatically
acquired topic information for utterances can ef-
fectively improve DA classification.

2 Related Work

Broadly speaking, methods for DA classifica-
tion can be divided into two categories: multi-
class classification (e.g., SVMs (Liu, 2006) and
dynamic Bayesian networks (Dielmann and Re-
nals, 2008)) and structured prediction tasks includ-
ing HMM (Stolcke et al., 2000) and CRF (Kim
et al., 2010). Recently, deep learning has been
widely applied in many NLP tasks, including
DA classification. Kalchbrenner and Blunsom
(2013) proposed to model a DA sequence with a
RNN where sentence representations were con-
structed by means of a convolutional neural net-
work (CNN). Lee and Dernoncourt (2016) tackled
DA classification with a model built upon RNNs
and CNNs. Specifically, their model can leverage
the information of preceding texts, which can ef-
fectively help improve the DA classification accu-
racy. A latent variable recurrent neural network
was developed for jointly modelling sequences of
words and discourse relations between adjacent
sentences (Ji et al., 2016). In their work, the shal-
low discourse structure is represented as a latent
variable and the contextual information from pre-
ceding utterances are modelled with a RNN.

Kumar et al. (2018) proposed a hierarchical Bi-
LSTM model with a CRF for DA classification,
where the inter-utterance and intra-utterance in-
formation are encoded by a hierarchical Bi-LSTM
and the dependency between DA labels is cap-
tured by a CRF. Chen et al. (2018) developed
a CRF-Attentive Structured Network (CRF-ASN)
for DA classification. They applied structured at-
tention network to the CRF layer in order to model
contextual utterances and corresponding DAs to-
gether. Raheja and Tetreault (2019) achieved the
state-of-the-art performance on the SWDA dataset
by employing a self-attention mechanism, a CRF
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layer and character-level embeddings.
In addition to modelling dependency between

utterances, various contexts have also been ex-
plored for improving DA classification or joint
modelling DA under multi-task learning. For in-
stance, Wallace et al. (2013) proposed a generative
joint sequential model to classify both DA and top-
ics of patient-doctor conversations. Their model
is similar to the factorial LDA model (Paul and
Dredze, 2012), which generalises LDA to assign
each token a K-dimensional vector of latent vari-
ables. We would like to emphasise that the model
of Wallace et al. (2013), only assumed that each
utterance is generated conditioned on the previous
and current topic/DA pairs. In contrast, our model
is able to model the dependencies of all preceding
utterances of a conversation, and hence can better
capture the effect between DAs and topics.

3 Methodology

Given a training corpus D = 〈(Cn, Yn, Zn)〉Nn=1,
where Cn = 〈unt 〉Tt=1 is a conversation contain-
ing a sequence of T utterances, Yn = 〈ynt 〉Tt=1 and
Zn = 〈znt 〉Tt=1 are the corresponding labels of DA
and topics for Cn, respectively. Each utterance
ut = 〈wi

t〉Ki=1 of Cn is a sequence of K words.
Our goal is to learn a model from D, such that,
given an unseen conversation Cu, the model can
predict the DA labels of the utterances of Cu.

Figure 1 gives an overview of the proposed
Dual-Attention Hierarchical recurrent neural net-
work with a CRF (DAH-CRF). A shared utterance
encoder encodes each word wi

t of an utterance ut
into a vector hi

t. The DA attention and topic at-
tention mechanisms capture DA and topic infor-
mation as well as the interactions between them.
The outputs of the dual-attention are then encoded
in the conversation-level sequence taggers (i.e., gt
and st), based on the corresponding utterance rep-
resentations (i.e., lt and vt). Finally, the target la-
bels (i.e., yt and zt) are predicted in the CRF layer.

3.1 Shared Utterance Encoder

In our model, we adopt a shared utterance encoder
to encode the input utterances. Such a design
is based on the rationale that the shared encoder
can transfer parameters between two tasks and re-
duce the risk of overfitting (Ruder, 2017). Specifi-
cally, the shared utterance encoder is implemented
using the bidirectional gated recurrent unit (Cho
et al., 2014, BiGRU), which encodes each utter-

ance ut = 〈wi
t〉Ki=1 of a conversation Cn as a se-

ries of hidden states 〈hi
t〉Ki=1. Here, i indicates the

timestamp of a sequence, and we define hi
t as fol-

lows
hi
t =
−→
h i

t ⊕
←−
h i

t (1)

where ⊕ is an operation for concatenating two
vectors, and

−→
h i

t and
←−
h i

t are the i-th hidden state
of the forward gated recurrent unit (Cho et al.,
2014, GRU) and backward GRU for wi

t, respec-
tively. Formally, the forward GRU

−→
h i

t is com-
puted as follows

−→
h i

t = GRU(
−→
h i−1

t , eit) (2)

where eit is the concatenation of the word embed-
ding and the character embedding of word wi

t. Fi-
nally, the backward GRU encodes ut from the re-
verse direction (i.e. wK

t → w1
t ) and generates

〈
←−
hi
t〉Ki=1 following the same formulation as the for-

ward GRU.

3.2 Task-specific Attention
Recall that one of the key challenges of our model
is to capture for each utterance, information about
both DAs and topics, as well as information about
the interactions between them. We address this
challenge by incorporating into our model a novel
task-specific dual-attention mechanism, which ac-
counts for both DA and topic information ex-
tracted from utterances. In addition, DAs and top-
ics are semantically relevant to different words in
an utterance. With the proposed attention mecha-
nism, our model can also assign different weights
to the words of an utterance by learning the degree
of importance of the words to the DA or topic la-
belling task, i.e., promoting the words which are
important to the task and reducing the noise intro-
duced by less important words.

For each utterance ut, the DA attention calcu-
lates a weight vector 〈αi

t〉Ki=1 for 〈hi
t〉Ki=1, the hid-

den states of ut. ut can then be represented as an
attention vector lt computed as follows

lt =
K∑

i=1

αi
th

i
t (3)

In contrast to the traditional attention mech-
anism (Bahdanau et al., 2015), which only de-
pends on one set of hidden vectors from the
Seq2Seq decoder, the DA attention of our model
relies on two sets of hidden vectors, i.e., gt−1 of
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Figure 1: Overview of the dual-attention hierarchical recurrent neural network with a CRF.

the conversation-level DA tagger and st−1 of the
conversation-level topic tagger, where dual atten-
tion mechanism can capture, for utterances, in-
formation about both DAs and topics as well as
the interaction between them. Specifically, the
weights 〈αi

t〉Ki=1 for the DA attention are calcu-
lated as follows:

αi
t = softmax(oit) (4)

oit = w>a tanh
(
W(act)(st−1 ⊕ gt−1 ⊕ hi

t) + b(act)
)

(5)

The topic attention layer has a similar architec-
ture to the DA attention layer, which takes as in-
put both st−1 and gt−1. The weight vector 〈βit〉Ki=1

for the topic attention output vt can be calculated
similar to Eq. 3 and Eq. 4. Note that wa, W(act),
and b(act) are vectors of parameters that need to
be learned during training.

3.3 Conversational Sequence Tagger
CRF sequence tagger for DA. The conversa-
tional CRF sequence tagger for DA predicts the
next DA yt conditioned on the conversational hid-
den state gt and adjacent DAs (c.f. Figure 1). For-
mally, this conditional probability of the whole
conversation can be formulated as

p (y1:T |C; θ) =

∏T
t=1 Ψ (yt−1, yt,gt; θ)∑

Y

∏T
t=1 Ψ (yt−1, yt,gt; θ)

(6)

Ψ (yt−1, yt,gt; θ) = Ψemi (yt,gt) Ψtran (yt−1, yt)

= gt [yt]Pyt,yt−1

(7)

Here the feature function Ψ(·) includes two score
potentials: emission and transition. The emission
potential Ψemi regards utterance representation gt
as the unary feature. The transition potential Ψtran

is a pairwise feature constructed from a T×T state
transition matrix P, where T is the number of DA
classes, and Pyt,yt−1 is the probability of transiting
from state yt−1 to yt. C = 〈ut〉Tt=1 is the sequence
of all utterances seen so far, θ is the parameters of
the CRF layer. gt is calculated in a BiGRU similar
to Eq. 1 and Eq. 2:

gt = −→g t ⊕←−g t (8)
−→g t = GRU(−→g t−1, lt) (9)

CRF sequence tagger for topic. The conversa-
tional CRF sequence tagger for topic is designed
to predict topic zt conditioned on vt and adjacent
topics, which can be calculated similar to the for-
mulation of the CRF tagger for DA.
Training the model. Let Θ be all the model
parameters that need to be estimated for DAH-
CRF. Θ then is estimated based on D =
〈(Cn, Yn, Zn)〉Nn=1 (i.e., a corpus with N conver-
sations) by maximising the following objective
function

L =
N∑

n=1

[log (p (yn1:T |Cn; Θ))

+α log (p (zn1:T |Cn; Θ))] (10)

The hyper-parameter α controls the contribution
of the conversational topic tagger towards the ob-
jective function. In our experiments, α = 0.5 is
determined using the validation datasets. During
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Figure 2: Coherence score of LDA on three datasets.

the test, the optimal DA or topic sequence is calcu-
lated using the Viterbi algorithm (Viterbi, 1967).

Y ′ = arg max
y1:T∈Y

p(y1:T |C,Θ) (11)

3.4 Automatically Acquiring Topic Labels
To avoid expensive human annotation and to im-
prove the generalisability of our model, we pro-
pose to label the topic of each utterance of the
datasets using LDA (Blei et al., 2003). While per-
plexity has been widely used for model selection
for LDA (Lin, 2011; He et al., 2012), we employ
a topic coherence measure proposed by (Röder
et al., 2015) to determine the optimal topic number
for each dataset, which combines the indirect co-
sine measure with the normalised pointwise mu-
tual information (Bouma, 2009, NPMI) and the
Boolean sliding window. Empirically, we found
the latter yields much better topic clusters than
perplexity for supporting DA classification.

We treat each conversation as a document and
train topic models using Gensim with topic num-
ber settings ranging from 10 to 100 (using an in-
crement step of 10). Gibbs sampling is used to es-
timate the model posterior and for each model we
run 1,000 iterations. For each trained model, we
calculate the averaged coherence score of the ex-
tracted topics using Gensim1, an implementation
following (Röder et al., 2015). Figure 2 shows
the topic coherence score for each topic number
setting for all datasets, from which we determine
that the optimal topic number setting for SWDA,
DyDA, and MRDA are 60, 30, and 30, respec-
tively.

Based on the optimal models (i.e., a trained
LDA model using the optimal topic number set-
ting), we assign topic labels to the datasets with
two different strategies, i.e., conversation-level la-
belling (conv) and utterance-level labelling (utt).

1https://radimrehurek.com/gensim/models/
coherencemodel.html

Dataset |C| |T | |V | Training Validation Testing
SWDA 42 66 20K 1003/193K 112/23K 19/5K
DyDA 4 10 22K 11K/92.7K 1K/8.5K 1K/8.2K
MRDA 5 - 15K 51/77.9K 11/15.8K 11/15.5K

Table 1: |C| is the number of DA classes, |T | is the
number of manually labelled conversation-level topic
classes, |V | is the vocabulary size. Training, Vali-
dation and Testing indicate the number of conversa-
tions/utterances in the respective splits.

For conversation-level labelling, we assign the
topic label with the highest marginal probabil-
ity to the conversation based on the correspond-
ing per-document topic proportion estimated by
LDA. Every utterance of the conversation then
shares the same topic label of the conversation.
For utterance-level labelling, there is an additional
step to perform inference on every utterance based
on corresponding optimal model (e.g., for every
utterance of SWDA, we do inference using the
LDA trained on SWDA with 60 topics), and assign
the topic label with the highest marginal probabil-
ity to the utterance. Therefore, the topic labels of
the utterances of the same conversation could be
different for utterance-level labelling.

4 Experimental Settings

4.1 Datasets
We evaluate the performance of our model on
three public DA datasets with different charac-
teristics, namely, Switchboard Dialog Act Cor-
pus (Jurafsky, 1997, SWDA), Dailydialog (Li
et al., 2017, DyDA), and the Meeting Recorder Di-
alogue Act corpus (Shriberg et al., 2004, MRDA).
SWDA2 consists of 1,155 two-sided tele-
phone conversations manually labelled with 66
conversation-level topics (e.g., taxes, music, etc.)
and 42 utterance-level DAs (e.g., statement-
opinion, statement-non-opinion, wh-question).
DyDA3 contains 13,118 human-written daily
conversations, manually labelled with 10
conversation-level topics (e.g., tourism, poli-
tics, finance) as well as four utterance-level DA
classes, i.e., inform, question, directive and com-
missive. The former two classes are information
transfer acts, while the latter two are action
discussion acts.
MRDA4 contains 75 meeting conversations anno-

2https://web.stanford.edu/∼jurafsky/ws97/manual.
august1.html

3http://yanran.li/dailydialog
4http://www1.icsi.berkeley.edu/∼ees/dadb/
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tated with 5 DAs, i.e., Statement (S), Question
(Q), Floorgrabber (F), Backchannel (B), and Dis-
ruption (D). The average number of utterances per
conversation is 1,496. There are no manually an-
notated topic labels available for this dataset.

4.2 Implementation Details
For all experimental datasets, the top 85% high-
est frequency words were indexed. For SWDA
and MRDA, we split training/validation/testing
datasets following (Stolcke et al., 2000; Lee
and Dernoncourt, 2016). For DyDA, we used
the standard split from the original dataset (Li
et al., 2017). The statistics of the experimen-
tal datasets are summarised in Table 1. We rep-
resented input data with 300-dimensional Glove
word embeddings (Pennington et al., 2014) and
50-dimensional character embeddings (Ma and
Hovy, 2016). We set the dimension of the hid-
den layers (i.e., hi

t, gt and st) to 256 and applied
a dropout layer to both the shared encoder and the
sequence tagger at a rate of 0.2. The Adam opti-
miser (Kingma and Ba, 2015) was used for train-
ing with an initial learning rate of 0.001 and a
weight decay of 0.0001. Each utterance in a mini-
batch was padded to the maximum length for that
batch, and the maximum batch-size allowed was
50.

4.3 Baselines
We compare the proposed DAH-CRF model in-
corporating utterance-level topic labels extracted
by LDA (denoted as DAH-CRF+LDAutt) against
five strong baselines and two variants of our own
models:
JAS5: A generative joint, additive, sequential
model of topics and speech acts in patient-doctor
communication (Wallace et al., 2013);
DRLM-Cond6: A latent variable recurrent neural
network for DA classification (Ji et al., 2016);
Bi-LSTM-CRF7: A hierarchical Bi-LSTM with a
CRF to classify DAs (Kumar et al., 2018);
CRF-ASN: An attentive structured network with
a CRF for DA classification (Chen et al., 2018);
SelfAtt-CRF: A hierarchical Bi-GRU with self-
attention and CRF (Raheja and Tetreault, 2019);
DAH-CRF+MANUALconv: Use the manually
annotated conversation-level topic labels (i.e.,
each utterance of the conversation shares the same

5https://github.com/bwallace/JAS
6https://github.com/jiyfeng/drlm
7https://github.com/YanWenqiang/HBLSTM-CRF

Model SWDA MRDA DyDA

B
as

el
in

es JAS 71.2 81.3 75.9
DRLM-Cond 77.0† 88.4 81.1
Bi-LSTM-CRF 79.2† 90.9† 83.6
CRF-ASN 80.8† 91.4† -
SelfAtt-CRF 82.9† 91.1† -

O
ur

s

DAH-CRF + MANUALconv 80.9 - 86.5
DAH-CRF + LDAconv 80.7 91.2 86.4
DAH-CRF + LDAutt 82.3 92.2 88.1
Human Agreement 84.0 - -

Table 2: DA classification accuracy. † indicates the re-
sults which are reported from the prior publications.

topic) for DAH-CRF model training rather than
the topic labels automatically acquired from LDA;
DAH-CRF+LDAconv: Use conversation-level
topic labels automatically acquired from LDA for
DAH-CRF model training.

Note that only JAS (a non-deep-learning model)
has attempted to model both DAs and topics,
whereas all the deep learning baselines do not
model topic information as a source of context
for DA classification. All the baselines mentioned
above use the same test dataset as our models for
all experimental datasets.

5 Experimental Results

5.1 Dialogue Acts Classification

Table 2 shows the DA classification accuracy of
our models and the baselines on three experi-
mental datasets. We fine-tuned the model pa-
rameters for JAS, DRLM-Cond and Bi-LSTM-
CRF in order to make the comparison as fair as
possible. The implementation of CRF-ASN and
SelfAtt-CRF are not available so we can only re-
port their results for SWDA and MRDA based on
the original papers (Chen et al., 2018; Raheja and
Tetreault, 2019).

It can be observed that by jointly modelling
DA and topics, DAH-CRF+LDAutt outperforms
the two best baseline models SelfAtt-CRF and
CRF-ASN around 1% on the MRDA dataset. Our
model also gives similar performance to SelfAtt-
CRF, the baseline which achieved the state-of-
the-art performance on the SWDA dataset (i.e.,
82.3% vs. 82.9%). While both manually an-
notated and automatically acquired topic labels
are effective, we see that DAH-CRF+LDAutt

outperforms both DAH-CRF+MANUALconv and
DAH-CRF+LDAconv, i.e., with over 1.6% gain
on DyDA and over 1.4% on SWDA (signifi-
cant; paired t-test p < .01). It is also ob-
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Model SWDA MRDA DyDA
SAH 76.2 88.5 82.5
SAH-CRF 78.4 89.6 84.1
DAH + LDAutt 79.5 91.1 86.0
DAH-CRF + LDAutt

(without Dual-Att)
81.0 91.3 86.3

DAH-CRF + LDAutt 82.3 92.2 88.1

Table 3: Ablation studies of DA classification.

served that DAH-CRF+MANUALconv and DAH-
CRF+LDAconv perform very similar to each other.

5.2 Ablation Study Results

We conducted ablation studies (see Table 3) in or-
der to evaluate the contribution of the components
of our DAH-CRF+LDAutt model, and more im-
portantly, the effectiveness of leveraging topic in-
formation for supporting DA classification.

DAH-CRF+LDAutt (without Dual-Att) re-
moves the dual-attention component from DAH-
CRF+LDAutt, and DAH+LDAutt removes the
CRF from DAH-CRF+LDAutt but retaining the
dual-attention component. SAH is a Single-
Attention Hierarchical RNN model without a
CRF, i.e., a simplified version of DAH+LDAutt

that only models DAs with topical information
omitted. As can be seen in Table 3, DAH+LDAutt

achieves over 3% averaged gain on all datasets
when compared to SAH, which clearly shows that
leveraging topic information can effectively sup-
port DA classification. It is also observed that both
the dual-attention mechanism and the CRF com-
ponent are beneficial, but are more effective on the
SWDA and DyDA datasets than MRDA.

In summary, while all the analysed model com-
ponents are beneficial, the biggest gain is obtained
by jointly modelling DAs and topics.

5.3 Analysing the Effectiveness of Joint
Modelling Dialogue Act and Topic

In this section, we provide detailed analysis on
why DAH-CRF+LDAutt can yield better perfor-
mance than SAH-CRF by jointly modelling DAs
and topics. Due to the page limit, our discussion
focuses on SWDA and DyDA datasets.

Figure 4 shows the normalized confusion ma-
trix derived from 10 DA classes of SWDA for
both SAH-CRF and DAH-CRF+LDAutt models.
It can be observed that DAH-CRF+LDAutt yields
improvement on recall for many DA classes com-
pared to SAH-CRF, e.g., 23.8% improvement

Figure 3: We highlight the prominent topics for some
example DAs. The topic distribution of a topic k under
a DA label d is calculated by averaging the marginal
probability of topic k for all utterances with the DA
label d.

on bk and 11.7% on sv. For bk (Response
Acknowledge) which has the highest improve-
ment level, we see that the improvement largely
comes from the reduction of misclassifing bk to
b (Acknowledge Backchannel). The key
difference between bk and b is that an utter-
ance labelled with bk has to be produced within
a question-answer context, whereas b is a “con-
tinuer” simply representing a response to the
speaker (Jurafsky, 1997). It is not surprising that
SAH-CRF makes poor prediction on the utter-
ances of these two DAs: they share many syntac-
tic cues, e.g., indicator words such ‘okay’, ‘oh’,
and ‘uh-huh’, which can easily confuse the model.
When comparing the topic distribution of the ut-
terances under the bk and b categories (cf. Fig-
ure 3), we found topics relating to personal leisure
(e.g., buying cars, music, and exercise) are much
more prominent in bk than b. By leveraging the
topic information, DAH-CRF+LDAutt can better
handle the confusion cases and hence improve the
prediction for bk significantly.

There are also cases where DAH-CRF+LDAutt

performs worse than SAH-CRF. Take the
DA pair of qo (Open Question) and qw
(wh-questions) as an example. qo refers
to questions like ‘How about you?’ and its
variations (e.g., ‘What do you think?’), whereas
qw represents wh-questions which are much
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Figure 4: The normalized confusion matrix of DAs using SAH-CRF (left) and DAH-CRF+LDAutt (right) on
SWDA (a) and DyDA (b).

Figure 5: DA Attention visualisation using SAH-CRF and DAH-CRF+LDAutt on (a) SWDA and (b) DyDA
datasets. The true labels of the utterances above are sd (statement-non-opinion) and Directive, respectively. SAH-
CRF misclassified the DA as sv (statement-opinion) and Inform whereas DAH-CRF+LDAutt gives correct predic-
tion for both cases.

more specific in general (e.g. ‘What other long
range goals do you have?’). SAH-CRF gives
quite decent performance in distinguishing qw
and qo classes. This is somewhat reasonable, as
linguistically the utterances of these two classes
are quite different, i.e., the qw utterance expresses
very specific question and is relatively lengthy,
whereas qo utterances tends to be very brief. We
see that DAH-CRF+LDAutt performs worse than
SAH-CRF: a greater number of qw utterances
are misclassified by DAH-CRF+LDAutt as qo.
This might be attributed to the fact that topic
distributions of qw and qo are similar to each
other (see Figure 3), i.e., incorporating the topic
information into DAH-CRF may cause these two
DAs to be less distinguishable for the model.

We also conducted a similar analysis on the
DyDA dataset. As can be seen from the
confusion matrices shown in Figure 4, DAH-
CRF+LDAutt gives improvement over SAH-CRF
for all the four DA classes of DyDA. In partic-
ular, Directives and Commissive achieve
higher improvement margin compared to the other
two classes, where the improvement are largely

attributed to less number of instances of the
Directives and Commissive classes being
mis-classified into Inform and Questions.
Examining the topic distributions in Figure 3
reveals that Directives and Commissive
classes are more relevant to the topics such as
food, shopping, and credit card. In contrast, the
topics of Inform and Questions classes are
more about business, and weather.

Finally, Figure 5 shows the DA attention vi-
sualisation examples of SAH-CRF and DAH-
CRF+LDAutt for an utterance from SWDA and
DyDA. For SWDA, it can be seen that SAH-
CRF gives very high weight to the word “be-
cause” and de-emphasizes other words. However,
DAH-CRF+LDAutt can capture more important
words (e.g., “if”, “reasonable”, etc.) and cor-
rectly predicts the DA label as sd. For DyDA,
SAH-CRF only focuses on “me” and “your”, but
DAH-CRF+LDAutt captures more words relevant
to Directive, such as “please”, “tell”, etc. To
summarise, DAH-CRF+LDAutt can capture more
significant words related to the corresponding DA,
by modelling both DAs and topic information with
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the dual-attention mechanism.

6 Conclusion

In this paper, we developed a dual-attention hi-
erarchical recurrent neural network with a CRF
for DA classification. With the proposed task-
specific dual-attention mechanism, our model is
able to capture information about both DAs and
topics, as well as information about the interac-
tions between them. Moreover, our model is gen-
eralised by leveraging an unsupervised model to
automatically acquire topic labels. Experimental
results based on three public datasets show that
modelling utterance-level topic information as an
auxiliary task can effectively improve DA classifi-
cation, and that our model is able to achieve better
or comparable performance to the state-of-the-art
deep learning methods for DA classification.

We envisage that our idea of modelling topic
information for improving DA classification can
be adapted to other DNN models, e.g., to encode
topic labels into word embeddings and then con-
catenate with the utterance-level or conversation-
level hidden vectors of our baselines, e.g. SelfAtt-
CRF. It will also be interesting to explicitly take
into account speaker’s role in the future.
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Abstract

Reflective listening—demonstrating that you
have heard your conversational partner—is
key to effective communication. Expert hu-
man communicators often mimic and rephrase
their conversational partner, e.g., when re-
sponding to sentimental stories or to questions
they don’t know the answer to. We introduce a
new task and an associated dataset wherein di-
alogue agents similarly mimic and rephrase a
user’s request to communicate sympathy (I’m
sorry to hear that) or lack of knowledge (I
do not know that). We study what makes a
rephrasal response good against a set of quali-
tative metrics. We then evaluate three models
for generating responses: a syntax-aware rule-
based system, a seq2seq LSTM neural mod-
els with attention (S2SA), and the same neu-
ral model augmented with a copy mechanism
(S2SA+C). In a human evaluation, we find that
S2SA+C and the rule-based system are compa-
rable and approach human-generated response
quality. In addition, experiences with a live
deployment of S2SA+C in a customer support
setting suggest that this generation task is a
practical contribution to real world conversa-
tional agents.

1 Introduction

Humans in conversation naturally engage in reflec-
tive (or active) listening, where they indicate they
have heard and understood their partner by repeat-
ing or rephrasing what they have said. This strat-
egy has its roots in Rogerian psychology (Rogers,
1951) as a counseling technique meant to build trust
and empathy. Dialog agents benefit from the same
strategy to keep conversations pleasant, especially
when the agent cannot help.

Reflective listening can be formalized into two
aspects: (1) mimicking and rephrasing the conver-
sational partner’s utterance, and (2) incorporating

∗These authors contributed equally.

Prompt: Hmm. . . I’m curious as to whether the
swimming pool is open after 7pm?
3 a. I do not know that
3 b. I don’t know when the swimming pool is
open.
3 c. I don’t know as to whether the swimming
pool is open after 7pm.
7 d. I don’t know if you are curious as to whether
the swimming pool is open after 7pm.
7 e. I don’t know Hmm. . . I’m curious as to
whether the swimming pool is open after 7pm?

Table 1: Possible responses to indicate the dialog agent
doesn’t know the answer to a question (the prompt).
The last two responses (d,e) are incorrect while the first
three (a,b,c) are all acceptable with varying levels of
specificity. The best response (b) is the one that is nei-
ther too vague (a) nor too verbose and repetitive (c).

an expressive speech act (Searle, 1976) appropriate
for the utterance. For example, in Table 1 (b) we
incorporate the speech act I don’t know on top of
the mimicked utterance when the swimming pool
is open.

In this paper, we propose a new task of gen-
erating mimic rephrasals for a given speech act.
Table 1 illustrates the task with an example prompt
and possible range of responses. The task is non-
trivial to handle as naively putting the two parts
together will result in responses that are either un-
grammatical (e) or do not select the appropriate
clause to rephrase (d). In our example, the first
three responses all correctly convey the “I don’t
know” message. However, the blanket response
(a) is overly vague and does not convey any un-
derstanding. Response (c) is specific but overly
verbose and robotic. The best response is (b) since
it contains enough details to signal understanding
while remaining concise.

To get this best response, the agent must ig-
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nore user flourishes (“Hmm. . . I’m curious”), iden-
tify the relevant portions of the prompt, correctly
rephrase keywords (replace “I” with “you”), and
coordinate arguments (using “when”).

By simulating reflective listening, we believe
that mimic rephrasals will allow goal-oriented dia-
log systems to still respond naturally to open-ended
input from users. In that vein, there has been re-
newed interest in open-ended dialog systems us-
ing neural models. However, Li et al. (2016a)
have noted that naïve neural models tend to gener-
ate repetitive and dull responses such as “I don’t
know”. While several attempts have been made to
control various aspects of generation and hence pro-
duce more diverse output (Li et al., 2018; Hu et al.,
2017; Logeswaran et al., 2018), we instead focus
on expressing a single speech act (e.g., “I don’t
know”), but grounding it in diverse open-ended
settings to simulate reflective listening.

In this paper, we examine what makes for a good
response for a given speech act. We create two
datasets IDONTKNOW and EMOTIVE focusing on
two speech acts demonstrating reflective listening,
respectively stating that we do not know an answer
and expressing sympathy. We analyze the qual-
ity of responses along different dimensions such
as fluency (is the response grammatical?), appro-
priateness (is the response on topic?), specificity,
repetitiveness, and conciseness. We also compare
responses from rule-based and neural models to
gain insight into the strengths/weaknesses of dif-
ferent models at this task. We demonstrate that the
rule-based model is repetitive but performs well for
simple cases, while a sequence-to-sequence model
with attention (Bahdanau et al., 2015) and a copy-
ing mechanism (Gu et al., 2016) has more varied
responses and compares favorably. We release our
dataset, code, and experiments to the community. 1

2 Task: Mimic Rephrasals

In this section, we introduce the task of Mimic
Rephrasal more formally. We use the term speech
act to describe the information we want to convey
to our conversational partner. For example, a lack
of knowledge, sympathy, etc. We define a prompt
as an utterance by a conversational partner that
should trigger some form of speech act. For exam-
ple, “where is my car?” could be a prompt for the
speech act conveying a lack of knowledge. Note

1https://github.com/square/
MimicAndRephrase/

that detection of these prompts and classification
into the appropriate speech act—while important
for a real-world system—is outside the scope of
this task.

The task is as follows: given a prompt and the
target speech act, generate a mimic rephrasal of that
prompt which conveys the speech act. We explore
the two use-cases of rephrasing lack of knowledge
(IDONTKNOW) and sympathy (EMOTIVE).

The important goal of the task to generate a re-
sponse that makes the user feel that they have been
heard and understood. Directly measuring this is
difficult. Instead, we propose five metrics to char-
acterize the quality of mimic rephrasals:
• appropriateness Did the response include the

topic of interest in the rephrasal?

• fluency Is the response grammatical?

• specificity How much detail from the input
prompt is captured?

• conciseness Is the response to the point?

• repetitiveness Is the response repetitive?

Looking at Table 1: (d) is not appropriate and
(e) has low fluency. (a) to (c) are both appropri-
ate and fluent with varying specificity (from low
to high) and conciseness (from high to low). Intu-
itively, there is a tradeoff between specificity and
repetitiveness: it should neither be too vague nor
too repetitive.

3 Dataset

Section 3.1 describes our process for collecting
data, to document our dataset creation and to de-
scribe how to collect data for other speech acts—
e.g., expressing gratitude, soliciting confirmation
of intents, etc. The subsequent section (Section 3.2)
describes some statistics of the two datasets in this
paper: EMOTIVE and IDONTKNOW.

3.1 Data collection

Our data collection pipeline has two phases. In the
first phase, workers were asked to come up with
a prompt or scenario. For example, a question to
ask the dialog agent, or a sentiment laden scenario.
During this phase, workers were asked to be as
creative as possible, to explore a variety of sentence
structures and lengths in the way they phrase their
prompts, and diversity in the topics covered. In the
second phase, we asked another set of workers to
generate multiple responses each to the prompt.
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(a) Interface when generating prompts

(b) Interface when generating mimic rephrasals

Figure 1: Our data collection pipeline. First, crowdworkers are asked to generate a given prompt or scenario (a).
Then, a different worker is asked to generate the mimic rephrasal of the prompt generated by the first worker (b).

IDONTKNOW

Prompt: I am legally resident in Northern Ireland,
where can I apply for an Irish visa
Mimic Rephrasal: I do not know where you can apply
for an Irish visa

P: When I register a domain, do I receive a website and
a web hosting space
MR: I do not know if you receive a website and a web
hosting space when you register a domain

P: I’m having difficulty signing up. Whom can I contact
MR: I do not know who you can contact about your
difficulty signing up

EMOTIVE

P: The sisters were able to reunite after 20 years
MR: I am happy to hear the sisters were able to reunite
after all this time

P: The future looks brighter than I ever imagined
MR: I ’m happy that your future looks bright to you

P: My phone fell into the toilet and it’s ruined now.
MR: I am sad that your phone is ruined because it fell
into the toilet

Table 2: Examples of mimic rephrasals in the IDON-
TKNOW and EMOTIVE datasets collected in this paper.
Each example has a prompt (the utterance from the con-
versational partner), and a mimic rephrasal: the utter-
ance that should be returned by the dialog agent.

We found that splitting the task up into these two
steps—generating prompts and then responses—
improved the quality of our collected sentence
pairs.

The interface used by Mechanical Turk workers
is shown in Figure 1. Workers are first asked to gen-
erate a number of prompts (scenarios) in Figure 1
(a). Once these prompts are collected, a different
set of workers were asked to generate responses to
the prompts, completing our dataset (see Figure 1
(b)). Workers were paid $0.10 per sentence in the
prompt generation task, and $0.07 per sentence in
the response generation task.

3.2 Dataset statistics

We use the method described in Section 3.1 to
collect two datasets IDONTKNOW and EMOTIVE.
Both datasets are split into train/dev/test splits with
a ratio of 70/15/15%.

IDONTKNOW is a dataset for indicating that
we don’t know the answer to a question, or cannot
execute a request. EMOTIVE is a dataset for ex-
pressing sympathy for the topic of the prompt, with
a balanced distribution of positive and negative sen-
timent. Examples for the two datasets can be found
in Table 2, and statistics are given in Table 3. The
modest size of the training set (10 189) means that
a good fraction of the test set contains out of vocab-
ulary words: the 1 377 test examples contain 512
words not seen during training, motivating our use
of a copy mechanism.

We report statistics both on the full mimic
rephrasal (MR), as well as for just the Mimic por-
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IDK EMOTIVE

Dataset size
Training pairs 6435 3887
Development pairs 1377 834
Test pairs 1377 828

Sentence length
Prompt mean token count 11.7 11.0
Mimic mean token count 8.8 9.1
MR mean token count 12.9 10.2

Train Vocabulary
Prompt vocabulary size 5703 4060
MR vocabulary size 5136 3200
Prompt/MR Jaccard Sim 0.83 0.61

Table 3: Statistics about the IDONTKNOW and
EMOTIVE datasets. Mimic is here taken to be the
mimicked utterance, without the preceding “I am
happy/sorry/etc.” or “I don’t know”. MR is the com-
plete mimic rephrased response.

tion of the mimic rephrasal. For example, for the
MR “I do not know where you can apply for an
Irish visa”, the Mimic portion would be “where
you can apply for an Irish visa.” While the average
MR is slightly longer than the original prompt, the
Mimic portion averages 2.9 tokens (25%) shorter
than the prompt. In addition, the high Jaccard simi-
larity between the prompt and mimic portion sug-
gests the task involves selecting key portions of the
original sentence. 2

4 Methods

In this section we describe three models for the
task described above. These include a rule based
baseline constructed with deterministic syntactic
transformations as well as trained neural models.

4.1 Rule based baseline
As a naïve baseline, we use a set of hand-
written syntactic rephrasing rules using Stanford
CoreNLP (Manning et al., 2014). For example, for
the IDONTKNOW dataset we developed 8 rules that
match a Semgrex (Chambers et al., 2007) pattern to
an associated dependency graph manipulation algo-
rithm. For example, the rule based system matches
the phrase “What is the difference between the debt
and the deficit?” to a general type of pattern where
the verb (in this case “is”) needs to be extracted
from the dependency graph and reattached at the
end to produce “I do not know what the difference
between the debt and the deficit is.” The EMOTIVE

2Jaccard similarity is computed as the intersection over
union of lemmatized non-stopword tokens between the prompt
and Mimic portion.

Check my order xi
input

bidirectional LSTM

(ht, h̄t)

attend

at

output copy

I am not able to check your order

yj
output

input encoding

attention vector

Figure 2: An outline of the sequence to sequence
model with attention and a copying mechanism. The
input phrase is “Check my order” with a correct output
of “I am not able to check your order”.

rule based system extracts the root clause from the
constituency parse of the sentence and adds enclos-
ing phrasing (“Sorry to hear that...”). Both systems
also use simple string manipulation to replace pro-
nouns and correct casing. We note that the rules
were developed by iterating on the training data. In
the appendix, we include a histogram of how often
each rule was fired in the IDONTKNOW rule based
system.

Although this is a strong baseline, it has some
weaknesses. Writing and maintaining the rule set
is difficult and time consuming. The Semgrex pat-
terns and accompanying transformations are non-
trivial and requires expert time to develop and main-
tain. Additionally, it is difficult to deterministically
decide which portions of the prompt to keep or
drop in the rephrasal. For instance, “I found out
someone has been stealing from me“ should drop
the found out and respond with: “Sorry to hear
that someone has been stealing from you”.

4.2 Neural Models

To address these issues, we develop a series of
neural models for the task. Formally, let x =
x1, . . . , xn be the source sentence, and y =
y1, . . . , ym be the generated sequence of output to-
kens. We define a seq2seq model similar to existing
neural MT models (Cho et al., 2014) for generating
y given an input x, as well as a model augmented
with a copy mechanism.

Input embedding. All models use concatenated
ELMo (Peters et al., 2018) and GloVE (Pennington
et al., 2014) embedding for the input embeddings.
The model architectures used for the EMOTIVE

and IDONTKNOW datasets are identical with one
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exception. For the EMOTIVE task, an extra bit is ap-
pended to the word embeddings to specify whether
the input has a positive or negative sentiment. 3

Baseline neural model. Our baseline neural
model is a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) with attention (Bahdanau
et al., 2015). Formally, the encoder outputs
a set of hidden states for each token given
by {h̄1, . . . , h̄n} = LSTM{m(x1, . . . , xn)} for
word embeddings m(x). The decoder is also an
LSTM with hidden state initialized to the sum of
the final hidden states of the forward and backward
LSTMs contained in the bidirectional LSTM en-
coder. For encoder hidden state h̄s and decoder
hidden state ht, the attention score at(s) is defined
as

at(s) =
exp(score(ht, h̄s))∑
s′ exp(score(ht, h̄s′))

where score(ht, h̄s) = vTa · tanh(Wa[ht; h̄s]) and
va and Wa are learnable parameters.

Decoding uses a modified beam search (see Sec-
tion 4.3),4 and the model is trained on the following
cross entropy loss function:

J =
m∑

i=1

− log pv(yi = y∗i |y<i, x)

where y∗i is the expected output token given in
the training data and log pv(yi = y∗i |y<i, x) is a
distribution over the models vocabulary computed
from the logits outputted by the model.

Neural model with copying. The most effective
neural model we implemented augments the base-
line neural model with a copying mechanism (Gu
et al., 2016). This allows the model to generalize
better to unseen vocabulary, and more strongly en-
forces the core tenant of the task: that we should be
mimicking the prompt. An overview of the model
is shown in Figure 2.

The key difference from the baseline neural
model is that we now generate output tokens using
a combined softmax over the model’s vocabulary
and the tokens in the input:

log p(yi = y∗i |y<i, x) =

log pv(yi = y∗i |y<i, x)+
∑

{j|xj=y∗i }
log pc(yi = copy(xj)|y<i, x),

3 We note that the rule-based system simply used different
rules for different settings of this bit.

4Initial experiments show that this modified beam search
worked better

where log pv(·) is the same as before, and log pc(·)
is a distribution over the words in the input. For
further details we defer the reader to (Gu et al.,
2016). Similar to the baseline model, we decode
the model using a modified beam search and train
it using a cross-entropy loss.

4.3 Modified Beam Search
We use a modified version of beam search (Huang
et al., 2017) when generating output tokens to fa-
vor longer responses. The modified beam search
first calculates the average ratio of output tokens
to input tokens from the dev set, k. We then com-
pute the average logit value of an individual output
token, r(yi), over all outputs produced on the dev
set input, ravg. A modified perplexity, s̃c(y,x), is
used to determine which beams to prune, where
x is a series of input tokens and y is a proposed
series of output tokens (a beam):

s̃c(y,x) = sc(y) + ravg ·min{len(y), k · len(x)}

where sc(y) =
∑len(y)

i=1 r(yi) is the standard per-
plexity for the generated output.

Additionally, we found that for a given output
ȳ, the score s̃c(ȳ,x) provides a good measure of
generation quality and is useful when filtering out
poor or unacceptable output.

4.4 Training
All models were implemented and trained using
PyTorch (Paszke et al., 2017). The Adam (Kingma
and Ba, 2014) optimizer was used for all gradient
based optimization.

We used a randomized hyperparameter grid
search to determine the learning rate, number of
layers, dropout, and the dimensions of the hidden
layers. We used a learning rate of 0.000718 for all
optimization. A dropout value of 0.1 is used for all
models. All LSTMs are bidirectional with a single
layer. Both sequence to sequence models for the
IDONTKNOW task use a hidden size of 524 within
the LSTM, a hidden size of 100 for the attention
layer, a hidden size of 638 for the copy layer, and a
dropout value of 0.1. Both sequence to sequence
models for the EMOTIVE task use a hidden size of
600 within the LSTM, a hidden size of 200 for the
attention layer, a hidden size of 650 for the copy
layer, and a dropout value of 0.1.

5 Experiments

We study what makes a good response by corre-
lating human judgments of goodness (based on a
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IDONTKNOW EMOTIVE
Model Dev Test Dev Test

BLEU

Rule-based 78.9 79.4 47.0 46.6
S2SA 63.3 63.1 32.9 34.2
S2SA+C 79.9 79.7 44.6 46.3

METEOR

Rule-based 84.6 85.3 54.4 54.1
S2SA 74.1 73.6 37.1 38.1
S2SA+C 88.4 88.5 51.5 52.8

Table 4: BLEU and METEOR scores evaluated on the
Dev and Test sets. The S2SA+C performs the best on
IDONTKNOW and the rule-based performs the best on
EMOTIVE.

5-point Likert scale) to the set of qualitative metrics
we defined in Section 2. The average score is 4.2
for IDONTKNOW and 3.7 for EMOTIVE. We also
evaluated the performance of different models on
these datasets using: (1) an automated BLEU and
METEOR evaluation, (2) an A/B study comparing
the model output with the gold response, and (3)
the qualitative metrics. We conclude with a quali-
tative error analysis and some observations from a
live deployment of the neural rephrasal model.

We compare the responses generated by three
models: (1) the Rule-based baseline; (2) S2SA:
neural model consisting of a seq2seq model with
attention, and (3) S2SA+C: neural seq2seq model
with attention and copying.

5.1 Results

BLEU/METEOR Following prior work on text
generation, we use BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005) to com-
pare the performance of our model.5 From the re-
sults shown in Table 4, the neural model with copy-
ing (S2SA+C) are the rule-based baseline have
comparable performance, with both significantly
outperforming the baseline neural model (S2SA).

A/B Test We perform a human evaluation of our
model outputs by creating an A/B test where eval-
uators specify a preference for either the model
output, or the gold human response (see Figure 3).
A perfect score on this evaluation would be 50%,
indicating that the model and human response are
indistinguishable. We ran this test on 305 examples

5Specifically, we used NLTK (Loper and Bird, 2002) to
compute both BLEU and METEOR scores with one human
reference for each example. The BLEU score is weighted
equally between 1-grams, 2-grams, 3-grams, and 4-grams

IDONTKNOW EMOTIVE
Model P% (I%) P% (I%)

Rule-based 38.0 (28.9) 39.7 (0.25)
S2SA 16.4 (11.5) 12.1 (0.25)
S2SA+C 46.7 (44.3) 35.9 (1.0)

Table 5: The percent of model responses that were
(P)referred over the human responses in the A/B test
portion of the user study on 305 IDONTKNOW exam-
ples and 400 EMOTIVE examples. When the model’s
response was identical to the human’s, we assume it is
preferred 50% of the time: the percentage of these ex-
amples is reported in the (I) column.

Figure 3: Example question in A/B test. The prompt
asks the crowdworker to choose between the human
response and the model output. In this example, one
would prefer the Person B’s response because it is more
specific and exhibits reflective listening.

selected from the test set. For each example which
was not identical to the gold output, five Turk Work-
ers were asked to choose which response they pre-
ferred. Table 5 shows the result of the study, show-
ing that the copy mechanism outperforms both the
rule-based baseline and the S2SA model for IDON-
TKNOW. For EMOTIVE, the rule-based baseline is
preferred.

Qualitative Metrics To gain insight into the
types of errors the different models are making,
we elicited human assessment of three of the met-
rics defined in Section 2:

1. Appropriateness Evaluators make a binary
choice as to whether the response included the
correct part of the prompt.

2. Fluency Evaluators assess the grammatical
correctness of the response by selecting on a
3 point Likert scale ranging from “not fluent”
to “somewhat fluent” to “fluent”. Scores are
normalized to 1.

3. Specificity We present evaluators with a re-
sponse and ask them to pick the original
prompt from 4 choices (the original prompt,
two distractors, and “none/multiple applies”).
The distractors are chosen from the nearest
neighbors of the prompt using an averaged
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Model App. Flu. Spec. Con. Rep.

IDONTKNOW

Human 93.1 91.75 74.7 1.18 65.1
Rule-based 86.3 85.2 79.3 1.25 74.4
S2SA 49.5 66.8 24.4 1.12 45.7
S2SA+C 92.4 86.0 77.5 1.22 70.4

EMOTIVE

Human 93.2 88.5 61.3 0.97 36.3
Rule-based 94.4 91.7 90.0 1.29 84.4
S2SA 29.8 74.4 7.0 0.97 17.7
S2SA+C 76.4 76.1 63.5 1.04 49.7

Table 6: Assessment and measures of Appropriateness,
Fluency, Specificity, Conciseness and Repetitiveness.
We bold the highest scores for App. and Flu., and clos-
est to human for Spec., Con., and Rep.

GloVE sentence embedding.

We also used the following automatic metrics as
proxies for the remaining qualitative metrics:

1. Conciseness The length of the response nor-
malized to the length of the prompt (smaller
is more concise).

2. Repetitiveness We use METEOR (Banerjee
and Lavie, 2005) to measure the overlap be-
tween prompt and response.

Table 6 shows the results of the human judg-
ment on 400 generated responses for the test set.
The rule-based model does well on the EMOTIVE

dataset. The S2SA model is overall worst on most
metrics, except conciseness. On the other hand,
the S2SA+C model performs best on appropriate-
ness and fluency for the IDONTKNOW dataset, and
compares favorably with the rule-based model for
other metrics. We note that the S2SA+C model
most closely matches the amount of specificity,
conciseness, and repetitiveness in the human re-
sponses. Examples of human responses with their
corresponding metrics is provided in the appendix,
along with additional responses from the models
and error analysis.

5.2 Analysis

Next, we look at the correlation of our qualitative
metrics to overall human quality judgments. Re-
sults of this analysis are in Table 7 and we provide
additional visualizations in the appendix. The hu-
man response goodness score correlated positively
with appropriateness, fluency, and to some extent
with repetitiveness. On the other hand it correlated
negatively with conciseness (i.e., shorter responses

Model App. Flu. Spec. Con. Rep.

IDONTKNOW

Human* 0.34 0.14 0.17 -0.39 0.38
Rules 0.39 0.42 0.17 -0.03 0.08
S2SA 0.54 0.30 0.35 0.00 0.23
S2SA+C 0.45 0.48 0.09 -0.19 0.21

EMOTIVE

Human* 0.52 0.59 0.05 -0.17 -0.08
Rules 0.12 0.04 -0.08 -0.08 0.01
S2SA 0.63 0.23 0.22 -0.03 0.33
S2SA+C 0.41 0.41 0.00 0.02 -0.00

Table 7: Correlations between diagnostic metrics and
human quality judgments for responses in the two
datasets, with bold indicating statistically significant
correlations. For all model responses, we use the A/B
test preferences as a measure of quality judgment. For
the human responses, we use a 5-pt Likert scale of the
“goodness” of response as a quality judgment.

are preferred), while correlation with specificity
was less pronounced. This seems to indicate that
good responses are characterized by being appro-
priate and fluent, while having an appropriate level
of detail (indicated by some amount of repetitive-
ness balanced with conciseness). We see a similar
trend for the model responses: appropriateness and
fluency are the most important attributes for when
a model’s response is preferred over the human’s.

To get a better qualitative understanding of the
model’s performance, we studied the responses
generated by our models (see Table 8 for exam-
ples). For simple sentences, the IDONTKNOW

rule-based responses are reasonable. However, for
more complex sentences, it becomes challenging
to identify relevant subclauses or to handle non-
trivial constructions like conditional clauses (see
aquarium example). As a result, the EMOTIVE

rule-based responses, while grammatical, tend to
be overly verbose.

Both S2SA and S2SA+C are good at producing
relatively fluent sentences, and performing the cor-
rect pronoun replacements (“you” with “we” and
“I”). S2SA responses are often off-topic and inap-
propriate, with the model generating words that re-
lated to the topic but prone to drift (e.g., the teapot
example). Since we train on a very small dataset,
many words in the prompt are not seen during train-
ing. While the input word embedding can help dur-
ing encoding, the decoder is nonetheless unable to
generate words it has not seen during training.

The two biggest errors S2SA+C makes are incor-
rectly identifying the relevant parts of the question
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IDONTKNOW EMOTIVE

Prompt If I win my case, what am I entitled to I dropped the jar and it shattered everywhere
Human I do not know what you are entitled to I am sorry to hear the jar broke
Rule-based I do not know what you are entitled to I am sorry you dropped the jar and it shattered ev-

erywhere
S2SA I do not know what you are required to i am sorry to hear about the ice
S2SA+C I do not know what you are entitled to i am sorry you dropped the jar

Prompt At what temperature should I heat my water in a
Staub teapot

The dentist told me that my insurance did n’t cover
dental

Human I do not know what temperature you should heat
your water to in a Staub teapot

I am sorry your insurance does n’t cover dental

Rule-based I do not know at what temperature you should heat
your water in a Staub teapot

I am sad the dentist told you that your insurance did
n’t cover dental

S2SA i am not able to tell you what long it you should
handle your tea in a tsunami machine

sorry to hear that you ca n’t afford your insurance
insurance insurance insurance

S2SA+C i do not know at what you should heat your water
in a staub teapot

sorry to hear that the dentist did n’t cover dental

Prompt Are the animals at your aquarium humanely treated Did I tell you that I won $ 500 at bingo
Human I do not know if the animals at our aquarium are

humanely treated
I am glad you won it

Rule-based I do not know of the are animals at my aquarium
humanely treated

I’m happy did you tell me that you won $ 500 at
bingo

S2SA i do not know if the animals are at our zoo are
allowed

i am happy you won the lottery

S2SA+C i do not know if the animals are at our aquarium are
treated treated

i am happy that you won $ 500 at bingo

Table 8: Example responses from the different models, with errors highlighted in red. Note that the S2SA model
tend to introduce random terms and S2SA+C model will retain numbers such as $ 500.

(e.g., the response “I do not know what reporter’s
transcript deposit are” to the question “What are
Reporter’s Transcript Deposit Costs?”) and gram-
matical errors when rephrasing (e.g., the response

“I do not know when the free trial is end.” to the
question “When does the free trial end?”).

5.3 Observations from a Live Deployment

We deployed the S2SA+C model as part of a live
chatbot for customer service that helped answer
customer queries and perform simple tasks like
tracking their packages.6 As context, customers
would ask the chatbot questions (e.g., “how do
I ship pets?” or “I want to change the delivery
address for my package”) which were matched
against a knowledge base containing frequently
asked questions. If a question similarity model was
unable to find a match, we tried to communicate
to the user that we could not answer their request.
Prior to this work, the chatbot would respond with
a generic backoff message: "I’m sorry I didn’t un-
derstand something you said" which resulted in
users repeatedly rewording their request even if
their request was genuinely outside of the chatbot’s

6The live deployment was run at Eloquent Labs prior to
their acquisition by Square Inc.

knowledge base, and ultimately expressing frustra-
tion with the chatbot.

We incorporated mimic rephrasals into our sys-
tem by responding with the output generated by
the S2SA+C model trained on the IDONTKNOW

dataset if its score, s̃c(y,x), was higher than a fixed
threshold, and using the previous backoff response
if not. We observed that when the model replied
with a mimic rephrasal, users usually responded
with gratitude, e.g. "Thanks for letting me know!",
and either continued by asking a different question
or leaving the conversation. Presented with the
mimic response, users rarely wasted time reword-
ing a request that was out of the scope of what the
chatbot could handle.

6 Related Work

Verbal mimicry is used in conversation to build so-
cial rapport (Rogers, 1951; Rautalinko and Lisper,
2004). This observation has been leveraged even in
the early development of conversational agents, for
example in systems such as Eliza (Weizenbaum,
1966), which engaged users by picking up key-
words and repeating open ended questions back to
the patient, or PARRY (Colby et al., 1972), which
follows a similar strategy to rephrase utterances to
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indicate anger or fear. Our work applies mimicry in
the task-oriented setting and studies how and when
generated mimic rephrasals are preferred over hu-
man responses.

More recently, sequence to sequence models
have been used for open domain chatbots (Sordoni
et al., 2015; Shang et al., 2015; Vinyals and Le,
2015; Wen et al., 2015; Serban et al., 2016). How-
ever, these models suffered from generic responses
and turns that are semantically inconsistent and in-
coherent. To address these issues, Li et al. (2016a)
introduced a maximum mutual information objec-
tive to encourage diversity. Consistency in dialog
agents has been well studied in Kobsa and Wahlster
(1989) inter-alia, and for neural methods by Li et al.
(2016b). Rashkin et al. (2019) also recognized the
need to acknowledge others’ feelings in a conver-
sation and introduced a dataset for benchmarking
emphathetic dialog models.

Sequence-to-sequence models with copying was
introduced in Gu et al. (2016). Such models have
also been shown to be effective at semantic pars-
ing (Jia and Liang, 2016), summarization (See
et al., 2017; Cao et al., 2018), and task oriented
dialog (Eric and Manning, 2017).

Our task can in many ways be considered a con-
trolled generation task. Other work in this area in-
cludes generating text conditioned on a sentiment
to express (Li et al., 2018), or controlled genera-
tion (Hu et al., 2017) by editing attributes (Shen
et al., 2017; Logeswaran et al., 2018; Lample et al.,
2019). These works can successfully change the
tone and intent of an utterance, but tend to fre-
quently rewrite enough of the content that the
method is less effective for practical dialog appli-
cations. Ke et al. (2018) examined how to generate
dialog responses with different sentence function
(e.g., imperative, interrogative, etc.), which simi-
larly allows for more distant rewriting than is opti-
mal for our task. Finally, our task exhibits many of
the challenges observed by Bilu et al. (2015) in the
context of negating claims.

Other work in generation addresses tasks such
as rephrasals for generating paraphrases (Prakash
et al., 2016; Gupta et al., 2018), sentence simplifi-
cation (Narayan et al., 2017), and query rewriting
for question answering (Dong et al., 2017).

7 Conclusions

We proposed a new task and associated datasets for
mimicking and rephrasing a speaker’s prompt to

communicate a given intent. We showed that both
rule-based based and neural seq2seq models both
approach human level performance. Additionally,
we share observations from a real world deploy-
ment of the model to highlight how solving these
tasks can potentially improve the end-user experi-
ence. We hope this will inspire future work in
dialog agents, making these agents more fluent and
personable.
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Abstract
Pyramid evaluation was developed to assess
the content of paragraph length summaries of
source texts. A pyramid lists the distinct units
of content found in several reference sum-
maries, weights content units by how many
reference summaries they occur in, and pro-
duces three scores based on the weighted con-
tent of new summaries. We present an au-
tomated method that is more efficient, more
transparent, and more complete than previous
automated pyramid methods. It is tested on a
new dataset of student summaries, and histori-
cal NIST data from extractive summarizers.

1 Introduction

During the 70’s and 80’s, educational pychologists
studied human summarization skills, and their de-
velopment throughout secondary school and be-
yond. Three separate skills are acquired in the
following order: selection of important informa-
tion, abstraction through vocabulary generaliza-
tion and sentence fusion, and integration with
background knowledge (van Dijk and Kintsch,
1977; Brown and Day, 1983). A recent com-
parison of summaries from human experts ver-
sus extractive summarizers on forty-six topics
from the TAC 2010 summarization challenge used
automatic caseframe analysis, and found essen-
tially these same properties in the human sum-
maries, and not in the extractive ones (Cheung
and Penn, 2013). Abstractive summarizers, how-
ever, are beginning to replicate the first two of
these behaviors, as illustrated in many published
examples based on encoder-decoder and pointer-
generator neural architectures (Nallapati et al.,
2016; See et al., 2017; Hsu et al., 2018; Guo et al.,
2018). Summarization evaluation relies almost ex-
clusively on ROUGE (Lin, 2004), an automated
tool that cannot directly assess importance of sum-
mary content, or novel wording for the same infor-

Aligned PyrEval (W=5) and Manual (W=4) SCU
RSUM1 For example, an art gallery in

London held an exhibit. with
digital curr. as the preferred . . .

RSUM2 However, there has been some positive
news as bus. such as a Scottish Hotel
& a London Art Gallery are allowing
cust. to pay with crypto currencies

RSUM3 Cellan-Jones (2018) writes recent days
both a London art gallery and a
Scottish hotel . . . to allow their
cust. to pay with crypto-currencies.

RSUM4 by suggesting that {a London art gallery
& Scottish hotel chain plan to . . . support
for different crypto-currencies.}Paraph

. . .{ that the London based art gallery
would use only crypto currencies}Paraph

RSUM5 Businesses located in London and
Scotland have made enquiries to allow
payment from customers using cryptoc.

Match to a student summary that used synomyms:
a craftsmanship exhibition alongside a Scottish inn
have plans for their clients to pay in digital currencies

Figure 1: Alignment of a single PyrEval SCU of weight 5
to a manual SCU of weight 4 from a dataset of student sum-
maries. The manual and automated SCUs express the same
content, and their weights differ only by one. For each of
five reference summaries (RSUM1-RSUM5), exact matches
of words between the PyrEval and manual contributor are in
bold, text in plain font (RSUM2, RSUM4) appears only in the
manual version, and text in italics appears only in the PyrEval
version. Paraphrases of the same content from RSUM4 were
identified by human annotators (plain font) and PyrEval (ital-
ics). Also shown is a matching segment from a student sum-
mary, where the student used synonyms of some of the words
in the reference summaries.

mation. We present an automated method to assess
the importance of summary content, independent
of wording, based on a widely used manual evalu-
ation called pyramid (Nenkova et al., 2007).

The pyramid method and ROUGE both use
multiple summaries written by humans as refer-
ences to assess new summaries. The manual pyra-
mid method requires human annotators to iden-
tify Summary Content Units (SCUs) by grouping
phrases from different reference summaries into
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the same SCU if they express the same proposi-
tional content. Figure 1 illustrates an SCU from
a manual pyramid applied to college student sum-
maries of articles on cryptocurrency, with contri-
butions from four of the five reference summaries
(RSUM1-RSUM4). It is aligned to a nearly iden-
tical SCU constructed by PyrEval, with a contri-
bution from the fifth reference (RSUM5). Previ-
ous work has shown that these kinds of discrep-
ancies occur between human annotators, and have
little effect on interannotator agreement or rank-
ings of summarizers (Passonneau, 2010). The im-
portance of an SCU increases with the number of
reference summaries that express it, as indicated
by its weight. If an evaluation summary expresses
the same content as an SCU, its score is increased
by the SCU weight (details below). ROUGE al-
lows the user to select among numerous ways to
measure ngram overlap of a new summary to the
references, e.g., for different ngram sizes with
or without skips, and with or without stemming.
ROUGE does not, however, consider the relative
importance of content, or account for synonyms
of words that appear in the reference summaries.

We present PyrEval,1 which outperforms previ-
ous work on automated pyramid in accuracy and
efficiency. It produces human-readable pyramids,
and prints matches between SCUs and evaluation
summaries, which can support feedback for edu-
cational applications. PyrEval performs well on a
new dataset of student summaries, where we ap-
plied the pyramid annotation. We also present re-
sults for TAC 2010 automated summaries, one of
the more recent years where NIST applied pyra-
mid evaluation. While ROUGE-2 more accurately
identifies system differences than PyrEval, its per-
formance is more sensitive to different topics.

2 Pyramid Content Analysis

The challenge in evaluation of summary content is
that different equally good human summaries have
only partial content overlap. van Halteren and
Teufel (2003) annotated factoids (similar to FOL
propositions, and to SCUs) for fifty summaries of
a Dutch news article, and found a Zipfian distribu-
tion of factoid frequency: a small number of fac-
toids represent 80% of the content in summaries,
but a very long tail of rare content accounts for
20%. Pyramid annotation of ten summaries for a

1Available at https://github.com/serenayj/
PyrEval

few DUC 2003 topics had a similar a Zipfian dis-
tribution (Nenkova and Passonneau, 2004).

Pyramid has had extensive reliability test-
ing. A sensitivity analysis showed four reference
summaries were sufficient for score reliability,
and with probability of misranking errors below
0.01% (Nenkova and Passonneau, 2004; Nenkova
et al., 2007). Interannotator agreement using Krip-
pendorff’s alpha on ten pyramids ranged from
0.61 to 0.89, and averaged 0.78 on matching new
summaries to pyramids for 16 systems on 3 top-
ics each (Passonneau, 2010). Comparison of two
manual pyramid evaluations from distinct annota-
tors showed that different pyramids for the same
topic yield the same system rankings, even though
SCUs from different pyramids typically do not
align exactly (Passonneau, 2010).

The default size of a phrase that contributes to
an SCU is a simple clause, but if it is clear from the
context that a summary essentially expresses the
same content expressed in other reference sum-
maries, it is said to contribute to the same SCU,
and the annotator must select at least a few con-
tributing words. SCU weights reflect how many
of N reference summaries express the SCU con-
tent. As such, SCUs are constrained to have no
more than one contributor phrase from each refer-
ence summary. If a summary repeats the same in-
formation, the repetition will increment the count
of total SCUs within one summary, but cannot be a
distinct contributor. For example, the paraphrases
from RSUM4 shown in Figure 1 add two to the to-
tal SCU size of the summary, but can only be used
once to increment an SCU weight. Simple clauses
in an evaluation summary that do not match pyra-
mid SCUs add to the summary’s SCU count, but
have zero weight.

3 Related Work

Summarization is an important component of
strategy instruction in reading and writing
skills (Graham and Perin, 2007), but is used less
than it could be due to the demands of manual
grading and feedback. However, integration of
NLP with rubric-based assessment has received
increasing attention. Gerard et al. (2016) and Ger-
ard and Linn (2016) applied automated assessment
using rubrics to successfully identify students who
need the most help, and facilitate and meaning-
ful classroom interactions. Agejev and Šnajder
(2017) used ROUGE and BLEU to identify col-
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lege students’ L2 skills. Santamarı́a Lancho et al.
(2018) used G-Rubric, an LSA-based tool, to help
instructors grade short text answers to open-ended
questions. Passonneau et al. (2018) found a high
correlation of an automated pyramid with a man-
ual rubric on a small set of summaries; see last
paragraph of this section.

ROUGE is the most prevalent method to as-
sess automated summarization. In 39 long
papers on summarization in ACL conferences
from 2013 through 2018 (mostly abstractive),
87% used ROUGE-1, ROUGE-2 or other vari-
ants such as LCS (longest common subse-
quence). A few used POURPRE (question an-
swering) (Lin and Demner-Fushman, 2006), or
METEOR (MT) (Denkowski and Lavie, 2014)
to investigate scores based on weighted con-
tent or synonomy. POURPRE relies on string
matching against reference units called answer
facts, weighting matches by inverse document fre-
quency. METEOR aligns words between refer-
ence and candidate, and can use relaxed word
matching, such as WordNet synonymy. Despite its
dominant use in previous work, Graham (2015)
noted that the large range of ROUGE variants
causes inconvenience and instability in evaluating
performance. Graham’s results from testing the
192 variants on DUC2004 data suggest that the
ROUGE variants that correlate best with human
evaluations are not often used.

PyrEval differs from other automated pyra-
mid tools in its focus on accurately isolating and
weighting the distinct SCUs in the reference sum-
maries. Three previous semi-automated pyramid
tools used dynamic programming to score sum-
maries, given a manual pyramid (Harnly et al.,
2005; Passonneau et al., 2013, 2018). The first of
these used unigram overlap to compare summaries
to a pyramid. Absolute scores were much lower
than ground truth, but average system rankings
across multiple tasks were accurate. A subsequent
extension that used cosine similarity of latent vec-
tor representations of ngrams and SCUs, based on
(Guo and Diab, 2012), had much better perfor-
mance (Passonneau et al., 2013). This was ex-
tended further through use of a weighted set cover
algorithm for scoring (Passonneau et al., 2018).
PEAK was the first fully automated approach to
construct a pyramid and score summaries (Yang
et al., 2016). It uses OpenIE to extract subject-
predicate-object triples from references, then con-

structs a hypergraph with triples as hyperedges.
Semantic similarity between nodes from distinct
hyperedges is measured using ADW’s random
walks over WordNet (Pilehvar et al., 2013), to as-
sign weights to triples. On a small set of sum-
maries used here in Table 1, PEAK raw scores had
a high correlation with a manual summary rubric.
PEAK was also tested on a single DUC 2006 topic,
where the input text was first manually altered.
Because PEAK is slow, Peyrard and Eckle-Kohler
(2017) reimplemented it’s use of the Hungarian al-
gorithm to optimize their summarizer. Because
PEAK produces many noisy copies of the same
SCU, its output cannot be used to justify scores
based on the unique matches or misses of a stu-
dent summary to SCUs. Its score normalizations
are inaccurate, and the un-normalized scores are
impractical for general-purpose evaluation.

4 PyrEval System

To construct a pyramid, humans identify contribu-
tor segments2 and group them into SCUs. Evalu-
ating a summary is a simpler process of matching
phrases to existing SCUs. PyrEval performs anal-
ogous steps, as shown in Figure 2. It first decom-
poses sentences of reference summaries (RSUM)
into segments (DECOMP PARSE) and converts
them into semantic vectors (LATENT SEM). It
then applies EDUA to group the segment vectors
into SCUs. EDUA (see below) is a novel restricted
set partition algorithm that maximizes the seman-
tic similarity within SCUs, subject to SCU con-
straints. Evaluation summaries (ESUM) are pre-
processed in a similar fashion to convert them to
segments represented as vectors. As in (Passon-
neau et al., 2018), PyrEval applies WMIN (Sakai
et al., 2003) to find the optimal set of matches with
pyramid SCUs. The remainder of this section de-
scribes each step.

4.1 Sentence Decomposition

The decomposition parser takes as input a phrase
structure parse and dependency parse for each sen-
tence, using Stanford CoreNLP (Manning et al.,
2014). Every tensed verb phrase (VP) from the
phrase structure parse initializes a new segment.
The head verbs of tensed VPs are aligned to the de-
pendency parse, and their dependent subjects are
then attached to the segments. Words other than

2These can be discontinuous substrings, and can reuse
words from other contributors, e.g., subjects of VP conjuncts.
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Figure 2: PyrEval preprocessors segment sentences
from reference (RSUM) and evaluation (ESUM) sum-
maries into clause-like units, then convert them to la-
tent vectors. EDUA constructs a pyramid from RSUM
vectors (lower left): the horizontal bands of the pyra-
mid represent SCUs of decreasing weight (shaded
squares). WMIN matches SCUs to ESUM segments
to produce a raw score, and three normalized scores.

Data (size) ELMo USE GloVe WTMF
WIM (20) 0.3873 -0.0290 0.7149 0.8525
TAC 09 (54) 0.0515 0.2672 0.1713 0.4961
STS-14 (3750) 0.1636 0.5757 0.6129 0.7257

Table 1: Comparison of phrase embedding methods on
correlation to manual pyramd (WIM, TAC09) or corre-
lation to human similarity judgements (STS-14).

those in the VP and subject are reinserted in their
original order. Every sentence has at least one de-
fault segmentation corresponding to the full sen-
tence, possibly with one or more alternative seg-
mentations of at least two segments each. It per-
forms well for most cases apart from sentences
with coordinate structures, which are notoriously
difficult for conventional parsers. Figure 3 illus-
trates a sentence segmentation, with three alterna-
tives.3

4.2 Semantic Vectors for Segments

The second PyrEval preprocessing step converts
segments to semantic vectors. We chose to avoid
semantic representation that requires training, to
make PyrEval a lightweight, standalone tool. Al-
though recent contextualized representations per-
form very well on a variety of NLP tasks, they are
typically intended as the basis for a transfer learn-
ing approach, or to initialize further task-specific

3Segmentation 1.6.2 is the one EDUA-G selects for the
pyramid.

Christopher Shake, the director of the London art gallery,
suggests that this is not the case and that many different com-
panies of different natures not just technology related are get-
ting involved with cryptocurrencies.

1.6.1.0 that this is not the case
1.6.1.1 Christopher Shake, the director of the London

art gallery, suggests and.
1.6.1.2 that many different companies of different

natures not just technology related are getting
involved with cryptocurrencies

1.6.2.0 Christopher Shake, the director of the London
art gallery, suggests that this is not the case and.

1.6.2.1 that many different companies of different
natures not just technology related are getting
involved with cryptocurrencies

1.6.3.0 Christopher Shake, the director of the London art
gallery, suggests and that many different
companies of different natures not just technology
related are getting involved with cryptocurrencies.

1.6.3.1 that this is not the case

Figure 3: Segmentation output for a sentence from a
reference summary for the “CryptoCurrencies” topic of
our student summaries.

neural training (e.g., (Pagliardini et al., 2018; Pe-
ters et al., 2018; Devlin et al., 2018; Vaswani et al.,
2017)). The most practical way to rely on com-
pletely pre-trained representations is to use word
embeddings along with a method to combine them
into phrase embeddings. Here we report on a com-
parison of ELMo (Peters et al., 2018) and the Uni-
versal Sentence Encoder for English (USE) (Cer
et al., 2018) with two conventional word embed-
ding methods, GloVe (Pennington et al., 2014) and
WTMF (Guo and Diab, 2012).4

ELMo is character-based rather than word-
based, relies on a many-layered bidirectional
LSTM, and incorporates word sequence (language
model) information. It was trained on billions
of tokens of Wikipedia and news text. To create
meaning vectors for strings of words, we use pre-
trained ELMo vectors, taking the weighted sum of
3 output layers as the word embeddings, then ap-
plying mean pooling.5 USE is intended for trans-
fer learning tasks, based on Transformer (Vaswani
et al., 2017) or the (Iyyer et al., 2015) deep aver-
aging network (DAN). We create meaning vectors
for word strings with the USE-DAN pretrained en-
coder.6 We use the GloVe download for 100D vec-

4We do not show results for Word2Vec (Mikolov et al.,
2013), where performance was similar to GloVe.

5We use ELMo module from https://github.
com/allenai/allennlp/.

6https://tfhub.dev/google/
universal-sentence-encoder/2.

407



Figure 4: Part of an EDUA solution graph. Each vertex
is a segment vector from a reference summary, indexed
by Summary.ID (si), Sentence.ID (sij), Segmentation.ID
(sijk), Segment.ID (sijkm). All segments of all reference
summaries have a corresponding node. All edges con-
nect segments from different summaries with similarity
≥ tedge. This schematic representation of a partial so-
lution contains three fully connected subgraphs with at-
traction edges (solid lines), each representing an SCU,
whose weight is the number of vertices (segments).

tors trained on the 840B Common Crawl.7 To
combine the GloVe word vectors into a phrase
vector, we use the weighted averaging method
from (Arora et al., 2016). WTMF is a matrix
factorization method. We use WTMF matrices
trained on the Guo and Diab (2012) corpus (393K
sentences, 81K vocabulary size) that consists of
WordNet, Wiktionary, and the Brown corpus.

We compare the four embedding methods on
three datasets. Because our goal is to select a
method that performs well on pyramid annota-
tion, the first two datasets are human and machine
summaries with manual pyramid annotations, with
correlation of the manual pyramid and PyrEval
scores as the metric. WIM (for What is Matter)
is a dataset of student summaries with pyramid
annotation from (Passonneau et al., 2018) with
20 student summaries on one topic. Note that
PyrEval achieved a correlation of 0.85 on this data,
compared with 0.82 for PEAK (Passonneau et al.,
2018). We also use a subset of data from the NIST
TAC 2009 summarizer challenge. We use sum-
maries from all 54 peer systems on 14 of the 44
topics. We also use the STS-14 benchmark dataset
of semantic similarity judgements (3750 sentence
pairs), as in (Guo and Diab, 2012).

Table 1 shows WTMF to perform best on the

7https://nlp.stanford.edu/projects/
glove/.

1. Given a set of n reference summaries R, a preprocess-
ing function (described in subsections 4.1-4.2) SEG re-
turns segments as vectors: ∀Ri ∈ R, SEGS(Ri) =
{segijk1, segijk2, . . . , segijkm} where segijkm is the
mth segment of the kth segmentation of the jth sen-
tence in the ith summary.

2. A graph G is constructed from SEGS(Ri), where
an edge connects segments segijkm, segi′j′k′m′

if (i 6= i′, segijkm 6= segi′j′k′m,
cosine(segijkm, segi′j′k′m) ≥ tedge). Every
fully connected subgraph (clique) is a candidate scu
whose size is the number of nodes, which has a
maximum of n.

3. The attraction score of an scuz,AS(scuz) =
1

(|scu
z|

2 )

∑
segijkm,segi′j′k′m∈scuz ,segijkm 6=segi′j′k′m′

cosine(segijkm, segi′j′k′m′) if z > 1, else = 1.

4. A candidate pyramid P is a set of equivalence classes
SCUx that is a covering of all sentences in R (mean-
ing only one segmentation per sentence belongs to
any P ), ∀ x ∈ [1, n] : (∃ SCUx ∈ P ) →
(x ∈ [1, n],∀scuz ∈ SCUx, x = z). An
SCUx has an attraction class score AC(SCUx) =

1
|SCUx|

∑
scuz∈SCUx AS(SCUz).

5. Finally, a pyramid P has an attraction scoreAP(P ) =∑
SCUx∈P AS(SCUx).

6. The optimal pyramid(R) = P that maximizes AP .

Figure 5: Formal specification of EDUA’s input graph
G consisting of all segments from all segmentations
of reference summary sentences (item 2), the objec-
tive (item 6), and three scores for defining the objective
function that are assigned to candidate SCUs (item 3),
sets of SCUs of the same weight (item 4), and a candi-
date pyramid (item 5).

three tasks by a large margin. We speculate this
results from two factors. The lower dimension-
ality of WTMF vectors compared to ELMo or
USE-DAN leads to higher maximum cosine val-
ues, thus better contrast between similar and dis-
similar pairs. WTMF differs from similar matrix
reduction methods in assigning a small weight to
non-context words, which improves robustness for
short phrases (fewer context words) Guo and Diab
(2012). The authors also claimed that a train-
ing corpus largely consisting of definitional state-
ments leads to co-occurrence data that is less noisy
than sentences found in the wild.

4.3 EDUA

EDUA (Emergent Discovery of Units of Attrac-
tion) is a restricted set partition algorithm. It con-
structs an optimal pyramid to achieve the high-
est attraction (semantic similarity of segments) in
all SCUs. Figure 4 schematically represents the
input graph to EDUA (see also item 1 in Fig-
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ure 5), whose nodes consist of the segment vec-
tors described in the preceding section, and whose
edges connect segments from different summaries
whose cosine similarity ≥ tedge.8 A candidate
SCU is a fully connected subgraph (clique; item 2
in Figure 5). Every candidate SCU has an attrac-
tion score AS equal to the average of the edge
scores (item 3 in Figure 5). A candidate pyra-
mid is a set of SCUs that constitute a covering
of all the sentences in the input reference sum-
maries, with all segments for a given sentence
coming from only one of its segmentations. The
SCU weights for a pyramid, which are in [1, n] for
n reference summaries, form a partition over its
segments, and each equivalence class (all SCUs of
the same weight) has a score AC that is the aver-
age of its SCU scores (item 4 in Figure 5). The
score for a candidate pyramid AP is the sum of
itsAC scores (item 5 in Figure 5). We use the sum
rather than the average forAP to favor the equiva-
lence classes for higher weight SCUs. The optimal
pyramid maximizes AP (item 6 in Figure 5).

EDUA has two implementations. EDUA-C im-
plements a complete solution based on depth first
search (DFS) of candidate SCUs that guarantees
the global optimum (max AP). EDUA-G is a
greedy approximation.9

4.4 EDUA-C

EDUA-C constructs an adjacency list that for each
clique (candidate SCU) in the input graph, identi-
fies all the other SCUs that satisfy two constraints:
1) for any given sentence, all SCUs reference the
same segmentation; 2) all segments in all SCUs
are distinct. DFS search proceeds through the ad-
jacency list, ordering the SCUs by weight, until a
path is found through all SCUs that meets the con-
straints. The solution has the highestAP , or in the
case of ties, the path found first.

Figure 6 illustrates a toy EDUA-C DFS tree.
Each node depicts a candidate SCU clique, la-
belled by the number of nodes in the clique (SCU
weight). No child node has a higher weight than
its parent nodes. A child node is added to a search
path (solid nodes) if it violates no constraints.
Each of the six paths in the figure would receive
an AP score. After DFS finds all legal paths, the
one with highest AP is selected as the solution.

8The value of tedge is automatically set to the 83rd per-
centile of all pairwise cosine similarities in the input data.

9 See Appendix A for EDUA-G.

Figure 6: A directed Depth First Search tree for EDUA-
C. Nodes are cliques representing candidate SCUs, as
illustrated in Figure 4, labeled by their weights. Each
DFS path is a partition over one way to segment all
the input summaries and group all segments into SCUs.
The solution is the path with the highest AP .

4.5 Comparison of EDUA variants

Table 2 compares the distribution of SCUs by
weight of the two EDUA variants with manual
pyramids on the student summary dataset dis-
cussed in the next section. EDUA-C produces
a more skewed distribution than EDUA-G. Both
variants suffer from the coarse-grained segmen-
tation output from the decomposition parser, but
EDUA-G compensates by enforcing the Zipfian
distribution observed in most pyramids (see ap-
pendix A for details).

To evaluate speed, we tested both variants on
datasets with different numbers and lengths of
reference summaries. TAC 2010 reference sum-
maries (4 per topic) have on average 46 segments
each, and 321 candidate SCUs. Pyramid construc-
tion for TAC 2010 takes less than 10 seconds with
either variant on an Ubuntu machine with 4 In-
tel i5-6600 CPUs. EDUA-G’s greater efficiency
is more apparent for larger input. DUC 2005 has
seven reference summaries per topic, and longer
summaries than in TAC 2010; on five, EDUA-C
takes 211 seconds, while EDUA-G is still only
about ten seconds; on six, EDUA-C takes 20 min-
utes, compared to 5 minutes for EDUA-G.

Topic Variant All w=5 w=4 w=3 w ≤ 2

CC
Manual 34 0 3 5 26

G 31 1 2 4 24
C 39 1 1 1 36

AV
Manual 41 0 6 2 33

G 29 0 1 4 24
C 35 1 1 1 32

Table 2: Comparison of distributions of SCUs by
weight from pyramids produced manually, by two
EDUA variants (G and C), for the two topics CC and
AV.

409



4.6 WMIN Scoring

For automatic matching of phrases in evaluation
summaries to SCUs in a manual pyramid, Pas-
sonneau et al. (2018) found good performance
with WMIN (Sakai et al., 2003), a greedy max-
imum weighted independent set algorithm. Be-
cause EDUA pyramids are analogous to manual
pyramids, PyrEval also uses WMIN. The input
to WMIN is a graph where each node is a tuple
of a segmentation of an ESUM sentence with the
sets of SCUs that give the highest average cosine
similarity for that sentence. The node weight is
the sum of SCU weights. Graph edges enforce
constraints that only one segmentation for a sen-
tence can be selected, and each pyramid SCU can
be matched to an ESUM sentence at most once.
WMIN selects the nodes that result in the maxi-
mum sum of SCU weights for the ESUM.

Score computation is a function of the matched
SCUs, as illustrated by the ESUM in the lower
right of Figure 2. This ESUM has five SCUS: two
of weight 5, one of weight 4, one of weight 2, and
one that does not match the pyramid (zero weight).
The sum of SCU weights is 16. The original pyra-
mid score, a precision analog, normalizes the raw
sum by the maximum sum for the same SCU count
given by the pyramid – (3×5)+(2×4) – indicat-
ing the degree to which the summary SCUs are as
high weighted as possible. Following (Passonneau
et al., 2018), we use the term quality score. The
average number of SCUs in the reference sum-
maries is 15, whose maximum weight from this
pyramid is 53. Normalizing the raw sum by 53
gives a coverage score of 0.30 (a recall analog).
The harmonic mean of these scores gives an F
score analog referred to as a comprehensive score.

5 Student Summaries

As part of a collaboration with a researcher in edu-
cational technology, we collected a new data set of
student summaries that were assigned in fall 2018
to computer science freshman in a university in
the United Kingdom (Gao et al., 2019). Our im-
mediate goal is to see how PyrEval could support
instructors who assign summaries by providing
an automated assessment that could be later cor-
rected, but which provides scores and score justi-
fications. PyrEval scores correlate well with man-
ual pyramid scores on content, and the log output
it produces provides a clear trace of score compu-
tation (see below).

Topic Variant Raw/Cov. Qual. Comp. R2

AV EDUAG 0.66 0.48 0.56 0.61EDUAC 0.55 0.50 0.53

CC EDUAG 0.72 0.63 0.69 0.66EDUAC 0.55 0.48 0.51

Table 3: Pearson correlation of manual pyramid and
PyrEval on four scores (raw/coverage, quality and com-
prehensive) compared with ROUGE-2 on coverage.

The class was an academic skills class that in-
cluded instruction in academic reading and writ-
ing. For one assignment, they were instructed to
select one of two current technology topics (three
readings per topic), then to summarize it in 150
to 250 to words. The two topics are shown below,
with the number of student summaries per reading,
and average number of words.

1. Autonomous Vehicles (AV): 42 summaries,
average words = 237.76

2. Cryptocurrency (CC): 37 summaries, average
words = 245.84

To write reference summaries for both topics, the
instructor recruited advanced students who had
done well in her academic skills class in previous
years. Three trained annotators applied manual
pyramid annotation to the student summaries. As
noted in section 2, pyramid annotation is highly re-
liable. Annotations of the student summaries were
performed in two passes by different annotators.

Table 3 reports the correlation between the man-
ual pyramid scores and the PyrEval scores on the
two sets of student summaries. For both AV and
CC, EDUA-G performs better than EDUA-C and
ROUGE-2, the best ROUGE variant on TAC10
(see below), and ROUGE-2 performs better than
EDUA-C. We attribute the lower correlations on
the quality score, and the lower performance on
this dataset compared to WIM (see Table 1), to the
greater challenges of the new dataset. WIM stu-
dents read a single, middle school text, and aver-
age summmary length was 109.02 words. For the
new dataset, students read three advanced texts,
and produced summaries that were over twice the
length (see above). Error analysis shows complex
sentence structure for the AV and CC data, with
many constructions such as conjunctions and lists,
that the decomposition parser cannot handle. As
noted above, EDUA-G compensates due to a Zip-
fian constraint on the pyramid shape.

Figure 1 compares a PyrEval SCU with a
manual one for the cryptocurrency topic, and
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Single PyrEval SCU (W=3) about the relation of “car accidents” to “insurance cost”
RSUM1 Also, as most collisions are due to human error, costs of insurance for self driving cars could fall

by up to <NUM>.
RSUM2 The cars themselves would also reduce insurance premiums; <NUM> percent of road accidents are

caused by human error
RSUM3 Shankleman does well to balance out the positives such as lower insurance , reduced traffic , savings on

mechanical costs and lower chance of road accidents .

Single manual SCU (W=4) on “high car accidents” Single manual SCU (W=4) on “lower insurance”
RSUM1 Also, as most collisions are due to human costs of insurance for self-driving cars could fall by

error up to 50%
RSUM2 90 percent of road accidents are caused by human The cars themselves would also reduce insurance

error premiums
RSUM3 . . . lower chance of road accidents . . . . . . lower insurance . . .
RSUM4 . . . he claims that over 90 percent of road traffic this would result in lower insurance premium for

accidents occur as a result of human error owners of autonomous vehicles by up to 50 percent.

Student IDs Segments correctly matching this PyrEval SCU to students’ summaries (from PyrEval log output)
A The insurance industry is also going to experience great changes as the director insurer of AXA

SA explains that more than <NUM> percent of road accidents are caused by human error.
B as <NUM> of the accidents are caused by human errors, also reducing the number of human

drivers will contribute to cheap insurance premiums and efficient transport
C Shankleman explains how problems with modern day transport such as high crash statistics and

extortionate insurance costs will be eradicated with such computing capabilities.

Figure 7: Alignment of an PyrEval SCU of weight 3 to segments from student summaries on autonomous vehicle.

also illustrates issues that might explain the rela-
tively poorer performance of ROUGE. We show a
phrase that both the manual annotator and PyrEval
matched to the SCU from one of the student sum-
maries, where the student used near synonyms
for terms in the articles and reference summaries:
craftmanship exhibition for art gallery, and inn for
hotel. ROUGE cannot match synonyms, and does
not distinguish differences in content importance.

Figure 7 shows an excerpt from PyrEval’s log
output on autonomous vehicle to illustrate the
alignment of an SCU to three student summaries
and comparison to two manual SCUs.10 The
PyrEval SCU captures a causal relation between
“car accidents due to human error” and “lower in-
surance costs.” The two manual SCUs, however,
show that the human annotators split this content
into two SCUs, because the content is expressed
in distinct clauses in RSUM1 and RSUM2. The
same content is supported by the implicit con-
texts for the shorter RSUM3 contributing phrases.
The RSUM4 contributor in the manual SCU about
“lower insurance” illustrates another issue that
PyrEval preprocessing cannot handle: resolution
of the deictic pronoun subject in ”this would re-
sult . . . ”.

10 Preprocessing replaces numeric character strings with
tags.

6 TAC 2010 Summaries

NIST summarization challenges dealt exclusively
with news, which is also the most prevalent genre
for automated summarizers in our survey of 2013-
2018 ACL publications (23/39 summarizers; see
above). To evaluate ROUGE, NIST used two
human gold standards in yearly challenges from
2005 through 2011, one of which was manual
pyramid. Annotation was performed by volunteers
among the challenge participants, using guidelines
developed for DUC 2006.11 In this section, we
apply a method NIST helped develop to evaluate
ROUGE against manual pyramid in an evaluation
of PyrEval against manual pyramid. We selected
TAC 2010 because summarizer performance was
less good in the earlier years.

TAC 2010 had two 100-word summarization
tasks on 10 documents for 46 topics. Task A sum-
marization was guided by a query. Task B was
an update to A, based on additional input. On in-
spection of the 92 pyramids (46 each for Tasks
A and B), we found that roughly 27% had poor
quality pyramids that did not follow the guidelines
mentioned above. We assembled a team of five
people familiar with manual pyramid to manually
redo the twelve pyramids that were independently
identified as the lowest quality.12

Tests of the correlation of human scores as-
11http://www1.cs.columbia.edu/˜becky/

DUC2006/2006-pyramid-guidelines.html;
we followed these guidelines for annotating the student
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System Task A Task B
Mean Acc. (sdev) 95% CI Acc. on 46 (delta) Mean Acc. (sdev) 95% CI Acc. on 46

R1 0.70 (0.04) (0.69, 0.71) 0.73 (0.03) 0.61 (0.04) (0.60, 0.62) 0.69 (0.08)
R2 0.72 (0.03) (0.72, 0.73) 0.80 (0.08) 0.70 (0.05) (0.69, 0.71) 0.78 (0.08)
EDUA-C 0.57 (0.04) (0.57, 0.58) 0.65 (0.08) 0.56 (0.05) (0.55, 0.57) 0.62 (0.06)
EDUA-G 0.57 (0.03) (0.56, 0.57) 0.60 (0.04) 0.60 (0.03) (0.59, 0.60) 0.63 (0.04)

Table 4: Mean accuracy, standard deviation and 95% confidence intervals on TAC 2010 Wilcoxon results for
ROUGE-1, ROUGE-2 and PyrEval, using 100 bootstrapped samples of 41 of the 46 topics.

signed to automated summaries with ROUGE (and
other automated metrics) were found to be unreli-
able, because of high score variance resulting as
much from properties of the input texts as from
differences in summarization systems (Nenkova,
2005; Nenkova and Louis, 2008). Analyses of
over a decade of NIST data from automated sum-
marizers that evaluate ROUGE against manual
pyramid and another manual score led to a solution
to this problem (Rankel et al., 2013; Owczarzak
et al., 2012a,b; Rankel et al., 2011). The solu-
tion is to use Wilcoxon signed rank tests, so that
pairs of systems are compared on matched input
in a way that tests for statistical significance. The
outcome is either that one of the systems is signif-
icantly better than the other, or that the difference
between them is not statistically significant. To
determine if the automated metric accurately re-
flects the gold standard scores, the same Wilcoxon
tests are performed using the manually assigned
scores on all pairs of systems, matching each pair
on the same inputs. A given automated metric is
then compared to the human gold standard to de-
termine how accurately the automated metric leads
to the same set of significant differences between
all pairs of systems.

Table 4 presents bootstrapped accuracy results
for ROUGE and PyrEval using 41 topics per boot-
strap sample, along with absolute accuracy on all
46 topics. Each selection of 41 topics gives a gold
standard set of system differences against which to
compare a given metric. ROUGE 2 has the highest
average accuracy on both Task A and B. ROUGE
1 performs nearly as well on Task A. PyrEval per-
forms less well on average accuracy for all tasks,
but similarly to ROUGE 1 in Task B. ROUGE-2
has greater sensitivity to topics, as shown by the
higher deltas between the bootstrapped accuracy
on 41 topics versus the accuracy on all 46. The
differences in Table 4 between the bootstrapped

summaries.
12We plan to ask NIST if we can make this data available

through them.

averages across 41 topics, and the accuracy scores
on all 46 topics, confirms the sensitivity of eval-
uation results to topics noted in (Nenkova, 2005;
Nenkova and Louis, 2008).

7 Conclusion

PyrEval outperforms previous automated pyramid
methods in accuracy, efficiency, score normaliza-
tion, and interpretability. It correlates with man-
ual pyramid better than ROUGE on a new dataset
of student summaries, and produces output that
helps justify the scores (similar to the examples
for Figures 1 and 7). While it does not perform
as well as ROUGE on extractive summarization,
we speculate it would outperform ROUGE on ab-
stractive summarizers. It relies on EDUA, a novel
restricted set partition algorithm, that expects se-
mantic vectors of sentence segments as input. The
current rule-based method that identifies sentence
substrings (the decomposition parser) is limited
by the output of the constituency and dependency
parsers it relies on. We are currently working on
a neural architecture that simultaneously identi-
fies simple clauses and produces semantic repre-
sentations that could provide better input for both
EDUA and WMIN, and thus improve PyrEval.
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analytic scoring rubrics in the automatic assessment
of college-level summary writing tasks in l2. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 181–186.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.
A simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations (ICLR 2017).

Ann L. Brown and Jeanne D. Day. 1983. Macrorules
for summarizing texts: The development of exper-
tise. Journal of Verbal Learning and Verbal Behav-
ior, 22:1–14.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Jackie Chi Kit Cheung and Gerald Penn. 2013. To-
wards robust abstractive multi-document summa-
rization: A caseframe analysis of centrality and do-
main. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1233–1242. Associa-
tion for Computational Linguistics.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ
Newman. 2009. Power-law distributions in empiri-
cal data. SIAM review, 51(4):661–703.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth
workshop on statistical machine translation (ACL),
pages 376–380, Baltimore, MD.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Teun A. van Dijk and Walter Kintsch. 1977. Cognitive
psychology and discourse: Recalling and summariz-
ing stories. In W. U. Dressier, editor, Trends in text-
linguistics, pages 61–80. De Gruyter, New York.

Yanjun Gao, Alex Driban, Brennan Xavier McManus,
Elena Musi, Patricia Davies, Smaranda Muresan,
and Rebecca J Passonneau. 2019. Rubric relia-
bility and annotation of content and argument in
source-based argument essays. In Proceedings of
the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 507–
518.

Libby Gerard, Marcia C Linn, and Jacquie Madhok.
2016. Examining the impacts of annotation and
automated guidance on essay revision and science
learning. In C. K. Looi, J. L. Polman, U. Cress, and
P. Reimann, editors, Transforming Learning, Em-
powering Learners: The International Conference
of the Learning Sciences (ICLS) 2016. Singapore:
International Society of the Learning Sciences.

Libby F Gerard and Marcia C Linn. 2016. Using au-
tomated scores of student essays to support teacher
guidance in classroom inquiry. Journal of Science
Teacher Education, 27(1):111–129.

Steve Graham and Dolores Perin. 2007. A meta-
analysis of writing instruction for adolescent
students. Journal of Educational Psychology,
99(3):445–476.

Yvette Graham. 2015. Re-evaluating automatic sum-
marization with BLEU and 192 shades of ROUGE.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
128–137, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2018. Soft layer-specific multi-task summarization
with entailment and question generation. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 687–697. Association for Computa-
tional Linguistics.

Weiwei Guo and Mona Diab. 2012. Modeling sen-
tences in the latent space. In Proceedings of the 50th
ACL, pages 864–872.

Hans van Halteren and Simone Teufel. 2003. Ex-
amining the consensus between human summaries:
Initial experiments with factoid analysis. In Pro-
ceedings of the HLT-NAACL 2003 Workshop on Text
Summarization, pages 57–64. Association for Com-
putational Linguistics.

Aaron Harnly, Ani Nenkova, Rebecca J. Passonneau,
and Owen Rambow. 2005. Automation of summary
evaluation by the pyramid method. In Proceedings
of the Conference of Recent Advances in Natural
Language Processing (RANLP), pages 226–232.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
132–141. Association for Computational Linguis-
tics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
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A EDUA-G

EDUA-G (Greedy) is a greedy approximation to
EDUA-C with a backtracking algorithm adjusting
the allocation of candidate SCUs, and enforcing
the constraints. In this appendix, we use the same
notation as in section 4.3. Instead of finding the
solution globally with maximum AP across all
possible pyramids, EDUA-G works on achieving
the maximum AS for each set of SCUs of a given
size locally, starting with the set Cn with highest
weight (number of nodes per subgraph c), then the
rest in descending order. In addition to the con-
straints 1 and 2 in EDUA-C (mentioned in sec-
tion 4.4), EDUA-G has a capacity constraint for
each set Cr during search, limiting the number of
SCUs committed to the class. This constraint is
determined by the length of all the reference sum-
maries and exploits an empirical observation of
pyramids: that SCUs have a Zipfian distribution
of frequency across reference summaries: a few
have the highest weight, and for each lower weight
there are more in number, with a very long tail of
SCUs of weight 1.

To enforce the capacity constraint during
search, we define the maximum number of SCUs
yn of each equivalence class Cn as:

yn = α

(
1

n

)β
(1)

where n is the index of the equivalence class, α is
a constant related to the total number of segments
from all reference summaries, and β is a scaling
parameter (Clauset et al., 2009). Thus in addition
to tedge, EDUA-G has the hyperparameters α and
β. The capacities of the equivalence classes are
monotone increasing as n decreases:

|Cn| ≤ |Cn−1| (2)

Summing over |Cn| gives the size of the pyramid:

N∑

i

|Cn| ≤
N∑

i

yi (3)

Algorithm 1 presents EDUA-G.

Initialization Similar to EDUA-C, a segment
pool SP = SEGS(R1) ∪ . . . ∪ SEGS(Rn) is
first constructed from all the reference summaries
to store segments and two status flags. The pool
is accessible globally. For every segment segijkm,
two status flags are set:

Algorithm 1: EDUA-G
Data: Number of reference summaries n; a list CU of

candidate SCUs ordered by weight r where
1 ≤ r ≤ n, then by attraction score AS(CUr);
capacity of each equivalence class y1 . . .yn by
formula 1; a segment pool SP , residuals L1

Result: Pyramid P with equivalence classes C1 . . . Cn

1 Initialize r = n,
2 Cr = ∅, P = ∅, Dr as empty stack,
3 while (r > 1) ∧ (|Cr| ≤ yr) do
4 push all candidate CUr selected from CU into Dr

sorted by attraction score in ascending order ;
5 while Dr is not empty do
6 pop e from Dr with maximum AS;
7 if notConflict(Cr, e), and ∀ segijkm ∈ e

segijkm.commit == True or
segijkm.commit == NotV alid, and
segijkm.used == False then

8 Commit(Cr, e, SP ) ;
9 end

10 end
11 if P fails to meet any of the constraints then
12 BackTrack(Cr, yr, Cr+1, P, SP )
13 else
14 P ← P ∪ Cr;
15 end
16 r ← r − 1;
17 Initialize new stack Dr and repeat line 3
18 end
19 foreach segsijkm ∈ L1 do
20 if segsijkm.commit == True or

segsijkm.commit == NotV alid then
21 C1 ← C1 ∪ segsijkm;
22 segsijk∗.commit = True in SP ;
23 end
24 end
25 P ← P ∪ C1

1. segmentation status, denoted as
segijkm.commit: for all seg ∈ SP ,
seg.commitwill be initialized asNotV alid;
during EDUA-G, if a sentence is first used
by a segmentation segijk, all segments
segijk∗.commit are set to True, and all other
segijk′∗ from this sentence segij are set to as
False

2. segment status, denoted as segijkm.used:
when initialized, segijkm.used is set to False;
if segment segijkm is used in an SCU, the sta-
tus segijkm.used is set to True

A graph G is constructed from all segments. A
list of candidate SCUs (fully connected subgraph)
with weights r from n to 2 is exhaustively ex-
tracted from G. All the leftover segments with
weight as 1 are stored as residuals denote as L1,
at default sorted by the index.

Allocation The allocation process proceeds top-
down, iterating over descending values of r from
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Algorithm 2: BackTrack
Input: Current set Cr that fails constraints, its size

constraint yr , equivalence class Cr+1, current
result P , segment pool SP

Result: Adjusted pyramid P with equivalence classes
C1 . . . Cn

1 Initialize lr+1←Cr+1, lr = ∅ ;
2 while |Cr| ≤ yr do
3 Sort lr + 1 by AS in ascending order;
4 pop e′ from lr + 1 ;
5 decompose e′ into CUr where

CUr = {CUr1, . . . , CUr(r+1
r )} ;

6 lr ← lr ∪ CUr ;
7 foreach e ∈ lr do
8 if notConflict(Cr, e), ∀ segijkm ∈ e

segijkm.commit == True or
segijkm.commit == NotV alid, and
segijkm.used == False then

9 Commit(Cr, e, SP ) ;
10 end
11 end
12 Update P with new Cr;
13 Update Cr+1 by removing all CUr+1s that have

overlapping segments with SCUs in Cr ;
14 Update P with new Cr+1, reset segment and

segmentation status in SP ;
15 if P fails to meet any of the constraints then
16 BackTrack(Cr+1, yr+1,Cr+1+1,P , SP )
17 end
18 Break ;
19 end
20

Algorithm 3: notConflict
Input: current set Cr , a candidate SCU e,

1 foreach segment segijkm ∈ e do
2 if ∃ c ∈ Cr where segijkm ∈ c then
3 return False
4 end
5 end
6 return True

n to 2. All candidate SCUs are ordered first by
weight, then by descending AS. Each set Cr is
filled with all candidate SCUs of size r, where
maximum AS(SCU r) is selected greedily, until
the capacity constraint is satisfied. Every SCU
committed to Cr requires the segment status to
be checked and updated. Then the residual seg-
ments are allocated to C1 as in EDUA-C if the sta-
tus of the segments permits. For 1 < r < n, if
the provisional pyramid violates any constraints,
backtracking considers a provisional revision of
Cr+1 based on reallocating all the segments in
each subset of Cr+1 of size q, for q from 1 to the
size of Cr+1, considering reallocations in order of
descending values of AP . The algorithm termi-
nates when all the constraints are satisfied, no seg-
ments remain whose segmentation status is True

Algorithm 4: Commit
Input: current set Cr , a candidate SCU e, segment pool

SP
1 Cr ← Cr ∪ e ;
2 foreach segijkm ∈ e do
3 Set segijkm.used = True in SP ;
4 Set segijkm.commit = True in SP ;
5 end

and whose segment status is False.

Backtracking The backtracking algorithm pro-
ceeds bottom-up, from the current set Cr to Cn.
Recall from section 4.3, every pair of segments in
an SCU has an edge ≥ tedge; therefore an SCU
with r + 1 contributors can be decomposed into(
r+1
r

)
SCUs with r contributors. We utilize this

property to ensure every set Cr satisfies the con-
straints. During the emergent search and alloca-
tion of SCUs, if a set Cr does not meet the ca-
pacity constraint, the backtracking process will
be initiated for re-allocation by re-using the seg-
ments committed to SCUs in Cr+1, to compose
new SCUs in Cr. As shown in Algorithm 2, while
the allocation process selects SCUs with maxi-
mum attraction scores greedily, the backtracking
takes a conservative approach of re-doing the com-
mit decision by decomposing one SCU at a time
in Cr+1 with the least AS(SCU r), and compos-
ing new SCUs with weight r for Cr. It proceeds
recursively from r to n until the resulting P satis-
fies the constraints. This is because every SCU in
Cr+1 has higher importance than in Cr, and this
minimizes the impact of the re-allocation step on
AP . The backtracking algorithm terminates after
all the constraints are satisfied.

B Grid Search on Hyperparameters

Grid search was used to tune the EDUA-G hyper-
parameters. On DUC 2005 data, we used α in the
range [|seg|+10,|seg|+50] where |seg| is the num-
ber of input segments, and β ∈ [1, 3]. To set tedge,
we compute pairwise similarities of all segment
pairs from different summaries, and take tedge as
the value at percentile N , for N ∈ [60, 87]. The
performance metric was correlation with manual
pyramid on individual summarization tasks.

Table 5 of ANOVA on the hyperparameters
shows that β and tedge have strong impact, while
α does not (we select α = 10). A contour plot
of all combinations of β and tedge (Figure 8) gives
two regions of high correlation: β ∈ [2.5, 3], and
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Figure 8: Contour plot for score correlations with β
(X-axis) and tedge (Y-axis).

Parameters DF F-value P-value
α 4 0.31 0.872
β 4 104.31 0.000
tedge 11 6.56 0.000

Table 5: One-way ANOVA for hyperparameters, with
degrees of freedom (DF), F value and P-value (signifi-
cance level α=0.05, sample size N=300).

tedge ∈ [60, 70], or [80, 87]. Higher tedge yields
fewer edges in the graph, so for efficiency, we se-
lect β = 2.5, and N = 83. (Depending on the
dataset this corresponds to cosine similarities tedge
of about 0.15 to 0.35.)
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Abstract

Instructional videos get high-traffic on video
sharing platforms, and prior work suggests
that providing time-stamped, subtask annota-
tions (e.g., “heat the oil in the pan”) improves
user experiences. However, current automatic
annotation methods based on visual features
alone perform only slightly better than con-
stant prediction. Taking cues from prior work,
we show that we can improve performance
significantly by considering automatic speech
recognition (ASR) tokens as input. Further-
more, jointly modeling ASR tokens and visual
features results in higher performance com-
pared to training individually on either modal-
ity. We find that unstated background infor-
mation is better explained by visual features,
whereas fine-grained distinctions (e.g., “add
oil” vs. “add olive oil”) are disambiguated
more easily via ASR tokens.

1 Introduction

Instructional videos increasingly dominate user at-
tention on online video platforms. For example,
86% of YouTube users report using the platform
often to learn new things, and 70% of users report
using videos to solve problems related to work,
school, or hobbies (O’Neil-Hart, 2018).

Prior work in user experience has investigated
the best way of presenting instructional videos to
users. Kim et al. (2014), for example, compare
two options; first: presenting users with the video
alone, and second: presenting the video with an
additional structured representation, including a
timeline populated with task subgoals. Users in-
teracting with the structured video representation
reported higher satisfaction, and external judges
rated the work they completed using the videos
as having higher quality. Margulieux et al. (2012)
and Weir et al. (2015) similarly find that present-
ing explicit subgoals alongside how-to videos im-

...knob of ginger and cut 
off a little bit and then 

just zest it...

 Cut up ginger and grate into the bowl

Input:

Target:

...best quality olive oil 
I can find...

    Heat some olive oil in a sauce pan

Input:

Target:

... that's perfection in 
my book right there, 

that's...

    Put the dish on a plate and serve

Input:

Target:

Figure 1: Illustration of a multimodal dense instruc-
tional video captioning task. Models are given access
to both video frames and ASR tokens, and must gen-
erate a recipe instruction step for each video segment.
The speaker in the video sometimes (but not always)
references literal objects and actions.

proves user experiences. Thus, presenting instruc-
tional videos with additional structured annota-
tions is likely to benefit users.

These studies rely on human annotation of time-
stamped subtask goals, e.g., timed captions cre-
ated through crowdsourcing. However, human-
in-the-loop annotation is infeasible to deploy for
popular video sharing platforms like YouTube that
receive hundreds of hours of uploads per minute.
In this work, we address the task of automatically
producing captions for instructional videos at the
level of video segments. Ideally, generated cap-
tions provide a literal, imperative description of
the procedural step occurring for a given video
segment, e.g., in the cooking context we consider,
“add the oil to the pan.”

Producing segment-level captions is a sub-task
of dense video captioning, where prior work has
mostly focused on visual-only models. Dense
captioning is a difficult task, particularly in the
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instructional video domain, as fine-grained dis-
tinctions may be difficult or impossible to make
with visual features alone. Visual information
can be ambiguous (e.g., distinguishing between
“olive oil” vs. “vegetable oil”) or incomplete
(e.g., preparation steps may occur off-camera).
In our study, a first important finding is that,
for the dataset considered, current state-of-the-art,
visual-features–only models only slightly outper-
form a constant prediction baseline, e.g., by 1.5
BLEU/METEOR points.

To improve performance in this difficult set-
ting, we consider the automatic speech recognition
(ASR) tokens generated by YouTube. These pub-
licly available tokens are an ASR model’s attempts
to map words spoken in videos into text. How-
ever, while a promising potential source for sig-
nal, it is not always trivial to transform even accu-
rate ASR into the desired imperative target: while
there are cases of clear correspondence between
the literal actions in the video and the ASR tokens,
in other cases, the mapping is imperfect (Fig. 1).
For example, when finishing a dish, a user says
“that’s perfection in my book right there” rather
than “put the dish on a plate and serve.” There
are also cases where no ASR tokens are available
at all. Despite these potential difficulties, previ-
ous work has demonstrated that ASR can be in-
formative in a variety of instructional video under-
standing tasks (Naim et al., 2014, 2015; Malmaud
et al., 2015; Sener et al., 2015; Alayrac et al., 2016;
Huang et al., 2017); though less work has fo-
cused on instructional caption generation, which
is known to be difficult and sensitive to input per-
turbations (Chen et al., 2018).

We find that incorporating ASR-token–based
features significantly improves performance over
visual-features–only models (e.g., CIDEr im-
proves 0.53 ⇒ 1.0, BLEU-4 improves 4.3 ⇒
8.5). We also show that combining ASR tokens
and visual features results in the highest perform-
ing models, suggesting that the modalities contain
complementary information.

We conclude by asking: what information is
captured by the visual features that is not cap-
tured by the ASR tokens (and vice versa)? Auxil-
iary experiments examining performance of mod-
els in predicting the presence/absence of individ-
ual word types suggest that visual signals are su-
perior for identifying unspoken, implicit aspects
of scenes; for instance, in order to mix ingredi-

ents, they must be placed in a bowl — and al-
though bowls are often visually present in the
scene, “bowl” is often not explicitly mentioned
by the speaker. Conversely, ASR features readily
disambiguate between fine-grained entities, e.g.,
“olive oil” vs.“vegetable oil”, a task that is dif-
ficult (and sometimes impossible) for visual fea-
tures alone.

2 Related Work

Narrated instructional videos. While several
works have matched audio and video signals in
an unconstrained setting (Arandjelovic and Zis-
serman, 2017; Tian et al., 2018), our work builds
upon previous efforts to utilize accompanying
speech signals to understand online instructional
videos, specifically. Several works focus on learn-
ing video-instruction alignments, and match a
fixed set of instructions to temporal video seg-
ments (Regneri et al., 2013; Naim et al., 2015;
Malmaud et al., 2015; Hendricks et al., 2017;
Kuehne et al., 2017). Another line of previous
work uses speech to extract and align language
fragments, e.g., verb-noun pairs, with instructional
videos (Gupta and Mooney, 2010; Motwani and
Mooney, 2012; Alayrac et al., 2016; Huang et al.,
2017, 2018; Hahn et al., 2018). Sener et al. (2015),
as part of their parsing pipeline, train a 3-gram lan-
guage model on segmented ASR token inputs to
produce recipe steps.
Dense Video Captioning. Recent work in com-
puter vision addresses dense video captioning (Kr-
ishna et al., 2017; Li et al., 2018; Wang et al.,
2018), a supervised task that involves (i) segment-
ing the input video, and, (ii) generating a natural
language description for each segment. Here, we
focus on the second subtask of generating descrip-
tions given a ground-truth segmentation; this set-
ting isolates the language generation part of the
modeling process.1 Most related to the present
work are several dense captioning approaches that
have been applied to instructional videos (Zhou
et al., 2018b,c). Zhou et al. (2018c) achieve state-
of-the-art performance on the dataset we consider;
their model is video-only, and combines a region
proposal network (Ren et al., 2015) and a Trans-
former (Vaswani et al., 2017) decoder.
Multimodal Video Captioning. Several works

1We find that state-of-the-art models perform poorly even
for just this subtask (see § 3.2), so we reserve the full task for
future work.
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have employed multimodal signals to caption the
MSR-VTT dataset (Xu et al., 2016), which con-
sists of 2K video clips from 20 general categories
(e.g., “news”, “sports”) with an average duration
of 10 seconds per clip. In particular, Ramanishka
et al. (2016); Xu et al. (2017); Hori et al. (2017);
Shen et al. (2017); Chuang et al. (2017); Hao et al.
(2018) all report small performance gains when
incorporating audio features on top of visual fea-
tures. However — we suspect that instructional
video domain is significantly different than MSR-
VTT (where the audio information does not nec-
essarily correspond to human speech), as we find
that ASR-only models significantly surpass the
state-of-the-art video model in our case. Palaskar
et al. (2019) and Shi et al. (2019), contemporane-
ous with the submission of the present work, also
examine ASR as a source of signal for generating
how-to video captions.

3 Dataset

We focus on YouCook2 (Zhou et al., 2018b),
the largest human-captioned dataset of instruc-
tional videos publicly available.2 It contains
2000 YouTube cooking videos, for a total of
176 hours, and spans 89 different recipes. Each
video averages at 5.26 minutes, and is annotated
with an average of 7.7 temporal segments (i.e.,
start/end points) corresponding to semantically
distinct recipe steps. Each segment is associated
with an imperative caption, e.g., “add the oil to the
pan”, for an average of 8.8 words per caption.

At the time of analysis (June 2018), over 25%
of the YouCook2 videos had been removed from
YouTube, and therefore we do not consider them.
As a result, all our experiments operate on a sub-
set of the YouCook2 data. While this makes direct
comparison with previous and future work more
difficult, our performance metrics can be viewed
as lower bounds, as they are trained on less data
compared to, e.g., (Zhou et al., 2018c). Unless
noted otherwise, our analyses are conducted over
1.4K videos and the 10.6K annotated segments
contained therein.

3.1 A Closer Look at ASR tokens

We collected the ASR tokens automatically gener-
ated by YouTube (available through the YouTube

2How2 (Sanabria et al., 2018) tackles the different task
of predicting video uploader-provided descriptions/captions,
which are not always appropriate summarizations.

Data API3 with trackKind = ASR), which are then
mapped to their temporally corresponding video
segments. We start by asking the following ques-
tions: How much narration do users provide for
instructional videos? And: can YouTube’s ASR
system detect that speech?

Not surprisingly, speakers in videos tend to be
more verbose than the annotated groundtruth cap-
tions: we find the length distribution of ASR to-
kens per segment to be roughly log-normal, with
mean/median length being 42/28 tokens respec-
tively (compared to a mean of 9 tokens/segment
for captions). Over the 10.6K available seg-
ments, only 1.6% of them have zero associated to-
kens. Furthermore, based on automatic language
identification provided by the YouTube API and
some manual verification, we estimated that less
than 1% of videos contain completely non-English
speech (but we do not discard them from our ex-
periments).

We also investigate the words-per-minute
(WPM) ratio, based on the video segment length.
The mean value of 134 WPM is slightly lower
than, but comparable to, previously reported fig-
ures of English speaking rates (Yuan et al., 2006),
which indicates that, for this set of video seg-
ments, words are being detected at rates compa-
rable to everyday English speech.

3.2 A Closer Look at the Generation Task

To better understand the generation task, we com-
puted lower and upper bounds for generation per-
formance using a constant-prediction baseline and
human performance, respectively.
Lower bound: constant. For all segments at test
time, we predict “heat some oil in a pan and add
salt and pepper to the pan and stir.” This sentence
is constructed by examining the most common n-
grams in the corpus and pasting them together.
Upper bound: human estimate. We conducted a
small-scale experiment to estimate human perfor-
mance for the segment-level captioning task. Two
of the authors of this paper, after being trained
on segment-level captions from three videos, at-
tempted to mirror that style of annotation for the
segments of 20 randomly sampled videos, to-
talling over 140 segment annotations each.4 Both
human annotators report low-confidence with the

3https://developers.google.comyoutube/v3/docs/captions
4These preliminary experiments are not meant to provide

a definitive, exact measure of inter-annotator agreement.
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task, in particular, they found it difficult to main-
tain a consistent level of specificity in terms of
how many factual details to include (e.g., “mix to-
gether” vs. “mix the peppers and mushrooms to-
gether.”)
Results: We compute corpus-level performance
statistics using four standard generation evaluation
metrics: ROUGE-L (Lin, 2004), CIDEr (Vedantam
et al., 2015), BLEU-4 (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005) (higher is bet-
ter in all cases).

Note that our evaluation is micro-averaged at
the segment level, and differs slightly from prior
work on this dataset, which has mostly reported
metrics macro-averaged at the video level. We
switched the evaluation because some metrics like
BLEU-4 exhibit undesirable sparsity artifacts when
macro-averaging, e.g., any video without a correct
4-gram gets a zero BLEU score, even if there are
many 1/2/3-grams correct. Segment-level averag-
ing, the standard evaluation practice in fields like
machine translation, is insensitive to this sparsity
concern, and (we believe) provides a more robust
perspective on performance.

BLEU-4 METEOR ROUGE-L CIDEr

Constant Prediction 2.70 10.3 21.7 .15

Zhou et al. (2018c) 3.84 11.6 27.4 .38
Sun et al. (2019b) 4.07 11.0 27.5 .50
Sun et al. (2019a) 4.31 11.9 29.5 .53

Human Estimate 15.2 25.9 45.1 3.8

Table 1: The performance of several state-of-the-art,
video-only models, with lower (constant prediction)
and upper (human estimate) bounds.

This comparison highlights the gap that remains
between the simplest possible baseline, several
computer vision based models, and (roughly) how
well humans perform at this task. Given that Sun
et al. (2019a) is a highly tuned computer vision
model transfer learned from a corpus of over 300K
cooking videos, from the perspective of building
video captioning systems in practice, we suspect
that incorporating additional modalities like ASR
is more likely to result in performance gains ver-
sus building better computer vision models.

4 Models

In addition to the constant prediction baseline, we
explore a series of ASR-based baseline methods:
ASR as the Caption (ASC) This baseline returns

the test-time ASR token sequence as the caption.
While the result is not a coherent, imperative step,
performance of this method offers insight into the
extent of word overlap between the ASR sequence
and the target groundtruth, as measured by the
captioning metrics.
Filtered ASR (FASC) Given that the ASR to-
ken sequences are much longer than groundtruth
captions (§ 3.1), the performance of ASC incurs
a length (or precision-based) penalty for several
metrics. The FASC baseline strengthens ASC
by removing word types that are less likely to
appear in groundtruth captions, e.g., “ah”, “he”,
“hello,” or “wish”. Specifically, we only keep
words with high P (w | GT )

P (w | ASR) values, i.e., words that
would be indicative of the groundtruth class if we
were to build a Naive-Bayes classifier with add-
one smoothing; probabilities are computed only
over the training set to reduce the risk of over-
fitting. This baseline produces outputs that are
shorter compared to ASC, but it is unlikely to yield
fluent, readable text.
ASR-based Retrieval (RET) This retrieval base-
line memorizes the recipe steps in the training set,
and represents them each as tf-idf vectors. At test-
time, the ASR sequence is converted into a tf-idf
vector and compared to each training-set caption
via cosine similarity.5 The training caption that
is most similar to the test-time ASR according to
this metric is returned as the “generated” caption.
Note that, although a memorization-based tech-
nique, this baseline method produces de-facto cap-
tions as outputs.

4.1 Transformer-based Neural Models

We explore neural encoder-decoder models based
on Transformer Networks (Vaswani et al., 2017).
In contrast to RNNs, Transformers abandon recur-
rence in favor of a mix of different types of feed-
forward layers, e.g., in the case of the Transformer
decoder, self-attention layers, cross-attention lay-
ers (attending to the encoder outputs), and fully
connected feed-forward layers. We explore two
variants of the Transformer, corresponding to dif-
ferent hypotheses about what information might
be useful for captioning instructional videos.
ASR Transformer (AT) This model learns to map
ASR-token sequences directly to captions using

5We tried several variants of this method, e.g., comparing
test ASR to train ASR, but found that comparing test ASR to
train captions performed the best.
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CNNEmbeddings

we will first 
slice...

Sampled FramesASR

Cook the tomatoes in the pan

CNN CNN

Transformer Encoder

Transformer Decoder

Figure 2: The AT+Video model. Both the encoder and
decoder layers perform cross-modal attention.

a standard sequence-to-sequence Transformer ar-
chitecture. The model’s parameters are optimized
to maximize the probability of the ground-truth
instructions, conditioned on the input ASR se-
quences.
Multimodal model (AT+Video) We incorporate
video features into the ASR transformer (Fig 2).
For ease of comparison with prior and future
work, we use features extracted from ResNet34
(He et al., 2016) pretrained on the ImageNet clas-
sification task; these features are provided in the
YouCook2 data release. Each video is initially
uniformly sampled at 512 frames, with an average
of 30 frames per captioned-segment.

To represent each video segment, first, k frames
are randomly sampled with replacement. The
sampled frames are temporally sorted to pre-
serve ordering information, and their correspond-
ing ResNet34 feature vectors are projected to
the Transformer encoder hidden dimension via a
width-1 1D convolution. We use k = 10 for all
our experiments. The encoder self-attention layers
perform cross-modal attention operations between
the visual features and the ASR-token–based fea-
tures. For each output token, the decoder attends
to previously predicted tokens, and encoder out-
puts for all input frames / ASR tokens.

5 Experiments

We perform 10-fold cross-validation with ran-
domly sampled 80/10/10 train/dev/test splits (split
at the video-level), using the same splits for all
models. After discarding the videos that were
deleted at the time of data collection, each split

BLEU-4 METEOR ROUGE-L CIDEr

CNST 2.70 10.03 21.69 0.15
Sun et al. (2019a) 4.31 11.91 29.47 0.53

ASC 1.68 14.86 19.24 0.20
FASC 4.32 18.47 30.07 0.59
RET 5.68 14.29 28.06 0.80
AT 8.55 16.93 35.54 1.06

AT+Video 9.01 17.77 36.65 1.12

Table 2: Caption generation performance: AT+Video is
a multimodal model that adds visual frame features to
AT. A bolded value in a column indicates a statistically-
significant improvement, whereas an underline indi-
cates a statistical tie for best (p < .01).

contains roughly 1.1K training videos (averaging
8.3K training segments). We report mean perfor-
mance over these splits according to four standard
captioning accuracy metrics, introduced in §3.2.
ROUGE-L, CIDEr, BLEU-4, and METEOR. We per-
form both Wilcoxon signed-rank tests (Demšar,
2006) and two-sided corrected resampled t-tests
(Nadeau and Bengio, 2000) to estimate statistical
significance. To be conservative and reduce the
chance of Type I error, we take whichever p-value
is larger between these two tests.
Transformer-based model details. For each
cross-validation split, we use a batch size of
128, tie the Transformer model’s feed forward
and model dimensions dffn = dmodel, and opti-
mize regularized cross-entropy loss using Adam
(Kingma and Ba, 2015) with lr = .001. We
train models for 100K steps, storing checkpoint
files periodically. For each split, we train 8
model variants, conducting a grid search over
model dimension, number of encoder/decoder lay-
ers, and L2 regularization: we consider all model
parameter settings in (dmodel, Nlayer, λreg) ∈
{128, 256} × {2, 3} × {.0005, .001} for each
cross-validation split independently, and select the
highest performing, checkpointed model accord-
ing to ROUGE-L over the development set for that
fold. Transformer models are implemented us-
ing tensor2tensor (Vaswani et al., 2018) and
Tensorflow (Abadi et al., 2015). The vocab-
ulary (average size 800) is determined separately
using the training data for each cross-validation
split. Words are considered if they occur at least
5 times in the ground-truth of the current training
set.6 This leads to an OOV rate of ∼60% in the
input. We truncate inputs at 80 tokens (∼10-15%

6Different vocabulary creation schemes, e.g., sub-word
tokenization, led to small performance decreases.
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"so i just want to go ahead and 
remove all of this fat from our 

chicken... cut it into about one inch 
pieces so you want pieces"

cut the chicken into 
pieces

"... color them and then shape 
them … tongs so as not to burn 
yourself it goes with total tacos 

in a frying pan ...'"

"fattoush salad but you can add 
in cilantro and some other herbs 
if you prefer to do that instead of 

the parsley and one"

"out of the ball now we're going 
to cut it and divide it"

"get the colored variety the 
kashmiri variety is very good one 

and a half tablespoon of 
coriander"

"..."
[No ASR Detected]

Vi
de

o

prepare the tortillas 
and roll them using 

rolling pin

add chopped parsley 
to the mixture too cut the circle in half add chile powder place the chicken on 

the rice

cut the chicken into 
pieces

place the tortilla on 
the pan and roll

add cilantro to the 
salad

cut the dough into 
UNK pieces

add the coriander 
powder coriander... 

add the sauce to the 
pot

AS
R

Ta
rg

et
Pr

ed
.

Figure 3: Example generations from AT+Video in cases where it performs well, okay, and poorly.

of transcripts are truncated in this process). For
simplicity, decoding is done greedily in all cases.
Generation Experiment Results. Table 2 reports
the performance of each model. For unimodal
models, simple baselines like FASC (filtered ASR)
and RET (training-caption retrieval) outperform
the state-of-the-art video-only model of Sun et al.
(2019a), according to the four automatic evalua-
tion metrics. Overall, AT yields the best unimodal
performance. Combining ASR and visual signals
into a multimodal representation performs even
better: the AT+Video model tends to outperform
AT (and Sun et al. (2019a)), according to ROUGE-

L, CIDEr, and METEOR (p <.01). Since AT and
AT+Video have identical architectures and differ
only in the available inputs, this result provides
strong evidence that it is indeed the multimodal-
ity of AT+Video that leads to the (statistically sig-
nificant) performance gains over the strongest uni-
modal models. We present some output examples
in Fig. 3.

5.1 Diversity of Generated Captions

In addition to the automatic quality metrics, we
measure how diverse the generated caption are for
each model, using the following metrics: vocabu-
lary coverage (the percent of vocabulary that was
predicted at test-time by each algorithm at least
once); proportion not copied (the percent of gener-
ated captions that do not appear in the training set
verbatim); and output uniqueness (the percent of
generated captions that are unique). These metrics
are useful because they can highlight undesirable,
degenerate behavior for models.7 As an upper-
bound, we compute these metrics for the ground-
truth (GT) test-time targets. Note that even the

7For instance, the constant prediction baseline we con-
sider would score low in both vocab coverage and unique-
ness.

ground-truth targets do not achieve 100% in these
diversity metrics: for vocabulary coverage, not all
vocabulary items appear in the ground-truth cap-
tions for a given cross-validation split; similarly,
for proportion not copied/output uniqueness, be-
cause there are repeated captions in the label set.

Vocab
Cov.

Not
Copied

Unique30
%

65
%

10
0%

AT AT+Video GT

Figure 4: The multimodal model AT+Video produces
slightly more diverse captions than its unimodal coun-
terparts.

According to all metrics, AT+Video outputs are
slightly more diverse compared to the AT outputs
(Fig. 4). This observation suggests that the multi-
modal model is not simply exploiting a degeneracy
to achieve its performance improvements.

6 Complementarity of Video and ASR

We now turn to the question of why multimodal
models produce better captions: what type of sig-
nal does video contain that speech does not (and
vice versa)? Our initial idea was to quantita-
tively compare the captions generated by AT ver-
sus AT+Video; however, because the dataset is rel-
atively small, we were unable to make observa-
tions about the generated captions that were statis-
tically significant.8

8In general, making concrete statements about the causal
link between inputs and outputs of sequence-to-sequence
models is challenging, even in the text-to-text case, see
Alvarez-Melis and Jaakkola (2017).
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knead 97.8
nori 97.1
yeast 96.1
mozzarella 95.8
lettuce 95.3
pancake 94.7
wrapper 94.3
patty 93.4
dal 93.0
grill 92.9
pizza 92.9
oven 92.7
bake 92.3

(a) Easiest
(AUCµ,w)

4 43.8
bit 51.7
about 52.1
prepare 52.3
mixed 54.5
then 54.5
spoon 54.9
or 55.9
it 56.2
ready 56.7
3 57.1
few 58.3
more 58.5

(b) Hardest
(AUCµ,w)

fat 39.7
turn 36.4
sea 35.9
white 31.7
chilies 30.8
dried 30.6
beer 30.3
pancetta 30.0
mustard 29.8
spice 28.4
sliced 28.3
cinnamon 28.0
warm 27.8

(c) ASR Better
(AUC∆,w)

sandwich -18.0
stove -15.4
tuna -14.3
again -12.6
mince -11.2
wok -8.9
burger -8.8
pizza -8.4
serve -7.8
4 -6.6
mussels -6.6
tray -6.3
bowl -5.9

(d) Video Better
(AUC∆,w)

Figure 5: Per-word classification results using ASR and/or Video features. Each point in the scatterplot represents
a different word-type; x-coordinate values show how well a word is predicted by ASR-token features; y-coordinate
values show how well a word is predicted by video features. Tables (a)-(d) show word types that are easy, univer-
sally difficult, better-predicted-by-ASR, and better-predicted-by-video, respectively.

Instead, we examine properties of the ASR-
token–based and visual features directly. Follow-
ing a procedure inspired from (Lu et al., 2008;
Berg et al., 2012; Dai et al., 2018; Mahajan et al.,
2018), we consider the auxiliary task of predicting
presence/absence of unigrams in the ground truth
captions from features extracted from correspond-
ing segments. We train two unimodal classifiers,
one using ASR-token–based features and one us-
ing visual features, and measure their relative ca-
pacity to predict different word types; the goal is
to measure which word types are most-predictable
from the ASR tokens and, conversely, which ones
are most-predictable from the visual features.

For each segment, we predict the unigram dis-
tribution of its corresponding caption using a uni-
modal softmax classifier: for simplicity, we use
a 2-layer, residual deep averaging network (Iyyer
et al., 2015) for both the visual and ASR-based
classifier. We measure per-word-type performance
using AUC, which is word-frequency independent.

Specifically — for each word type w (e.g.,
w = beer) we measure how well w is pre-
dicted by the classifier based on ASR / spoken to-
kens AUCt,w (e.g., AUCt,beer = 98) and, conversely,
how well w is predicted by the visual classifier
AUCv,w (AUCv,beer = 68). For a given word type, we
measure its overall difficulty by averaging AUCt,w

and AUCv,w; we call this AUCµ,w (AUCµ,beer = 83).
Similarly, we measure the difference in difficulty
by subtracting AUCt,w and AUCv,w to give AUC∆,w

(AUC∆,beer = 30) with higher values indicating that
a word type is predicted better by the spoken-token
features compared to the visual features. We plot
AUCt,w versus AUCv,w for 382 words in Fig. 5 (re-
sults are averaged over 10 cross-val splits).
Absolute Performance. Points in the upper-right

quadrant of Fig. 5 represent words that are easy
for both visual and ASR-token–based features to
predict, whereas points in the lower-left represent
words that are more difficult. Specific ingredients,
e.g., “nori” and “mozzarella,” are often easy to de-
tect, as are actions closely associated with partic-
ular objects (e.g., “dough” is almost always the
object being “knead”-ed). Conversely, pronouns
(e.g., “it”) and conjunctions (e.g., “or”) are uni-
versally difficult to predict.
Visual vs. ASR-token–based features. In gen-
eral, ASR-token–based features carry greater pre-
dictive power, as evidenced by the skew towards
the bottom right in the scatterplot in Fig. 5. One
pattern in the cases where speech features perform
better (Fig. 5c) is that words are often modifiers,
e.g., white (pepper), sea (salt), dried (chilies),
olive (oil), etc. Indeed, small, detailed distinc-
tions may be often difficult to make from visual
features, e.g., “vegetable oil” and “olive oil” may
look identical in most YouTube videos.

Nonetheless, there are types better predicted by
video features (Fig. 5d). Often, these are cases
that require unstated, background knowledge, i.e.,
references to objects not explicitly stated by the
speaker(s). To quantify this observation, for each
word type we compute the likelihood that it is
stated by the speaker in the video, given that it
appears in the ground-truth caption, i.e., P (w ∈
ASR | w ∈ GT). Aside from trivial cases (e.g.,
words misspelled in the GT never appear in the
ASR), words that are often unstated include action
words (e.g., “place”, “crush”) and cookware (e.g.,
“pan”, “wok”, “pot”). Words that are often stated
include specific ingredients (e.g., “honey”, “co-
conut”, “ginger”). In contrast to word frequency
(which is uncorrelated with AUC∆,w, Spearman
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ρ ≈ 0), stated rate is correlated with AUC∆,w

(ρ = 0.44, p < .01).

7 Oracle Object Detection

The results in Table 2 indicate that, while adding
visual information yields statistically significant
improvements to the ASR-only model, the im-
provements are not large in magnitude. This
leaves open the question of whether (a) any vi-
sual information simply does not provide much
additional information on top of ASR, or (b) we
need better visual modeling. We take a first step
in addressing this question by experimenting with
an “oracle” object detector that provides perfect-
precision predictions.9 If even oracle object detec-
tion does not help, then the answer is more likely
(a) rather than (b) above.

As part of a YouCook2 data release, bounding
box annotations for selected objects in the recipe
text (Zhou et al., 2018a) were provided. Unfor-
tunately, while these could have served as an ora-
cle, the actual annotations are only available for a
small fraction of the data. Instead, we consider the
set of 62 object labels made available. We sim-
ulate a high-precision, oracle object detector by
identifying – per video segment – the overlap be-
tween (morphology-normalized) groundtruth cap-
tion mentions and the 62 object labels available.10

For instance, for the groundtruth caption “put the
mushrooms in the pan”, the oracle object detec-
tor yields “mushroom” and “pan”. 89% of seg-
ments receive at least one oracle object. The or-
acle object detections are then fed into the Trans-
former encoder (in random order), either by them-
selves (Oracle) or along with the ASR token se-
quence (AT+Oracle). We perform the same cross-
validation experiments as described in §5, and
report the average ROUGE-L (we observe similar
trends with other metrics):

AT AT+Video Oracle AT+Oracle

ROUGE-L 35.5 36.7 40.8 45.5

Because the AT+Oracle model achieves large
improvements over AT+Video, we suspect that
building higher-quality visual representations is a
promising avenue for future work.

9High-precision object detectors are gaining popularity in
the computer vision community because the training data is
easier to annotate, e.g., Krasin et al. (2017).

10This oracle is unlikely to be achievable, as it assumes
100% precision for the 62 objects considered (which also im-
plies modeling which objects to talk about, a non-trivial task
in itself (Berg et al., 2012)).
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Figure 6: The performance of the oracle methods in-
creases as they are given access to an increasing num-
ber of object types.

How weak of an oracle can still produce high
performance? Fig. 6 shows performances of mod-
els using subsets of the 62 objects (most frequent
10% of objects through 90%) over one cross-
validation fold. AT+Oracle gives better perfor-
mance than AT+Video by detecting just 6 object
types, and the oracle by-itself (which is only given
access to object sets) achieves comparable perfor-
mance to AT+Video with 30 object types. These
results suggest that, at least for this task, the Trans-
former decoder is likely not the main performance
bottleneck, as it is able to paste-together unordered
object detections into captions effectively.

8 Conclusion

In this work, we demonstrate the impact of incor-
porating both visual and ASR-token–based fea-
tures into instructional video captioning models.
Additional experiments investigate the comple-
mentarity of the visual and speech signals.

Our oracle experiments suggest that perfor-
mance bottlenecks likely derive from the input en-
coding, as the decoder is able to paste-together
even simple sets of object detections into high-
quality captions. Future work would thus be well-
suited to investigate better models of input data.
Given the small size of the dataset, transfer learn-
ing may prove fruitful, e.g., pre-training the en-
coder with an unsupervised, auxiliary task; work
contemporaneous with our submission from the
computer vision community suggests that trans-
fer learning indeed is a promising direction (Sun
et al., 2019b,a; Miech et al., 2019).

426



Acknowledgements. We would like to thank
Maria Antoniak, Nan Ding, Sebastian Goodman,
Jean Griffin, Fernando Pereira, Chen Sun, and the
anonymous reviewers for their helpful comments.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
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Abstract

Grounding referring expressions to objects in
an environment has traditionally been consid-
ered a one-off, ahistorical task. However,
in realistic applications of grounding, multi-
ple users will repeatedly refer to the same
set of objects. As a result, past referring ex-
pressions for objects can provide strong sig-
nals for grounding subsequent referring ex-
pressions. We therefore reframe the ground-
ing problem from the perspective of corefer-
ence detection and propose a neural network
that detects when two expressions are referring
to the same object. The network combines in-
formation from vision and past referring ex-
pressions to resolve which object is being re-
ferred to. Our experiments show that detecting
referring expression coreference is an effective
way to ground objects described by subtle vi-
sual properties, which standard visual ground-
ing models have difficulty capturing. We also
show the ability to detect object coreference
allows the grounding model to perform well
even when it encounters object categories not
seen in the training data.

1 Introduction

Grounding referring expressions to objects in an
environment is a key Artificial Intelligence chal-
lenge spanning computer vision and natural lan-
guage processing. Past work in referring expres-
sion grounding has focused on understanding the
ways a human might resolve ambiguity that arises
when multiple similar objects are in a scene –
for example, by referring to visual properties or
spatial relations (Nagaraja et al., 2016; Hu et al.,
2017). However, most previous work treats it as
an ahistorical task: a user is presented with an im-
age and a referring expression and only features
from the current referring expression are used to

∗Equal contribution.

Utterances from a User:
(1) The open text book.
(2) Page with a dark border and images of two people

at the bottom.
(3) The open book with typed pages.
(4) Pages of handwritten notes under the open book.

Figure 1: An example where a single user repeatedly
refers to objects in the same scene. The color identifies
which bounding box is being referred to.

determine which object is being referred to. How-
ever, in many scenarios where a grounding system
can be deployed, grounding is not an isolated one-
off task. Instead, users will repeatedly refer to the
same set of objects. In a household environment,
a robot equipped with a grounding system will re-
peatedly be asked to retrieve objects by the people
who live there. Similarly, during a cooperative as-
sembly task, a robot will repeatedly be asked for
various parts or tools. Even in non-embodied sys-
tems, such as conversational agents, a user will re-
peatedly refer to different relevant entities.

These scenarios present new challenges and op-
portunities for grounding referential expressions.
When people in the same environment commonly
interact with each other (as in a household or
workplace), lexical entrainment will likely occur
(Brennan and Clark, 1996). That is, users of the
system will come to refer to objects in similar
ways to how they have been referred to in the past.
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Thus, it is important that the grounding system can
adapt to the vocabulary used where it is deployed.

Even if each object is being repeatedly referred
to by a set of people who do not interact with each
other, the agent can still learn general information
about the objects by remembering how they have
been referred to in the past. This is useful as it
provides a way for the model to learn properties
of objects that are otherwise hard to detect such
as subtle visual properties which cannot easily be
captured by standard visual grounding systems.

To include past referring expressions in a
grounding model, we formulate grounding as a
type of coreference resolution – are a new phrase
and a past phrase (known to identify a specific ob-
ject) referring to the same object? To compare a
new referring expression with past referring ex-
pressions, we need to learn a type of compatibil-
ity metric that tells us whether two expressions
can both describe the same object. Detecting ob-
ject coreference involves distinguishing between
mutually exclusive object attributes, recognizing
taxonomic relations, and permitting unrelated but
possibly co-existing properties.

Our contribution is to demonstrate that ground-
ing accuracy can be improved by incorporating a
module that has been trained to perform corefer-
ence resolution to previous referring expressions.
We introduce a neural network module that learns
to identify when two referring expressions de-
scribe the same object. By jointly training the
system with a visual grounding module, we show
how grounding can be improved using information
from both linguistic and visual modalities.

We evaluate our model on a dataset where users
repeatedly refer to objects in the same scene (see
Figure 1). Given the same amount of training
data, our coreference grounding model achieves
an overall increase of 15% grounding accuracy
when compared to a state-of-the-art visual ground-
ing model (Hu et al., 2017). We show that the
coreference grounding model can better general-
ize to object categories and their descriptions not
seen during training – a common difficulty of vi-
sual grounding models. Finally, we show that
jointly training the coreference model with a vi-
sual grounding model allows the joint model to
use object properties not stated in previous re-
ferring expressions. As an example application,
we demonstrate how the coreference grounding

paradigm can be used with a robotic platform.1

2 Technical Approach

The task of grounding referring expressions is to
identify which object is being described by a query
referring expression, Q. The input to this problem
is a set ofN objects,O = {o1, o2, . . . , oN}.2 Each
object, oi, is represented by its visual features, vi
(i.e., pixels from the object’s bounding box), and a
referring expression, ri, that was previously used
to refer to that object (ri may not always be avail-
able). The grounding problem can then be mod-
elled as estimating the distribution over which ob-
ject is being referred to: p(x|Q, v1:N , r1:N ) where
x is a random variable with domain O.

There has been a lot of work in grounding refer-
ring expressions (Hu et al., 2017), many of which
use only visual features and no interaction history.
Most of the proposed models have the form:

p(x = oi|Q, v1:N ) = S (Wvis · fvis (Q, v1:N ))i

=
exp (Wvis · fvis (Q, vi))

N∑
j=1

exp (Wvis · fvis (Q, vj))

where fvis (Q, vi) is a low dimensional represen-
tation of the visual features vi and the query Q,
Wvis is a learned linear transformation, and S(·)i
is the ith entry of the softmax function output.

We introduce a similar model for coreference
grounding which uses past referring expressions
to decide which object oi is being referred to:

p (x = oi|Q, r1:N ) = S (Wcoref · fcoref (Q, r1:N ))i

where fcoref (Q, ri) is an embedding of a past re-
ferring expression and the query expression, and
Wcoref is a learned linear transformation.

Finally, we introduce a joint model which fuses
representations fvis and fcoref by a function g:

p (x = oi|Q, v1:N , r1:N ) =

S (g (fcoref (Q, r1:N ) , fvis (Q, v1:N )))i (1)

Note that fvis can come from any visual ground-
ing model that associates text to visual features ex-
tracted from the objects’ bounding boxes.

1The dataset, code, and demonstration videos can
be found at https://mike-n-7.github.io/
coreference-grounding.html.

2Object proposal networks (e.g., Faster R-CNN) can be
used to extract object bounding boxes from an image.
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Figure 2: (a) A visual grounding model only takes in images to resolve the query expression and outputs a categor-
ical distribution over the objects. (b) We propose a model that uses past referring expressions to resolve the new
expression. (c) These models can be combined to fuse visual and linguistic information.

Our contributions are the coreference and joint
grounding models. Both models learn to ground
a new referring expression by computing compat-
ibility with past referring expressions of candidate
objects. We describe fcoref in detail in Section 2.1
and the joint model in Section 2.2. For a visualiza-
tion of the model, see Figure 2.

2.1 Coreference Grounding Model
Given a query referring expression Q and an ex-
pression ri for each object (each represented by
a sequence of M words: {w1, w2, . . . , wM}), we
define a joint representation of these two expres-
sions, fcoref , as follows:

fcoref (Q, ri) = fenc(Q)� fenc(ri)

where fenc produces referring expression embed-
dings for the given phrase of dimension l× 1, and
� is the elementwise multiplication operator. Note
the same encoder is used to embed both ri and Q.
In Section 4.3, we evaluate various referring ex-
pression embedding methods described below.
LSTM Embeddings The final output state of an
LSTM (Hochreiter and Schmidhuber, 1997) is
used as the referring expression embedding.
BiLSTM Embeddings For the bidirectional
LSTM, forward and backward LSTMs are run
over the input sequence, and their outputs for each
word are concatenated. An expression embedding
is computed by the dimension-wise max across
words (Collobert and Weston, 2008).
Attention Embeddings Attention encoders (Lin
et al., 2017) learn a weighted average of BiLSTM
outputs as the referring expression representation.

They output an attention score that is used to com-
pute a weighted average of the BiLSTM outputs.

InferSent Embeddings Recently, InferSent (Con-
neau et al., 2017) was proposed as a general pur-
pose sentence embedding method. InferSent is
similar to the BiLSTM model but was trained
using the Natural Language Inference task with
the intuition that this task would require the sen-
tence embeddings to contain semantically mean-
ingful information. The authors showed that their
sentence representation generalized well to other
tasks. The pretrained encoder from the InferSent
model is used to embed a referring expression.

2.2 Integrating Vision and Coreference

The coreference model can learn the complexities
of coreference with past expressions, but if certain
properties are not mentioned in a previous expres-
sion, the model will have difficulty deciding which
object is being referred to. If the referenced prop-
erty could have been learned by a visual grounding
model, we would like to include this representa-
tion in our model. In this section, we show how we
can take an existing visual grounding model and
combine it with a coreference grounding model.
We generate representations fvis from an existing
grounding model, and fcoref from our coreference
grounding model. These representations are fused
using a function g(·), which is used to compute
the most likely referred object using Equation 1.
We experiment with two choices of g, which we
describe in the following subsections.
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2.2.1 Addition
One approach is to take the sum of the scores
of component visual and coreference grounding
models. The function g(·) can be written as (ar-
guments of functions removed for brevity):

g = Wvis · fvis(·) +Wcoref · fcoref (·)

where Wvis,Wvis ∈ R1×l are learned parameters
which transform their respective feature vectors of
size l into scalar scores.

2.2.2 Concatenation
Simple addition might not capture all interdepen-
dencies between different modalities. We propose
an approach where we concatenate the represen-
tations fvis and fcoref , and add a two layer feed
forward network to output the final score,

g = Wc1(ReLU(Wc2(ReLU([fvisfcoref ]).

For our visual grounding model, we use
the Compositional Modular Network (Hu et al.,
2017), which is one of the top performing mod-
els in several benchmark referring expressions
datasets. We train the joint model end-to-end so
that it can learn how to properly merge the visual
and coreference information.

3 Dataset

Our goal is to ground a referring expression to
an object in the environment using past referring
expressions and visual features. Existing refer-
ring expression datasets do not contain at least
two referring expressions for each object. Since
this is a requirement to learn and evaluate mod-
els that can utilize past expressions, we create
two new datasets for the task – a large Diagnostic
dataset where past expressions are algorithmically
assigned, and a smaller Episodic dataset created to
capture more realistic interaction scenarios.

3.1 Diagnostic Dataset

In this dataset, artificial scenes are created by
grouping similar objects, and each referring ex-
pression for an object is collected independently.
This form of dataset allows us to easily scale up
the amount of data used for training and cap-
ture more descriptive language by introducing
category-level ambiguity into the scene. We use
images from the MSCOCO dataset (Lin et al.,
2014), which contains bounding boxes for each

object in an image. We randomly group together
four object images from the same category. We
randomly label one object as the goal object and
the remaining three as distractor objects. Anno-
tators from the Figure Eight platform3 are shown
these images with the goal object labeled by a red
bounding box. They are asked to write an English
expression to refer to the goal object so that it can
be easily distinguished. Two expressions are col-
lected for each object, each time with different dis-
tractor objects.

To ensure the model can distinguish between
objects of different categories, we randomly select
half the data, and replace two distractor objects in
the group with two objects from a different cate-
gory. Since these objects are from a different cate-
gory, we expect the referring expression to still be
able to correctly identify the goal object.

Each instance, or dataset sample, now consists
of four objects (represented by images) with a
query expression referring to the goal object. To
associate each object with a past expression, we
use expressions that were used to reference that
object in other instances. Each instance now has
a set of objects associated with a past expression
and an image. In addition, the goal object is la-
beled and a query referring expression is provided
for the goal. We randomly split the data into train,
development and test sets in a 60/20/20 ratio. We
refer to this split as STANDARD.

To evaluate the ability of grounding models to
disambiguate objects from categories not seen dur-
ing training, we create an alternative split of the
Diagnostic dataset. This split ensures that no ob-
ject category in the test set is present in the train-
ing or development splits. We refer to this split as
HARD. More details of dataset construction and
verification are present in the supplementary ma-
terial.

3.2 Episodic Dataset

The Diagnostic dataset uses cropped images of
objects from MSCOCO images and programmati-
cally assigned past expressions. In order to cap-
ture nuances of realistic interaction, we collect
a smaller Episodic dataset where annotators are
shown a full scene and repeatedly asked to re-
fer to objects within that scene. We select scenes
from the MSCOCO dataset which have three to
six objects of the same category. We prune ob-

3https://www.figure-eight.com/
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ject bounding boxes with area less than 5% or over
50% of the image area. Extremely small objects
are often not distinguishable, and large bound-
ing boxes often correspond to a cluster of objects
rather than a single object in cluttered scenes.

Each annotator is shown the same scene 10
times in a row. Each time one of the ambiguous
objects is marked with a red bounding box. The
annotator is asked to provide an English referring
expression to uniquely identify the marked object.
Our interface does not allow the user to view re-
ferring expressions once it has been entered. As a
result, if the same object is marked again in the se-
ries, the user will have no way to look up what they
had written before. This process simulates how a
user will refer to objects in the same environment
over a period of time. As the annotators do not
communicate with each other, the dataset will not
capture between-user entrainment. For each im-
age, we collect two such series of 10 expressions
from two different users. We create examples for
the Episodic dataset in two ways:
SAME USER: For each scene and annotator, we
order the expressions in the same order they were
provided by the annotator. Each expression forms
an example where it is the respective query expres-
sion and the candidate objects are all the objects in
the scene. All previous referring expressions for
this scene and annotator are assigned to the respec-
tive objects as past referring expressions. These
examples capture the scenario where the interac-
tion history is provided by a single user.
ACROSS USERS: Similar to the SAME USER

dataset, we create a new example each time the an-
notator refers to an object. However, the past ex-
pressions come from the other annotator who was
displayed the same scene. These examples rep-
resent cases where interaction history is acquired
from people who do not interact with each other.

We create train and development sets with both
types of examples. For testing, we create one set
corresponding to each of the previously mentioned
types. Validation details are in the supplementary
material.

The statistics for both datasets are given in Ta-
ble 1. We report a metric called Lexical Overlap
to denote the extent of similarity between training
and test data. The Lexical Overlap is the fraction
of word types in the test set that also appear in the
training set. As seen in Table 1, the HARD split has
lower Lexical Overlap compared to STANDARD.

Dataset
Diagnostic Episodic

STANDARD HARD SAME ACROSS
USER USERS

# Train 10133 9855 2656 2656
# Dev 3889 4170 714 714
# Test 3796 3793 1686 1686
Objects per Example 4.0 4.0 5.64 5.64
Expressions per Object 0.47 0.47 0.5 1.94
Lexical Overlap 0.71 0.63 0.47 0.47

Table 1: Statistics for the various datasets used. Unless
otherwise mentioned, the numbers are reported from
the test set. Low lexical overlap for HARD indicates
more unseen words in the test set. The ACROSS USERS
test set of Episodic dataset has more past expressions
for each object compared to other splits.

This means that a greater number of novel words
appear in the HARD dataset.

4 Experiments

We run multiple experiments to evaluate the pro-
posed grounding models and characterize the ad-
vantages of using coreference along with visual
features for grounding. Specifically, we consider
the following questions:

1. Which method performs best for coreference
grounding and the joint model? (Section 4.3)

2. How does grounding with different types of
information (visual, coreference) transfer to
new object categories? (Section 4.4)

3. How does grounding performance vary when
past expressions are acquired from the same
(or entrained) users, as opposed to users un-
known to each other? (Section 4.5)

All quantitative evaluation can be found in Table
2. As our datasets contain examples where the ob-
ject being referred to may or may not have a pre-
vious referring expression, we report overall test
set accuracy (All), as well as accuracy grouped by
the number of past referring expressions belong-
ing to the ground truth object (0, 1, or, 2). This
allows us to more accurately evaluate the corefer-
ence models as they are not expected to perform
well without a previous referring expression.

We show how coreference grounding is used in
practice by demonstrating its use on the Baxter
robot. Namely, we show how a system can keep
track of past referring expressions and associate
them with objects.

4.1 Model Descriptions
We compare against the following unsupervised
coreference baselines (i.e., not trained on the re-
ferring expression task). All these methods use a
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similarity score between the input expression and
the past referring expression to make a prediction.

Word Overlap Baseline: Compute the Jaccard
similarity between two expressions.
Word Averaging Baseline: Each expression is
represented by the average of the word vectors of
constituent words. Similarity is computed as co-
sine similarity between vectors.
Paragram Phrase: Uses the paraphrase model
proposed by Wieting et al. (2016) to compute sim-
ilarity between past and input expressions.
InferSent Unsupervised: Each expression is rep-
resented by its pretrained InferSent embedding
and similarity is computed as cosine similarity.

We also consider supervised models for the re-
ferring expression grounding task:

Vision: The Compositional Modular Network (Hu
et al., 2017) which grounds an input expression to
a bounding box’s visual features.
Coreference: The proposed model that grounds
an expression to objects represented by previous
referring expressions. We evaluate the LSTM,
BiLSTM-Max, Attention, and InferSent Encoders.
Joint: Jointly trains the Vision and Coreference
components of the model. This model uses only
the InferSent encoder. We evaluate both addition
and concatenation methods for information fusion.

4.2 Implementation Details

Since the Episodic dataset is much smaller in size,
all models (except joint with concatenation) are
first trained on the Diagnostic training set until the
validation error stops decreasing, and then trained
on the Episodic train set. For the joint model with
concatenation, we found that tuning only the fu-
sion parameters, while holding the others fixed, on
the Episodic data performs better.

The large Diagnostic dataset contains at most
one past expression for each object. We cannot
expect our models trained on the Diagnostic data
to handle multiple past referring expressions. As a
result, when an object is associated with multiple
past expressions, we only consider the expression
most similar to the query expression according to
the Unsupervised InferSent model.

The models are implemented in PyTorch
(Paszke et al., 2017). All models for the Diag-
nostic dataset are trained with the Adam optimizer
(Kingma and Ba, 2015), and the best model is se-
lected based on the performance on the develop-

ment set. We use GloVe vectors (Pennington et al.,
2014) and a pretrained VGG19 model to extract
visual features (Simonyan and Zisserman, 2015).

4.3 Coreference and Joint Model Evaluation

We evaluate the performance of the coreference
and joint models on the STANDARD split of the Di-
agnostic dataset (see column STANDARD of Table
2). First, we observe that all unsupervised coref-
erence methods perform poorly when the goal
object does not have past referring expressions.
However, when past expressions are present, all
the coreference baselines outperform the vision
model. Coreference using pretrained InferSent
embeddings performs the best among the unsuper-
vised methods, possibly because InferSent embed-
dings have been pretrained on the SNLI dataset.
SNLI was created from image captions, making
the domain similar to that of referring expressions.

Learned models of coreference start performing
better on cases where the goal object has no past
referring expression. Note that in the 0-column,
the 0 only refers to the ground-truth object not
having a referring expression – the other objects
may have expressions associated with them. Thus
the supervised models can better determine when
two expressions are incompatible, leading to the
model choosing an object without any previous re-
ferring expression. However, when a past refer-
ring expression is present, they are typically infor-
mative and the Word Overlap model performs the
best amongst unsupervised and supervised meth-
ods (see the 1-column). InferSent (Unsupervised)
still achieves strong performance yet fine-tuning to
the task still helps. We use the coreference model
with the InferSent encoder for the joint models.

The jointly trained models achieve high accura-
cies in both cases where the ground truth object
has previously been referred to (1-column) and
those where it has not (0-column). This indicates
that the models can successfully utilize informa-
tion from both vision and coreference modalities.
The concatenation fusion method outperform sim-
ple shallow addition of component scores.4

The joint model consistently outperforms the
vision model. This is because people usually pro-
vide information relevant to how the object can be
referred. If this information is available, which is

4Note that different objects in a scene might have different
number of past expressions. At test time, we will not know
the goal object, and hence, we cannot use the number of past
expressions to determine which model to use at test time.
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Diagnostic Episodic (s. 4.5)
STANDARD (s. 4.3) HARD (s. 4.4) SAME USER

ACROSS
USERS

0 1 All 0 1 All 0 1 2 All
57% 43% 56% 44% 49% 33% 15%

Vision 64.2 66.1 65.0 59.6 60.6 60.0 32.1 32.1 29.4 31.5 31.5

U
ns

up
er

vi
se

d Word Overlap 3.5 74.2 34.1 4.0 72.6 34.3 5.3 85.4 87.3 37.6 58.1
Word Averaging 3.5 69.6 32.1 4.0 67.8 32.2 5.3 77.8 80.2 42.7 51.8
Paragram Phrase 3.5 71.3 32.8 4.0 71.3 33.7 5.3 81.1 83.7 44.3 56.9
InferSent 8.8 73.8 36.9 9.2 73.6 37.6 5.9 85.0 85.7 46.3 47.7

Su
pe

rv
is

ed LSTM 28.2 41.1 33.8 28.2 40.3 33.5 6.0 69.4 63.9 37.2 46.8
BiLSTM-Max 30.0 60.8 43.3 27.0 57.8 40.6 7.0 75.7 74.6 41.8 53.1
Attention 29.2 61.6 43.2 26.8 56.0 39.7 10.1 67.0 63.9 38.4 47.4
InferSent 27.9 70.5 46.3 28.8 68.6 46.4 5.8 82.5 85.3 45.4 61.3

Jo
in

t Addition 65.3 69.4 67.1 62.0 62.3 62.1 22.3 63.8 60.3 42.6 48.7
Concatenation 68.6 71.3 69.8 58.0 70.7 63.6 19.0 84.7 86.1 52.7 62.7

Table 2: Grounding accuracy under different conditions. Best scores in bold. The columns labeled 0, 1, and
2 correspond to test examples where the goal object has 0, 1 and 2 past expressions respectively (percentage
indicates fraction of test examples applicable for that column). All refers to the score on the entire test set. Most
examples in ACROSS USERS have large number of past expressions, so we only report score on the entire test set.

true in many realistic scenarios, it is beneficial to
utilize coreference grounding.

With more data, the vision model could achieve
higher performance. However, we argue that as
ambiguity between objects increases, the proper-
ties that distinguish objects become more subtle
and a large dataset would be necessary to learn
these intricacies.

When does Joint perform better than Vision
and Coreference? Our Joint model performs bet-
ter than models trained on single modality (Vision,
Coreference). The joint model can use visual fea-
tures when the past referring expressions are not
sufficient to discriminate between objects. In 25%
of examples, the Coreference model predicts the
wrong object whereas the Joint model selects the
correct object. A majority of these cases are exam-
ples where the goal object has no past expression
associated with it. In 8% of examples, the Joint
and Coreference models are correct even though
the Vision model is wrong. Finally, for only 7% of
the examples, the Joint model predicts the correct
object when both the Vision and Coreference mod-
els predict incorrectly. This indicates that the Joint
model is primarily merging the gains of the Vision
and Coreference models; most correct decisions of
Joint correspond to correct decisions either from
Vision or Coreference. Figure 3 shows a break-
down of how often the various models outperform
each other. Figure 4 shows examples where Joint
outperforms models trained on a single modality.

Figure 3: Proportion of examples of the STANDARD
test set where different subsets of the systems ground
correctly (green) or incorrectly (red). Instances are ar-
ranged along the x-axis.

4.4 Generalizing to New Object Categories

To evaluate how the various models handle gen-
eralization to unseen object categories, we use the
HARD split of the Diagnostic dataset. The test set
of this split contains object categories which have
not explicitly been seen during training. We hy-
pothesize that due to pretrained word embeddings
(which include embeddings for words describing
the unknown categories), the coreference models
will be able to successfully ground to new object
categories. On the other hand, the performance of
the Vision model will decrease in the HARD split,
because the pretrained visual features of the new
objects are not well aligned with representations
of unseen words. As seen in Table 2, this is indeed
the case as the Vision model’s performance drops
between the STANDARD and HARD datasets. On
the other hand, the coreference models’ perfor-
mance on the HARD split is comparable to those
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of the STANDARD split. Although the aggregate
performance is low, the coreference models per-
form strongly on examples where the goal object
has past expressions (see 1-column). In particular,
Coref Supervised with InferSent achieves 70.5%
on the STANDARD split, which reduces only to
68.6% on the HARD split. This can be explained
by observing that the representation of the object
(its past referring expression) and a new referring
expression are already aligned within the same
vector space (pretrained InferSent embeddings).

4.5 Performance on Episodic Dataset

As the Diagnostic dataset is somewhat artificial in
the way objects and properties are grouped, we
also evaluate these models on the Episodic dataset.
As described in Section 3.2, the key differences in
this dataset are that all candidate objects in an ex-
ample are from the same scene, and previous refer-
ring expressions are added sequentially as the user
refers to more objects in the scene (thus a previous
referring expression truly did occur previously).

We find similar trends in the performance on
the Episodic dataset (see the Episodic columns of
Table 2). Since the same user is referring to the
same object multiple times, we expect expressions
for the same object to be similar. This leads to
the high performance of coreference models in the
SAME USER split of the Episodic dataset (see the
1-column). Even the word-overlap model does
particularly well due to the correlation between
expressions from the same user (over 85% accu-
racy when the goal object has past expressions).

If the past expressions were not provided by the
same user, but by users unknown to each other, we
can still see improvement over not having any past
expressions (see the ACROSS USERS column). In
this split, past expressions are always associated
with objects as we assume other users have in-
teracted with the system. In the ACROSS USERS

split, even though the Coreference models are less
effective than in the SAME USER split, they still
outperform the Vision model (e.g., the Supervised
InferSent model achieves 61.3%, whereas a pure
vision model achieves only 31.5%). This is be-
cause users unknown to each other still provide
useful knowledge about the properties of objects.

The Joint models benefit from using both
modalities, which is particularly important in re-
alistic scenarios as most objects initially will not
have any previous referring expressions. Note

Query: the stuffed bear with blue clothes
Coref, Joint Vision

the brown a stuffed
teddy bear animal
with a bow in blue

Query: its a cup of coffee
Coref Vision, Joint

a coca cola the glass
cup tumbler with

a drink

Figure 4: Examples where the Joint model accurately
grounds the query, but either Vision or Coreference
does not. The past expression is mentioned below each
object image. The correct object has a green border and
a model’s name appears above its predicted object.

that the performance of the Vision model on the
Episodic dataset is much lower than its perfor-
mance on the Diagnostic dataset. This loss in
performance is due to the images in the Episodic
dataset being more cluttered and annotators of-
ten using spatial relationships to refer. As the
Diagnostic training dataset does not contain spa-
tial information, our models cannot handle these
cases. We can train on existing referring expres-
sion datasets to learn spatial relationships, but we
do not explore this as it is not central to this paper.
More analysis is added to the appendix.

4.6 Robot Demonstration

One of the motivations of this work was to en-
able robots to use past referring expressions to
aid grounding in human-robot interactions. In this
section, we provide a demonstration of how our
coreference grounding system can be integrated
with the Baxter robotic platform. To benefit from
coreference grounding, the system must have a
natural way to keep track of past referring expres-
sions of an object. We demonstrate such an inter-
face in Figure 5.

We focus on a scenario where a human asks the
robot to pick up specific objects. If the robot incor-
rectly identifies the object being referred to, on the
next turn, the user can correct the robot by indicat-
ing the correct object (Figure 5b). The referring
expression can then be associated with the correct
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Figure 5: Demonstration of a coreference grounding system on the Baxter robot. (a) The cup being identified. (b)
A user refers to the cup and the robot grounds incorrectly. The user corrects the robot and associates the referring
expression with that object. (c) When a new user refers to the same object, the system’s output is correct.

object and this association can be maintained with
a tracking system. Future users (with no knowl-
edge of the first user) can then successfully refer
to the object (Figure 5c).

5 Related Work

Grounding Referring Expressions There has
been a lot of recent work on resolving referring
expressions to objects (Mao et al., 2016; Yu et al.,
2016; Shridhar and Hsu, 2018; Nagaraja et al.,
2016; Cirik et al., 2018). In contrast to these ap-
proaches which are static once trained, our model
leverages past referring expressions, which per-
mits an interface to add information during exe-
cution. Our task is related to Visual Dialogue (Das
et al., 2017; Kottur et al., 2018), where an agent
interactively answers questions about visual prop-
erties of a scene where the answers only exist in
the image and not in the dialogue context. In con-
trast, we focus on using complementary knowl-
edge from past referring expressions. There has
also been work to learn a compatibility metric dic-
tating whether two words can refer to the same ob-
ject (Kruszewski and Baroni, 2015). Our work fo-
cuses on coreference between entire referring ex-
pressions instead of atomic words.
Lexical Choice in Interactions A large body
of work in psycholinguistics (Clark and Wilkes-
Gibbs, 1986; Brennan and Clark, 1996; Picker-
ing and Garrod, 2004) show that participants in a
conversation collaboratively come up with lexical
terms to refer to objects and consequently, get en-
trained with each other and start using similar ex-
pressions to refer to objects. These works form the
motivation for our problem formulation. Recently,
the PhotoBook Dataset has been proposed to in-
vestigate shared dialogue history in conversation
(Haber et al., 2019). The dataset differs from ours

in that expressions refer to entire scenes instead of
objects within a scene. The authors’ conclusions
support our findings that using past expressions is
useful for resolving referring expressions.
Interaction History for Human Robot Interac-
tion Paul et al. (2017) maintains knowledge pro-
vided by users, using a closed set of predicates.
In constrast, we use raw past referring expressions
to handle an open domain of knowledge. There
has been work on grounding in dialogue for robots
(Tellex et al., 2014; Whitney et al., 2017; Thoma-
son et al., 2017; Padmakumar et al., 2017). In
contrast to our work, they focus on refinement or
clarification, and hence past expressions only help
within the same dialogue episode.

6 Conclusion

In this work, we reformulated the grounding prob-
lem as a type of coreference resolution, allowing
for the inclusion of past referring expressions that
are typical in many real-world scenarios. We pro-
posed a model that can use both linguistic features
from past expressions and visual features of the
object to ground to a new expression. We showed
that this model outperforms a purely vision-based
model as it can use past descriptions of salient fea-
tures that the vision-based model may have diffi-
culty learning with limited data. It further benefits
from having a vision model that can fill in infor-
mation not provided in past expressions.
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Abstract

This paper addresses the problem of com-
prehending procedural commonsense knowl-
edge. This is a challenging task as it re-
quires identifying key entities, keeping track
of their state changes, and understanding tem-
poral and causal relations. Contrary to most
of the previous work, in this study, we do
not rely on strong inductive bias and explore
the question of how multimodality can be ex-
ploited to provide a complementary semantic
signal. Towards this end, we introduce a new
entity-aware neural comprehension model aug-
mented with external relational memory units.
Our model learns to dynamically update en-
tity states in relation to each other while read-
ing the text instructions. Our experimental
analysis on the visual reasoning tasks in the
recently proposed RecipeQA dataset reveals
that our approach improves the accuracy of the
previously reported models by a large margin.
Moreover, we find that our model learns effec-
tive dynamic representations of entities even
though we do not use any supervision at the
level of entity states.1

1 Introduction

A great deal of commonsense knowledge about the
world we live is procedural in nature and involves
steps that show ways to achieve specific goals. Un-
derstanding and reasoning about procedural texts
(e.g. cooking recipes, how-to guides, scientific pro-
cesses) are very hard for machines as it demands
modeling the intrinsic dynamics of the procedures
(Bosselut et al., 2018; Dalvi et al., 2018; Yagcioglu
et al., 2018). That is, one must be aware of the
entities present in the text, infer relations among
them and even anticipate changes in the states of
the entities after each action. For example, consider
the cheeseburger recipe presented in Fig. 1. The

1The project website with code and demo is available at
https://hucvl.github.io/prn/

instruction “salt and pepper each patty and cook
for 2 to 3 minutes on the first side” in Step 5 entails
mixing three basic ingredients, the ground beef,
salt and pepper, together and then applying heat
to the mix, which in turn causes chemical changes
that alter both the appearance and the taste. From
a natural language understanding perspective, the
main difficulty arises when a model sees the word
patty again at a later stage of the recipe. It still cor-
responds to the same entity, but its form is totally
different.

Over the past few years, many new datasets and
approaches have been proposed that address this in-
herently hard problem (Bosselut et al., 2018; Dalvi
et al., 2018; Tandon et al., 2018; Du et al., 2019).
To mitigate the aforementioned challenges, the ex-
isting works rely mostly on heavy supervision and
focus on predicting the individual state changes
of entities at each step. Although these models
can accurately learn to make local predictions, they
may lack global consistency (Tandon et al., 2018;
Du et al., 2019), not to mention that building such
annotated corpora is very labor-intensive. In this
work, we take a different direction and explore the
problem from a multimodal standpoint. Our basic
motivation, as illustrated in Fig. 1, is that accompa-
nying images provide complementary cues about
causal effects and state changes. For instance, it
is quite easy to distinguish raw meat from cooked
one in visual domain.

In particular, we take advantage of recently pro-
posed RecipeQA dataset (Yagcioglu et al., 2018), a
dataset for multimodal comprehension of cooking
recipes, and ask whether it is possible to have a
model which employs dynamic representations of
entities in answering questions that require multi-
modal understanding of procedures. To this end, in-
spired from (Santoro et al., 2018), we propose Pro-
cedural Reasoning Networks (PRN) that incorpo-
rates entities into the comprehension process and al-
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dressing

Step 1: Ingredients and Tools Step 2: Form Patties Step 3: Season Step 4: Toast Buns
Lightly toast the both halves of the hamburger
bun, face down in the pan. Set aside.

Step 5: Cook Step 6: Chop Onions & Tomatoes
For the "authentic" feel you want to get a large
onion and a large tomato, then slice a large slice
from the middle to use on the hamburger.

Step 7: Chop Onions & Tomatoes Step 8: Enjoy
All that's left to do is enjoy this copycat double
double! To be honest, this was impressively close
to the real taste. I would definitely make this one
again.
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Salt and pepper one side of the patty now, the other
half will be done when grilling.

Set the patty seasoned side down on the skillet, salt and pepper
each patty and cook for 2 to 3 minutes on the first side. Flip the
patties over and season with salt and pepper and immediately
place one slice of cheese on each one. Cook for 2-3 minutes on
the other side.

1 hamburger bun, 4 oz. ground beef (25-30% fat
if available) (2 ounce per patty), salt and
pepper, Thousand Island dressing (or In-N-Out
official spread), 1 large tomato, 1 large lettuce
leaf, 1 whole onion, 2 slices real American
cheese

Assemble the burger in the following stacking order from the
bottom up:  bottom bun, thousand island dressing, tomato, lettuce,
beef patty with cheese, onion slice, beef patty with cheese, top
bun

Begin by preheating a cast iron skillet over medium heat. Make four patties by
rolling 2-ounce portions of beef into balls and weigh it out on the kitchen scale.
In-N-Out uses a 25-30% fat beef patty which is not easily available at a local
grocery store, in many cases it would have to be ground by hand. Forming them
slightly larger than buns. I do this by placing the 2 ounce beef in between 2
pieces of parchment paper then taking my large cast iron skillet and applying a
little force to smash the beef into a patty. You will want to form them into a
perfect circle with your hand if they do not come out right after the initial smash.

Figure 1: A recipe for preparing a cheeseburger (adapted from the cooking instructions available at https:
//www.instructables.com/id/In-N-Out-Double-Double-Cheeseburger-Copycat). Each basic in-
gredient (entity) is highlighted by a different color in the text and with bounding boxes on the accompanying
images. Over the course of the recipe instructions, ingredients interact with each other, change their states by
each cooking action (underlined in the text), which in turn alter the visual and physical properties of entities. For
instance, the tomato changes it form by being sliced up and then stacked on a hamburger bun.

lows to keep track of entities, understand their inter-
actions and accordingly update their states across
time. We report that our proposed approach signifi-
cantly improves upon previously published results
on visual reasoning tasks in RecipeQA, which test
understanding causal and temporal relations from
images and text. We further show that the dynamic
entity representations can capture semantics of the
state information in the corresponding steps.

2 Visual Reasoning in RecipeQA

In our study, we particularly focus on the visual
reasoning tasks of RecipeQA, namely visual cloze,
visual coherence, and visual ordering tasks, each
of which examines a different reasoning skill2. We
briefly describe these tasks below.

Visual Cloze. In the visual cloze task, the question
is formed by a sequence of four images from
consecutive steps of a recipe where one of them is
replaced by a placeholder. A model should select
the correct one from a multiple-choice list of four
answer candidates to fill in the missing piece. In
that regard, the task inherently requires aligning
visual and textual information and understanding

2We intentionally leave the textual cloze task out from our
experiments as the questions in this task does not necessarily
need multimodality.

temporal relationships between the cooking actions
and the entities.

Visual Coherence. The visual coherence task tests
the ability to identify the image within a sequence
of four images that is inconsistent with the text
instructions of a cooking recipe. To succeed in this
task, a model should have a clear understanding
of the procedure described in the recipe and at the
same time connect language and vision.

Visual Ordering. The visual ordering task is about
grasping the temporal flow of visual events with
the help of the given recipe text. The questions
show a set of four images from the recipe and the
task is to sort jumbled images into the correct order.
Here, a model needs to infer the temporal relations
between the images and align them with the recipe
steps.

3 Procedural Reasoning Networks

In the following, we explain our Procedural Reason-
ing Networks model. Its architecture is based on a
bi-directional attention flow (BiDAF) model (Gard-
ner et al., 2018)3, but also equipped with an explicit
reasoning module that acts on entity-specific rela-

3Our implementation is based on the implementation pub-
licly available in AllenNLP (Gardner et al., 2018).
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Step 1: Ingredients
8-12 oz (225-350g) gingersnap cookies (depending on
how much crust you like!) 1/4 cup (57g) butter, melted
(or slightly more if you're going full-hog on the crust) 24
oz.. (680g) cream cheese, softened 15 oz. (425g)
pumpkin puree 2/3 cup (75g) sugar 4 eggs 1 teaspoon
vanilla 1/4 cup (30g) flour Pinch of salt Freshly ground
cinnamon, ginger and nutmeg to taste (I use 1/2
teaspoon each!) Optional: fresh ground pepper - I know
it sounds weird, but it adds depth to the spice profile!

In a mixer or food processor,
combine the softened cream
cheese, pumpkin puree, sugar,
and vanilla extract until well
blended. Add the eggs, one at a
time, mixing after each until just
incorporated. Combine flour and
spices and slowly add to the liquid
mixture. Pour mixture into crust.

Step 3: The Filling
Bake the pumpkin cheesecake for 80-90
minutes, until the center is almost set., and
barely jiggles in the middle. Use a knife to gently
loosen the crust from the edge of the pan. Allow
cheesecake to cool before removing the rim of
the pan.  Refrigerate for at least 4 hours and up
to overnight. If you are traveling with the
cheesecake, leave the pan in tact until ready to
eat! You're gonna love this one, I just know it!

Step 4: BakeStep 2: The Crust
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Preheat your oven to 350F (180C). Using a food processor (or
a mallet and a baggie - go for it!), turn your gingersnaps into
crumbs! Add butter to crumbs and process until well
incorporated.  (If you're using the mallet method, you can use a
fork for this part!) I like to line just the bottom of a 9" springform
pan with parchment, but that is optional.  Pat the crust mixture
into your pan, covering just the bottom, or going up the sides as
far as you dare! If you're going full-crust, it's a good idea to par-
bake your crust (meaning bake it before filling) for 5-10 mins. 
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Figure 2: An illustration of our Procedural Reasoning Networks (PRN). For a sample question from visual coher-
ence task in RecipeQA, while reading the cooking recipe, the model constantly performs updates on the representa-
tions of the entities (ingredients) after each step and makes use of their representations along with the whole recipe
when it scores a candidate answer. Please refer to the main text for more details.

tional memory units. Fig. 2 shows an overview of
the network architecture. It consists of five main
modules: An input module, an attention module, a
reasoning module, a modeling module, and an out-
put module. Note that the question answering tasks
we consider here are multimodal in that while the
context is a procedural text, the question and the
multiple choice answers are composed of images.

1. Input Module extracts vector representations
of inputs at different levels of granularity by
using several different encoders.

2. Reasoning Module scans the procedural text
and tracks the states of the entities and their re-
lations through a recurrent relational memory
core unit (Santoro et al., 2018).

3. Attention Module computes context-aware
query vectors and query-aware context vectors
as well as query-aware memory vectors.

4. Modeling Module employs two multi-
layered RNNs to encode previous layers out-
puts.

5. Output Module scores a candidate answer
from the given multiple-choice list.

At a high level, as the model is reading the
cooking recipe, it continually updates the internal
memory representations of the entities (ingredients)
based on the content of each step – it keeps track
of changes in the states of the entities, providing an
entity-centric summary of the recipe. The response
to a question and a possible answer depends on the
representation of the recipe text as well as the last
states of the entities. All this happens in a series of

implicit relational reasoning steps and there is no
need for explicitly encoding the state in terms of a
predefined vocabulary.

3.1 Input Module

Let the triple (R,Q,A) be a sample input. Here,
R denotes the input recipe which contains textual
instructions composed of N words in total. Q
represents the question that consists of a sequence
of M images. A denotes an answer that is either
a single image or a series of L images depending
on the reasoning task. In particular, for the visual
cloze and the visual coherence type questions, the
answer contains a single image (L = 1) and for the
visual ordering task, it includes a sequence.

We encode the input recipe R at character, word,
and step levels. Character-level embedding layer
uses a convolutional neural network, namely Char-
CNN model by Kim (2014), which outputs charac-
ter level embeddings for each word and alleviates
the issue of out-of-vocabulary (OOV) words. In
word embedding layer, we use a pretrained GloVe
model (Pennington et al., 2014) and extract word-
level embeddings4. The concatenation of the char-
acter and the word embeddings are then fed to a
two-layer highway network (Srivastava et al., 2015)
to obtain a contextual embedding for each word in
the recipe. This results in the matrix R′ ∈ R2d×N .

On top of these layers, we have another layer
that encodes the steps of the recipe in an individual
manner. Specifically, we obtain a step-level con-

4We also consider pretrained ELMo embeddings (Peters
et al., 2018) in our experiments but found out that the perfor-
mance gain does not justify the computational overhead.
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textual embedding of the input recipe containing
T steps as S = (s1, s2, . . . , sT ) where si repre-
sents the final state of a BiLSTM encoding the i-th
step of the recipe obtained from the character and
word-level embeddings of the tokens exist in the
corresponding step.

We represent both the question Q and the answer
A in terms of visual embeddings. Here, we employ
a pretrained ResNet-50 model (He et al., 2016)
trained on ImageNet dataset (Deng et al., 2009)
and represent each image as a real-valued 2048-d
vector using features from the penultimate average-
pool layer. Then these embeddings are passed first
to a multilayer perceptron (MLP) and then its out-
puts are fed to a BiLSTM. We then form a matrix
Q′ ∈ R2d×M for the question by concatenating the
cell states of the BiLSTM. For the visual ordering
task, to represent the sequence of images in the
answer with a single vector, we additionally use a
BiLSTM and define the answering embedding by
the summation of the cell states of the BiLSTM.
Finally, for all tasks, these computations produce
answer embeddings denoted by a ∈ R2d×1.

3.2 Reasoning Module

As mentioned before, comprehending a cooking
recipe is mostly about entities (basic ingredients)
and actions (cooking activities) described in the
recipe instructions. Each action leads to changes
in the states of the entities, which usually affects
their visual characteristics. A change rarely oc-
curs in isolation; in most cases, the action affects
multiple entities at once. Hence, in our reasoning
module, we have an explicit memory component
implemented with relational memory units (San-
toro et al., 2018). This helps us to keep track of the
entities, their state changes and their relations in
relation to each other over the course of the recipe
(see Fig. 3). As we will examine in more detail in
Section 4, it also greatly improves the interpretabil-
ity of model outputs.

Specifically, we set up the memory with a mem-
ory matrix E ∈ RdE×K by extracting K entities
(ingredients) from the first step of the recipe5. We
initialize each memory cell ei representing a spe-
cific entity by its CharCNN and pre-trained GloVe
embeddings6. From now on, we will use the terms

5The first steps of the recipes in RecipeQA commonly
contain a list of ingredients.

6Multi-word entities (e.g. minced garlic) are represented
by the average embedding vector of the words that they con-
tain, and OOV words are expressed with the average word

memory cells and entities interchangeably through-
out the paper. Since the input recipe is given in
the form of a procedural text decomposed into a
number of steps, we update the memory cells after
each step, reflecting the state changes happened on
the entities. This update procedure is modelled via
a relational recurrent neural network (R-RNN), re-
cently proposed by Santoro et al. (2018). It is built
on a 2-dimensional LSTM model whose matrix of
cell states represent our memory matrix E. Here,
each row i of the matrix E refers to a specific entity
ei and is updated after each recipe step t as follows:

φi,t = R-RNN(φi,t−1, st) (1)

where st denotes the embedding of recipe step t
and φi,t = (hi,t, ei,t) is the cell state of the R-RNN
at step t with hi,t and ei,t being the i-th row of
the hidden state of the R-RNN and the dynamic
representation of entity ei at the step t, respectively.
The R-RNN model exploits a multi-headed self-
attention mechanism (Vaswani et al., 2017) that
allows memory cells to interact with each other and
attend multiple locations simultaneously during the
update phase.

In Fig. 3, we illustrate how this interaction takes
place in our relational memory module by consider-
ing a sample cooking recipe and by presenting how
the attention matrix changes throughout the recipe.
In particular, the attention matrix at a specific time
shows the attention flow from one entity (memory
cell) to another along with the attention weights
to the corresponding recipe step (offset column).
The color intensity shows the magnitude of the at-
tention weights. As can be seen from the figure,
the internal representations of the entities are ac-
tively updated at each step. Moreover, as argued
in (Santoro et al., 2018), this can be interpreted as
a form of relational reasoning as each update on a
specific memory cell is operated in relation to oth-
ers. Here, we should note that it is often difficult
to make sense of these attention weights. However,
we observe that the attention matrix changes very
gradually near the completion of the recipe.

3.3 Attention Module

Attention module is in charge of linking the ques-
tion with the recipe text and the entities present in
the recipe. It takes the matrices Q′ and R′ from the
input module, and E from the reasoning module

vector of all the words.
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We'll start with a nice piece of
roast, mine was 1 kilo and a
half, but you can do less if you
want.We'll have to cut the
pieces so that it eventually fit in
the bottle. This depends
entirely from the size of the
bottle itself, that said remember
the meat will shrink in the oven.

Step 1: Slicin', Dicin'...

salt
oil

potatoes
rosemary

thyme
crushed garlic

pork tenderloin
blackpepper

Then comes the phase that is
known in italian as "Pillottare".
Using a mortar, grind together
the spices, the salt, the
crushed garlic and add a drop
or two of olive oil so that the
mixture sticks together After
that, take a knife, stab the meat
and start filling the cavities with
the spices. When you're
finished it should look like your
meat had grown a beard.

Quickly clean the potatoes and
the onion and chop them in
medium sized pieces. Put half
an inch of Olive oil in the pan
and put everything in it. Add
the remaining spices and, if
you like, add some more.

Preheat the oven to 180C
(356F) and then put this baby
to roast. Turn it from time to
time so that both sides cook
evenly. I kept it one hour and
ten, but it depends really from
the size of your roast. You can
always go old school and
check with a toothpic from time
to time.

Bottle has to be clean, so after
washing and drying it, and right
before putting the meat in it,
boil some water and pour it in
for a quick rinse off. To avoid
breaking the bottle pour some
cold water in it and pour the
boiling water into the cold
water. You do not need much of
it, just a cup or so, quickly rinse
the bottle and throw the water
away. 

Wait till the meat is cold, then
put it into the freshly sterilized
bottle and cover in olive oil.
The meat has to rest for at
least two days, then you can
start eating it.

Step 2: ... and Spicin' Step 3: Bring Company! Step 4: Burn Baby Burn! Step 5: Ready the Bottle. Step 6: Put the Piggies to Sleep.
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Figure 3: Sample visualizations of the self-attention weights demonstrating both the interactions among the ingre-
dients and between the ingredients and the textual instructions throughout the steps of a sample cooking recipe
from RecipeQA (darker colors imply higher attention weights). The attention maps do not change much after the
third step as the steps after that mostly provide some redundant information about the completed recipe.

and constructs the question-aware recipe represen-
tation G and the question-aware entity representa-
tion Y. Following the attention flow mechanism
described in (Seo et al., 2017a), we specifically
calculate attentions in four different directions: (1)
from question to recipe, (2) from recipe to question,
(3) from question to entities, and (4) from entities
to question.

The first two of these attentions require comput-
ing a shared affinity matrix SR ∈ RN×M with SR

i,j

indicating the similarity between i-th recipe word
and j-th image in the question estimated by

SR
i,j = w>R[R

′
i;Q

′
j ;R

′
i ◦Q′j ] (2)

where w>R is a trainable weight vector, ◦ and [; ] de-
note elementwise multiplication and concatenation
operations, respectively.

Recipe-to-question attention determines the im-
ages within the question that is most relevant to
each word of the recipe. Let Q̃ ∈ R2d×N repre-
sent the recipe-to-question attention matrix with
its i-th column being given by Q̃i =

∑
j aijQ

′
j

where the attention weight is computed by ai =
softmax(SR

i ) ∈ RM .
Question-to-recipe attention signifies the words

within the recipe that have the closest similarity
to each image in the question, and construct an
attended recipe vector given by r̃ =

∑
i biR

′
i

with the attention weight is calculated by b =
softmax(maxcol (S

R)) ∈ RN where maxcol de-
notes the maximum function across the column.
The question-to-recipe matrix is then obtained by
replicating r̃ N times across the column, giving
R̃ ∈ R2d×N .

Then, we construct the question aware represen-
tation of the input recipe, G, with its i-th column
Gi ∈ R8d×N denoting the final embedding of i-th
word given by

Gi = [R′i; Q̃i;R
′
i ◦ Q̃i;R

′
i ◦ R̃i; ] . (3)

Attentions from question to entities, and from
entities to question are computed in a way similar
to the ones described above. The only difference is
that it uses a different shared affinity matrix to be
computed between the memory encoding entities E
and the question Q′. These attentions are then used
to construct the question aware representation of
entities, denoted by Y, that links and integrates the
images in the question and the entities in the input
recipe.

3.4 Modeling Module

Modeling module takes the question-aware repre-
sentations of the recipe G and the entities Y, and
forms their combined vector representation. For
this purpose, we first use a two-layer BiLSTM to
read the question-aware recipe G and to encode the
interactions among the words conditioned on the
question. For each direction of BiLSTM , we use
its hidden state after reading the last token as its
output. In the end, we obtain a vector embedding
c ∈ R2d×1. Similarly, we employ a second BiL-
STM, this time, over the entities Y, which results
in another vector embedding f ∈ R2dE×1. Finally,
these vector representations are concatenated and
then projected to a fixed size representation using
o = ϕo([c; f ]) ∈ R2d×1 where ϕo is a multilayer
perceptron with tanh activation function.
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3.5 Output Module
The output module takes the output of the mod-
eling module, encoding vector embeddings of the
question-aware recipe and the entities Y, and the
embedding of the answer A, and returns a simi-
larity score which is used while determining the
correct answer. Among all the candidate answer,
the one having the highest similarity score is cho-
sen as the correct answer. To train our proposed
procedural reasoning network, we employ a hinge
ranking loss (Collobert et al., 2011), similar to the
one used in (Yagcioglu et al., 2018), given below.

L = max{0, γ − cos(o,a+) + cos(o,a−)} (4)

where γ is the margin parameter, a+ and a− are
the correct and the incorrect answers, respectively.

4 Experiments

In this section, we describe our experimental setup
and then analyze the results of the proposed Proce-
dural Reasoning Networks (PRN) model.

4.1 Entity Extraction
Given a recipe, we automatically extract the entities
from the initial step of a recipe by using a dictionary
of ingredients. While determining the ingredients,
we exploit Recipe1M (Marin et al., 2018) and
Kaggle Whats Cooking Recipes (Yummly, 2015)
datasets, and form our dictionary using the most
commonly used ingredients in the training set of
RecipeQA. For the cases when no entity can be
extracted from the recipe automatically (20 recipes
in total), we manually annotate those recipes with
the related entities.

4.2 Training Details
In our experiments, we separately trained models
on each task, as well as we investigated multi-task
learning where a single model is trained to solve all
these tasks at once. In total, the PRN architecture
consists of ∼12M trainable parameters. We imple-
mented our models in PyTorch (Paszke et al., 2017)
using AllenNLP library (Gardner et al., 2018). We
used Adam optimizer with a learning rate of 1e-4
with an early stopping criteria with the patience set
to 10 indicating that the training procedure ends
after 10 iterations if the performance would not
improve. We considered a batch size of 32 due to
our hardware constraints. In the multi-task setting,
batches are sampled round-robin from all tasks,
where each batch is solely composed of examples

from one task. We performed our experiments on
a system containing four NVIDIA GTX-1080Ti
GPUs, and training a single model took around 2
hours. We employed the same hyperparameters
for all the baseline systems. We plan to share our
code and model implementation after the review
process.

4.3 Baselines
We compare our model with several baseline
models as described below. We note that the
results of the first two are previously reported
in (Yagcioglu et al., 2018).

Hasty Student (Yagcioglu et al., 2018) is a
heuristics-based simple model which ignores the
recipe and gives an answer by examining only the
question and the answer set using distances in the
visual feature space.

Impatient Reader (Hermann et al., 2015) is a
simple neural model that takes its name from the
fact that it repeatedly computes attention over the
recipe after observing each image in the query.

BiDAF (Seo et al., 2017a) is a strong reading
comprehension model that employs a bi-directional
attention flow mechanism to obtain a question-
aware representation and bases its predictions on
this representation. Originally, it is a span-selection
model from the input context. Here, we adapt it to
work in a multimodal setting and answer multiple
choice questions instead.

BiDAF w/ static memory is an extended version
of the BiDAF model which resembles our proposed
PRN model in that it includes a memory unit for the
entities. However, it does not make any updates on
the memory cells. That is, it uses the static entity
embeeddings initialized with GloVe word vectors.
We propose this baseline to test the significance of
the use of relational memory updates.

4.4 Results
Table 1 presents the quantitative results for the vi-
sual reasoning tasks in RecipeQA. In single-task
training setting, PRN gives state-of-the-art results
compared to other neural models. Moreover, it
achieves the best performance on average. These
results demonstrate the importance of having a dy-
namic memory and keeping track of entities ex-
tracted from the recipe. In multi-task training set-
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Vanilla-Apricot Shortbread Cookies
Add to the whipped butter 1 cup of 
baker's sugar. Stir until the sugar and 
butter mix thoroughly. Add the whole 
egg and the egg yolk and stir well.

Toffee Bottomed Brownies
Cut the brownie into small squares, 
cleaning your knife after each cut.
The topload of cocoa powder makes 
this dessert so very rich that you don't 
need much, and there will be ...

Cherry Almond Torrone (Italian 
Nougat)
I used a knife, spatula, and pizza 
roller. Use what you've got. Corn 
starch and butter will help to prevent 
sticking....

Apple Pie
...the apple pie filling should not have 
the skins on them, BUT... I made this 
one for a friend of mine who is a health 
conscious women and she insisted on 
me leaving the skins on for all the 
nutritional values....

Henderson's Sauce
After it has been simmering for around 
5 minutes, it is time to add some other 
ingredients. Add all these being; Add 
around 1 soup-spoon of sugar (1 soup 
spoon brown or 2 soup spoons 
white)....

Absolutely Amazing Cream of 
Celery Soup
Add cream, lemon juice, hot sauce, 
salt and pepper. Reheat and simmer 
for about five minutes. ...

Miniature Doughnut Coconut 
Creatures
Chill a can of coconut milk or cream in 
the fridge overnight. When you’re 
ready to make the whipped cream, 
open the can and scoop out the 
hardened coconut. ...

Mango Mint Ice Tea
Take the measured amount of water 
and heat it till hot. I used the 
microwave here. You can heat the 
water even on the stove top. To the 
hot water add the Black tea powder 
or the Black tea bags.

Creme Brulee Recipe
Place the ramekins into a pan with 
high sides and carefully fill the pan 
with hot water until half way up the 
sides of the ramekins. Make sure 
not to splash any water into the 
custard.
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Food Categories

vegetarian-and-vegan
snacks-and-appetizers
salad
cocktails-and-mocktails
sandwiches
pizza
soups-and-stews
pie
coffee
canning-and-preserves
bbq-and-grilling

dessert
bacon
homebrew
cupcakes
cake
breakfast
pasta
main-course
beverages
cookies
recipes
candy

S
tep: 4

E
ntity: sugar

(perfect) Lemon Meringue Pie
...
Add half the sugar (150g) and whisk 
again
...

Figure 4: t-SNE visualizations of learned embeddings from each memory snapshot mapping to each entity and
their corresponding states from each step for visual cloze task.

Single-task Training Multi-task Training
Model Cloze Coherence Ordering Average Cloze Coherence Ordering All
Human∗ 77.60 81.60 64.00 74.40 – – – –
Hasty Student 27.35 65.80 40.88 44.68 – – – –
Impatient Reader 27.36 28.08 26.74 27.39 – – – –
BIDAF 53.95 48.82 62.42 55.06 44.62 36.00 63.93 48.67
BIDAF w/ static memory 51.82 45.88 60.90 52.87 47.81 40.23 62.94 50.59
PRN 56.31 53.64 62.77 57.57 46.45 40.58 62.67 50.17
∗ Taken from the RecipeQA project website, based on 100 questions sampled randomly from the validation set.

Table 1: Quantitative comparison of the proposed PRN model against the baselines.

ting where a single model is trained to solve all the
tasks at once, PRN and BIDAF w/ static memory
perform comparably and give much better results
than BIDAF. Note that the model performances
in the multi-task training setting are worse than
single-task performances. We believe that this is
due to the nature of the tasks that some are more
difficult than the others. We think that the perfor-
mance could be improved by employing a carefully
selected curriculum strategy (McCann et al., 2018).

In Fig. 4, we illustrate the entity embeddings
space by projecting the learned embeddings from
the step-by-step memory snapshots through time
with t-SNE to 3-d space from 200-d vector space.
Color codes denote the categories of the cook-
ing recipes. As can be seen, these step-aware
embeddings show clear clustering of these cate-
gories. Moreover, within each cluster, the entities
are grouped together in terms of their state charac-
teristics. For instance, in the zoomed parts of the
figure, chopped and sliced, or stirred and whisked
entities are placed close to each other.

Fig. 5 demonstrates the entity arithmetics us-
ing the learned embeddings from each entity step.

Here, we show that the learned embedding from the
memory snapshots can effectively capture the con-
textual information about the entities at each time
point in the corresponding step while taking into
account of the recipe data. This basic arithmetic
operation suggests that the proposed model can
successfully capture the semantics of each entity’s
state in the corresponding step7.

5 Related Work

In recent years, tracking entities and their state
changes have been explored in the literature from
a variety of perspectives. In an early work, Henaff
et al. (2017) proposed a dynamic memory based
network which updates entity states using a gat-
ing mechanism while reading the text. Bansal
et al. (2017) presented a more structured memory
augmented model which employs memory slots
for representing both entities and their relations.
Pavez et al. (2018) suggested a conceptually simi-
lar model in which the pairwise relations between
attended memories are utilized to encode the world

7We used Gensim for calculating entity arithmetics using
cosine distances between entity embeddings.
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Step 1: 
This is a cheap and easy method of an ancient
cooking technique known as clay pot cooking
using a common terra cotta flowerpot and saucer.
You can spend over $100 on a clay cooker at a
gourmet kitchen gadget store, or about $20 at a
garden supply. You choose. Some of you may
already have the pot lying in your yard, garage or
shed. Once you try this you will probably be
cooking all kinds of things in it!  

onions (Flowerpot Chicken)
Step 3: Prepare Vegetables.
Chop your vegetables while the pot is soaking.
You can use whatever you like for this, root
vegetables mixed with onions are always a nice
base. This time I used leeks, bell peppers, garlic
and red onions.:
onions (Flowerpot Chicken)

::
Step 1: 
This is a cheap and easy method of an ancient
cooking technique known as clay pot cooking
using a common terra cotta flowerpot and saucer.
You can spend over $100 on a clay cooker at a
gourmet kitchen gadget store, or about $20 at a
garden supply. You choose. Some of you may
already have the pot lying in your yard, garage or
shed. Once you try this you will probably be
cooking all kinds of things in it!  

tomatoes (Flowerpot Chicken)

?:
Step 1: Prepping the Vegetables.
The first step is to have all the Vegetables prepped and ready to go in the
pan, so finely dice the Garlic, onions and Peppers. Don't worry about mixing
them up in the bowl, all of these items are going to be sauteed in a small
amount of oil at the next stage. Picture 1. Finely dice up the Garlic, you want
it to be almost puree consistency. Picture 2. Finely dice up the Onions, this
doesn't need to be as fine as the garlic but you should ensure that they are
all roughly the same size. Picture 3. Lastly dice up the bell pepper, I show
you how i cut this in the video, but i will go over it quickly. Firstly i take off the
four walls of the pepper, flatten them then cut them in to strips, then simply
cut the other way so i have them diced.

tomatoes (Chilli Con Carne)
Step 1: Ingredients
...
pepperoni (I used what was left in a package which was enough for one
layer) 1/2 onion 2 roma tomatoes dried rosemary shredded mozarella and
parmesan fresh savory, basil, tarragon, and thyme 2 or 3 cloves of garlic 
salt (sea or kosher salt are best) and pepper 

Slice the tomatoes and onion as thin as is reasonable, slice the garlic as thin
as possible. Thoroughly wash the fresh herbs and pull the leaves from the
stems. Discard the stems.

tomatoes (Seven Layer Seven Grain Bread)
Step 1: Gather Your Ingredients...
...
1 teaspoon dried oregano, 1/8 teaspoon red pepper flakes (see step five for
a bit of humor on this note), 3/4 to 1 cup wine - Honestly, folks, don't be too
particular about the wine. Red or white is fine. (you may substitute chicken
broth, or even add broth in addition to the wine. Be creative!)(you may
substitute chicken broth, or even add broth in addition to the wine. Be
creative!) 1 - 28 ounce can diced tomatoes (save the juice!)
1/2 teaspoon dried Porcino mushrooms (Optional, see step #2)

tomatoes (How to Make Chicken Cacciatore)

Step 1: 
This is absolutely mind-blowingly good. Goat
basically tastes like lamb, but is far leaner. (Lamb
is the fattiest of the red meats.) It's very popular in
a variety of different countries' cuisines, but for
some reason has yet to gain a real following in the
US. This recipe is inspired by the curried goat roti
from Penny's Caribbean Cafe. While Penny
doesn't share her secrets, this tastes awfully
similar. Go get yourself some goat (or lamb if you
must) and try it out!

water (Caribbean Curried Goat)
Step 4: Add Everything Else.
Add the rest of the curry powder and stir things
about. When it starts to stick again add the water
and deglaze again. Pour in just enough water to
cover the meat, and leave a cup full of water near
the pot to refill as it boils off. You want the meat to
stay wet during the entire cooking process. 
In the picture below I've dropped in another
boullion cube because they didn't all make it in
with the onions. The details really don't matter too
much in this dish - it cooks long enough that
you've got LOTS of leeway to taste and modify..

:
water (Caribbean Curried Goat)

::
Step 1: 
All that sounded logic to me, and instead of
looking on the net how others did it I started
thinking how Bricobart would build such a device -
I mean a bbq, not an anti-troll gun. And since I
didn't want to spend any money I decided to build
it from scratch.The project failed in the first trial,
but ran like a small dog chased by a beeswarm in
the second. Enjoy my poor men's vertical
birdcage-based bbq!

milk (Birdcage-BQ)

?:
Step 3: Cooking.
Melt the butter and add 1/3 cup chopped onions. When the onions are
cooked add the bacon bits. Now add the potatoes back to the pot and mash
the potato mixture. I use a potato masher or you can just use a fork. You still
want it lumpy but the potatoes will help thicken the soup. Pour the milk and
mix well. Add salt and pepper and heat until it is a slow boil. Remove from
the stove and add the cheese and stir until melted. If you add the cheese too
early it will go to the bottom and burn

milk (Potato Soup for One)
Step 2: Meat Sauce
Preheat oven to 180 degrees celsius. Brown off the mince in a large pan,
depending on the fat content of the meat, you may or may not need a little
oil. Drain the mince onto some paper towel to remove any oil and then place
back in the pan. Add 4 slices of chopped prosciutto (or bacon/pancetta) and
fry for a few minutes. Add beef stock, tomato sauce, nutmeg, bayleaf and
oregano. Simmer for at least 30 minutes.

milk (Family Size Lasagne)
Step 1: Potato Prep + Seasonings
Make sure all potatoes are peeled and cut into chunks.
In a saucepan over medium heat, drop in the tablespoon of butter, the red
pepper flakes and Italian seasoning. Let the butter melt and stir the
seasonings around until they start smelling nice. :)

milk (Potato Soup)

Figure 5: Step-aware entity representations can be used to discover the changes occurred in the states of the
ingredients between two different recipe steps. The difference vector between two entities can then be added to
other entities to find their next states. For instance, in the first example, the difference vector encodes the chopping
action done on onions. In the second example, it encodes the pouring action done on the water. When these vectors
are added to the representations of raw tomatoes and milk, the three most likely next states capture the semantics
of state changes in an accurate manner.

state. The main difference between our approach
and these works is that by utilizing relational mem-
ory core units we also allow memories to interact
with each other during each update.

Perez and Liu (2017) showed that similar ideas
can be used to compile supporting memories in
tracking dialogue state. Wang et al. (2017) has
shown the importance of coreference signals for
reading comprehension task. More recently, Dhin-
gra et al. (2018) introduced a specialized recur-
rent layer which uses coreference annotations for
improving reading comprehension tasks. On lan-
guage modeling task, Ji et al. (2017) proposed a
language model which can explicitly incorporate
entities while dynamically updating their represen-
tations for a variety of tasks such as language mod-
eling, coreference resolution, and entity prediction.

Our work builds upon and contributes to the
growing literature on tracking states changes in
procedural text. Bosselut et al. (2018) presented
a neural model that can learn to explicitly predict
state changes of ingredients at different points in
a cooking recipe. Dalvi et al. (2018) proposed an-
other entity-aware model to track entity states in
scientific processes. Tandon et al. (2018) demon-

strated that the prediction quality can be boosted by
including hard and soft constraints to eliminate un-
likely or favor probable state changes. In a follow-
up work, Du et al. (2019) exploited the notion of
label consistency in training to enforce similar pre-
dictions in similar procedural contexts. Das et al.
(2019) proposed a model that dynamically con-
structs a knowledge graph while reading the proce-
dural text to track the ever-changing entities states.
As discussed in the introduction, however, these
previous methods use a strong inductive bias and
assume that state labels are present during training.
In our study, we deliberately focus on unlabeled
procedural data and ask the question: Can multi-
modality help to identify and provide insights to
understanding state changes.

6 Conclusion

We have presented a new neural architecture called
Procedural Reasoning Networks (PRN) for multi-
modal understanding of step-by-step instructions.
Our proposed model is based on the successful
BiDAF framework but also equipped with an ex-
plicit memory unit that provides an implicit mecha-
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nism to keep track of the changes in the states of
the entities over the course of the procedure. Our
experimental analysis on visual reasoning tasks in
the RecipeQA dataset shows that the model signifi-
cantly improves the results of the previous models,
indicating that it better understands the procedural
text and the accompanying images. Additionally,
we carefully analyze our results and find that our
approach learns meaningful dynamic representa-
tions of entities without any entity-level supervi-
sion. Although we achieve state-of-the-art results
on RecipeQA, clearly there is still room for im-
provement compared to human performance. We
also believe that the PRN architecture will be of
value to other visual and textual sequential reason-
ing tasks.
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Abstract

One of the goals of natural language under-
standing is to develop models that map sen-
tences into meaning representations. How-
ever, training such models requires expensive
annotation of complex structures, which hin-
ders their adoption. Learning to actively-learn
(LTAL) is a recent paradigm for reducing the
amount of labeled data by learning a policy
that selects which samples should be labeled.
In this work, we examine LTAL for learning
semantic representations, such as QA-SRL.
We show that even an oracle policy that is al-
lowed to pick examples that maximize perfor-
mance on the test set (and constitutes an up-
per bound on the potential of LTAL), does not
substantially improve performance compared
to a random policy. We investigate factors that
could explain this finding and show that a dis-
tinguishing characteristic of successful appli-
cations of LTAL is the interaction between op-
timization and the oracle policy selection pro-
cess. In successful applications of LTAL, the
examples selected by the oracle policy do not
substantially depend on the optimization pro-
cedure, while in our setup the stochastic nature
of optimization strongly affects the examples
selected by the oracle. We conclude that the
current applicability of LTAL for improving
data efficiency in learning semantic meaning
representations is limited.

1 Introduction

The task of mapping a natural language sentence
into a semantic representation, that is, a structure
that represents its meaning, is one of the core goals
of natural language processing. This goal has
led to the creation of many general-purpose for-
malisms for representing the structure of language,
such as semantic role labeling (SRL; Palmer et al.,
2005), semantic dependencies (SDP; Oepen et al.,
2014), abstract meaning representation (AMR;

Banarescu et al., 2013), universal conceptual cog-
nitive annotation (UCCA; Abend and Rappoport,
2013), question-answer driven SRL (QA-SRL; He
et al., 2015), and universal dependencies (Nivre
et al., 2016), as well as domain-specific semantic
representations for particular users in fields such
as biology (Kim et al., 2009; Nédellec et al., 2013;
Berant et al., 2014) and material science (Mysore
et al., 2017; Kim et al., 2019).

Currently, the dominant paradigm for building
models that predict such representations is super-
vised learning, which requires annotating thou-
sands of sentences with their correct structured
representation, usually by experts. This arduous
data collection is the main bottleneck for building
parsers for different users in new domains.

Past work has proposed directions for accelerat-
ing data collection and improving data efficiency
through multi-task learning across different rep-
resentations (Stanovsky and Dagan, 2018; Hersh-
covich et al., 2018), or having non-experts anno-
tate sentences in natural language (He et al., 2015,
2016). One of the classic and natural solutions for
reducing annotation costs is to use active learning,
an iterative procedure for selecting unlabeled ex-
amples which are most likely to improve the per-
formance of a model, and annotating them (Set-
tles, 2009).

Recently, learning to actively-learn (LTAL) has
been proposed (Fang et al., 2017; Bachman et al.,
2017; Liu et al., 2018), where the procedure for se-
lecting unlabeled examples is trained using meth-
ods from reinforcement and imitation learning. In
recent work by Liu et al. (2018), given a labeled
dataset from some domain, active learning is sim-
ulated on this dataset, and a policy is trained to
iteratively select the subset of examples that max-
imizes performance on a development set. Then,
this policy is used on a target domain to select un-
labeled examples for annotation. If the learned
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policy generalizes well, we can reduce the cost
of learning semantic representations. Liu et al.
(2018) and Vu et al. (2019) have shown that such
learned policies significantly reduce annotation
costs on both text classification and named entity
recognition (NER).

In this paper, we examine the potential of LTAL
for learning a semantic representation such as QA-
SRL. We propose an oracle setup that can be con-
sidered as an upper bound to what can be achieved
with a learned policy. Specifically, we use an or-
acle policy that is allowed to always pick a subset
of examples that maximizes its target metric on a
development set, which has the same distribution
as the test set. Surprisingly, we find that even this
powerful oracle policy does not substantially im-
prove performance compared to a policy that ran-
domly selects unlabeled examples on two seman-
tic tasks: QA-SRL span (argument) detection and
QA-SRL question (role) generation.

To elucidate this surprising finding, we perform
a thorough analysis, investigating various factors
that could negatively affect the oracle policy se-
lection process. We examine possible explanatory
factors including: (a) the search strategy in the
unlabeled data space (b) the procedure for train-
ing the QA-SRL model (c) the architecture of the
model and (d) the greedy nature of the selection
procedure. We find that for all factors, it is chal-
lenging to get consistent gains with an oracle pol-
icy over a random policy.

To further our understanding, we replicate the
experiments of Liu et al. (2018) on NER, and com-
pare the properties of a successful oracle policy in
NER to the less successful case of QA-SRL. We
find that optimization stochasticity negatively af-
fects the process of sample selection in QA-SRL;
different random seeds for the optimizer result in
different selected samples. We propose a mea-
sure for quantifying this effect, which can be used
to assess the potential of LTAL in new setups.

To conclude, in this work, we conduct a thor-
ough empirical investigation of LTAL for learn-
ing a semantic representation, and find that it is
difficult to substantially improve data efficiency
compared to standard supervised learning. Thus,
other approaches should be explored for the im-
portant goal of reducing annotation costs in build-
ing such models. Code for reproducing our exper-
iments is available at https://github.com/
koomri/LTAL_SR/.

2 Learning to Actively Learn

Classic pool-based active learning (Settles, 2009)
assumes access to a small labeled dataset Slab and
a large pool of unlabeled examples Sunlab for a tar-
get task. In each iteration, a heuristic is used to
select L unlabeled examples, which are sent to an-
notation and added to Slab. An example heuristic
is uncertainty sampling (Lewis and Gale, 1994),
which at each iteration chooses examples that the
current model is the least confident about.

LTAL proposes to replace the heuristic with a
learned policy πθ, parameterized by θ. At train-
ing time, the policy is trained by simulating active
learning on a labeled dataset and generating train-
ing data from the simulation. At test time, the pol-
icy is applied to select examples in a new domain.
Figure 1 and Algorithm 1 describe this data col-
lection procedure, on which we build our oracle
policy (§3).

In LTAL, we assume a labeled dataset D which
is partitioned into three disjoint sets: a small
labeled set Slab, a large set Sunlab that will be
treated as unlabeled, and an evaluation set Seval
that will be used to estimate the quality of mod-
els. Then, active learning is simulated for B it-
erations. In each iteration i, a model mi

φ, pa-
rameterized by φ, is first trained on the labeled
dataset. Then, K subsets {Cj}Kj=1 are randomly
sampled from Sunlab, and the model mi

φ is fine-
tuned on each candidate set, producing K mod-
els {mi

φj
}Kj=1. The performance of each model is

evaluated on Seval, yielding the scores {s(Cj)}Kj=1.
Let the candidate set with highest accuracy be Cit .
We can create training examples for πθ, where(Slab,Sunlab,m

i
φ,{s(Cj)}Kj=1) are the inputs andCit is the label. Then Cit is moved from Sunlab toSlab.

Simulating active learning is a computationally
expensive procedure. In each iteration we need to
train K models over Slab ∪ Cj . However, a trained
network can potentially lead to a policy that is bet-
ter than standard active learning heuristics.

3 An Oracle Active Learning Policy

Our goal is to examine the potential of LTAL for
learning a semantic representation such as QA-
SRL. Towards this goal, we investigate an oracle
policy that should be an upper bound for what can
be achieved with a learned policy πθ.

The oracle policy is allowed to use Algorithm 1
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Figure 1: A single iteration of LTAL, where examples
are sampled from Sunlab, trained with examples in Slab,
and performance on Seval is used to select examples to
annotate. See §2 for details.

Algorithm 1: Simulating active learning
Input: Slab,Sunlab,Seval

1 for i ∈ {1 . . .B} do
2 mi

φ ← Train(Slab)
3 Ci1, . . . ,CiK = SampleCandidates(Sunlab)
4 for j ∈ {1, . . . ,K} do
5 mi

φj
← FineTune(mi

φ,Slab⋃Cij)
6 sij ← Accuracy(mi

φj
,Seval)

7 t← argmax
j∈{1,...,K} s

i
j

8 CreateTrainEx((Slab,Sunlab,m
i
φ,{Cij}Kj=1),Cit)

9 Slab ← Slab⋃Cit , Sunlab ← Sunlab ∖ Cit
10 return Slab

at test time (it does not create training examples
for πθ, thus Line 8 is skipped). Put differently, the
oracle policy selects the set of unlabeled examples
that maximizes the target metric of our model on a
set sampled from the same distribution as the test
set. Therefore, the oracle policy enjoys extremely
favorable conditions compared to a trained policy,
and we expect it to provide an upper bound on
the performance of πθ. Despite these clear advan-
tages, we will show that an oracle policy struggles
to substantially improve performance compared to
a random policy.

While the oracle policy effectively “peeks” at
the label to make a decision, there are various fac-
tors that could explain the low performance of a
model trained under the oracle policy. We now list
several hypotheses, and in §5.4 and §6 method-
ologically examine whether they explain the em-
pirical results of LTAL.

• Training: The models mi
φj

are affected by the
training procedure in Lines 2 and 5 of Alg. 1.
Different training procedures affect the perfor-
mance of models trained with the oracle policy.

• Search space coverage: Training over all unla-
beled examples in each iteration is intractable, so
the oracle policy randomly samples K subsets,
each with L examples. BecauseK ⋅L << ∣Sunlab∣,
it is possible that randomly sampling these sets
will miss the more beneficial unlabeled exam-
ples. Moreover, the parameter L controls the di-
versity of candidate subsets, since as L increases
the similarity between the K different subsets
grows. Thus, the hyper-parameters K and L
might affect the outcome of the oracle policy.

• Model architecture: The model architecture
(e.g., number of parameters) can affect the ef-
ficacy of learning under the oracle policy.

• Stochasticity: The oracle policy chooses an un-
labeled set based on performance after training
with stochastic gradient descent. Differences in
performance between candidate sets might be re-
lated to this stochasticity, rather than to the ac-
tual value of the examples (especially when Slab
is small).

• Myopicity: The oracle policy chooses the setCij that maximizes its performance. However,
the success of LTAL depends on the sequence
of choices that are made. It is possible that the
greedy nature of this procedure results in sub-
optimal performance. Unfortunately, improving
search through beam search or similar measures
is intractable in this already computationally-
expensive procedure.
We now describe QA-SRL (He et al., 2015),

which is the focus of our investigation, and then
describe the experiments with the oracle policy.

4 QA-SRL Schema

QA-SRL was introduced by He et al. (2015) as
an open variant of the predefined role schema in
traditional SRL. QA-SRL replaces the predefined
set of roles with the notion of argument ques-
tions. These are natural language questions cen-
tered around a target predicate, where the answers
to the given question are its corresponding argu-
ments. For example, for the sentence “Elizabeth
Warren decided to run for president”, traditional
SRL will label “Elizabeth Warren” as ARG0 of
the run predicate (the agent of the predicate, or
the entity running in this case), while QA-SRL
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Elizabeth Warren announced her candidacy at a rally in Massachusetts.

Argument QA-SRL role PropBank role
Elizabeth Warren Who announced something? ARG0
her candidacy What did someone announce? ARG1
at a rally in Massachusetts Where did someone announce something? ARGM-LOC

Table 1: Example of QA-SRL versus traditional SRL annotation for a given input sentence (top). Each line
shows a single argument, and its role in QA-SRL (in question form) followed by its traditional SRL role, using
PropBank notation. Roles in QA-SRL have a structured open representation, while SRL assigns discrete roles
from a predefined set.

will assign the more subtle question “who might
run?”, indicating the uncertainty of this future
event. Questions are generated by assigning val-
ues to 7 pre-defined slots (where some of the slots
are potentially empty). See Table 1 for an example
QA-SRL annotation of a full sentence.

Recently, FitzGerald et al. (2018) demonstrated
the scalability of QA-SRL by crowdsourcing the
annotation of a large QA-SRL dataset, dubbed
QA-SRL bank 2.0. It consists of 250K QA pairs
over 64K sentences on three different domains
(Wikipedia, news, and science). Following, this
large dataset has enabled the development a neu-
ral model which breaks QA-SRL into a pipeline of
two tasks, given a target predicate in an input sen-
tence. First, a span detection algorithm identifies
arguments of the predicate as continuous spans in
the sentence (e.g., “Elizabeth Warren” in the pre-
vious example), then a question generation model
predicts an appropriate role question (e.g., “who
might run?”).

We find that QA-SRL is a good test-bed for
active learning of semantic representations, for
several key reasons: (1) it requires semantic un-
derstanding of the sentence, beyond syntactic or
surface-level features (e.g., identifying the factu-
ality of a given predicate), (2) adopting the formu-
lation of FitzGerald et al. (2018), it consists of two
semantic tasks, allowing us to test active learning
on both of them, (3) we can leverage the large QA-
SRL dataset to simulate active learning scenar-
ios, and lastly (4) QA-SRL’s scalability is attrac-
tive for the application of active learning policies,
as they may further reduce costs for researchers
working on developing specialized semantic rep-
resentations in low-resource domains (e.g., medi-
cal, biological, or educational domains).

5 Experimental Evaluation

We now perform a series of experiments compar-
ing the performance of an oracle policy to a ran-

dom policy. We describe the experimental settings
(§5.1), tasks and models (§5.2), present the main
results (§5.3), and conclude by investigating fac-
tors that might affect our empirical findings (§5.4).

5.1 Experimental Settings

We evaluate the potential of the oracle policy on
QA-SRL Bank 2.0 (FitzGerald et al., 2018). We
use the training set of the science domain as D,
randomly split it into Slab, Sunlab, and Seval. We
evaluate the success of a model mi

φ trained with
the oracle policy by periodically measuring per-
formance on the development set of the science
domain. Unless mentioned, all results are an aver-
age of 3 experiments, where a different split of D
was performed. Each experiment used K threads
of a 40-core 2.2GHz Xeon Silver 4114 machine.

We compare the results of a base oracle pol-
icy (BASEORACLE) corresponding to the best pol-
icy we were able to obtain using the architec-
ture from FitzGerald et al. (2018) to the following
baselines:
• RANDOM: One of the candidate sets Cij is chosen

at random and added to Slab.
• LONGEST: The set Cij with the maximal average

number of tokens per sentence is added to Slab.
• UNCERTAINTY: For each candidate set, we use
mi
φ to perform predictions over all of the sen-

tences in the set, and choose the set Cij that has
the maximal average entropy over the set of pre-
dictions.

5.2 Tasks and Models

We now describe the three tasks and correspond-
ing models in our analysis:

Span Detection: Here we detect spans that are
arguments of a predicate in a sentence (see Table
1). We start with a labeled set of size ∣Slab∣ = 50,
and select examples with the oracle policy for
B = 460 iterations. We set the number of candi-
date sets toK = 5, and the size of each set toL = 1,

455



thus the size of the final labeled set is 510 exam-
ples. We train the publicly available span detection
model released by FitzGerald et al. (2018), which
consumes as input a sentence x1, . . . , xn, where
xi is the concatenation of the embedding of the ith
word in the sentence and a learned embedding of
a binary indicator for whether this word is the tar-
get predicate. This input is fed into a multi-layer
encoder, producing a representation hi for every
token. Each span xi∶j is represented by concate-
nating the respective hidden states: sij = [hi;hj].
A fully connected network consumes the span rep-
resentation sij , and predicts a probability whether
the span is an argument or not.

To accelerate training, we reduce the number of
parameters to 488K by freezing the token embed-
dings, reducing the number of layers in the en-
coder, and by shrinking the dimension of both the
hidden representations and the binary predicate in-
dicator embedding. Following FitzGerald et al.
(2018), we use GLoVe embeddings (Pennington
et al., 2014).

Question Generation: We generate the ques-
tion (role) for a given predicate and correspond-
ing argument. We start with a labeled set of size∣Slab∣ = 500 and perform B = 250 iterations,
where in each iteration we sample K = 5 candi-
date sets each of size L = 10 (lower values were
intractable). Thus, the final size of Slab is 3,000
samples. We train the publicly available local
question generation model from FitzGerald et al.
(2018), where the learned argument representation
sij is used to independently predict each of the 7
question slots. We reduce the number of parame-
ters to 360K with the same modifications as in the
span detector model. As a metric for the quality
of question generation models, we use its official
metric exact match (EM), which reflects the per-
centage of predicted questions that are identical to
the ground truth questions.

Named Entity Recognition: To reproduce the
experiments of Liu et al. (2018) we run the oracle
policy on the CoNLL-2003 NER English dataset
(Sang and De Meulder, 2003), replicating the ex-
perimental settings described in Liu et al. (2018)
(as their code is not publicly available). We run
the oracle policy for B = 200 iterations, start-
ing from an empty Slab, and adding one exam-
ple (L = 1) from K = 5 candidate sets in each
iteration. We use a CRF sequence tagger from

AllenNLP (Gardner et al., 2018), and experiment
with two variants: (1) NER-MULTILANG: A Bi-
LSTM CRF model (20K parameters) with 40 di-
mensional multi-lingual word embeddings (Am-
mar et al., 2016), and (2) NER-LINEAR: A linear
CRF model which was originally used by Liu et al.
(2018).

5.3 Results
Span Detection: Table 2 shows F1 score (the of-
ficial metric) of the QA-SRL span detector mod-
els for different sizes of Slab for BASEORACLE

and the other baselines. Figure 2 (left) shows the
relative improvement of the baselines over RAN-
DOM. We observe that the maximal improvement
of BASEORACLE over RANDOM is 9% given 200
examples, but with larger Slab the improvement
drops to less than 5%. This is substantially less
than the improvements obtained by Liu et al.
(2018) on text classification and NER. Moreover,
LONGEST outperforms BASEORACLE in most of
the observed results. This shows that there exists
a selection strategy that is better than BASEOR-
ACLE, but it is not the one chosen by the oracle
policy.

Question Generation: To check whether the
previous result is specific to span detection, we
conduct the same experiment for question genera-
tion. However, training question generation mod-
els is slower compared to span detection and thus
we explore a smaller space of hyper-parameters.
Table 3 reports the EM scores achieved by BASE-
ORACLE and LONGEST, and Figure 2 (center)
shows the relative improvement. Here, the perfor-
mance of BASEORACLE is even worse compared
to span detection, as its maximal relative improve-
ment over RANDOM is at most 5%.

Named Entity Recognition: Figure 2 (right)
shows the relative improvement of NER-LINEAR

and NER-MULTILANG compared to RANDOM.
We observe that in NER-LINEAR, which is a
replication of Liu et al. (2018), the oracle policy
indeed obtains a large improvement over RAN-
DOM for various sizes of Slab, with at least 9.5%
relative improvement in performance. However, in
NER-MULTILANG the relative gains are smaller,
especially when the size of Slab is small.

5.4 Extended Experiments
Surprisingly, we observed in §5.3 that even an or-
acle policy, which is allowed to pick the examples
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# samples 100 150 200 250 300 350 400 450 500
BASEORACLE 42.7 49.2 52.9 54.2 56.6 57.4 58.4 59.5 59.9
RANDOM 42.8 47.2 48.3 52.4 53.3 56.1 57.0 57.5 58.5
LONGEST 44.1 49.1 53.0 55.5 56.4 57.4 58.7 58.6 60.0
UNCERTAINTY 42.8 47.0 50.1 51.3 52.2 54.4 55.1 55.6 56.9

Table 2: Span detection F1 on the development set for all models across different numbers of labeled examples.
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Figure 2: Relative improvement (in %) of different models compared to RANDOM on the development set. Note
that the range of the y-axis in NER is different from QA-SRL.

that maximize performance on samples from the
same distribution as the test set, does not substan-
tially improve performance over a random policy.
One possibility is that no active learning policy is
better than random. However, LONGEST outper-
formed BASEORACLE showing that the problem
is at least partially related to BASEORACLE itself.

We now examine the possible factors described
in §3 and investigate their interaction with the per-
formance of models trained with BASEORACLE.
All modifications were tested on span detection,
using the experimental settings described in §5.1.

Search space coverage We begin by examining
the effect of the parameters K and L on the oracle
policy. As K increases, we cover more of the un-
labeled data, but training time increases linearly.
As L increases, the subsets {Cj}Kj=1 become more
similar to one another due to the fact that we are
randomly mixing more examples from the unla-
beled data. On the other hand, when L is small,
the fine-tuning process is less affected by the can-
didate sets and more by Slab. In such case, it is
likely that the difference in scores is also affected
by stochasticity.

BASEORACLE uses K = 5, L = 1. We exam-
ine the performance of the oracle policy as these
values are increased in Table 4. We observe that
performance does not improve, and perhaps even
decreases for larger values of K. We hypothesize

that a large K increases the greediness of the pro-
cedure, and may result in selecting an example that
seems promising in the current iteration but is sub-
optimal in the long run, similar to large beam sizes
reducing performance in neural machine transla-
tion (Yang et al., 2018). A moderate K results in
a more random and possibly beneficial selection.

Increasing the size of each candidate set to L =
5 or 20 results in roughly similar performance to
L = 1. We hypothesize that there is a trade-off
where as L increases the similarity between the
different sets increases but training becomes more
stable and vice versa, and thus performance for
different L values does not vary substantially.

Training In Lines 2 and 5 of Alg. 1 we train onSlab and then fine-tune on the union Slab ∪ Cij un-
til sij does not significantly improve for 5 epochs.
It is possible that fine-tuning from a fixed model
reduces the efficacy of training, and training onSlab ∪ Cij from random weights will improve per-
formance. Of course, training from scratch will
substantially increase training time. We run an ex-
periment, termed INDEP., where Line 2 is skipped,
and in Line 5 we independently train each of the
candidate models from random weights. We find
that this modification does not achieve better re-
sults than BASEORACLE, possibly because train-
ing a model from scratch for each of the candidates
increases the stochasticity in the optimization.
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# samples 550 750 1000 1250 1500 1800 2100 2500 3000
BASEORACLE 18.9 21.7 24.4 26.4 27.1 28.4 29.1 30.6 31.1
RANDOM 18.1 21.4 23.7 25.2 27.3 27.9 28.6 29.9 31.3
LONGEST 17.8 20.9 22.8 25.7 27.1 28.0 29.1 30.4 31.3

Table 3: Question generation scores (exact match) on the development set across different numbers of labeled
examples.

# samples 110 150 210 290 370 510
RANDOM 45.2 47.2 50.5 53.1 55.8 58.5
BASEORACLE 43.3 49.2 52.9 56.8 57.8 60.3
K = 10 46.6 48.8 51.4 55.8 57.6 58.6
K = 20 44.8 47.4 52.1 55.9 — —
L = 5 44.2 48.3 52.5 55.5 58.0 59.8
L = 20 45.2 47.5 51.9 55.1 56.7 58.7
LOSS-SCORE 30.0 38.2 41.0 51.5 53.7 57.2
INDEP.* 40.9 44.6 50.1 54.1 — —
EPSILON-GREEDY-0.3 45.1 48.6 52.4 55.6 57.1 59.8
ORACLE-100 44.9 48.8 51.4 53.9 57.0 59.2
RANDOMSMALLMODEL 51.9 54.8 57.3 59.5 61.4 62.6
ORACLESMALLMODEL 53.8 56.6 58.9 60.3 61.5 63.3

Table 4: Span detection F1 scores on the development
set for different size of Slab. We highlight the best per-
forming policy for the standard span detector architec-
ture. (*) indicates that the results are for a single run.

In addition, we also experiment with fine-tuning
on Cj only, rather than Slab ∪Cj . As we expect, re-
sults are quite poor since the model uses only a few
examples for fine-tuning and forgets the examples
in the labeled set.

Lastly, we hypothesize that selecting a candi-
date set based on the target metric (F1 for span de-
tection) might not be sensitive enough and thus we
run an experiment, termed LOSS-SCORE, where
we select the set Cj that minimizes the loss on the
development set. We find that this modification
achieves lower results than RANDOM, especially
when Slab is small, reflecting the fact that the loss
is not perfectly correlated with our target metric.

Model Architecture In §5.3 we observed that
results on NER vary with the model architecture.
To see whether this phenomenon occurs also for
span detection we perform a modification to the
model – we reduce the number of parameters from
488K to 26K by reducing the hidden state size and
replacing GLoVe embeddings with multi-lingual
embeddings (Ammar et al., 2016). We then com-
pare an oracle policy (ORACLESMALLMODEL)
with a random policy (RANDOMSMALLMODEL).
Table 4 shows that while absolute F1 actually im-
proves in this setup, the oracle policy improves
performance compared to a random policy by no
more than 4%. Thus, contrary to NER, here archi-

tecture modifications do not expose an advantage
of the oracle policy compared to the random one.
We did not examine a simpler linear model for
span detection, in light of recent findings (Lowell
et al., 2019) that it is important to test LTAL with
state-of-the-art models, as performance is tied to
the specific model being trained.

Myopicity We hypothesized that greedily se-
lecting an example that maximizes performance in
a specific iteration might be suboptimal in the long
run. Because non-greedy selection strategies are
computationaly intractable, we perform the fol-
lowing two experiments.

First, we examine EPSILON-GREEDY-P, where
in each iteration the oracle policy selects the set Cj
that maximizes target performance with probabil-
ity 1 − p and randomly chooses a set with prob-
ability p. This is meant to check whether adding
random exploration to the oracle policy might pre-
vent it from getting stuck in local optima. We find
that when p = 0.3 its performance is comparable to
BASEORACLE while reducing the computational
costs.

Second, we observe that most of the gain of
BASEORACLE compared to RANDOM is in the be-
ginning of the procedure. Thus, we propose to use
BASEORACLE in the first b iterations, and then
transition to a random policy (termed ORACLE-
B). We run this variation with b = 100 and find
that it leads to similar performance.

To summarize, we have found that an ora-
cle policy only slightly improves performance for
QA-SRL span detection and question generation
compared to a random policy, and that improve-
ments in NER are also conditioned on the un-
derlying model. Our results echo recent findings
by Lowell et al. (2019), who have shown that gains
achieved by active learning are small and inconsis-
tent when modifying the model architecture.

We have examined multiple factors that might
affect the performance of models trained with
an oracle policy including the training procedure,
model architecture, and search procedure, and
have shown that in all of them the oracle policy
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struggles to improve over the random one. Thus, a
learned policy is even less likely to obtain mean-
ingful gains using LTAL.

In the next section we analyze the differences
between NER-LINEAR, where LTAL works
well, and BASEORACLE, in order to better under-
stand the underlying causes for this phenomenon.

6 When does LTAL Work?

A basic underlying assumption of active learning
(with or without a learned policy), is that some
samples in Sunlab are more informative for the
learning process than others. In LTAL, the infor-
mativeness of a candidate example set is defined
by the accuracy of a trained model, as evaluated onSeval (Line 6 in Alg. 1). Thus, for active learning to
work, the candidate set that is selected should not
be affected by the stochasticity of the training pro-
cess. Put differently, the ranking of the candidate
sets by the oracle policy should be consistent and
not be dramatically affected by the optimization.

To operationalize this intuition, we use Alg. 1,
but run the for-loop in Line 4 twice, using two dif-
ferent random seeds. Let Cit be the chosen or refer-
ence candidate set according to the first run of the
for-loop in iteration i. We can measure the con-
sistency of the optimization process by looking at
the ranking of the candidate sets Ci1, . . .CiK accord-
ing to the second fine-tuning, and computing the
mean reciprocal rank (MRR) with respect to the
reference candidate set Cit across all iterations:

MRR = 1

B

B∑
i=1

1

rank(Cit) , (1)

where rank(Cit) is the rank of Cit in the second
fine tuning step. The only difference between the
two fine-tuning procedures is the random seed.
Therefore, an MRR value that is close to 1 means
that the ranking of the candidates is mostly af-
fected by the quality of the samples, while a small
MRR hints that optimization plays a large role.
We prefer MRR to other correlation-based mea-
sures (such as Spearman’s rank-order correlation),
because the oracle is only affected by the candi-
date set that is ranked first. We can now examine
whether the MRR score correlates with whether
LTAL works or not.

We measure the MRR in 3 settings: (1)
NER-LINEAR, a linear CRF model for NER
which replicates the experimental settings in (Liu

et al., 2018), where LTAL works, (2) NER-
MULTILANG, a BiLSTM-CRF sequence tagger
from AllenNLP (Gardner et al., 2018) with 40 di-
mensional multi-lingual word embeddings of Am-
mar et al. (2016), and (3) BASEORACLE, the base-
line model for span detection task. In all experi-
ments the initial Slab was empty and B = 200, fol-
lowing the experimental settings in which LTAL
has shown good performance (Liu et al., 2018;
Fang et al., 2017; Vu et al., 2019). Since the MRR
might change as the size of Slab is increasing, we
compute and report MRR every 10 iterations.

Figure 3 (left) presents the MRR in the three
experiments. We observe that in NER-LINEAR

the MRR has a stable value of 1, while in NER-
MULTILANG and BASEORACLE the MRR value
is substantially lower, and closer to an MRR value
of a random selection (∼.46). The right side of Fig-
ure 3 shows that NER-LINEAR oracle policy out-
performs a random policy by a much larger mar-
gin, compared to the other 2 experiments.

These results show that the ranking in NER-
LINEAR is not affected by the stochasticity of op-
timization, which is expected given its underlying
convex loss function. On the other hand, the opti-
mization process in the other experiments is over
a non-convex loss function and a small Slab, and
thus optimization is more brittle. Interestingly,
we observe in Figure 3 that the gains of the ora-
cle policy in NER-LINEAR are higher than NER-
MULTILANG, although the task and the dataset
are exactly same in the two experiments. This
shows that the potential of LTAL is affected by
the model, where a more complex model leads to
smaller gains by LTAL.

We view our findings as a guideline for future
work: by tracking the MRR one can assess the po-
tential of LTAL at development time – when the
MRR is small, the potential is limited.

7 Related Work

Active learning has shown promising results on
various tasks. The commonly used uncertainty
criteria (Lewis and Catlett, 1994; Culotta and Mc-
Callum, 2005) is focused on selecting the sam-
ples on which the confidence of the model is
low. Among other notable approaches, in query
by committee (Seung et al., 1992) a disagreement
between a set of trained models on the prediction
of an example is used to select what samples to
label.
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Figure 3: MRR (on the left) and relative improvement (in %) of different models compared to RANDOM on the
development set.

In a large empirical study, Lowell et al. (2019)
have recently shown other limitations in active
learning. They investigate the performance of ac-
tive learning across NLP tasks and model archi-
tectures, and demonstrate that it does not achieve
consistent gains over supervised learning, mostly
because the collected samples are beneficial to a
specific model architecture, and does not yield bet-
ter results than random selection when switching
to a new architecture.

There has been little research regarding active
learning of semantic representations. Among the
relevant work, Siddhant and Lipton (2018) have
shown that uncertainty estimation using dropout
and Bayes-By-Backprop (Blundell et al., 2015)
achieves good results on the SRL formulation.
The improvements in performance due to LTAL
approaches on various tasks (Konyushkova et al.,
2017; Bachman et al., 2017; Fang et al., 2017;
Liu et al., 2018) has raised the question whether
learned policies can be applied also to the field of
learning semantic representations.

8 Conclusions

We presented the first experimentation with LTAL
techniques in learning parsers for semantic rep-
resentations. Surprisingly, we find that LTAL, a
learned method which was shown to be effective
for NER and document classification, does not do
significantly better than a random selection on two
semantic representation tasks within the QA-SRL
framework, even when given extremely favourable
conditions. We thoroughly analyze the factors

leading to this poor performance, and find that the
stochasticity in the model optimization negatively
affects the performance of LTAL. Finally, we pro-
pose a metric which can serve as an indicator for
whether LTAL will fare well for a given dataset
and model. Our results suggest that different ap-
proaches should be explored for the important task
of building semantic representation models.
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Abstract

Many natural languages assign grammatical
gender also to inanimate nouns in the lan-
guage. In such languages, words that relate
to the gender-marked nouns are inflected to
agree with the noun’s gender. We show that
this affects the word representations of inani-
mate nouns, resulting in nouns with the same
gender being closer to each other than nouns
with different gender. While “embedding de-
biasing” methods fail to remove the effect, we
demonstrate that a careful application of meth-
ods that neutralize grammatical gender signals
from the words’ context when training word
embeddings is effective in removing it. Fix-
ing the grammatical gender bias yields a posi-
tive effect on the quality of the resulting word
embeddings, both in monolingual and cross-
lingual settings. We note that successfully re-
moving gender signals, while achievable, is
not trivial to do and that a language-specific
morphological analyzer, together with careful
usage of it, are essential for achieving good re-
sults.

1 Introduction

Work on distributional word embeddings focuses
almost exclusively on English, or on cross-lingual
and language-agnostic techniques. However, lan-
guages are diverse and different languages ex-
hibit different linguistic phenomena, which may
interact with the English-centric embedding learn-
ing algorithms. In this work we look into one
such phenomenon—grammatical gender—and ex-
amine its effect on the learned representation.

Many languages have rich grammatical sys-
tems, that often include a complex gender system
as well (Corbett, 1991). Languages with grammat-
ical gender assign and morphologically mark gen-
der not only to animate nouns (which have biologi-
cal sex, e.g. man, woman, mother, father), but also

to inanimate nouns (e.g. dream, book). This gram-
matical gender assignment is mostly arbitrary: the
same inanimate concept can have different gender
in different languages. For example, a flower is
masculine in Italian (fiore) and feminine in Ger-
man (Blume).

Languages often maintain an agreement system
in which certain words agree on different morpho-
logical features with other words they relate to.
For example, English present-tense verbs are in-
flected to agree with their nominal subject on the
number feature. In other languages the agreement
system is more elaborate, and in particular verbs,
adjectives, determiners and other functions agree
with nouns on many features, including gender
(Corbett, 2006).1

Such grammatical agreement affects the distri-
butional environment of nouns, as nouns of differ-
ent gender become surrounded by different word
forms: feminine nouns co-occur more with the
feminine forms of words, while masculine nouns
with the masculine forms. For example, the Italian
word viaggio (“journey”-masc) will co-occur with
durato (“last”-masc) and lungo (“long”-masc),
while the word gita (“trip”-fem) will co-occur
with durata (“last”-fem) and lunga (“long”-fem).

Such changes in the distributional environment
may bias the learned distributional representations
of inanimate nouns. Indeed, we see that the major-
ity of the top-10 nearest neighbors of the word gita
in Italian (“trip”-fem) are feminine words. Also,
we notice that the word viaggio (“journey”-masc)
is not on the list, while in English, for comparison,
we can find journey in the top-10 nearest neigh-
bors of trip.

In this work, we are interested in investigating,
demonstrating and quantifying this effect beyond

1As the gender of nouns is fixed, the other elements are in-
flected to accommodate the agreement constraint. The nouns
are said to assign gender to the other words.
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the anecdotal level. We also explore methods for
removing such unwanted biases.

We demonstrate that both in Italian and in Ger-
man, the grammatical gender affects similarities
between word representations (using words from
SimLex-999 (Hill et al., 2015; Leviant and Re-
ichart, 2015)): pairs of nouns with similar gender
are closer to each other while pairs of nouns with
different gender are farther apart.

After quantifying the effect, we explore several
methods of reducing it. A popular choice would be
to simply lemmatize all the words prior to feed-
ing them to the embedding learning algorithm.
However, full lemmatization can be destructive, in
the sense that it will also remove morphological
distinction that we may want to keep. We thus
seek more surgical approaches. Interestingly, re-
cent embedding debiasing approaches (Bolukbasi
et al., 2016) do not work well. We instead look
for methods that attempt to neutralize the gender
signals from the training data. We find that such
methods are effective in reducing the effect, but
are also language specific and tricky to get right:
we rely on language specific morphological ana-
lyzers while carefully accounting for their pecu-
liarities and adjusting our use for each language.
We take this work as a reminder that (a) linguistic
resources such as lexicons and morphological an-
alyzers are still relevant and useful (cf. (Zalmout
and Habash, 2017)); (b) languages are diverse and
different languages require different treatments;
and (c) small details may matter a lot. In partic-
ular, existing tools and resources, either learned or
human curated, should not be trusted blindly, but
be carefuly adapted for the problem.

Finally, we show that reducing the effect of
grammatical agreement also has a positive ef-
fect on the quality of the resulting word repre-
sentations, both in monolingual and cross-lingual
settings. We conclude that grammatical gen-
der indeed has its imprints on the representa-
tions of inanimate nouns, and that this should be
taken into account when working with gender-
marking languages. Our code and debiased em-
beddings are available at https://github.
com/gonenhila/grammatical_gender.

2 Background and Related Work

Word Embeddings Word embeddings have be-
come an important component in many NLP mod-
els and are widely used for a vast range of down-

stream tasks. These models are based on the dis-
tributional hypothesis according to which words
that occur in the same contexts tend to have sim-
ilar meanings (Harris, 1954). Indeed, they aim to
create word representations that are derived from
their shared contexts, where the context of a word
is essentially the words in its proximity (be it ac-
cording to linear order in the sentence or according
to syntactic relations) (Mikolov et al., 2013; Pen-
nington et al., 2014; Levy and Goldberg, 2014).

Gender Biases in Word Embeddings Social
gender bias was demonstrated to be consistent
and pervasive across different word embeddings
(Caliskan et al., 2017). Bolukbasi et al. (2016)
show that using word embeddings for simple
analogies surfaces many gender stereotypes. In
addition, they define the gender bias of a word
w by its projection on the “gender direction”:
−→w · (−→he − −→she), assuming all vectors are normal-
ized. Positive bias stands for male-bias. For ex-
ample, the bias of manager is 0.06, while the bias
of nurse is −0.102.

Recently, some work has been done to reduce
social gender bias in word embeddings, both as
a post-processing step (Bolukbasi et al., 2016)
and as part of the training procedure (Zhao et al.,
2018). Bolukbasi et al. (2016) use a post-
processing debiasing method. Given a word em-
bedding matrix, they make changes to the word
vectors in order to reduce the gender bias for all
words that are not inherently gendered. They do
that by zeroing the gender projection of each word
on a predefined gender direction.3

In Zmigrod et al. (2019), the authors mitigate
social gender bias in gender marking languages
using counterfactual data augmentation. Gender-
marking languages add several interesting dimen-
sions to the story: words relating to animate con-
cepts such as “nurse” or “cat” may have both mas-
culine and feminine versions; the distributional
environment of a word contains many more ex-
plicit gender cues; and inanimate concepts are
also assigned gender. All of these factors inter-
act in complicated ways. In this work we focus on
purely grammatical gender—the gender that is as-
signed to inanimate nouns—and its effect on their
resulting representations.

2in English word2vec embeddings (Mikolov et al., 2013)
trained on Wikipedia.

3The gender direction is chosen to be the top principal
component (PC) of ten gender pair difference vectors.
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Grammatical Gender Bias in Word Embed-
dings Grammatical gender is manifested in a
similar way to social bias. For example, when
projected on the Italian gender direction

−→
lui − −→lei

(Italian equivalents of “he” and “she”), the word
“secolo” (century, masculine) has positive bias of
0.073, while the word “zuppa” (soup, feminine)
has negative bias of -0.079.4

We attribute this behavior to grammatical agree-
ment. Since the context of different-gender nouns
is expected to be very different because of the
agreement of the surrounding words, and since
the resulting representations are based on the con-
text of the word, we expect grammatical gender
to play a role in the representations—nouns with
the same gender are expected to be closer together
than nouns with different gender. For inanimate
nouns, this behavior is undesired.

Word Embeddings and Morphology Word
embeddings were shown to capture grammatical
and morphological properties. Avraham and Gold-
berg (2017) show that standard training of word
embeddings in Hebrew captures also morpholog-
ical properties and that using the lemmas when
composing the representations helps to better cap-
ture semantic similarities. Similarly, Basirat and
Tang (2018) show that typical grammatical fea-
tures are captured by Swedish word embeddings.

Cotterell et al. (2016) treat the sparsity problem
of morphologically rich languages in word embed-
ding. They present a Gaussian graphical model to
smooth representations of observed words and ex-
trapolate representations for unseen words using
morphological resources. With similar motivation,
Vulić et al. (2017) use morphological constraints
in English in order to pull inflectional forms of
the same word closer together and push deriva-
tional antonyms farther apart. Finally, Salama et
al. (2018) enhance Arabic word embeddings by
incorporating morphological annotations.

3 Grammatical Gender Affects Word
Representations

As a first step, we aim to verify that the repre-
sentation of inanimate nouns in gender-marking
languages is indeed affected by their grammatical
gender. Since English does not have grammatical
gender, a natural approach would be to use it as a
reference when measuring this phenomenon.

4in Italian word2vec embeddings (Mikolov et al., 2013)
trained on Wikipedia.

3.1 Inanimate Noun Pairs from SimLex-999

We take the inanimate noun portion of the
SimLex-999 dataset (Hill et al., 2015), a gold stan-
dard resource for evaluating distributional seman-
tic models. This dataset has an English version,
and also German and Italian versions (Leviant and
Reichart, 2015), and includes both similar and dis-
similar word pairs, with human-assigned similar-
ity judgments for each pair. This gives us 529 pairs
of English words, along with high quality trans-
lations to Italian and German. We manually as-
sociate the Italian and German words with their
grammatical gender.

3.2 Differences in Similarities

We divide the pairs in the gender-marking (GM)
language (be it German or Italian) into two sets:
(1) pairs of nouns that have the same gender in the
GM language; (2) pairs of nouns that have differ-
ent gender in the GM language. The respective
English pairs are split in the same way, according
to the gender of the nouns in the GM language.
Thus, we end up with two sets of pairs in a GM
language and their translations to English. Note
that the English sets are different when used as a
reference for German and Italian, since the split
depends on the gender in the respective language.

For each set we compute the average of the co-
sine similarity of all word pairs within it. If gen-
der plays a role in the representation of words,
and indeed brings same-gender words closer to-
gether while keeping different-gender words far-
ther apart, we expect to see a significant differ-
ence between the average similarity of the set of
same-gender nouns and the set of different-gender
nouns. As mentioned above, we compute these
averages for English as a reference, where we ex-
pect a low difference between the two sets. Ta-
ble 1 shows the results for Italian and German,
compared to English. Indeed, in both cases, the
difference between the average of the two sets is
much bigger.

3.3 Rank in Nearest Neighbor List

We take the same sets as before, and for each pair
in them we compute the rank of the second word in
the nearest neighbor list of the first word and vice
versa. For example, for the pair “parola” (word)
and “dizionario” (dictionary) in Italian, we com-
pute the rank of “dizionario” in the list of nearest
neighbor of “parola” and the rank of “parola” in
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Italian En German En
Same Gender 0.442 0.424 0.491 0.446
Different Gender 0.385 0.415 0.415 0.403
difference 0.057 0.009 0.076 0.043

Table 1: Averages of similarities of pairs with same
gender vs. different gender, along with the respective
averages in English. The last row (difference) is the
difference between the averages of the two sets.

the list of nearest neighbors of “dizionario”.
We then compare the average ranking in each

set, with English as the reference. If the gen-
der affects the similarities between words, we ex-
pect same-gender pairs to have lower average than
different-gender pairs (remember that the closest
word is at the lowest rank: 1). Table 2 shows the
results for Italian and German, compared to En-
glish. As expected, the average ranking of same-
gender pairs is significantly lower than that of
different-gender pairs, both for German and Ital-
ian, while the difference between the sets in En-
glish is much smaller.

4 Debiasing Methods do not Work

As mentioned above, grammatical gender bias
shares some aspects with social gender bias.
Keeping that in mind we first turn to use these
existing methods of gender-debiasing in English
word embeddings.

Bolukbasi’s method (2016) requires sets of
pairs that define the gender direction. For this we
use their predefined pairs, since we target gram-
matical gender bias, which we have demonstrated
to be similar to social gender bias. In addition, a
predefined set of inherently-neutral words is also
needed: these are the words that will be debiased
by the algorithm. As a first step, and in order to
estimate the feasibility of using this method for re-
ducing the grammatical gender bias, we use the set
of the inanimate nouns from SimLex-999 as our
set of inherently-neutral words.5

The algorithm worked well in the sense that
the bias of all inanimate nouns, when measured
by their projection on the gender dimension, be-
came zero. However, it also failed: the similarities
between the inanimate nouns themselves hardly
changed. Table 3 depicts the average similarities

5If this method doesn’t mitigate the bias we showed in
the previous section, then using inherently-neutral words ex-
tracted from the vocabulary automatically cannot possibly
work as well.

in Italian before and after debiasing.
This suggests that the information about the

gender is deeply embedded in the representation
and is not easy to remove in a post-processing
phase. Specifically, zeroing the projection of
a word’s vector on the gender direction is not
enough in order to remove all gender informa-
tion from the word’s representation. The fact that
similarities between words hardly change implies
that the projection on the gender direction is not
the only indication of gender. These results align
with the findings discussed in Gonen and Gold-
berg (2019).

We conclude that focusing on the projection of
vectors on the gender direction is not the right way
to go, and we opt to removing gender inflections
from the context before training. We describe this
in detail in the next section.

5 Removing Gender Inflection from the
Context

As mentioned above, words in the surroundings
of gender-marked nouns (e.g. articles, adjectives)
are often inflected to agree with the gender of the
noun they relate to. As we hypothesize that most
of the effect shown in Section 3 is caused by this
gender agreement, we try several schemes that aim
to remove gender signals from the context.

A straight-forward approach would be to lem-
matize all the words, which will remove all gender
signals from the context of a word. However, this
approach has two main downsides: 1) We would
like to have a representation for all the words in the
vocabulary, but changing also the target words will
reduce the vocabulary size and result with missing
words (we will no longer have different masculine
and feminine forms for any word); 2) Lemmati-
zation removes not only gender information, but
also additional information (such as number and
tense). While gender assignment is arguably arbi-
trary, and does not translate to an actual physical
property of inanimate nouns in reality, other prop-
erties that agree with the noun, such as number, do
hold in reality and signify actual properties of the
target noun, which we prefer to preserve.

Thus, a better approach would be to neutral-
ize gender signals from the context alone, keep-
ing the target words intact. This way we do not
change the resulting embedding vocabulary. This
can be done using: 1) lemmatizing all the context
words, where we lose additional information, as
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Italian German
Same-gender Diff-Gender difference Same-gender Diff-Gender difference

7–10
Og: 4884 Og: 12947 Og: 8063 Og: 5925 Og: 33604 Og: 27679
Db: 5523 Db: 7312 Db: 1789 Db: 7653 Db: 26071 Db: 18418
En: 6978 En: 2467 En: -4511 En: 4517 En: 8666 En: 4149

4–7
Og: 10954 Og: 15838 Og: 4884 Og: 19271 Og: 27256 Og: 7985
Db: 12037 Db: 12564 Db: 527 Db: 24845 Db: 22970 Db: -1875
En: 15891 En: 17782 En: 1891 En: 13282 En: 17649 En: 4367

0–4
Og: 23314 Og: 35783 Og: 12469 Og: 50983 Og: 85263 Og: 34280
Db: 26386 Db: 28067 Db: 1681 Db: 60603 Db: 79081 Db: 18478
En: 57278 En: 53053 En: -4225 En: 41509 En: 62929 En: 21420

Table 2: Averages of rankings of the words in same-gender pairs vs. different-gender pairs for Italian and German,
along with their differences. Og stands for the original embeddings, Db for the debiased embeddings, and En for
English. Each row presents the averages of pairs with the respective scores in SimLex-999 (0–4, 4–7, 7–10).

Italian
Original Debiased English Reduction

Same Gender 0.442 0.439 0.424 –
Different Gender 0.385 0.390 0.415 –
difference 0.057 0.049 0.009 16.67%

Table 3: Averages of similarities of pairs with same
vs. different gender in Italian compared to the debiased
version using Bolukbasi’s (2016) method. The last row
is the difference between the averages of the two sets.
“Reduction” stands for gap reduction after debiasing.

discussed above; 2) changing all the context words
to the same gender, while keeping all other fea-
tures of the words intact. Once the whole context
is of the same gender, we essentially lose the gen-
der information altogether as all nouns have simi-
lar context, regardless their gender.6

5.1 The proposed approaches

We experiment with both lemmatization of context
words and gender change of context words.

Lemmatization of Context Words When train-
ing word2vec (Mikolov et al., 2013), we use a
morphological analyzer to identify the lemmas of
words, and replace context words, but not target
words, with their lemmas.

Gender Change of Context Words When
training word2vec, we choose a gender (for exam-
ple, masculine) and change all context words to
that gender: each word that is identified as being
of a different gender (in Italian: feminine, in Ger-
man: feminine or neutral), is changed to its mascu-
line form. This is also done using a morphological

6Context nouns are also kept unchanged since nouns do
not agree with other nouns in their context, both in Italian
and in German. Notably, in German, we lose the noun-ness
information when we lowercase the corpus (as all nouns in
German begin with an uppercase letter).

analyzer: when we identify a non-masculine anal-
ysis, we search for a masculine one that shares the
same lemma and features.

In general, we found Italian to work better with
gender change, and German to work better with
lemmatization. We report full results in Section 6.

5.2 Challenges

While conceptually simple, fully neutralizing gen-
der information is more challenging than it ini-
tially appears, and requires careful attention to
“get right”. We describe some cases in which gen-
der information can leak.

Human Curator Choices The morphological
analyzer sometimes assigns different lemmas to an
opposite-gender pair, as a result of human curater
design choices. For example, in Italian, “delle”
is the feminine of “dei”, but they are assigned
the lemmas “della” and “del”, respectively. Such
cases leak gender signal in both cases of lemmati-
zation and gender change: (1) When lemmatizing,
each of the words gets a different lemma, mani-
festing the gender. (2) When changing the gender,
the opposite-gender form of the word is not iden-
tified as these words do not share lemma, and the
words stay unchanged.

This was very prominent in some high-
frequency Italian words, and dealt with by fixing
the analyzer: we identified all forms without a cor-
responding gendered-pair, manually aligned them,
and assigned each pair a shared and unique lemma.
This fix dramatically improved results when using
either lemmatization or gender change.

Gender-Ambiguous Word Forms Many word
forms have several morphological analyses, result-
ing in different lemmas. Inspecting this ambigu-
ity reveals two specific issues, in German and in
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Italian. First, many German words are ambigu-
ous with respect to gender. For example, “eine”
has a frequent feminine reading, but also a rare
masculine one. When changing words to mascu-
line, this word is identified as potentially mascu-
line, and kept intact. The presence of the context
word “eine” now leaks a feminine signal.7

Second, Italian has many cases of two words
with a similar set of possible lemmas but with dif-
ferent gender. For example, “usato” and “usata”
are masculine and feminine, respectively, and both
have “usare” and “usato” as possible lemmas. If
we select a consistent lemma for each word type,
and end up selecting a different lemma for each of
“usato” and “usata”, we again leak signal regard-
ing the original gender.

One solution would be to use context-sensitive
lemmatization, that chooses the correct analysis in
context. However, doing this accurately is still an
open problem. Our proposed solution is to ran-
domly sample a lemma per word token. This im-
proved lemmatization results in Italian by 25%.

Multiple Opposite-gender Forms for a Word
In some cases, a single word might have multi-
ple forms in the opposite gender. For example, the
Italian “delle” is the feminine form of both “dei”
and “degli”, depending on the phonetic context. In
this case, the former is much more common than
the latter. A naive approach that chooses to convert
“delle” to “degli” essentially keeps the feminine
signal for these cases: every instance of “delle”
changes to “delgli”, which marks masculine nouns
in much less common cases, while most mascu-
line nouns are usually accompanied with the more
common word “dei”.

Ideally, when changing the gender of a word,
we want to change a word by another word with
a similar frequency, otherwise, the gender signal
will be manifested in the frequency mismatch, as
in the example above.

We deal with this issue using the following
heuristic: when changing to masculine form (or
any other gender form), for each word we first find
all its possible masculine forms. Then, we check
the frequency of the original word in the corpus,
and choose the option with the closest frequency
to it. This indeed yields better results: when not
addressing the frequency issue in Italian, we are

7A possible solution would be to replace words with their
lemmas whenever we identify both feminine and masculine
analyses. This did not improve results in practice.

able to reduce the effect only by 35.42% (com-
pared to 91.67%, see Section 6 for more details).

6 Results

We experimented with different schemes for each
language, measuring their success at removing
gender bias of inanimate nouns with respect to En-
glish.8

For German, we found lemmatization to work
better than gender change. In Italian gender
change got better results. Specifically, changing
to feminine got much better results than changing
to masculine, probably due to less ambiguity when
changing to feminine in some very common arti-
cles (see full manual mapping in the Appendix),
resulting in fewer cases in which the gender sig-
nal leaks through the frequencies of the changed
words, as explained above. In addition, the man-
ual fixes to the lemmatizer were crucial to get sat-
isfying results for both methods.

While some of these findings depend on the spe-
cific morphological analyzer in use, the challenges
and issues we demonstrate are relevant in any case.

6.1 Reduction in Gender Bias

Differences in Similarities We repeat the exper-
iment in Section 3.2—computing the average of
pair similarities in each of the sets defined in Sec-
tion 3, this time with the embeddings trained af-
ter removing gender signal from the context (de-
biasing). Table 4 shows the results for Italian and
German, compared to English, both for the orig-
inal and the debiased embeddings (for each lan-
guage we show the results of the best performing
debiased embeddings). As expected, in both lan-
guages, the difference between the average of the
two sets with the debiased embeddings is much
lower. In Italian, we get a reduction of 91.67% of
the gap with respect to English. In German, we
get a reduction of 100%. Note that for both lan-
guages, the main change is in the set of different-
gender pairs, and not in the same-gender pairs.
This makes sense as same-gender words have sim-
ilar contexts both before and after our intervention,
but different-gender words have different contexts
before, but much more similar contexts after.

For comparison, in Italian we got 12.50% re-
duction when using the lemmatization scheme,

8We used state-of-the-art morphological analyzers for
both languages. Full implementation details can be found in
the appendix.
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(a) (b)

Figure 1: The new rank of a word in the nearest neighbor list of its paired word. In cyan (+) – pairs with the same
gender, in purple (·) – pairs with different gender. Most words with same-gender are located above y = x (were
drifted apart), while most words with different-gender are located below it (got closer together).

Italian German
Original Debiased English Reduction Original Debiased English Reduction

Same Gender 0.442 0.434 0.424 – 0.491 0.478 0.446 –
Different Gender 0.385 0.421 0.415 – 0.415 0.435 0.403 –

difference 0.057 0.013 0.009 91.67% 0.076 0.043 0.043 100%

Table 4: Averages of similarities of pairs with same vs. different gender in Italian and German compared to
English. The last row is the difference between the averages of the two sets. “Reduction” stands for gap reduction
when removing gender signals from the context.

and 68.75% reduction when lemmatizing with the
addition of the manual mapping. For German, the
best result using gender change was a reduction of
48.48%, achieved by changing to neutral.

Rank in Nearest Neighbor List We repeat the
experiment shown in Section 3.3—for each pair
we compute the rank of the second word in the
nearest neighbor list of the first word and vice
versa. Then we compare the average ranking in
each of the defined sets. Table 2 shows the re-
sults for Italian and German, both for the original
and the debiased embeddings. As we expect, the
difference between the average ranking of the two
sets drops significantly for both languages.

In order to get a better picture of how the rank-
ings of the different words change as a result of
the gender signal removal, we take all pairs (and
the inverted pairs). For each pair we plot the new
rank of the second word in the nearest neighbors
list of the first word as a function of its origi-
nal rank before debiasing. Points above y = x
are of words that got a higher rank (lower in the
list, farther from the first word), while points be-
low this line are of words that got a lower rank
(higher in the list, closer to the first word). Fig-
ure 1 shows these plots for Italian and German.
As expected, most words of same-gender pairs are

located above the line (were drifted apart), while
most words of different-gender pairs are located
below the line (got closer together).

6.2 Improvement in Word Similarities

Qualitative Evaluation As a qualitative evalu-
ation, we take several words for SimLex-999 and
look at their top-10 nearest neighbor lists, before
and after applying our method. In Table 5 we
show the top-10 lists for the words vaso (“jar”-
masculine) in Italian, and welt (“world”-feminine)
in German. It is evident that the words that are
added to the list, are better correlated with the tar-
get word than those that are removed. Two addi-
tional words appear in the Appendix.

Evaluation on Simlex and WordSim-353 We
evaluate the quality of the grammatical-gender-
neutralized embeddings using two datasets for
each language: SimLex-999 (Hill et al., 2015;
Leviant and Reichart, 2015) and WordSim-353
(Finkelstein et al., 2002; Leviant and Reichart,
2015). Table 6 shows the results for Italian and
German for both datasets, compared to the orig-
inal embeddings. In both cases, the new embed-
dings perform better than the original ones.

Cross-lingual Word Embeddings Studies in
language and cognition suggest that humans share
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Italian German
vaso (jar-masculine) welt (world-feminine)

Orig Debias Orig Debias
coccio vasi welt” europas
recipiente ciotola europas welt”
otre bacinella (basin) scheibenwelt scheibenwelt
cinerario recipiente hässlichsten universum (universe)

vasetto coccio erde (earth) menschheitsgeschichte (human history)

bacile (basin) cinerario weltgeschichte (world history) hässlichsten
kantharos otre klügste (wisest) menschheit (mankind)

vasi vasetto klügsten (wisest) schwarzafrikas
vassoio (tray) brocca (pitcher) schwarzafrikas parallelwelten (parallel worlds)

coperchio (cover) scodella (bowl) lustigsten (funniest) ulldart

Table 5: Examples of top-10 nearest neighbor lists for words in Italian and in German, before and after debiasing.
In red (italic) are words that were removed from the list, and in blue (underlined) are words that were added to it.
Translations to English (Google Translate) for the changed words are in parenthesis, when different from source.

Italian German
Orig Debias Orig Debias

SimLex 0.280 0.288 0.343 0.356
WordSim 0.548 0.577 0.547 0.553

Table 6: Results on SimLex-999 and WordSim-353, in
Italian and German, before and after debiasing.

a common semantic space, regardless of their na-
tive language (Youn et al., 2016). To the extent
that embeddings capture the semantics of words,
we can thus expect embedding spaces to have a
similar structure across languages. Youn’s state-
ment concerns concepts and not words, however,
and concepts can surface in many different forms
in language, which interferes with how well em-
bedding spaces align across languages (Søgaard
et al., 2018). Thus, we expect grammatical gen-
der to have a negative impact on alignability.

We explore this matter through the task of cross-
lingual embedding alignment, wherein a cross-
lingual embedding space is learned through an
alignment of independently pre-trained monolin-
gual embeddings for a directed pair of languages.
The quality of cross-lingual embeddings learned
this way can be evaluated intrinsically on the
task of bilingual dictionary induction (BDI). BDI
queries the cross-lingual embedding space with
a seed of words in one language, retrieves their
counterparts among the words in the other lan-
guage9 and evaluates the precision of the produced
translations against a set of gold standard targets.
We carry out experiments using the supervised
variant of the MUSE embedding alignment sys-

9This is done by minimizing a distance metric, most com-
monly, CSLS (Conneau et al., 2018).

Italian German
→ En En→ → En En→

Orig 58.73 59.68 47.58 50.48
Debias 60.03 60.96 47.89 51.76

Table 7: Cross-lingual embedding alignment in Italian
and in German, before and after debiasing.

tem (Conneau et al., 2018) and report results on
the inanimate portion of SimLex-999. We train
a cross-lingual embedding alignment between En-
glish and either German or Italian, using the orig-
inal and the debiased embeddings for these two
languages. The results reported in Table 7 show
that precision on BDI indeed increases as a result
of the reduced effect of grammatical gender on the
embeddings for German and Italian, i.e. that the
embeddings spaces can be aligned better with the
debiased embeddings.

7 Conclusion

We show that grammatical gender impacts word
embeddings of inanimate nouns, both in Italian
and in German, causing the similarities between
words to change according to having same or dif-
ferent gender: the representations of same-gender
words are closer together than representations of
different-gender words.

We show that this effect can be almost com-
pletely removed when neutralizing gender signals
in the context during training of the word em-
beddings. While most works in our field nowa-
days try to be language-independent, this is not
always the right way to go: successfully remov-
ing those gender signals is not trivial to do and
a language-specific morphological analyzer, to-
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gether with careful usage of it, are essential for
achieving good results.10

In addition, this work serves as a reminder that
languages other than English have different prop-
erties that are rarely dealt with when processing
English. These aspects should be taken into ac-
count when dealing with morphologically reach
languages, as not all models and algorithms for
English can transfer directly to other languages.
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Abstract
Active learning (AL) is a technique for reduc-
ing manual annotation effort during the an-
notation of training data for machine learn-
ing classifiers. For NLP tasks, pool-based and
stream-based sampling techniques have been
used to select new instances for AL while gen-
erating new, artificial instances via Member-
ship Query Synthesis was, up to know, con-
sidered to be infeasible for NLP problems.
We present the first successful attempt to use
Membership Query Synthesis for generating
AL queries for natural language processing,
using Variational Autoencoders for query gen-
eration. We evaluate our approach in a text
classification task and demonstrate that query
synthesis shows competitive performance to
pool-based AL strategies while substantially
reducing annotation time.

1 Introduction

Active learning (AL) has the potential to sub-
stantially reduce the amount of labeled instances
needed to reach a certain classifier performance
in supervised machine learning. It works by se-
lecting new instances that are highly informative
for the classifier, so that comparable classifica-
tion accuracies can be obtained on a much smaller
training set. AL strategies can be categorized into
pool-based sampling, stream-based sampling and
Membership Query Synthesis (MQS). The first
two strategies sample new instances either from
a data pool or from a stream of data. The third,
MQS, generates artificial AL instances from the
region of uncertainty of the classifier. While it is
known that MQS can reduce the predictive error
rate more quickly than pool-based sampling (Ling
and Du, 2008), so far it has not been used for NLP
tasks because artificially created textual instances
are uninterpretable for human annotators.

We provide proof of concept that generating
highly informative artificial training instances for

text classification is feasible. We use Variational
Autoencoders (VAE) (Kingma and Welling, 2013)
to learn representations from unlabeled text in an
unsupervised fashion by encoding individual sen-
tences as low-dimensional vectors in latent space.
In addition to mapping input sequences into la-
tent space, the VAE can also learn to generate new
instances from this space. We utilize these abili-
ties to generate new examples for active learning
from a region in latent space where the classifier is
most uncertain, and hand them over to the annota-
tor who then provides labels for the newly created
instances.

We test our approach in a text classification
setup with a real human annotator in the loop. Our
experiments show that query synthesis for NLP
is not only feasible but can outperform other AL
strategies in a sentiment classification task with re-
spect to annotation time.

The paper is structured as follows. We first re-
view related work (§2) and introduce a formal de-
scription of the problem (§3). Then we describe
our approach (§4), present the experiments (§5)
and analyze the results (§6). We discuss limita-
tions and possible further experiments (§7) and fi-
nally conclude our findings (§8).

2 Related work

Membership query synthesis was introduced by
Angluin (1988) and describes a setting where the
model generates new queries instead of selecting
existing ones. Early experiments in image pro-
cessing (Lang and Baum, 1992), however, showed
that the generated queries are hard to interpret
by human annotators. This holds true even for
recent approaches using Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) to
create uncertain instances (Zhu and Bento, 2017;
Huijser and van Gemert, 2017). In contrast to im-

472



age processing, discrete domains like natural lan-
guage do not exhibit a direct mapping from feature
to instance space. Strategies that circumvent this
problem include the search for nearest (observed)
neighbors in feature space (Wang et al., 2015) or
crafting queries by switching words (Awasthi and
Kanade, 2012).

Sentence representation learning (Kiros et al.,
2015; Conneau et al., 2017; Subramanian et al.,
2018; Wang et al., 2019) in combination with new
methods for semi-supervised learning (Kingma
et al., 2014; Hu et al., 2017; Xu et al., 2017;
Odena, 2016; Radford et al., 2017) have shown
to improve classification tasks by leveraging un-
labeled text. Methods based on deep generative
models like GANs or VAEs are able to generate
sentences from any point in representation space.
Mehrjou et al. (2018) use VAEs to learn structural
information from unlabeled data and use it as an
additional criterion in conventional active learning
to make it more robust against outliers and noise.

We use VAEs to generate AL queries from spe-
cific regions in latent space. To ensure that the
generated instances are not only informative for
the ML classifier but also meaningful for the hu-
man annotator, we adapt the approach of Wang
et al. (2015) (see §3.1). In contrast to their work,
however, we do not sample existing instances from
the pool that are similar to the synthetic ones but
directly generate the new queries. To our best
knowledge, our work is the first to present posi-
tive results for Membership Query Synthesis for
text classification.

3 Background

3.1 Query Synthesis and Nearest Neighbors

Arbitrary points in feature space are hard to in-
terpret for humans. To evade this problem, Wang
et al. (2015) use the nearest neighbor in a pool of
unlabeled data as a representative which is then
presented to the human annotator. To identify un-
certain points along the separating hyperplane of
an SVM the following approach is proposed. First
the location of the decision boundary is approxi-
mated by a binary-search like procedure. An ini-
tial Opposite Pair (z+, z−) is formed by centroid
c+ and centroid c− of positive and negative la-
beled instances respectively. The mid point zs
is queried and, depending on the annotated label
l, replaces the corresponding zl. This step is re-
peated b times, reducing the distance between the

Figure 1: a) finds Opposite Pair close to the deci-
sion boundary. b) identify points close to the decision
boundary.

initial centroids by a factor of 2b. Figure 1a depicts
this process. Then the mid-perpendicular vector of
the Opposite Pair is calculated by using the Gram-
Schmidt process to orthogonalize a random vec-
tor zr and normalize its magnitude to λ. The new
point zs = zr + (z+ + z−)/2 is close to the deci-
sion boundary and queried for its class. Depend-
ing on the receive label the point zs replaces z+ or
z− in the Opposite Pair. This process (Figure 1b)
is repeated until n− b points along the separating
hyperplane are queried.

3.2 VAE for Sentence Generation

The Variational Autoencoder is a generative model
first introduced by Kingma and Welling (2013).
Like other autoencoders, VAEs learn a mapping
qθ(z|x) from high dimensional input x to a low di-
mensional latent variable z. Instead of doing this
in a deterministic way, the encoder learns the pa-
rameters of e.g. a normal distribution. The de-
sired effect is that each area in the latent space has
a semantic meaning and thus samples from p(z)
can be decoded in a meaningful way. The decoder
pθ(x|z), also referred to as dec(z), is trained to re-
construct the input x based on the latent variable
z. In order to approximate θ via gradient descent
the reparametrization trick (Kingma and Welling,
2013) was introduced. This trick allows the gradi-
ent to flow through non-deterministic z by separat-
ing the discrete sampling operation. Let µ and σ
be deterministic outputs of the encoder qθ(µ, σ|x):

z = µ+ σ � ε where ε ∼ N (0, I) (1)

and � is the element-wise product. To prevent the
model from pushing σ close to 0 and thus falling
back to a deterministic autoencoder, the objective
is extended by the Kullback-Leibler (KL) diver-
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gence between prior p(z) and q(z|x):
L(θ;x) = −KL(qθ(z|x)||p(z))

+Eqθ(z|x)[logpθ(x|z)].
(2)

Bowman et al. (2016) apply this idea for sen-
tence generation using an RNN as encoder and de-
coder. They observe that a strong auto-regressive
language modeling ability in the decoder reduces
the information stored in the latent variable, right
up to a complete collapse of the KL term. They ex-
plore different techniques to weaken the decoder,
like word dropout or KL term weight annealing, as
possible solutions. This guarantees a semantically
rich latent variable and good sentence generation
ability. Below, we describe how to combine both
techniques in order to generate meaningful queries
for Membership Query Synthesis.

4 Active Learning Schedule

We train a Variational Autoencoder on an unla-
beled corpus of sentences. The text classification
task is performed on a binary sentiment dataset
split into training, development and test set. As de-
picted in Figure 2, the sentences in the classifica-
tion dataset are vectorized using the VAE encoder
which generates the latent variable z for each sen-
tence x. This is done deterministically by drop-
ping the σ term in Equation 1, further referred to
as z = enc(x).

Next, a Learner is trained to fit a linear hyper-
plane to separate the positive from the negative in-
stances. We use the procedure described in §3.1
to select new query points for AL. But instead of
searching for the nearest neighbor in the pool, we
decode the point x = dec(z) into a human read-
able sentence which is then handed over to the hu-
man annotator. The annotator assigns a binary la-
bel to the instance and the next query point is cal-
culated.

One important parameter for active learning de-
termines how many new instances are to be se-
lected in each AL iteration. Wang et al. (2015)
use a predefined number of instances to be se-
lected along the hyperplane. Because we know
that a Gaussian prior is imposed on the fea-
ture space, we instead stop the selection process
when the magnitude of zs exceeds the expectation.
The expected distance of a point sampled from
the k-dimensional Gaussian prior to the origin is√
E[χ2

k] =
√
k. Then the schedule restarts, learn-

ing a new decision boundary, and ultimately ter-

Figure 2: a) Instances in corpus are encoded to latent
space. b) Learner fits a hyperplane to separate points.
c) Query points selected by method described in Fig.1.
Decoder translates point in latent space to human read-
able sequence. Annotator chooses label for instance.

minates when the annotation budget is exhausted.
We refer to this method as gen wang. When near-
est neighbor search is used instead, we refer to the
selection method as nn wang.

In addition, we explore a method, gen uniform,
where step b) in Figure 1 is reduced to generating
only one midperpendicular vector with a magni-
tude drawn from a uniform distribution. In each
iteration this vector will point to a random direc-
tion with a different magnitude, selecting diverse
points close to the hyperplane. The maximum
magnitude is set in a way that the resulting point
is not further away than

√
k from the origin. Simi-

lar to above we refer to this method as nn uniform
when using nearest neighbor search. The number
of possible directions along the hyperplane grows
with the size of the latent variable. With this mod-
ification we expect to explore more diverse points
than following the same direction for several steps.

5 Experiments

In this section we want to explore how the abil-
ity to generate human readable sentences from ar-
bitrary points in the feature space affects active
learning performance. We compare our approach
to a number of baselines (§5.3), where in each ex-
periment we select/generate 500 instances, present
them to a human annotator to get a label and eval-
uate the performance of each setting in a senti-
ment classification task. We start the active learn-
ing process with two utterances in the seed set,
namely ’good movie’ and ’bad movie’. The clas-
sifier is trained to separate instances with positive
sentiment from negative ones. The human anno-
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Parameter Value
vocabulary size 20.000
RNN cell size 512
embedding size 512
latent variable size 50
dropout 0.3
dropword 0.5
learning rate 0.005
epochs 20

Table 1: Training parameters for the Variational Au-
toencoder.

tator can skip neutral or uninterpretable instances.
These skip actions also count towards the annota-
tion budget.

5.1 Data

The data used in our experiments comes from two
sources, (i) the SST2 (Socher et al., 2013) and (ii)
SAR14 (Nguyen et al., 2014). We limit sentence
length to a maximum of 15 words. This is moti-
vated by lower training times and the tendency of
vanilla VAEs not to perform well on longer sen-
tences (Shen et al., 2019).

Sentiment task SST2 (Socher et al., 2013) is
a binary sentiment classification dataset compiled
from rottentomatoes.com. As we only consider
sentences with up to 15 words, the sizes of the
training, development and test sets are 3103, 380
and 814 instances, respectively.

Sentence pool The active learning pool consists
of 1.2M unique sentences from the SAR14 dataset
(Nguyen et al., 2014). SAR14 contains 234k
movie reviews from IMDB. The data is annotated
on review level, which prevents us from remov-
ing single neutral sentences. Although the datasets
stem from different sources, there is a small over-
lap. These sentences are removed from the pool.

5.2 Training

Variational Autoencoder Table 1 lists the pa-
rameter used for the VAE. For training we limit
the vocabulary of the VAE to the top 20k words.
Encoder and decoder RNN have layer normal-
ized (Ba et al., 2016) LSTM cells (Hochreiter and
Schmidhuber, 1997) with size 512. As additional
regularization we set weight dropout to 0.3 (Sri-
vastava et al., 2014). Input embeddings are also
of size 512, which allows us to share the embed-

ding weights with the softmax weights of the out-
put layer (Press and Wolf, 2016). To prevent pos-
terior collapse we use logistic annealing of the KL
term weight and weaken the decoder by apply-
ing word dropout with probability 0.5 (Bowman
et al., 2016). The model is trained using the Adam
optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.005. Once the KL term weight
is close to 1, the learning weight is linearly de-
creased to 0. The training stops after 20 epochs
and the latent variable z has k = 50 dimensions.
The trained VAE achieves a reconstruction loss of
45.3 and KL divergence of 13.2 on the SST2 train-
ing set.

Learner The Learner is an SVM1 with linear
kernel. Each instance is represented as the latent
variable z learned by the autoencoder. The latent
variable is a vector with 50 dimensions and the
SVM is trained on this representation. We cal-
culate classification performance on the reduced
SST2 test set and report F1-scores.

Generator The generator is the decoder of the
VAE described above. Once a point z in feature
space is selected, it is used as the input of the
decoder x = dec(z) which generates the human
readable sentence x in an autoregressive way.

5.3 Baselines
We compare our approach to Membership Query
Synthesis for text classification to four baselines.
The first baseline selects instances from the pool
by random choice. The least confidence base-
line computes the distance of the instances in the
pool to the separating hyperplane and chooses
the one closest to the hyperplane. The third and
fourth baseline follow the procedure described in
§4 but search for the nearest neighbor (nn uniform,
nn wang) instead of synthesising the exact query
point. Nearest neighbor is defined by the minimal
euclidean distance between the query point and the
latent representation of the pool instance.

5.4 Annotation
The instances selected or generated by any model
or baseline are annotated manually by one human
coder.2 Although the pool data has labels on the
review level, we do not use these labels in our ex-
periments. Positive reviews can include negative

1https://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html

2The first author of this paper.
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Figure 3: F1-Score as a function of annotation steps
(including skipped queries). Averaged over 3 runs.

sentences and vice versa. This means that using
document-level labels would introduce noise and
might impair the baselines. During each of the
three experimental runs, all models and baselines
are annotated simultaneously by the same person.
The annotator is presented with one instance at a
time and has no information which of the models
has produced each particular instance. Once a la-
bel is selected, it is transmitted to the correspond-
ing model and triggers the selection/generation of
the next instance. Thus, at any given time there is
one unlabeled instance for each model or baseline.
From this set of unlabeled instances, one instance
is chosen randomly and presented to the annota-
tor. This procedure is repeated until 500 instances
are labeled for each model or baseline. Hiding the
instance source from the annotator is intended to
prevent any bias during the annotation process.

6 Results and Analysis

6.1 Classification Performance
F-scores as a function of annotated instances
Figure 3 shows learning curves for the different
AL strategies and baselines as a function of the
number of annotation instances added to the train-
ing data. The random and least conf baselines
perform reasonably well. Least conf struggles
in the beginning, likely attributed to the minimal
seed set. Once enough instances are labeled it
catches up. Gen uniform has a strong start but,
after around 200 instances, is outperformed by the
nearest neighbor approaches which yield the high-
est F1-scores. Among the nearest neighbor ap-
proaches, the uniform schedule ranks better than
wang. The same behaviour is observed for the
generation methods, although gen wang produces

Figure 4: F1-scores as a function of annotation time.
Results averaged over 3 runs.

the worst results overall. Overall, gen uniform is
competitive with respect to F1-scores and shows
that sentences generated from points in the feature
space are informative and useful for training a text
classifier.

F-scores as a function of annotation time AL
simulations have often been criticized for report-
ing unrealistic results, based merely on the number
of annotated instances (see, e.g., Settles (2009),
pp. 37 ff.). It is well known, however, that the
number of annotated instances is often not a good
predictor for the real annotation costs. AL strate-
gies tend to select the hard nuts for human anno-
tators and it is not unreasonable to assume that the
annotation of N instances in an AL setup might
take longer and thus might be more expensive
than annotating the same number of randomly se-
lected instances. Therefore, we also show learning
curves as a function of annotation time (Figure 4).

The results show a clear advantage for the gen-
eration models. The reduction in annotation time
is due to shorter query length and less neutral or
noisy instances, as shown in Table 2. This speeds
up the annotation by a significant margin while
providing the Learner with informative instances,
despite their short length.

Figure 5 shows that the length of generated in-
stances increase over time and further exploration
also hints that the generated length is correlated
with the length of the sentences in the seed set.

As listed in Table 2, the random baseline reveals
that 36.8 percent of sentences in the pool are neu-
tral/artifacts and positive sentences outweigh neg-
ative ones by a factor of 2.6. This means that
random sampling results in unbalanced datasets
with far more positive examples. Our generation
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Figure 5: Development of average length of se-
lected/generated instances as more instances are anno-
tated.

method does not show this disadvantage. In con-
trast, the generated instances maintain a more bal-
anced distribution of class labels and are less likely
to be skipped. These are indicators that the se-
lected points are close to the hyperplane and the
VAE is able to generate coherent and highly infor-
mative sentences from them.

6.2 Computational Complexity

To assure a seamless annotation procedure, the
supply of new instances has to be reasonably fast.
The generation and selection of the next instance
is dependant on the label of the previous instance.
Because of this, there is no way to pre-fetch the
next instance in the background and the annotator
has to wait for the selection/generation process to
finish before the next instance is presented for an-
notation. However, the runtime for pool-based AL
methods is increasing with the pool’s size. In con-
trast, the generation method presented in this work
does not have this limitation.

The least confidence baseline has a complexity
of O(n) where n is the number of instances in the
pool. The complexity of nearest neighbor search
without any approximation techniques like pre-
clustering is also O(n). Query generation from
an exact point with the decoder has a complexity
ofO(m) wherem is the length of the sentence and
n >> m. Because sentences have a natural length
limit and in this work are capped to 15 words, one
could argue that the complexity is O(1).

6.3 Generated Instances

Table 3 shows examples of generated instances us-
ing the gen uniform method. Example 1-6 show

% skips M sec M len p/n
gen uniform 28.1 1.4 4 1.7
gen wang 20.9 1.9 5 1.2
nn uniform 34.2 4.1 9 1.9
nn wang 35.8 4.1 10 2.4
least conf 39.0 4.2 10 2.1
random 36.8 4.1 9 2.6

Table 2: Percentage of skips (neutral or noisy sen-
tences); Median annotation time in seconds; Median
number of words in query; Ratio of positive to negative
labels.

prototypical positive and negative instances. Ex-
ample 7 is ambiguous, caused by the decoder gen-
erating an unknown (UNK) token at the position
where one would normally expect an evaluative
adjective. We see this as an indicator that the
point is positioned close to the hyperplane and
thus the sentiment of the latent variable is ambigu-
ous. We also observe instances with UNK token
which still express a sentiment, as seen in Exam-
ple 8 an 9. This can be interpreted as a placeholder
for a named entity or, in other cases, a specifier
like movie genre and does not impact the annota-
tion process.

To explore the ability of the model to generate
unseen instances we calculate the percentage of in-
stances not seen in the pool. We only look at in-
stances with an annotated sentiment label, because
skipped examples often include noise and thus are
unlikely to be present in the pool. 41 and 51 per-
cent of labeled instances are newly generated by
gen uniform and gen wang respectively. This pro-
vides more evidence that the model is capable of
generating new and informative instances.

No. Instance Label
1. the acting is excellent 1
2. powerful and moving 1
3. this movie is very enjoyable 1
4. a complete mess 0
5. nothing spectacular 0
6. absolutely terrible ! 0
7. the plot is UNK skip
8. well done by UNK 1
9. the UNK is a disappointment 0

Table 3: Example instances generated by gen uniform.
Label 1 for positive and 0 for negative class.
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Figure 6: Plot of the 2 most important dimensions
of selected/generated instances in latent space. Gray
points indicate negative, black points positive labels.
The blue square denotes ’bad movie’ and the red cross
’good movie’.

6.4 Latent Space

To further analyze the behavior of the different AL
strategies, we apply dimensionality reduction and
visualize the instances in latent space (Figure 6).

The two largest absolute coefficients of the
trained SVM’s linear kernel identify the most im-
portant dimensions. Figure 6 plots the points, rep-
resented by theses two dimensions, selected by
different active learning schedules. The generated
instances lie densely around the seed points, while
pool instances are more distributed. In gen wang
one can see how the instances are loosely follow-
ing one direction similar to Figure1.

As indicated in Figure 2 a pool instance is rep-
resented as z = enc(x). The same is true for
the instances in the development, test and seed
set. For the generated instances there are two op-
tions. If z is a point selected in feature space and
x = dec(z) is the decoded query sequence, the an-
notated instance can either be represented as z or
as ẑ = enc(x). In a perfect VAE z and ẑ should
be nearly identical. In practice however ẑ ends
up at a different location in feature space. Fig-
ure 7 depicts the distribution of distances between
z and ẑ generated with the gen uniform method.
We observe that models trained on ẑ perform bet-
ter than those trained on z, presumably because
the test instances are represented the same way.
To evaluate if ẑ is still an informative point and
not just positioned randomly in feature space, we
train a model on actual randomly sampled points.
The sampled point z ∼ N (0, I) is decoded to
query sequence x, labeled and subsequently re-

Figure 7: Distribution of euclidean distances between
z before and ẑ after re-encoding during gen uniform.

encoded to ẑ = enc(x). With the same amount of
instances, this model performs much worse than
gen uniform, indicating that point ẑ still preserves
some of the informativeness of z. We thus assume
that the closer ẑ is to selected point z, the better
the generation based active learning schedules will
work.

7 Discussion

Related work in the context of semi-supervised
learning has focused on developing methods to
generate synthetic training instances for different
tasks (Sennrich et al., 2016; Hayashi et al., 2018;
Alberti et al., 2019; Winata et al., 2019), in order
to accelerate the learning process. Sennrich et al.
(2016) create artificial training instances for ma-
chine translation, using monolingual data paired
with automatic back-translations. Their work ob-
tains substantial improvements for several lan-
guages and has triggered many follow-up studies
that apply the idea of back-translation to different
tasks.

For example, Hayashi et al. (2018) augment the
training data for attention-based end-to-end auto-
matic speech recognition with synthetic instances,
and Winata et al. (2019) generate artificial train-
ing examples to improve automatic speech recog-
nition on code-switching material. Alberti et al.
(2019) use a large number of synthetic instances to
pre-train a Question Answering (QA) model that
is then fine-tuned on the target QA dataset. Their
approach results in significant improvements over
models that are trained without the synthetic data-
points.

While these studies show that huge amounts of
synthetic training data can crucially improve the
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learning process, our approach uses a different
paradigm. Instead of generating millions of syn-
thetic data points, our method is data-lean and only
needs a few hundred instances to improve the clas-
sifier. Another difference is that we do not rely on
automatically generated labels but use human an-
notations instead. Due to the practical constraints
of the active learning process, we need to keep the
training time short enough so that the human an-
notator does not have to wait for the next set of
instances to annotate. This rules out the use of
computation-intensive models and large training
sets. Given that we use an SVM for classification,
we do not expect a strong effect for adding large
numbers of additional training instances, given
that the majority of those data points will not be
positioned close to the decision boundary.

One of the main drawbacks of our work is its
limitation to binary sentence classification. How-
ever, multi-class classification in an one-vs-rest
schema is compatible with our method and worth
further exploration. Another interesting direction
for future work is the synthesis of data for more
complex tasks like Natural Language Inference
(NLI) or QA. This, however, requires modifica-
tions to the structure of the autoencoder and ex-
ceeds the scope of this work.

Membership Query Synthesis might also be an
interesting approach for tasks where the automatic
extraction of large amounts of unlabelled data is
not straight-forward. One example that comes
to mind is the detection of offensive language or
’hate speech’, where we have to deal with highly
unbalanced training sets with only a small number
of positive instances, and attempts to increase this
number have been shown to result in systemati-
cally biased datasets (Davidson et al., 2019; Wie-
gand et al., 2019). Table 2 suggests that the gen-
erator produces instances with a more balanced
class ratio (1.7 and 1.2) than the pool data (2.6)
it was trained on. It might be worthwhile to ex-
plore whether the generation of synthetic training
instances can help to mitigate the problem to se-
lect instances from both classes in an highly im-
balanced data pool.

8 Conclusion

This work is the first to show that Membership
Query Synthesis in an NLP setting is feasible. Our
approach uses a Variational Autoencoder as a rep-
resentation learner and generates informative ac-

tive learning queries from latent space. The classi-
fication performance for the generated instances is
competitive with pool-based active learning strate-
gies and outperforms other AL strategies with re-
gard to annotation cost (time) and computational
complexity.

The main advantage of Membership Query Syn-
thesis for active learning is that it allows us to
target specific points along the separating hyper-
plane and thus to provide the classifier with in-
formation on specific areas of uncertainty in the
data space. While pool-based active learning has
the same objective, Membership Query Synthesis
gives us a more precise tool to explore the data
space and to generate exactly those instances that
we need, making MQS a promising approach for
future work in active learning.
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Abstract
Inference in structured prediction involves
finding the best output structure for an input,
subject to certain constraints. Many current
approaches use sequential inference, which
constructs the output in a left-to-right man-
ner. However, there is no general framework
to specify constraints in these approaches. We
present a principled approach for incorporat-
ing constraints into sequential inference algo-
rithms. Our approach expresses constraints us-
ing an automaton, which is traversed in lock-
step during inference, guiding the search to
valid outputs. We show that automata can
express commonly used constraints and are
easily incorporated into sequential inference.
When it is more natural to represent con-
straints as a set of automata, our algorithm
uses an active set method for demonstrably
fast and efficient inference. We experimentally
show the benefits of our algorithm on con-
stituency parsing and semantic role labeling.
For parsing, unlike unconstrained approaches,
our algorithm always generates valid output,
incurring only a small drop in performance.
For semantic role labeling, imposing con-
straints using our algorithm corrects common
errors, improving F1 by 1.5 points. These ben-
efits increase in low-resource settings. Our ac-
tive set method achieves a 5.2x relative speed-
up over a naive approach.1

1 Introduction

The key challenge in structured prediction prob-
lems (like sequence tagging and parsing) is infer-
ence (also known as decoding), which involves
identifying the best output structure y for an in-
put instance x from an exponentially large search

1All code available at https://cogcomp.seas.
upenn.edu/page/publication_view/884

∗Equal contribution, authors listed alphabetically
�Work done while at University of Pennsylvania.

input: Alice Smith gave a flower to Bob
gold tags: B-A0 I-A0 O O B-A1 O B-A2

predicate: gave
legal args: A0, A1, A2 (from PropBank)
spans: [Alice Smith] gave a [flower] to [Bob]
invalid tags: B-A0 I-A0 O O B-A0 O B-A2

reason: duplicate A0

invalid tags: B-A5 I-A5 O O B-A1 O B-A2

reason: illegal arg A5 for predicate “gave”
invalid tags: B-A0 O O O B-A1 O B-A2

reason: span [Alice Smith] should have single label

Figure 1: An example SRL instance (input, predicate,
gold tags) with different invalid tag sequences and the
constraints they violate (details in §4.2).

space Y (Taskar, 2004; Tsochantaridis et al.,
2005). The search is restricted to set of valid
y ∈ Yx ⊆ Y for x by imposing constraints during
inference. Figure 1 shows examples of constraints
used in Semantic Role Labeling (SRL) (Gildea
and Jurafsky, 2002).

Currently, inference for most structured pre-
diction problems is solved sequentially, predict-
ing the output in a left-to-right manner (Sutskever
et al., 2014; Luong et al., 2016). Such sequential
inference approaches enforce constraints in differ-
ent ways. For example, a shift-reduce parser con-
sults a stack to determine which action sequences
produce valid trees (Nivre et al., 2014), while an
SRL model penalizes tag sequences which violate
constraints during inference (Punyakanok et al.,
2008; Täckström et al., 2015).

At present, inference algorithms are designed
to handle task-specific constraints, and there is no
general formulation for constrained sequential in-
ference. This contrasts with the state of affairs in
NLP before deep learning, when constrained in-
ference approaches used general formulations like
Integer Linear Programming (ILP) (Roth and Yih,
2004; Clarke and Lapata, 2008, inter alia).

We present a simple, general-purpose sequen-
tial inference algorithm that takes a model and
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(b) A PDA that accepts valid parse trees like (S (NP
XX)(VP XX XX)) and (S (VP XX)). The edge la-
bel “P/Q/R, A” denotes consuming either P, Q or R as
input and changing the stack per A. “If T” indicates that
edge is only valid if T is on top of the stack.

Figure 2: An example FSA and PDA. Red arrows mark start states, and double circles mark accepting states.

an automaton expressing the constraints as input,
and outputs a structure that satisfies the constraints
(§2.2). The automaton guides the inference to
always produce a valid output by reshaping the
model’s probability distribution such that actions
deemed invalid by the automaton are not taken.

In some situations, it is more natural to express
the constraints as a set of automata. However,
naively enforcing multiple automata by fully in-
tersecting them is potentially expensive. Instead,
our algorithm lazily intersects the automata us-
ing an efficient active set method, reminiscent of
the cutting-plane algorithm (Tsochantaridis et al.,
2005) (§2.4).

The choice of using automata to express con-
straints has several benefits. First, automata
are capable of expressing constraints used in a
wide variety of NLP tasks. Indeed, in §3, we
show that task-specific constrained inference ap-
proaches implicitly use an automaton. Second, au-
tomata can be naturally incorporated into any se-
quential inference algorithm such as beam search.
Finally, automata make enforcing multiple con-
straints straightforward — only the automata for
individual constraints need to be specified, which
are then intersected at inference time.

Our algorithm is a principled approach for en-
forcing constraints and has many desirable prop-
erties. It decouples the constraints from the in-
ference algorithm, making it generally applicable
to many problems. Further, it guarantees valid
output and allows for the seamless addition of
constraints at inference time without modifying
the inference code. We experimentally demon-
strate the benefits of our algorithm on two struc-

tured prediction tasks, constituency parsing (§5.1)
and semantic role labeling (§5.2). Our results in
constituency parsing show that our algorithm al-
ways outputs valid parses, incurring only a small
drop in F1. In SRL, constrained inference using
our algorithm corrects common errors produced
by unconstrained inference, resulting in a 1.5 F1

improvement. This increase in performance is
more prominent in low-resource settings. Finally,
the active set method for enforcing multiple con-
straints achieves a 5.2x speed-up over the naive ap-
proach of fully intersecting the relevant automata.

2 Constrained Inference with Automata

We briefly review automata that we use for repre-
senting constraints in our algorithm.

2.1 Brief Review of Automata Theory

For the purposes of this work, an automaton is a
(possibly weighted) directed graph that compactly
encodes a set of strings, known as its language.
The two types of automata used in this work are
finite-state automata (FSA) and push-down au-
tomata (PDA).2

In an FSA, each edge is labeled with a sym-
bol y from an alphabet Σ, and any traversal from
the starting state to the final state(s) represents a
unique string y in the language. A PDA is an
extension of an FSA in which the traversal can
maintain a stack that is used for computation, and
the edges may manipulate or examine the state of
the stack. Any language that can be expressed us-
ing regular expressions or context-free grammars

2We only consider deterministic automata.

483



has an equivalent accepting FSA or PDA, respec-
tively (Sipser, 1997). An example of each type of
automata is depicted in Figure 2.

Our inference algorithm views an automaton as
an abstract stateful function, denoted as A, which
accepts strings from its languageL(A). After con-
suming the prefix y1:i of a string y, A provides a
score A(yi+1 | y1:i) for every symbol y ∈ Σ. In-
voking A.accepts(s) tests if a string s is in L(A).

2.2 Sequential Inference
The traditional inference problem for structured
prediction can be formalized as solving

ŷ = argmax
y∈Yx

log pθ(y | x) (1)

where x and y are the input and output structures,
Yx is the set of valid output structures for x, and
θ are the parameters of the model pθ(y | x). A
common way to solve this problem is to decom-
pose the objective as follows:

ŷ = argmax
y∈Yx

∑

i

log pθ(yi | x,y1:i−1) (2)

This decomposition is adopted by popu-
lar approaches, such as seq2seq models,
SEARN (Daumé et al., 2009), etc. Under
this decomposition, the inference problem is
often solved by an inexact sequential inference
algorithm, such as beam search.

2.3 Imposing Constraints with Automata
We are interested in versions of Equation 2 in
which the output space is described by the lan-
guage of an automaton. Formally,

ŷ = argmax
y

∑

i

log pθ(yi | x,y1:i−1)

such that y ∈ L(Ax)

(3)

where L(Ax) is the language of an automaton Ax

describing the valid output space for instance x.
This framework is capable of expressing many
constraints which are common in NLP applica-
tions, described in detail in §3.

Equation 3 can be rewritten as:

ŷ = argmax
y

∑

i

log p̃θ(yi | x,y1:i−1) (4)

log p̃θ(yi | x,y1:i−1) , log pθ(yi | x,y1:i−1)

+Ax(yi | y1:i−1)

Algorithm 1 Constrained Sequential Greedy Inference

Input: Model pθ , automaton Ax, sequence x
Output: Prediction ŷ ∈ L(Ax)

1: procedure CONSTRAINED-SEARCH(pθ , Ax, x)
2: ŷ← [BOS] . Beginning of sequence token
3: while ŷ is not finished do
4: log p̃θ(y

′ |x, ŷ)=log pθ(y
′ |x, ŷ)+Ax(y′ | ŷ)

5: y ← arg maxy′ log p̃θ(y
′ | x, ŷ)

6: ŷ← ŷ + y . Extend current sequence
7: return ŷ

Inference

yi+1
<latexit sha1_base64="ue18fuwzYNKaZZT5v9WT2QLrWMI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEqigh6LXjxWsLbQhrLZTtqlm03Y3Qgh9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777ZRWVtfWN8qbla3tnd296v7Bo45TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ2A7Gt1O//YRK81g+mCxBP6JDyUPOqLFSO+vn/Myb9Ks1t+7OQJaJV5AaFGj2q1+9QczSCKVhgmrd9dzE+DlVhjOBk0ov1ZhQNqZD7FoqaYTaz2fnTsiJVQYkjJUtachM/T2R00jrLApsZ0TNSC96U/E/r5ua8NrPuUxSg5LNF4WpICYm09/JgCtkRmSWUKa4vZWwEVWUGZtQxYbgLb68TB7P695F3b2/rDVuijjKcATHcAoeXEED7qAJLWAwhmd4hTcncV6cd+dj3lpyiplD+APn8wcA949X</latexit>

yi�1
<latexit sha1_base64="6yO3IUclX4/tm74nTaF9Ym+08fg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRQY9FLx4rWFtoQ9lsJ+3SzSbsboQQ+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj26nffkKleSwfTJagH9Gh5CFn1FipnfVzfuZN+tWaW3dnIMvEK0gNCjT71a/eIGZphNIwQbXuem5i/Jwqw5nASaWXakwoG9Mhdi2VNELt57NzJ+TEKgMSxsqWNGSm/p7IaaR1FgW2M6JmpBe9qfif101NeO3nXCapQcnmi8JUEBOT6e9kwBUyIzJLKFPc3krYiCrKjE2oYkPwFl9eJo/nde+i7t5f1ho3RRxlOIJjOAUPrqABd9CEFjAYwzO8wpuTOC/Ou/Mxby05xcwh/IHz+QMEA49Z</latexit>

yi
<latexit sha1_base64="fA+ZJK1EyQbvufKNnkf6r0xzIAs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJn/RzMe1Xa27dnYOsEq8gNSjQ7Fe/eoOEZTFXyCQ1puu5KQY51SiY5NNKLzM8pWxMh7xrqaIxN0E+P3ZKzqwyIFGibSkkc/X3RE5jYyZxaDtjiiOz7M3E/7xuhtFNkAuVZsgVWyyKMkkwIbPPyUBozlBOLKFMC3srYSOqKUObT8WG4C2/vEpaF3Xvsu4+XNUat0UcZTiBUzgHD66hAffQBB8YCHiGV3hzlPPivDsfi9aSU8wcwx84nz8nn47n</latexit>

ŷ
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Model … …

p✓(yi+1 | x, ŷ1:i)
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p̃✓(yi+1 | x, ŷ1:i)
<latexit sha1_base64="bAs4JQ0t0NT2RFEW9FikJClOLb8="></latexit>

Constraints
Ax(yi+1 | ŷ1:i)
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Figure 3: At each time step, the automata Ax re-
shapes the model’s probability distribution pθ to p̃θ,
from which the next output label yi+1 is determined.

where Ax reshapes pθ to p̃θ at each time step.
To impose hard constraints, we set this score to
−∞ for invalid yi and constant for all valid yi.3

Equation 4 allows natural extensions of sequential
inference algorithms, where an automaton is tra-
versed in lock-step to guide the search to always
output a valid structure. The necessary extension
of greedy search is presented in Algorithm 1. Con-
cretely, when predicting yi, the inference selects
the most probable action under the reshaped prob-
ability distribution p̃θ (line 5). It is straightforward
to similarly extend other sequential inference al-
gorithms.

2.4 Imposing Multiple Constraints

The formulation above assumes that the con-
straints are described using a single automaton.
However, in some scenarios, it is more natural to
impose multiple constraints by representing them
as a set of automata.

A Motivating Example. Consider Figure 1
which illustrates the SRL problem. The following
constraints should be obeyed by the tag sequence:
the predicate cannot have multiple arguments of
the same type (A0–A5), each predicate may only
accept a certain set of argument types, and certain
spans derived from a constituency parse should re-

3Soft constraints can also be imposed, but are not ex-
plored in this work.
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ceive the same label.4 Each of these constraints
can be easily expressed using a separate automa-
ton. In contrast, directly writing a single automa-
ton to enforce these constraints simultaneously
could be impractical and difficult.

Issues with Naive Approaches. Naively ex-
tending sequential inference algorithms to impose
a set of constraints by traversing multiple au-
tomata in parallel fails. There is no guarantee that
a valid structure will be found, even if the intersec-
tion of the automata’s languages is non-empty (a
proof by counter-example is provided in Appendix
A). The alternative solution of intersecting the au-
tomata into a single automaton may be intractable,
as the size of the intersected automaton grows ex-
ponentially in the number of constraints (Hopcroft
and Ullman, 1979).

An Active Set Method. Intuitively, intersecting
all of the automata may not be necessary because
it is possible for a constraint to be satisfied with-
out it being enforced. This is the basis for ac-
tive set methods (such as the cutting-plane algo-
rithm (Kelley, 1960; Tsochantaridis et al., 2005)),
which maintain a set during inference that contains
currently active (i.e., enforced) constraints. When
a constraint is violated by the current output, it en-
ters (i.e., is added to) the active set.

We present an active set method for imposing
multiple constraints represented by a set of au-
tomata Sx in Algorithm 2. Our algorithm is in-
spired by the active set algorithm of Tromble and
Eisner (2006) for finite-state transducers.

For an instance x, Algorithm 2 maintains a ac-
tive set5 W corresponding to all violated con-
straints so far.W is represented by the intersection
AW of the relevant automata, which is initialized
with an automata Σ∗ that accepts any sequence
(line 1). On each iteration, the algorithm runs
a constrained inference algorithm (such as Algo-
rithm 1) that uses AW (line 3) to find an output ŷ.
Then, FIND-VIOLATION checks if ŷ violates any
of the constraints that are not currently in the ac-
tive set, Sx \ W (line 4). If ŷ is accepted by all of
the automata (line 5), it is valid and subsequently
returned (line 6). Otherwise, the first violated con-
straint is added to W (line 8), its automaton A′
intersected with AW (line 9), and constrained in-
ference is re-run (line 3).

4These constraints are described in detail in §4.
5Also known as a working set.

Algorithm 2 An Active Set Method for Multiple Constraints

Input: Model pθ , set of automata Sx, sequence x
Output: Prediction ŷ ∈ ⋂

A∈Sx L(A)

1: W ← ∅, AW ← Σ∗

2: while True do
3: ŷ← CONSTRAINED-SEARCH(pθ , AW , x)
4: A′ ← FIND-VIOLATION(Sx \W , ŷ)
5: if A′ is null then . No constraint is violated
6: return ŷ . return current output
7: else
8: W ←W ∪ {A′} . update working set
9: AW ← AW ∩ A′ . automata intersection

10: procedure FIND-VIOLATION(K, y)
11: for each A in K do
12: if not A.accepts(y) then
13: return A . the first violated constraint
14: return null

Algorithm 2 is guaranteed to terminate with a
valid output. In the worst case, all of the con-
straints will be eventually enter the active set and
inference will run with a fully intersected au-
tomata. Although the cost of this worst case is
exponential in the number of constraints, this oc-
curs infrequently in practice. Moreover, we found
that Algorithm 2 is faster than naively computing
the full intersection despite running inference mul-
tiple times.

3 Representing Constraints as Automata

We now illustrate the expressibility of automata by
showing how they can represent commonly used
constraints in various NLP applications.

Text Generation. Text generation tasks like im-
age captioning, machine translation, sentence sim-
plification, etc., often require that the output must
contain specific words or phrases (Anderson et al.,
2017; Hokamp and Liu, 2017; Post and Vilar,
2018; Zhang et al., 2017) in order to incorpo-
rate prior knowledge (e.g., the caption must have
the word “chair” as the object was detected in
the image). Similarly, constraints can disallow
invalid sequences, such as words which do not
rhyme (Ghazvininejad et al., 2016, 2018) or do
not appear in a dictionary (Deutsch et al., 2018).
These constraints can be represented as FSAs
where all paths to an accepting state contain the
required sequences and do not contain any disal-
lowed sequences. Note that the size of the au-
tomata is not a function of the output vocabulary
but the vocabulary that participates in the con-
straints.
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Sequence Tagging. Many sequence tagging
problems (such as NER, shallow parsing, etc.) re-
quire that the output tags are valid under the spe-
cific tagging scheme, such as BIO, which marks
each token as beginning, inside, or outside of a
phrase. One can easily write an FSA that recog-
nizes the language of valid tag sequences for these
schemes, such as the automaton in Figure 2a.

Other constraints commonly applied to se-
quence tagging are specific to the particular task.
In SRL, each argument type can appear exactly
one time. For instance, for the label A0, an FSA
with 3 states (before-A0, emitting-A0 and after-
A0) can be written to enforce this constraint. See
Tromble and Eisner (2006) for examples.

Syntactic Parsing. Syntactic parsing (depen-
dency or constituency) tasks require that the out-
put forms a valid tree, a constraint commonly en-
forced using the shift-reduce algorithm (Zhu et al.,
2013; Nivre et al., 2014; Dyer et al., 2016). Shift-
reduce inference inspects the state of a stack to de-
cide which next actions are valid (e.g., if the stack
is empty, reduce is invalid). Shift-reduce inference
is implicitly using an automaton which is the inter-
section of a PDA (that counts how many shift and
reduce actions have occurred) and an FSA (that
restricts the maximum number of actions based on
the input sentence length).

Semantic Parsing and Code Generation. In
semantic parsing and code generation, constraints
ensure both the syntactic validity and the exe-
cutability of the output. For instance, for the predi-
cate ISADJACENT (which compares two countries
for adjacency) the syntactic constraint ensures the
predicate receives two arguments, whereas the ex-
ecutability ensures they are properly typed (e.g.,
that they are countries). Krishnamurthy et al.
(2017) use a type-constrained grammar to ensure
the output logical form is well-typed. Similarly,
Ling et al. (2016) use a stack while decoding to
ensure the validity of the generated code. Both
these constraints can be encoded in a PDA derived
from the grammar of the language (Sipser, 1997).

4 Experimental Setup

We elaborate on two constrained inference tasks
from the previous section, constituency parsing
and semantic role labeling, which serve as case
studies for showing the applicability and versa-
tility of our approach. Our goal is not to beat

the state-of-the-art, but to illustrate the practical-
ity and benefits of our approach.

4.1 Models, Datasets, and Evaluation

Constituency Parsing. We follow the experi-
mental setup of Vinyals et al. (2015) and train a
seq2seq model with attention using standard splits
on the Penn Treebank. This setup was chosen to
ensure that no constraints are built into the model
for a truly unconstrained baseline. The input is a
sequence of tokens, and the model outputs a lin-
earized parse tree (“gold parse” in Figure 4).

We compare our approach (CONSTRAINED)
to unconstrained inference (UNCONSTRAINED),
which runs beam search and selects the highest-
scoring output. We also compare to Vinyals
et al. (2015)’s inference approach (henceforth
POSTHOC). Vinyals et al. (2015) removes parses
without the correct number of preterminals at
the end of beam search and adds parentheses to
almost-valid parses.6 The algorithms are evalu-
ated using F1 as reported by EVALB, a standard
evaluation toolkit.7 However, because EVALB ig-
nores invalid trees during evaluation (which can
artificially improve the performance of models
which violate constraints), we also report cover-
age, the percentage of valid outputs. We use a
beam size of 10.

Semantic Role Labeling. For SRL, the uncon-
strained model is an off-the-shelf implementation
of He et al. (2017). The input to the model is
the sentence and the predicate for which the ar-
guments need to be identified, and the model out-
puts a tag sequence (such as Figure 1). To iso-
late the effect of constraints, we assume the gold
predicates are available, unlike He et al. (2017).
We use the standard train and development splits
from the CoNLL 2005 shared task and the same
model parameters as He et al. (2017). We report
the CoNLL F1 score8 computed for the core argu-
ments (namely A0–A5) and use greedy inference.

4.2 Constraints

Constituency Parsing. The constraints used in
parsing disallow invalid parses, such as the ex-
amples in Figure 4. The constraints ensure
that (i) the parentheses are balanced (BAL), (ii)
there is exactly one preterminal per input token

6personal communication with Vinyals et al. (2015)
7nlp.cs.nyu.edu/evalb/
8www.lsi.upc.es/˜srlconll/srl-eval.pl
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input: John kissed Mary
gold parse: (S (NP XX)(VP XX (NP XX)))
invalid parse: (S (NP )(VP XX XX (NP XX)))
reason: empty phrase
invalid parse: (S (VP XX (NP XX)))
reason: incorrect number of preterminals
invalid parse: (S (NP XX)(VP XX (NP XX))))
reason: unbalanced parentheses

Figure 4: An example parsing instance with different
invalid parses and the constraints they violate (details
in §4.2). XX denotes POS tags.

(#PRETERM), and (iii) every phrase contains at
least one preterminal (NONEMPTY).

Semantic Role Labeling. The constraints used
in SRL disallow invalid sequences, such as the
ones in Figure 1. The constraints ensure that (i)
a predicate cannot have multiple arguments of the
same type (NODUP). This constraint is expressed
using one FSA per argument label for a total of
5 automata; (ii) a predicate can only take a cer-
tain set of argument types (LEGALARGS), accord-
ing to PropBank v3.1 (Palmer et al., 2005). This
constraint is expressed using one FSA; (iii) certain
spans in the sentence should be assigned the same
argument label type (SPANLABEL). These spans
are identified from the predicate and the con-
stituency parse of the sentence using the heuris-
tic of Xue and Palmer (2004).9 This constraint is
expressed using one FSA.

Ease of Implementation. All of the constraints
were expressed using an FSA, with the exception
of BAL which requires a PDA. The automata were
implemented using Pynini (Gorman, 2016). We
use the same inference code for both tasks, except
for the automata generation.

5 Experimental Results

We show the practicality of our approach and the
benefits over unconstrained inference in the exper-
iments below. In order to illustrate the benefits of
constrained inference in low-resource settings, we
simulate different levels of supervision.

5.1 Constituency Parsing

We experimentally show the need for constraints
and compare inference strategies for parsing.

Necessity of Constraints. In order to demon-
strate that constraints are necessary to guarantee

9We use Kitaev and Klein (2018)’s parser.
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Figure 5: Percentage of output test parses that satisfy
the constituency parsing constraints in §4.2 when us-
ing unconstrained inference as the amount of training
data is increased. “All” measures the percent of parses
which satisfy all of the constraints. Even with 100% of
the training data, the model fails to always output the
correct number of preterminals.

structurally valid output, we vary the amount of
training data for a seq2seq model and measure
how frequently the output is an invalid parse tree.

The results in Figure 5 show that while the
model learns some constraints with little data, oth-
ers are frequently violated even with full supervi-
sion. For instance, the model outputs parse trees
with balanced parentheses for over 94% of in-
stances, after training on as little as 5% of the
training data. However, the model frequently vi-
olates the #PRETERM constraint, outputting an in-
correct number of preterminals on about 7% of
parses even after training on 100% of the data.
Therefore, we cannot expect seq2seq models to
learn to produce valid outputs, even when it has
access to 40k labeled parse trees, let alone in low-
resource settings.

Comparing Inference Approaches. Figure 6
shows the performance of all the three inference
techniques discussed in §4.1, namely, UNCON-
STRAINED, POSTHOC, and CONSTRAINED.

At first glance, it appears that UNCON-
STRAINED is slightly better than both POSTHOC

and CONSTRAINED at 100% supervision. How-
ever, EVALB ignores any invalid parse trees when
computing F1, and therefore it is necessary to take
coverage (the percent of valid output parses) into
account when comparing inference approaches.
It is evident from Figure 6 (left) that CON-
STRAINED always ensures 100% coverage, and
POSTHOC only reaches near-100% coverage with
full supervision. In contrast, UNCONSTRAINED
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Figure 6: F1 and coverage (# valid output parses / # test instances) for UNCONSTRAINED, POSTHOC, and CON-
STRAINED on the entire test data (left) and test sentences of length ≥30 (right). The UNCONSTRAINED and
POSTHOC inference algorithms have a harder time producing valid parse trees for the longer input sentences.

achieves consistently low coverage, with the best
model reaching 7% lower coverage than the CON-
STRAINED.

The increased coverage explains the apparent
drop in F1 for constrained approaches. Intuitively,
longer sentences are inherently harder to parse.
CONSTRAINED and POSTHOC produce a valid,
but potentially incorrect parse for these sentences
and get penalized. In contrast, UNCONSTRAINED

is more likely to produce invalid parses for these
sentences, and is thus effectively evaluated on a
test set containing short sentences. To verify this,
we re-evaluated the inference approaches on test
sentences which are ≥30 tokens (Figure 6, right).
Under this setting, every approach has worse F1

and coverage at all levels of supervision (Figure 6
left vs right).

5.2 Semantic Role Labeling

We show that we can improve the performance of
a trained model by incorporating constraints at in-
ference time which address common errors (Daza
and Frank, 2018) made by SRL models. This ex-
periment also shows the efficiency of the active set
method in enforcing multiple constraints.

Correcting Common Errors. We now show
how some common SRL errors like the ones
discussed in Figure 1, can be corrected using
constraints added at inference time. Start-
ing with an unconstrained baseline model
(UNCONSTRAINED), we successively add the
NODUP, LEGALARGS and SPANLABEL con-
straints, in that order.
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Figure 7: Learning curve for SRL. Starting with un-
constrained inference, we incrementally add NODUP,
LEGALARGS and SPANLABEL constraints. The con-
straints improve performance at all levels of supervi-
sion, with the largest improvements in low supervision
settings.

Figure 7 shows that using the constraints im-
proves performance over UNCONSTRAINED in all
settings. Constraints like NODUP and SPANLA-
BEL give significant gains, demonstrating their
value. At 100% supervision, fully constrained in-
ference improves by 1.5 F1 points over uncon-
strained inference (83.03 vs 81.53). In fact, con-
strained inference at only 50% data achieves sim-
ilar F1 score as UNCONSTRAINED at 100%, with
larger gains in low supervision regimes (≤40%).

Active Set Size and Efficiency. For SRL, the
maximum possible size of the active set W is 7
for any test instance. Intersecting all 7 automata
would lead to an automaton with 1043 states and
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method over naively computing the full intersection.

2022 arcs. We now measure the size of the active
set observed in practice.

Figure 8 shows the size distribution of the final
W under different amounts of supervision. With a
fully supervised model, 80% of the test instances
had an empty W when inference terminated (i.e.,
no constraints entered W). Under the same set-
ting,W contains 1 and 2 constraints for 10.6% and
8.6% of the instances, respectively. Under any set-
ting,W was empty for >60% of the instances. On
average, the active set automaton had 34 states and
66 arcs, a 30x reduction over the full intersection.

To evaluate the efficiency of Algorithm 2, Fig-
ure 8 (bottom) plots the relative decoding times of
the active set method over naively computing the
full intersection. The active set method is consis-
tently faster, with the largest speed-up (5.2x) at the
highest level of supervision as the average active
set size is the smallest at this setting.

Factors Affecting Speed-up. In general, the
amount of speed-up provided by the active set
method depends on several factors, including the

number of constraints, the size of the constraint
automata, and the cost of computing the softmax
during inference. The largest gains will come
when the former two factors are most expensive,
as the active set will only incur the intersection
cost as needed. If the output vocabulary is large,
softmax computation may outweigh the cost of
fully intersecting the constraint automata.

6 Related Work

Traditional Constrained Inference. Tradi-
tional constrained inference approaches enforced
constraints using general combinatorial opti-
mization frameworks, for instance linear (Taskar
et al., 2004) and integer linear programs (Roth
and Yih, 2005, 2007; Clarke and Lapata, 2008;
Martins et al., 2009), SAT solvers (Richardson
and Domingos, 2006; Poon and Domingos, 2008),
etc. Unlike these approaches which find the best
output that satisfies a set of constraints, our work
attempts to provide a similar general framework
for sequential inference algorithms that will find
the approximate-best output.

Unconstrained Data-driven Approaches.
Many sequential inference approaches do not
enforce constraints at all, in the hope that they will
be learned from data (Lample et al., 2016; Choe
and Charniak, 2016; Suhr et al., 2018). While the
model can potentially “impose” some constraints
which are well-represented in the data, there is no
guarantee that the output structure will be valid.
In contrast, our work guarantees valid output.

Post-Hoc Constraint Satisfaction. Some ap-
proaches first run unconstrained inference to find
the top-k structures and then identify valid struc-
tures in a post-hoc manner (Andreas et al., 2013;
Vinyals et al., 2015; Kiddon et al., 2016; Upad-
hyay et al., 2018). Such techniques also cannot
guarantee validity of the output structure when all
top-k structures are invalid, whereas our model en-
sures all top-k are valid.

Our Work. We draw from work in NLP that
uses automata (Mohri, 1997; Karttunen, 2000, in-
ter alia) and recent work in constrained text gen-
eration (discussed in §3). Our work is also re-
lated to Anderson et al. (2017) who impose lexi-
cal constraints for image captioning by maintain-
ing a beam for each state in an FSA, an impracti-
cal strategy for automata with thousands of states
(like those in §5.2). Tromble and Eisner (2006)
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was the inspiration for the active set method. A
very recent work, Lee et al. (2019), also impose
constraints in sequential inference by including
them in the objective function and modifying the
model’s weights until the constraints are satisfied.

7 Conclusion and Future Work

We presented a principled, general-purpose con-
strained sequential inference algorithm. Key to
our algorithm is using automata to represent con-
straints, which we showed are capable of express-
ing popularly used constraints in NLP. Our ap-
proach is an attractive alternative to task-specific
constrained inference approaches currently in use.
Using a fast active set method, we can seamlessly
incorporate multiple constraints at inference time
without modifying the inference code. The exper-
imental results showed the value of our approach
over unconstrained inference, with the gains be-
coming more prominent in low-resource settings.
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Abstract

Automated fact-checking based on machine
learning is a promising approach to identify
false information distributed on the web. In
order to achieve satisfactory performance, ma-
chine learning methods require a large corpus
with reliable annotations for the different tasks
in the fact-checking process. Having analyzed
existing fact-checking corpora, we found that
none of them meets these criteria in full. They
are either too small in size, do not provide de-
tailed annotations, or are limited to a single
domain. Motivated by this gap, we present a
new substantially sized mixed-domain corpus
with annotations of good quality for the core
fact-checking tasks: document retrieval, evi-
dence extraction, stance detection, and claim
validation. To aid future corpus construc-
tion, we describe our methodology for corpus
creation and annotation, and demonstrate that
it results in substantial inter-annotator agree-
ment. As baselines for future research, we per-
form experiments on our corpus with a number
of model architectures that reach high perfor-
mance in similar problem settings. Finally, to
support the development of future models, we
provide a detailed error analysis for each of
the tasks. Our results show that the realistic,
multi-domain setting defined by our data poses
new challenges for the existing models, pro-
viding opportunities for considerable improve-
ment by future systems.

1 Introduction

The ever-increasing role of the Internet as a pri-
mary communication channel is arguably the sin-
gle most important development in the media over
the past decades. While it has led to unprece-
dented growth in information coverage and distri-
bution speed, it comes at a cost. False informa-
tion can be shared through this channel reaching
a much wider audience than traditional means of
disinformation (Howell et al., 2013).

While human fact-checking still remains the
primary method to counter this issue, the amount
and the speed at which new information is spread
makes manual validation challenging and costly.
This motivates the development of automated fact-
checking pipelines (Thorne et al., 2018a; Popat
et al., 2017; Hanselowski and Gurevych, 2017)
consisting of several consecutive tasks. The fol-
lowing four tasks are commonly included in the
pipeline. Given a controversial claim, document
retrieval is applied to identify documents that con-
tain important information for the validation of
the claim. Evidence extraction aims at retrieving
text snippets or sentences from the identified doc-
uments that are related to the claim. This evidence
can be further processed via stance detection to
infer whether it supports or refutes the claim. Fi-
nally, claim validation assesses the validity of the
claim given the evidence.

Automated fact-checking has received signifi-
cant attention in the NLP community in the past
years. Multiple corpora have been created to assist
the development of fact-checking models, vary-
ing in quality, size, domain, and range of anno-
tated phenomena. Importantly, the successful de-
velopment of a full-fledged fact-checking system
requires that the underlying corpus satisfies cer-
tain characteristics. First, training data needs to
contain a large number of instances with high-
quality annotations for the different fact-checking
sub-tasks. Second, the training data should not
be limited to a particular domain, since potentially
wrong information sources can range from official
statements to blog and Twitter posts.

We analyzed existing corpora regarding their
adherence to the above criteria and identified sev-
eral drawbacks. The corpora introduced by Vla-
chos and Riedel (2014); Ferreira and Vlachos
(2016); Derczynski et al. (2017) are valuable for
the analysis of the fact-checking problem and pro-
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vide annotations for stance detection. However,
they contain only several hundreds of validated
claims and it is therefore unlikely that deep learn-
ing models can generalize to unobserved claims if
trained on these datasets.

A corpus with significantly more validated
claims was introduced by Popat et al. (2017). Nev-
ertheless, for each claim, the corpus provides 30
documents which are retrieved from the web using
the Google search engine instead of a document
collection aggregated by fact-checkers. Thus,
many of the documents are unrelated to the claim
and important information for the validation may
be missing.

The FEVER corpus constructed by Thorne et al.
(2018a) is the largest corpus available for the de-
velopment of automated fact-checking systems. It
consists of 185,445 validated claims with anno-
tated documents and evidence for each of them.
The corpus therefore allows training deep neu-
ral networks for automated fact-checking, which
reach higher performance than shallow machine
learning techniques. However, the corpus is based
on synthetic claims derived from Wikipedia sen-
tences rather than natural claims that originate
from heterogeneous web sources.

In order to address the drawbacks of existing
datasets, we introduce a new corpus based on the
Snopes1 fact-checking website. Our corpus con-
sists of 6,422 validated claims with comprehen-
sive annotations based on the data collected by
Snopes fact-checkers and our crowd-workers. The
corpus covers multiple domains, including discus-
sion blogs, news, and social media, which are of-
ten found responsible for the creation and distribu-
tion of unreliable information. In addition to vali-
dated claims, the corpus comprises over 14k doc-
uments annotated with evidence on two granular-
ity levels and with the stance of the evidence with
respect to the claims. Our data allows training
machine learning models for the four steps of the
automated fact-checking process described above:
document retrieval, evidence extraction, stance de-
tection, and claim validation.
The contributions of our work are as follows:

1) We provide a substantially sized mixed-
domain corpus of natural claims with annotations
for different fact-checking tasks. We publish a
web crawler that reconstructs our dataset includ-

1http://www.snopes.com/

ing all annotations2. For research purposes, we
are allowed to share the original corpus3.

2) To support the creation of further fact-
checking corpora, we present our methodology
for data collection and annotation, which allows
for the efficient construction of large-scale corpora
with a substantial inter-annotator agreement.

3) For evidence extraction, stance detection, and
claim validation we evaluate the performance of
high-scoring systems from the FEVER shared task
(Thorne et al., 2018b)4 and the Fake News Chal-
lenge (Pomerleau and Rao, 2017)5 as well as the
Bidirectional Transformer model BERT (Devlin
et al., 2018) on our data. To facilitate the develop-
ment of future fact-checking systems, we release
the code of our experiments6.

4) Finally, we conduct a detailed error analy-
sis of the systems trained and evaluated on our
data, identifying challenging fact-checking in-
stances which need to be addressed in future re-
search.

2 Related work

Below, we give a comprehensive overview of ex-
isting fact-checking corpora, summarized in Ta-
ble 1. We focus on their key parameters: fact-
checking sub-task coverage, annotation quality,
corpus size, and domain. It must be acknowledged
that a fair comparison between the datasets is dif-
ficult to accomplish since the length of evidence
and documents, as well as the annotation quality,
significantly varies between the corpora.
PolitiFact14 Vlachos and Riedel (2014) analyzed
the fact-checking problem and constructed a cor-
pus on the basis of the fact-checking blog of Chan-
nel 47 and the Truth-O-Meter from PolitiFact8.
The corpus includes additional evidence, which
has been used by fact-checkers to validate the

2https://github.com/UKPLab/conll2019-
snopes-crawling

3We crawled and provide the data according to the regula-
tions of the German text and data mining policy. That is, the
crawled documents/corpus may be shared upon request with
other researchers for non-commercial purposes through the
research data archive service of the university library. Please
request the data at https://tudatalib.ulb.tu-
darmstadt.de/handle/tudatalib/2081

4http://fever.ai/task.html/
5http://www.fakenewschallenge.org/
6https://github.com/UKPLab/conll2019-

snopes-experiments
7http://blogs.channel4.com/factcheck/
8http://www.politifact.com/truth-o-

meter/statements/
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claims docs. evid. stance sources rater agr. domain

PolitiFact14 106 no yes no no no political statements
Emergent16 300 2,595 no yes yes no news
PolitiFact17 12,800 no no no no no political statements
RumourEval17 297 4,519 no yes yes yes Twitter
Snopes17 4,956 136,085 no no yes no Google search results
CLEF-2018 150 no no no no no political debates
FEVER18 185,445 14,533 yes yes yes yes Wikipedia
Our corpus 6,422 14,296 yes yes yes yes multi domain

Table 1: Overview of corpora for automated fact-checking. docs: documents related to the claims; evid.: evidence
in form of sentence or text snippets; stance: stance of the evidence; sources: sources of the evidence; rater agr.:
whether or not the inter-annotator agreement is reported; domain: the genre of the corpus

claims, as well as metadata including the speaker
ID and the date when the claim was made. This is
early work in automated fact-checking and Vla-
chos and Riedel (2014) mainly focused on the
analysis of the task. The corpus therefore only
contains 106 claims, which is not enough to train
high-performing machine learning systems.
Emergent16 A more comprehensive corpus for
automated fact-checking was introduced by Fer-
reira and Vlachos (2016). The dataset is based on
the project Emergent9 which is a journalist initia-
tive for rumor debunking. It consists of 300 claims
that have been validated by journalists. The corpus
provides 2,595 news articles that are related to the
claims. Each article is summarized into a headline
and is annotated with the article’s stance regarding
the claim. The corpus is well suited for training
stance detection systems in the news domain and it
was therefore chosen in the Fake News Challenge
(Pomerleau and Rao, 2017) for training and evalu-
ation of competing systems. However, the number
of claims in the corpus is relatively small, thus it
is unlikely that sophisticated claim validation sys-
tems can be trained using this corpus.
PolitiFact17 Wang (2017) extracted 12,800 val-
idated claims made by public figures in vari-
ous contexts from Politifact. For each statement,
the corpus provides a verdict and meta informa-
tion, such as the name and party affiliation of the
speaker or subject of the debate. Nevertheless,
the corpus does not include evidence and thus the
models can only be trained on the basis of the
claim, the verdict, and meta information.
RumourEval17 Derczynski et al. (2017) orga-
nized the RumourEval shared task, for which they
provided a corpus of 297 rumourous threads from
Twitter, comprising 4,519 tweets. The shared task

9http://www.emergent.info/

was divided into two parts, stance detection and
veracity prediction of the rumors, which is similar
to claim validation. The large number of stance-
annotated tweets allows for training stance detec-
tion systems reaching a relatively high score of
about 0.78 accuracy. However, since the num-
ber of claims (rumours) is relatively small, and the
corpus is only based on tweets, this dataset alone
is not suitable to train generally applicable claim
validation systems.
Snopes17 A corpus featuring a substantially larger
number of validated claims was introduced by
Popat et al. (2017). It contains 4,956 claims an-
notated with verdicts which have been extracted
from the Snopes website as well as the Wikipedia
collections of proven hoaxes10 and fictitious peo-
ple11. For each claim, the authors extracted about
30 associated documents using the Google search
engine, resulting in a collection of 136,085 doc-
uments. However, since the documents were not
annotated by fact-checkers, irrelevant information
is present and important information for the claim
validation might be missing.
CLEF-2018 Another corpus concerned with polit-
ical debates was introduced by Nakov et al. (2018)
and used for the CLEF-2018 shared task. The cor-
pus consists of transcripts of political debates in
English and Arabic and provides annotations for
two tasks: identification of check-worthy state-
ments (claims) in the transcripts, and validation of
150 statements (claims) from the debates. How-
ever, as for the corpus PolitiFact17, no evidence
for the validation of these claims is available.
FEVER18 The FEVER corpus introduced by
Thorne et al. (2018a) is the largest available fact-

10https://en.wikipedia.org/wiki/
List of hoaxes#Proven hoaxe

11https://en.wikipedia.org/wiki/
List of fictitious people
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checking corpus, consisting of 185,445 validated
claims. The corpus is based on about 50k popu-
lar Wikipedia articles. Annotators modified sen-
tences in these articles to create the claims and la-
beled other sentences in the articles, which sup-
port or refute the claim, as evidence. The corpus
is large enough to train deep learning systems able
to retrieve evidence from Wikipedia. Neverthe-
less, since the corpus only covers Wikipedia and
the claims are created synthetically, the trained
systems are unlikely to be able to extract evi-
dence from heterogeneous web-sources and vali-
date claims on the basis of evidence found on the
Internet.

As our analysis shows, while multiple fact-
checking corpora are already available, no sin-
gle existing resource provides full fact-checking
sub-task coverage backed by a substantially-sized
and validated dataset spanning across multiple do-
mains. To eliminate this gap, we have created a
new corpus as detailed in the following sections.

3 Corpus construction

This section describes the original data from the
Snopes platform, followed by a detailed report on
our corpus annotation methodology.

3.1 Source data

Figure 1: Snopes fact-checking data example

Snopes is a large-scale fact-checking platform
that employs human fact-checkers to validate
claims. A simple fact-checking instance from the
Snopes website is shown in Figure 1. At the
top of the page, the claim and the verdict (rat-
ing) are given. The fact-checkers additionally pro-
vide a resolution (origin), which backs up the ver-
dict. Evidence in the resolution, which we call ev-
idence text snippets (ETSs), is marked with a yel-
low bar. As additional validation support, Snopes

fact-checkers provide URLs12 for original docu-
ments (ODCs) from which the ETSs have been ex-
tracted or which provide additional information.

Our crawler extracts the claims, verdicts, ETSs,
the resolution, as well as ODCs along with their
URLs, thereby enriching the ETSs with useful
contextual information. Snopes is almost entirely
focused on claims made on English speaking web-
sites. Our corpus therefore only features English
fact-checking instances.

3.2 Corpus annotation

While ETSs express a stance towards the claim,
which is useful information for the fact-checking
process, this stance is not explicitly stated on the
Snopes website. Moreover, the ETSs given by
fact-checkers are quite coarse and often contain
detailed background information that is not di-
rectly related to the claim and consequently not
useful for its validation. In order to obtain an in-
formative, high-quality collection of evidence, we
asked crowd-workers to label the stance of ETSs
and to extract sentence-level evidence from the
ETSs that are directly relevant for the validation
of the claim. We further refer to these sentences as
fine grained evidence (FGE).

Stance annotation. We asked crowd workers on
Amazon Mechanical Turk13 to annotate whether
an ETS agrees with the claim, refutes it, or has no
stance towards the claim. An ETS was only con-
sidered to express a stance if it explicitly referred
to the claim and either expressed support for it or
refuted it. In all other cases, the ETS was consid-
ered as having no stance.

FGE annotation. We filtered out ETSs with no
stance, as they do not contain supporting or refut-
ing FGE. If an ETS was annotated as supporting
the claim, the crowd workers selected only sup-
porting sentences; if the ETS was annotated as
refuting the claim, only refuting sentences were
selected. Table 2 shows two examples of ETSs
with annotated FGE. As can be observed, not all
information given in the original ETS is directly
relevant for validating the claim. For example,
sentence (1c) in the first example’s ETS simply
provides additional background information and is
therefore not considered FGE.

12underlined words in the resolution are hyperlinks
13https://www.mturk.com/
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ETS stance: support
Claim: The Fox News will be shutting down
for routine maintenance on 21 Jan. 2013.
Evidence text snippet:
(1a) Fox News Channel announced today that
it would shutdown for what it called
“routine maintenance”.
(1b) The shutdown is on 21 January 2013.
(1c) Fox News president Roger Ailes explained
the timing of the shutdown: “We wanted
to pick a time when nothing would be
happening that our viewers want to see.”
ETS stance: refute
Claim: Donald Trump supported Emmanuel
Macron during the French election.
Evidence text snippet:
(2a) In their first meeting, the U.S. President
told Emmanuel Macron that he had been his
favorite in the French presidential election
saying “You were my guy”.
(2b) In an interview with the Associated Press,
however, Trump said he thinks Le Pen
is stronger than Macron on what’s been going
on in France.

Table 2: Examples of FGE annotation in supporting
(top) and refuting (bottom) ETSs, sentences selected as
FGE in italic.

4 Corpus analysis

4.1 Inter-annotator agreement

Stance annotation. Every ETS was annotated by
at least six crowd workers. We evaluate the inter-
annotator agreement between groups of workers
as proposed by Habernal et al. (2017), i.e. by ran-
domly dividing the workers into two equal groups
and determining the aggregate annotation for each
group using MACE (Hovy et al., 2013). The fi-
nal inter-annotator agreement score is obtained by
comparing the aggregate annotation of the two
groups. Using this procedure, we obtain a Co-
hen’s Kappa of κ = 0.7 (Cohen, 1968), indicating
a substantial agreement between the crowd work-
ers (Artstein and Poesio, 2008). The gold anno-
tations of the ETS stances were computed with
MACE, using the annotations of all crowd work-
ers. We have further assessed the quality of the
annotations performed by crowd workers by com-
paring them to expert annotations. Two experts la-
beled 200 ETSs, reaching the same agreement as
the crowd workers, i.e. κ = 0.7. The agreement
between the experts’ annotations and the com-

puted gold annotations from the crowd workers is
also substantial, κ = 0.683.
FGE Annotation. Similar to the stance anno-
tation, we used the approach of Habernal et al.
(2017) to compute the agreement. The inter-
annotator agreement between the crowd workers
in this case is κ = 0.55 Cohen’s Kappa. We
compared the annotations of FGE in 200 ETSs
by experts with the annotations by crowd work-
ers, reaching an agreement of κ = 0.56. This is
considered as moderate inter-annotator agreement
(Artstein and Poesio, 2008).

In fact, the task is significantly more difficult
than stance annotation as sentences may provide
only partial evidence for or against the claim. In
such cases, it is unclear how large the information
overlap between sentence and claim should be for
a sentence to be FGE. The sentence (1a) in Table 2,
for example, only refers to one part of the claim
without mentioning the time of the shutdown. We
can further modify the example in order to make
the problem more obvious: (a) The channel an-
nounced today that it is planing a shutdown. (b)
Fox News made an announcement today.

As the example illustrates, there is a gradual
transition between sentences that can be consid-
ered as essential for the validation of the claim
and those which just provide minor negligible de-
tails or unrelated information. Nevertheless, even
though the inter-annotator agreement for the an-
notation of FGE is lower than for the annota-
tion of ETS stance, compared to other annotation
problems (Zechner, 2002; Benikova et al., 2016;
Tauchmann et al., 2018) that are similar to the an-
notation of FGE, our framework leads to a better
agreement.

4.2 Corpus statistics

Table 3 displays the main statistics of the corpus.
In the table, FGE sets denotes groups of FGE ex-
tracted from the same ETS. Many of the ETSs
have been annotated as no stance (see Table 5)
and, following our annotation study setup, are not
used for FGE extraction. Therefore, the number
of FGE sets is much lower than that of ETSs.
We have found that, on average, an ETS consists
of 6.5 sentences. For those ETS that have sup-
port/refute stance, on average, 2.3 sentences are
selected as FGE. For many of the ETSs, no orig-
inal documents (ODCs) have been provided (doc-
uments from which they have been extracted). On

497



the other hand, in many instances, links to ODCs
are given that provide additional information, but
from which no ETSs have been extracted.

entity: claims ETSs FGE sets ODCs

count: 6,422 16,509 8,291 14,296

Table 3: Overall statistics of the corpus

The distribution of verdicts in Table 4 shows
that the dataset is unbalanced in favor of false
claims. The label other refers to a collocation of
verdicts that do not express a tendency towards
declaring the claim as being false or true, such as
mixture, unproven, outdated, legend, etc.

verdict: false true
most.
false

most.
true

other

count 2,943 659 334 93 2,393
% 45.8 10.3 5.2 1.4 37.3

Table 4: Distribution of verdicts for claims

Table 5 shows the stance distribution for ETSs.
Here, supporting ETSs and ETSs that do not ex-
press any stance are dominating.

stance: support refute no stance

ETSs:
count 6,734 2,266 7,508
% 40.8 13.7 45.5

FGE sets:
count 6,178 2,113 –
% 74.5 25.5 –

Table 5: Class distribution of ETSs the FGE sets

For supporting and refuting ETSs annotators
identified FGE sets for 8,291 out of 8,998 ETSs.
ETSs with a stance but without FGE sets often
miss a clear connection to the claim, so the annota-
tors did not annotate any sentences in these cases.
The class distribution of the FGE sets in Table 5
shows that supporting ETSs are more dominant.

To identify potential biases in our new dataset,
we investigated which topics are prevalent by
grouping the fact-checking instances (claims with
their resolutions) into categories defined by
Snopes. According to our analysis, the four cat-
egories Fake News, Political News, Politics and
Fauxtography are dominant in the corpus ranging
from more than 700 to about 900 instances. A sig-
nificant number of instances are present in the cat-
egories Inboxer Rebellion (Email hoax), Business,
Medical, Entertainment and Crime.

We further investigated the sources of the col-
lected documents (ODCs) and grouped them into a
number of classes. We found that 38% of the arti-
cles are from different news websites ranging from
mainstream news like CNN to tabloid press and
partisan news. The second largest group of doc-
uments are false news and satirical articles with
30%. Here, the majority of articles are from the
two websites thelastlineofdefense.org and world-
newsdailyreport.com. The third class of docu-
ments, with a share of 11%, are from social media
like Facebook and Twitter. The remaining 21%
of documents come from diverse sources, such as
debate blogs, governmental domains, online retail,
or entertainment websites.

4.3 Discussion

I this subsection, we briefly discuss the differences
of our corpus to the FEVER dataset as the most
comprehensive dataset introduced so far. Due to
the way the FEVER dataset was constructed, the
claim validation problem defined by this corpus is
different compared to the problem setting defined
by our corpus. The verdict of a claim for FEVER
depends on the stance of the evidence, that is, if
the stance of the evidence is agree the claim is
necessarily true, and if the stance is disagree the
claim is necessarily false. As a result, the claim
validation problem can be reduced to stance de-
tection. Such a transformation is not possible for
our corpus, as the evidence might originate from
unreliable sources and a claim may have both sup-
porting and refuting ETSs. The stance of ETSs
is therefore not necessarily indicative of the ve-
racity of the claim. In order to investigate how
the stance is related to the verdict of the claim for
our dataset, we computed their correlation. In the
correlation analysis, we considered how a claims’
verdict, represented by the classes false, mostly
false, other, mostly true, true, correlates with the
number of supporting ETSs minus the number of
refuting ETSs. More precisely, the verdicts of the
claims are considered as one variable, which can
take 5 discreet values ranging from false to true,
and the stance is considered as the other variable,
which is represented by the difference between the
number of supporting versus the number of refut-
ing evidence. We found that the verdict is only
weakly correlated with the stance, as indicated by
the Pearson correlation coefficient of 0.16. This
illustrates that the fact-checking problem setting
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for our corpus is more challenging than for the
FEVER dataset.

5 Experiments and error analysis

The annotation of the corpus described in the pre-
vious section provides supervision for different
fact-checking sub-tasks. In this paper, we perform
experiments for the following sub-tasks: (1) detec-
tion of the stance of the ETSs with respect to the
claim, (2) identification of FGE in the ETSs, and
(3) prediction of a claim’s verdict given FGE.

There are a number of experiments beyond the
scope of this paper, which are left for future work:
(1) retrieval of the original documents (ODCs)
given a claim, (2) identification of ETSs in ODCs,
and (3) prediction of a claim’s verdict on the basis
of FGE, the stance of FGE, and their sources.

Moreover, in this paper, we consider the three
tasks independent of each other rather than as a
pipeline. In other words, we always take the gold
standard from the preceding task instead of the
output of the preceding model in the pipeline. For
the three independent tasks, we use recently sug-
gested models that achieved high performance in
similar problem settings. In addition, we provide
the human agreement bound, which is determined
by comparing expert annotations for 200 ETSs to
the gold standard derived from crowd worker an-
notations (Section 4.1).

5.1 Stance detection
In the stance detection task, models need to deter-
mine whether an ETS supports or refutes a claim,
or expresses no stance with respect to the claim.

5.1.1 Models and Results
We report the performance of the following mod-
els: AtheneMLP is a feature-based multi-layer
perceptron (Hanselowski et al., 2018a), which has
reached the second rank in the Fake News Chal-
lenge. DecompAttent (Parikh et al., 2016) is
a neural network with a relatively small num-
ber of parameters that uses decomposable atten-
tion, reaching good results on the Stanford Natural
Language Inference task (Bowman et al., 2015).
USE+Attent is a model which uses the Uni-
versal Sentence Encoder (USE) (Cer et al., 2018)
to extract representations for the sentences of the
ETSs and the claim. For the classification of the
stance, an attention mechanism and a MLP is used.

The results in Table 6 show that AtheneMLP
scores highest. Similar to the outcome of the

Fake News Challenge, feature-based models out-
perform neural networks based on word embed-
dings (Hanselowski et al., 2018a). As the com-
parison to the human agreement bound suggests,
there is still substantial room for improvement.

model recall precision F1m

agreement bound 0.770 0.837 0.802
random baseline 0.333 0.333 0.333
majority vote 0.150 0.333 0.206

AtheneMLP 0.585 0.607 0.596
DecompAttent 0.510 0.560 0.534
USE+Attent 0.380 0.505 0.434

Table 6: Stance detection results (F1m = F1 macro)

5.1.2 Error analysis
We performed an error analysis for the best-
scoring model AtheneMLP. The error analysis
has shown that supporting ETSs are mostly classi-
fied correctly if there is a significant lexical over-
lap between the claim and the ETS. If the claim
and the ETSs use different wording, or if the ETS
implies the validity of the claim without explic-
itly referring to it, the model often misclassifies
the snippets (see example in the Appendix A.2.1).
This is not surprising, as the model is based on
bag-of-words, topic models, and lexica.

Moreover, as the distribution of the classes in
Table 5 shows, support and no stance are more
dominant than the refute class. The model is there-
fore biased towards these classes and is less likely
to predict refute (see confusion matrix in the Ap-
pendix Table 11). An analysis of the misclassified
refute ETSs has shown that the contradiction is of-
ten expressed in difficult terms, which the model
could not detect, e.g. “the myth originated”, “no
effect can be observed”, “The short answer is no”.

5.2 Evidence extraction

We define evidence extraction as the identifica-
tion of fine-grained evidence (FGE) in the evi-
dence text snippets (ETSs). The problem can be
approached in two ways, either as a classification
problem, where each sentence from the ETSs is
classified as to whether it is an evidence for a given
claim, or as a ranking problem, in the way defined
in the FEVER shared task. For FEVER, sentences
in introductory sections of Wikipedia articles need
to be ranked according to their relevance for the
validation of the claim and the 5 highest ranked
sentences are taken as evidence.
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5.2.1 Models and Results
We consider the task as a ranking problem, but
also provide the human agreement bound, the ran-
dom baseline and the majority vote for evidence
extraction as a classification problem for future
reference in Table 10 in the Appendix.

To evaluate the performance of the models in
the ranking setup, we measure the precision and
recall on five highest ranked ETS sentences (pre-
cision @5 and recall @5), similar to the evaluation
procedure used in the FEVER shared task. Table 7
summarizes the performance of several models on
our corpus. The rankingESIM (Hanselowski
et al., 2018b) was the best performing model
on the FEVER evidence extraction task. The
Tf-Idf model (Thorne et al., 2018a) served as
a baseline in the FEVER shared task. We also
evaluate the performance of DecompAttent and
a simple BiLSTM (Hochreiter and Schmidhuber,
1997) architecture. To adjust the latter two models
to the ranking problem setting, we used the hinge
loss objective function with negative sampling as
implemented in the rankingESIM model. As in
the FEVER shared task, we consider the recall @5
as a metric for the evaluation of the systems.

The results in Table 7 illustrate that, in terms of
recall, the neural networks with a small number of
parameters, BiLSTM and DecompAttent, per-
form best. The Tf-Idf model reaches best re-
sults in terms of precision. The rankingESIM
reaches a relatively low score and is not able to
beat the random baseline. We assume this is be-
cause the model has a large number of parameters
and requires many training instances.

model precision @5 recall @5

random baseline 0.296 0.529

BiLSTM 0.451 0.637
DecompAttent 0.420 0.627
Tf-Idf 0.627 0.601
rankingESIM 0.288 0.507

Table 7: Evidence extraction: ranking setting

5.2.2 Error analysis
We performed an error analysis for the BiLSTM
and the Tf-Idf model, as they reach the high-
est recall and precision, respectively. Tf-Idf
achieves the best precision because it only predicts
a small set of sentences, which have lexical over-
lap with the claim. The model therefore misses
FGE that paraphrase the claim. The BiLSTM is

better able to capture the semantics of the sen-
tences. We believe that it was therefore able to
take related word pairs, such as “Israel” - “Jew-
ish”, “price”-“sold”, “pointed”-“pointing”, “bro-
ken”-”injured”, into account during the ranking
process. Nevertheless, the model fails when the
relationship between the claim and the potential
FGE is more elaborate, e.g. if the claim is not
paraphrased, but reasons for it being true are pro-
vided. An example of a misclassified sentence is
given in the Appendix A.2.2.

5.3 Claim validation
We formulate the claim validation problem in such
a way that we can compare it to the FEVER rec-
ognizing textual entailment task. Thus, as illus-
trated in Table 8, we compress the different ver-
dicts present on the Snopes webpage into three
categories of the FEVER shared task. In order to
form the not enough information (NEI) class, we
compress the three verdicts mixture, unproven, and
undetermined. We entirely omit all the other ver-
dicts like legend, outdated, miscaptioned, as these
cases are ambiguous and difficult to classify. For
the classification of the claims, we provide only
the FGE as they contain the most important infor-
mation from ETSs.

FEVER Snopes

refuted: false, mostly false
supported: true, mostly true
NEI: mixture, unproven, undetermined

Table 8: Compression of Snopes verdicts

5.3.1 Experiments
For the claim validation, we consider models of
different complexity: BertEmb is an MLP clas-
sifier which is based on BERT pre-trained em-
beddings (Devlin et al., 2018); DecompAttent
was used in the FEVER shared task as baseline;
extendedESIM is an extended version of the
ESIM model (Hanselowski et al., 2018b) reaching
the third rank in the FEVER shared task; BiLSTM
is a simple BiLSTM architecture; USE+MLP is
the Universal Sentence Encoder combined with a
MLP; SVM is an SVM classifier based on bag-of-
words, unigrams, and topic models.

The results illustrated in Table 9 show
that BertEmb, USE+MLP, BiLSTM, and
extendedESIM reach similar performance,
with BertEmb being the best. However, com-
pared to the FEVER claim validation problem,
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Labeling method recall m prec. m F1 m

random baseline 0.333 0.333 0.333
majority vote 0.198 0.170 0.249

BertEmb 0.477 0.493 0.485
USE+MLP 0.483 0.468 0.475
BiLSTM 0.456 0.473 0.464
extendedESIM 0.561 0.503 0.454
featureSVM 0.384 0.396 0.390
DecompAttent 0.336 0.312 0.324

Table 9: Claim validation results (m = macro)

where systems reach up to 0.7 F1 macro, the
scores are relatively low. Thus, there is ample
opportunity for improvement by future systems.

5.3.2 Error analysis
We performed an error analysis for the best-
scoring model BertEmb. The class distribution
for claim validation is highly biased towards re-
futed (false) claims and, therefore, claims are fre-
quently labeled as refuted even though they belong
to one of the other two classes (see confusion ma-
trix in the Appendix in Table 12).

We have also found that it is often difficult to
classify the claims as the provided FGE in many
cases are contradicting (e.g. Appendix A.2.3). Al-
though the corpus is biased towards false claims
(Table 5), there is a large number of ETSs that sup-
port those false claims (Table 4). As discussed in
Section 4.2, this is because many of the retrieved
ETSs originate from false news websites.

Another possible reason for the lower perfor-
mance is that our data is heterogeneous and, there-
fore, it is more challenging for a machine learning
model to generalize. In fact, we have performed
additional experiments in which we pre-trained a
model on the FEVER corpus and fine-tuned the
parameters on our corpus and vice versa. How-
ever, no significant performance gain could be ob-
served in both experiments

Based on our analysis, we conclude that hetero-
geneous data and FGE from unreliable sources, as
found in our corpus and in the real world, make it
difficult to correctly classify the claims. Thus, in
future experiments, not just FGE need to be taken
into account, but also additional information from
our newly constructed corpus, that is, the stance
of the FGE, FGE sources, and documents from
the Snopes website which provide additional in-
formation about the claim. Taking all this infor-
mation into account would enable the system to

find a consistent configuration of these labels and
thus potentially help to improve performance. For
instance, a claim that is supported by evidence
coming from an unreliable source is most likely
false. In fact, we believe that modeling the meta-
information about the evidence and the claim more
explicitly represents an important step in making
progress in automated fact-checking.

6 Conclusion

In this paper, we have introduced a new richly an-
notated corpus for training machine learning mod-
els for the core tasks in the fact-checking pro-
cess. The corpus is based on heterogeneous web
sources, such as blogs, social media, and news,
where most false claims originate. It includes val-
idated claims along with related documents, evi-
dence of two granularity levels, the sources of the
evidence, and the stance of the evidence towards
the claim. This allows training machine learning
systems for document retrieval, stance detection,
evidence extraction, and claim validation.

We have described the structure and statistics
of the corpus, as well as our methodology for the
annotation of evidence and the stance of the ev-
idence. We have also presented experiments for
stance detection, evidence extraction, and claim
validation with models that achieve high perfor-
mance in similar problem settings. In order to
support the development of machine learning ap-
proaches that go beyond the presented models, we
provided an error analysis for each of the three
tasks, identifying difficulties with each.

Our analysis has shown that the fact-checking
problem defined by our corpus is more difficult
than for other datasets. Heterogeneous data and
evidence from unreliable sources, as found in our
corpus and in the real world, make it difficult to
correctly classify the claims. We conclude that
more elaborate approaches are required to achieve
higher performance in this challenging setting.
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Abstract

Different news articles about the same topic
often offer a variety of perspectives: an arti-
cle written about gun violence might empha-
size gun control, while another might promote
2nd Amendment rights, and yet a third might
focus on mental health issues. In communica-
tion research, these different perspectives are
known as “frames”, which, when used in news
media will influence the opinion of their read-
ers in multiple ways. In this paper, we present
a method for effectively detecting frames in
news headlines. Our training and performance
evaluation is based on a new dataset of news
headlines related to the issue of gun violence
in the United States. This Gun Violence Frame
Corpus (GVFC) was curated and annotated by
journalism and communication experts. Our
proposed approach sets a new state-of-the-art
performance for multiclass news frame detec-
tion, significantly outperforming a recent base-
line by 35.9% absolute difference in accuracy.
We apply our frame detection approach in a
large scale study of 88k news headlines about
the coverage of gun violence in the U.S. be-
tween 2016 and 2018.

1 Introduction

The political climate in the United States is
increasingly polarized (Pew Research Center,
2018a). To many media scholars and pundits,
the main reason that liberals and conservatives in-
habit different worlds is that news media of var-
ied political orientations have been depicting two
distinct versions of social reality (Mitchell et al.,
2014; Stroud, 2011). To address this problem, one
needs to assess the ways in which news reporters
frame important public affairs. In communication
research, “to frame” means “to select some as-
pects of a perceived reality and make them more
salient in a communicating text” (Entman, 1993).
Like any type of communication, news involves

framing. In a polarized media environment, par-
tisan media outlets intentionally frame news sto-
ries in a way to advance certain political agen-
das (Jamieson et al., 2007; Levendusky, 2013).
Even when journalists make their best efforts to
pursue objectivity, media framing often favors one
side over another in political disputes, thus always
resulting in some degree of bias (Entman, 2010).
Hence, a news framing analysis is helpful because
it not only tells us whether a news article is left-
or right-leaning (or positive or negative), but also
reveals how the article is structured to promote a
certain side of the political spectrum.

In communication research, manual identifica-
tion of media frames is a challenging task due
to the large amount of media data in this news-
saturated environment. More importantly, there is
a high level of complexity in framing analysis that
often requires a careful investigation of nuances in
news coverage, which is time-consuming. In the
field of Natural Language Processing (NLP), au-
tomated news framing analysis is a relatively un-
explored area. Existing sentiment-analysis tech-
niques fall short of addressing the nuances needed
for framing analysis, which requires the detection
of perspectives beyond positive and negative.

In this paper, we develop a neural network
based approach for classifying frames in news ar-
ticle headlines by fine-tuning a state-of-the-art lan-
guage representation model (BERT: Bidirectional
Encoder Representations from Transformers (De-
vlin et al., 2018)) for the task of frame detection.

Here, we focus on the application of news frame
detection on one prominent public affairs issue in
the United States, namely, gun violence. Some of
the deadliest mass shootings have happened dur-
ing the past few years. In fact, the United States
has the highest rate of gun-related homicides in
the developed world. However, Republicans and
Democrats remain divided on whether gun vio-
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lence is an important issue and disagree on most
gun-related policies, making gun violence one of
the most polarized issues in the country. (Pew Re-
search Center, 2018b). As a result, despite the
seriousness of the issue in reality, it is not con-
sidered a priority that should be tackled at the
Congressional level. One factor that potentially
explains the divergence of public opinion is how
different politically oriented news media cover
gun violence. It is likely that liberal-leaning and
conservative-leaning media frame the issue in dif-
ferent ways, which may ultimately determine dif-
ferent publics’ perception of the issue.

We use our frame detection approach to au-
tomatically detect frames of news article head-
lines related to gun violence during the past few
years, which enables large scale analysis of fram-
ing trends surrounding this issue in the United
States. Specifically, we focus on the years 2016,
2017, and 2018 because these three years have
witnessed a number of high-profile mass shoot-
ings, which often reignited national gun debate.

Overall, our analysis results in interesting find-
ings about U.S. media coverage of gun violence
that speak to the divided media and political land-
scape in the country. Our contributions are two-
fold: Firstly, we have developed a state-of-the-
art news frame detection approach by fine-tuning
BERT language model to perform the multiclass
(frame) classification on news article headlines.
Our approach significantly outperforms a recent
baseline in automated news frame detection (Field
et al., 2018) and other neural network baselines.

Secondly, we have curated a new dataset of
news articles related to U.S. gun violence: the Gun
Violence Frame Corpus (GVFC), which contains
news headlines and their frame annotations from
21 major U.S. news organizations. This dataset is
the first of its kind in that it is carefully curated
and contains domain-expert annotations of frames
in news headlines. We use our model trained on
GVFC to do a large scale analysis of U.S. gun vi-
olence framing trends in the U.S. between 2016
and 2018.

2 Related Work

2.1 News Framing
Framing is a subtle form of media manipulation in
which some aspects of a topic are highlighted in
order to promote a particular interpretation. It is
related to the word choice and labeling by jour-

nalists (Hamborg et al., 2019) for example, by
choosing “illegal alien” instead of “undocumented
immigrant”, journalists can highlight different as-
pects of an immigration issue.

Communication researchers have developed a
variety of approaches to analyzing media fram-
ing. One popular quantitative approach is to first
identify a list of frames and then manually clas-
sify news articles into one of the identified frames.
Journalists often use generic frames that are com-
mon across a range of issues, such as human in-
terest, conflict, and economic consequences (Rus-
sell Neuman et al., 1993; Nisbet, 2010; Semetko
and Valkenburg, 2000), on top of issue-specific
frames in their reporting. There are a number of
issue-specific frames that have been particularly
related to the issue of gun violence in the United
States. On a basic level, the debate about guns has
been framed as a threat to public safety (Haider-
Markel and Joslyn, 2001; Lawrence and Birkland,
2004), enabled by weak gun laws (Birkland and
Lawrence, 2009), versus an individual right to
have access to guns secured by the 2nd Amend-
ment’s “right to bear arms” (Haider-Markel and
Joslyn, 2001). Lawrence and Birkland (2004);
Birkland and Lawrence (2009) also described how,
after the Columbine shooting, the media discourse
framed violent popular culture (e.g., movies and
video games that glorify violence) as a culprit. Be-
yond the issue itself, the debate surrounding gun
violence has also been framed as a Democrat vs.
Republican political contest (Schnell, 2001).

In health communication, researchers have also
examined the extent to which the news media
frame the issue from the perspective of “danger-
ous people” (e.g., those with mental illness) wield-
ing weapons as compared to “dangerous weapons”
(e.g., large-capacity assault rifles) causing gun vi-
olence (McGinty et al., 2013). The mental illness
of gunmen is often a focal point in the coverage
of mass shootings (McGinty et al., 2014). Related
to the issue of mental health are broader concerns
about troubled individuals who lack the social sup-
port and resources to receive the help that they
need (DeFoster and Swalve, 2018). The discus-
sion about race and ethnicity has also emerged as
a salient frame, in that news coverage of gun vio-
lence may differ somewhat depending on who the
perpetrators are (Leavy and Maloney, 2009).

For our dataset, we detect these issue-specific
frames typically found in media coverage of gun
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violence, as well as generic frames like economic
consequences. While it would be beneficial to au-
tomate the framing analysis across a variety of is-
sues, here we argue that developing issue-specific
tools will allow for a more nuanced understanding
of each issue. Using our approach of combining
expert-chosen frames for a particular issue and an
automatic detection of these frames, communica-
tion researchers can further investigate how differ-
ent news media influence public opinion in subtle
ways and at scale, and thus be able to help prepare
stronger arguments for journalistic practice and ul-
timately policy changes about the issue.

2.2 News Frame Detection
Media Frame Corpus (MFC) (Card et al., 2015) is
one of the first large-scale datasets of frame an-
notations. It contains 11,900 hand-annotated En-
glish news articles for media framing that cover
three issues: immigration, tobacco, and same-sex
marriage. Undergraduate student annotators high-
light the span of text that covers a frame follow-
ing an annotation codebook. MFC has 15 generic
media frames, which are defined in the Policy
Frames Codebook by Boydstun et al. (2014), such
as economics, political, quality of life, and also an
“other” label for news articles that cannot be cov-
ered by any of the 15 frames. These news articles
have been collected using keyword search from
13 national U.S. newspapers from 1990 to 2012
and contains 38,283 news articles. Duplicate and
near-duplicate articles were removed and 20,037
of these articles were randomly selected for man-
ual framing annotation. Aside from spans of text,
headlines and entire news text are also annotated
with the headline and primary frames respectively.

Naderi and Hirst (2017) detect news frames at
the sentence-level using deep recurrent neural net-
works, specifically LSTM, BiLSTM, and GRU.
They used news articles from MFC dataset (Card
et al., 2015) to train and evaluate their model.
They show that their results for frame detection are
better than classifiers that rely on topics models for
detecting frames (Tsur et al., 2015; Nguyen et al.,
2015). Our work is different from theirs in that
we focus on detecting the frame in the news arti-
cle headline, which unlike a complete sentence, is
typically a short phrase. We implement these deep
recurrent networks in our experiments as baselines
and find that our approach performs better for de-
tecting frames in headlines, both in MFC and our

GVFC. We also implement a recent word-based
method for detecting frames in English and Rus-
sian news articles (Field et al., 2018) as another
baseline. We detail these baseline approaches and
their results in our experiment section (section 4).

3 Dataset Creation

3.1 News Article Collection
We drew our sample of news articles from a list
of top U.S. news websites defined in terms of
traffic to the websites. We cross-referenced sev-
eral sources that had “top news sites” of their
own: the Pew Research Center (2018b), Statista
(2017), Alexa (2018), and MediaCloud, which
is an open-source online platform. We synthe-
sized these lists towards creating one list that con-
tained news sites from the left, center, and right
sides of the ideological spectrum based on cate-
gories defined in MediaCloud; Pew Research Cen-
ter (2016); Ad Fontes Media (2019). We started
with list of 30 media outlets based on these refer-
ences.

We collected articles from these outlets from
four time periods over the course of 2018 in or-
der to capture a diversity of articles. Some arti-
cles were collected over periods during or imme-
diately after a mass shooting (e.g., the Parkland
School shooting in 02/2018). Other articles were
collected when gun violence was not necessarily
the most salient current event. We also included
articles from several months before the 2018 U.S.
midterm elections as the gun-related issue was a
central topic for political discussion during this pe-
riod. The articles were retrieved using Crimson
Hexagon’s ForSight social media analytics plat-
form (Hexagon, 2018), retrieving articles that had
at least one keyword in their headlines from the
following list: {“gun,” “firearm,” “NRA,” “2nd
amendment,” “second amendment,” “AR15,” “as-
sault weapon,” “rifle,” “Brady act,” “Brady bill,”
“mass shooting”}. We came up with the list of
keywords based on the previous literature and on
the review of a sample of our data. After collect-
ing the articles, news articles with duplicate titles
were removed and the rest sampled to be analyzed
and annotated. After sampling and annotation, the
final dataset contains frame annotations of news
articles from a total of 21 media outlets1.

1For reproducibility and future research, we make
our dataset and annotation codebook publicly available at
https://derrywijaya.github.io/GVFC.html
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3.2 News Article Annotation
Quantitative content analysis (QCA) in commu-
nication research is a commonly used method to
derive “replicable and meaningful inferences from
texts (or other meaningful matter)” (Krippendorff,
2004). To perform QCA, one draws a representa-
tive sample of text (or other types of content), on
which two or more trained coders (i.e., annotators)
apply a codebook protocol, which should include
all of the variables for annotation and their defini-
tions. Prior to coding the entire sample indepen-
dently, coders are first trained on the codebook,
and their agreement on how to apply the codes is
measured with inter-coder reliability (ICR). High
ICR values implies that two or more coders con-
sistently categorized the content similarly, which
signals a high validity of the coded results. Once
coders have reached an acceptable ICR (above
90% agreement or 0.70 Krippendorff α (Krippen-
dorff, 2004)), they can code the rest of the sample
independently.

Codebook Creation Our codebook was devel-
oped by drawing from the literature on framing
gun violence, described earlier, as well as from a
preliminary analysis of the data. This resulted in 9
frames, including both generic: “Politics”, “Pub-
lic opinion”, “Society/Culture”, and “Economic
consequences” and issue-specific: “2nd Amend-
ment” (Gun Rights), “Gun control/regulation”,
“Mental health”, “School/Public space safety”,
and “Race/Ethnicity”.

Unit of Annotation We choose our unit of an-
notation to be a news headline for several rea-
sons. Firstly, psychologists have long argued that
first impressions are lasting impressions (Digiro-
lamo and Hintzman, 1997). This thesis applies
to news reading behavior as well. Media framing
researchers often identify and measure frames in
news headlines (e.g., (Bleich et al., 2015; Trimble
and Sampert, 2004), which are seen by the audi-
ence first and can determine the perception of the
text that follows (Tankard Jr, 2001). As Pan and
Kosicki (1993) suggests, a headline is “the most
salient cue to activate certain semantically related
concepts in readers minds; it is thus the most pow-
erful framing device of the syntactical structure”.

Secondly, the analysis of news headlines be-
came more relevant in the emerging (i.e. digi-
tal) media environment where a large portion of
people only read headlines but nothing else (Ga-

bielkov et al., 2016). Further, driven by the atten-
tion economy, many online media even use news
headlines as “clickbait”, presenting sensational
but misleading information that deviates from the
content included in the actual news story (Chen
et al., 2015). That is, a news story may be framed
differently in its headline and the rest of the article.
In cases like this, research shows that even reading
through the article cannot necessarily correct the
headlines misdirection (Ecker et al., 2014). Taken
together, detecting frames through news headlines
provides the most direct clue to the potential influ-
ence of the news coverage.

Annotation Process Two communication grad-
uate students were recruited to annotate a sam-
ple of the collected news articles. They were in-
structed to first determine whether the news head-
line was relevant to gun violence in the United
States. If yes, they were asked to identify up to
two dominant frames in the headline. They were
trained on the codebook during the training ses-
sions. In the first training session, the students
were given a 100-headline sample to code, and
ICR was not met. Hence, a second training ses-
sion was held to further clarify the codebook and
resolve any confusion. The students coded another
100-headline sample, for which ICR was met on
all variables: relevance (99% agreement, 0.97 α),
frame A (94.10% agreement, 0.90 α) and frame
B (96.04% agreement, 0.82 α). Following QCA,
once the ICR was met, one student continued to
code another 2,790 news headlines, resulting in a
total of 2,990 annotated news headlines.

3.3 Dataset Properties
GVFC includes 2,990 news headlines, 1,300 of
which are annotated as relevant to the gun vio-
lence issue in the United States. Out of the relevant
headlines, only 319 are found to have 2 frames.
Examples of headlines with 2 frames are “It’s
Time to Hand the Mic to Gun Owners”, annotated
with “Public opinion” (frame A) and “2nd Amend-
ment” (frame B); and “Trevor Noah: ’The Second
Amendment Is Not Intended for Black People”,
annotated with “2nd Amendment” (frame A) and
“Race/Ethnicity” (frame B).

We use frame A annotations to train our frame
classification model but find that our model also
identifies some of frame B annotations in its top
predictions (Section 4.2). Table 1 shows frame A
class distribution in GVFC that reflects the varying
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coverage of different frames in the U.S. media.

4 Experiments

We use the most recent method for automatic news
frame detection (Field et al., 2018) as one of our
baselines. They devise a word-based method for
detecting the frames in English and Russian news.
They use MFC to derive a lexicon for each frame
F by computing pointwise mutual information
I(F,w) (Church and Hanks, 1990) for each word
w and each frame F in the corpus. Each frame
F ’s lexicon contains the top 250 words with the
highest I(F,w) for frame F . A news article has
a frame F if it contains at least 3 instances of a
word from F’s lexicon with the primary frame be-
ing the most common frame, based on the number
of words from each frame’s lexicon in the docu-
ment. We create lexicons for the 9 frames in our
GVFC dataset and use them to compute the pri-
mary frames of news headlines.

We also implement LSTM-based neural net-
works for a more comprehensive evaluation. Long
short-term memory (LSTM) is a recurrent neural
network (RNN) architecture that is widely used to-
day in text classification tasks. There are plenty of
variants from this type of architecture: Gated Re-
current Unit (GRU), Bi-directional LSTM, and Bi-
directional GRU. We implement these networks
with attention mechanism (Bahdanau et al., 2015)
and use 100-dimensional pre-trained Glove em-
beddings (Pennington et al., 2014) as our initial
word representations. We train and evaluate these
networks for headlines frame classification with
128 units of RNN cells and one layer of attention
mechanism at the end, a batch size of 128 for 2000
steps. We use Adam optimizer with a learning rate
of 0.01.

As the results in Table 1 show, Bi-directional
GRU with attention achieves the highest accuracy
among our baselines. The reason behind this could
be the fact that we have a small dataset and GRU
needs fewer data points to generalize (Kaiser and
Sutskever, 2015; Yin et al., 2017). Furthermore,
the attention mechanism and bi-directionality al-
lows for more contextual interpretation of the
headlines and better detection of their frames.

4.1 News Frame Detection with BERT
Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) take
this idea of attention and bi-directionality further

by building on the Transformer’s encoder model
that solely relies on multi-layer self-attention to
compute contextual representations of its input,
dispensing with any kinds of recurrence (Vaswani
et al., 2017). The encoder is composed of a stack
of identical layers, where each layer contains a
self-attention mechanism, which allows the en-
coder to look at other words in the input sentence
as it encodes the contextual representation of
each word in the sentence, and a fully connected
feed-forward network. The self-attention mecha-
nism computes three vectors from the embedding
of each word in the input sentence: the query
q, key k, and value v vectors. It then computes
the contextual representation of each word w in
the sentence as the weighted sum of the value
vectors of all the words in the sentence, where
the weights are the scaled then normalized dot
products between w’s query vector and the key
vectors of all the words in the sentence. The
weights essentially determine how much focus
to place on other parts of the input sentence as
the encoder encodes a word at a certain position.
Given that the query, key, and value vectors are
computed by multiplying the input word embed-
dings matrix X with weight matrices learned
during training, WQ, WK , W V , the self-attention
output can be formulated in matrix form as:
Attention(Q,K, V ) = softmax(QKT /

√
dk)V

where Q = XWQ, K = XWK , V = XW V .
BERT’s encoder implements the Transformer’s

multi-layer self-attention mechanisms and fully
utilizes its strength in storing the left and right con-
text of each token by using a “masked language
model” (MLM) pre-training objective, inspired by
the Cloze task (Taylor, 1953). In its pre-training,
BERT randomly masks some of the tokens from
its input, and predicts the original vocabulary id of
the masked word based only on its context. Un-
like left-to-right language model pre-training, the
MLM objective enables the representation to fuse
the left and the right context, which allows BERT
to pre-train a deep bidirectional Transformer rep-
resentations from unlabeled large text corpora.

We fine-tune the pre-trained BERT-based un-
cased model on our multiclass frame classification
by adding a frame classification layer on top of the
model and fine-tune all the parameters end-to-end.
Given a headline, BERT tokenizes the headline
to tokens based on WordPiece tokens (Wu et al.,
2016) and appends a special classification token
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Frame Class # Headlines Baseline LSTM Bi-LSTM Bi-LSTM Bi-GRU BERT
w/ Attention w/ Attention

2nd Amendment 38 44.74 23.68 21.05 44.74 26.32 65.79
Gun control/regulation 215 50.23 63.72 66.51 72.09 76.28 84.19
Politics 373 40.48 78.28 77.75 84.18 85.79 89.54
Mental health 65 35.38 50.77 40.00 58.46 60.00 78.46
School/Public space safety 137 39.42 48.91 50.36 54.74 58.39 78.10
Race/Ethnicity 114 67.54 75.44 71.93 84.21 81.28 92.11
Public opinion 237 63.29 70.46 72.15 75.53 77.22 86.08
Society/Culture 41 43.90 24.39 19.51 36.59 21.95 58.54
Economic consequences 80 38.75 45.00 51.25 61.25 60.00 80.00
Overall 1300 48.38 64.37 64.48 72.15 72.76 84.23

Table 1: Class distribution of frame A annotations and micro-accuracies for the baseline (Field et al., 2018), LSTM, bi-
directional LSTM, bi-directional LSTM and bi-directional GRU with attention, and our method based on fine tuning BERT.

([CLS]) at the beginning of the headline. We use
the final hidden vector C ∈ RH corresponding to
[CLS] as the aggregate representation of the head-
line that is input to the classification layer (since
encoding this token with self-attention effectively
includes attention to all the tokens in the head-
line). The only new parameters are our classifi-
cation layer weights W ∈ RKxH , where K = 9,
the number of our frame classes. Given the im-
balance in our class distribution, we compute a fo-
cal loss (FL) (Lin et al., 2017) that improves our
classification performance compared to the stan-
dard cross entropy loss. We compute FL(p) =
−α(1 − p)γ log(p), where p ∈ RK contains the
probabilities of classifying the headline into each
of the K frames i.e., p = softmax(CW T ) and
α ∈ RK contains the weighting factors, which
we set for each frame to be its normalized inverse
class frequency ∈ [0, 1]: the smaller the class, the
higher the α and vice versa, which balances the
importance of each class’ examples. The modu-
lating factor: (1 − p)γ in FL down-weights the
loss contribution of the easy examples – those that
are well classified (i.e. have high pk) – and thus
focuses the training on hard-to-classify examples.
Following Lin et al. (2017), we use γ = 2.

We train for 10 epochs with a batch size of 4,
2e-5 learning rate, and maximum sequence length
of 128 tokens. Training and testing on the same
stratified folds that we use for all our baselines, we
achieve a 5-fold cross validation micro-accuracy
of 84.23%. Our method based on BERT signifi-
cantly outperforms not only the most recent news
frame classification baseline, but also some state-
of-the-art deep classification models, including bi-
directional LSTM/GRU with attention on every
frame of our GVFC dataset (Table 1).

We also evaluate our method to classify frames
of news headlines in another dataset (MFC). As

MFC Issue # Head- Bi-GRU w/ BERT
lines Attention

Immigration (I) 7231 40.84 52.38
Tobacco (T) 3959 57.20 67.94
Samesex (SS) 3842 61.57 71.50
I (top-5 frames) 4175 53.65 67.28
T (top-5 frames) 2759 71.44 82.32
SS (top-5 frames) 2937 74.94 83.07

Table 2: 10-fold cross-validation micro-accuracy on the
MFC dataset for our best baseline from previous evaluation,
and our model based on BERT.

Table 2 shows, our method significantly outper-
forms our top-performing baseline, both on the 15-
frame classification task and on the top-5 (most
frequent) frame classification on all issues: im-
migration, tobacco, and same-sex marriage. This
shows that our method can perform well for de-
tecting frames in headlines in different datasets
and across a diverse range of issues.

4.2 Discussion
Our results show that fine-tuning on BERT per-
forms well even on a small dataset like GVFC,
which agrees with the findings of Devlin et al.
(2018) that fine-tuning on BERT’s pre-trained
model can lead to large improvements even on
very small scale tasks. Part of the reasons may
be due to BERT’s deep attention mechanism. At-
tention mechanism has been shown to be data-
efficient and helps improve performance signif-
icantly even when the dataset is small (Vinyals
et al., 2015). Even adding standard attention im-
proves the accuracy of our LSTM-based baselines
significantly (Table 1). BERT’s success can also
be traced to its design of bidirectional Transformer
that offers richer contextual information. Further-
more, BERT was pre-trained on a large corpus to
produce this representation. Fine-tuning on BERT
allows us to transfer this contextual knowledge to
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Figure 1: Visualization of our fine-tuned model, the headlines and the predicted frames. The thicker the line, the
more attention placed on the token for computing the aggregate i.e., [CLS] representation for the classification

classifying frames in headlines, which are very
short compared to the entire news text. The ability
to transfer contextual knowledge from a large cor-
pus leads to better representation for these short
pieces of texts and better generalization of our
model compared to the lexicon-baseline that only
relies on word-frame co-occurrences in GVFC.

We use a visualization tool (Vig, 2019) to ob-
tain insights into what our fine-tuned model is at-
tending to when making decisions. For exam-
ple, we observe that pre-training on a large cor-
pus may have helped our model predict the frame
“School/Public Space Safety” for the headline:
”Doctors release new recommendations to reduce
gun violence” by attending to words like “Doc-
tors” and “recommendations” (Figure 1(a)). Al-
though these words do not co-occur frequently
with this specific frame in GVFC, they may be re-
lated to school/public safety in general. The lex-
icon model, on the other hand, incorrectly pre-
dicts the “Gun control/regulation” frame due to the
words “release” and “gun” in the headline.

Because news framing is closely related to
journalists’ word choice (Hamborg et al., 2019),
we find that on frames such as “Race/Ethnicity,”
which has a specific set of keywords that the
model can attend to like “black”, “white”, or “anti-
semitic”, both our model and the lexicon-baseline
perform the best on this frame.

On the other hand, the performance of our
model and the baseline differ significantly for
generic frames such as “Politics,” whose keywords
may overlap with issue-specific frames such as
“Gun control/regulation”. Since BERT is pre-
trained to take context into consideration, words
like “gun”, which appears with all the frames, can
have different contextual representation depend-

ing on its context i.e., “gun lobby” vs. “gun per-
mit”. For example, the headline “That’s it – no
more guns” is classified correctly by BERT as hav-
ing “Gun control/regulation” frame by attending
to the context “no more” of “guns” (Figure 1(b)).

Also, despite not being trained to predict multi-
ple frames, some of BERT’s predictions of what it
believes to be top frames align with that of human
experts. There are 319 headlines in GVFC that
were annotated with two frames: frame A and B,
meaning that the headline is equally likely to be-
long to either frame. In our experiments, we only
train our model with frame A annotations. How-
ever, we notice that out of the 319 headlines that
have two frames, 164 of them have both frames
predicted in the top-2 predictions of our model,
showing the potential to fine-tune BERT for multi-
label multi-class frame classification, which we
will explore in the future. Furthermore, the accu-
racy of our model on GVFC increases to 87.92%
if we consider our model’s prediction to be correct
if it predicts either frame for these 319 headlines.

More interestingly, we observe that our model
can predict additional frames that may be appli-
cable to the headlines but are not annotated. In
Figure 1(c) for example, for the headline “Man
charged in ’stand your ground’ shooting death
threatened them”, our model first attends to the
word “ground” and then “threatened” and pre-
dicts the frame “Race/Ethnicity” and then “Mental
health”. Even though this headline was only an-
notated with the “Mental health” frame (possibly
due to the word “threatened” which, in the “Men-
tal Health” description of the annotation code-
book, may be referring to an individual’s behav-
iors that indicate instability, impulsivity, anger,
etc.), we believe that in this particular headline the
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“Race/Ethnicity” frame is more applicable given
the presence of ’stand your ground’, a legislation
that has been shown to have a quantifiable racial
bias (Ackermann et al., 2015).

Overall, what we observe from visualizing our
model suggests that the model is able to generalize
beyond word-frame co-occurrences in the limited
annotations by virtue of the contextual knowledge
transfer obtained by pre-training on a large corpus.

5 Framing Trends, Analysis, and
Conclusion

Figure 2: The number of times each frame is repre-
sented in new article headlines related to gun violence
across the 3-year (per month) period. Some of the
peaks represent the deadliest mass shootings in the U.S.
since 1949 (CNN Library, 2019).

We used the same search words to retrieve news
article headlines from the 21 U.S.news media out-
lets from 2016 to 2018. To apply our framing anal-
ysis, we first train a model to predict whether a
news headline is relevant to the issue of U.S. gun
violence by fine-tuning BERT-base uncased using
the relevance annotations in GVFC. This relevance
prediction model achieves a 10-fold cross valida-
tion precision of 0.93, 0.95 recall, and 0.94 F-
score. We apply this model to find relevant head-
lines among the 88,470 collected, and apply our
frame classification on the relevant headlines.

Several patterns emerged from the framing
analysis. It appears that news media of all types
have largely politicized the gun violence issue
right after each major mass shooting (Figure 2).
The focus on party politics, the divide between
Democrats and Republicans on the issue domi-
nated the coverage. This finding speaks to the
highly polarized political environment in the U.S.

We also observe in Figure 2 that right af-
ter the Parkland school shooting in 02/2018,
the discussion surrounding “Public opinion”,
“School/Public space safety”, and “Economic

consequences” frames increases. The increase in
“Public opinion” and “School/Public space safety”
frames is due to the growth of student activism in
the wake of the shooting. Meanwhile, the increase
in the “Economic Consequence” frame is due to
the decision of several major companies such as
Dick’s Sporting Goods to stop selling assault-style
weapons in the wake of the event.

We also observe in Figure 2 that frames that
spike during every major shooting event, such as
“Politics”/“Public opinion”, are not the most per-
sistent. Their frequency peaked during the month
but dropped, often drastically, after. Notably, the
“Mental health” frame (the cyan bar) appears to
be the most persistent, appearing consistently over
time in coverage about gun violence.

Another noticeable cross-media pattern in the
U.S. media coverage of the gun violence issue
is that the conservative-leaning and neutral media
emphasized the mental health of individual gun-
men to a greater extent than liberal-leaning media
(see the cyan bar representing the “Mental health”
frame in the left, center, and right plots of Fig-
ure 3). About a quarter of news articles from neu-
tral and conservative-leaning media in 2017 are
classified as having the “Mental Health” frame
(27% and 22% of the articles respectively). In
comparison, only 8% of news articles from liberal-
leaning media are classified as having this “Mental
Health” frame.

This finding about the conservative media (Fig-
ure 3 right) is not surprising because connect-
ing mental illness and mass shooting has been a
common stance among pro-gun Republican lead-
ers (i.e., “guns don’t kill people, people kill peo-
ple”). More surprisingly though (and contrary to
the common perception of mainstream media such
as NYT, CNN, and CBS being liberal-leaning),
our study suggests that these neutral, mainstream
media (Figure 3 center) has also largely framed the
issue from the aspect of mental health, often more
than the conservative media, which may indicate
conservative media’s strong agenda-setting power
in the U.S. media ecosystem.

Media framing scholars have also pointed out
the importance of examining what aspects of the
story has been left out. In our analysis, the frame
of “Society/Culture” – a frame that is important
and yet would not attract much web traffic – has
not been a focus of gun violence coverage in the
U.S. As the results demonstrate (Figure 3), major
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Figure 3: The proportion of each frame occurring in the 2017 news from news sites of different political leanings.

shootings were only able to trigger liberal-leaning
media to pay more attention to this frame. 16%
of articles from liberal-leaning media in 2017 are
classified as having the “Society/Culture” frame,
while only 9% of articles from neutral media (and
only 5% from conservative-leaning media) are
classified as having this “Society/Culture” frame.
The lack of framing focus on the underlying cul-
tural/societal issues as well as the aforementioned
focus on party politics and strong agenda-setting
speak to the status quo of the current U.S. news en-
vironment: profit-driven, sensational, and highly
partisan.

In conclusion, we have presented in this pa-
per a method for news headline frame classifi-
cation that achieves state-of-the-art performance.
We also release the codebook and a carefully cu-
rated Gun Violence Frame Corpus (GVFC) news
articles whose headlines have been annotated with
their corresponding frames by domain experts. We
demonstrate the application of our framing detec-
tion to analyze a large corpus of news headlines
for framing trends surrounding the U.S. gun vio-
lence coverage. We observe interesting findings
and believe that frame detection and analysis can
potentially be used to gain a deeper understanding
of various issues of public affairs. Automatically
detected frames in news headlines can also be used
to curate more balanced news collections on vari-
ous issues and perspectives.
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Abstract

Named entity recognition (NER) identifies
typed entity mentions in raw text. While the
task is well-established, there is no universally
used tagset: often, datasets are annotated for
use in downstream applications and accord-
ingly only cover a small set of entity types
relevant to a particular task. For instance, in
the biomedical domain, one corpus might an-
notate genes, another chemicals, and another
diseases—despite the texts in each corpus con-
taining references to all three types of enti-
ties. In this paper, we propose a deep struc-
tured model to integrate these “partially an-
notated” datasets to jointly identify all entity
types appearing in the training corpora. By
leveraging multiple datasets, the model can
learn robust input representations; by build-
ing a joint structured model, it avoids po-
tential conflicts caused by combining several
models’ predictions at test time. Experiments
show that the proposed model significantly
outperforms strong multi-task learning base-
lines when training on multiple, partially an-
notated datasets and testing on datasets that
contain tags from more than one of the training
corpora.1

1 Introduction

Named Entity Recognition (NER), which identi-
fies the boundaries and types of entity mentions
from raw text, is a fundamental problem in natu-
ral language processing (NLP). It is a basic com-
ponent for many downstream tasks, such as rela-
tion extraction (Hasegawa et al., 2004; Mooney
and Bunescu, 2005), coreference resolution (Soon
et al., 2001), and knowledge base construction
(Craven et al., 1998; Craven and Kumlien, 1999).

∗ Work done while the author was at USC ISI.
1The code and the datasets will be made available at

https://github.com/xhuang28/NewBioNer

One problem in NER is the diversity of en-
tity types, which vary in scope for different do-
mains and downstream tasks. Traditional NER
for the news domain focuses on three coarse-
grained entity types: person, location, and organi-
zation (Tjong Kim Sang and De Meulder, 2003).
However, as NLP technologies have been applied
to a broader set of domains, many other entity
types have been targeted. For instance, Ritter et al.
(2011) add seven new entity types (e.g., product,
tv-show) on top of the previous three when an-
notating tweets. Other efforts also define differ-
ent but partially overlapping sets of entity types
(Walker et al., 2006; Ji et al., 2010; Consortium,
2013; Aguilar et al., 2014). These non-unified
annotation schemas result in partially annotated
datasets: each dataset is only annotated with a
subset of possible entity types.

One approach to this problem is to train individ-
ual NE taggers for each partially annotated dataset
and combine their results using some heuristics.
Figure 1 shows an example that demonstrates
the possible shortcomings of this approach, using
the biomedical domain as a case study.2 Here,
we train four separate models on four partially
annotated datasets: AnatEM (Pyysalo and Ana-
niadou, 2013) annotated for the anatomy type,
BC2GM (Smith et al., 2008) for the gene type,
JNLPBA (Kim et al., 2004) for cell types, and
Linnaeus (Gerner et al., 2010) for the species
type. We can see that the models’ predictions
contradict each other when applied to the same
test sentence—making it a challenge to accurately
combine them.

In this paper, we propose a deep structured
model to leverage multiple partially annotated
datasets, allowing us to jointly identify the union

2https://corposaurus.github.io/
corpora/ summarizes dozens of partially annotated
biomedical datasets.
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Figure 1: An example sentence from the CellFinder corpus (Neves et al., 2012) showing the challenges in combin-
ing the output of individual NE taggers. The Gold row is the human annotations in CellFinder. The rows below are
predictions made by models trained on datasets that each contain only a subset of the CellFinder types. Note that
the individual taggers’ predictions can conflict with each other, making it challenging to combine them. (Note: we
renamed CellFinder’s Cell Component to Cell Type to fit it in the space above.)

of all entity types presented in the training data.
The model leverages supervision signals across
diverse datasets to learn robust input representa-
tions, thus improving the performance for each en-
tity type. Moreover, it makes joint predictions to
avoid potential conflicts among models built on
different entity types, allowing further improve-
ment for cross-type NER.

Experiments on both real-world and synthetic
datasets show that our model can efficiently adapt
to new corpora that have more types than any
individual dataset used for training and that it
achieves significantly better results compared to
strong multi-task learning baselines.

2 Problem Statement

We formally define the problem by first defining
our terminology.

Global Tag Space. Let Ci denote a corpus, and
TCi denote the set of entity types that are tagged
in corpus Ci. When there are a set of corpora
C = {C1, C2, ..., Cn}, each has its own tag space
concerning different entity types, the global tag
space is defined as the union of the local tag space.
Formally, TC = TC1 ∪ TC2 ∪ ... ∪ TCn .

Partially Annotated Corpus. If TCi $ TC,
then Ci is a partially annotated corpus.

Global Evaluation. When a model is trained
on a set of partially annotated corpora C and pre-
dicts tags for the whole global tag space TC, we
say it is making global predictions. Accordingly,
the evaluation of the models’ performance on TC
is called global evaluation.

Our goal is to train a single unified NE tagger
from several partially annotated corpora for ef-
ficient adaptation to new corpora that have more
types than any individual dataset used during
training. Formally, we have a set of corpora
C = {C1, C2, ..., Cn}, and we propose to train

a joint model on C such that it makes predic-
tions for the global tag space TC. One benefit of
this joint model is that it can be easily adapted
to a new tag space TCu where TCu ⊆ TC, and
TCu * TCi , ∀Ci ∈ C.

3 Background and Related Work

In this section, we first introduce neural architec-
tures for NER which our work builds upon and
then summarize previous work on imperfect an-
notation problems.

3.1 Neural Architectures for NER

With recent advances using deep neural networks,
bi-directional long short-term memory networks
with conditional random fields (BiLSTM-CRF)
have become standard for NER (Lample et al.,
2016). A typical architecture consists of a BiL-
STM layer to learn feature representations from
the input and a CRF layer to model the inter-
dependencies between adjacent labels and perform
joint inference. Ma and Hovy (2016) introduce ad-
ditional character-level convolutional neural net-
works (CNNs) to capture subword unit informa-
tion. In this paper, we use a BiLSTM-CRF with
character-level modeling as our base model. We
now briefly review the BiLSTM-CRF model.

BiLSTMs. Long Short Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997) are
a variation of RNNs that are designed to avoid
the vanishing/exploding gradient problem (Bengio
et al., 1994). Specifically, BiLSTMs take as input
a sequence of words x = {xk|k ∈ N} and output
a sequence of hidden vectors: H = {hk|k ∈ N}
BiLSTMs combine a left-to-right (forward) and a
right-to-left (backward) LSTM to capture both left
and right context. Formally, they produce a hidden
vector h̃i = [

−→
hi;
←−
hi] for each input, where

−→
hi and
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←−
hi are produced by the forward and the backward
LSTMs respectively; [; ] denotes vector concatena-
tion.

Character-level Modeling. Following Wang
et al. (2018), we use a BiLSTM for character-level
modeling. We concatenate the hidden vector of the
space after a word from the forward LSTM and the
hidden vector of the space before a word from the
backward LSTM to form a character-level repre-
sentation of the word: hc

i = [
−→
hc
i ;
←−
hc
i ]. The word-

level BiLSTM then takes the concatenation of hc
i

and the word embedding as input xi = [ei;h
c
i ] to

learn contextualized representations.

Neural-CRFs. Conditional Random Fields
(CRFs) (Lafferty et al., 2001) are sequence tag-
ging models that capture the inter-dependencies
between the output tags; they have been widely
used for NER (McCallum and Li, 2003; Lu et al.,
2015; Peng and Dredze, 2015, 2016, 2017). Given
a set of training data {xi,yi}N , a CRF minimizes
negative log-likelihood:

min
Θ
−
∑

i

logP (yi | xi; Θ), (1)

P (yi | xi; Θ) =
GoldEnergy

Partition
=

St(yi)∑
y′ St(y

′)
(2)

where y′ is any possible tag sequence with the
same length as yi, St(y′) is the potential of the
tag sequence y′, and St(yi) is the potential of
the gold tag sequence. The numerator St(yi) is
called the gold energy function, and the denom-
inator

∑
y′ St(y

′) is the partition function. The
likelihood function using globally annotated data
is illustrated in Figure 2a. The potential of a tag
sequence can be computed as:

St(y) =

|y|∏

t=1

Score(y[t],y[t− 1]) (3)

where y[t] is the tth element in y (y[−1] is the
start of the sequence), and

Score(y[t],y[t− 1]) = exp (tr(y[t],y[t− 1])) ∗
exp (em(y[t]))

(4)

where tr(y[t],y[t−1]) is the transition score from
y[t−1] to y[t], and em(y[t]) is the emission score
of y[t] computed based on the output h̃t of the
BiLSTM.

3.2 Learning from Imperfect Annotations

Learning from multiple partially annotated
datasets could be more generally thought of as
learning from imperfect annotations. In that
broad sense, there are several notable areas of
prior work. One of the most prominent concerns
learning from incomplete annotations (noisy
labels), where some occurrences of entities are
neglected in the annotation process and falsely
labeled as non-entities (negative). A related
problem is learning from unlabeled data with
distant supervision.

A major challenge of all these settings, includ-
ing ours, is that a positive instance might be la-
beled as negative. A well-explored solution to
this problem is proposed by Tsuboi et al. (2008),
which instead of maximizing the likelihood of the
gold tag sequence, we maximize the total likeli-
hood for all possible tag sequences consistent with
the gold labels. Tsuboi et al. (2008); Yang and
Vozila (2014) applied this idea to the incomplete
annotation setting; Shang et al. (2018); Liu et al.
(2014) applied it to the unlabeled data with distant
supervision setting; and Greenberg et al. (2018)
applied it to the partial annotation setting. While
this is a general solution, its primary drawback is
that it assumes a uniform prior on all labels con-
sistent with the gold labels. This may have the
result of overly encouraging the prediction of en-
tities, resulting in low precision.

To tackle the problem of incomplete annota-
tions, Carlson et al. (2009); Yang et al. (2018) ex-
plored bootstrap-based semi-supervised learning
on unlabeled data, iteratively identifying new en-
tities with the taggers and then re-training the tag-
gers. Bellare and McCallum (2007); Li and Liu
(2005); Fernandes and Brefeld (2011) explored an
EM algorithm with semi-supervision.

For the partial annotation problem, most previ-
ous work has focused on building individual tag-
gers for each dataset and using single-task learn-
ing (Liu et al., 2018) or multi-task learning (Crich-
ton et al., 2017; Wang et al., 2018). In single-
task learning, each model is trained separately on
each dataset Ci, and makes local predictions on
TCi . Based on the neural-CRF architecture, multi-
task learning uses a different CRF layer for each
dataset Ci (each task) to make local predictions
on TCi , and shares the lower-level representation
learning component across all tasks. Both single-
task learning and multi-task learning make local
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predictions and have to apply heuristics to com-
bine the model predictions, resulting in the colli-
sion problem demonstrated in Figure 1.

To the best of our knowledge, Greenberg et al.
(2018) is the only prior work trying to build a uni-
fied model from multiple partially annotated cor-
pora. We will show that their model, which is rem-
iniscent of Tsuboi et al. (2008), is a special case of
ours and that our other variations achieve better
performance. In addition, they only evaluated the
model on the training corpora while we conduct
evaluations to test the model’s ability to adapt to
new corpora with different tag spaces.

4 Model

As mentioned above, we use a BiLSTM-CRF with
character-level modeling as our base model. Our
goal is to build a unified model to make global
predictions. That is, our model will be jointly
trained on multiple partially annotated datasets
C and make predictions on the global tag space
TC. Such a unified model will enjoy the benefit
of learning robust representations from multiple
datasets just like multi-task learning while main-
taining a joint probability distribution of the global
tag space to avoid possible conflicts from individ-
ual models.

4.1 Naive Approach

A simple solution to the problem is to merge all the
datasets into one giant corpus. A single model can
then be trained on this corpus to make global pre-
dictions. However, such a corpus will be missing
many correct annotations, since each portion will
be annotated with only a subset of the target entity
types. Figure 2b shows an example: here, a loca-
tion (Texas) exists but is labeled as a non-entity,
because the original dataset from which this sen-
tence is drawn does not annotate locations at all.
As a result, this approach suffers from false penal-
ties when applying the original likelihood function
(Eq. 2-4) to train the model, meaning that it pe-
nalizes predictions that correctly identify entities
with types that are not annotated for a particular
sentence.

4.2 Improving the Gold Energy Function

One way to improve performance is to explicitly
acknowledge the incompleteness of the existing
“gold” annotations and to give the model credit for
predicting any tag sequence that is consistent with

(a) Original likelihood function with global annotation

(b) Original likelihood function with partial annotation

(c) Improved likelihood function with partial annotation

Figure 2: Illustration of original (2a, 2b) and im-
proved (2c) likelihood functions. Each figure has two
parts upper and lower that illustrate the gold energy
(numerator) and the partition (denominator) respec-
tively. Solid lines represent tag sequences that are fully
considered in the functions. Dashed lines represent tag
sequences that are discounted. The sentences in 2b and
2c are not annotated with LOC.

the partial annotations. This can be done by mod-
ifying the CRF’s gold energy function, illustrated
in the upper part of Figure 2c. Specifically, in this
example, John is labeled as PER, so PER is the
only possible correct tag at that position. How-
ever, lives, in, and Texas are labeled as O (non-
entity), which here means only that they may not
be PER—but any of them could be LOC, since lo-
cations are not annotated for this sentence. There-
fore, any sequence that assigns either O or LOC
for any of these three positions is consistent with
the gold labels. To account for this, we modify the
gold energy function to credit all tag sequences
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that are consistent with the gold annotations, en-
couraging the model to predict other consistent la-
bels when the gold label is O. Tsuboi et al. (2008)
propose a specific solution that applies this idea
on incomplete annotations: instead of maximizing
the likelihood of the gold tag sequence when op-
timizing the CRF model, they maximize the total
likelihood of all possible tag sequences consistent
with the gold labels. This approach is later used
by Greenberg et al. (2018) to handle the problem
of partial annotation. We will address a potential
problem with their method and propose a general-
ized version in Section 4.4.

4.3 Improving the Partition Function
Modifying the gold energy function will give
credit to a system for producing alternative entity
labels for words tagged as O in the partially an-
notated training. A different solution is to sim-
ply not penalize predictions of such alternative la-
bels. This can be done by modifying the partition
function and keeping the gold energy function un-
changed. The lower part of Figure 2c gives an il-
lustration. As stated above, LOC is a consistent
alternative entity label for lives, in, and Texas. We
therefore exclude from our calculations any paths
that include LOC at any of those positions. More
generally, we exclude all such consistent but alter-
native tag sequences from the computation of the
CRF’s partition function. Section 4.4 gives formal
definitions with equations. The improved partition
function sets the model free to predict alternative
labels without penalty (as long as they are consis-
tent with the known gold annotations), but it does
not give them any positive credit for doing so (as
in the previous approach). We hypothesize that
the improved partition function would work better
than the improved gold energy function in our set-
ting because it addresses the false penalties prob-
lem more precisely. We will verify this hypothesis
in our experiments.

4.4 Discounting Alternative Sequences
There is a potential problem with naively applying
the improved gold energy function: when the gold
label is O, the model is encouraged to predict other
consistent labels as strongly as it is encouraged
to predict O. However, many O labels are confi-
dent annotations of O. As a result, naively training
with the improved gold energy function tends to
over-predict entities and not predict Os. To miti-
gate this problem, we discount the energy of tag

sequences that go through alternative labels. This
can be achieved by introducing a hyper-parameter
M (mask) ∈ [0, 1] as a discounting factor for the
gold energy function. Formally, we modify Eq 3
to:
St′(y,M) =

|y|∏

t=1

(Score(y[t],y[t− 1]) ∗mask(y[t],M)),

where

mask(y[t],M) =

{
M, if y[t] ∈ alternative
1, Otherwise

.

where alternative is the set of alternative labels.
We thus have the improved gold energy function:

ImprovedGoldEnergy =
∑

y∈valid
St′(y,M),

(5)
where valid is the set of all tag sequences that are
consistent with the gold sequence, including the
gold sequence itself.

Similarly, for the improved partition function,
we can use the same strategy to discount the en-
ergy of alternative sequences rather than com-
pletely removing them. We thus introduce another
M ′ ∈ [0, 1] and the improved partition function
becomes:

ImprovedPartition =
∑

y′
St′(y′,M ′), (6)

4.5 Combining Improved Functions
For generality, we combine the improved gold en-
ergy and the improved partition function to make
a new likelihood function as our final model:

ImprovedLH =

∑
y∈valid St

′(y,M)∑
y′ St

′(y′,M ′)
(7)

To ensure Equation 7 is a valid likelihood func-
tion (the probabilities of all sequences sum to 1),
we need a constraint that M = M ′. Note that
Equation 7 subsumes all models discussed in this
section. Specifically, when M = 0,M ′ = 1,
the model is the Naive Model discussed in Sec-
tion 4.1; when M = 1,M ′ = 1, the model is
the same as Greenberg et al. (2018) discussed in
Section 4.2; when M = 0,M ′ = 0, the model
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is the same as proposed in Section 4.3. We have
a general perspective of all the models by simply
treating M and M ′ as hyper-parameters.

Note that for the Naive Model, since M ! = M ,
the Equation 7 is not always a valid likelihood
function3. This may partially explain why the
Naive Model performs so poorly under this set-
ting. We posit that the model will work the best
when M = M ′.

5 Experimental Setup

5.1 Datasets

Our goal is to train a unified NER model on mul-
tiple partially annotated datasets. This model will
make global predictions and can efficiently adapt
to new corpora that contain tags from more than
one training corpus. To fully test this capability,
we would need a single test set annotated with all
types of interest. However, the motivation behind
this effort is that such a dataset typically does not
exist. We therefore take two approaches to approx-
imate such an evaluation.

In the first evaluation setting, we take advantage
of the fact that although there may not be a single
dataset annotated with all types of named entities
of interest, there exist several datasets that cover
types from more than one of the training corpora.
Specifically, we are able to select test corpora that
each cover types of interest from multiple train-
ing corpora. Table 1 shows the biomedical cor-
pora we use and their entity types. For example,
we use BC5CDR for global evaluation, because
its entity types (Chemical and Disease) cover mul-
tiple training corpora (BC4CHEM for Chemical
and NCBI for Disease).

In the second evaluation setting, we create
synthetic datasets from the CoNLL 2003 NER
dataset to simulate training and global evaluations.
Specifically, the CoNLL 2003 dataset is annotated
with four entity types: location, person, organi-
zation, and miscellaneous entities. We randomly
split the training set into four portions, each con-
taining only one entity type (all other types are re-
moved). In this setting, the four portions of the
training set are used for training and the origi-

3This may be confusing because when M = 0,M ′ = 1
it looks exactly the same as the original CRF likelihood func-
tion. But in the partial annotation setting, this means that the
scores of alternative sequences will be zero in the numerator
but non-zero in the denominator, which makes the total likeli-
hood less than 1. It suggests that the original CRF likelihood
function is not suitable for the partial annotation setting.

For Training
Corpus Entities
BC2GM GP
BC4CHEM Chemical
NCBI Disease

JNLPBA

GP,
DNA,
Cell-type,
Cell-line,
RNA

Linnaeus Species

For Global Evaluations
Corpus Entities

BC5CDR
Chemical,
Disease

BioNLP13CG

GP,
Disease,
Chemical,
others

BioNLP11ID
GP,
Chemical,
others

Table 1: Details of the biomedical corpora. “others”
denotes NE types that do not appear in the training cor-
pora, and thus are not evaluated.

Figure 3: (a) The mention-level overlap among training
sets. (b) The mention-level overlap between training
datasets and evaluation datasets.

nal dataset with all entities annotated is used as
a global corpus.

More details about all the datasets can be found
in Appendix A.1.

5.1.1 Biomedical Dataset Analysis
The motivation for this work rests on the as-
sumption that even when a dataset is annotated
for a certain set of entity types, it likely con-
tains other types of entities that are unlabeled.
To verify this assumption, we expand the anno-
tations of each dataset using heuristics and com-
pute the pairwise mention-level overlap between
the datasets. Specifically, suppose we are compar-
ing two datasets, A and B. We first construct A’
and B’, where A’ contains all mentions in A but is
augmented with new mentions found by taking all
strings annotated in B and marking them as named
entities in A (regardless of context; there may ob-
viously be some errors). We do the same (in the
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opposite direction) to construct B’. We then com-
pute the pairwise overlap coefficient between A’
and B’ according to the following criterion:

overlap(A′, B′) =
|A′ ∩B′|

min(|A′|, |B′|) .

Figure 3 shows the heat maps. For the training
group, BC2GM, BC4CHEMD, and Linnaeus are
considerably overlapped, although they are anno-
tated with different entity types (GP, Chemical,
and Species). This confirms our assumption that
although the datasets are annotated for a subset of
entity types, they contain other types that are un-
labeled.4

5.2 Hyper-parameters.

We borrow most of the best hyper-parameters re-
ported by Wang et al. (2018). The hidden sizes
of the BiLSTMs are tuned, and the best value we
found is 100 for the character-level BiLSTM, and
300 for the word-level BiLSTM. We also tuned
both discounting factors M and M ′ in the range
of [0,0.2,0.4,0.6,0.8,1.0]. It turns out that M =
0,M ′ = 0 (using improved partition function) and
M = 1,M ′ = 1 (using improved gold energy
function) make two local optimums. Therefore
we report the performance of three special cases
of our proposed framework, with M,M ′ = [0, 0],
[1, 1], and [0, 1] (the naive model), respectively.

5.3 Compared Models.

We compare different variations of our unified
model and other models in different settings. We
first train models on all training corpora, and
then perform evaluations under two scenarios: (1)
no-supervision: directly evaluating the trained
models on each global corpora; (2) limited-
supervision: fine-tuning the models on a small
subset of the training portion of each global cor-
pus before the evaluations.

Under both scenarios, we report performance of
four different models:

• MTM/MTM-vote: Train a multi-task model
(MTM) on training corpora, using a separate
CRF for each corpus. (This is the current
state-of-the-art structure (Wang et al., 2018)
when evaluated on the training corpora.)

4We further verified this conclusion by computing the heat
maps on the original datasets. The overlaps between BC2GM
and BC4CHEMD, and BC2GM and Linnaeus are nearly 0.

– Under the no-supervision setting, we
heuristically combine all existing CRF’s
predictions to make global predictions.
Specifically, we apply two heuristics
to resolve conflicts while preserving
entity chunk-level consistency. First,
where predictions from more than one
model overlap, we expand each predic-
tion’s boundary to the outermost posi-
tion. Second, we always favor the pre-
dictions of named entities over the pre-
dictions of non-entity.5

– Under the limited-supervision setting,
for each global corpus, we add a new
CRF and train it along with the LSTMs.

• Unified-01: Use the naive training approach
described in 4.1; this corresponds to our uni-
fied model with settings M = 0,M ′ = 1.

• Unified-11: Use the improved gold energy
function described in 4.2; this corresponds
to our unified model with settings M =
1,M ′ = 1 and is equivalent to the model pro-
posed by Greenberg et al. (2018).

• Unified-00: Use the improved partition func-
tion proposed in 4.3; this corresponds to our
unified model with settings M = 0,M ′ = 0.

Among the compared models, Unified-01 (the
naive model) and MTM/MTM-Vote are either sim-
ple or commonly used methods and thus are
treated as baselines. Unified-00 is a novel ap-
proach. Although Greenberg et al. (2018) used
the approach of Unified-11, they only evaluated
the model on training corpora/tasks while we ap-
ply it for task adaptation. Moreover, it is a special
case of our proposed framework, thus we argue
that people can simply tuneM andM ′ to get good
performance for adaptations to new tasks.

6 Results

As mentioned above, we compare the results of
four different approaches in no-supervision and
limited-supervision settings, both with real-world
biomedical data and synthetic news data.

As a sanity check, we also evaluate the models
on the test sets of the training corpora. The results
can be found in Appendix A.2. It is shown that

5A lower recall and f1 score was observed in the initial
experiment without this heuristic.
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Corpus
Trained on Other Biomedical Datasets Traind on CoNLL

BC5CDR BioNLP13CG BioNLP11ID CoNLL 2003
F P R F P R F P R F P R

MTM-Vote 63.6 64.4 62.8 61.0 56.7 65.9 50.4 44.8 57.5 83.9 88.4 79.8
Unified-01 42.7 93.7 27.6 37.5 72.5 25.3 23.6 50.8 15.4 01.6 97.8 00.8
Unified-11 70.2 73.8 67.0 67.7 64.0 71.9 53.2 47.1 61.1 80.1 84.6 76.1
Unified-00 73.8 84.1 65.7 69.7 68.1 71.5 52.7 49.4 56.5 84.8 90.0 80.2

Table 2: Results for task adaptation in the no-supervision setting. The best f1 score in each column that is signifi-
cantly better than the second best is bold-faced, while those are better but not significantly are underlined. All the
significance tests are conducted using mention-level McNemar’s Chi-square test, with p-value = 0.01.
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Figure 4: Plot of f1 scores for task adaptation in the limited-supervision setting. X-axis represents the number of
sentences used for fine-tuning. STM(2k) is a STM trained on 2k sentences sampled from the global corpus, and
STM(all) is trained on the entire training set of the corpus.

our MTM performs comparably with state-of-the-
art systems evaluated on the training corpora, and
thus is a strong baseline.

6.1 No-Supervision Setting

Table 2 demonstrates the results for task adapta-
tion in the no-supervision setting. We report pre-
cision and recall in addition to f1 scores to better
show the differences between the models.

Comparing on f1 scores, Unified-00 (our new

model) significantly outperforms all other mod-
els on three out of four datasets, demonstrating its
effectiveness. Unified-11 also achieves good re-
sults, with higher recall but lower precision than
Unified-00. This aligns well with our hypothe-
sis that it encourages predictions of entities. Con-
versely, Unified-01 (the naive approach) achieves
the highest precision but lowest recall, which is
reasonable considering the problem of false penal-
ties that discourages the model from predicting en-
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tities. We also found that the model achieves better
performance when M = M ′, which supports our
hypothesis in 4.5 that the model works better with
a valid likelihood function.

6.2 Limited-Supervision Setting

To further demonstrate the models’ ability to adapt
to new datasets with a small amount of supervi-
sion, we sample a small subset of the training por-
tion of each global evaluation corpus to fine-tune
the trained models. We show the performance of
the models fine-tuned with different amounts of
sampled data. For each global corpus, we show a
single-task model (STM) trained on it with a rea-
sonable amount of data (two thousand sentences
for the biomedical corpora). In the CoNLL 2003
setting, we train the STM on the entire training
data for a fair comparison, because all other mod-
els are first trained on the four training portions,
which essentially look through the entire training
set (just partially annotated). The results of the
STMs are used as benchmarks. Experimental re-
sults are presented in Figure 4.

Firstly, with much less training data, all the
models achieve comparable or noticeably better
performance than the STMs trained from scratch,
demonstrating that training on the partially anno-
tated corpora does help to boost performance on
global evaluation corpora. Additionally, MTMs
are worse than all the unified models, because
they only share the LSTM layers, but lose all the
knowledge in the CRFs when adapted to new cor-
pora. The unified models have the advantage that
they can reuse the robust CRFs learned from a
large amount of data. This is more obvious in the
CoNLL 2003 evaluation setting, where the unified
models that reuse the pre-trained CRFs achieve
good performance trained with only 50 sentences,
but the MTM, which does not reuse the CRFs,
needs a larger amount of training data to catch up.

In general, Unified-00, our novel approach pro-
posed here, still performs the best on every dataset.
We note that although Unified-01 has an extremely
low recall on the CoNLL 2003 dataset in the
no-supervision setting, it works surprisingly well
in the limited-supervision setting. On the other
hand, Unified-00 and Unified-11 generally per-
form better than Unified-01 on real-world biomed-
ical datasets, especially when fine-tuned on less
data. Again, since all the unified models are spe-
cial cases of our proposed framework, we argue

that, for adapting to new datasets, people can sim-
ply tune the discounting factors M and M ′ to get
good results.

7 Conclusion and Future Work

In this paper, we propose a unified model that
learns from multiple partially annotated datasets to
make joint predictions on the union of entity types
appearing in any training dataset. The model inte-
grates learning signals from different datasets and
avoids potential conflicts that would result from
combining independent predictions from multiple
models. Experiments show that the proposed uni-
fied model can efficiently adapt to new corpora
that have more entity types than any of the train-
ing corpora, and performs better than the baseline
approaches.

In future work, we plan to explore other al-
gorithms (e.g. imitation learning) that allow the
model the explore the unknown space during train-
ing, using delayed rewards to decide whether the
model should trust its exploration. Analysis of the
global evaluation results suggests that the unified
model is under-predicting, meaning there is still
room for improvement specifically on recall. We
plan to explore further changes to the current ob-
jectives to encourage more entity predictions.

Finally, the approach proposed in this paper also
does not handle entity types of varying granular-
ities or tagsets with mismatched guidelines (e.g.
one dataset annotates only for-profit companies as
ORG and one annotates all formalized groups).
Effectively modeling these complications is an in-
teresting area for future work.
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Corpus Named Entities Sents Tokens Mentions

BC2GM Gene/Protein 20,131 569,912 24,585

BC4CHEM Chemical 87,685 2,544,305 84,312

NCBI Disease 7,287 184,167 6,883

JNLPBA
Gene/Protein,
DNA,
Cell-type,
Cell-line,
RNA

24,806 595,994 59,965

Linnaeus Species 23,155 539,428 4,265

Table 3: Statistics for the Training Corpora
Corpus Named Entities Sents Tokens Mentions
BC5CDR Chemical,

Disease
13,938 360,373 28,789

BioNLP13CG
Gene/Protein,
Disease,
Chemical,
Others

1,906 52,771 6881

BioNLP11ID Gene/Protein,
Chemical,
Others

5178 166416 11084

Table 4: Statistics for global evaluation corpora. “Oth-
ers” denote the NEs which do not appeared in training
data, thus are not evaluated.

A Appendix

A.1 Datasets

Below we introduce the datasets in the
biomedicine domain and the news domain.

A.1.1 Biomedicine domain: Local training
group

The training group consists of five datasets:
BC2GM, BC4CHEM, NCBI-disease, JNLPBA,
and Linnaeus. The first two datasets are from
different BioCreative shared tasks (Smith et al.,
2008; Krallinger et al., 2015; Wei et al., 2015).
NCBI-disease is created by Doğan et al. (2014)
for disease name recognition and normalization.
JNLPBA comes from the 2004 shared task from
joint workshop on natural language processing
in biomedicine and its applications (Kim et al.,
2004), and Linnaeus is a species corpus composed
by Gerner et al. (2010). More information about
the datasets can be found in Table 3.

Below are detailed descriptions of the datasets:
BC2GM is a gene/protein corpus. The annota-

tion is Gene. It’s provided by the BioCreative II
Shared Task for gene mention recognition.

BC4CHEM is a chemical corpus. The annota-
tion is Chemical. It’s provided by the BioCreative
IV Shared Task for chemical mention recognition.

Articles Sentences Tokens
Training set 946 14,987 203.621

Development set 216 3,466 51,362

Test set 231 3,684 46,435

Table 5: Statistics for the CoNLL 2003 NER dataset

NCBI-disease is a disease corpus. The annota-
tion is Disease. It was introduced for disease name
recognition and normalization.

JNLPBA consists of DNA, RNA,
Gene/Protein, Cell line, Cell Type. The an-
notation is same as the NE names, except the
Gene/Protein is annotated with Protein. It was
provided by 2004 JNLPBA Shared Task for
biomedical entity recognition.

Linnaeus is a species corpus. The annotation
is Species. The original project was created for
entity mention recognition.

A.1.2 Biomedicine domain: Global
evaluation group

We reemphasize here that the purpose of the global
evaluation is to test the model’s ability to making
global predictions and efficiently adapt to global
corpora. While no corpus is globally annotated,
we identify several existing corpora to approxi-
mate the global evaluation. Each test corpus is an-
notated with a superset of several training corpora
to test the model’s generalizability outside of the
local tag spaces.

The global evaluation group contains
three datasets: BC5CDR, BioNLP13CG, and
BioNLP11ID. Each is annotated with multiple
entity types. BC5CDR comes from the BioCre-
ative shared tasks (Smith et al., 2008; Krallinger
et al., 2015; Wei et al., 2015). BioNLP13CG and
BioNLP11ID come from the BioNLP shared task
(Kim et al., 2013). More information about the
global evaluation datasets can be found in Table 4.

Below are detailed descriptions of the datasets:
BC5CDR is a chemical and disease corpus.

The annotation is Chemical and Disease. It’s pro-
vided by BioCreative V Shared Task for chemical
and disease mention recognition.

BioNLP13CG consists of Gene/Protein and
Related Product, Cancel, Chemical, Anatomy and
Organism and others. BioNLP11ID consists of
Gene/Protein, Chemical, and Organism. The an-
notation is same as the NE types but has a finer
ontology scope.
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Corpus BC2GM BC4CHM NCBI JNLPBA Linnaeus
STM 79.9 88.6 84.1 72.7 87.3
MTM Crichton et al. (2017) 73.2 83.0 80.4 70.1 84.0
MTM Wang et al. (2018) 80.7 89.4 86.1 73.5 -
MTM (ours) 80.3 89.2 85.8 73.5 88.5
Unified-01 70.9 83.5 79.8 80.9 79.9
Unified-11 74.2 84.1 80.5 80.9 80.7
Unified-00 79.1 87.3 84.0 83.8 83.9

Table 6: Local evaluation (f1 scores). The best results that are significantly better than the second best are bold-
faced, while those are best but not significantly better than the second best are underlined. All the significance tests
are conducted using mention-level McNemar’s Chi-square test, with p-value = 0.01.

There are inconsistencies between the entity
type names in different datasets, mainly due to
different granularities. To remove this unnec-
essary noise, we manually merged some entity
types. For example, we unify Gene and Protein
into Gene/Protein as they are commonly used in-
terchangeably; we merge “Simple Chemical” to
“Chemical” and leave the problem of entity type
granularity for future work. The information in
Table 3 and 4 reflects the merged types.

A.1.3 News domain: CoNLL 2003 NER
dataset

We use the CoNLL 2003 NER dataset ((Sang and
De Meulder, 2003)) to evaluate the models in news
domain. More information about the dataset can
be found in Table 5. We use synthetic data from
the dataset to simulate local training and global
evaluation. Specifically, the CoNLL 2003 NER
dataset is annotated with four entity types: loca-
tion, person, organization, and miscellaneous en-
tities. We randomly split the training set into four
portions, each contains only one entity type re-
spectively, with other types changed to ”O”. The
models are trained on the four training portions
and we test on the original test set with all entity
types annotated.

A.1.4 Data split
For the news domain, we use the default train, dev,
test portion of the CoNLL 2003 NER dataset. For
the biomedicine domain, we follow the data split
in Crichton et al. (2017) for both the training and
the evaluation groups. All datasets are divided
into three portions: train, dev, and test. We train
the model on the training set of the training group
and tune the hyper-parameters on the correspond-
ing development set. Global evaluations are per-
formed on the test set of the evaluation group.

A.2 Local Evaluation
For a sanity check, we evaluate the models on
the training corpora and compare the results with
state-of-the-art systems. In this setting, all the
models are trained on the training set of the train-
ing corpora (without fine-tuning on global eval-
uation corpora) and evaluated on their test set.
The results are shown in Table 6. STM is the
single-task models we implemented, following the
settings in Wang et al. (2018). The SOTA is
achieved by Wang et al. (2018) with multi-task
model, which is shown in the table as MTM Wang
et al. (2018). They trained their model on BC2GC,
BC4CHM, NCBI, JNLPBA, and BC5CDR. MTM
(ours) is the multi-task model we trained on our
five training corpora and used as a baseline in the
global evaluations. It has the same architecture as
Wang et al. (2018).

As we can see, MTM Wang et al. (2018)
achieves the best results on 3 out of 4 datasets.
And our MTM achieves very similar results,
showing it is a strong model on training corpora.
Our proposed models do not perform very well
when evaluated on the training corpora. But in
the global evaluation setting, they perform much
better compared to our strong MTM. This demon-
strates the superiority of our proposed models on
task adaptation.
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Abstract

We show that it is feasible to perform entity
linking by training a dual encoder (two-tower)
model that encodes mentions and entities in
the same dense vector space, where candidate
entities are retrieved by approximate nearest
neighbor search. Unlike prior work, this setup
does not rely on an alias table followed by a
re-ranker, and is thus the first fully learned en-
tity retrieval model. We show that our dual
encoder, trained using only anchor-text links
in Wikipedia, outperforms discrete alias ta-
ble and BM25 baselines, and is competitive
with the best comparable results on the stan-
dard TACKBP-2010 dataset. In addition, it
can retrieve candidates extremely fast, and gen-
eralizes well to a new dataset derived from
Wikinews. On the modeling side, we demon-
strate the dramatic value of an unsupervised
negative mining algorithm for this task.

1 Introduction
A critical part of understanding natural language is con-
necting specific textual references to real world entities.
In text processing systems, this is the task of entity res-
olution: given a document where certain spans of text
have been recognized as mentions referring to entities,
the goal is to link them to unique entries in a knowledge
base (KB), making use of textual context around the
mentions as well as information about the entities. (We
use the term mention to refer to the target span along
with its context in the document.)

Real world knowledge bases are large (e.g., English
Wikipedia has 5.7M articles), so existing work in entity
resolution follows a two-stage approach: a first compo-
nent nominates candidate entities for a given mention
and a second one selects the most likely entity among
those candidates. This parallels typical information re-
trieval systems that consist of an index and a re-ranking
model. In entity resolution, the index is a table mapping
aliases (possible names) to entities. Such tables need
to be built ahead of time and are typically subject to

∗Equal Contributions
†Work done during internship with Google

arbitrary, hard cutoffs, such as only including the thirty
most popular entities associated with a particular men-
tion. We show that this configuration can be replaced
with a more robust model that represents both entities
and mentions in the same vector space. Such a model
allows candidate entities to be directly and efficiently
retrieved for a mention, using nearest neighbor search.

To see why a retrieval approach is desirable, we need
to consider how alias tables are employed in entity reso-
lution systems. In the following example, Costa refers
to footballer Jorge Costa, but the entities associated with
that alias in existing Wikipedia text are Costa Coffee,
Paul Costa Jr, Costa Cruises, and many others—while
excluding the true entity.

Costa has not played since being struck by
the AC Milan forward...

The alias table could be expanded so that last-name
aliases are added for all person entities, but it is im-
possible to come up with rules covering all scenarios.
Consider this harder example:

...warned Franco Giordano, secretary of the
Refoundation Communists following a coali-
tion meeting late Wednesday...

It takes more sophistication to connect the colloquial
expression Refoundation Communists to the Communist
Refoundation Party. Alias tables cannot capture all ways
of referring to entities in general, which limits recall.

Alias tables also cannot make systematic use of con-
text. In the Costa example, the context (e.g., AC Milan
forward, played) is necessary to know that this mention
does not refer to a company or a psychologist. An alias
table is blind to this information and must rely only
on prior probabilities of entities given mention spans to
manage ambiguity. Even if the correct entity is retrieved,
it might have such a low prior that the re-ranking model
cannot recover it. A retrieval system with access to
both the mention span and its context can significantly
improve recall. Furthermore, by pushing the work of
the alias table into the model, we avoid manual process-
ing and heuristics required for matching mentions to
entities, which are often quite different for each new
domain.

This work includes the following contributions:
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• We define a novel dual encoder architecture for
learning entity and mention encodings suitable for
retrieval. A key feature of the architecture is that it
employs a modular hierarchy of sub-encoders that
capture different aspects of mentions and entities.

• We describe a simple, fully unsupervised hard neg-
ative mining strategy that produces massive gains
in retrieval performance, compared to using only
random negatives.

• We show that approximate nearest neighbor search
using the learned representations can yield high
quality candidate entities very efficiently.

• Our model significantly outperforms discrete re-
trieval baselines like an alias table or BM25, and
gives results competitive with the best reported
accuracy on the standard TACKBP-2010 dataset.

• We provide a qualitative analysis showing that the
model integrates contextual information and world
knowledge even while simultaneously managing
mention-to-title similarity.

We acknowledge that most of the components of our
work are not novel in and of themselves. Dual encoder
architectures have a long history (Bromley et al., 1994;
Chopra et al., 2005; Yih et al., 2011), including for
retrieval (Gillick et al., 2018). Negative sampling strate-
gies have been employed for many models and appli-
cations, e.g. Shrivastava et al. (2016). Approximate
nearest neighbor search is its own sub-field of study
(Andoni and Indyk, 2008). Nevertheless, to our knowl-
edge, our work is the first combination of these ideas for
entity linking. As a result, we demonstrate the first accu-
rate, robust, and highly efficient system that is actually
a viable substitute for standard, more cumbersome two-
stage retrieval and re-ranking systems. In contrast with
existing literature, which reports multiple seconds to re-
solve a single mention, we can provide strong retrieval
performance across all 5.7 million Wikipedia entities in
around 3ms per mention.

2 Related work
Most recent work on entity resolution has focused on
training neural network models for the candidate re-
ranking stage (Francis-Landau et al., 2016; Eshel et al.,
2017; Yamada et al., 2017a; Gupta et al., 2017; Sil
et al., 2018). In general, this work explores useful
context features and novel architectures for combin-
ing mention-side and entity-side features. Extensions
include joint resolution over all entities in a document
(Ratinov et al., 2011; Globerson et al., 2016; Ganea and
Hofmann, 2017), joint modeling with related tasks like
textual similarity (Yamada et al., 2017b; Barrena et al.,
2018) and cross-lingual modeling (Sil et al., 2018), for
example.

By contrast, since we are using a two-tower or dual
encoder architecture (Gillick et al., 2018; Serban et al.,

2018), our model cannot use any kind of attention over
both mentions and entities at once, nor feature-wise
comparisons as done by Francis-Landau et al. (2016).
This is a fairly severe constraint – for example, we can-
not directly compare the mention span to the entity title
– but it permits retrieval with nearest neighbor search
for the entire context against a single, all encompassing
representation for each entity.

3 Data

As a whole, the entity linking research space is fairly
fragmented, including many task variants that make fair
comparisons difficult. Some tasks include named entity
recognition (mention span prediction) as well as entity
disambiguation, while others are concerned only with
disambiguation (the former is often referred to as end-
to-end. Some tasks include the problem of predicting
a NIL label for mentions that do not correspond to any
entity in the KB, while others ignore such cases. Still
other tasks focus on named or proper noun mentions,
while others include disambiguation of concepts. These
variations and the resulting fragmentation of evaluation
is discussed at length by Ling et al. (2015) and Hachey
et al. (2013), and partially addressed by attempts to
consolidate datasets (Cornolti et al., 2013) and metrics
(Usbeck et al., 2015).

Since our primary goal is to demonstrate the viability
of our unified modeling approach for entity retrieval, we
choose to focus on just the disambiguation task, ignor-
ing NIL mentions, where our set of entity candidates
includes every entry in the English Wikipedia.

In addition, some tasks include relevant training data,
which allows a model trained on Wikipedia (for exam-
ple) to be tuned to the target domain. We save this
fine-tuning for future work.

Training data Wikipedia is an ideal resource for train-
ing entity resolution systems because many mentions are
resolved via internal hyperlinks (the mention span is the
anchor text). We use the 2018-10-22 English Wikipedia
dump, which includes 5.7M entities and 112.7M linked
mentions (labeled examples). We partition this dataset
into 99.9% for training and the remainder for model
selection.

Since Wikipedia is a constantly growing an evolv-
ing resource, the particular version used can signifi-
cantly impact entity linking results. For example, when
the TACKBP-2010 evaluation dataset was published,
Wikipedia included around 3M entities, so the number
of retrieval candidates has increased by nearly two times.
While this does mean new contexts are seen for many en-
tities, it also means that retrieval gets more difficult over
time. This is another factor that makes fair comparisons
challenging.

Evaluation data There are a number of annotated
datasets available for evaluating entity linking systems.
Given the choices discussed above, the TACKBP-2010
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Costa has not played since 
being struck by the AC Milan 

forward.
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Figure 1: Architecture of the dual encoder model for retrieval (a). Common component architectures are shown
for (b) text input, (c) sparse ID input, and (d) compound input joining multiple encoder outputs. Note that all text
encoders share a common set of embeddings.

dataset1 is the most widely used evaluation that matches
our constraints and allows us to compare to a reasonable
variety of prior work. It includes 1020 annotated men-
tion/entity pairs derived from 1013 original news and
web documents. While there is a related development
set associated with this evaluation set, we do not use it
for any fine-tuning, as explained above.

To further validate our results, we also include a
new evaluation set called Wikinews, which includes
news pages from Wikinews2 in English for the year
2018. It includes 2263 annotated mention/entity pairs
derived from 1801 original documents. Because
we pulled these documents at the same time as the
Wikipedia dump, the entity annotations are consistent
with our training set and have not been subject to
the kind of gradual rot that befalls older evaluation
data as the updated KB diverges from the annotations.
This data is available here: https://github.
com/google-research/google-research/
tree/master/dense_representations_
for_entity_retrieval/.

4 Entity retrieval model

We use nearest neighbor search to retrieve entities based
on a mention in context, after learning dense, fixed-
length vector representations of each.

4.1 Dual Encoder model

The dual encoder is a two-tower architecture suitable for
retrieval (Gillick et al., 2018). It has one network struc-
ture for encoding mentions (including their contexts),

1https://tac.nist.gov/
2https://en.wikinews.org

a second for encoding entities (including KB features),
and a cosine function to compute similarity between
representations (which must be the same dimension).
A key property of this architecture is that there is no
direct interaction between the encoders on each side.
This enables efficient retrieval, but constrains the set of
allowable network structures. The dual encoder learns a
mention encoder φ and an entity encoder ψ, where the
score of a mention-entity pair (m, e) defined as:

s(m, e) = cos(φ(m), ψ(e)) (1)

Figure 1 shows the full model architecture and the fea-
ture inputs to each encoder. We use a compound encoder
(Figure 1d) to add useful sub-structure to each tower.
The mention-side encoder first combines the context
features, and then combines the result with the mention
span encoding. Similarly, the entity-side encoder first
combines the entity paragraph and categories, and then
combines the result with the entity title encoding.

The mention encoder uses four text features to capture
both the span text and the textual context surrounding it.
The context features include the five tokens immediately
to the left and right of the span. In the sentence feature,
the mention span is replaced by a special symbol.

The entity encoder uses the entity’s title and the first
paragraph of its Wikipedia page as text features. It ad-
ditionally incorporates the unedited user-specified cat-
egories associated with the entity. We do not use the
entity IDs as features so that the model generalizes more
easily to new entities unseen at training time. In fact,
more than 1M candidate entities available at retrieval
time have no associated training examples, but this ar-
chitecture allows these to be encoded using their feature
representations.
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A shared embedding look-up is used for all text fea-
tures (Figure 1b). Specifically, we embed all unigrams
and bigrams to get 300-dimensional averaged unigram
embeddings and 300-dimensional averaged bigram em-
beddings for each text feature. Unigram embeddings are
initialized from GloVe vectors (Pennington et al., 2014),
and we use 5M hash buckets for out-of-vocabulary uni-
grams and bigrams(Ganchev and Dredze, 2008). These
averaged embeddings are concatenated and then passed
through a feed-forward layer. For the category features,
each entity category name is treated as a sparse input,
and the embeddings for all categories for an entity are
averaged to produce a 300-dimensional representation,
which in turn is passed through a feed-forward layer
(Figure 1c).

Our experiments show that this architecture is highly
effective for both retrieval and resolution. Nevertheless,
we expect that additional modeling ideas will further
improve performance, especially for resolution. Re-
cent work such as Durrett and Klein (2014) has shown
improvements derived from better, longer-range, con-
text features; similarly, there are many more potentially
useful KB-derived features. More complex encoder
architectures that use some form of attention over the
input tokens and features could also be beneficial.

4.2 Training
Our training data is described in Section 3. The inputs
to the entity encoder are constructed from the true entity
referred by the landing page. The inputs to the mention
encoder are constructed from the source page, using the
mention span and surrounding context.

These pairs constitute only positive examples, so we
use in-batch random negatives (Henderson et al., 2017;
Gillick et al., 2018): for each mention-entity pair in a
training batch, the other entities in the batch are used
as negatives. Computationally, this amounts to building
the all-pairs similarity matrix for all mentions and enti-
ties in a batch. We optimize softmax loss on each row
of the matrix, so that the model is trained to maximize
the score of the correct entity with respect to random
entities. This is a version of the sampled softmax (Joze-
fowicz et al., 2016), which we use in place of the full
softmax because the normalization term is intractable
to compute over all 5.7M entities.

The softmax loss is not directly applied to the raw
cosine similarities. Instead, a scalar multiplier a is
learned to map the similarities (in the range [−1, 1])
to unbounded logits. For each training pair (mi, ei) in a
batch of B pairs, the loss is computed as:

L(mi, ei) = −f(mi, ei) + log

B∑

j=1

exp(f(mi, ej))

(2)
where

f(mi, ej) = a · s(mi, ej) (3)

We track in-batch recall@1 (accuracy) on the held
out set during training. For each instance, the model

gets a score of 1 if the correct entity is ranked above
all in-batch random negatives, 0 otherwise. We stop
training after the metric flattens out (about 40M steps).

For all experiments, we use a batch size of 100, stan-
dard SGD with Momentum of 0.9 and a fixed learning
rate 0.01.

Our aim here is to demonstrate a pure retrieval sys-
tem, so we train our models solely from Wikipedia and
refrain from tuning them explicitly on in-domain docu-
ments from the evaluation tasks.

4.3 Hard negative mining
Random negatives alone are not enough to train an ac-
curate entity resolution model because scoring the cor-
rect entity above random alternatives can typically be
achieved just by comparing the mention text and en-
tity title. More challenging negative examples must be
introduced to force the model to exploit context. This
strategy is somewhat akin to Importance Sampling (Ben-
gio et al., 2003), for example.

After learning an initial model using random nega-
tives, we identify hard negatives via the following steps:

1. Encode all mentions and entities found in training
pairs using the current model.

2. For each mention, retrieve the most similar 10 en-
tities (i.e., its nearest neighbors).

3. Select all entities that are ranked above the correct
one for the mention as negative examples.

This yields new negative mention/entity pairs for which
the model assigns a high score. It crucially relies on
the fact that there is just one correct entity, unlike other
tasks that consider general similarity or relatedness (and
which are well served by random negatives). For ex-
ample, negatives mined in this way for paraphrasing
or image captioning tasks could actually turn out to be
positives that were not explicitly labeled in the data. It is
precisely because the distribution over candidate entities
that match a contextualized mention tends to have such
low entropy that makes negative mining such a good fit
for this task.

After merging these with the original positive pairs
to construct a classification task, we resume training the
initial dual encoder model using logistic loss on this
new set of pairs. To retain good performance on random
negatives, the new task is mixed with the original soft-
max task in a multi-task learning setup in which the two
loss functions are combined with equal weight and opti-
mized together. For a pair (m, e) with label y ∈ {0, 1},
the hard negative loss is defined as:

Lh(m, e; y) =− y · log f(m, e)
− (1− y) · log(1− f(m, e)) (4)

where

f(m, e) = g(ah · s(m, e) + bh) (5)
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Here, g(x) = 1/(1 + e−x) is the logistic function, and
ah and bh are learned scalar parameters to transform the
cosine similarity into a logit.3

For the hard negatives task, we track Area Under the
ROC curve (AUC) on a held out set of pairs. We stop
training when the average of the evaluation metrics for
the two tasks stabilizes (about 5M steps).

Finally, we iteratively apply this negative mining pro-
cedure. For each round, we mine negatives from the
current model as described above and then append the
new hard examples to the classification task. Thus each
subsequent round of negative mining adds fewer and
fewer new examples, which yields a stable and naturally
convergent process. As we show in our experiments,
iterative hard negative mining produces large perfor-
mance gains.

4.4 Inference
Once the model is trained, we use the entity encoder to
pre-compute encodings for all candidate entities (includ-
ing those that do not occur in training). At prediction
time, mentions are encoded by the mention encoder and
entities are retrieved based on their cosine similarity.
Since our focus is on model training, we use brute-force
search in our evaluation. However, for online settings
and larger knowledge bases, an approximate search al-
gorithm is required. In Section 5.2 we show that, when
using approximate search, the system retains its strong
performance while obtaining a nearly 100x speedup on
an already fast retrieval.

5 Experiments
5.1 Evaluation setup
We demonstrate our model performance as compared
to a baseline alias table. As is standard, it is built by
counting all (mention span, entity) pairs in the training
data. The counts are used to estimate prior probabilities
P (e|m) of an entity given a mention span (alias); for
each entity, the aliases are ordered according to these
priors and limited to the top 100 candidates.

P (e|m) =
count(e,m)∑

e′∈E
count(e′,m)

(6)

Here, count(e,m) is the number of occurrences of men-
tion m linked to entity e, and E is the set of all entities
appearing in the data.

Since alias table construction is often extended with
various heuristics, we also include a variant that includes
unigrams and bigrams of the mention text as additional
aliases. This can help when the entities (specifically per-
son names) are referenced as last/first name at inference
time.

Finally, since we are primarily concerned with demon-
strating performance of a retrieval system (as opposed

3The additive parameter is only needed for the logistic loss
component, as the softmax function is invariant to translation.

System R@1 Entities
AT-Prior 71.9 5.7M
AT-Ext 73.3 5.7M

Chisholm and Hachey (2015) 80.7 800K
He et al. (2013) 81.0 1.5M
Sun et al. (2015) 83.9 818K

Yamada et al. (2016) 85.2 5.0M
Nie et al. (2018) 86.4 5.0M

Barrena et al. (2018) 87.3 523K
DEER (this work) 87.0 5.7M

Table 1: Comparison of relevant TACKBP-2010 results
using Recall@1 (accuracy). While we cannot control
the candidate entity set sizes, we attempt to approximate
them here.

to a re-ranking system) or a combination of the two,
we include results using the standard BM25 retrieval
algorithm (the Gensim implementation4). We found that
indexing each entity using its title gave much better re-
sults than indexing with the first paragraph text (or the
full document text).

We measure recall@k (R@k), defined as the propor-
tion of instances where the true entity is in the top k
retrieved items. We report R@1 (accuracy of the top
retrieved result), which is standard for TAC/KBP-2010,
as well R@100, which better captures overall retrieval
performance.

We refer to the models with these abbreviations:

• AT-Prior: The alias table ordered by P (e|m).

• AT-Ext: The heuristically extended alias table.

• BM25: The BM25 retrieval algorithm, where each
entity is indexed using its title.

• DEER: Our Dual Encoder for Entity Resolution,
as described in section 4.

5.2 Results
Table 1 provides a comparison against the most rele-
vant related work. While there are some reported im-
provements due to collective (global) resolution of all
mentions in a document (Globerson et al. (2016) report
87.2% and Nie et al. (2018) report 89.1%), we limit
comparisons to local resolution. We also limit compar-
isons to systems that ignore NIL mentions (referred to
as in-KB accuracy), so all those reported in the table
evaluate precisely the same set of mentions. As noted
earlier, we cannot control the candidate sets used in each
of these experiments, and we are at some disadvantage
given our larger set of candidates.

Retrieval performance Table 2 provides the percent
of mentions for which the correct entity is found in the
top 100 retrieved results, using the different baselines

4https://radimrehurek.com/gensim/
summarization/bm25.html
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System TACKBP-2010 Wikinews
AT-Prior 89.5 93.8
AT-Ext 91.7 94.0
BM25 68.9 83.2
DEER 96.3 97.9

Table 2: Retrieval evaluation comparison for TACKBP-
2010 and Wikinews using Recall@100.

and the DEER model. The learned representations de-
liver superior performance and do not require special
handling for unigrams versus bigram lookups, counts
for entity prominence, and so on.

Resolution performance To put DEER’s architecture
and performance in context, we compare it with prior
work in some more detail here.

He et al. (2013) use a dual encoder setup to train a
re-ranker, but start with unsupervised training to build
representations of contexts and entities using Denoising
Autoencoders. They use an alias table for candidate gen-
eration, and then train a ranking model using mention-
specific batching to obtain hard in-batch negatives. Our
results suggest that the autoencoder pretraining is not
necessary and that our unsupervised negative mining
can outperform heuristic selection of negatives.

Sun et al. (2015) also use a dual encoder that has
similar structure to ours. Like He et al. (2013), they
use it to score entries from an alias table rather than
directly for retrieval. Their mention encoder is a con-
siderably more complex combination of mention and
context rather than the simple compounding strategy in
our architecture. Their alias table method not only maps
mentions to entities, but also uses additional filters to
reduce the set of candidate entities based on words in
the mention’s context. They report that this method has
a recall of 91.2% on TACKBP 2010, while our direct
retrieval setup gives Recall@100 of 96.3% (see Table 2).
They train their representations for each true mention-
entity pair against a single random negative entity for
the mention, whereas our method takes advantage of
the entire batch of random negatives as well further
refinement through hard negative mining.

Yamada et al. (2016) use an alias table derived from
the December 2014 Wikipedia dump, restricted to the
fifty most popular entities per mention. They tune their
model on the TACKBP 2010 training set. Architec-
turally, they include features that capture the alias table
priors and string similarities, both of which are not feasi-
ble in a dual encoder configuration that precludes direct
comparison between mention- and entity-side features.
DEER’s better results indicate that learned representa-
tions of mentions and entities can be powerful enough
for entity retrieval even without any cross-attention.

Nie et al. (2018) define a complex model that uses
both entity type information and attention between the
mention string and the entity description. To augment
the small 1500 example training data in TACKBP, they

Method
Mean

search time (ms)
Wikinews

R@100
Brute force 291.9 97.88

AH 22.6 97.22
AH+Tree 3.3 94.73

Table 3: Comparison of nearest-neighbor search meth-
ods using the DEER model. The benchmark was con-
ducted on a single machine. AH indicates quantization-
based asymmetric hashing; AH+Tree adds an initial tree
search to further reduce the search space.

also collected 55k mentions found in Wikipedia that
were active in TACKBP 2010 to train this model. DEER
is simply trained over all entities in Wikipedia and uses
no cross-attention or explicit type information, yet de-
livers better resolution performance.

Most standard entity linking models build a single
ranking model on top of the candidate set provided by
an alias table. Barrena et al. (2018) instead train 523k
mention-specific deep classifiers—effectively treating
entity linking as a special form of word sense disam-
biguation. They do this by pre-training a single LSTM
that predicts among 248k mentions, and then the param-
eters of this model are used to warm start each of the
523k mention-specific models. In doing so, they learn
an effective context encoding, and can then fine-tune
each mention model to discriminate among the small set
of popular candidate entities for the mention (their alias
table uses a cutoff of the thirty most popular entities for
each mention). DEER in contrast, has a single mention
encoder that is simple and fast, and performs nearly
equivalently while retrieving from a much larger set of
entities.

Approximate search Tables 1 and 2 report perfor-
mance using brute force nearest-neighbor search. That
is, we score each mention against all 5.7M entities to get
the top k neighbors. However, a major motivation for
using a single-stage retrieval model is that it can allow
scaling to much larger knowledge bases by reducing
retrieval time via approximate search.

To estimate performance in a real-world setting, we
repeat the evaluation of DEER using the quantization-
based approaches described by Guo et al. (2016). Ta-
ble 3 shows the trade-off between search time and recall
on Wikinews. Compared to brute force, search time
can be reduced by an order of magnitude with a small
loss in R@100, or by two orders of magnitude while
losing less than 3 points. This is crucial for scaling the
approach to even larger KBs and supporting the latency
requirements of real-world applications.

Impact of hard negative mining Figure 2 shows the
improvement in Recall@1 from each round of hard
negative mining. The first iteration gives a large im-
provement over the initial round of training with only
random negatives. Successive iterations yield further
gains, eventually flattening out. Our strategy of append-
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Figure 2: Recall@1 improvement for successive itera-
tions of hard negative mining for Wikinews (solid) and
TACKBP-2010 (dashed).

ing each new set of hard negatives to the previously
mined ones means that each new set has proportion-
ately less influence—this trades off some opportunity
for improving the model in favor of stability.

5.3 Qualitative analysis

Here, we show a variety of examples to elucidate how
DEER effectively models context, and to provide intu-
ition for the learned entity representations.

First, we compare entities retrieved by DEER with
those retrieved by the alias table baseline. Table 5 shows
some instances where the alias table does not contain
the correct entity for a given mention text (in the top
100 neighbors) or it fails to return any entity at all. In
all of these cases, it is clear that context is essential.
While a scoring stage is intended to leverage context, it
is limited by the set of retrieved entities; our approach
uses context directly.

For example, mentions like Costa and Justin are
linked to the correct entities in the alias table, but with
such low prior probability that we would need to re-
trieve far more than the top 100 entities to consider
them. At the other extreme, mentions like Refounda-
tion Communists and European EADS are missed by the
baseline because they don’t have direct string matches
in the alias table. Additional extensions to our alias
table allowing token re-ordering could help catch the
former (though this might reduce precision too much),
but it’s unlikely that any alias table could connect Eu-
ropean EADS with Airbus in the absence of an explicit
anchor-text link. This example helps highlight how a
fully learned retrieval model can generalize to new data.

Second, Table 6 shows more directly how modifying
the context around a mention span changes the retrieved
entities. For example, the model correctly differenti-
ates between Phoenix the city, Phoenix the band, and
Phoenix in mythology based on the sentence surround-
ing an identical mention span.

Third, since our model produces encodings for all
5.7M entities, we can retrieve nearest neighbors for any

Entity Nearest neighbors
Jorge Costa José Alberto Costa, Eduardo Costa,

Peter Shilton, Rui Costa, Nuno
Gomes, Ricardo Costa (Portuguese
footballer), André Gomes, Bruno
Ribeiro, Diego Costa

Costa
Cruises

MSC Cruises, P&O Cruises, Princess
Cruises, Island Cruises, AIDA Cruises,
Silversea Cruises, Carnival Corpora-
tion & plc, Costa Concordia, Celebrity
Cruises

Arctic sea
ice decline

Arctic ice pack, Measurement of sea
ice, Arctic geoengineering, Arctic
sea ice ecology and history, Climate
Change Science Program, Abrupt
climate change, Sea ice thickness,
Antarctic sea ice, Marine ice sheet in-
stability

Pink Floyd Led Zeppelin, The Who, Duran Duran,
Syd Barrett, The Velvet Underground,
Eddie Floyd, The Beatles, The Aus-
tralian Pink Floyd Show, Roger Wa-
ters

Table 4: Nearest neighbors retrieved by DEER for a
sample of entities.

entity. Some examples are shown in Table 4. The model
tends to prefer related entities of the same type, and
often ones that share portions of their names, probably
because entity titles are so important to linking with
mentions. The nearest neighbors for Jorge Costa, our
running example, include a variety of retired Portuguese
football players, many of whom have Costa in their
names.

Finally, Figure 3 is a t-SNE projection of the entity
encodings for a selection of cities, bands, and people
(nobel literature winners). The cities and bands were
chosen to have high word overlap, e.g. Montreal (city)
and Of Montreal (band), to demonstrate how our en-
tity embeddings differ from standard word embeddings.
Note also the sub-clusters that form within each type
cluster. Latin American authors cluster together, as do
the Existentialists; the cities have some geographical
proximity, though Brazil and Portugal are neighbors,
presumably because of shared language and culture.

6 Conclusion

Our results with DEER show that a single-stage retrieval
approach for entities from mentions is highly effective:
without any domain-specific tuning, it performs at least
as well as the best comparable two-stage systems. While
our bag-of-ngrams encoders provided a strong proof of
concept, we can almost certainly improve results with
more sophisticated encoders, using a BERT architecture
(Devlin et al., 2019), for example. Further, by virtue of
approximate search techniques, it can be used for very

534



Mention Baseline predictions Model predictions
Costa has not played since being struck by the AC
Milan forward

Costa Coffee, Paul Costa Jr,
Comstock-Needham system, Costa
Cruises, Achille Costa

Ricardo Costa (Portuguese foot-
baller), Fernando Torres, Pedro
(footballer born 1987), Jorge
Costa

Australia beat West Indies by five wickets in a
World Series limited overs match

World Series, ATP International
Series, 2010 World Series

World Series Cricket, The Uni-
versity Match (cricket), Australian
Tri-Series

Justin made his second straight start for Harbaugh,
who has a knee injury

Justin (historian), Justin Martyr,
Justin (consul 540)

Paul Justin, Joe Montana, Dale
Steyn

plays for the Cape Town-based Cobras franchise Cobra, AC Cobra, Indian Cobra Cobra, Snake, Cape Cobras
OSI reports profit on overseas cancer drug sales Open Systems Interconnection,

Open Source Initiative, OSI (band)
Health Insurance Portability and
Accountability Act, OSI Pharma-
ceuticals, James L. Jones

EVN imposed rotating power cuts earlier this year
as the worst drought in a century dropped water
levels

no matches Cogeneration, Power outage,
Scram

warned Franco Giordano, secretary of the Refoun-
dation Communists following a coalition meeting
late Wednesday

no matches League of Communists of Yu-
goslavia, Communist Refounda-
tion Party, Communist Party of
Spain

The European EADS consortium, which makes
the Eurofighter Typhoon, said it was not comfort-
able with the NATO-member countries’ bidding
process

no matches Airbus, Airbus A400M Atlas,
NATO

such as the record California wildfires, high tem-
perature extremes, retreating glaciers, and melting
snow cover, the decline of sea ice, rising sea lev-
els with increasing ocean acidification and coastal
flooding

no matches Moskstraumen, Arctic sea ice de-
cline, Glacier, Sea ice

Table 5: Examples of test mentions that require making use of context, where the alias table does not retrieve the
correct entity. We show the top entities returned by both systems, with the correct entity in bold.

Mention Model predictions
From 1996, Cobra was brewed under contract by Charles Wells Ltd and experienced
strong growth in sales for the next ten years.

The Cobra Group, Cobra Beer, Cobra
(Tivoli Friheden)

Guys fondly remembered Cobra - the band from Memphis featuring Jimi Jamison
and Mandy Meyer who released one Album - Frist Strike - before the Band split!

Cobra (American band), Wadsworth
Jarrell, Cobra Records, Cobra
(Japanese band)

Since the late 18th century, Paris has been famous for its restaurants and haute
cuisine, food meticulously prepared and artfully presented.

Paris, Nice, Bucharest

Kim Kardashian may be a household name now, but that wasnt always the case -
and it may all be because of pal Paris.

Paris, Paris Hilton, Paris syndrome

Rory and Paris are the only two people on Gilmore Girls who share the same goals. Paris, Paris (mythology), Paris Geller
Texas was finally annexed when the expansionist James K. Polk won the election
of 1844 who ordered General Zachary Taylor south to the Rio Grande on January
13, 1846.

Texas, Texas annexation, Texas in the
American Civil War

Fronted by Sharleen Spiteri, Texas have released eight studio albums and are known
for songs such as ’I Don’t Want a Lover’, ’Say What You Want’, ’Summer Son’ and
’Inner Smile’

Texas (band), Texas, Tich (singer)

There is an amazing piece of historic architecture set in downtown Phoenix that
was build in 1929 in the Spanish Baroque style and features intricate murals and
moldings.

Phoenix, Arizona, Prescott, Arizona

Phoenix once again played another late night show, now they have Late Night with
Jimmy Fallon where they played a great rendition of ’Lisztomania’

Phoenix (band), Joaquin Phoenix,
Phoenix, Arizona

According to Greek mythology, the Phoenix lived in Arabia next to a well where
the Greek sun-god Apollo stopped his chariot in order to listen to its song.

Phoenix (mythology), Phoenix (son of
Amyntor), Phoenix (son of Agenor)

Table 6: Changing the context around a mention span changes the mention encoding, and thus the set of retrieved
neighbors.
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Figure 3: A 2D projection of cities, bands, and people embeddings (using t-SNE), color coded by their category.

fast retrieval, and is likely to scale reasonably to much
larger knowledge bases.

We also note that the dual encoder approach allows
for interesting extensions beyond traditional entity link-
ing. For example, the context encodings provide a nat-
ural model for building entity expectations during text
processing, such that entities relevant to the context
can be retrieved and used for reference resolution as a
document is processed incrementally. We expect this
will be useful for collective entity resolution as well as
modeling coherence.

Finally, while we focus on training with English
Wikipedia, Sil et al. (2018) show that using cross-lingual
datasets can help to refine the context information more
effectively. Since English constitutes only a fraction
of the total Wikipedia, and entity IDs are (mostly)
language-independent, there is great opportunity to ex-
tend this work to far more training examples across far
more languages.
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Abstract

An interesting method of evaluating word rep-
resentations is by how much they reflect the
semantic representations in the human brain.
However, most, if not all, previous works only
focus on small datasets and a single modal-
ity. In this paper, we present the first multi-
modal framework for evaluating English word
representations based on cognitive lexical se-
mantics. Six types of word embeddings are
evaluated by fitting them to 15 datasets of eye-
tracking, EEG and fMRI signals recorded dur-
ing language processing. To achieve a global
score over all evaluation hypotheses, we ap-
ply statistical significance testing accounting
for the multiple comparisons problem. This
framework is easily extensible and available
to include other intrinsic and extrinsic evalu-
ation methods. We find strong correlations in
the results between cognitive datasets, across
recording modalities and to their performance
on extrinsic NLP tasks.

1 Introduction

Word embeddings are the corner stones of state-
of-the-art NLP models. Distributional represen-
tations which interpret words, phrases, and sen-
tences as high-dimensional vectors in semantic
space have become increasingly popular. These
vectors are obtained by training language models
on large corpora to encode contextual information.
Each vector represents the meaning of a word.

Evaluating and comparing the quality of dif-
ferent word embeddings is a well-known, largely
open challenge. Currently, word embeddings are
evaluated with extrinsic or intrinsic methods. Ex-
trinsic evaluation is the process of assessing the
quality of the embeddings based on their perfor-
mance on downstream NLP tasks, such as ques-
tion answering or entity recognition. However,
embeddings can be trained and fine-tuned for spe-

Figure 1: Overview of the cognitive word embedding
evaluation process.

cific tasks, but this does not mean that they accu-
rately reflect the meaning of words.

One the other hand, intrinsic evaluation meth-
ods, such as word similarity and word analogy
tasks, merely test single linguistic aspects. These
tasks are based on conscious human judgements.
Conscious judgements can be biased by subjec-
tive factors and the tasks themselves might also be
biased (Malvina Nissim, 2019). Additionally, the
correlation between intrinsic and extrinsic metrics
is not very clear, as intrinsic evaluation results fail
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to predict extrinsic performance (Chiu et al., 2016;
Gladkova and Drozd, 2016). Finally, both intrin-
sic and extrinsic evaluation types often lack sta-
tistical significance testing and do not provide a
global quality score.

In this paper, we focus on the intrinsic sub-
conscious evaluation method (Bakarov, 2018b),
which evaluates English word embeddings against
the lexical representations of words in the hu-
man brain, recorded when passively understand-
ing language. Cognitive lexical semantics pro-
poses that words are defined by how they are orga-
nized in the brain (Miller and Fellbaum, 1992). As
a result, brain activity data recorded from humans
processing language is arguably the most accurate
mental lexical representation available (Søgaard,
2016). Recordings of brain activity play a central
role in furthering our understanding of how human
language works. To accurately encode the seman-
tics of words, we believe that embeddings should
reflect this mental lexical representation.

Evaluating word embeddings with cognitive
language processing data has been proposed pre-
viously. However, the available datasets are not
large enough for powerful machine learning mod-
els, the recording technologies produce noisy data,
and most importantly, only few datasets are pub-
licly available. Furthermore, since brain activity
and eye-tracking data contain very noisy signals,
correlating distances between representations does
not provide sufficient statistical power to com-
pare embedding types (Frank, 2017). For this
reason we evaluate the embeddings by exploring
how well they can predict human processing data.
We build on Søgaard (2016)’s theory of evaluating
embeddings with this task-independent approach
based on cognitive lexical semantics and examine
its effectiveness. The design of our framework fol-
lows three principles:

1. Multi-modality: Evaluate against various
modalities of recording human signals to
counteract the noisiness of the data.

2. Diversity within modalities: Evaluate
against different datasets within one modal-
ity to make sure the number of samples is as
large as possible.

3. Correlation of results should be evident
across modalities and even between datasets
of the same modality.

Contributions We present CogniVal, the first
framework of cognitive word embedding eval-

uation to follow these principles and analyze
the findings. We evaluate different embed-
ding types against a combination of 15 cogni-
tive data sources, acquired via three modalities:
eye-tracking, electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI).
The word representations are evaluated by assess-
ing their ability of predicting cognitive language
processing data. After fitting a neural regression
model for each combination, we apply multiple
hypotheses testing to measure the statistical sig-
nificance of the results, taking into account multi-
ple comparisons (see Figure 1). This contributes
to the consistency of the results and to attain a
global score of embedding quality. Our main
findings when evaluating six state-of-the-art word
embeddings with CogniVal show that the major-
ity of embedding types significantly outperform a
baseline of random embeddings when predicting
a wide range of cognitive features. Additionally,
the results show consistent correlations between
between datasets of the same modality and across
different modalities, validating the intuition of our
approach. Finally, we present an exploratory but
promising correlation analysis between the scores
obtained using our intrinsic evaluation methods
and the performance on extrinsic NLP tasks.

The code of this evaluation framework is openly
available1. It can be used as is, or in combination
with other intrinsic as well as extrinsic evaluation
methods for word representations.

2 Related Work

Mitchell et al. (2008) pioneered the use of word
embeddings to predict patterns of neural activation
when subjects are exposed to isolated word stim-
uli. More recently, this dataset and other fMRI
resources have been used to evaluate learned word
representations.

For instance, Abnar et al. (2018) and Rodrigues
et al. (2018) evaluate different embeddings by pre-
dicting the neuronal activity from the 60 nouns
presented by Mitchell et al. (2008). Søgaard
(2016) shows preliminary results in evaluating em-
beddings against continuous text stimuli in eye-
tracking and fMRI data. Moreover, Beinborn
et al. (2019) recently presented an extensive set
of language–brain encoding experiments. Specif-
ically, they evaluated the ability of an ELMo lan-
guage model to predict brain responses of multiple

1https://github.com/DS3Lab/cognival
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fMRI datasets.
EEG data has been used for similar purposes.

Schwartz and Mitchell (2019) and Ettinger et al.
(2016) show that components of event-related po-
tentials can successfully be predicted with neural
network models and word embeddings.

However, these approaches mostly focus on one
modality of brain activity data from small individ-
ual cognitive datasets. The lack of data sources has
been one reason why this type of evaluation has
not been too popular until now (Bakarov, 2018a).
Hence, in this work we collected a wide range of
cognitive data sources ranging from eye-tracking
to EEG and fMRI to ensure coverage of different
features, and consequently of the cognitive pro-
cessing taking place in the human brain during
reading.

Evidence from cognitive neuroscience Mur-
phy et al. (2018) review computational approaches
to the study of language with neuroimaging data
and show how different type of words activate neu-
rons in different brain regions. Similarly, mapping
fMRI data from subjects listening to stories to the
activated brain regions, revealed semantic maps of
how words are distributed across the human cere-
bral cortex (Huth et al., 2016).

Furthermore, word predictability and seman-
tic similarity show distinct patterns of brain ac-
tivity during language comprehension: seman-
tic distances can have neurally distinguishable ef-
fects during language comprehension (Frank and
Willems, 2017). These findings support the the-
ory that brain activity data does reflect lexical se-
mantics and is thus an appropriate foundation for
evaluating the quality of word embeddings.

3 Word embeddings

Pre-trained word vectors are an essential compo-
nent in state-of-the-art NLP systems. We chose six
commonly used pre-trained embeddings to evalu-
ate against the cognitive data sources. See Table
1 for an overview of the dimensions of each em-
bedding type. We evaluate the following types of
word embeddings:

• Glove: Pennington et al. (2014) provide em-
beddings of different dimensions trained on
aggregated global word-word co-occurrence
statistics over a corpus of 6 billion words.

embeddings dim. hidden layer units
Glove 50 [30, 26, 20, 5]
Glove 100 [50, 30]
Glove 200 [100, 50]
Glove 300 [150, 50]
Word2vec 300 [150, 50]
WordNet2vec 850 [400, 200]
FastText 300 [150, 50]
ELMo 1024 [600, 200]
BERT 768 [400, 200]
BERT 1024 [600, 200]

Table 1: Overview of word embeddings evaluated with
CogniVal. The last column shows the search space of
the grid search for the number of units in the hidden
layer.

• Word2vec: Non-contextual embeddings
trained on 100 billion words from a Google
News dataset (Mikolov et al., 2013).

• WordNet2Vec (Saedi et al., 2018) These
embeddings represent the conversion from
semantic networks into semantic spaces.
Trained on WordNet, a lexical ontology for
English that comprises over 155,000 lemmas
(but trained only on 60,000 words).

• FastText pre-trained embeddings use char-
acter n-grams to compose the vector of the
full words (Mikolov et al., 2018). We eval-
uate the embeddings with and without sub-
word information trained on 16 billion to-
kens of Wikipedia sentences as well as the
ones trained on 600 billion tokens of Com-
mon Crawl.

• ELMo models both complex characteristics
of word use (i.e. syntax and semantics), and
how these uses vary across linguistic contexts
(Peters et al., 2018). These word vectors are
learned functions of the internal states of a
deep bidirectional language model, which is
pre-trained on a large text corpus. We take
the first of the three output layers, containing
the context insensitive word representations.

• BERT embeddings are contextual, bidirec-
tional word representations, based on the idea
that fine-tuning a pre-trained language model
can help the model achieve better results in
the downstream tasks (Devlin et al., 2019).
We take the hidden states of the second to last
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of 12 output layers as the representation for
each token.

4 Cognitive data

In this paper, we consider three modalities of
recording cognitive language processing signals:
eye-tracking, electroencephalography (EEG), and
functional magnetic resonance imaging (fMRI).
All three methods are complementary in terms
of temporal and spatial resolution as well as the
directness in the measurement of neural activity
(Mulert, 2013). For the word embedding evalu-
ation we selected a wide range of datasets from
these three modalities to ensure a more diverse and
accurate representation of the brain activity during
language processing.

Table 2 shows an overview of the cognitive data
sources used, which are described in more detail
below. Since the processing in the brain differs
depending on whether the information is accessed
via the visual or auditory system (Price, 2012),
we include data of different stimuli, e.g. par-
ticipants reading sentences or listening to audio-
books. Moreover, our collection of cognitive data
sources contains datasets of both isolated (single
words) and continuous (words in context, i.e. sen-
tences or stories) stimuli. All datasets include En-
glish language stimuli and the participants were
native speakers or highly proficient.

Eye-tracking Eye-tracking is an indirect mea-
sure of cognitive activity. Gaze patterns are highly
correlated with the cognitive load associated with
different stages of human text processing (Rayner,
1998). For instance, fixation duration is higher for
long, infrequent and unfamiliar words (Just and
Carpenter, 1980).

All eye-tracking datasets used in this work were
recorded from natural, self-paced reading. Each
dataset provides different eye-tracking features.
The most common features, available in all 7
datasets are: first fixation duration, first pass du-
ration, mean fixation duration, total fixation dura-
tion and number of fixations. For a complete list
and description of the eye-tracking features avail-
able in each corpus see Appendix A.1.

Gaze vectors consist of specific features, which
are extracted based on the reading times, fixations
and regressions on each word. Feature values are
aggregated on word type level and scaled between
0 and 1. The feature values were averaged over
all subjects within a dataset. This preprocess-

ing step is done separately for each data source
before combining them. Hollenstein and Zhang
(2019) show that combining gaze data from dif-
ferent sources can be helpful for NLP applications,
even when they are recorded with different devices
and filtering,

By using as many features as available from
each dataset, including features characterizing ba-
sic, early and late word processing aspects, the
goal is to cover the whole language understanding
process on word level.

EEG Electroencephalography records electrical
activity from the brain. It measures voltage fluctu-
ations through the scalp with high temporal reso-
lution.oh (Hauk and Pulvermüller, 2004) presents
evidence for the modulation of early electrophysi-
ological brain responses by word frequency. This
is evidence that lexical access from written word
stimuli is an early process that follows stimulus
presentation by less than 200 ms.

The EEG datasets used in this work were ei-
ther recorded from reading sentences or listen-
ing to natural speech. Word-level brain activity
could be extracted by mapping to eye-tracking
cues (ZUCO), by mapping to auditory triggers
(NATURAL SPEECH), by recording only the last
word in each sentence (N400), or through serial
presentation of the words (UCL). Standard prepro-
cessing steps for EEG data, including band-pass
filtering and artifact removal, are performed in the
same manner for all four data sources. See Ap-
pendix A.2 for details on EEG preprocessing.

The EEG data is aggregated over all available
subjects and over all occurrences of a token. This
yields an n-dimensional vector, where n is the
number of electrodes, ranging from 32 to 130, de-
pending on the EEG device used to record the data.

EEG data can be aggregated over all subjects
within one dataset, because the number and lo-
cations of electrodes are identical. However, due
to the differences in the number of electrodes be-
tween datasets, we cannot aggregate over all EEG
datasets.

fMRI Functional magnetic resonance imaging
is a technique for measuring and mapping brain
activity by detecting changes associated with
blood flow. fMRI has a temporal resolution of two
seconds, which means that with continuous stim-
uli such as natural reading or story listening, one
scan covers multiple words. We use datasets of
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Data source stimulus subj. tokens types coverage
GECO (Cop et al., 2017) text 14 68606 5383 95%

E
Y

E
-T

R
A

C
K

IN
G DUNDEE (Kennedy et al., 2003) text 10 58598 9131 94%

CFILT-SARCASM (Mishra et al., 2016) text 5 23466 4237 85%
ZUCO (Hollenstein et al., 2018) text 12 13717 4384 90%
CFILT-SCANPATH (Mishra et al., 2017) text 5 3677 1314 89%
PROVO (Luke and Christianson, 2017) text 84 2743 1192 95%
UCL (Frank et al., 2013) text 43 1886 711 98%
ALL EYE-TRACKING (aggregated) text - 26353 16419 88%

E
E

G

ZuCo (Hollenstein et al., 2018) text 12 13717 4384 90%
NATURAL SPEECH (Broderick et al., 2018) speech 19 12000 1625 98%
UCL (Frank et al., 2015) text 24 1931 711 98%
N400 (Broderick et al., 2018) text 9 150 140 100%

fM
R

I HARRY POTTER (Wehbe et al., 2014) text 8 5169 1295 92%
ALICE (Brennan et al., 2016) speech 27 2066 588 99%
PEREIRA (Pereira et al., 2018) text/image 15 180 180 99%
NOUNS (Mitchell et al., 2008) image 9 60 60 100%

Table 2: Cognitive data sources used in this work. Coverage is the percentage of vocabulary in data source occurs
in British National Corpus list of most frequent English words2.

isolated stimuli (e.g the NOUNS dataset) as well as
continuous stimuli (e.g. HARRY POTTER). While
it is easier to extract word-level signals from iso-
lated stimuli, continuous stimuli allow extracting
signals in context over a wider vocabulary.

Where multiple trials were available, the brain
activation for each word is calculated by taking
the mean over the scans. Moreover, if the stim-
ulus is continuous (HARRY POTTER and ALICE

datasets), the data is aligned with an offset of four
seconds to account for hemodynamic delay3.

fMRI data contains representations of neural
activity of millimeter-sized cubes called voxels.
Standard fMRI preprocessing methods such as
motion correction, slice timing correction and
co-registration had already been applied before.
To select the voxels to be predicted we use
the pipeline provided by Beinborn et al. (2019).
This pipeline consists of extracting correspond-
ing scan(s) for each word, and randomly select-
ing 100, 500 and 1000 voxels (for the HARRY

POTTER, PEREIRA and NOUNS datasets). The
published version of the ALICE dataset provided

2https://www.kilgarriff.co.uk/
bnc-readme.html

3The fMRI signal measures a brain response to a stimulus
with a delay of a few seconds, and it decays slowly over a
duration of several seconds (Miezin et al., 2000). For contin-
uous stimuli, this means that the response to previous stimuli
will have an influence on the current signal. Thus, context of
the previous words is taken into account

the preprocessed signal averaged for six regions
of interest, hence for this particular dataset we
predict the activation for these regions only. Ap-
pendix A.3 contains the details of the preprocess-
ing steps. Finally, the fMRI data is converted to
n-dimensional vectors, where n is the number of
randomly selected voxels (100, 500 or 1000) or
regions (6).

5 Embedding evaluation method

In order to evaluate the word embeddings against
human lexical representations, we fit the embed-
dings to a wide range cognitive features, i.e. eye-
tracking features and activation levels of EEG and
fMRI. This section describes how these models
were trained and evaluated. After evaluating each
combination separately, we test for statistical sig-
nificance taking into account the multiple compar-
isons problem. See Figure 1 for an overview of the
evaluation process.

5.1 Models

We fit neural regression models to map word
embeddings to cognitive data sources. Predict-
ing multiple features from different sources and
modalities allows us to evaluate different aspects
of capturing the semantics of a word. Hence, sep-
arate models are trained for all combinations. For
instance, fitting FastText embeddings to EEG vec-
tors from ZUCO, or fitting ELMo embeddings to
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Figure 2: Neural architecture of regression models.

first fixation durations of the DUNDEE corpus.
For the regression models, we train neural net-

works with k input dimensions, one dense hidden
layer of n nodes using ReLU activation and an out-
put layer of m nodes using linear activation. The
model is a multiple regression with layers of di-
mension k-n-m, where k is the number of dimen-
sions of the word embeddings and m changes de-
pending on the cognitive data source to be pre-
dicted. For predicting single eye-tracking features
m equals 1, whereas for predicting EEG of fMRI
vectors m is the dimension of the cognitive data
vector, or more specifically, the number of elec-
trodes in the EEG data or the number of voxels
in the fMRI data. Figure 2 shows this neural ar-
chitecture. The loss function optimizes the mean
squared error (MSE) and uses an Adam optimizer
with a learning rate of 0.001.

5-fold cross validation is performed for each
model (80% training data and 20% test data). The
optimal number of nodes n in the hidden layer is
selected individually for each combination of cog-
nitive data source and embedding type. To this
end, a grid search is performed before training,
which is evaluated on a validation set consisting
of 20% of the training data with 3-fold cross vali-
dation (see Table 1 for details on the search space).
The best model is then saved and used to predict
the cognitive feature for each word in the test set.
Finally, the results are measured with the mean
squared error, averaged over all predicted words.

CogniVal allows for evaluation against another
word embedding type as well as evaluation against
a random baseline. To generate a fair baseline
we create random vectors for each word of n di-
mensions, corresponding to the same number of
dimensions of the embeddings to be evaluated.

voxels
embeddings 100 500 1000
glove-300 0.119 0.081 0.078
word2vec 0.103 0.075 0.075
fasttext-crawl-sub 0.092 0.070 0.069
bert-base 0.020 0.017 0.016
wordnet2vec 0.105 0.077 0.076
elmo 0.067 0.051 0.050

Table 3: Effect of predicting different numbers of ran-
domly selected voxels.

embeddings nFix TRT FFD
glove-300 0.010 0.017 0.027
word2vec 0.009 0.010 0.016
fasttext-crawl-sub 0.008 0.007 0.012
bert-base 0.005 0.003 0.004
wordnet2vec 0.010 0.010 0.019
elmo 0.008 0.009 0.011
average 0.008 0.009 0.015

Table 4: Comparison of word embeddings predict-
ing single eye-tracking features: number of fixations
(nFix), first fixation duration (FFD) and total reading
time of a word (TRT).

5.2 Multiple hypotheses testing

With the purpose of achieving consistency and go-
ing towards a global quality metric that can be
combined with other evaluation methods, we per-
form statistical significance testing on each hy-
pothesis. A hypothesis consists of comparing the
combination of an embedding type and a cognitive
data source to the random baseline.

Since the distribution of our test data is un-
known and the datasets are small, we perform
a Wilcoxon signed-rank test for each hypothesis
(Dror et al., 2018). Additionally, to counteract the
multiple hypotheses problem, we apply the con-
servative Bonferroni correction, where the global
null hypothesis is rejected if p < ↵/N , where N
is the number of hypotheses (Dror et al., 2017). In
our setting, ↵ = 0.01 and N = 4 for EEG (one
hypothesis per EEG data source), N = 59 for
for fMRI (one hypothesis per participant of each
fMRI data source), and N = 42 for eye-tracking
(one hypothesis per feature per eye-tracking cor-
pus).

This approach of significance testing can easily
be used in combination with other intrinsic and ex-
trinsic evaluation methods. The significance ratios
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Figure 3: Results for each modality: Aggregated results for all embeddings predicting cognitive features for all
datasets of a modality (sorted by dimension of embeddings in increasing order from left to right). The striped blued
bars represent random baseline. The labels on the embedding bars show the ration of significant results under the
Bonferroni correction to the total number of hypotheses.

Figure 4: Correlation plots between all three modalities of cognitive signals.

are shown in Figure 3.

6 Results & Discussion

Prediction results First, we show in Figure 3
how well each word embedding type is able to pre-
dict eye-tracking features, EEG and fMRI vectors.
As can be seen the majority of results are signif-
icantly better than the random baselines. BERT,
ELMo and FastText embeddings achieve the best
prediction results. All exact numbers can be found
in Appendix B. While a random baseline can be
considered a rather naive choice, this setting also
allows us compare the performance between word
embedding types.

When predicting single eye-tracking features,
the performance varies greatly. For instance, Ta-
ble 4 shows that the prediction error on number
of fixations and total reading time from the ZUCO

dataset is much lower than for first fixation dura-
tion. This suggest that more general eye-tracking
features covering the complete reading process of
a word are easier to predict.

In the case of predicting voxel vectors of fMRI
data, the results improve when choosing a larger

number of voxels (see Table 3). Hence, in the re-
mainder of this work we present only the results
for 1000 voxels.

We also examined the EEG results in more
depth by analyzing which electrodes are predicted
more accurately and which electrodes values are
very difficult to predict. This is exemplified by
Figure 5, which shows the 20 best and worst pre-
dicted electrodes of the ZuCo data for the BERT
embeddings of 1024 dimensions as well as aggre-
gated over all cognitive data sources. The middle
central electrodes are predicted more accurately.
The middle central electrodes are known to reg-
ister the activity of the Perisylvian cortex, which
is relevant for language related processing (Catani
et al., 2005). Moreover it can be speculated that
there is a frontal asymmetry between the elec-
trodes on the left and right hemispheres.

Cognitive data implications The diversity of
cognitive data sources chosen for this work allows
us to analyze and compare results on several lev-
els and between several cognitive metrics. In or-
der to conduct this evaluation on a collection of 15
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(a) (b)

Figure 5: EEG electrode analysis, (a) for BERT (large)
and (b) aggregated over all embedding types. Red =
worst predicted electrodes, green = best predicted elec-
trodes.

datasets from three modalities, many crucial deci-
sions were taken about preprocessing, feature ex-
traction and evaluation type. Since there are dif-
ferent methods on how to process different types
of cognitive language understanding signal, it is
important to make these decisions transparent and
reproducible.

Moreover, it is a challenge to segment brain ac-
tivity data correctly and meaningfully into word-
level signal from naturalistic, continuous language
stimulus (Hamilton and Huth, 2018). This makes
consistent preprocessing across data sources even
more important.

Another challenge is to consolidate the cogni-
tive features to be predicted. For instance, we
chose a wide selection of eye-tracking features
that cover early and late word processing. How-
ever, choosing only general eye-tracking features
such as total reading time would also be a viable
strategy. On the other hand, the EEG evaluation
could be more coarse-grained, one could also try
to predict known ERP effects (e.g. Ettinger et al.
(2016)) or features selected based on frequency
bands. Moreover, the voxel selection in the fMRI
preprocessing could be improved by either pre-
dicting all voxels or applying information-driven
voxel selection methods (Beinborn et al., 2019).

Correlations between modalities Next, we an-
alyze the correlation between the predictions of
the three modalities (Figure 4). There is a strong
correlation between the results of predicting eye-
tracking, EEG and fMRI features. This im-
plies that word embeddings are actually predict-
ing brain activity signals and not merely prepro-
cessing artifacts of each modality. Moreover, the

Figure 6: Correlation between results on EEG datasets.

same correlation is also evident between individ-
ual datasets within the same modality. As an ex-
ample, Figure 6 (bottom) shows the correlation of
the results predicted for the Natural Speech and
ZuCo EEG datasets, where the first had speech
stimuli and the latter text. Figure 6 (top) re-
veals the same positive correlation for two EEG
datasets that were preprocessed differently and
were recorded with a different number of elec-
trodes. Moreover, the UCL dataset contains word-
by-word reading and the N400 contains natural
reading of full sentences.

Correlation with extrinsic evaluation results
We performed a simple comparison between the
results of word embeddings predicting cognitive
language processing signals and the performance
of the same embedding types in downstream tasks.
We collected results for two NLP tasks: on the
SQuAD 1.1 dataset for question answering (Ra-
jpurkar et al., 2016) and on the CoNLL-2003
test split for named entity recognition (Tjong
Kim Sang and De Meulder, 2003).

The SQuAD results are taken from Devlin et al.
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Figure 7: Correlation between the SQuAD 1.1 task and
the CogniVal results.

Figure 8: Correlation between NER on CoNLL-2003
and the CogniVal results.

(2019) for BERT, from Mikolov et al. (2018) for
FastText, and from Peters et al. (2018) for ELMo.
The NER results are from the same source for
ELMo and BERT, for Glove-50 from Penning-
ton et al. (2014) and for Glove-200 from Ghannay
et al. (2016). We correlated these results to the pre-
diction results over all cognitive data sources. Fig-
ures 7 and 8 show the correlation plots between the
CogniVal results and the two downstream tasks.

While this is merely an exploratory analysis, it
shows interesting findings: If the cognitive embed-
ding evaluation correlates with the performance
of the embeddings in extrinsic evaluation tasks, it
might be used not only for evaluation but also as a
predictive framework for word embedding model
selection. This is especially noteworthy, since it
does not seem to be the case for other intrinsic
methods (Chiu et al., 2016).

7 Conclusion

We presented CogniVal, the first multi-modal
large-scale cognitive word embedding evaluation
framework. The vectorized word representa-
tions are evaluated by using them to predict eye-
tracking or brain activity data recorded while par-
ticipants were understanding natural language. We
find that the results of eye-tracking, EEG and
fMRI data are strongly correlated not only across
these modalities but even between datasets within
the same modality. Intriguinly, we also find a
correlation between our cognitive evaluation and
two extrinsic NLP tasks, which opens the question
whether CogniVal can also be used for predicting
downstream performance and hence, choosing the
best embeddings for specific tasks.

We plan to expand the collection of cognitive
data sources as more of them become available,
including data from other languages such as the
Narrative Brain Dataset (Dutch, fMRI, Lopopolo
et al. (2018)) or the Russian Sentence Corpus (eye-
tracking, Laurinavichyute et al. (2017)). Thanks to
naturalistic recording of longer text spans, Cogni-
Val can also be extended to evaluate sentence em-
beddings or even paragraph embeddings.

CogniVal can become even more effective by
combining the results with other intrinsic or ex-
trinsic embedding evaluation frameworks (Nayak
et al., 2016; Rogers et al., 2018) and building on
the multiple hypotheses testing.
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Abstract

Story understanding requires developing ex-
pectations of what events come next in text.
Prior knowledge – both statistical and declar-
ative – is essential in guiding such expecta-
tions. While existing semantic language mod-
els (SemLM) capture event co-occurrence in-
formation by modeling event sequences as se-
mantic frames, entities, and other semantic
units, this paper aims at augmenting them with
causal knowledge (i.e., one event is likely to
lead to another). Such knowledge is mod-
eled at the frame and entity level, and can
be obtained either statistically from text or
stated declaratively. The proposed method,
KnowSemLM1, infuses this knowledge into a
semantic LM by joint training and inference,
and is shown to be effective on both the event
cloze test and story/referent prediction tasks.

1 Introduction

Natural language understanding requires a coher-
ent understanding of a series of events or actions in
a story. In story comprehension, we need to under-
stand not only what events have appeared in text,
but also what is likely to happen next. While event
extraction has been well studied (Ji and Grishman,
2008; Huang and Riloff, 2012; Li et al., 2013;
Peng et al., 2016; Nguyen et al., 2016; Nguyen
and Grishman, 2016), the task of predicting fu-
ture events (Radinsky et al., 2012; Radinsky and
Horvitz, 2013) has received less attention.

One perspective is to utilize the co-occurrence
information between past and future events
learned from a large corpus, which has been stud-
ied in script learning works (Chambers and Ju-
rafsky, 2008; Pichotta and Mooney, 2014, 2016a;
Peng and Roth, 2016; Peng et al., 2017). However,
only considering co-occurrence information is not

1Related resources refer to https://cogcomp.
seas.upenn.edu/page/publication_view/886.

sufficient for modeling event sequences in natural
language. Human decisions on the likelihood of a
specific event depend on both local context – what
has happened earlier in text – and global context
– knowledge gained from human experience. This
paper leverages both the local and global context
information to model event sequences, and shows
that it can lead to more accurate predictions of fu-
ture events. For example, the following text snip-
pet describes a scenario of someone taking a flight:

... I checked in at the counter, took my luggage
to the security area, got cleared ten minutes in ad-
vance, and waited for my plane ...
This example consists of a series of events, i.e.,
“check in (a flight)”, “be cleared (at the secu-
rity)”, “wait for (the plane)”, etc., which humans
who have traveled by plane are very familiar with.
However, this event sequence appears infrequently
in text.2 Consequently, only relying on event co-
occurrence in text is not sufficient – there is also a
need to model some “common sense” information.

The local and global contexts in this ex-
ample are illustrated in Figure 1. The ex-
isting event sequence is “(sub)check in[flight]”,
“(sub)clear[security]” and “(sub)wait for[plane]”
(denoted by blue dots), where “sub” means
subject. Language models (LM) for statisti-
cal co-occurrences of events can capture this lo-
cal context and generate a distribution over all
possible events, e.g., “(sub)purchase[food]” and
“(sub)go to[work]”, as in the blue circle.

More importantly, global context is the knowl-
edge of event causality learned from human ex-
perience in the form of “cause-effect” event pairs
(i.e., one event leads to another). One such
pair is represented as “(sub)wait for[plane] ⇒

2The events “check in” and “be cleared” only co-occur
twice in a same document in the 20-year New York Times
corpus (1987-2007); we count with frame and entity level
abstractions (see Section 2.1 for details).
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Figure 1: Local and global context information when
modeling event sequences. The blue dots are events
that are already described in text. The blue circle indi-
cates local context, i.e., event sequences inferred from
a large corpus via semantic LMs; the red circle repre-
sents global context, i.e., events learned from human
experience via knowledge of event causality (which
may overlap with local context). For event represen-
tations, we abstract over the surface forms of semantic
frames and entities, where “sub” represents the shared
common subject. The proposed KnowSemLM lever-
ages both information to better predict future events.

(sub)get on[plane]”, which means that one has to
wait for a plane before getting on it (red dashed
arrow in Figure 1). Global context, as a result,
helps generate a distribution over a focused set
of expected events, as in the red circle. Note
that the causality links have directions, and one
event might lead to multiple possible events, e.g.,
one has to wait for the plane before it takes off
“(sub)wait for[plane] ⇒ [plane]take off”. Such
connections can be viewed as temporal relations.
Here, we consider causality to include tempo-
ral orderings of events which align with common
sense. More discussions are provided in Sec. 6.

Thus, we propose KnowSemLM, a knowledge
infused semantic language model. It combines
knowledge from external sources (in the form of
event causality) with the basic semantic LM (Peng
et al., 2017) trained on a given text corpus. Our
model is a generative model of events, where
each event is either generated based on a piece of
knowledge or generated from the semantic LM.
When predicting future events at inference time,
we generate two distributions over events: one
from the given knowledge, and the other from the
semantic LM. We also learn a binary variable that
selects the distribution from which we take the

next event. In this way, the proposed KnowSemLM
has the ability to generate event sequences based
on both local and global context, and better imitate
the story generation process.

This knowledge infused semantic LM operates
on abstractions over the surface form – semantic
frames and entities. We associate each semantic
unit (frames and entities) with an embedding and
construct a joint embedding space for each event.
We train KnowSemLM on a large corpus and use
the same embedding setting for events involved in
the knowledge. The event causality knowledge is
mined either statistically from the training corpus
or declaratively for constrained domains (both in
the form of event pairs). In the statistical way, we
utilize a set of discourse connectives to identify
“cause-effect” event pairs and filter them based on
their counts; if provided with event templates for
specific domains, we also manually write down
such pairs based on human experience. In both
ways, we further enrich the knowledge base by
considering transitivity among event pairs.

We evaluate KnowSemLM on two tasks – event
cloze test and story/referent predictions. In both
cases, we model text as a sequence of events
and apply trained KnowSemLM to calculate con-
ditional probabilities of future events given text
and knowledge. We show that KnowSemLM can
outperform competitive results from models with
no such knowledge. In addition, we demonstrate
the language modeling ability of KnowSemLM
through quantitative and qualitative analysis.

The main contributions can be summarized
as follows: 1) formulation of knowledge used
in story generation as event causality; 2) pro-
posal of KnowSemLM to integrate such event
causality knowledge into semantic language mod-
els; 3) demonstration of the effectiveness of
KnowSemLM via multiple benchmark tests.

The rest of the paper is organized as follows.
We define how we model events and event causal-
ity knowledge in Sec. 2, followed by the descrip-
tion of the knowledge infused KnowSemLM (Sec.
3). The training procedure of KnowSemLM is de-
tailed in Sec. 4, followed by our experimental re-
sults and analysis (Sec. 5) and related work (Sec.
6). We conclude in Sec. 7.

2 Event and Knowledge Modeling

To better understand the proposed KnowSemLM,
here we first introduce the event representation and
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event causality model used in this paper.

2.1 Event Representation
To preserve the full semantic meaning of events,
we need to consider multiple semantic aspects:
semantic frames, entities, and sentiments. We
adopt the event representation proposed in Peng
et al. (2017), which is built upon abstractions of
three basic semantic units: (disambiguated) se-
mantic frames, subjects & objects in such seman-
tic frames, and sentiments of the frame text.

In a nutshell, the event representation is a com-
bination of the above three semantic elements.

... Steven Avery committed murder. He was ar-
rested, charged and tried ...
For example, the event representations of the
above text would be (four separate events):

PER[new]-commit.01-ARG[new](NEG)
ARG[new]-arrest.01-PER[old](NEU)
ARG[new]-charge.05-PER[old](NEU)
ARG[new]-try.01-PER[old](NEG)

Here, “commit.01”, “arrest.01” and so on rep-
resent disambiguated predicates (“01” and “05”
refer to the disambiguated senses in VerbNet).
The arguments (subject and object) of a predi-
cate are denoted with NER types (“PER, LOC,
ORG, MISC”) or “ARG” if unknown, along with a
“[new/old]” label indicating if it is the first appear-
ance in the sequence. Additionally, the sentiment
of a frame is represented as positive (POS), neural
(NEU), or negative (NEG).

We formally define such an explicit and ab-
stracted event as e. Computationally, the vector
representation of an event evec is built in a joint
semantic space:

evec =Wfrf +Were +Wsrs.

During language model training, we learn frame
embeddings Wf (rf , re, rs are one-hot vectors for
each unique frame, entity and sentiment abstrac-
tion, respectively) as well as the transforming ma-
trices We and Ws.

2.2 Knowledge: Causality between Events
We model the knowledge gained from human ex-
perience as pre-determined relationship between
events. Since we are modeling event sequences,
the knowledge of one event leads to another is very
important, hence event causality. We formally de-
fine a piece of event knowledge as

ex ⇒ ey,

meaning that the outcome event ey is a possible re-
sult of the causal event ex. Note that event causal-
ity here is directional, and one event may lead to
multiple different outcomes. We group all event
knowledge pairs with the same causal event, thus
event ex can lead to a set of events:

ex ⇒ {ey1 , ey2 , ey3 , · · · , eym}.

We store all such event causality structures in a
knowledge base KBEC.

3 Knowledge Infused SemLM

With a proper modeling of events and event
causality above, this section explains the pro-
posed KnowSemLM, a method to inject causal-
ity knowledge into a semantic LM. Specifically,
KnowSemLM is based on FES-RNNLM (Frame-
Entity-Sentiment infused Recurrent Neural Net
Language Model) proposed in Peng et al. (2017).
We briefly review FES-RNNLM and describe how
KnowSemLM adds knowledge on top of it.

3.1 FES-RNNLM
To model semantic sequences and train the joint
event representations in Sec. 2.1, we build neural
language models over such sequences. Peng et al.
(2017) uses Log-Bilinear Language model (Mnih
and Hinton, 2007), but since we require the use
of event causality knowledge to be based on past
events, we choose to implement an RNN language
model (RNNLM) where the generation of future
events is only dependent on past events.

For ease of explanation, we denote a seman-
tic sequence of joint event representations as
[e1, e2, · · · , et], with et being the tth event in the
sequence. Thus, we model the conditional proba-
bility of an event et given its context as

plm(et|e1, · · · , et−1)
= softmax(Wsht + bs)

=
exp(evec

t (Wsht + bs))∑
e∈V exp(e

vec(Wsht + bs))
.

Note that the softmax operation is carried out over
the event vocabulary V , i.e., all possible events in
the language model. Moreover, the hidden layer
ht in RNN is computed as: ht = φ(evec

t Wi +
ht−1Wh + bh), where φ is the activation function.
For language model training, we learn parameters
Ws, bs, Wi, Wh, and bh, and maximize the se-
quence probability

∏k
t=1 plm(et|e1, e2, · · · , et−1).
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Figure 2: Overview of the computational workflow
for the proposed KnowSemLM. There are two key
components: 1) a knowledge selection model, which
activates the use of knowledge based on probabilisti-
cally matching causal event and produce a distribution
over outcome events via attention; 2) a sequence gen-
eration model, which takes input from both the knowl-
edge selection model and the base semantic language
model (FES-RNNLM) to generate future events via a
copying mechanism. Note that the single dots indicate
explicit event representations while three consecutive
dots stand for event vectors.

3.2 KnowSemLM

In Figure 2, we show the computational work-
flow of the proposed KnowSemLM. There are two
key components: 1) a knowledge selection model,
which activates the use of knowledge based on
probabilistically matching causal events and pro-
duces a distribution over outcome events; 2) a se-
quence generation model, which takes input from
both the knowledge selection model and the base
semantic language model (FES-RNNLM) to gen-
erate future events via a copying mechanism.3

Knowledge Selection Model
For an event in the sequence et, we first match it
with possible causal events {ex} in the knowledge
base KBEC based on the bi-focal attention of pre-
vious events. Thus, from the knowledge base, we
get a list of outcome events Vy , {ey1 , ey2 , · · · }.

Computationally, we model the conditional
probability of matching with causal event ex and
outcome event ey from knowledge base given the
context of e1, e2, · · · , et as

pkn(ex ⇒ ey|e1, e2, · · · , et)

=
exp(evec

x Waht) exp(e
vec
y Wbht)∑

e∈Vx,e′∈Vy exp(e
vecWaht) exp(e′vecWbht)

.

3The proposed computational framework of KnowSemLM
is similar to DynoNet proposed in He et al. (2017). Compared
to DynoNet, the knowledge base utilized here operates on
event level representations rather than on tokens.

Here, we use the bi-focal attention mecha-
nism (Nema et al., 2018) via attention parameters
Wa,Wb, and apply it on the hidden layer ht, which
embeds information from all previous events in the
sequence. Therefore, we produce a distribution
over the set of possible outcome events Vy.
Sequence Generation Model
The base semantic LM produces a distribution
over events from the language model vocabulary,
which represents local context, while the knowl-
edge selection model generates a set of outcome
events with a probability distribution, which rep-
resents global context of event causality knowl-
edge. The sequence generation model then com-
bines the local and global context for generat-
ing future events. Therefore, we model the con-
ditional probability of event et+1 given context
p(et+1|Context) = p(et+1|e1, e2, · · · , et,KBEC).
This overall distribution is computed via a copy-
ing mechanism (Jia and Liang, 2016), i.e., we ei-
ther generate the next event (ei) from the language
model vocabulary (V) or copy from the outcome
event set (ey) based on the following probabilities:
{

p(et+1 = ei ∈ V|Context) = (1− λ)plm(ei)

p(et+1 = ey ∈ Vy|Context) = λpkn(ey).

Here, λ is a learned scaling parameter to choose
between events from LM vocabulary V and events
from event causality knowledge base KBEC.

4 Construction of KnowSemLM

4.1 Dataset and Preprocessing
Dataset: We use the New York Times (NYT) Cor-
pus4 (from year 1987 to 2007) as the training cor-
pus. It contains over 1.8M documents in total.
Preprocessing: We preprocess all training doc-
uments with Semantic Role Labeling and Part-
of-Speech tagging. We also implement the ex-
plicit discourse connective identification module
of a shallow discourse parser (Song et al., 2015).
Additionally, we utilize within-document entity
co-reference (Peng et al., 2015a) to produce co-
reference chains and get the anaphoricity informa-
tion. To obtain all annotations, we use the Illinois
NLP tools (Khashabi et al., 2018).5 Further, we
obtain event representations from text with frame,
entity and sentiment level abstractions by follow-
ing procedures described in Peng et al. (2017).

4https://catalog.ldc.upenn.edu/
LDC2008T19

5http://cogcomp.org/page/software/
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4.2 Knowledge Mining

Statistical Way: Part of the human knowledge
can be mined from text itself. Since discourse con-
nectives are important for relating different text
spans, we carefully select discourse connectives
which can indicate a “cause-effect” situation. For
example, “The police arrested Jack because he
killed someone.” In this sentence, readers can gain
the knowledge of “the person who kills shall be
arrested”, which can be represented as “PER[*]-
kill.01-*[*](*)⇒ *[*]-arrest.01-PER[old](*)” ac-
cording to the abstractions specified in Sec. 2.

In practice, we choose 22 “cause-effect” con-
nectives/phrases (such as “because”, “due to”, “in
order to”). We then extract all event pairs con-
nected by such connectives from the NYT train-
ing data, and abstract over their surface forms to
get the event level representations. Finally, we fil-
ter cases where the direction of the event causal-
ity pairs is unclear from a statistical standpoint.
Specifically, we calculate the ratio of counts of
one direction over another, i.e. θ =

#(ex⇒ey)
#(ey⇒ex)

.

If θ > 2, then we store ex ⇒ ey as knowledge;
while θ < 0.5, we only keep ey ⇒ ex. In the case
of 0.5 < θ < 2, we filter both event causality pairs
since we are unsure of the knowledge statistically.

After the above filtering procedures, we auto-
matically get 8,293 different pairs of event pairs
(without human efforts). According to Sec. 2, we
merge them if they have the same causal event, i.e.
ex ⇒ ey and ex ⇒ ez becomes ex ⇒ {ey, ex}.
Thus, we get a total of 2,037 causal events (trees);
and on average, each causal event has 4 possible
outcome events. Furthermore, those event pairs
of knowledge defined in this work are transitive,
e.g., if e1 ⇒ e2 and e2 ⇒ e3, then we can have
e1 ⇒ e3. Considering this transitivity, we iterate
over all pairs twice, and derive more event causal-
ity pairs, achieving a total number of 9,022.6

Declarative Way: Besides mining knowledge au-
tomatically from text corpus, we also take full
advantage of human input in some practical sit-
uations. For the InScript Corpus (Modi et al.,
2017), it specifies 10 everyday scenarios, e.g.,
“Bath”, “Flight”, “Haircut”. In each scenario,
the corpus also provides event templates and the
corresponding event template annotations for the
text. Examples of such generated event causal-

6We do not further carry out the transitivity expansion
process, since empirically the noise it introduces outweighs
the benefits it brings (see Sec. 5.4 for details).

Method Accuracy
Granroth-Wilding and Clark (2016) 49.57%
Wang et al. (2017) 55.12%
KnowSemLM w/o knowledge 39.23%
KnowSemLM w/o transit. & fine-tuning 43.56%
KnowSemLM w/o fine-tuning 45.28%
KnowSemLM 56.27%

Table 1: Accuracy results for the event cloze task.
KnowSemLM outperforms previously reported results
and we show the ablation study results for model with-
out the use of knowledge (w/o knowledge), without the
use of knowledge transitivity as described in Sec 4.2
(w/o transit.) and without fine-tuning on the dev data
(w/o fine-tuning), resepctively.

ity knowledge can be referred back to Sec. 1,
e.g., “(sub)wait for[plane]⇒ (sub)get on[plane]”.
In total, we manually generate 875 event causal-
ity pairs and group them with 121 causal events.
Here, since during the manual generation process,
we try to cover all event causality knowledge that
makes sense; we do not further apply the transitive
property and expand.

4.3 Model Training
Based on the formulation in Sec. 3, we apply
the overall sequence probability as the objective:∏k

t=1 p(et|e1, e2, · · · , et−1,KBEC).where k is the
sequence length. For the sequence generation
model, we implement the Long Short-Term Mem-
ory (LSTM) network with a layer of 64 hidden
units while the dimension of the input event vec-
tor representation is 200. Because we carry out
the same event-level abstractions as in Peng et al.
(2017), the event vocabulary is the same, with the
size of ∼4M different events.7

5 Experiments

We show that KnowSemLM can achieve better per-
formance for the event cloze test and story/referent
prediction tasks compared to models without the
use of knowledge. We also evaluate the language
modeling ability of KnowSemLM through quanti-
tative and qualitative analysis.

5.1 Application for Event Cloze Test
Task Description and Setting: We utilize the
MCNC task and dataset proposed in Granroth-
Wilding and Clark (2016) as the benchmark evalu-
ation. For each test instance, the goal is to recover
the event (defined as predicate with associated en-
tities) from an event chain given multiple choices.

7Please see Table 2 in Peng et al. (2017) for details.
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Since the event definition in this task is compat-
ible with our representation defined in Sec 2.18,
we can directly convert event chains into our se-
mantic event sequences. In this application task,
we train KnowSemLM on the NYT portion of the
Gigaword9 corpus, and also fine-tune on the de-
velopment set specified in this task10.
Application of KnowSemLM: For each test case
(i.e., an event chain inside a document), we first
construct the event level representation as de-
scribed in Sec. 2 for each event in the chain. We
then apply KnowSemLM to obtain the overall se-
quence probability by replacing the missing event
with each candidate choice. The final decision is
made by choosing the event with the highest prob-
ability. Note that the event causality knowledge
here for both training and testing is generated au-
tomatically from NYT corpus specified in Sec. 4.2
(the Statistical Way). To efficiently calculate the
sequence probability, we limit the context window
size surrounding the missing event to be 10.
Results: The accuracy results are shown in Ta-
ble 1. We compare KnowSemLM with previous
reported results on this event cloze test (Granroth-
Wilding and Clark, 2016; Wang et al., 2017).
KnowSemLM outperforms both baselines and we
further carry out the ablation study to measure the
impact of knowledge, transitivity of knowledge,
and fine-tuning. We can see that it is important
for the semantic LM to consider knowledge and
also learn the process of applying such knowledge
in event sequences, i.e., the fine-tuning step.

5.2 Application for Story Prediction

Task Description and Setting: We use the bench-
mark ROCStories dataset (Mostafazadeh et al.,
2017), and follow the test setting in Peng et al.
(2017). For each instance, we are given a
four-sentence story and the system needs to pre-
dict the correct fifth sentence from two choices;
with the incorrect ending being semantically un-
reasonable, or un-related. Instead of treating the
task as a supervised binary classification prob-
lem with a development set to tune, we evaluate
KnowSemLM in an unsupervised fashion where

8Our event representation is abstracted on a higher level.
Thus, we process the original NYT documents, where event
chains come from, for abstraction purposes; and then match
it to the event chains in the test data.

9https://catalog.ldc.upenn.edu/
LDC2011T07

10https://mark.granroth-wilding.co.uk/
papers/what_happens_next/

Baselines Accuracy
Seq2Seq 58.0%
Mostafazadeh et al. (2016) 58.5%
Seq2Seq with attention 59.1%
Model w/o Knowledge S. M.V.
FES-LM (Peng et al., 2017) 62.3% 61.6%
Knowledge Model S. M.V.
KnowSemLM 66.5% 63.1%

Table 2: Accuracy results for story cloze test in the
unsupervised setting. “S.” represents the inference
method with the single most informative feature while
“M.V.” means majority voting.

we directly evaluate on the test set. In such a
way, we can directly compare with the FES-LM
model proposed in Peng et al. (2017), which is
base model of KnowSemLM without the use of
knowledge. Similar to the training of FES-LM,
we fine tune KnowSemLM on the in-domain short
story training data, with the model trained on NYT
corpus as initialization.11

Application of KnowSemLM: For each test story,
we generate a set of conditional probability fea-
tures from KnowSemLM. We first construct the
event level representation as described in Sec. 2.
We then utilize the conditional probability of the
fifth sentence given previous context sentences
and the knowledge base KBEC as features. Here
KBEC is generated automatically from NYT cor-
pus specified in Sec. 4.2 without human efforts.
We get multiple features depending on how long
we go back in the context in terms of events. In
practice, we get at most 12 events as context since
one sentence can contain multiple events. Thus,
for each story, we generate at most 12 pairs of
conditional probability features from two given
choices. Every pair of such features can yield a
decision on which ending is more probable. Here,
we test two different inference methods: a single
most informative feature (where we go with the
decision made by the pair of features which have
the highest ratio) or majority voting based on the
decision made jointly by all feature pairs.
Results: The accuracy results are shown in Ta-
ble 2. We compare KnowSemLM with Seq2Seq
baselines (Sutskever et al., 2014) and Seq2Seq
with attention mechanism (Bahdanau et al.,
2014). We also include the DSSM system

11We iterate over the NYT corpus until it converges on the
perplexity metric for the development set, and then the model
is further trained on ROC-Stories training set for 5 epochs.
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Method Accuracy
Base (Modi et al., 2017) 62.65%
EntityNLM (Ji et al., 2017) 74.23%
Base∗ 60.58%
Base∗ w/ FES-RNNLM 63.79%
Base∗ w/ KnowSemLM 76.15%

Table 3: Accuracy results for the referent predic-
tion task on InScript Corpus. We re-implement the
base model (Modi et al., 2017) as “Base∗”, and ap-
ply KnowSemLM to add additional features. “Base∗

w/ FES-RNNLM” is the ablation study where no event
causality knowledge is used. Even though “Base∗”
model performs not as good as the original base
model, we achieve the best performance with added
KnowSemLM features.

from Mostafazadeh et al. (2016) as the original
reported result. KnowSemLM outperforms both
baselines and the base model without the use of
knowledge, i.e., FES-LM. The best performance
achieved by KnowSemLM uses single most infor-
mative feature, with the feature being the condi-
tional probability depending on only the nearest
preceding event and event causality knowledge).

5.3 Application for Referent Prediction

Task Description and Setting: For referent pre-
diction task, we follow the setting in Modi et al.
(2017), where the system predicts the referent of
an entity (or a new entity) given the preceding
text. The task is evaluated on the InScript Cor-
pus, which contains a group of documents where
events are manually annotated according to pre-
defined event templates. Each document contains
one entity which needs to be resolved. The In-
Script Corpus can be divided into 10 situations and
is split into standard training, development, and
testing sets. We fine-tune KnowSemLM on the In-
Script Corpus training set, with the model trained
on NYT corpus as initialization.
Application of KnowSemLM: For each test case
(i.e., an entity inside a document), each can-
didate choice will be represented as a differ-
ent event representation. Note that the event
representation here comes from the event tem-
plates defined in the InScript Corpus. In the
meantime, we can extract the event sequence
from the preceding context. Thus, we can ap-
ply KnowSemLM to compute the conditional prob-
ability of the candidate event et+1 given the
event sequence and the event causality knowl-

Perplexity
FES-RNNLM 121.8
KnowSemLM w/o transitivity 120.7
KnowSemLM 120.4
Narrative Cloze Test (Recall@30)
FES-RNNLM 47.9
KnowSemLM w/o transitivity 49.3
KnowSemLM 49.6

Table 4: Results for perplexity and narrative cloze
test. Both studies are conducted on the NYT hold-
out data. “FES-RNNLM” represents the semantic LM
without the use of knowledge. The numbers show that
KnowSemLM has lower perplexity and higher recall on
narrative cloze test, which demonstrates the contribu-
tion of the infused knowledge.

Match/Event Activation/Event λ
NYT 0.13 0.03 0.36
InScript 0.82 0.28 0.46

Table 5: Statistics for the use of event causality
knowledge in KnowSemLM. We gather the statistics
for both NYT and InScript Corpus. “Match/Event” rep-
resents average number of times a causal event match is
found in the event causality knowledge base per event;
while “Activation/Event” stands for the average num-
ber of times we actually generate event predictions
from the outcome events of the knowledge base. In ad-
dition, we believe the ratio of “Activation/Event” over
“Match/Event” co-relates with the scaling parameter λ.

edge: pk(et+1|et−k, et−k+1, · · · , et,KBEC).Here,
knowledge in KBEC is generated manually from
event templates specified in Sec. 4.2. Moreover,
index k decides how far back we consider the pre-
ceding event sequence. We then add this set of
conditional probabilities as additional features in a
base model (re-implementation of the linear model
proposed in Modi et al. (2017), namely “Base∗”)
to train a classifier to predict the right referent.

Results: The accuracy results are shown in Ta-
ble 3. We compare with the original base model
as well as the EntityNLM proposed in Ji et al.
(2017) as baselines. Our re-implemented base
model (“Re-base”) does not perform as good as
the original model. However, with the help of ad-
ditional features from FES-RNNLM, we outper-
form the base model. More importantly, with addi-
tional features from KnowSemLM, we achieve the
best performance and beat the EntityNLM system.
This demonstrates the importance of the manually
added event causality knowledge, and the ability
of KnowSemLM to successfully capture it.
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5.4 Analysis of KnowSemLM

First, to evaluate the language modeling ability of
KnowSemLM, we report perplexity and narrative
cloze test results. We employ the same experimen-
tal setting as detailed in Peng and Roth (2016) on
the NYT hold-out data. Results are shown in Ta-
ble 4. Here, “FES-RNNLM” serves as the seman-
tic LM without the use of knowledge for the abla-
tion study. The numbers shows that KnowSemLM
has lower perplexity and higher recall on narrative
cloze test; which demonstrates the contribution of
the infused event causality knowledge. The results
w.r.t. the transitivity evaluation shows that the ex-
pansion through knowledge transitivity improves
the model quality.

We also gather the statistics to analyze the us-
age of event causality knowledge in KnowSemLM.
We compute two key values: 1) average num-
ber of times a causal event match is found in the
event causality knowledge base per event (so that
we can potentially use the outcome events to pre-
dict), i.e. “Match/Event”; 2) average number of
times we actually generate event predictions from
the outcome events of the knowledge base (result
of the final probability distribution), i.e. “Activa-
tion/Event”. We get the statistics on both NYT
and InScript Corpus, and associate the numbers
with the scaling parameter λ in Table 5. The
frequency of event matches and event activations
from knowledge are both much lower in NYT than
in InScript. Moreover, we can compute the chance
of an outcome event being used as the prediction
when it participates in the probability distribution.
On NYT, it is 0.03/0.13 = 23%; while on In-
Script, it is 0.28/0.82 = 34%. We believe such
chance co-relates with the scaling parameter λ.

For qualitative analysis, we provide a compar-
ative example between KnowSemLM and FES-
RNNLM in practice. The system is fed into the
following input:

... Jane wanted to buy a new car. She had to
borrow some money from her father. ...
So, on an event level, we abstract the text as
“PER[new]-want.01-buy.01-ARG[new](NEU),
PER[old]-have.04-borrow.01-ARG[new](NEU)”.
For FES-RNNLM, the system predicts the next
event as “PER[old]-sell.01-ARG[new](NEU)”
since in training data, there are many co-
occurrences between the “borrow” event and
“sell” event (coming from financial news articles
in NYT). In contrast, for KnowSemLM, since

we have the knowledge “PER[*]-borrow.01-
ARG[*](*)⇒ PER[old]-return.01-ARG[old](*)”,
meaning that something borrowed by someone is
likely to be returned, the predicted event would
be “PER[old]-return.01-ARG[old](NEU)”. This
is closer to the real text semantically: ... She
promised to return the money once she got a job ...
Such an example shows that KnowSemLM works
in situations where 1) the required knowledge
is stored in the event causality knowledge base,
and 2) the training data contains scenarios where
required knowledge is put into use.

6 Related Work

Our work is built upon the previous works for se-
mantic language models (Peng and Roth, 2016;
Peng et al., 2017; Chaturvedi et al., 2017). This
line of work is in general inspired by script learn-
ing. Early works (Schank and Abelson, 1977;
Mooney and DeJong, 1985) tried to learn scripts
via construction of knowledge bases from text.
More recently, researchers focused on utilizing
statistical models to extract high-quality scripts
from large amounts of data (Chambers and Ju-
rafsky, 2008; Bejan, 2008; Jans et al., 2012; Pi-
chotta and Mooney, 2014; Granroth-Wilding and
Clark, 2016; Rudinger et al., 2015; Pichotta and
Mooney, 2016a,b). Other works aimed at learn-
ing a collection of structured events (Chambers,
2013; Cheung et al., 2013; Balasubramanian et al.,
2013; Bamman and Smith, 2014; Nguyen et al.,
2015; Inoue et al., 2016). In particular, Ferraro
and Durme (2016) presented a unified probabilis-
tic model of syntactic and semantic frames while
also demonstrating improved coherence. Several
works have employed neural embeddings (Modi
and Titov, 2014a,b; Frermann et al., 2014; Titov
and Khoddam, 2015). Some prior works have
used scripts-related ideas to help improve NLP
tasks (Irwin et al., 2011; Rahman and Ng, 2011;
Peng et al., 2015b).

Several recent works focus on narrative/story
telling (Rishes et al., 2013), as well as studying
event structures (Brown et al., 2017). Most re-
cently, Mostafazadeh et al. (2016, 2017) proposed
story cloze test as a standard way to test a system’s
ability to model semantics. They released ROC-
Stories dataset, and organized a shared task for
LSDSem’17; which yields many interesting works
on this task. Cai et al. (2017) developed a model
that uses hierarchical recurrent networks with at-
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tention to encode sentences and produced a strong
baseline. Lee and Goldwasser (2019) considered
the problem of learning relation aware event em-
beddings for commonsense inference, which can
account for different relations between events, be-
yond simple event similarity. We differ from them
because the basic semantic unit we model is event
level abstractions instead of word tokens.

The definition of event causality knowledge
in this work includes temporal ordering relation-
ships. Much progress has been made in iden-
tifying and modeling such relations. In early
works (Mani et al., 2006; Chambers et al., 2007;
Bethard et al., 2007; Verhagen and Pustejovsky,
2008), the problem was formulated as a clas-
sification problem for determining the pair-wise
event temporal relations; while recent works (Do
et al., 2012; Mirza and Tonelli, 2016; Ning et al.,
2017, 2018) took advantage of utilizing structural
constraints such as transitive properties of tem-
poral relationships via ILP to achieve better re-
sults. Comparatively, the concept of event causal-
ity knowledge here is broader and more flexible.
Any event causality relation gained from human
experience could be represented and utilized in
KnowSemLM; as shown in Sec. 4.2 that such
knowledge can be both mined from corpus and
written down declaratively.

Since we formulate the semantic sequence mod-
eling problem as a language modeling issue, we
also review recent neural language modeling liter-
ature. Bengio et al. (2003) introduced a model that
learns word vector representations as part of a sim-
ple neural network architecture for language mod-
eling. Collobert and Weston (2008) decoupled the
word vector training from the downstream train-
ing objectives, which paved the way for Collobert
et al. (2011) to use the full context of a word for
learning the word representations. The skip-gram
and continuous bag-of-words (CBOW) models of
Mikolov et al. (2013) propose a simple single-
layer architecture based on the inner product be-
tween two word vectors. Mnih and Kavukcuoglu
(2013) also proposed closely-related vector log-
bilinear models, vLBL and ivLBL, and Levy and
Goldberg (2014) proposed explicit word embed-
dings based on a PPMI metric. Additionally, re-
searcher have been attempting to infuse knowl-
edge into the language modeling process (Ahn
et al., 2016; Yang et al., 2016; Ji et al., 2017; He
et al., 2017; Clark et al., 2018).

Most recently, pre-trained language models
such as BERT (Devlin et al., 2019), GPT (Radford
et al., 2018), and XLNET (Yang et al., 2019) have
achieved much success for language modeling and
generation tasks. Our proposed knowledge in-
fused semantic language model can not be directly
applied upon such word-level pre-trained language
models. However, as future works, we are inter-
ested in exploring the possibility of pre-training
a semantic language model with frame and entity
abstractions on a large corpus with event causality
knowledge, and fine-tune it on application tasks.

7 Conclusion

This paper proposes KnowSemLM, a knowledge
infused semantic LM. It utilizes both local con-
text (i.e., what has been described in text) and
global context (i.e., causality knowledge about
events) to predict future events. We show that
such event causality knowledge can be obtained
statistically from a corpus or declaratively in
specific scenarios. Similar to previous works,
KnowSemLM takes advantage of event-level ab-
stractions to achieve generalization. Evaluations
demonstrate that the knowledge awareness of the
proposed KnowSemLM helps improve results on
tasks such as the event cloze test and story/referent
prediction.
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Abstract
This study proposes a Neural Attentive Bag-
of-Entities model, which is a neural network
model that performs text classification using
entities in a knowledge base. Entities pro-
vide unambiguous and relevant semantic sig-
nals that are beneficial for capturing seman-
tics in texts. We combine simple high-recall
entity detection based on a dictionary, to de-
tect entities in a document, with a novel neu-
ral attention mechanism that enables the model
to focus on a small number of unambigu-
ous and relevant entities. We tested the ef-
fectiveness of our model using two standard
text classification datasets (i.e., the 20 News-
groups and R8 datasets) and a popular factoid
question answering dataset based on a trivia
quiz game. As a result, our model achieved
state-of-the-art results on all datasets. The
source code of the proposed model is avail-
able online at https://github.com/
wikipedia2vec/wikipedia2vec.

1 Introduction

Text classification is an important task, and its
applications span a wide range of activities such
as topic classification, spam detection, and sen-
timent classification. Recent studies showed that
models based on neural networks can outperform
conventional models (e.g., naı̈ve Bayes) on text
classification tasks (Kim, 2014; Iyyer et al., 2015;
Tang et al., 2015; Dai and Le, 2015; Jin et al.,
2016; Joulin et al., 2017; Shen et al., 2018). Typ-
ical neural network-based text classification mod-
els are based on words. They typically use words
in the target documents as inputs, map words into
continuous vectors (embeddings), and capture the
semantics in documents by using compositional
functions over word embeddings such as averag-
ing or summation of word embeddings, convolu-
tional neural networks (CNN), and recurrent neu-
ral networks (RNN).

Apart from the aforementioned approaches,
past studies attempted to use entities in a knowl-
edge base (KB) (e.g., Wikipedia) to capture the
semantics in documents. These models typi-
cally represent a document by using a set of en-
tities (or bag of entities) relevant to the document
(Gabrilovich and Markovitch, 2006, 2007; Xiong
et al., 2016). The main benefit of using entities
instead of words is that unlike words, entities pro-
vide unambiguous semantic signals because they
are uniquely identified in a KB. One key issue
here is to determine the way in which to associate
a document with its relevant entities. An exist-
ing straightforward approach (Peng et al., 2016;
Xiong et al., 2016) involves creating a set of rele-
vant entities using an entity linking system to de-
tect and disambiguate the names of entities in a
document. However, this approach is problematic
because (1) entity linking systems produce disam-
biguation errors (Cornolti et al., 2013), and (2) en-
tities appearing in a document are not necessar-
ily relevant to the given document (Gamon et al.,
2013; Dunietz and Gillick, 2014).

This study proposes the Neural Attentive Bag-
of-Entities (NABoE) model, which is a neural net-
work model that addresses the text classification
problem by modeling the semantics in the tar-
get documents using entities in the KB. For each
entity name in a document (e.g., “Apple”), our
model first detects entities that may be referred to
by this name (e.g., Apple Inc., Apple (food)), and
then represents the document using the weighted
average of the embeddings of these entities. The
weights are computed using a novel neural atten-
tion mechanism that enables the model to focus
on a small subset of the entities that are less am-
biguous in meaning and more relevant to the doc-
ument. In other words, the attention mechanism is
designed to compute weights by jointly addressing
entity linking and entity salience detection (Ga-
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mon et al., 2013; Dunietz and Gillick, 2014) tasks.
Furthermore, the attention mechanism improves
the interpretability of the model because it en-
ables us to inspect the small number of entities that
strongly affect the classification decisions.

We validate the effectiveness of our proposed
model by addressing two important natural lan-
guage tasks: a text classification task using two
standard datasets (i.e., the 20 Newsgroups and
R8 datasets), and a factoid question answering
task based on a popular dataset derived from the
quiz bowl trivia quiz game. As a result, our
model achieved state-of-the-art results on both
tasks. The source code of the proposed model
is available online at https://github.com/
wikipedia2vec/wikipedia2vec.

2 Our Approach

Given a document, our model addresses the text
classification task by using the following two
steps: it first detects entities from the document,
and then classifies the document using the pro-
posed model with the detected entities as inputs.

2.1 Entity Detection

In this step, we detect entities that may be relevant
to the document. Here, we use a simple method
based on an entity dictionary that maps an entity
name (e.g., “Washington”) to a set of possible ref-
erent entities (e.g., Washington, D.C. and George
Washington). In particular, we first take all words
and phrases in a document, treat them as entity
names if they exist in the dictionary, and detect all
possible referent entities for each detected entity
name. Following past work (Hasibi et al., 2016;
Xiong et al., 2016), the boundary overlaps of the
names are resolved by detecting only those that are
the earliest and the longest.

We use Wikipedia as the target KB, and the
entity dictionary is built by using the names and
their referent entities of all internal anchor links in
Wikipedia (Guo et al., 2013). We also collect two
statistics from Wikipedia, namely link probabil-
ity and commonness (Mihalcea and Csomai, 2007;
Milne and Witten, 2008). The former is the prob-
ability of a name being used as an anchor link in
Wikipedia, whereas the latter is the probability of
a name referring to an entity in Wikipedia.

We generate a list of entities by concatenating
all possible referent entities contained in the dic-
tionary for each detected entity name, and feed it

Figure 1: Architecture of the NABoE-entity model.

to the model presented in the next section. Note
that we do not disambiguate entity names here,
but detect all possible referent entities of the en-
tity names.

2.2 Model
Figure 1 shows the architecture of our model.
Given words w1, ..., wN , and entities e1, ..., eK
detected from target document D, we first com-
pute the word-based representation of D:

zword =
1

N

N∑

i=1

vwi , (1)

where vw ∈ Rd is the embedding of word w. We
then derive the entity-based representation of D
as a weighted average of the embeddings of the
entities:

zentity =
K∑

i=1

aeivei , (2)

where ve ∈ Rd is the embedding of entity e and
ae the normalized attention weight corresponding
to e computed using the following softmax-based
attention function:

ae =
exp(w>

a Φ(e,D) + ba)
∑K

i=1 exp(w>
a Φ(ei, D) + ba)

, (3)

where wa ∈ Rl is a weight vector, ba ∈ R is the
bias, and Φ(e,D) is a function that generates an
l-dimensional vector consisting of the features of
the attention function.
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We use the following two features in the atten-
tion function:

• Cosine: the cosine similarity between the
embedding of the entity ve and the word-
based representation of the document zword.

• Commonness: the probability that the entity
name refers to the entity in KB.

Here, our aim is to capture the relevance and the
unambiguity of entity e in document D using the
attention function. Thus, the problem is related
to the tasks of entity salience detection (Gamon
et al., 2013; Dunietz and Gillick, 2014), which
aims to detect entities relevant (or salient) to the
document, and entity linking, which aims to re-
solve the ambiguity of entities. The key assump-
tion relating to these two tasks in the literature is
that if an entity is semantically related to the given
document, it is relevant to the document (Dunietz
and Gillick, 2014), and it is likely to appear in the
document (Milne and Witten, 2008; Ratinov et al.,
2011). With this in mind and following past work
(Yamada et al., 2016), we use the cosine similarity
between ve and zword as a feature. Further, as in
past entity linking studies, we also use the com-
monness of the name referring to the entity.

Moreover, we derive a representation based
both on entities and words by simply adding
zentity and zword

1:

zfull = zentity + zword. (4)

We then solve the task using a multiclass logis-
tic regression classifier with the computed repre-
sentation (i.e., with zentity or zfull) as features. In
the remainder of this paper, we denote our models
based on zentity and zfull by NABoE-entity and
NABoE-full, respectively.

3 Experimental Setup

In this section, we describe our experimental setup
used both in the text classification and the factoid
question answering experiments presented below.

3.1 Entity Detection

As the target KB, we used the September 2018
version of Wikipedia, which contains a total of

1We also tested concatenating zentity and zword to derive
zfull; however, adding them generally achieved enhanced
performance in our experiments presented below.

7,333,679 entities.2 Regarding the entity dictio-
nary described in Section 2.1, we excluded an en-
tity name if its link probability was lower than
1% and a referent entity if its commonness given
the entity name was lower than 3% for compu-
tational efficiency. Entity names were treated as
case-insensitive. As a result, the dictionary con-
tained 18,785,550 entity names, and each name
had 1.14 referent entities on average.

Furthermore, to detect entities from a docu-
ment, we also tested two publicly available entity
linking systems, Wikifier (Ratinov et al., 2011;
Cheng and Roth, 2013) and TAGME (Ferragina
and Scaiella, 2012), instead of using dictionary-
based entity detection.3 We selected these systems
because they are capable of detecting non-named
entities (e.g., technical terms) that are useful for
addressing the text classification task.4 Here, we
used the entities detected and disambiguated by
these systems as inputs to our neural network
model.

3.2 Pretrained Embeddings

We initialized the embeddings of words (vw) and
entities (ve) using pretrained embeddings trained
on KB. To learn embeddings from the KB, we
used the method adopted in the open source
Wikipedia2Vec tool (Yamada et al., 2016, 2018a).
In particular, we generated an entity-annotated
corpus from Wikipedia by treating entity links
in Wikipedia articles as entity annotations, and
trained skip-gram embeddings (Mikolov et al.,
2013a,b) of 300 dimensions with negative sam-
pling using the generated corpus as inputs. The
learned embeddings place similar words and enti-
ties close to one another in a unified vector space.
Here, we used the same version of Wikipedia de-
scribed in Section 3.1.

4 Text Classification

To evaluate the effectiveness of our proposed
model, we first conducted the text classification

2We downloaded the Wikipedia dump from Wikimedia
Downloads: https://dumps.wikimedia.org/

3In our experiments, we simply used all entities detected
by the entity linking systems.

4In our preliminary experiments, we also tested three
other state-of-the-art entity linking systems: AIDA (Hof-
fart et al., 2011), WAT (Piccinno and Ferragina, 2014), and
the commercial Entity Analysis API in Google’s Cloud Lan-
guage service. However, these systems achieved lower over-
all performance compared to Wikifier and TAGME because
they tended to ignore non-named entities.
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task on two standard datasets, namely the 20
Newsgroups (20NG) (Lang, 1995) and R8 datasets
(Debole and Sebastiani, 2005).

4.1 Setup

Our experimental setup described in this section
follows that in past work (Liu et al., 2015; Jin
et al., 2016; Yamada et al., 2018b). In particular,
we used the 20NG and R8 datasets to train and test
the proposed model. The 20NG dataset was cre-
ated using the documents obtained from 20 News-
groups and contained 11,314 training documents
and 7,532 test documents.5 The R8 dataset con-
sisted of news documents from the eight most pop-
ular classes of the Reuters-21578 corpus (Lewis,
1992) and comprised 5,485 training documents
and 2,189 test documents. We created the devel-
opment set for each dataset by selecting 5% of the
documents for training. Note that the class distri-
bution of the R8 dataset is highly imbalanced. For
example, the number of documents in the largest
and smallest classes is 3,923 documents and 51
documents, respectively.

We report the accuracy and macro-average F1
scores. The model was trained using mini-batch
stochastic gradient descent (SGD) with its batch
size set to 32 and its learning rate controlled by
Adam (Kingma and Ba, 2014). We used words
and entities that were detected three times or more
in the dataset and ignored the other words and en-
tities. The size of the embeddings of words and
entities was set to d = 300. We used early stop-
ping based on the accuracy of the development set
of each dataset to avoid overfitting of the model.

4.2 Baselines

We used the following models as our baselines:

• BoW-SVM (Jin et al., 2016): This model is
based on a conventional linear support vec-
tor machine (SVM) with bag of words (BoW)
features. It outperformed the conventional
naı̈ve Bayes-based model.

• BoE (Jin et al., 2016): This model extends
the skip-gram model; It learns different word
embeddings per target class from the dataset,
and a linear model based on learned word em-
beddings is used to classify the documents.

5We used the by-date version downloaded from the
author’s web site: http://qwone.com/˜jason/
20Newsgroups/.

The performance of this model was supe-
rior to that of many state-of-the-art models,
including those based on the skip-gram and
CBOW models (Mikolov et al., 2013b), and
the paragraph vector model (Le and Mikolov,
2014).

• SWEM-concat (Shen et al., 2018): This
model is based on a neural network model
with simple pooling operations (i.e., average
and max pooling) over pretrained word em-
beddings.6 Despite its simplicity, it outper-
formed many neural network-based models
such as the word-based CNN model (Kim,
2014) and RNN model with LSTM units
(Shen et al., 2018).

• TextEnt (Yamada et al., 2018b): This model
learns entity-aware document embeddings
from Wikipedia, and uses a neural network
model with the learned embeddings as pre-
trained parameters to address text classifica-
tion.

As described in Section 2.1, we also tested
the variants of our NABoE-entity and NABoE-
full models for which Wikifier and TAGME were
used as the entity detection methods.

4.3 Results
Table 1 shows the results of our models and those
of our baselines. Here, w/o att. and w/o emb. sig-
nify the model without the neural attention mech-
anism (all attention weights ae are set to 1

K , where
K is the number of entities in the document)
and the model without the pretrained embeddings
(the embeddings are initialized randomly), respec-
tively.

Relative to the baselines, our models yielded
enhanced overall performance on both datasets.
The NABoE-full model outperformed all base-
line models in terms of both measures on both
datasets. Furthermore, the NABoE-entity model
outperformed all the baseline models in terms of
both measures on the 20NG dataset, and the F1
score on the R8 dataset. Moreover, our atten-
tion mechanism consistently improved the perfor-
mance. These results clearly highlighted the ef-
fectiveness of our approach, which addresses text

6We also tested all four models proposed in Shen et al.
(2018) (i.e., SWEM-aver, SWEM-max, SWEM-concat, and
SWEM-hier). These models generally delivered comparable
performance, with SWEM-concat slightly outperforming the
other models on average.
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20NG R8
Acc. F1 Acc. F1

NABoE-entity .863 .856 .962 .915
NABoE-entity w/o att. .822 .817 .943 .869
NABoE-entity w/o emb. .844 .838 .957 .892
NABoE-full .868 .862 .971 .917
Wikifier (NABoE-entity) .735 .729 .896 .803
Wikifier (NABoE-entity w/o att.) .728 .723 .844 .782
Wikifier (NABoE-entity w/o emb.) .727 .722 .861 .755
Wikifier (NABoE-full) .797 .789 .953 .839
TAGME (NABoE-entity) .844 .838 .942 .871
TAGME (NABoE-entity w/o att.) .826 .821 .924 .857
TAGME (NABoE-entity w/o emb.) .842 .836 .942 .865
TAGME (NABoE-full) .860 .853 .958 .889
BoW-SVM .790 .783 .947 .851
BoE .831 .827 .965 .886
SWEM-concat .853 .855 .967 .898
TextEnt .845 .839 .967 .910

Table 1: Results of the text classification task on the
20NG and R8 datasets. Here, w/o att. and w/o emb.
represent the model without the neural attention mech-
anism and the model without the pretrained embed-
dings, respectively.

classification by using a small number of unam-
biguous and relevant entities detected by the pro-
posed attention mechanism. Moreover, the pre-
trained embeddings improved the performance on
both datasets.

Further, the models based on the dictionary-
based entity detection (see Section 2.1) generally
outperformed the models based on the entity link-
ing systems (i.e., Wikifier and TAGME). We con-
sider that this is because these entity linking sys-
tems failed to detect or disambiguate entity names
that were useful to address the text classification
task. Moreover, our attention mechanism con-
sistently improved the performance for Wikifier-
and TAGME-based models because the attention
mechanism enabled the model to focus on entities
that were relevant to the document.

4.4 Analysis

In this section, we provide a detailed analysis of
the performance of our model in terms of con-
ducting the text classification task. We first pro-
vide a comparison of the SWEM-concat, NABoE-
entity, and NABoE-full models using class-level
F1 scores on both of the datasets (see Table 2).
Here, we aim to compare the detailed performance
of the word-based model (SWEM-concat), entity-
based model (NABoE-entity), and the model
based on both words and entities (NABoE-full).
Compared with the SWEM-concat model, the
NABoE-full and NABoE-entity models performed

Class SWEM
-concat

NABoE
-full

NABoE
-entity

20NG:
alt.atheism .780 .820 .804
comp.graphics .787 .818 .822
comp.os.ms-windows.misc .746 .802 .811
comp.sys.ibm.pc.hardware .735 .754 .752
comp.sys.mac.hardware .857 .865 .861
comp.windows.x .837 .867 .870
misc.forsale .854 .834 .805
rec.autos .916 .929 .917
rec.motorcycles .954 .968 .956
rec.sport.baseball .946 .969 .966
rec.sport.hockey .971 .981 .975
sci.crypt .942 .940 .940
sci.electronics .794 .806 .783
sci.med .878 .900 .905
sci.space .921 .923 .918
soc.religion.christian .905 .906 .905
talk.politics.guns .826 .828 .819
talk.politics.mideast .921 .940 .935
talk.politics.misc .689 .694 .680
talk.religion.misc .657 .702 .706
R8:
grain .750 .889 .889
ship .781 .817 .822
interest .910 .885 .885
money-fx .909 .894 .898
trade .894 .924 .924
crude .971 .958 .954
acq .979 .980 .966
earn .989 .990 .980

Table 2: Class-level F1 scores in each class on the
20NG and R8 datasets.

20NG R8
Acc. F1 Acc. F1

Commonness only .849 .843 .949 .894
Cosine only .846 .840 .956 .898
Both .863 .856 .962 .915

Table 3: Feature study of the neural attention mecha-
nism of the NABoE-entity model.

more accurately in 23 out of 28 and 17 out of 28
classes, respectively. This result clearly demon-
strates the ability of the model to successfully cap-
ture strong semantic signals that can only be ob-
tained from entities. Moreover, we observed that
the NABoE-entity model achieved weaker perfor-
mance especially for the misc.forsale class in the
20NG dataset and several classes in the R8 dataset.
Regarding the misc.forsale class, because docu-
ments in this class contain a wider variety of en-
tities (i.e., objects users want to sell) than other
classes, the model failed to capture the effective
semantic signals from the entities. Further, as de-
scribed in the error analysis provided below, it of-
ten appeared to be difficult to distinguish pairs of
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Class Top entities
20NG:
alt.atheism Christian ethics, Atheism, Moral agency, Gregg Jaeger, Fred Rice
comp.graphics Algorithm, Ray tracing (graphics), Framebuffer, Image file formats, TIFF
comp.os.ms-windows.misc Windows 3.1x, Microsoft Windows, Windows NT, CONFIG.SYS, BMP file format
comp.sys.ibm.pc.hardware BIOS, Don’t Copy That Floppy, SCSI host adapter, Nonvolatile BIOS memory, Parallel SCSI
comp.sys.mac.hardware PowerBook, Macintosh Quadra 610, Macintosh Quadra 650, FirstClass, Macintosh SE/30
comp.windows.x X-Perts, Xterm, OPEN LOOK, OpenWindows, Man page
misc.forsale Freight transport, Make Me an Offer, AC adapter, Plaque reduction neutralization test, Outline

of working time and conditions
rec.autos Manual Shift, Chassis, Automotive industry, Nissan, Ford Probe
rec.motorcycles United States Department of Defense, Motorcycle, ZX8302, Honda motorcycles, Pillion, Hawk

GT
rec.sport.baseball Pitcher, Inning, The Jays, Home run, Bullpen
rec.sport.hockey National Hockey League, Goaltender, ESPN, The Penguins, Achkar
sci.crypt Cryptography, Algorithm, Escrow, Considered harmful, Encryption
sci.electronics Solvent, Copy protection, Electronics, Lead–acid battery, Printed circuit board
sci.med Infection, Antibiotics, Kirlian photography, Allergy, Kirlian
sci.space Spacecraft, SunOS, Vandalism, VIA International, Space station
soc.religion.christian Rutgers University, Geneva, Byler, Immaculate Conception, Original sin
talk.politics.guns Ranch, BD’s Mongolian Grill, Firearm, Second Amendment to the United States Constitution,

Feustel
talk.politics.mideast Serdar Argic, Israelis, Palestinians, Palestine Liberation Organization, Arabs
talk.politics.misc Clayton Cramer, Janet Reno, Police state, Ronzone, Federal Bureau of Investigation
talk.religion.misc Christian ethics, Thomas George Lanphier, David Koresh, Albert Sabin, Josephus
R8:
grain Grain, Tonne, Price support, Oil reserves, United States Senate
ship Freight transport, Shipbuilding, Flag of convenience, Cargo, Persian Gulf
trade Balance of trade, Export, International trade, Economic sanctions, Import
interest Interest rate, Prime rate, Repurchase agreement, Balance of trade, Money market
money-fx Exchange rate, Currency, Money market, Foreign exchange market, Monetary policy
crude Petroleum, West Texas Intermediate, Price of oil, OPEC, Oil platform
acq Common stock, Tender offer, Privately held company, Preferred stock, Shares outstanding
earn QTR, Dividend, Stock split, Net profit, Income fund

Table 4: Top five influential entities for each class of the NABoE-entity model in the 20NG and R8 datasets.

similar classes in the R8 dataset based only on en-
tities.

Next, we conducted a feature study of the at-
tention mechanism by excluding one feature at a
time from the NABoE-entity model (Table 3). We
found both of the features to make an important
contribution to the performance.

Furthermore, to investigate the attention mech-
anism in more detail, we computed the top influ-
ential entities in the attention mechanism for each
class on the 20NG and R8 datasets. In particular,
we calculated the number of times each entity ob-
tained the highest attention weight in the test doc-
uments in each class and selected the five most fre-
quent ones. Table 4 presents the results. Overall,
our attention mechanism successfully selected en-
tities that were highly relevant to each class. For
example, Cryptography, Algorithm, Escrow, Con-
sidered harmful, and Encryption were selected for
the sci.crypt class. Furthermore, although we did
not explicitly perform entity disambiguation, the
model successfully overcame the ambiguity issues
in the entity names and attended to the entities that

were relevant to the classes.
Subsequently, we conducted an error analysis

by selecting 50 random test documents for which
the NABoE-entity model made wrong predictions.
Most of the errors were caused by two pairs of
classes: 22 errors were caused by misclassify-
ing documents of acq (corporate acquisitions) and
those of earn (corporate earnings), and 13 errors
were caused by misclassifying documents of inter-
est and those of money-fx. Furthermore, the model
tended to perform poorly if a document contained
entities that strongly indicate an incorrect class.
For example, a money-fx document containing the
entity interest rate multiple times was classified
into the interest class, and a document in the acq
class reporting news related to oil companies (i.e.,
ExxonMobil and ZENEX) was classified into the
crude class.

5 Factoid Question Answering

In this section, we address factoid question an-
swering based on a dataset consisting of questions
of the quiz bowl trivia quiz game. Factoid ques-
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tion answering is one of the common settings of
question answering that aims to predict an entity
(e.g., events, authors, and books) that is described
in a given question. The players of quiz bowl solve
questions consisting of sentences that describe an
entity. Quiz bowl questions have frequently been
used for evaluating neural network-based models
in recent studies (Iyyer et al., 2014, 2015; Yamada
et al., 2017).

This task has a significantly larger number of
target classes compared to the task addressed in
the previous experiment. Our main aim here is to
evaluate the effectiveness of using entities to cap-
ture the finer-grained semantics required to per-
form the task of factoid question answering effec-
tively.

5.1 Setup

Our experimental setup described in this section
follows that in past work (Xu and Li, 2016; Ya-
mada et al., 2017). We address this task as a text
classification problem that selects the most rele-
vant answer from the possible answers observed
in the dataset. We obtained the dataset proposed in
Iyyer et al. (2014)7. We only used questions in the
history and literature categories. Furthermore, we
excluded questions of which the answers appear
fewer than six times in the dataset. As a result, the
number of candidate answers was 303 and 424 in
the history and literature categories, respectively.
We used 20% of questions each for the develop-
ment set and test sets, and the remaining 60% for
the training set. As a result, the training, devel-
opment, and test sets consisted of 1,535, 511, and
511 questions for the history category, and 2,524,
840, and 840 questions for the literature category.

The settings we used to train the model were the
same as those in the previous experiment (see Sec-
tion 4.1). The model was trained using mini-batch
SGD with its learning rate controlled by Adam
(Kingma and Ba, 2014) and its mini-batch size set
to 32. We used words and entities that were de-
tected three times or more in the dataset, and ig-
nored the other words and entities. The size of
the embeddings of words and entities was set to
d = 300. As in past work, we report the accuracy
score, and the score on the development set was
used for early stopping.

7This dataset was downloaded from the authors’ web
page: https://cs.umd.edu/˜miyyer/qblearn/.

Name History Literature
NABoE-full .949 .985
NABoE-entity .941 .979
NABoE-entity w/o att. .845 .943
NABoE-entity w/o emb. .941 .973
Wikifier (NABoE-full) .935 .967
Wikifier (NABoE-entity) .930 .952
Wikifier (NABoE-entity w/o att.) .924 .941
Wikifier (NABoE-entity w/o emb.) .934 .949
TAGME (NABoE-full) .941 .977
TAGME (NABoE-entity) .930 .963
TAGME (NABoE-entity w/o att.) .922 .961
TAGME (NABoE-entity w/o emb.) .932 .962
BoW .508 .462
FTS-BRNN .881 .931
NTEE .947 .951
SWEM-concat .900 .966

Table 5: Accuracy of the proposed and baseline meth-
ods for the factoid QA task.

5.2 Baselines
We used the following baseline models:

• BoW (Xu and Li, 2016) This model is based
on a logistic regression classifier with con-
ventional binary BoW features.

• FTS-BRNN (Xu and Li, 2016) This model
is based on a bidirectional RNN with gated
recurrent units (GRU). It uses the logistic re-
gression classifier with the features derived
by the RNN.

• NTEE (Yamada et al., 2017) This model is a
state-of-the-art model that uses a multi-layer
perceptron classifier with the features com-
puted using the embeddings of words and en-
tities trained on Wikipedia using the neural
network model proposed in their paper.

Similar to our previous experiment, we also add
SWEM-concat, and the variants of our NABoE-
entity and NABoE-full models based on Wikifier
and TAGME (see Section 4.2). Note that all the
baselines address the task as a text classification
problem.

5.3 Results and Analysis
Table 5 provides the results of our models and
those of our baselines. Overall, our models
achieved enhanced performance on this task. In
particular, the NABoE-full model successfully
outperformed all the baseline models, and the
NABoE-entity model achieved competitive per-
formance and outperformed all the baseline mod-
els in the literature category. These results clearly
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highlighted the effectiveness of our model for this
task.

Furthermore, similar to the previous text classi-
fication experiment, the attention mechanism and
the pretrained embeddings consistently improved
the performance. Moreover, the models based
on dictionary-based entity detection outperformed
the models based on the entity linking systems.

We also conducted an error analysis using the
NABoE-entity model and the test questions in the
history category. We found nearly 70% of the er-
rors to be caused by questions of which the an-
swers were country names. This is because these
questions tended to provide indirect clues (e.g.,
describing a notable person born in the country)
and most entities used in these clues do not di-
rectly indicate the answer (i.e., country names).
Furthermore, our model failed in difficult cases
such as predicting Tokugawa shogunate instead of
Tokugawa Ieyasu.

6 Related Work

KB entities have been conventionally used to
model the semantics in texts. A representa-
tive example is Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2006, 2007), which
represents a document using a bag of entities,
namely a sparse vector of which each dimen-
sion corresponds to the relevance score of the
text to each entity. This simple method is shown
to be effective for various NLP tasks including
text classification (Gabrilovich and Markovitch,
2006; Gupta and Ratinov, 2008; Negi and Rosner,
2013) and information retrieval (Egozi et al., 2011;
Xiong et al., 2016),

Several neural network models that use KB en-
tities to capture the semantics in texts have been
proposed. These models typically depend on an
additional preprocessing step that extracts the rel-
evant entities from the target texts. For example,
Wang et al. (2017) used the Probase conceptual-
ization API for short text classification by retriev-
ing the Probase entities that were relevant to the
target text and used them in a model based on
CNN. Pilehvar et al. (2017) also extracted entities
using a graph-based linking algorithm and used
these entities in a neural network model. A similar
approach was adopted in Yamada et al. (2018b,c);
they extracted entities from the target text using an
entity linking system and simply used the detected
entities in a neural network model. However, un-

like these models, our proposed model addresses
the task in an end-to-end manner; i.e., entities that
are relevant to the target text are automatically se-
lected using our neural attention mechanism. Fur-
thermore, we also used the model proposed by Ya-
mada et al. (2018b) as a baseline in our text clas-
sification experiments.

Additionally, our work is also related to stud-
ies on entity linking. Entity linking models can be
roughly classified into two groups: local models,
which resolve entity names independently using
the contextual relevance of the entity given a doc-
ument, and global models, in which all the entity
names in a document are resolved simultaneously
to select a topically coherent set of results (Ratinov
et al., 2011). Recent state-of-the-art models typi-
cally combine both of these models (Yamada et al.,
2016; Ganea and Hofmann, 2017; Cao et al., 2018;
Kolitsas et al., 2018). However, several studies
also showed that the local model alone can achieve
results competitive to those of the global and com-
bined models (Eshel et al., 2017; Ganea and Hof-
mann, 2017; Yamada et al., 2017; Cao et al., 2018;
Kolitsas et al., 2018). In this study, we adopt a
simple but effective local model, which uses co-
sine similarity between the embedding of the tar-
get entity and the word-based representation of
the document to capture the relevance of an entity
given a document.

7 Conclusions

This study proposed NABoE, which is a neural
network model that performs text classification us-
ing entities in Wikipedia. We combined simple
dictionary-based entity detection with a neural at-
tention mechanism to enable the model to focus
on a small number of unambiguous and relevant
entities in a document. We achieved state-of-the-
art results on two important NLP tasks, namely
text classification and factoid question answering,
which clearly verified the effectiveness of our ap-
proach. As a future task, we intend to more ex-
tensively analyze our model and explore its ef-
fectiveness for other NLP tasks. Furthermore, we
would also like to test more expressive neural net-
work models for example by integrating global en-
tity coherence information into our neural atten-
tion mechanism.
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Abstract

The official voting records of United States
congresspeople are preserved as roll call votes.
Prediction of voting behavior of politicians for
whom no voting record exists, such as individ-
uals running for office, is important for fore-
casting key political decisions. Prior work
has relied on past votes cast to predict future
votes, and thus fails to predict voting patterns
for politicians without voting records. We ad-
dress this by augmenting a prior state of the
art model with multiple sources of external
knowledge so as to enable prediction on un-
seen politicians. The sources of knowledge
we use are news text and Freebase, a man-
ually curated knowledge base. We propose
augmentations based on unigram features for
news text, and a knowledge base embedding
method followed by a neural network com-
position for relations from Freebase. Em-
pirical evaluation of these approaches indi-
cate that the proposed models outperform the
prior system for politicians with complete his-
torical voting records by 1.0% point of ac-
curacy (8.7% error reduction) and for politi-
cians without voting records by 33.4% points
of accuracy (66.7% error reduction). We also
show that the knowledge base augmented ap-
proach outperforms the news text augmented
approach by 4.2% points of accuracy.

1 Introduction

Roll call votes are official records of how politi-
cians vote on bills (potential laws) in the United
States House of Representatives and Senate. Reli-
able prediction of these votes, using historical vot-
ing records and the text of bills, can be used to
forecast political decisions on key issues, which
can be informative for the electorate and other po-
litical stakeholders. Prior work has used politi-
cians’ voting records as a means to study their ide-
ological stances (Poole and Rosenthal, 1985; Clin-

ton et al., 2004), as well as roll call votes com-
bined with the text of the corresponding bills to
predict votes on newly drafted bills (Gerrish and
Blei, 2012; Kraft et al., 2016; Kornilova et al.,
2018). However, these approaches fail to make
good predictions for the votes of politicians whose
records are not established, such as new candidates
for office – a time when this information can be
most useful for the electorate. We hypothesize that
additional sources of knowledge about new politi-
cians can predict their future votes.

In this work we explore two sources of addi-
tional knowledge about politicians to better pre-
dict roll call votes: news article text about the
politicians, and Freebase (Bollacker et al., 2008),
which is a manually curated knowledge base (KB).
Relevant news articles may contain words that are
indicative of a politician’s stance with respect to
specific issues. A KB such as Freebase is likely
to contain rich information such as events a con-
gressperson attends, people they are related to,
and personal details such as schools they were
educated at; this information may be correlated
with a politician’s stance on specific issues (Sun-
shine Hillygus, 2005; Duckitt and Sibley, 2010;
Kraut and Lewis, 1975). Information in a KB is
likely to be more restricted, but more reliable, than
information extracted from news articles.

We integrate these sources of information into
the embedding based prediction model proposed
in Kraft et al. (2016). We experiment with two
representations for news articles: as the mean of
the embeddings of the words in the article, and as
a bag of words. To represent information in KBs,
we first capture the KB relations using Universal
Schema (US) (Riedel et al., 2013), and then con-
struct relation embeddings using a neural network.

We evaluate the proposed approaches on multi-
ple sessions of Congress under two settings: (1)
with only politicians that are observed at train-
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ing time, which is similar to the setting of prior
work (Kraft et al., 2016; Kornilova et al., 2018)
and (2) where a subset of politicians’ voting pat-
terns are never observed at training time, repre-
senting the new candidate for office setting. We
establish a new state-of-the-art under the evalua-
tion framework used by most prior work (Setting
1). We also show that our approach outperforms
a state-of-the-art model in our evaluation frame-
work (Setting 2). Compared to the previous state-
of-the-art model for roll call prediction, in Setting
(1) our best approach gives an improvement in ac-
curacy of 1.0% (an error reduction of 8.7%), and
in Setting (2) our best approach gives an improve-
ment in accuracy of 33.4% (an error reduction of
66.7%). Additionally, in Setting (2), augmentation
via KB gives 4.2% more accurate predictions than
augmentation from news text.

Code to reproduce our experiments can be
found here: https://github.com/ronakzala/

universal-schema-bloomberg/.

2 Models

All the models we explore take as input the vot-
ing record (denoted V) for a politician p, the text
of a bill b, and (optional) knowledge about the
politician (denoted K), and output a probability
P(y = Yea|b,V,K) that politician p will vote
Yea on bill b. In this discussion, all features (vot-
ing record and knowledge augmentation) as well
as labels (vote predictions) are specific to p, but
for ease of reading we don’t subscript to p.

We start with a baseline model that does not use
any additional knowledge. We augment this model
with knowledge from news articles mentioning p
(denoted N ) and from parts of the Freebase KB
relevant to p (denoted F) (i.e. N ⊂ K and
F ⊂ K). In our augmented models, vector rep-
resentations of this additional knowledge are de-
noted as vN and vF . These vectors can be read as
complementary representations of politician p, de-
rived from how the politician appears in news ar-
ticles and in curated sources of world knowledge,
rather than by prior voting behavior. These vectors
are used in conjunction with the politician’s repre-
sentation in terms of their historical voting record,
denoted as vV , which is learned as a model param-
eter. Now, we describe the forms of the baseline
and augmented models.

2.1 Baseline Model

Our baseline is the model proposed by Kraft et al.
(2016). This model represents a politician p by a
vector vV and a bill b using a bag of words of the
1,000 most frequent unigrams across all bills, after
excluding stopwords and single-character tokens.
The model is defined as follows:

vb =
∑

w∈b
ew/|b|

Zb = Wbill · vb + dbill

P(y = yea|b,V) = σ(Zb · vV)

Here, ew ∈ Rdword is initialized to pre-trained
GloVe word embeddings1 and finetuned as a
model parameter. vV ∈ Rdemb is the embed-
ding for politician p and is initialized uniformly
at random in [−10−2, 10−2]. Bill b is represented
as vb, the average of word embeddings ew, and
then transformed into the same space as vV via
weight matrix Wbill ∈ Rdemb×dword and bias vec-
tor dbill ∈ Rdemb , i.e. Zb ∈ Rdemb .

2.2 News Text Augmented Model

We incorporate knowledge about politician p from
relevant news articles in the form of unigram fea-
tures extracted from the set of news articles that
mention p, denoted N . This model represents
each article aj ∈ N as a bag of words of the most
frequent 2,000 unigrams across all articles for all
politicians, after excluding stopwords and single-
character tokens. The news augmented model is
formulated as:

vb =
∑

w∈b
ew/|b|

Zb = Wbill · vb + dbill

ZN = Wnews · vN + dnews

P(y = yea|b,V,N ) = σ(Zb · [vV + ZN ])

Most of the notation above is same as the one
for the baseline model in §2.1. Here, vN is a vec-
tor representing the knowledge about p contained
in N . ZN ∈ Rdemb represents vN transformed
into the space of vV via weight matrix Wnews and
bias vector dnews. We experiment with two vari-
ations for computing vN . First we compute vN
as the mean GloVe vectors of all unigrams in N

1http://nlp.stanford.edu/data/glove.
6B.zip
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(model denoted by NWGL):

vGloVe
N =

1∑
a∈N |a|

∑

a∈N

∑

w∈a
ew

where ew represents the GloVe vector for word w
in article a. We also consider a variant where each
article a ∈ N is represented as a vector of relative
frequencies of the words in a (model denoted by
NWFR):

vFREQ
N =

∑

a∈N
fa

where fa is a vector of unigram relative frequen-
cies in article a ∈ N .

2.3 Knowledge Base Augmented Model

Building on the baseline model, the knowledge
base augmented model (denoted by KBUS) rep-
resents the contextual information for politician p
as a vector vF . The KB augmented model is for-
mulated as:

vb =
∑

w∈b
ew/|b|

Zb = Wbill · vb + dbill

P(y = yea|b,V,F) = σ(Zb · [vV + ZF ])

Most of the notation above remains the same as
the baseline model in §2.1. ZF is created from an
embedded subgraph of the Freebase KB. Freebase
consists of relation triples of the form (e1, r, e2),
where e1, and e2 denote entities (e.g., Barack
Obama, Columbia University) and r de-
notes a relation (e.g., graduate of). These re-
lation triples are embedded in a vector space by
Universal Schema (Riedel et al., 2013), giving
vector representations ve1 , ve2 , and vr for the
elements of the triple, e1, e2, and r. Universal
Schema embeddings for entities and relations are
trained for the KB completion task, to maximize
the probability of triples existing in the KB param-
eterized by P(r, e1, e2) = σ(vT

r [ve1 ;ve2 ]).
The KB knowledge vector ZF is derived from

the Universal Schema entity embeddings. For
each politician p, we consider the subset of rela-
tions in which the politician is either e1 or e2, de-
noted F . We link p to a KB entity in Freebase by
exact textual match on p’s name. Let ri be a rela-
tion in a triple in F and oi be the entity that is not

politician p in that triple; we compute ZF as:

ZF =
∑

i∈F
ti · P(ri, oi, p)

ti = FFN([vri ;voi ])

Here [; ] denotes concatenation, vri the Univer-
sal Schema embedding for relation ri, and voi the
Universal Schema embedding for oi. ti is the em-
bedding of the ith triple and is computed by pass-
ing vri and voi through a shallow feed forward net-
work (FFN) of the form: tanh(Wx + b). The
parameters of this FFN are learned in the course
of model training, and the dimensionality of ti is
a hyperparameter. The final representation for the
contextual knowledge from the KB for politician p
is therefore a sum of the Freebase triple Universal
Schema embeddings weighted by the probability
that p would participate in each triple.

3 Experiment Description

We evaluate the proposed knowledge augmented
models under two evaluation protocols (§3.3): one
where all politicians’ voting records are observed
in the training data (Setting 1) and another in
which some politicians are unobserved at training
time, representing the new candidate for office set-
ting (Setting 2). We also evaluate the performance
of simple baseline methods and previous state-of-
the-art methods (§3.2) in both settings. Finally, we
perform a close comparison of baseline methods
against the proposed methods and highlight indi-
vidual politicians for which the knowledge aug-
mented models better predict voting behavior than
the baselines (§4.0.4).

3.1 Datasets
Our data comes from three sources: roll call voting
records from Congress Sessions 106-109, news ar-
ticles from the Concretely Annotated New York
Times Corpus (Ferraro et al., 2014), and the KB
from Freebase. Here we briefly describe each
source and major preprocessing decisions.

3.1.1 Roll Call Votes
The roll call votes dataset was compiled to re-
semble the one used by Kraft et al. (2016). The
dataset covers the 106th-109th Congress (1999-
2006), where each session spans 2 years, and
was created by querying GovTrack2 using pub-

2Online Roll Call Votes: https://www.govtrack.
us/
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licly available tools3. Bill texts, bill metadata, and
lists of roll call votes were all queried separately
and matched using bill IDs. The resulting dataset
contains voting records for 709 unique politicians
across sessions and almost 1 million politician-
bill-vote examples. In order to facilitate future re-
search on this data we make our tools and raw data
available to the community, a component absent
from prior work4.

3.1.2 New York Times Corpus
We use the The Concretely Annotated NYT Cor-
pus (Ferraro et al., 2014) as a source of knowl-
edge contained in news articles. This corpus con-
tains approximately 1.8 million articles for the pe-
riod 1987-2007, which includes the sessions of
Congress for which we report experimental re-
sults. The corpus is automatically annotated using
the CoreNLP package with a host of annotations
such as part of speech and named entity tags.

To obtain the set of politician-relevant articles
for the news article augmented model (§2.2), we
first construct a list of politician names from our
roll call vote data and Wikipedia aliases for these
names. We identify candidate names in each arti-
cle by extracting all spans in the article annotated
with the Person entity type tag. We then look for
exact string matches to the list of politician names
in the candidate names extracted from each arti-
cle. By this means, we identify a total of 50,800
relevant articles. Each article is represented as a
bag of words from the 2,000 most frequent words
across all articles after dropping stop words and
single character words. When training and evalu-
ating our models, we conservatively include only
the subset of relevant articles published before the
congressional session from which the bill comes;
this way, information from news text necessarily
predates the congressional votes and does not in-
form about the model about voting outcomes.

3.1.3 Freebase
We use Freebase as a source of KB knowledge.
Freebase is a large, structured knowledge base that
consists of relation triples created by human con-
tributors. It contains about 46 million unique enti-
ties and 332 million relation triples.

In extracting relations relevant to politicians in

3Tools to query online congressional data sources:
https://github.com/unitedstates/congress

4https://github.com/ronakzala/
universal-schema-bloomberg/

our roll call vote data, we first filter to only rela-
tions that mention a politician explicitly as one of
the entities. We add to this set relations one hop
away from the politicians in the knowledge base
(the politicians do not directly participate in this
set of one hop away relations). The combination
of direct and one hop away relations gives about
800,000 relation triples. This subset of Freebase
is embedded with Universal Schema, following
which only the direct politician relations, along
with the scores learned by Universal Schema for
these relations, are used in our KB augmented
model (§2.3). Although Freebase relations are
not temporally marked, Freebase does not con-
tain politicians’ voting records, so vote informa-
tion cannot ”bleed into” our models from Free-
base.

3.2 Baselines
We compare the performance of the proposed
models against several baseline and previous state-
of-the-art models. These are:
KJR16: The model from Kraft et al. (2016). The

numbers we report for KJR16 are based on
our re-implementation of the original model.
We also apply slightly different preprocess-
ing decisions to the text of bills. For exam-
ple, we drop stop words and single-character
tokens, unlike the original paper.

MAJ: This baseline model predicts the majority
class (Yea) for all votes on all bills.

PARTYM: This baseline predicts that a con-
gressperson will vote for a bill in the direc-
tion of their party’s majority vote for that bill.
A congressperson can have a party affiliation
of Republican, Democrat, or Independent. A
politician’s party is generally a very strong
predictor of their voting behavior. We com-
pare against this baseline specifically to mea-
sure how much gain contextual knowledge
about a politician can bring over just predict-
ing that a congressperson will toe the party
line. This baseline operates in a slightly unre-
alistic setting, since the party majority vote is
determined after all the votes have been cast
for a given bill.

3.3 Experimental Setup
For all experiments, our models are trained and
evaluated on each Congress session separately.
This setup resembles that of most prior work. One
exception is Kornilova et al. (2018), who evaluate
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Session Majority Class Accuracy (%) Precision (%) Recall (%) F1 (%)
KJR16 BP KJR16 BP KJR16 BP KJR16 BP

106 83.03 85.90 86.49 90.46 89.14 92.78 95.32 91.60 92.13
107 85.86 91.10 91.63 91.65 92.57 98.06 98.51 95.06 95.44
108 87.10 90.64 91.68 91.88 93.64 97.27 97.15 94.38 95.36
109 83.48 86.24 88.07 91.85 92.28 91.26 93.05 91.05 92.66
Average 84.87 88.47 89.47 91.46 91.91 94.84 96.00 93.02 93.89

Table 1: Performance of KJR16 (our reimplementation of Kraft et al. (2016)) compared to our Best Proposed
(BP) model (News augmented-Glove, NWGL), in evaluation Setting (1).

on the next Congress session; even in this case,
they restricted their evaluation sets to only those
politicians that were observed at training time.

We use a train/dev/test split of 60%/20%/20%;
every session of Congress contains about 250,000
politician-bill-vote examples given that each
congress contains between 500-650 bills, and ap-
proximately 550 politicians. All of the reported
numbers are averaged over four random restarts of
the models.

As noted earlier, we evaluate the models under
two settings: (Setting 1) in this setting all politi-
cians are present in both training and test data (this
is the setting used in all prior work); and (Setting
2) in this setting, votes from 5% of the politicians,
chosen at random for each session of Congress, are
removed from the training set5, resulting in a re-
duction of around 7,000 politician-bill-vote exam-
ples from each session of Congress. All of these
politicians are still present in the test set.

3.4 Model Hyperparameters and Training

All the models we train (KJR16, NWGL, NWFR,
KBUS) use a bill embedding (vb) of size 50, and
a per-politician embedding vV of size 10. The
NWGL model additionally uses a mean GloVe
vector (vGloVe

N ) of size 50, whereas the NWFR

model uses a word frequency vector (vFREQ
N ) of

size 2,000. The KBUS model has an entity em-
bedding (vo) of size 25, and relation embedding
(vr) of size 25, resulting in a KB knowledge vec-
tor (ZF ) of size 10 using the FFN architecture:
{50, 10}. These settings were chosen without ex-
ploration; further hyperparameter tuning may re-
sult in different model performance.

All models were trained using vanilla SGD with
a learning rate of 0.1 for up to 20 epochs6. We

5On average, 2-10% of politicians are newcomers during
every session, making our removal of 5% politicians realistic.

6No momentum or minibatching was used.

trained with early stopping based on the accuracy
on the development set of politician-bill pairs.

For all models, we report accuracy, precision,
recall, and F averaging over all vote predictions
(i.e. we micro-average).

4 Results and Analysis

Our experiments attempt to answer several ques-
tions: (1) Setting 1: Does politician-related
knowledge augmentation improve predictive per-
formance when voting records of all politicians are
observed (§4.0.1)? (2) Setting 2: Does politician-
related knowledge augmentation improve perfor-
mance when voting records of some politicians are
not observed (§4.0.2)? (3) Does knowledge aug-
mentation from a manually curated KB improve
model performance compared to knowledge aug-
mentation using unstructured text (§4.0.3)? (4)
Finally, for which politicians are our knowledge
augmented models more effective than predicting
a party majority (PARTYM) vote (§4.0.4)?

4.0.1 Setting 1: All Voting Records Observed
Tables 1 and 2a display the performance of our
proposed models when the voting patterns of
all politicians are observed. Our best proposed
model NWGL outperforms KJR16 in all sessions
of Congress according to most metrics (Table 1).
NWGL outperforms KJR16 by 1% point of ac-
curacy on average, an error reduction of 8.7%.
Knowledge augmentation in any form (NWGL,
NWFR and KBUS) gives small improvements in
roll call vote prediction over KJR16 (Table 2a).

4.0.2 Setting 2: Some Voting Records Absent
Table 2b displays results in the setting where some
politicians’ voting data was removed from the
training set, representing the new candidate for of-
fice setting. For this setting, KJR16 makes random
predictions. By contrast, all our models are able to
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Model Accuracy (%) F1
MAJ 83.82 91.19
PARTYM 83.56 90.54
KJR16 88.47 93.17
NWGL 89.47 93.89
NWFR 89.33 93.78
KBUS 89.19 93.68

(a) Setting 1: All politicians in the test set are
present in the training set.

All Absent from train Present in train
Model Accuracy (%) F1 (%) Accuracy (%) F1 (%) Accuracy (%) F1 (%)
MAJ 83.82 91.19 83.65 91.07 83.82 91.19
PARTYM 83.56 90.54 84.59 91.07 83.53 90.52
KJR16 84.31 90.73 49.96 62.37 85.51 91.48
NWGL 85.24 91.23 78.40 86.79 85.48 91.38
NWFR 83.65 90.54 79.13 87.66 83.80 90.64
KBUS 85.98 91.96 83.36 90.52 86.07 92.01

(b) Setting 2: An arbitrary 5% of politicians in every session of Congress are absent from the training set.

Table 2: Performance of our proposed models: News augmented-Glove (NWGL), News augmented-Word Fre-
quency (NWFR) and KB Augmented-US (KBUS). These are compared to baselines Majority Class (MAJ) and
Majority Party (PARTYM), and to the model from Kraft et al. (2016) (KJR16) for both evaluation settings. Here
we report performance averaged across all four sessions of Congress, and highlight the best model excluding MAJ
and PARTYM, which are unrealistic solutions.

successfully predict many of the votes of unseen
politicians. The KB augmented model, KBUS,
outperforms KJR16 by 33.4% points of accuracy,
an error reduction of 66.7%.

MAJ and PARTYM outperform the proposed
models in Setting 2. However, PARTYM is based
on knowledge of the future and so is impractical,
and MAJ has no discriminative power for individ-
ual politicians.

4.0.3 Comparison of Augmented Models
The KB augmented model KBUS relies on struc-
tured contextual information present in relation
triples while the news text augmented models
NWGL and NWFR rely on unstructured represen-
tations of contextual information (average of un-
igram embeddings). Also, the KB is manually
curated while the news augmented models rely
on noisier automatically selected and processed
sources of information.

In Setting 1 (the setting in which all politi-
cians are present in the training data) all three
augmented models perform similarly, with NWGL

and KBUS slightly outperforming NWFR (Ta-
ble 2a). However, in Setting 2 (where some
politicians are unseen in the training data) KBUS

clearly outperforms NWGL and NWFR, both over-
all (85.98% accuracy) and specifically on the un-
seen politicians (83.36% accuracy). We conclude
that the structured nature of the additional knowl-
edge provided to this model might allow for more
effective use of contextual knowledge. This also
suggests that the news text augmented model can
be improved by improving the quality of news text
features or learning a more clever weighting of un-
igram embeddings, for example by the CNN em-
bedding approach used in Kornilova et al. (2018).

4.0.4 Comparison with PARTYM
Here we present a deeper analysis of specific
politicians to highlight cases where rich contex-
tual information aids prediction as compared to a
model only relying on party affiliation.

We examine results for the 108th Congress,
where our KB augmented model KBUS achieves
an accuracy of 91.39%, while the PARTYM base-
line has accuracy of only 85.26%. The con-
gressperson embeddings learned by KBUS also
appear to capture party affiliation (as demonstrated
by the near-linear separability of parties evident
in Figure 1), but they strictly outperform PAR-
TYM for this session. The embeddings learned by
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Figure 1: 2-dimensional PCA projected congressper-
son embeddings by the KBUS model for the 108th
congress. Points are colored by party affiliation.

PARTYM primarily err under two circumstances:
politicians who do not always vote the party line,
and those who identify themselves as Independent.
We examine a handful of individual politicians to
highlight cases where the proposed models outper-
form the PARTYM baseline:

Politicians straying party lines : Joe Baca was
a congressman from California (D-CA) who
was a Democrat during the 108th Congress,
but has since changed party twice, due to
his Republican-leaning ideology. For Con-
gressman Baca KBUS’s accuracy is 90.9%,
compared to PARTYM’s accuracy of 79.09%.
As another example, Jeff Flake (R-AZ)
was at that time a congressman recog-
nized as a traditional conservative, but voted
with Democrats on issues such as immi-
gration and employment non-discrimination.
For Congresssman Flake, KBUS’s accuracy
is 83.92% while PARTYM’s accuracy is
76.78%.

Independent candidates : Joseph Lieberman
was an Independent senator from Connecti-
cut (I-CT). For Senator Lieberman, KBUS’s
accuracy is 91.67% while PARTYM’s accu-
racy is 83.33%. Votes cast by Independents
cannot be reliably predicted by considering
how other Independents would vote on the
same bill.

These results further highlight the importance of a
model that is able to combine voting history with
rich contextual knowledge in order to accurately
predict votes.

5 Related Work

Prior work on predicting roll call votes on bills
is primarily focused on using Ideal Point Mod-
els, which assume that a politician’s ideology and
the ideology reflected in a bill lie along a sin-
gle dimension. In Clinton et al. (2004), an Ideal
Point model was trained over both politicians and
bills/issues, and at inference time the similarity be-
tween politician and bill was used to determine
how likely the politician was to vote for the bill.
However, most politicians have distinct views on
different issues, meaning that the views of one
politician cannot be captured in a single dimen-
sion. Recent work has taken this into account. For
example, Gerrish and Blei (2012) created a model
in which each politician’s ideal point is adjusted
per issue, based on the bill text.

Kraft et al. (2016) used an embedding based
model which jointly learns bill and politician em-
beddings, and can predict how a politician will
vote on a bill. As demonstrated in this paper, this
model works well when a politician’s voting track
record has already been established. However, it
fails for politicians not in the training data, such
as those who have never been elected to office or
voted on bills relevant to the issues in the target
bill. Although we did not implement any Ideal
Point Models, they obviously share this weakness.

There have also been approaches that incorpo-
rate additional knowledge about politicians and
bills to yield extra insight into politicians’ vot-
ing patterns. Kornilova et al. (2018) enhanced the
embeddings learned by their model by providing
bill sponsorship information along with a CNN
architecture for learning bill embeddings, while
Nguyen et al. (2015) supplemented their model by
taking into consideration the type of language leg-
islators use. However, these models share the in-
ability of earlier models to predict voting behavior
for new politicians or political candidates. In fact,
Kornilova et al. (2018) explicitly note that their
model cannot handle unobserved politicians: they
say, ”During testing, we only include legislators
present in the training data”. The contributions
of Kornilova et al. (2018), among them the CNN-
based bill representation and the incorporation of
bill metadata, are orthogonal to those in this paper.
We leave the exploration of how to combine these
two approaches to future work.

Our work builds on the idea of using additional
knowledge about politicians to enhance vote pre-
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diction performance. The model described by
Kraft et al. (2016) serves as our baseline model,
and our proposed augmented models build on
this baseline by supplementing it with additional
knowledge about the politicians. Unlike Kornilova
et al. (2018), the additional knowledge we inject is
about politicians rather than bills. This allows our
proposed models to generalize to politicians un-
seen at training time.

6 Conclusion and Future Work

In this paper we proposed methods for augment-
ing a state of the art model (Kraft et al., 2016) for
roll call vote prediction with rich sources of addi-
tional knowledge to facilitate prediction in cases
where the voting record for a politician is unavail-
able at training time. This is typically the case for
new candidates for office or newly elected politi-
cians. We demonstrate that our proposed models
outperform a previous state-of-the-art model both
when the voting record for all politicians in the test
set is known and when the voting record of some
politicians is not available at training time.

We propose several avenues for future research.
First, researchers could explore richer representa-
tions for text, both bill text and news text - for ex-
ample, CNNs or contextual language models like
BERT (Devlin et al., 2019). Second, researchers
could explore methods for knowledge augmenta-
tion using open information extraction or other
ways of automatically constructing KBs, to reduce
reliance on manually curated knowledge sources
which are subject to bias and quickly become out
of date. And third, models could be explored that
can take into account interactions between politi-
cians (e.g. changes in majority party, changes in
politicians’ affiliation, party movement leftward or
rightward), between bills (e.g. bill combination or
revision), and between politicians and bills across
sessions of Congress (e.g. bill revision).

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data.

Joshua Clinton, Simon Jackman, and Douglas Rivers.
2004. The statistical analysis of roll call data. Amer-
ican Political Science Review, 98(2):355–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of The Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

John Duckitt and Chris G. Sibley. 2010. Person-
ality, ideology, prejudice, and politics: A dual-
process motivational model. Journal of Personality,
78(6):1861–1894.

Francis Ferraro, Max Thomas, Matthew Gorm-
ley, Travis Wolfe, Craig Harman, and Benjamin.
Van Durme. 2014. Concretely annotated corpora.
Presented at the NIPS Workshop on Automated
Knowledge Base Construction (AKBC).

Sean Gerrish and David M. Blei. 2012. How they vote:
Issue-adjusted models of legislative behavior. In
Advances in Neural Information Processing Systems
25.

Anastassia Kornilova, Daniel Argyle, and Vladimir Ei-
delman. 2018. Party matters: Enhancing legislative
embeddings with author attributes for vote predic-
tion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Peter Kraft, Hirsh Jain, and Alexander M. Rush.
2016. An embedding model for predicting roll-
call votes. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Robert E Kraut and Steven H Lewis. 1975. Alternate
models of family influence on student political ide-
ology. Journal of Personality and Social Psychol-
ogy, 31(5):791.

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik,
and Kristina Miler. 2015. Tea party in the house: A
hierarchical ideal point topic model and its applica-
tion to Republican legislators in the 112th Congress.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics and the Interna-
tional Joint Conference on Natural Language Pro-
cessing (ACL-IJCNLP).

Keith T Poole and Howard Rosenthal. 1985. A spa-
tial model for legislative roll call analysis. American
Journal of Political Science, pages 357–384.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT).

D. Sunshine Hillygus. 2005. The missing link: Explor-
ing the relationship between higher education and
political engagement. Political Behavior, 27(1):25–
47.

581



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 582–592
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

BeamSeg: a Joint Model for Multi-Document Segmentation
and Topic Identification

Pedro Mota
Carnegie Mellon University

Pittsburgh, PA, USA
INESC-ID

Instituto Superior Técnico
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Abstract

We propose BeamSeg, a joint model for seg-
mentation and topic identification of docu-
ments from the same domain. The model as-
sumes that lexical cohesion can be observed
across documents, meaning that segments de-
scribing the same topic use a similar lexical
distribution over the vocabulary. The model
implements lexical cohesion in an unsuper-
vised Bayesian setting by drawing from the
same language model segments with the same
topic. Contrary to previous approaches, we as-
sume that language models are not indepen-
dent, since the vocabulary changes in consec-
utive segments are expected to be smooth and
not abrupt. We achieve this by using a dy-
namic Dirichlet prior that takes into account
data contributions from other topics. BeamSeg
also models segment length properties of doc-
uments based on modality (textbooks, slides,
etc.). The evaluation is carried out in three
datasets. In two of them, improvements of up
to 4.8% and 7.3% are obtained in the segmen-
tation and topic identifications tasks, indicat-
ing that both tasks should be jointly modeled.

1 Introduction

Documents exhibit a content organization that ag-
gregates related text passages in topically coher-
ent segments. Understanding the document struc-
ture at the segment level enables efficient content
navigation. This has become more relevant with
the number of available documents on the Web.
The current information landscape allows access
to documents describing the same subject, provid-
ing alternative views or complementary informa-
tion. This is advantageous in a variety of scenar-
ios. For example, students have at their disposal
several learning materials and might need to find a
particular topic segment that best suits their learn-
ing needs. Finding such documents is an easy task
since search engines are capable of returning doc-

uments conveying related information. However,
if search engines are effective in retrieving these
documents, the task of putting them into a co-
herent picture remains a challenge (Shahaf et al.,
2012). Automatically finding document segments
– text segmentation – and identifying which ones
discuss the same topic – topic identification – ad-
dresses this issue (Jeong and Titov, 2010).

Text segmentation and topic identification have
been used as intermediate steps in a variety of nat-
ural language processing tasks, including summa-
rization (Radev et al., 2004), opinion mining (Mu-
rakami et al., 2009), semantic and information re-
trieval (Purver, 2011; Amoualian et al., 2017). The
improvements they brought spurred research in
text segmentation. Invariably, all works resort to
the lexical cohesion theory (Halliday and Hasan,
1976), which postulates that discourse structure
is correlated to the use of cohesive vocabulary.
Thus, segments can be identified by detecting vo-
cabulary changes. Most approaches either con-
sider segmentation and identification separately
and/or do not take into account all documents in
the dataset (single-document approach). Recently,
some works studied these phenomena in collec-
tions of related documents (Jeong and Titov, 2010;
Mota et al., 2016). These multi-document mod-
els assume that documents describing the same
topic have similar lexical cohesion properties; an
example of this phenomenon with similar seg-
ments but in different documents is depicted in
Figure 1. Thus, better likelihood estimations can
be obtained if all documents are taken into ac-
count (Mota et al., 2016). In this work, we expand
the multi-document lexical cohesion idea by hy-
pothesizing that vocabulary relationships between
different segments exist. For example, if a word is
heavily used in one segment, it is likely that it con-
tinues to appear in the following one, though less
frequently. Modeling such interactions can lever-
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age topic segmentation algorithms. We also ex-
plore the role of modality in the multi-document
scenario. Previous approaches treat all documents
equally, but it is plausible that we can improve seg-
mentation by making assumptions about the ex-
pected segment length on a document modality ba-
sis. For example, segments in slide presentations
are expected to be shorter than in video lectures.

We propose BeamSeg, a Bayesian unsupervised
topic modeling approach to breaking documents in
coherent segments while identifying similar top-
ics. The generative process assumes that segments
can share the same topic and, consequently, are
generated from the same lexical distribution. Lex-
ical cohesion is achieved by having higher seg-
mentation likelihoods when the probability mass
is concentrated in a narrow subset of words. This
is in the same spirit as topic modeling approaches
such as Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), but here the inherent topics are con-
strained to the linear discourse structure. To model
interactions between lexical distributions, we use
a dynamic prior, which assumes that the word
probabilities change smoothly across topics. To
model segment length characteristics, we assign
prior variables conditioned on document modality.

The linear segmentation constraint has been
used to make inference tractable by exhaustively
exploring the segmentation space to obtain the
exact maximum-likelihood estimation (Eisenstein
and Barzilay, 2008). Given a multi-document set-
ting, this is not feasible, as segments can share top-
ics. We address this issue using a beam search
algorithm, which allows the inference procedure
to recover from early mistakes. In our experi-
ments, we show that BeamSeg is able to perform
well when segmenting learning materials, where
previously single-document models obtained bet-
ter results (Mota et al., 2018). We also observe that
topic identification is more accurately determined
in a joint model, as opposed to a pipeline approach
(performing the tasks sequentially), indicating that
both problems should be modeled simultaneously.

We summarize our contributions as follows:

• A novel joint model for topic segmentation
and identification with a dynamic prior.

• An inference procedure based on a beam
search algorithm.

• A study on how different modality-based seg-
ment length priors influence segmentation.

The source code is available in the following
repository: github.com/pjdrm/BeamSeg.

2 Related Work

Following the lexical cohesion theory, segmenta-
tion algorithms identify spans of text with promi-
nent vocabulary changes. The main difference be-
tween algorithms is how lexical cohesion is im-
plemented: some resort to lexical similarity; the
remaining follow a probabilistic approach.

Lexical approaches rely on a similarity metric
between sentences, usually the cosine. A clas-
sic method is TextTiling (Hearst, 1997), which as-
sumes that topic boundaries are found in consec-
utive sentences with a low similarity value; sev-
eral other works built on this idea (Galley et al.,
2003; Balagopalan et al., 2012). C99 (Choi, 2000)
is another lexical approach, and uses a similar-
ity matrix in a divisive clustering to obtain seg-
ments. MinCut (Malioutov and Barzilay, 2006)
casts segmentation in a minimum cut graph par-
titioning problem. The graph has a node for each
sentence; edges are weighted using lexical similar-
ity. Long-distance textual relationships are mod-
eled by connecting all sentences. Affinity Prop-
agation Segmentation (Kazantseva and Szpakow-
icz, 2011) also models such relationships but uses
affinity propagation clustering (Frey and Dueck,
2007). The algorithm creates a factor graph and
maximizes the segment similarity sum function.
Alemi and Ginsparg (2015) proposed the Content
Vector Segmentation (CVS) sentence vector rep-
resentation based on segment word embeddings.
Using this representation in C99 improves bag-of-
words results.

In another line of research, Wang et al. (2017)
combined learning to rank and a convolutional
neural network to learn a coherence function be-
tween text pairs; higher-ranked pairs are likely to
be segments. Despite a promising approach, state-
of-the-art results were not achieved. Also fol-
lowing an approach using neural networks, is the
SECTOR algorithm (Arnold et al., 2019), which
uses a topic embedding trained based on utterance
topic classification. Following the network archi-
tecture from (Koshorek et al., 2018), two stacked
LSTM layers are used to decode word embedding
representation of utterances. To recover segmenta-
tion, a TextTiling approach is applied to the topic
embedding layer. The evaluation results show that
SECTOR is able to improve a C99 baseline.
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Just as we introduced average
velocity we will now describe
average acceleration. Notice
when velocity changes ... over
time. And ... introduce an
average acceleration ... The
average acceleration between
time t2 ... And the dimension
... secs per time squared.

Acceleration We say ...
changing velocity are
“accelerating” Acceleration is
the “Rate of change of velocity”
You hit the accelerator to speed
up ... it’s true you also hit ...
friction is slowing ... Average
acceleration Unit of
acceleration: (m/s)/s=m/s2

The acceleration of a particle ...
rate of change of velocity ...
time. Average acceleration ... is
v2 - v1 t2 - t1 ... Acceleration
may be positive, negative or
zero. Zero acceleration means
we have constant velocity. Note
that the direction and
acceleration need not coincide.

Figure 1: Examples of segment excerpts from video, slide presentation, and PDF documents describing the acce-
laration topic. Words in bold depict shared vocabulary across segments.

Probabilistic approaches to segmentation fol-
low a setup similar to the LDA model: words
are assigned to topics such that probability mass
is distributed on a small set of topically rele-
vant words. In order to adapt this idea to seg-
mentation, the model needs to be able to deter-
mine if sentences belong to the same topic (or
mixture of topics). An example of such adapta-
tion is the single-document segmentation model
PLDA (Purver et al., 2006), where topic propor-
tions are shared by sentences within the same seg-
ment. Segmentation is then determined through
a binary topic shift sentence variable. Models
such as TopicTiling (Riedl and Biemann, 2012),
Structured Topic Model (STM) (Du et al., 2013),
and NTSeg (Jameel and Lam, 2013) extend this
LDA-based approach to segmentation. In all these
approaches, topic identification is not possible
since all segments are a mixture of topics.

In this paper, we adopt a probabilistic multi-
document view on segmentation. Only two other
models follow this approach: MultiSeg (Jeong
and Titov, 2010) and Bayesseg-MD (Mota et al.,
2016). MultiSeg uses a two-level LDA model
where documents are generated using local and
global topics. Local topics are specific to a doc-
ument; global topics are shared between docu-
ments. Documents are mixtures of topics, but each
segment is generated by a single topic, lending it-
self to a joint model of segmentation and topic
identification. The multi-document aspect of the
model stems from topic proportions being inferred
from the whole dataset. In the experiments, this
joint modeling outperforms a pipeline strategy that
performs these tasks sequentially.

The other multi-document model, Bayesseg-
MD, is an extension of Bayesseg (Eisenstein
and Barzilay, 2008). In Bayesseg, sentences

from the same segment are assigned the same
topic. The inference procedure affords an ex-
act maximum-likelihood estimation by exploring
the segmentation space with a dynamic program-
ming algorithm. This approach cannot be ap-
plied to multi-document segmentation since the
hidden topic variables are integrated out; other
single-document models following this approach
also have this problem (Eisenstein, 2009; Malmasi
et al., 2017). Bayesseg-MD sidesteps this problem
by using lexically similar sentences from other
documents. The word counts of such sentences are
added to the segment likelihood estimation to re-
duce data sparseness. Despite using all documents
for segment likelihood estimations, topic identifi-
cation is not available. In this paper, we address
these issues by designing an inference algorithm
that explicitly tracks segment topic assignments.

3 BeamSeg Model

We implement lexical cohesion in a Bayesian set-
ting in a generative process where segments with
the same topic are drawn from the same multino-
mial language model. Thus, all u utterances with
a topic k have their bag-of-words representation
xu drawn from language model φzu ; zu is the hid-
den topic variable of u. We constrain the model
to yield linear segmentations by having topics oc-
curring at most once per document. This induces
higher likelihood segmentations to have language
models concentrating probability mass on a small
subset of the vocabulary. Conversely, low likeli-
hood segmentations spread the probability mass
on a broad set of words. This modeling behavior
is attuned to the lexical cohesion theory. Multi-
document segmentation emerges by assuming that
topics are shared across documents.

During inference, we want to find the hidden
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set of language models Φ and the topic vector as-
signment z that maximize the likelihood of the
joint distribution of the model. Since we only
care about segmentation, this process can be sim-
plified by analytically marginalizing out the hid-
den language models Φ. This enables search to
be carried out only in the segmentation space.
Therefore, inference amounts to finding the seg-
mentation ẑ = argmaxz p(X|z)p(z). Using the
marginalized joint likelihood, an approximation of
ẑ is obtained using a beam search algorithm.

3.1 Language Models

Using the previous setup, we define the joint like-
lihood as follows:

p(X|z,Φ) =

K∏

k

p(φk|β)

U∏

u

p(xu|φzu), (1)

where X is the set of all U utterances in the
dataset; K is the number language models; and
β are the Dirichlet prior parameters from which Φ
is drawn.

The marginalization process is performed by
appealing to the conjugacy between multinomial
language models and the Dirichlet prior. This al-
lows the conjugate Dirichlet distribution to inte-
grate to one, leaving the marginalized joint likeli-
hood expression with the normalizing constants:

p(X|z) =

∫
p(X|z,Φ)p(Φ|β)dΦ (2)

=
(Γ(Wβ)

Γ(β)W

)K K∏

k=1

∏W
w=1 Γ(nkU,w + β)

Γ(nkU + β)
,

where W is the vocabulary set; nkU,w is number of
times word w is assigned topic k in all U utter-
ances of the document collection; nkU is number
of times topic k appears in U ; and the symbol Γ
refers to the Gamma function. The resulting ex-
pression in Equation 2 corresponds to the product
of the individual topic likelihoods, comprised of
segments from different documents.

3.2 Segment Length Prior

The ẑ = argmaxz p(X|z)p(z) expression we
want to maximize to obtain the most likely seg-
mentation puts a prior, p(z), on the segment length
of documents. Given the approach of searching
the segmentation space only during inference, we
do not require the mathematical conveniences of

conjugacy for the segment length prior. In this per-
spective, we can plug in different distributions to
see how they behave during the segmentation task.
One of such distribution is the Beta-Bernoulli,
which has been used before in a probabilistic ap-
proach to segmentation (Purver et al., 2006):

p(z) =

(
Γ(2γ)

Γ(γ)2

)D D∏

d=1

Γ(nd1 + γ)Γ(nd0 + γ)

Γ(Ud + 2γ)
,

(3)

whereD is the number of document in the dataset,
Ud is the total number of utterances in document d,
nd1 is the number of segments in d, nd0 the number
of non-segment boundary utterances in d, and γ
the hyperparameter of the Beta distribution.

We also propose a Gamma-Poisson distributed
segment length prior. In this setup, we assume that
the document topic shift probabilities are drawn
from a Gamma prior parameterized by α and β:

p(z) =

(
βα

Γ(α)

)D D∏

d=1

Γ(nd1 + α)

(Ud + β)n
d
1+α

(4)

Applying priors based on document modality
can be done by assuming they are known a priori,
which is the approach we take. It is only neces-
sary to have dedicated hyperparameters for each
modality and apply them accordingly when com-
puting segmentation likelihood. This means we
are encoding in the model our prior beliefs about
the segment length of each modality. Nonetheless,
if the lexical cohesion in a hypothesized segment
is strong enough, the model will identify it even if
the length is not inline with the prior.

3.3 Dynamic Language Model Prior
The previous priors assume that language model’s
draws are independent of each other, and, thus
cannot encode relationships between them. This
is not a reasonable assumption in datasets with
documents following an overarching subject. We
hypothesize that in these cases, language mod-
els change smoothly across topics by establishing
a dynamic between the previous and the current
prior parameters. This time series modeling of
topics can be found in other works (Blei and Laf-
ferty, 2006b,a; Du et al., 2013; Jahnichen et al.,
2018). In BeamSeg, we adopt a similar perspec-
tive to topic tracking (Watanabe et al., 2011) for
modeling such interactions. We factor the β in
αkφ̂k′ , a precision and mean language model word
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probabilities parameters. Assuming some order-
ing between the topics, k indexes the topic pa-
rameters, and k′ the parameters of the previous
topic. The αk precision represents the persistence
of word usage throughout topics; φ̂k models the
language model dynamics by assuming that the
mean word probabilities at k are the same as those
at k′. This entails that there is a single chain of
language models, which contrasts with the multi-
ple chains in the original topic tracking model.

To compute the likelihood of the joint under this
prior, it is necessary to determine the parameters
for all k ∈ K. This is a two-fold process, where
we first update the αk precision parameter using
the expression derived from Minka (2000):

αk = αk

W∑
w

φ̂k′w(Ψ(nkw + αkφ̂k′w)−Ψ(αkφ̂k′w))

Ψ(nk + αk)−Ψ(αk)
,

(5)

where nkw is the number of times word w appear
in k; nk is the total number of words in k; and Ψ is
the digamma function. Then, we update the mean
word probability parameters:

φ̂kw =
nkw + αkφ̂k′w
nk + αk

(6)

The update equations are sequentially applied
according to a fixed topic order. By following
this process, we model long-range dependencies
by taking into account the data contribution at each
k. Finally, we plug-in the obtained prior parame-
ters in the join likelihood formula in Equation 2.

3.4 Beam Search for Inference

Following Bayesseg (Eisenstein and Barzilay,
2008), inference is viewed as an optimization
problem, where the target segmentation maxi-
mizes the objective function defined by the joint
likelihood. Contrary to Bayesseg, we assume that
language models aggregate segments from dif-
ferent documents, making an exhaustive explo-
ration of the segmentation space intractable. To
address this problem we combine beam search
and a greedy segmentation procedure. Other
considered inference alternatives include Gibbs
sampling (Bishop, 2006) and Variational Infer-
ence (Ghahramani et al., 2008). The difficulty in
applying Gibbs sampling is its slow convergence

to the stationary distribution, due to the tight cou-
pling of the variables induced by the linear seg-
mentation constraint. A similar problem occurs
in the variational inference procedure from Eisen-
stein (2009), where variational parameters and
segmentation are iteratively estimated.

We define z∗j as the segmentation that maxi-
mizes the objective function up to utterance j.
Considering the topic assignment zj = k and the
previous segmentation zj−1, the value for the ob-
jective function is written,

s(k, j, zj−1) = p({x0...xj}|zj−1, zj = k) (7)

Using a recursive definition, we obtain the opti-
mal segmentation using:

z∗j = argmax
k∈K

s(k, j, z∗j−1) (8)

This is a greedy approach since it makes in-
cremental decisions to find the highest likelihood
segmentation. This is an error-prone procedure
since we should take into account subsequent ut-
terances to discover higher likelihood segmenta-
tions. Moreover, once a mistake is made, we can-
not recover from it. To address this problem, we
add a beam search feature to the algorithm. This
is achieved by keeping track of all topic assign-
ments, instead of just the highest likelihood one.
At the end of each recursive step, we prune the
top-n segmentations.

4 Experiments

We now describe the experimental setup and re-
port the results for the target tasks.

4.1 Datasets

Currently, there are two multi-document segmen-
tation datasets with different document modalities.
One of the datasets is comprised of learning ma-
terials describing the subject of Adelson-Velsky
and Landis’ (AVL) trees (Mota et al., 2016). The
available modalities are video transcripts, PPT,
and HTML. In total, the dataset contains 10 doc-
uments, 85 segments, and 17 topics. The other
dataset also contains learning materials but from
the Physics domain (Mota et al., 2018). In ad-
dition, this dataset also has PDF modality. The
dataset has 141 documents, 739 segments, and
135 topics from 7 different Physics subjects. This
dataset does not provide topic identification labels
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for the segments. Therefore, we manually anno-
tated it with this information. In this context, we
made an inter-annotator agreement study for the
‘Introduction to Kinematics’ subject with two an-
notators. A 0.69 Fleiss-kappa (Shrout and Fleiss,
1979) agreement value was obtained, showing that
annotators had a similar perception of whether
segments share the same topic. Most of the dis-
agreement cases are due to considering textual and
plot-based explanations as different topics.

In addition to the previous datasets, we also
used Biography documents from Jeong and Titov
(2010). The dataset contains 116 documents re-
garding 29 personalities; 4 documents per per-
sonality with a total of 240 segments; the num-
ber of topics is 405; all documents have the same
HTML modality. The Biography domain has dif-
ferent topic development characteristics from the
previous domains. The documents have fewer and
shorter segments when compared with the AVL
and Physics domains, leaving less room for topics
to be described. All datasets were preprocessed by
stemming and stop words were removed.

4.2 Segmentation Experiments

In the experiments, we benchmark syntax simi-
larity and probabilistic approaches: C99, CVS,
Bayesseg, PLDA, Bayesseg-MD, and MultiSeg.
The hyperparameter tuning of the models is done
on a development set. In the Biography dataset,
we use documents from one of the personalities.
For MultiSeg we use the configurations provided
by the authors. In the Physics domain, we use ten
documents from one of the subjects. The obtained
tuning is also used for the AVL trees domain since
both datasets have pedagogical content. The Gibbs
sampling for PLDA run for 20000 iterations with
a burn-in period of 1000 and a lag value of 200. In
BeamSeg, we investigate the role of two factors in
segmentation: using the dynamic vs. an indepen-
dent language model prior, and using a modality-
based segment duration prior vs. using a single
prior variable. The beam size was set to 200.

To measure performance, we use the standard
Window Difference (WD) metric (Pevzner and
Hearst, 2002). WD slides a window through a
document and penalizes segmentations according
to the difference between the number of expected
segment boundaries and the predicted ones. This
gives partial credit to near-miss situations. The

metric is calculated as follows:

WD =
1

N − k
N−k∑

i=1

|ref − hyp| 6= 0, (9)

where N is the length of the document and k the
window size. WD is a penalty score between 0
(the best value) and 1. For consistency, we take the
output segmentations from all systems and evalu-
ate it using the same software (the python module
segeval (Fournier, 2013)).

The WD average results for the baseline are in
Table 1. In the Biography dataset, MultiSeg is
the best performing model, improving the WD of
Bayesseg-MD by 0.05. In the AVL dataset, the
best results are obtained by Bayesseg-MD. The
difference to the second best result, Bayesseg, is
0.02. For the Physics dataset, the single-document
model Bayesseg achieves the best results with a
WD difference of 0.01. These results show that
the performance of the algorithms varies across
the different datasets. This suggests that the dif-
ferent modeling approaches do not generalize well
to the different characteristics of the datasets. The
Biography dataset is characterized by short seg-
ments, which does not leave much room for lex-
ical cohesion to be observed. This contrasts with
the AVL and Physics datasets where the segments
are longer and describe an overarching topic.

Table 1: Segmentation baseline average WD results.

Bio AVL Physics

C99 0.61 0.59 0.54
PLDA 0.58 0.55 0.49

CVS 0.54 0.45 0.43
Bayesseg 0.53 0.39 0.42

Bayesseg-MD 0.42 0.37 0.43
MultiSeg 0.37 0.41 0.44

The results using different prior configurations
are in Table 2. In the table, the LMP and SLP
columns correspond to the language model and
segment length priors. In the Biography dataset,
we can see that using the dynamic LMP instead of
the independent improves the the Beta-Bernoulli
and Gamma-Poisson results by 0.01 and 0.09,
respectively. In the AVL dataset, the dynamic
LMP improves the best WD results of the in-
dependent LMP by 0.02. When comparing the
scope results of the dynamic LMP in the AVL
dataset, we observe further improvements when
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Table 2: BeamSeg average WD results. The SLP
column depicts the Beta-Bernoulli (BB), and Gamma-
Poisson (GP) distributions. The scope indicates if the
SLP is modality-based (M) or if there is one variable
for the whole dataset (D). The Biography dataset has
one modality, and, thus, only the D scope exists.

LMP SLP Scope Bio AVL Physics

Ind
BB

D 0.54 0.39 0.45
M – 0.40 0.42

GP
D 0.58 0.40 0.40
M – 0.43 0.42

Dyn
BB

D 0.53 0.44 0.54
M – 0.38 0.42

GP
D 0.49 0.38 0.47
M – 0.37 0.40

using the modality-based SLP; the results differ-
ences are 0.06 and 0.01, respectively. In the
Physics dataset, a dynamic LMP combined with
the modality-based Gamma-Poisson SLP obtains
the best results tied with the independent LMP and
dataset-based Gamma-Poisson SLP. It should be
noted that the former configuration better gener-
alizes across the different datasets since it obtains
better results in the Biography and AVL datasets;
the WD differences are 0.09 and 0.03, respec-
tively. Looking at the scope results of the dynamic
LMP, we observe that the Beta-Bernoulli and the
Gamma-Poisson perform better when using the
modality prior (0.12 and 0.07 improvements).

WD is a metric that assesses the overall quality
of a segmentation, accounting for different types
of errors. This can make the WD scores of two
very different segmentations to be close, which
is the case of the previous results. For example,
a segmentation that has no segments and another
that only has misplaced segments will have sim-
ilar WD scores despite being different. To show
that the different prior configurations output sig-
nificantly different segmentations, we provide the
counts of the exact segment boundary matches in
Table 3. From these results, we can observe that
using a dynamic LMP can increase the number of
boundary up to 229. A similar observation can be
made when comparing the dataset and modality
scopes, where the increases are up 27 segments.
These increases in exact boundary matches show
that despite the small differences in WD the im-
pact on how the segmentation looks like is signifi-

Table 3: Number of exact segment boundary matches
between hypothesis and reference segmentations.

LMP SLP Scope Bio AVL Physics

Ind
BB

D 88 1 16
M – 1 8

GP
D 15 1 5
M – 1 20

Dyn
BB

D 147 3 34
M – 4 39

GP
D 244 2 19
M – 5 46

cant. Therefore, we conclude that using a dynamic
LMP with a modality Gamma-Poisson SLP is nec-
essary to achieve the best results.

Comparing BeamSeg’s results to the baseline,
we see that in the Biography dataset MultiSeg per-
forms better by a 0.12 margin. The main dif-
ference between the segmentation of the two ap-
proaches is that BeamSeg outputs fewer segments,
which is a disadvantage since this dataset has
a high number of short segments. In the AVL
dataset, the performance is similar to Bayesseg-
MD. Looking at the individual documents shows
that BeamSeg has better results in five out of ten
documents, one tie, and two documents where the
WD difference is 0.01. This leaves Bayesseg-MD
to perform significantly better only in two docu-
ments. Therefore, BeamSeg is more consistent
in this dataset. In the Physics dataset, BeamSeg
improves the Bayesseg baseline by 4.8%. Taking
into account the result analysis, we conclude that
BeamSeg’s performance depends on the character-
istics of the datasets. In datasets where topic de-
velopment is prominent across the segments (AVL
and Physics), BeamSeg is the model with the most
consistent results. This is only possible when
using a dynamic LMP and a modality Gamma-
Poisson SLP, showing that both modeling aspects
are relevant to obtain the best segmentation.

To understand the behavior of the priors we pro-
vide a segmentation example in Figure 2. From
the example, we see that the main difference be-
tween the independent and dynamic LMPs is the
number of segments. In the independent LMP, the
number of segments is low, especially when using
the dataset SLP. For the modality SLP, the num-
ber of segments is higher but they tend to be mis-
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placed. When using dynamic LMP, the behavior
changes at the SLP level. The dataset SLP outputs
more segments than the modality version. How-
ever, most segments do not match the reference.
The modality SLP finds fewer segments, but they
tend to be more accurate. This makes sense since
the over-segmentation of the dataset SLP might be
related to the bias towards documents with short
segments, and the modality prior is able to adjust
to a wider variety of documents.

Sentences

Dyn-GP-D
Dyn-GP-M

Ind-GP-D
Ind-GP-M

Reference

Figure 2: Physics document segmentation using dif-
ferent prior configurations in BeamSeg. Bars with the
same color represent segments of the same prior con-
figuration. The names of the configurations start with
the LMP type, followed by the SLP, and its scope.

4.3 Topic Identification Experiments

We use the previous datasets to evaluate topic
identification and compare multi-document joint
models to a pipeline approach. In the pipeline
approach, we evaluate clustering and graph-
community detection algorithms. The clustering
algorithms take the golden standard segments and
identify segments sharing the same topic if they
are assigned the same cluster. Several clustering
algorithms are surveyed (Aggarwal and Reddy,
2014): DBSCAN, Mean Shift, and NMF. For
the graph-community detection approach, word
communities are obtained from the segments.
Then, based on lexical similarity, segments are
assigned to one of the communities (Mota et al.,
2018). If two segments are assigned to the same
community, they share the same topic. Several
graph-community detection algorithms are sur-
veyed (Fortunato, 2010): Bigclam, Label Propa-
gation, CNM, Walktraps, and Leading Eigenvec-
tor. For conciseness, we only report the results of
the best algorithms.

To measure the performance, we use the stan-
dard B3 clustering metric (Amigó et al., 2009).
B3 decomposes uses item-wise precision and re-
call. Precision represents how many items in the
same cluster belong to its class. Recall represents

how many items from a class appear in the cluster.
The final B3 value combines precision and recall:

B3 =
1

0.5( 1
Pre) + 0.5( 1

Rec)
(10)

The baseline results are depicted in Table 4. In
this benchmark, the pipeline approach performs
better than the joint model in all datasets. The
differences range between 0.04 and 0.14 in B3

score. The DBSCAN clustering approach obtains
the best performance in the Biography dataset by
a 0.09 margin.The Louvain graph-community de-
tection approach obtains the best results in the
AVL and Physics datasets with result differences
to DBSCAN of 0.04 in both cases.

Table 4: Topic identification baseline results.

Bio AVL Physics

DBSCAN 0.66 0.33 0.34
Louvain 0.57 0.37 0.38

MultiSeg 0.52 0.29 0.30

Table 5 shows the results for different prior con-
figurations. In the Biography domain, we observe
that the dynamic LMP improves the results of
both SLPs; 0.03 and 0.16, for the Beta-Bernoulli
and Gamma-Poisson, respectively. In the AVL
datasets, three different configurations obtain the
best performance. In the Physics dataset, the dy-
namic LMP modality Gamma-Poisson SLP per-
forms better. In this case, using a modality SLP
instead of the dataset affords a 0.11 improvement.
Comparing the independent and dynamic LMPs,
we see that the former improves the results by
0.05. This shows that both modeling aspects are
contributing for the best results.

Table 5: BeamSeg topic identification results.

LMP SLP Scope Bio AVL Physics

Ind
BB

D 0.51 0.35 0.36
M – 0.39 0.38

GP
D 0.37 0.38 0.35
M – 0.36 0.37

Dyn
BB

D 0.54 0.39 0.30
M – 0.32 0.34

GP
D 0.53 0.38 0.31
M – 0.39 0.41
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Comparing BeamSeg’s best results to the base-
line, we observe that it is only outperformed
by DBSCAN in the Biography dataset (a 19.7%
difference). DBSCAN obtains better results by
putting segments it cannot group in individual
clusters, which keep the larger clusters clean. In
BeamSeg, the number of identified topics (clus-
ters) is lower, a 385 difference to DBSCAN, which
ends up forcing wrong topic segment assignments.
In the AVL dataset, BeamSeg improves the Lou-
vain baseline by 5.1%. The topic identification
behavior of both approaches is different from the
Biography dataset. Louvain only outputs 7 clus-
ters whereas the reference has 17 topics. This
is related to the topic development aspect across
segments, which makes them hard to distinguish.
BeamSeg obtains a higher B3 score because it is
able to identify 15 topics, a number closer to the
reference, and, consequently, assign topics more
appropriately. In the Physics dataset, BeamSeg
improves the baseline by 7.3%. The topic iden-
tification patterns are similar to the ones observed
in the AVL dataset with BeamSeg outputting more
topics than Louvain, 70 and 48 topics, respec-
tively. Another observation is that the perfor-
mance differences between the Biography and the
other datasets are related to the topic structure
complexity. In the Biography dataset, there is a
tendency for the topic order to persist across docu-
ments, whereas in the other datasets the interweav-
ing of the topics is not as regular. This is depicted
in Figure 3, where color changes represent a topic
changes and similar topics have the same color. In
Figure 3a (Biography domain) we can see that the
colors sequences in different documents are sim-
ilar whereas in Figure 3 (Physics domain) the se-
quence is not constant. Connecting the topic struc-
ture differences with the topic order assumptions
in BeamSeg explains the performance differences.

5 Conclusions and Future Work

In this work, we propose BeamSeg, an unsuper-
vised Bayesian algorithm that jointly segments
documents and identifies topical relationships us-
ing a beam search procedure to find high likeli-
hood segmentations during inference. Relation-
ships between topics are modeled using a dynamic
prior encoding that word distributions change
smoothly in documents with an overarching sub-
ject. BeamSeg also models segment length proper-

(a) Documents from the Biography domain.

(b) Documents from the Physics domain.

Figure 3: Topic identification examples.

ties based on document modality. To evaluate seg-
mentation, single and multi-document algorithms
were used as a baseline. For topic identification,
we compared BeamSeg to MultiSeg, another joint
model, as well as a pipeline approach. In both
tasks, BeamSeg obtains the best results in two
of the datasets used for evaluation. The conclu-
sion from the evaluation is that BeamSeg is effec-
tive in datasets with prevalent topic development
throughout document segments. To achieve the
best performance, it is necessary to use a combina-
tion of a dynamic LMP with a modality Gamma-
Poisson SLP. Therefore, the proposed modeling
assumptions fit the data well. This supports the hy-
pothesis that lexical cohesion is a cross-document
phenomenon and can be used to leverage multi-
document segmentation and topic identification.

Regarding future work, one of the concerns is
that the proposed inference procedure is a maxi-
mum likelihood estimation approach. Ideally, we
want to access the full posterior distribution since
it finds more accurate parameters. Another con-
cern is the raw assumption that there is a shared
topic ordering among all documents. We believe
that addressing these issues will allow BeamSeg to
improve its results and to consistently perform in
datasets with different characteristics.
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Abstract
This paper focuses on how to extract multiple
relational facts from unstructured text. Neu-
ral encoder-decoder models have provided a
viable new approach for jointly extracting re-
lations and entity pairs. However, these mod-
els either fail to deal with entity overlapping
among relational facts, or neglect to produce
the whole entity pairs. In this work, we pro-
pose a novel architecture that augments the en-
coder and decoder in two elegant ways. First,
we apply a binary CNN classifier for each re-
lation, which identifies all possible relations
maintained in the text, while retaining the tar-
get relation representation to aid entity pair
recognition. Second, we perform a multi-
head attention over the text and a triplet at-
tention with the target relation interacting with
every token of the text to precisely produce
all possible entity pairs in a sequential man-
ner. Experiments on three benchmark datasets
show that our proposed method successfully
addresses the multiple relations and multiple
entity pairs even with complex overlapping
and significantly outperforms the state-of-the-
art methods. All source code and documen-
tations are available at https://github.
com/chenjiayu1502/MrMep.

1 Introduction

Extracting relational facts from unstructured text
is a significant step in building large-scale knowl-
edge graphs. A relational fact is typically repre-
sented as a triplet <h, r, t> where h represents
a head entity, t represents a tail entity, and r is a
relation that connects h to t.

A number of neural models for extracting
relational facts have been developed in recent
years, and the most successful models all have
one thing in common: they extract both rela-
tion and its corresponding entity pairs in a man-
ner of joint learning (Zheng et al., 2017; Zeng

et al., 2018; Takanobu et al., 2019). However,
jointly extracting relation and entity pairs is far
from a trivial task due that there might exist
more than one relation within the text, while
each target relation might correspond to more
than one entity pair. A more challenging aspect
of this problem is that there might exist com-
plex overlapping among different triplets. As ex-
emplified in Figure 1, the entity “Indonesia”
overlaps in all triplets within the text, while
<Indonesia, leaderName, Jusuf Kalla> and
<Indonesia, leaderName, Joko Widodo>
have the same relation type “leaderName”,
<Bakso, region, Indonesia> and <Bakso,
country, Indonesia> share the same head and
tail entities.

A well-defined relational fact extraction task
aims to detect all possible relation types in the text,
and extract all candidate entity pairs for each target
relation type, while taking into account the com-
plicated overlapping among the triplets.

Zheng et al. (2017) propose a tagging mecha-
nism (referred as Tagging thereafter) to transform
the relational fact extraction into a sequence la-
beling task by injecting the information of rela-
tion type and entity position into tags. In this
paradigm, Tagging model assigns a unique label to
each word, which fails to extract triplets with over-
lapped entities or even overlapped entity pairs.

Zeng et al. (2018) model the triplet extraction
using sequence-to-sequence learning with copy
mechanism (referred as CopyR thereafter) that is
often used in sentence generation (Gu et al., 2016;
He et al., 2017). Takanobu et al. (2019) apply a hi-
erarchical framework with reinforcement learning,
which decomposes triplet extraction into a high-
level task for relation detection and a low-level
task for entity extraction (referred as HRL there-
after). Both CopyR and HRL determine a relation
type each time and detect an entity pair for it, then
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Bakso is a food found in Indonesia where the capital is Jakarta and the leaders are Jusuf Kalla and Joko Widodo .

region capital

country learderName

Figure 1: An example of multiple triplets. Entities are underlined, the relation types between entity pairs are
connected by colored lines marked with relation types.

repeat the process to extract all triplets. However,
to extract multiple entity pairs for a relation type,
both CopyR and HRL have to repeatedly predict
the relation type in multiple passes, which is com-
putationally inefficient.

In this work, we propose, with simplicity and
effectiveness in mind, a novel approach for jointly
extracting Multiple Relations and Multiple Entity
Pairs (MrMep). MrMep utilizes a triplet atten-
tion to exploit connections between relation and its
corresponding entity pairs. It first predicts all pos-
sible relations, then for each target relation, it uses
a variant of the pointer network (Vinyals et al.,
2015) to generate boundaries (START/END posi-
tions) of all head and tail entities in a sequential
manner, whereby the model generates all possible
entity pairs as answers. In this way, for each can-
didate relation type, relation detection only needs
to be performed one time, and then all possible
entity pairs can be extracted for it, avoiding the
repeated process of relation identification that is
adopted in both CopyR and HRL. Moreover, we
approach entity overlapping problems by a variant
of the pointer network. It can sequentially gener-
ate entity boundaries in arbitrary position within
the text. Therefore, it allows entities freely to par-
ticipate in different triplets.

Our contributions can be summarized as fol-
lows:

• We propose MrMep, a novel neural method
which firstly extracts all possible relations
and then extracts all possible entity pairs for
each target relation, while the two procedures
are packed together into a joint model and are
trained in a joint manner.

• MrMep uses a triplet attention to strengthen
the connections among relation and entity
pairs, and is computationally efficient for
sophisticated overlapped triplets even with
lightweight network architecture.

• Through extensive experiments on three
benchmark datasets, we demonstrate

MrMep’s effectiveness over the most com-
petitive state-of-the-art approach by 7.8%,
7.0% and 9.9% improvement respectively in
F1 scores.

2 Related Work

Traditional pipelined approaches (Chan and Roth,
2011; Zelenko et al., 2003; Lin et al., 2016) sep-
arately design two subtasks of relation identifica-
tion and entity pair extraction, ignoring the con-
nection between them (Li and Ji, 2014) and suf-
fering from error propagation.

To address the above problems, several joint
models have been proposed. Early work (Li and Ji,
2014; Yu and Lam, 2010; Miwa and Sasaki, 2014)
builds the connections between relation identifi-
cation and entity recognition by designing multi-
ple ingenious features, which needs complicated
feature engineering. Recently, with the success of
deep learning on many NLP tasks, several pieces
of work (Miwa and Bansal, 2016; Gupta et al.,
2016; Zhang et al., 2017) jointly model the inter-
action between the two subtasks based on neural
networks, which they firstly apply RNN or CNN
to encode the text, then treat entity recognition as a
sequence labeling task and regard relation extrac-
tion as a multi-class classification problem. Zheng
et al. (2017) formulate joint triplet extraction prob-
lem to the task of sequence labeling, by deliber-
ately designing a tagging schema that injects in-
formation of relation type and entity position into
tags. However, due to the limitation that a word
can only be assigned a unique label in sequence
labeling task and unique relation type can be as-
signed to each entity pair in multi-class classifica-
tion problem, the above methods cannot fully ad-
dress the triplet overlapping problem.

Most recent work aims at further exploring
the overlapping triplet extraction. Zeng et al.
(2018) propose CopyR, a joint model based on
copy mechanism to convert the joint extraction
task into a triplet generation task. For simplifi-
cation, CopyR only copies the last word of the
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entity, thereafter it cannot extract the whole enti-
ties consisting of multiple words. Takanobu et al.
(2019) propose a hierarchical reinforcement learn-
ing framework that decomposes the joint extrac-
tion task into a high-level task for relation de-
tection and a low-level task for entity extraction.
However, both CopyR and HRL generate each re-
lation type along with one entity pair at each time.
In this paradigm, both of them have to perform the
same relation detection multiple times to explore
all possible entity pairs, which is computationally
inefficient and principled not graceful enough.

We propose MrMep, a novel joint extraction
framework that not only can jointly model triplet
extraction task, but also efficiently extract various
overlapped triplets. First, MrMep executes multi-
ple relation classifiers by adopting a binary clas-
sifier for each relation type. Second, MrMep per-
forms variable-length entity pair predictor. It uti-
lizes a pointer network (Vinyals et al., 2015) alike
way to generate the START/END positions for all
the candidate head and tail entities in a sequen-
tial fashion, which is tracked by an LSTM decoder
until it produces a word position beyond the text
boundary. Inspired by machine reading and com-
prehending models (Wang and Jiang, 2016; Seo
et al., 2017), we use the relation as a query, and
conduct interaction between query and text via a
triplet attention with relation peeking all possible
entity pairs. We discuss two different principled
ways to perform the above triplet attention, and
demonstrate the versatility and effectiveness of our
methods on both English and Chinese relational
fact extraction benchmarks.

The main difference between our models and
CopyR and HRL is that ours has the advantage
of learning a strategic decoder using triplet atten-
tion that can model the interaction between rela-
tion and entity pairs. By letting the decoder only
predict entity pairs, we relieve it from the burden
of having to generate relation types repeatedly.

Das et al. (2019)’s work is similar in spirit to
our work in that we both use a machine reading
comprehension framework to extract relations and
entities. But our approach differs from that of Das
et al. (2019): their work aims at extracting newest
state from procedural text which mainly describes
the entity state at different steps, while our work is
proposed for extracting multiple triplets from arbi-
trary unstructured text. Another similar approach
is introduced by Roth et al. (2019), which per-

forms relation argument extraction given a query
entity and relation, essentially not for joint triplet
extraction.

3 The Approach

3.1 Overview
For relational fact extraction task, the input is a
text paragraph with n words S = [w1, ..., wn].
Let R be the set of predefined relation types. The
task is to predict all possible triplets <ei, rij , ej>
maintained in S, where ei, ej are sequences of to-
kens denoting head entity and tail entity respec-
tively, and rij ∈ R is the relation type that con-
nects ei to ej .

Figure 2 shows an overview architecture of
the proposed MrMep. It consists of three main
parts: Encoder, Multiple Relation Classifiers and
Variable-length Entity Pair Predictor. The en-
coder preprocesses the source text and extracts
the sequence-level features using a Long Short
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997), the multiple relation classifiers pre-
dict all possible relations maintained in S, and the
variable-length entity pair predictor sequentially
generates all possible entity pairs for each possi-
ble relation type.

3.2 Encoder
Given a text paragraph S = [w1, ..., wn], we first
embed it to obtain text embedding E ∈ Rn×de ,
where n is the length of words in text, de denotes
the dimension of word embedding pretrained us-
ing Glove (Pennington et al., 2014). Then an
LSTM is used to learn the token representation Xi

for each word wi:

Xi = LSTMencoder(Ei, Xi−1), (1)

where Xi−1, Xi ∈ Rd denotes word vectors for
word wi−1 and wi, yielding the text representation
matrix X = [X1, ...Xn] ∈ Rn×d.

The LSTM maps the variable length input se-
quences to a fixed-sized vector, and uses the last
hidden state Xn ∈ Rd as the representation vector
of the text.

3.3 Multiple Relation Classifiers
The relation classifier aims to identify relation
types contained in the text. Since a text may
contain multiple relations, inspired by the idea
of multi-label classification, we design M CNN
(Kim, 2014) based binary classifiers, respectively
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Figure 2: The model architecture of MrMep.

for M relation types, whose output is the proba-
bility distribution over whether the corresponding
relation is a possible relation or not.

We adopt a convolutional neural network with
the same structure as in Kim (2014). Given the text
representationX ∈ Rn×d. A convolution operator
and max-over-time pooling (Collobert et al., 2011)
operator are applied:

C = Conv(X), (2)

Q = relu(max(C)), (3)

where C ∈ Rm×(n−l+1) is the feature map output
by the convolution operator, m is the number of
different filters, n is the length of the text, l is the
convolutional filter size. Eq. (3) applies an max-
over-time pooling operator on feature map C first,
and then a relu activation is used to obtain the text
embedding Q ∈ Rm. When sliding over the text
with a window size l, different filters offer a va-
riety of l-gram compositions. Therefore, the text
embedding Q is viewed as local feature vector of
the text in our model.

In order to make better use of the features ex-
tracted by LSTM and CNN, a concatenation op-
erator is used between the last word representa-
tionXn in the encoder and text embeddingQ from
CNN to produce a fused vector H ∈ Rm+d:

H = Concat(Q,Xn). (4)

The binary classifier for j-th relation type is
shown as follows (We omit the bias b for simplifi-
cation):

Rj = HWH
j , (5)

Y j = softmax(RjW
R
j ). (6)

As in Eq. (5), a linear layer is applied to produce
the hidden layer state Rj ∈ Rd. WH

j ∈ R(m+d)×d

is a learnable weight matrix. As in Eq. (6), an-
other linear layer with a softmax activation func-
tion is used to predict the probability distribution
of whether the text contains the j-th relation type
or not, Y j ∈ R2. WR

j ∈ Rd×2 is weight param-
eter. The hidden layer state Rj is viewed as the
relation embedding for j-th relation type.

If the text contains j-th relation type, Rj will be
fed into variable-length entity pair predictor to aid
entity pair recognition.

3.4 Variable-length Entity Pair Predictor

Given a text, and a target relation type output by
the relation classifier, the variable-length entity
pair predictor aims to extract its all possible entity
pairs in a sequence manner. Inspired by the pointer
network (Vinyals et al., 2015), we determine an
entity by identifying START and END position in-
dexes of the words in the text. As shown in Figure
2, entity pairs are generated by a sequence of in-
dexes. Each two indexes can identify an entity and
each two entities form an entity pair in order. In
this paradigm, our model can explore all the pos-
sible relations in one pass and predict all possible
entity pairs for a given relation via a lightweight
sequence decoder, unlike previous work which has
to predict the target relation in a multi-pass way
(Zeng et al., 2018; Takanobu et al., 2019).

Multi-head Attention. We apply a multi-head
attention (Vaswani et al., 2017) on X to obtain a
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new text representation P :

Q = XWQ
j ,K = XWK

j , V = XW V
j , (7)

headj = softmax(
QKT

√
dk

)V, (8)

P = Concat(head1, ...headh)W
O, (9)

where different linear layers are used in Eq. (7) to
map X into different subspaces by learnable pa-
rameters WQ

j , WK
j ∈ Rd×dk , and W V

j ∈ Rd×dv ,
yielding query Q ∈ Rn×dk , keys K ∈ Rn×dk and
values V ∈ Rn×dv . By Scaled Dot-Product At-
tention (Vaswani et al., 2017), headj ∈ Rn×dv
is obtained as the representation of j-th head. A
concatenation operator and a linear layer are used
in Eq. (9) to produce text representation P ∈
Rn×d, where h is the number of heads and WO ∈
Rhdv×d is learnable parameter.

Triplet Attention. At each position of the text,
attention mechanism is used to obtain a weighted
value that represents the matching degree between
the token and the target relation type. Since its
aim is to extract the candidate entity pair for the
target relation, we call this attention the triplet at-
tention. The triplet attention essentially aggregates
the matching of the relation type to each token of
the text and used the aggregated matching result to
make the entity prediction.

Assume the j-th relation is the target relation
identified by the relation classifier in Section 3.3.
To get the final attention of j-th relation to i-th
token, we study two different modes to implement
the triplet attention: paralleled mode and layered
mode.

Paralleled Mode. The so-called paralleled
mode draws the connections among the target re-
lation, the token, and previous hidden state in a
synchronous way:

ait =W atanh(W r ◦Rj +W d ◦ dt−1+W
p ◦Pi),

(10)
where ◦ is the element-wise multiplication opera-
tor. Rj ∈ Rd is j-th relation embedding, Pi ∈ Rd
is i-th word of text representation P , dt−1 ∈ Rd is
hidden state of LSTM decoder at time step t − 1
which obtained by Eq. (13). W r, W d, W p, and
W a ∈ Rd are learnable parameters. ait ∈ R is
attention weight of i-th word in the text.

The attention distribution on text αt ∈ Rn is
computed as follows:

αt = softmax(at), (11)

where αt = [α1
t , ...α

n
t ], n denotes the text length.

It is worthy to note that, αit is used as the proba-
bility that position index i is selected as output at
time step t. At time step t, the position index with
the highest probability in αt is greedily sampled
as the output Ot.

Once the attention weights are computed, the
context vector ct is computed by:

ct =
n∑

i=1

αit · Pi. (12)

Then ct together with dt−1 are fed into LSTM de-
coder at time step t:

dt = LSTMdecoder(ct, dt−1). (13)

Therefore, the LSTM decoder is capable of
tracking the state of the variable-length entity pair
predictor.

Layered Mode. The layered mode first com-
putes the connection between Rj and dt−1:

βt = tanh(W r′ ◦Rj +W d′ ◦ dt−1), (14)

where W β , W p′ , and W a′ ∈ Rd are learnable pa-
rameters.

Then vector βt is used to calculate triplet atten-
tion:

ati =W a′tanh(W β ◦ βt +W p′ ◦ Pi), (15)

where W β , W p′ ∈ Rd are learnable parameters.
The following procedure is conducted as the same
denoted in Eq. (11)-(13).

3.5 Training
We adopt the cross-entropy loss function to de-
fine the loss of multiple relation classifiers and
variable-length entity pair predictor respectively,
which denoted as Lrel and Lent.

To jointly train the model, the loss L is obtained
by:

L = λ · Lrel + (1− λ) · Lent, (16)

where λ ∈ R is a hyperparameter to balance the
multiple relation classifiers and the variable-length
entity pair predictor.

4 Experiments

4.1 Dataset
In order to test our proposed recipe for jointly
extracting multiple relations and multiple entity
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Dataset NYT WebNLG SKE
Language English English Chinese
Relation 24 246 50
Triplets 104,518 12,863 111,539
Token 90,760 5,051 170,206

Table 1: Statistics of three datasets in language, number
of relation types, triplet number and token numbers.

pairs, we conducted experiments on two English
benchmark datasets: New York Times (NYT) and
WebNLG, and a Chinese public dataset Schema
based Knowledge Extraction (SKE).

NYT is produced by distant supervision method
(Riedel et al., 2010) and widely used in the triplet
extraction (Zheng et al., 2017; Zeng et al., 2018).
There are 24 relation types, 61,265 train texts and
5,000 test texts in NYT dataset. We randomly se-
lect 5,000 texts from train data as the development
set.

WebNLG dataset (Gardent et al., 2017), is origi-
nally a dataset for natural language generation task
and later used for triplet extraction (Zeng et al.,
2018). There are 246 relation types, 5,321 train
texts and 695 test texts. We randomly select 500
from train data as the development set.

Different from the two previous English
datasets, SKE is a Chinese dataset for information
extraction, which is released in the 2019 Language
and Intelligence Challenge1. SKE contains 50 re-
lation types and training texts exceed 200,000. We
build our training set, development set, and test
set by randomly selecting 50,000, 5,000 and 5,000
texts respectively.

Following the work of Zeng et al. (2018), we
prepropose the three datasets as follows: (1) re-
move texts that contain no triplets at all; (2) filter
out texts if there is an entity in the triplet that is
not found in the text.

As shown in Table 1, SKE has a richest vo-
cabulary (170,206 tokens), while WebNLG has a
smallest vocabulary (5,051 tokens). In contrast to
NYT and SKE which has a medium body of re-
lations (24 and 50, respectively), WebNLG has a
significantly big body of relations (246 relations).

4.2 Baseline and Evaluation Metrics

To evaluate our method, we compared against one
baseline model and three state-of-the-art models.

1http://lic2019.ccf.org.cn/kg

Hyperparameter value
dropout rate 0.5
learning rate 0.001
batch size 50
hidden size of LSTM 100
filter number of CNN 100
window size of CNN 3
head number 4
λ 0.3

Table 2: Hyperparameter setting.

Baseline: In our proposed baseline model, we
design similar architecture with MrMep, in which
the encoder and multiple relation classifiers are
the same with MrMep, but we use Match-LSTM
(Wang and Jiang, 2016) as an implementation of
variable-length entity pair predictor. The three
main layers of Match-LSTM in our baseline model
are as follows: (1) LSTM Preprocessing Layer:
we use output of the encoder as passage repre-
sentation and relation embedding of multiple re-
lation classifiers as the query representation; (2)
Match-LSTM Layer: we make concatenation of
query representation and each token embedding of
passage representation to obtain query-aware to-
ken representation, and then fed it into a Bi-LSTM
layer; (3) Answer Pointer Layer: this layer is same
with Match-LSTM (Wang and Jiang, 2016) and
we adopt the sequence model to produce entity
pairs.

Tagging (Zheng et al., 2017): This model is a
sequence labeling model which assigns to each to-
ken a unique tag denoting the information of re-
lation, head or tail entity, even if that the token
participates in two different triplets.

CopyR (Zeng et al., 2018): This model is a
seq2seq model utilizing copy mechanism that gen-
erating a triplet by jointly copying a relation from
relation set and copying an entity pair from the
source texts in a sequential manner.

HRL (Takanobu et al., 2019): This model ap-
plies a hierarchical reinforcement learning frame-
work that decomposes the task into a high-level
task for relation detection and a low-level task
for entity extraction, which is jointly optimized
through a reinforcement learning paradigm.

Following (Zheng et al., 2017; Zeng et al., 2018;
Takanobu et al., 2019), we use the standard micro
Precision, Recall and F1 score to evaluate the re-
sults. Triplets are regarded as correct when the
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Model NYT WebNLG SKE
Prec Rec F1 Prec Rec F1 Prec Rec F1

Tagging 0.526 0.336 0.410 0.476 0.186 0.267 0.347 0.158 0.220
CopyR 0.602 0.556 0.578 0.381 0.369 0.375 0.402 0.362 0.380
HRL 0.741 0.651 0.693 0.695 0.629 0.660 0.582 0.422 0.489

Baseline 0.743 0.730 0.736 0.641 0.744 0.689 0.607 0.560 0.583
MrMep (para) 0.769 0.730 0.747 0.695 0.759 0.725 0.589 0.543 0.565
MrMep (layer) 0.779 0.766 0.771 0.694 0.770 0.730 0.611 0.567 0.588

Table 3: Results of different models in three datasets. MrMep (para) denotes that we adopt paralleled mode of
triplet attention in variable-length entity pair predictor. MrMep (layer) denotes the layered mode.

Model NYT10 NYT11 NYT10-sub NYT11-plus
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Tagging 0.593 0.381 0.464 0.469 0.489 0.479 0.256 0.237 0.246 0.292 0.220 0.250
CopyR 0.569 0.452 0.504 0.347 0.534 0.421 0.392 0.263 0.315 0.329 0.224 0.264
HRL 0.714 0.586 0.644 0.538 0.538 0.538 0.815 0.475 0.600 0.441 0.321 0.372

MrMep 0.717 0.635 0.673 0.434 0.522 0.474 0.832 0.550 0.662 0.512 0.327 0.399

Table 4: Detailed results of different models in datasets used in HRL (Takanobu et al., 2019). NYT10-sub is
selected from NYT10 test set (original version), NYT11-plus is splitted from NYT-11 train set (manually created
version). NYT10-sub and NYT11-plus contains a variety of overlapping triplets.

relation type and entity pair are both correct.

4.3 Implementation Details

We evaluate two variants of our approach: Mr-
Pep (para) using paralleled mode for triplet atten-
tion and MrMep (layer) using layered mode. For
both variants, all hyperparameters are tuned on the
same validation set. The hyperparameter setting is
shown in Table 2. The word embedding are ini-
tialized using Glove (Pennington et al., 2014) and
are updated during training, and the dimension is
set to 100. The cell unit number of LSTM encoder
and decoder is set to 100. The filter number used
in CNN classifier is 100, filter window is 3, and
the following dense layer has a hidden layer with
100 dimensions. The learning rate is set to 0.001.
The tradeoff parameter λ in loss function is set to
0.3. The batch size is set to 50. The head num-
ber in muti-head attention is set to 4. For training,
we use Adam (Kingma and Ba, 2015) to optimize
parameters.

4.4 Main Results

Table 3 shows the Precision, Recall and F1
value of different models on the three datasets.
When compared to Tagging and CopyR, the pro-
posed model MrMep substantially improves the
F1 scores in three datasets. Both the MrMep (para)
and MrMep (layer) outperform the most compet-

itive HRL model in three F1 scores. Moreover,
compared with HRL, both the baseline model and
our proposed models achieve a significant increase
in Recall. Specifically, MrMep (layer) achieves
11.5% improvement in NYT, 14.1% improvement
in WebNLG, and 14.5% improvement in SKE in
Recall value. Our hypothesis is that the state-of-
the-art models such as CopyR and HRL are seek-
ing connection between relation and entity pairs
in a sequential fashion, whereas we seek this con-
nection in an interactive manner with the relation
paying attention to the tokens one by one interac-
tively.

To draw a paralleled comparison with HRL
in more details, we compare the results on the
same data partition used in HRL: NYT10, NYT11,
NYT10-sub and NYT11-plus. The results of dif-
ferent approaches are summarized in Table 4. On
NYT10, NYT10-sub and NYT11-plus test set,
MrMep (layer) achieves the highest F1 values
when compared with three state-of-the-art mod-
els. In NYT11 test set, our model gets poorer per-
formance than HRL. But it is worthy to note that
NYT11 dataset averagely contains a triplet per text
(totally 369 texts with 370 triplets), while NYT10-
sub and NYT11-plus test set contain more over-
lapping triplets. These observations suggest that
our model is essentially feasible to extract more
complicated triplets.
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Tagging CopyR HRL Baseline MrMep(para) MrMep(layer)
0.0
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Tagging CopyR HRL Baseline MrMep(para) MrMep(layer)
0.0

0.9
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0.162

0.536
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0.788
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0.839relation overlap
entity pair overlap
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Figure 3: Detailed results on different test subsets. The ordinate of the coordinate axis represents the F1 value.

Model NYT WebNLG SKE
MrMep 0.771 0.730 0.588
w/o CNN 0.745 0.724 0.530
w/o Multi-head 0.723 0.616 0.512

Table 5: An ablation study for MrMep (layer) model.
All values are F1 scores.

4.5 Detailed Results

To further verify the ability of MrMep in handling
the various complex triplets, we conduct a series
of qualitative analysis from two distinct views:

Single triplet vs Multiple triplets. According
to the number of triplets contained in the text, we
divide the NYT test set into two sub-datasets: (1)
single triplet test set: each text contains only one
triplet, and 3,240 texts are in the set; (2) multi
triplet test set: each text contains two or more
triplets, and 1,760 texts are in the set.

Relation overlap vs entity pair overlap. Ac-
cording to whether an overlap is relation overlap
or entity pair overlap, we obtain two subsets from
the test set: (1) relation overlap: one relation con-
nects with two or more different entity pairs (462
texts in NYT test set); (2) entity pair overlap: one
entity pair connects with two or more relations
(969 texts in NYT test set).

Figure 3 (a) shows the F1 values of different ap-
proaches on NYT test data with single triplet and
multiple triplets. It can be seen that both MrMep
(para) and MrMep (layer) outperform the baseline
and the three comparative models. Noticeably,
the improvements on multiple triplets are more re-
markable.

From Figure 3 (b) we can observe that MrMep
(layer) outperforms MrMep (para) and both of

them outperform the reference models. It is also
interesting to notice that predicting relation over-
laps is more challenging than predicting entity pair
overlaps.

The baseline model adopts Match-LSTM
(Wang and Jiang, 2016) as an implement of en-
tity pair predictor, which sequentially aggregates
the matching of the attention-weighted query to
each token of the text. Although we could treat
the relation as a query, the relation is essentially a
tag with much simpler semantics than that of ac-
tual queries. Therefore, we design a lightweight
MrMep model which is proven to be more elegant
and powerful for entity pair extraction.

4.6 Ablation Study

We examine the contributions of two main com-
ponents, namely, convolutional neural network
(CNN) in multiple relation classifiers and multi-
head attention in entity pair predictor, using the
best-performing MrMep model with layered mode
on three dataset. First, instead of using repre-
sentations learnt by CNN, we use the last hidden
state of the LSTM encoder as text presentation,
then feed it directly to the multiple binary classi-
fier (MrMep w/o CNN). Second, instead of apply-
ing multi-head attention, we use the hidden state at
each time step of the LSTM encoder to represent
each token, which is directly fed into the follow-
ing triplet attention to extract entity pairs (MrMep
w/o Multi-head). Table 5 shows the results. We
can observe that adding either CNN or multi-head
attention improves the performance of the model.
This suggests that both parts can assist MrMep
to jointly extract entities and relations, where the
CNN layer seems to be playing a more significant
role. One possible reason is that CNN is used for
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MrMep (layer)
(NYT): “It ’s pretty neat”, said Ward, who grew up in the
[Edmonton]Et−contains suburb of Sherwood Park, [Alberta]Eh−contains.

MrMep (para)
(NYT): “It ’s pretty neat”, said Ward, who grew up in the [Edmonton suburb
of Sherwood Park]Et−contains, [Alberta]Eh−contains.

MrMep (layer)
(WebNLG): [Bakso]Eh−country comes from [Indonesia]Et−country, and cel-
ery is a main ingredient. [Jasuf Kalla]Et−leaderName is a leader in
[Indonesia]Eh−leaderName.

MrMep (para)
(WebNLG): [Bakso]Eh−country comes from [Indoneisa]Et−country, and [cel-
ery is a main ingredient. Jasuf Kalla]Et−leaderName is a leader in
[Indonesia]Eh−leaderName.

Table 6: Extracted results from MrMep (para) and MrMep (layer). The words in a bracket represents an entity, Eh

stands for the head entity and Et stands for the tail entity. Red is marked as identifying the wrong.

extracting local feature of input text, which is not
only beneficial for relation extraction but also as-
sist producing better relation embedding to aid en-
tity pair predition.

4.7 Case Study
Table 6 shows two examples of extracted results
from MrMep (para) and MrMep (layer). In the
first example, MrMep (layer) precisely extracts the
correct triplet <Alberta, contains, Edmonton>,
while MrMep (para) recognizes incorrect tail en-
tity “ Edmonton suburb of Sherwood Park”. In
the second example, MrMep (layer) precisely ex-
tracts correct triplet <Indoneisa, leaderName, Ja-
suf Kalla> while MrMep (para) wrongly recog-
nizes the tail entity “ celery is a main ingredi-
ent. Jasuf Kalla”. Taking NYT test set as exam-
ple, among 1250 differences between the output
of MrMep (para) and MrMep (layer), there are 885
differences resulting from the wrong entity bound-
aries identified by MrMep (para). The most likely
reason might be that the hidden state of the de-
coder plays as crucial role as the relation in se-
quentially producing different entity pairs.

5 Conclusion

We propose a joint multiple relation and multiple
entity pair extraction model. The model uses a
triplet attention to model the connection of rela-
tion and entities in a novel and lightweight frame-
work. It gives state-of-the-art performance on
three benchmark datasets.
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Abstract

Relation extraction is the task of determin-
ing the relation between two entities in a sen-
tence. Distantly-supervised models are popu-
lar for this task. However, sentences can be
long and two entities can be located far from
each other in a sentence. The pieces of ev-
idence supporting the presence of a relation
between two entities may not be very direct,
since the entities may be connected via some
indirect links such as a third entity or via co-
reference. Relation extraction in such scenar-
ios becomes more challenging as we need to
capture the long-distance interactions among
the entities and other words in the sentence.
Also, the words in a sentence do not contribute
equally in identifying the relation between the
two entities. To address this issue, we propose
a novel and effective attention model which
incorporates syntactic information of the sen-
tence and a multi-factor attention mechanism.
Experiments on the New York Times corpus
show that our proposed model outperforms
prior state-of-the-art models.

1 Introduction

Relation extraction from unstructured text is an
important task to build knowledge bases (KB) au-
tomatically. Banko et al. (2007) used open in-
formation extraction (Open IE) to extract relation
triples from sentences where verbs were consid-
ered as the relation, whereas supervised informa-
tion extraction systems extract a set of pre-defined
relations from text. Mintz et al. (2009), Riedel
et al. (2010), and Hoffmann et al. (2011) proposed
distant supervision to generate the training data
for sentence-level relation extraction, where rela-
tion tuples (two entities and the relation between
them) from a knowledge base such as Freebase
(Bollacker et al., 2008) were mapped to free text
(Wikipedia articles or New York Times articles).

The idea is that if a sentence contains both enti-
ties of a tuple, it is chosen as a training sentence
of that tuple. Although this process can generate
some noisy training instances, it can give a signif-
icant amount of training data which can be used to
build supervised models for this task.

Mintz et al. (2009), Riedel et al. (2010), and
Hoffmann et al. (2011) proposed feature-based
learning models and used entity tokens and their
nearby tokens, their part-of-speech tags, and other
linguistic features to train their models. Recently,
many neural network-based models have been
proposed to avoid feature engineering. Zeng et al.
(2014, 2015) used convolutional neural networks
(CNN) with max-pooling to find the relation be-
tween two given entities. Though these models
have been shown to perform reasonably well on
distantly supervised data, they sometimes fail to
find the relation when sentences are long and enti-
ties are located far from each other. CNN mod-
els with max-pooling have limitations in under-
standing the semantic similarity of words with the
given entities and they also fail to capture the long-
distance dependencies among the words and enti-
ties such as co-reference. In addition, all the words
in a sentence may not be equally important in find-
ing the relation and this issue is more prominent
in long sentences. Prior CNN-based models have
limitations in identifying the multiple important
factors to focus on in sentence-level relation ex-
traction.

To address this issue, we propose a novel multi-
factor attention model1 focusing on the syntac-
tic structure of a sentence for relation extraction.
We use a dependency parser to obtain the syn-
tactic structure of a sentence. We use a linear
form of attention to measure the semantic similar-
ity of words with the given entities and combine

1The code and data of this paper can be found at
https://github.com/nusnlp/MFA4RE
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it with the dependency distance of words from the
given entities to measure their influence in iden-
tifying the relation. Also, single attention may
not be able to capture all pieces of evidence for
identifying the relation due to normalization of at-
tention scores. Thus we use multi-factor atten-
tion in the proposed model. Experiments on the
New York Times (NYT) corpus show that the pro-
posed model outperforms prior work in terms of
F1 scores on sentence-level relation extraction.

2 Task Description

Sentence-level relation extraction is defined as
follows: Given a sentence S and two entities
{E1, E2} marked in the sentence, find the relation
r(E1, E2) between these two entities in S from a
pre-defined set of relations R ∪ {None}. None
indicates that none of the relations in R holds be-
tween the two marked entities in the sentence. The
relation between the entities is argument order-
specific, i.e., r(E1, E2) and r(E2, E1) are not the
same. Input to the system is a sentence S and
two entities E1 and E2, and output is the relation
r(E1, E2) ∈ R ∪ {None}.

3 Model Description

We use four types of embedding vectors in our
model: (1) word embedding vector w ∈ Rdw (2)
entity token indicator embedding vector z ∈ Rdz ,
which indicates if a word belongs to entity 1, en-
tity 2, or does not belong to any entity (3) a posi-
tional embedding vector u1 ∈ Rdu which repre-
sents the linear distance of a word from the start
token of entity 1 (4) another positional embedding
vector u2 ∈ Rdu which represents the linear dis-
tance of a word from the start token of entity 2.

We use a bi-directional long short-term memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997)
layer to capture the interaction among words in
a sentence S = {w1, w2, ....., wn}, where n is
the sentence length. The input to this layer is the
concatenated vector x ∈ Rdw+dz of word embed-
ding vector w and entity token indicator embed-
ding vector z.

xt = wt || zt
−→
ht =

−−−−→
LSTM(xt,ht−1)

←−
ht =

←−−−−
LSTM(xt,ht+1)

ht =
−→
ht||
←−
ht

−→
ht ∈ Rdw+dz and

←−
ht ∈ Rdw+dz are the output at

the tth step of the forward LSTM and backward
LSTM respectively. We concatenate them to ob-
tain the tth Bi-LSTM output ht ∈ R2(dw+dz).

3.1 Global Feature Extraction

We use a convolutional neural network (CNN) to
extract the sentence-level global features for rela-
tion extraction. We concatenate the positional em-
beddings u1 and u2 of words with the hidden rep-
resentation of the Bi-LSTM layer and use the con-
volution operation with max-pooling on concate-
nated vectors to extract the global feature vector.

qt = ht‖u1
t ‖u2

t

ci = fT (qi‖qi+1‖....‖qi+k−1)

cmax = max(c1, c2, ...., cn)

vg = [c1max, c
2
max, ...., c

fg
max]

qt ∈ R2(dw+dz+du) is the concatenated vector for
the tth word and f is a convolutional filter vector
of dimension 2k(dw + dz + du) where k is the
filter width. The index i moves from 1 to n and
produces a set of scalar values {c1, c2, ....., cn}.
The max-pooling operation chooses the maximum
cmax from these values as a feature. With fg
number of filters, we get a global feature vector
vg ∈ Rfg .

3.2 Attention Modeling

Figure 1 shows the architecture of our attention
model. We use a linear form of attention to find the
semantically meaningful words in a sentence with
respect to the entities which provide the pieces of
evidence for the relation between them. Our at-
tention mechanism uses the entities as attention
queries and their vector representation is very im-
portant for our model. Named entities mostly con-
sist of multiple tokens and many of them may not
be present in the training data or their frequency
may be low. The nearby words of an entity can
give significant information about the entity. Thus
we use the tokens of an entity and its nearby to-
kens to obtain its vector representation. We use
the convolution operation with max-pooling in the
context of an entity to get its vector representation.

ci = fT (xi‖xi+1‖....‖xi+k−1)

cmax = max(cb, cb+1, ...., ce)

ve = [c1max, c
2
max, ...., c

fe
max]
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Figure 1: Architecture of our attention model with m = 1. We have not shown the CNN-based global feature
extraction here. FFN=feed-forward network.

f is a convolutional filter vector of size k(dw+dz)
where k is the filter width and x is the concate-
nated vector of word embedding vector (w) and
entity token indicator embedding vector (z). b
and e are the start and end index of the sequence
of words comprising an entity and its neighbor-
ing context in the sentence, where 1 ≤ b ≤
e ≤ n. The index i moves from b to e and
produces a set of scalar values {cb, cb+1, ....., ce}.
The max-pooling operation chooses the maximum
cmax from these values as a feature. With fe num-
ber of filters, we get the entity vector ve ∈ Rfe .
We do this for both entities and get v1

e ∈ Rfe and
v2
e ∈ Rfe as their vector representation. We adopt

a simple linear function as follows to measure the
semantic similarity of words with the given enti-
ties:

f1score(hi,v
1
e) = hT

i W
1
av

1
e

f2score(hi,v
2
e) = hT

i W
2
av

2
e

hi is the Bi-LSTM hidden representation of the
ith word. W1

a,W
2
a ∈ R2(dw+dz)×fe are trainable

weight matrices. f1score(hi,v
1
e) and f2score(hi,v

2
e)

represent the semantic similarity score of the ith
word and the two given entities.

Not all words in a sentence are equally impor-
tant in finding the relation between the two enti-
ties. The words which are closer to the entities

are generally more important. To address this is-
sue, we propose to incorporate the syntactic struc-
ture of a sentence in our attention mechanism.
The syntactic structure is obtained from the depen-
dency parse tree of the sentence. Words which are
closer to the entities in the dependency parse tree
are more relevant to finding the relation. In our
model, we define the dependency distance to every
word from the head token (last token) of an entity
as the number of edges along the dependency path
(See Figure 2 for an example). We use a distance
window sizews and words whose dependency dis-
tance is within this window receive attention and
the other words are ignored. The details of our at-
tention mechanism follow.

d1i =

{
1

2l
1
i
−1

exp(f1score(hi,v
1
e)) if l1i ∈ [1, ws]

1
2ws exp(f1score(hi,v

1
e)) otherwise

d2i =

{
1

2l
2
i
−1

exp(f2score(hi,v
2
e)) if l2i ∈ [1, ws]

1
2ws exp(f2score(hi,v

2
e)) otherwise

p1i =
d1i∑
j d

1
j

, p2i =
d2i∑
j d

2
j

d1i and d2i are un-normalized attention scores and
p1i and p2i are the normalized attention scores for
the ith word with respect to entity 1 and entity 2 re-
spectively. l1i and l2i are the dependency distances
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Figure 2: An example dependency tree. The two num-
bers indicate the distance of the word from the head
token of the two entities respectively along the depen-
dency tree path.

of the ith word from the two entities. We mask
those words whose average dependency distance
from the two entities is larger than ws. We use
the semantic meaning of the words and their de-
pendency distance from the two entities together
in our attention mechanism. The attention feature
vectors v1

a and v1
a with respect to the two entities

are determined as follows:

v1
a =

n∑

i=1

p1ihi, v2
a =

n∑

i=1

p2ihi

3.3 Multi-Factor Attention
Two entities in a sentence, when located far from
each other, can be linked via more than one co-
reference chain or more than one important word.
Due to the normalization of the attention scores
as described above, single attention cannot cap-
ture all relevant information needed to find the re-
lation between two entities. Thus we use a multi-
factor attention mechanism, where the number of
factors is a hyper-parameter, to gather all relevant
information for identifying the relation. We re-
place the attention matrix Wa with an attention
tensor W1:m

a ∈ Rm×2(dw+dz)×2fe where m is
the factor count. This gives us m attention vec-
tors with respect to each entity. We concatenate
all the feature vectors obtained using these atten-
tion vectors to get the multi-attentive feature vec-
tor vma ∈ R4m(dw+dz).

3.4 Relation Extraction
We concatenate vg, vma, v1

e , and v2
e , and this con-

catenated feature vector is given to a feed-forward
layer with softmax activation to predict the nor-
malized probabilities for the relation labels.

r = softmax(Wr(vg || vma || v1
e || v2

e) + br)

Wr ∈ R(fg+2fe+4m(dw+dz))×(|R|+1) is the weight
matrix, br ∈ R|R|+1 is the bias vector of the feed-
forward layer for relation extraction, and r is the

vector of normalized probabilities of relation la-
bels.

3.5 Loss Function

We calculate the loss over each mini-batch of size
B. We use the following negative log-likelihood
as our objective function for relation extraction:

L = − 1

B

B∑

i=1

log(p(ri|si, e1i , e2i , θ))

where p(ri|si, e1i , e2i , θ) is the conditional proba-
bility of the true relation ri when the sentence si,
two entities e1i and e2i , and the model parameters θ
are given.

4 Experiments

4.1 Datasets

We use the New York Times (NYT) corpus (Riedel
et al., 2010) in our experiments. There are two
versions of this corpus: (1) The original NYT cor-
pus created by Riedel et al. (2010) which has 52
valid relations and a None relation. We name this
dataset NYT10. The training dataset has 455, 412
instances and 330, 776 of the instances belong to
the None relation and the remaining 124, 636 in-
stances have valid relations. The test dataset has
172, 415 instances and 165, 974 of the instances
belong to the None relation and the remaining
6, 441 instances have valid relations. Both the
training and test datasets have been created by
aligning Freebase (Bollacker et al., 2008) tuples
to New York Times articles. (2) Another version
created by Hoffmann et al. (2011) which has 24
valid relations and a None relation. We name this
dataset NYT11. The corresponding statistics for
NYT11 are given in Table 1. The training dataset
is created by aligning Freebase tuples to NYT ar-
ticles, but the test dataset is manually annotated.

4.2 Evaluation Metrics

We use precision, recall, and F1 scores to evaluate
the performance of models on relation extraction
after removing the None labels. We use a confi-
dence threshold to decide if the relation of a test
instance belongs to the set of relations R or None.
If the network predicts None for a test instance,
then it is considered as None only. But if the net-
work predicts a relation from the setR and the cor-
responding softmax score is below the confidence
threshold, then the final class is changed to None.
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NYT10 NYT11
# relations 53 25

Train

# instances 455,412 335,843
# valid relation tuples 124,636 100,671
# None relation tuples 330,776 235,172
avg. sentence length 41.1 37.2
avg. distance between
entity pairs 12.8 12.2

Test

# instances 172,415 1,450
# valid relation tuples 6,441 520
# None relation tuples 165,974 930
avg. sentence length 41.7 39.7
avg. distance between
entity pairs 13.1 11.0

Table 1: Statistics of the NYT10 and NYT11 dataset.

This confidence threshold is the one that achieves
the highest F1 score on the validation dataset. We
also include the precision-recall curves for all the
models.

4.3 Parameter Settings
We run word2vec (Mikolov et al., 2013) on the
NYT corpus to obtain the initial word embeddings
with dimension dw = 50 and update the embed-
dings during training. We set the dimension of
entity token indicator embedding vector dz = 10
and positional embedding vector du = 5. The
hidden layer dimension of the forward and back-
ward LSTM is 60, which is the same as the dimen-
sion of input word representation vector x. The
dimension of Bi-LSTM output is 120. We use
fg = fe = 230 filters of width k = 3 for fea-
ture extraction whenever we apply the convolution
operation. We use dropout in our network with a
dropout rate of 0.5, and in convolutional layers,
we use the tanh activation function. We use the
sequence of tokens starting from 5 words before
the entity to 5 words after the entity as its con-
text. We train our models with mini-batch size of
50 and optimize the network parameters using the
Adagrad optimizer (Duchi et al., 2011). We use
the dependency parser from spaCy2 to obtain the
dependency distance of the words from the enti-
ties and use ws = 5 as the window size for depen-
dency distance-based attention.

4.4 Comparison to Prior Work
We compare our proposed model with the follow-
ing state-of-the-art models.

(1) CNN (Zeng et al., 2014): Words are rep-
resented using word embeddings and two posi-
tional embeddings. A convolutional neural net-

2https://spacy.io/

work (CNN) with max-pooling is applied to ex-
tract the sentence-level feature vector. This fea-
ture vector is passed to a feed-forward layer with
softmax to classify the relation.

(2) PCNN (Zeng et al., 2015): Words are repre-
sented using word embeddings and two positional
embeddings. A convolutional neural network
(CNN) is applied to the word representations.
Rather than applying a global max-pooling oper-
ation on the entire sentence, three max-pooling
operations are applied on three segments of the
sentence based on the location of the two entities
(hence the name Piecewise Convolutional Neural
Network (PCNN)). The first max-pooling opera-
tion is applied from the beginning of the sentence
to the end of the entity appearing first in the sen-
tence. The second max-pooling operation is ap-
plied from the beginning of the entity appearing
first in the sentence to the end of the entity appear-
ing second in the sentence. The third max-pooling
operation is applied from the beginning of the en-
tity appearing second in the sentence to the end
of the sentence. Max-pooled features are concate-
nated and passed to a feed-forward layer with soft-
max to determine the relation.

(3) Entity Attention (EA) (Shen and Huang,
2016): This is the combination of a CNN model
and an attention model. Words are represented
using word embeddings and two positional em-
beddings. A CNN with max-pooling is used to
extract global features. Attention is applied with
respect to the two entities separately. The vec-
tor representation of every word is concatenated
with the word embedding of the last token of the
entity. This concatenated representation is passed
to a feed-forward layer with tanh activation and
then another feed-forward layer to get a scalar at-
tention score for every word. The original word
representations are averaged based on the attention
scores to get the attentive feature vectors. A CNN-
extracted feature vector and two attentive feature
vectors with respect to the two entities are con-
catenated and passed to a feed-forward layer with
softmax to determine the relation.

(4) BiGRU Word Attention (BGWA) (Jat et al.,
2017): Words are represented using word embed-
dings and two positional embeddings. They are
passed to a bidirectional gated recurrent unit (Bi-
GRU) (Cho et al., 2014) layer. Hidden vectors
of the BiGRU layer are passed to a bilinear op-
erator (a combination of two feed-forward layers)
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NYT10 NYT11
Model Prec. Rec. F1 Prec. Rec. F1
CNN (Zeng et al., 2014) 0.413 0.591 0.486 0.444 0.625 0.519
PCNN (Zeng et al., 2015) 0.380 0.642 0.477 0.446 0.679 0.538†

EA (Shen and Huang, 2016) 0.443 0.638 0.523† 0.419 0.677 0.517
BGWA (Jat et al., 2017) 0.364 0.632 0.462 0.417 0.692 0.521
BiLSTM-CNN 0.490 0.507 0.498 0.473 0.606 0.531
Our model 0.541 0.595 0.566* 0.507 0.652 0.571*

Table 2: Performance comparison of different models on the two datasets. * denotes a statistically significant
improvement over the previous best state-of-the-art model with p < 0.01 under the bootstrap paired t-test. †

denotes the previous best state-of-the-art model.

Figure 3: Precision-Recall curve for the NYT10
dataset.

to compute a scalar attention score for each word.
Hidden vectors of the BiGRU layer are multiplied
by their corresponding attention scores. A piece-
wise CNN is applied on the weighted hidden vec-
tors to obtain the feature vector. This feature vec-
tor is passed to a feed-forward layer with softmax
to determine the relation.

(5) BiLSTM-CNN: This is our own baseline.
Words are represented using word embeddings
and entity indicator embeddings. They are passed
to a bidirectional LSTM. Hidden representations
of the LSTMs are concatenated with two posi-
tional embeddings. We use CNN and max-pooling
on the concatenated representations to extract the
feature vector. Also, we use CNN and max-
pooling on the word embeddings and entity indica-
tor embeddings of the context words of entities to
obtain entity-specific features. These features are
concatenated and passed to a feed-forward layer to
determine the relation.

Figure 4: Precision-Recall curve for the NYT11
dataset.

4.5 Experimental Results

We present the results of our final model on the
relation extraction task on the two datasets in Ta-
ble 2. Our model outperforms the previous state-
of-the-art models on both datasets in terms of F1
score. On the NYT10 dataset, it achieves 4.3%
higher F1 score compared to the previous best
state-of-the-art model EA. Similarly, it achieves
3.3% higher F1 score compared to the previ-
ous best state-of-the-model PCNN on the NYT11
dataset. Our model improves the precision scores
on both datasets with good recall scores. This will
help to build a cleaner knowledge base with fewer
false positives. We also show the precision-recall
curves for the NYT10 and NYT11 datasets in Fig-
ures 3 and 4 respectively. The goal of any rela-
tion extraction system is to extract as many rela-
tions as possible with minimal false positives. If
the recall score becomes very low, the coverage of
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Figure 5: Performance comparison across different
sentence lengths on the NYT10 dataset.

the KB will be poor. From Figure 3, we observe
that when the recall score is above 0.4, our model
achieves higher precision than all the competing
models on the NYT10 dataset. On the NYT11
dataset (Figure 4), when recall score is above 0.6,
our model achieves higher precision than the com-
peting models. Achieving higher precision with
high recall score helps to build a cleaner KB with
good coverage.

5 Analysis and Discussion

5.1 Varying the number of factors (m)
We investigate the effects of the multi-factor count
(m) in our final model on the test datasets in Ta-
ble 3. We observe that for the NYT10 dataset,
m = {1, 2, 3} gives good performance with m =
1 achieving the highest F1 score. On the NYT11
dataset, m = 4 gives the best performance. These
experiments show that the number of factors giv-
ing the best performance may vary depending on
the underlying data distribution.

5.2 Effectiveness of Model Components
We include the ablation results on the NYT11
dataset in Table 4. When we add multi-factor at-
tention to the baseline BiLSTM-CNN model with-
out the dependency distance-based weight factor
in the attention mechanism, we get 0.8% F1 score
improvement (A2−A1). Adding the dependency
weight factor with a window size of 5 improves

Figure 6: Performance comparison across different
sentence lengths on the NYT11 dataset.

NYT10 NYT11
m Prec. Rec. F1 Prec. Rec. F1
1 0.541 0.595 0.566 0.495 0.621 0.551
2 0.521 0.597 0.556 0.482 0.656 0.555
3 0.490 0.617 0.547 0.509 0.633 0.564
4 0.449 0.623 0.522 0.507 0.652 0.571
5 0.467 0.609 0.529 0.488 0.677 0.567

Table 3: Performance comparison of our model with
different values of m on the two datasets.

the F1 score by 3.2% (A3−A2). Increasing the
window size to 10 reduces the F1 score marginally
(A3−A4). Replacing the attention normalizing
function with softmax operation also reduces the
F1 score marginally (A3−A5). In our model, we
concatenate the features extracted by each atten-
tion layer. Rather than concatenating them, we
can apply max-pooling operation across the mul-
tiple attention scores to compute the final atten-
tion scores. These max-pooled attention scores
are used to obtain the weighted average vector of
Bi-LSTM hidden vectors. This affects the model
performance negatively and F1 score of the model
decreases by 3.0% (A3−A6).

5.3 Performance with Varying Sentence
Length and Varying Entity Pair Distance

We analyze the effects of our attention model with
different sentence lengths in the two datasets in
Figures 5 and 6. We also analyze the effects of
our attention model with different distances be-
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Figure 7: Performance comparison across different dis-
tances between entities on the NYT10 dataset.

Prec. Rec. F1
(A1) BiLSTM-CNN 0.473 0.606 0.531
(A2) Standard attention 0.466 0.638 0.539
(A3) Window size (ws) = 5 0.507 0.652 0.571
(A4) Window size (ws) = 10 0.510 0.640 0.568
(A5) Softmax 0.490 0.658 0.562
(A6) Max-pool 0.492 0.600 0.541

Table 4: Effectiveness of model components (m = 4)
on the NYT11 dataset.

tween the two entities in the two datasets in Fig-
ures 7 and 8. We observe that with increasing sen-
tence length and increasing distance between the
two entities, the performance of all models drops.
This shows that finding the relation between en-
tities located far from each other is a more diffi-
cult task. Our multi-factor attention model with
dependency-distance weight factor increases the
F1 score in all configurations when compared to
previous state-of-the-art models on both datasets.

6 Related Work

Relation extraction from a distantly supervised
dataset is an important task and many researchers
(Mintz et al., 2009; Riedel et al., 2010; Hoff-
mann et al., 2011) tried to solve this task us-
ing feature-based classification models. Recently,
Zeng et al. (2014, 2015) used CNN models for
this task which can extract features automatically.
Shen and Huang (2016) and Jat et al. (2017) used
attention mechanism in their model to improve
performance. Surdeanu et al. (2012), Lin et al.

Figure 8: Performance comparison across different dis-
tances between entities on the NYT11 dataset.

(2016), Vashishth et al. (2018), Wu et al. (2019),
and Ye and Ling (2019) used multiple sentences in
a multi-instance relation extraction setting to cap-
ture the features located in multiple sentences for
a pair of entities. In their evaluation setting, they
evaluated model performance by considering mul-
tiple sentences having the same pair of entities as a
single test instance. On the other hand, our model
and the previous models that we compare to in this
paper (Zeng et al., 2014, 2015; Shen and Huang,
2016; Jat et al., 2017) work on each sentence inde-
pendently and are evaluated at the sentence level.
Since there may not be multiple sentences that
contain a pair of entities, it is important to improve
the task performance at the sentence level. Future
work can explore the integration of our sentence-
level attention model in a multi-instance relation
extraction framework.

Not much previous research has exploited the
dependency structure of a sentence in different
ways for relation extraction. Xu et al. (2015) and
Miwa and Bansal (2016) used an LSTM network
and the shortest dependency path between two en-
tities to find the relation between them. Huang
et al. (2017) used the dependency structure of a
sentence for the slot-filling task which is close
to the relation extraction task. Liu et al. (2015)
exploited the shortest dependency path between
two entities and the sub-trees attached to that path
(augmented dependency path) for relation extrac-
tion. Zhang et al. (2018) and Guo et al. (2019)
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used graph convolution networks with pruned de-
pendency tree structures for this task. In this
work, we have incorporated the dependency dis-
tance of the words in a sentence from the two en-
tities in a multi-factor attention mechanism to im-
prove sentence-level relation extraction.

Attention-based neural networks are quite suc-
cessful for many other NLP tasks. Bahdanau
et al. (2015) and Luong et al. (2015) used atten-
tion models for neural machine translation, Seo
et al. (2017) used attention mechanism for answer
span extraction. Vaswani et al. (2017) and Kundu
and Ng (2018) used multi-head or multi-factor at-
tention models for machine translation and an-
swer span extraction respectively. He et al. (2018)
used dependency distance-focused word attention
model for aspect-based sentiment analysis.

7 Conclusion

In this paper, we have proposed a multi-factor at-
tention model utilizing syntactic structure for rela-
tion extraction. The syntactic structure component
of our model helps to identify important words in
a sentence and the multi-factor component helps
to gather different pieces of evidence present in
a sentence. Together, these two components im-
prove the performance of our model on this task,
and our model outperforms previous state-of-the-
art models when evaluated on the New York Times
(NYT) corpus, achieving significantly higher F1
scores.
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Abstract

Event Detection (ED) is one of the most im-
portant tasks in the field of information extrac-
tion. The goal of ED is to find triggers in sen-
tences and classify them into different event
types. In previous works, the information of
entity types are commonly utilized to benefit
event detection. However, the sequential fea-
tures of entity types have not been well utilized
yet in the existing ED methods. In this paper,
we propose a novel ED approach which learns
sequential features from word sequences and
entity type sequences separately, and com-
bines these two types of sequential features
with the help of a trigger-entity interaction
learning module. The experimental results
demonstrate that our proposed approach out-
performs the state-of-the-art methods.

1 Introduction

Event Extraction (EE) is one of the essential tasks
of Information Extraction, which aims to extract
structured events from unstructured texts. Accord-
ing to ACE (Automatic Context Extraction) event
annotation guideline1, an event is represented by
an event trigger, which is often a single verb or
noun, and a set of event arguments, the partici-
pants of the event. Event Detection (ED), as a
crucial step in EE task, focuses on finding event
trigger words and classifying them into different
event types. As pointed out in (Liu et al., 2019;
Ritter et al., 2012), the ambiguity in natural lan-
guages makes ED a challenging task. On the one
hand, various expressions can be used to represent
the same event type; on the other hand, the same
event triggers, when placed in different context,
can be categorized in totally different event types.
To illustrate the second phenomenon, we present

∗Corresponding author: hywan@bjtu.edu.cn
1https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/

files/english-events-guidelines-v5.4.3.pdf

two examples from the widely used ACE 20052

dataset:

1) A Russian Soyuz capsule (VEH) dropped
(Transport) the astronauts (PER) off this
morning.

2) U.S. planes (VEH) dropped (Attack) a bomb
(WEA) near northern Iraq.

Notice that the same annotated event trigger
dropped has different meanings in the two
sentences above and thus evokes entirely different
event types. In the first sentence, dropped evokes
a Transport event, but in the second sentence,
dropped represents an Attack event. According
to Liu et al. (2018a), in the ACE 2005 dataset,
57% of the event triggers are ambiguous. How
to alleviate the ambiguity of event triggers has
become a crucial problem in the ED task.

In several previous works, researchers have
proved that entity mentions could play a positive
role on alleviating the ambiguity of event triggers
(Hong et al., 2011; Li et al., 2013; Feng et al.,
2016; Liu et al., 2017, 2019, 2018a). An entity
mention, as described in ACE 2005 dataset, is a
reference to an object or a set of objects in the
world. Back to the two sentences above, entity
mentions are the underlined word tokens. In the
first sentence, before classifying the event trigger
dropped, if an event detector can obtain the infor-
mation that “Soyuz capsule” is an entity mention
with the type VEHICLE, and “astronauts” has the
entity type PERSON, the event detector may tend
to consider the potential link between VEHICLE
and PERSON, which makes the event more likely
to be a Transport event. In the second sentence,
besides “planes” which is a VEHICLE type entity
mention, another entity mention “bomb”, which
has the type WEAPON, can largely effect on the

2https://catalog.ldc.upenn.edu/LDC2006T06
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ED result. The appearance of WEAPON tells the
event detector that there is a weapon in the context,
and this clue leads the detector to recognize an
Attack event with less ambiguity.

Liu et al. (2017) utilize raw entity types directly
as local context of words to calculate the attention
value between entity types and candidate triggers,
aiming to catch the most important entity type
information. After that, Liu et al. (2018b, 2019);
Nguyen and Grishman (2018) apply entity types
as a kind of supplementary information of the
word tokens. They concatenate these two types
of features and feed them into neural networks to
learn mixed representations.

Intuitively, we understand that the sequential
features of words are very important in modeling
the sentence information, since the order of tokens
can largely influence the meaning of the sentence.
In the previous works, different neural network
architectures have been employed to capture the
sequential features from word sequences (Chen
et al., 2015; Lin et al., 2018; Sha et al., 2018).
Similar to the word sequences, entity type se-
quences, which consist of entity type annotations
for each token in the word sequences, also contain
sequential features, because the position of an
entity mention’s type in the sequences may affect
its importance in the ED process. However, to
the best of our knowledge, there is no study
which regards the entity type sequence as an
independent sequence to capture the sequential
features and discusses what influence the entity
types’ sequential features would take to the ED
task.

In order to make use of the information
from both entity type sequences and word
sequences, in this paper, we propose a novel
ED approach Entity-Type-Enhanced-Event-
Detection (ETEED). We consider that the word
sequence and the entity type sequence have
equal importance and thus the representation
of each sequence should be learned separately.
In this procedure, the Transformer Encoder
structure (Vaswani et al., 2017) is utilized to
capture the sequential features. Besides, an
attention based trigger-entity interaction learning
module is proposed to learn the correlation
between triggers and entity types. Different from
previous works which calculate the attention
value between a candidate trigger and the whole
entity type sequence, this module only learns the

relation between entity mentions’ types and the
candidate trigger, and returns weighted summed
entity mention type representations to benefit
the classification. In this way, we can avoid the
disturbance from irrelevant entity types, and focus
only on the effect brought by entity mentions.

In summary, our contribution in this work is as
follows:

• we propose to learn entity type representa-
tions separately from word representations,
in order to make full use of the sequential
features from entity type sequences.

• we propose an attention-based trigger-entity
interaction learning module, which focuses
only on the relation between entity mentions
and candidate triggers, thus can eliminate the
influence brought by irrelative entity types.

• we extensively evaluate our approach on a
widely used benchmark dataset ACE 2005,
and the evaluation result shows that our
method can achieve competitive results
compared with the state-of-the-art methods.

2 Approach

In this section, we elaborate the proposed ETEED
method. Similar to the existing works, we regard
ED as a classification problem. Specifically, in
each sample, there is a candidate trigger, and our
goal is to classify this candidate trigger into 34
event types (33 event subtypes and a NA type).
We present the overall framework of our method
in Figure 1. To well illustrate our model, we divide
this section into three different parts: i) token rep-
resentation learning, which involves representing
the word sequences and entity type sequences,
ii) attention-based feature learning, which inter-
prets how the attention module works to learn
the relation between entity mentions and candi-
date triggers, and iii) trigger classification, which
concatenates all the continuous representation to-
gether and produce the final output for the trigger
classification.

2.1 Token Representation Learning

For each sample with length n in the
dataset, we represent its word sequence as
w = {w1, w2, .., wn}, in which wi means
the i-th word in the sentence. Similarly,
let e = {e1, e2, ..., en} be the entity types
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Figure 1: Global structure of our method.

corresponding to w. In consideration that cross-
word entity mentions occur frequently in the ACE
2005 dataset, we apply BIO annotation schema
to assign entity types for each token in the word
sequence. Besides, we use c to represent the
position of a candidate trigger in the sequence,
so wc and ec show the word and entity type
information of the candidate trigger respectively.
In order to learn vector representations in local
semantic context for the word and entity type
tokens, firstly, we use embedding layers to
transform the symbolic representations w and
e to real-value vectors. Then, the Transformer
Encoders are applied to capture the semantic
relation between tokens, and learn a specific
vector representation for each token.

Embedding Layer
With the help of the embedding layer, we transfor-
m the word tokenwi and entity type token ei in the
input sequences into real-value representations.
By looking up pre-trained word embedding matrix
for wi, a fixed sized vector representation xwi can
be obtained. On the other side, for embedding
entity type tokens, following existing works (Li
et al., 2013; Chen et al., 2015; Liu et al., 2017;
Nguyen and Grishman, 2015), we randomly ini-
tialize the real-value representation for each entity
type and update it during the training process. The
vector representation of ei is marked as xei .

Transformer Encoder Structure
Proposed by Vaswani et al. (2017), the Trans-
former has proved its effectiveness on the ma-
chine translation task. Different from most neural
network based machine translation models (Cho

et al., 2014; Bahdanau et al., 2015; Gehring et al.,
2017), the Transformer is solely based on atten-
tion mechanisms, dispensing with recurrences and
convolutions entirely. One of the most important
reasons is that it is easier for attention mecha-
nisms to learn long-range dependencies, which
is a key challenge in sequential data modeling,
than recurrent and convolutional neural networks.
The Transformer has an encoder-decoder struc-
ture, the encoder maps the input sequence to
new continuous representations, then the decoder
receives the representations and generates an out-
put sequence. The encoder-decoder structure is
suitable for the machine translation task, however,
in our approach, we only need to produce token
representations for input sequences based on their
local context. So, only the Transformer Encoder is
used in our model.

Position

Encoding
⊕

Input Sequence

Multi-Head Attention

⊕

Layer Norm

Position-Wise

Feed-Forward

⊕

Layer Norm

Output Sequence

Figure 2: Architecture of the Transformer Encoder.
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Figure 2 shows the architecture of the
Transformer Encoder employed in our approach.
For an input sequence consists of vector
representations {x1, x2, ..., xn} with xi ∈ Rd,
the Transformer Encoder produces the output
sequence {z1, z2, ..., zn} of the same dimension
with the input sequence. There are two sub-layers
in the Transformer Encoder, one is a multi-head
self attention layer, and the ohter is a position-wise
feed-forward layer. Each sub-layer is followed by
a residual connection (He et al., 2016) and a layer
normalization (Lei Ba et al., 2016).

Based on single attention function, multi-head
attention mechanism jointly captures the informa-
tion from different representation subspaces. It
firstly does h times different linear projections on
the same input, then performs h single attention
functions in parallel. Finally, in order to integrate
all the information together, h output values from
single attention functions are concatenated and
projected to the same dimension with the input.

Ai(x) = softmax




(
xWQ

i

) (
xWK

i

)T
√
dk


 (1)

headi = Ai(x) ·
(
xW V

i

)
(2)

MultiHead(x) = [head1, ..., headh] ·WO (3)

where x ∈ Rn×d is the input of the multi-head
attention layer, WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk ,

W V
i ∈ Rd×dv are parameters to perform linear

projections on input vectors, WO ∈ Rhdv×d

projects the concatenation of h single attention
results to the same dimension with x. dk, dv are
hyper-parameters determining projection dimen-
sions.

In addition to the multi-head attention layer,
a position-wise feed-forward layer is employed
to enhance the representation capability of the
Transformer Encoder.

FFN(x′) = relu
(
x′W1 + b1

)
W2 + b2 (4)

where x′ ∈ Rn×d is the input of the feed-forward
layer, W1 ∈ Rd×dhidden , b1 ∈ Rdhidden , W2 ∈
Rdhidden×d, b2 ∈ Rd, in which dhidden is a
hyper-parameter. Besides, since the Transformer
Encoder contains neither recurrence nor convo-
lution, in order to utilize the order information
of sequence, position encodings are added to the
input sequence at the beginning of the Transformer

Encoder. The position encodings are calculated
with the following equations:

PE(pos, 2i) = sin
(
pos/100002i/d

)
(5)

PE(pos, 2i+ 1) = cos
(
pos/100002i/d

)
(6)

where pos is the position and i is the dimension.
With the Transformer Encoder architecture de-

scribed above, we obtain the vector representa-
tions from word sequence xw and entity type
sequence xe separately, which will be marked as
zw = {zw1 , ..., zwn}, zwi ∈ Rdw and ze =
{ze1 , ..., zen}, zei ∈ Rde in the following para-
graph.

2.2 Trigger-Entity Interaction Learning
After the token representation learning, we get
two sequences zw and ze. In order to encode
the interaction between entity types and the can-
didate trigger, we introduce a trigger-entity inter-
action learning module in this subsection. It is
an attention-based module which calculates the
attention factors between the candidate trigger and
entity types. In this procedure, we notice that there
are many tokens with type O in the entity type
sequence, which may prevent the method from
explicitly modeling the relation between entity
mentions’ types (non-O entity types) and candi-
date trigger. Inspired by Nguyen and Grishman
(2018), in this paper, we exclusively calculate the
relation between the type of entity mentions and
the candidate trigger. Given the vector representa-
tion of the candidate trigger zwc and the entity type
sequence ze, the attention values will be calculate
as:

zem = {zei |1 ≤ i ≤ n and ei 6= O} (7)

α = σ

(
(zwcU1) · (zemU2)

T

√
dw

+ b3

)
(8)

α′ = softmax (α) (9)

where zem ∈ Rk×de with supposing that there are
k entity mentions in the sample, U1 ∈ Rdw×dw ,
U2 ∈ Rde×dw , b3 ∈ Rk. As mentioned by Vaswani
et al. (2017), to counteract the effect that the large
values of dw may impact the softmax result, we
employ a coefficient 1√

dw
to scale the dot product.

Finally, with the help of the attention values α′

and the entity mention type sequence zem, we can
calculate the vector representation for the trigger-
entity interaction. Before doing the dot product
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with α′, in order to reinforce the capability of the
model, we employ a fully connected layer on zem
with ReLU as activation function.

r = α′ · relu(zemU3 + b4) (10)

where U3 ∈ Rde×dw , b4 ∈ Rdw , and r ∈ Rdw

represents the output of trigger-entity interaction
learning.

2.3 Trigger Classification
As illustrated in Figure 1, for each sample, we con-
catenate the trigger-entity interaction r with the
candidate trigger zwc and the corresponding entity
type representation zec , to form the complete can-
didate trigger representation. Then, a multi-layer
perceptron is employed as the trigger classifier to
model the candidate trigger representation. The
activation function SELU (Klambauer et al., 2017)
is utilized in this multi-layer perceptron. Finally,
the softmax function is applied to calculate the
conditional probabilities that the candidate trigger
belongs to each event type.

Hc1 = selu ([zwc , zec , r]Wc1 + bc1) (11)

Hc2 = selu (Hc1Wc2 + bc2) (12)

O = softmax (Hc2Wo + bo) (13)

where Wc1 ∈ R(de+2dw)×dc1 , Wc2 ∈ Rdc1×dc2 ,
Wo ∈ Rdc2×dT are weight metrics, in which
dci (i ∈ {1, 2}) are dimensions of the hidden
states, dT demonstrates the number of event types.

During the training procedure, we set the cross-
entropy error as the loss function of our model,
and the Adam optimizer (Kingma and Ba, 2015)
is utilized to update the parameters. To keep the
scale of gradients roughly the same in all layers,
all the parameters are initialized by Xavier initial-
izer (Glorot and Bengio, 2010). Table 1 shows the
hyper-parameter settings in our experiments.

3 Experiments

3.1 Dataset
We evaluate our approach on a widely used bench-
mark dataset ACE 2005. In this dataset, event
triggers are categorized into 33 subtypes (e.g.,
Be-Born, Marry, Attack). Besides, we annotate
the candidate triggers which have no event types
with the NA type. So, in total 34 event types
are involved in our experiments. We also uti-
lize the golden entity mentions annotated in ACE

Module Parameter Value

Embedding word 200
entity 128

Transformer Encoder
(Common)

head number 4
layer number 1
dhidden 2048

Transformer Encoder
(Word)

dk 200
dv 200

Transformer Encoder
(Entity)

dk 128
dv 128

Trigger Classifier dc1 256
dc2 64

Adam Optimizer

lr 5e-5
β1 0.9
β2 0.999
ε 1e-8

Table 1: Hyper-parameter settings in our experiments.

2005 with BIO schema to produce the entity type
sequences. Following the previous studies (Liu
et al., 2019; Hong et al., 2018; Ji and Grishman,
2008), from the ACE 2005 English corpus, we
choose randomly 40 newswire articles as the test
set, 30 other articles as the development set, and
pick the remaining 529 articles as the training set.

Following the ACE 2005’s guideline document
and Liu et al. (2019), we enumerate every noun,
verb and adjective in sentences as candidate
triggers. The NLP toolkit NLTK3 is employed to
parse and annotate the POS tags for sentences.
We use pre-trained GloVe (Pennington et al.,
2014) vectors as the embeddings for word tokens,
and randomly initialize the embeddings for
entity types then update them during the training
procedure.

3.2 Overall Performance

We compare our ETEED model with the following
state-of-the-art methods:

1) JointBeam is a feature-based method pro-
posed by Li et al. (2013), which combines the
manually designed local and global features to
extract events.

2) RBPB is proposed by Sha et al. (2016),
which simultaneously utilizes patterns and elabo-
rately designed features to extract event triggers.
In addition, a regularization method is applied to
further improve the performance of the model.

3) JRNN is proposed by Nguyen et al. (2016),
which combines the manually designed features
with BiGRU to jointly extract triggers and argu-
ments.

4) HNN is a language independent neural net-

3http://www.nltk.org/

617



Method
Trigger

Identification(%)
Trigger

Classification(%)
P R F1 P R F1

JointBeam 76.9 65.0 70.4 73.7 62.3 67.5
RBPB N/A 70.3 67.5 68.9
JRNN 68.5 75.7 71.9 66.0 73.0 69.3
HNN* 80.8 71.5 75.9 84.6 64.9 73.4
SELF 75.3 78.8 77.0 71.3 74.7 73.0
DEEB-RNN N/A 72.3 75.8 74.0
TEACHER N/A 76.8 72.9 74.8
ETEED (ours) 78.1 82.5 80.2 74.1 78.2 76.1

Table 2: Overall performance with golden entity labels. * represents the model doesn’t utilize entity type
information.

work architecture proposed by Feng et al. (2016).
With the structure which combines BiLSTM with
CNN, this method can capture both the sequence
and chunk information of words to benefit ED.

5) DEEB-RNN is proposed by Zhao et al.
(2018), which incorporates the document-level
clues with BiGRU to enhance ED.

6) SELF is proposed by Hong et al. (2018),
which integrates BiLSTM into GAN structure, in
order to distinguish the authentic information from
spurious features.

7) TEACHER is an adversarial imitation based
knowledge distillation approach proposed by Liu
et al. (2019). This model contains two modules,
one is a “teacher” module which combines the
word sequences with the golden annotations of
entity types and argument roles to learn knowledge
representations. The other one is a “student”
module which tries to imitate the representations
from the “teacher” module.

We evaluate the performance via Precision (P),
Recall (R) and F1-score (F1). Table 2 shows
the overall performance of different approaches
on the ED task. From the results, it can be
found that our approach outperforms the state-of-
the-art methods in both trigger identification and
trigger classification. In the trigger identification,
our approach achieves better results than all the
previous methods in recall and F1-score (promote
respectively 3.7% and 3.2% against the best base-
line model SELF). Besides, although lower in
precision by 2.8% , ETEED is 11% higher than the
HNN model in recall. The same conclusion can
be made in the trigger classification, our methods
produces the highest recall and F1-score, and the
improvement of F1-score is 1.3% over the best

Method Classification F1(%)
JointBeam 65.6 (↓1.9)
RBPB 67.8 (↓1.1)
TEACHER 71.2 (↓3.6)
ETEED (ours) 74.8 (↓1.3)

Table 3: Performance with predicted entity labels.
↓ represents the performance drop from golden
annotations.

baseline model TEACHER. To summarize, on
the one hand, ETEED significantly improves the
recall values compared with the state-of-the-art
methods. On the other hand, ETEED produces
relatively comparable precisions to the existing
methods, which ensures the good F1-score.

To further verify the performance of our model
in the real testing scenario, where the golden entity
annotations are missing, we utilize the predicted
entity type labels in the test procedure. Following
Liu et al. (2019), we train a BiLSTM-CRF model
on the training set, then apply it on the test set to
get the predicted entity type sequences. The F1-
score of the BiLSTM-CRF model on the test set
is 82.7%. The JointBeam, RBPB and TEACHER
are selected as baseline methods. Table 3 shows
that our approach has significant improvement
compared with the baseline methods. Besides, our
model has relatively small performance descent
with using predicted annotations than using gold-
en annotations.

3.3 Effect of Entity Type Representation

In order to evaluate the effect of the entity type
representation, we design the two following exper-
iments:
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Method
Trigger

Identification(%)
Trigger

Classification(%)
P R F1 P R F1

ETEEDno entity 82.1 74.4 78.0 77.8 70.5 74.0
ETEEDconcat 83.2 73.9 78.3 78.4 69.7 73.8
ETEED 78.1 82.5 80.2 74.1 78.2 76.1

Table 4: Effect of entity type sequence representation.

Method
Trigger

Identification(%)
Trigger

Classification(%)
P R F1 P R F1

ETEEDno interaction 82.6 75.2 78.7 79.3 72.2 75.6
ETEEDall entity 82.3 77.4 79.7 78.2 73.5 75.8
ETEED 78.1 82.5 80.2 74.1 78.2 76.1
TEACHER N/A 76.8 72.9 74.8
ETEEDargument 87.4 82.9 85.1 86.0 81.6 83.8

Table 5: Effect of trigger-entity interaction.

1) ETEEDno entity utilizes only word token
sequences, which means there is no more entity
information used in the model. For each sam-
ple, firstly the word sequence is encoded by the
Transformer Encoder, then the candidate trigger’s
representation xwc is fed into the trigger classifier
to get its event type.

2) ETEEDconcat follows some previous works
(Liu et al., 2019, 2017), this model utilizes the
concatenation of the word representations and the
entity type representations as the input of down-
stream structures. In ETEEDconcat, the concate-
nated representations are sent into the Transformer
Encoder, then the features of the candidate triggers
are picked from the output results to be classified
by the trigger classifier.

The hyper-parameter settings keep the same
with the ETEED. Table 4 shows that, our approach
significantly outperforms the baseline models on
F1-score (1.9% on identification and 2.1% on
classification). In the meanwhile, our method
has higher recall values but slightly lower pre-
cision values than the baseline models. This
phenomenon shows that our method can largely
improve the recall values with few precision loss.
Especially, when compared with ETEEDconcat,
ETEED produces large performance gain on F1-
score (1.9% and 2.1% on identification and clas-
sification respectively), which proves the effec-
tiveness of our method. With the entity types’
sequential features, our method can bring more
entity information to trigger classifier than the

baseline models.

3.4 Effect of Trigger-Entity Interaction

In this subsection, we conduct three comparison
experiments to evaluate the effect of the trigger-
entity interaction learning.

1) ETEEDno interaction removes the trigger-
entity learning from the complete model.

2) ETEEDall entity uses all entity type informa-
tion rather than the entity mentions’ type informa-
tion to learn trigger-entity interaction.

3) ETEEDargument is a model designed to
evaluate the effect of the argument role sequence.
As mentioned in (Liu et al., 2019), TEACHER
needs to utilize both the entity type and the argu-
ment role information to get the best performance.
In the ETEEDargument, we replace the entity
type sequences by the argument role sequences to
compare with the TEACHER model.

Table 5 shows the results. Compared with
ETEEDno interaction, the complete ETEED mod-
el performs larger improvement on identification
than classification on F1-score (1.5% to 0.5%).
This result reveals that the use of entity mentions’
types is obviously helpful when judging the oc-
currence of an event, but when it comes to trig-
ger classification, the entity mention information
brings less improvement. In order to explicitly
capture the entity mention information, we only
use entity mention features in our approach. To
evaluate its effect, we compare ETEEDall entity

with ETEED. Although the performance gain are
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not significant, focusing on entity mentions can
still bring 0.5% and 0.3% F1-score improvement
on trigger identification and classification.

When comparing ETEEDargument with
ETEED, we can find that the use of argument
role information can dramatically improve the
performance of ED, because argument roles
contain more information than entity types.
Besides, some special argument roles can point
to specific event types. As methods which use
argument role information, ETEEDargument

significantly outperforms TEACHER, this result
further proves the effectiveness of our model.
However, in the real testing and application
scenarios, we can hardly obtain the arguments
role information before getting the event types of
the candidate triggers. Instead, using predicted
entity type information is more feasible.

4 Related Work

Event Detection is an important task in Infor-
mation Extraction. The majority of existing ap-
proaches regard this task as a classification prob-
lem, and we summarize these approaches into two
categories globally.

Feature-based methods are proposed as the first
kind of approach to tackle the ED task by introduc-
ing feature-engineering to convert the classifica-
tion clues like POS tags and dependency features
into feature vectors (Ahn, 2006; Ji and Grishman,
2008; Hong et al., 2011; Li et al., 2013; Patward-
han and Riloff, 2009; Gupta and Ji, 2009; Liao
and Grishman, 2010; Liu et al., 2016). This kind
of approach depends heavily on expert knowledge
and manual feature design, which makes these
approaches time-consuming and low adaptability
on different datasets. Chambers and Jurafsky
(2011) design a weakly supervised system, which
can automatically induce the event templates and
extract event information from unlabeled corpus,
to alleviate the need of expert knowledge. Howev-
er, the required external resources are not always
available for some low-resource languages.

In recent years, deep learning methods have
proved their effectiveness on the ED task. (Chen
et al., 2015; Nguyen and Grishman, 2016; Lin
et al., 2018) utilize CNN to automatically capture
the high-level vector representations of sentences.
Nguyen et al. (2016) apply RNN in their model
in order to capture the sequential features in the
sentences. Feng et al. (2016) combine CNN

with RNN and propose a hybrid neural network.
Araki and Mitamura (2018) make use of the dis-
tant supervision mechanism to detect the events
regardless of domains. Liu et al. (2017); Zhao
et al. (2018) utilize attention mechanisms aiming
to fuse the external sentence features (i.e. entity
type features, document features) with the word
features. (Hong et al., 2018; Liu et al., 2019) im-
plement adversarial training to distinguish effec-
tive information from spurious features. GCN is
a powerful neural network architecture on graphs,
Nguyen and Grishman (2018) use this architecture
to represent dependency relations in sentences.
Compared with the feature-based methods, the
deep learning methods need no more feature-
engineering, which means less financial/time cost
and better adaptability. Among them, there are
several approaches which utilize the entity type
information in their neural networks. Liu et al.
(2017) utilize the entity type embedding directly
as local context of the current word, and calculate
the attention values between them; others (Liu
et al., 2018b, 2019; Nguyen and Grishman, 2018)
concatenate the entity type embeddings with the
work token embeddings, in order to integrate these
two types of features into mixed representations
with the help of neural networks. However, these
existing studies ignore the entity types’ sequential
features which may benefit the ED task.

In our approach, we learn the word features and
the entity type features separately, which allows us
to capture the sequential features of entity types
and thus make full use of the entity type infor-
mation. Besides, an attention-based trigger-entity
interaction learning is introduced in our work
to learn relations between the candidate trigger
words and the entity mentions’ type features.

5 Conclusion

In this work, we propose a novel neural network
architecture ETEED for the ED task. In order
to capture the sequential features from both the
word sequences and the entity type sequences, our
approach proposes to model these two types of
sequences separately. The two types of sequences
are firstly modeled by two isolated Transformer
Encoders, then, an attention-based trigger-entity
interaction learning module is applied to capture
the correlations between the candidate trigger’s
word representation and the entity type represen-
tations of the sequence. Aiming to obtain a more
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accurate interaction representation, this module
utilizes only the entity mentions’ type information
rather than the whole entity type sequence to
calculate the attention values. Finally, the concate-
nation of the candidate trigger’s word, entity type
representations and the trigger-entity interaction
representation is fed into the trigger classifier to
obtain the final event category. In the future, we
plan to extend our method to the Event Extraction
task, which means not only to extract triggers from
sentences, but also to identify and classify the
corresponding event arguments.
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Abstract

Recent developments in Named Entity Recog-
nition (NER) have resulted in better and bet-
ter models. However, is there a glass ceil-
ing? Do we know which types of errors are
still hard or even impossible to correct? In
this paper, we present a detailed analysis of
the types of errors in state-of-the-art machine
learning (ML) methods. Our study reveals the
weak and strong points of the Stanford, CMU,
FLAIR, ELMO and BERT models, as well as
their shared limitations. We also introduce
new techniques for improving annotation, for
training processes and for checking a model’s
quality and stability.

Presented results are based on the CoNLL
2003 data set for the English language. A new
enriched semantic annotation of errors for this
data set and new diagnostic data sets are at-
tached in the supplementary materials.

1 Introduction

The problem of Named Entity Recognition (NER)
was defined over 20 years ago at the Message Un-
derstanding Conference (MUC, 1995; Sundheim,
1995). Nowadays, there are a lot of solutions ca-
pable of a very high accuracy even on very hard
and multi-domain data sets (Yadav and Bethard,
2018; Li et al., 2018).

Many of these solutions benefit from large
available data sets or from recent developments
in deep neural networks. However, in order to
progress further with this last mile, we need a bet-
ter understanding of the sources of errors in NER
problem; as it is stated that ”The first step to ad-
dress any problem is to understand it”. We per-
formed a detailed analysis of errors on the pop-
ular CoNLL 2003 data set (Tjong Kim Sang and
De Meulder, 2003).

Of course, different models make different mis-
takes. Here, we have focused on models that con-
stitute a kind of breakthrough in the NER do-
main. These models are: Stanford NER (Finkel
et al., 2005), the model made by the NLP team
from Carnegie Mellon University (CMU) (Lample
et al., 2016), ELMO (Peters et al., 2018), FLAIR
(Akbik et al., 2018) and BERT-Base (Devlin et al.,
2018). In the Stanford model, Conditional Ran-
dom Fields (CRF) with manually created features
were tackled. Lample and the team (at CMU) used
an LSTM deep neural network with an output with
CRF for the first time. ELMO and FLAIR are
new language modeling techniques as an encoder,
and LSTM with a CRF layer as an output decoder.
A team from Google used a fine-tuning approach
with the BERT model in a NER problem for the
first time, based on a Bi-diREctional Transformer
language model (LM).

We analyzed the data set from a linguistic point
of view in order to understand problems at a
deeper level. As far as we know only a few
studies analyse in details errors for NER prob-
lems (Niklaus et al., 2018; Abudukelimu et al.,
2018; Ichihara et al., 2015). They mainly explore
a range of name entities (boundaries in a text) and
the precision and popular metrics of a class pre-
diction (precision, recall, F1). We found the fol-
lowing discussions valuable:

• (Abudukelimu et al., 2018) on annotation and
extraction of Named Entities,

• (Braşoveanu et al., 2018) on an analysis of
errors in Named Entity Linking systems,

• (Manning, 2011) on linguistic limitations in
building a perfect Part-of-Speech Tagger.

We took a different approach. First, our team
of data scientists and linguists defined 4 major and
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11 minor categories of types of problems typical
for NLP (see Tab. 2). Next, we acquired all er-
roneous samples (containing errors in model out-
puts) and we assigned them to the newly defined
categories. Finally, we characterized the incorrect
output of the models with regard to gold standard
annotations and following our team’s consensus.

Accordingly, our overall contribution is a con-
ceptualization and classification of the roots of
problems with NER models as well as their char-
acterization. Moreover, we have prepared new di-
agnostic sets for some of our categories so that
other researchers can check the weakest points of
their NER models.

In the following sections, we introduce our ap-
proach regarding the re-annotation process and
model evaluation (section 2); we also show and
discuss the results (section 3). Finally, we con-
clude our paper with a discussion (section 4) and
draw conclusions (section 5).

2 Method

We commenced our research by reproducing the
selected models for the CoNLL 2003 data set1.
Then, we analysed the erroneous samples, sen-
tences from the test set. It is worth mentioning
that we analysed the most common types of named
entities, i.e. PER - names of persons, LOC - lo-
cation names, ORG - organization names. Hav-
ing several times reviewed the model results and
the error-prone data set, we defined the linguistic
categories that are the most probable sources of
model mistakes. As a result, we were able to an-
notate the samples with these categories; we then
analysed the results and found a few possible im-
provements.

2.1 Models description

A brief history of the key developments of NER
models for the CoNLL data is listed in Table 1. In
our analysis, we chose 5 models (bold in the table)
that make up significant progress.

Stanford NER CRF was the first industry-
wide library to recognize NERs (Finkel et al.,
2005). The LSTM layer put forward by Lam-
ple from Carnegie Mellon University (CMU) was
the first deep learning architecture with a CRF
output layer (Lample et al., 2016). The fol-
lowing: a token-based language model (LM)

1 The details of the model parameters are described in our
supplementary materials.

Model F1
Ensemble of HMM, TBL, MaxEnt,
RRM (Florian et al., 2003)

88.76

Semi-supervised learning (Ando
and Zhang, 2005)

89.31

Stanford CRF (Finkel et al., 2005) 87.94
Neural network (Collobert et al.,
2011)

89.59

CRF & lexicon embeddings (Passos
et al., 2014)

90.90

CMU LSTM-CRF (Lample et al.,
2016)

90.94

Bi-LSTM-CNNs-CRF (Ma and
Hovy, 2016)

91.21

ELMO: Token based LM Bi-
LSTM-CRF (Peters et al., 2018)

92.22

BERT-base: Fine tune Bi-
Transformer LM with BPE token
encoding (Devlin et al., 2018)

92.4
(*)

CVT: Cross-view training with Bi-
LSTM-CRF (Clark et al., 2018)

92.61

BERT-large: Fine tune Bi-
Transformer LM with BPE token
encoding (Devlin et al., 2018)

92.8
(*)

FLAIR: Char based LM + Glove
with Bi-LSTM-CRF (Akbik et al.,
2018)

93.09
(**)

Fine tune Bi-Transformer LM with
CNN token encoding (Baevski
et al., 2019)

93.5

Table 1: Results reported in authors’ publications about
NER models on the original CoNLL 2003 test set. (*)
There is no script for replicating these results and also
hyper-parameters were not given. See a discussion
at (google bert, 2019) (**) This result was not achieved
with the current version of the library. See a discussion
at (Flair, 2018) and the reported results at (Akbik et al.,
2019)

with bi-LSTM with CRF (ELMO) (Peters et al.,
2018), a character-based LM with the same output
(FLAIR) (Akbik et al., 2018) and a bi-directional
language model based on an encoder block from
the transformer architecture (BERT) with a fine
tune classification output layer (Devlin et al.,
2018) are very important techniques; and that not
only in the domain of NER.

2.2 Linguistic categories
From a human perspective, the task of NER in-
volves several sources of knowledge: the situation
in which the utterance was made, the context of
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other texts and utterances in the particular domain,
the structure of the sentence, the meaning of the
sentence, and general knowledge about the world.

While designing categories for annotation, we
tried to define these layers of NEs understand-
ing; however, some of them are particularly prob-
lematic. For example, there is a problem with a
distinction between the meaning (of lexical items
and of a whole sentence) and general knowledge.
Since there is an enormous and relentless linguis-
tic and philosophical debate on this topic (Rey,
2018), we decided not to delimit these categories
and not to distinguish them. Therefore, they have
been labeled together as ’sentence level context’
(SL-C).

Consequently, we ended up with a set of cate-
gories for annotating the items (sentences) from
our data set, which are presented in Table 2 as
well as described briefly in the following sections
and more precisely in the supplementary materi-
als. We have also added more examples for each
category in this material.

shortcut linguistic property
DE- Data set Errors
DE-A Annotation errors
DE-WT Word Typos
DE-BS Word/Sentence Bad Segmentation
SL- Sentence Level dependency
SL-S Sentence Level Structure
SL-C Sentence Level Context
DL- Document Level dependency
DL-CR Document Co-Reference
DL-S Document Structure
DL-C Document Context
G- General properties
G-A General Ambiguity
G-HC General Hard Case
G-I General Inconsistency

Table 2: Linguistic categories prepared for our annota-
tion procedure.

DE-A: Annotation errors are obvious errors
in the preliminary annotations (the gold standard
in the CoNLL test data set). For example: in the
sentence ”SOCCER - JAPAN GET LUCKY WIN,
CHINA IN SURPRISE DEFEAT” as a gold stan-
dard annotation ”CHINA” is assigned a person
type; it should, however, be defined as a location
so as to be consistent with the other sentence an-
notations.

DE-WT: Word typos are simple typos in any
word in a sample sentence, for exmple: ”Pollish”
instead of ”Polish”.

DE-BS: Word-sentence bad segmentation.
We annotated this case if a few words, joined
together with a hyphen or separated by a space,
were incorrectly divided into tokens (e.g. ”India-
South”), or where a sentence was erroneously di-
vided inside a boundary of a named entity, which
prevented its correct interpretation. For exam-
ple: in the data set there is a sentence divided
into two parts: ”Results of National Hockey” and
”League”.

SL-S: Sentence level structure dependency
occurs when there is a special construction within
a sentence (a syntactic linguistic property) that is
a strong premise for defining an entity. In the
studied material, we distinguished two such con-
structions: brackets and bullets. The error receives
the SL-S annotation, when the system should have
been able to recognize a syntactic linguistic prop-
erty that leads to correct NER tagging but failed
to do so and made a NER mistake. For example:
one of the analysed NER systems did recognize
all locations except ”Philippines” in the following
enumerating sentence: ”ASEAN groups Brunei,
Indonesia, Malaysia, the Philippines, Singapore,
Thailand and Vietnam.”.

SL-C: Sentence level context cases are those
in which one is able to define an appropriate cat-
egory of NE based only on the sentence context.
For example: one of NER systems has a prob-
lem with recognizing the organization ”Office of
Fair Trading” in the sentence: ”Lang said he sup-
ported conditions proposed by Britain’s Office of
Fair Trading, which was asked to examine the case
last month.”.

DL-CR: Document level co-reference cate-
gory was annotated if there was a reference within
a sentence to an object that was also referred to in
another sentence in the same document. For exam-
ple: evaluating the ”Zywiec” named entity in the
sentence ”Van Boxmeer said Zywiec had its eye
on Okocim ...”, it has to be considered that there is
another sentence in the same document in the data
set that explains the organization name, which is:
”Polish brewer Zywiec’s 1996 profit...”.

DL-S: Document level structure cases are
those in which the structure of a document plays
an important role, i.e. the occurrence of objects
in the table (for example the headings determine
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the scope of an entity itself and its category). For
example: look at the following three sentences,
which obviously compose a table: ”Port Loading
Waiting”; ”Vancouver 5 7”, ”Prince Rupert 1 3”.
One of our NER systems had a problem with rec-
ognizing each localisation inside the table; how-
ever, the system recognized the header as a named
entity.

DL-C: Document level context is a type of a
linguistic category in which the entire context of
a document (containing an annotated sentence) is
needed in order to determine a category of an anal-
ysed entity, and in which none of the sentence
level linguistic categories has been assigned (nei-
ther SL-S and SL-C).

G-A: General ambiguity are those situations
in which an entity occurs in a different sense from
that in which this word (entity) is used in its most
common understanding and usage. For example:
the common word ’pace’ may as well be occur to
be a surname, as in the following sentence: ”Pace,
a junior, helped Ohio State...”.

G-HC: General hard cases are cases occur-
ring for the first time in a set in a given sub-
type, and which can be interpreted in two differ-
ent ways. For example: ”Real Madrid’s Balkan
strike force...” where the word ’Balkan’ can be a
localisation or an adjective.

G-I: General inconsistency are cases of incon-
sistencies in the annotation (in the test set itself as
well as between the training and test sets). For ex-
ample in the sentence: ”... Finance Minister Ed-
uardo Aninat said.”, the word ’Finance’ is anno-
tated as an organisation but in the whole data set
the names of ministries are not annotated in the
context of the role of a person.

2.3 Annotation procedure

All those entities that had been incorrectly recog-
nized by any of the tested modelsfalse positives,
false negatives and wrongly tagged entities were
annotated in our research by two teams. Each
team consisted of a linguist and a data scientist.
We did not analyse errors with the MISC entity
type, but the person, localisation and organisation
names. The MISC type comprises a variety of
NERs that are not of other types. Its definition is
rather vague and it is hard to conceptualize what it
actually means, e.g. if whether it comprises events
or proper names, or even adjectives.

The annotation process was performed in four

steps:

1. a set of linguistic annotation categories was
established, see the previous section 2.2;

2. the data set was split into two equal parts: one
part for each team; all entities were annotated
twice, by a linguist and by a data scientist,
each working independently;

3. the annotations were compared and all incon-
sistencies were solved within each team;

4. two teams checked the consistency of the
other team’s annotations; all borderline and
dubious cases were discussed by all team
members and reconciled.

The inter-annotator agreement statistics and
Kappa are presented in Table 3. A few categories
were very difficult to conceptualize, so it took
more time to solve these inconsistencies. In these
inconsistent cases, two annotators (a linguist and a
data scientist) thoroughly discussed each example.

Not all categories (see Table 2) were annotated
by the whole team. Those easy to annotate, as the
categories regarding simple errors (i.e. DE-A, DE-
WT, DE-BS), were done by one person and then
just checked by another.

The general inconsistencies category (G-I) were
done semi-automatically and then checked. The
semi-automatic procedure was as follows: first
finding similarly named entities in the training and
test sets and then looking at their labels. By ’sim-
ilarly named entities’ we mean, e.g. a division of
an organization having a geographical location in
its name (”Pacific Division”), or a designation of a
person from any country (”Czech ambassador”).

Additionally, a document level context (DL-C)
category was derived from the rule of not being
present in any sentence level category (i.e. SL-C
or SL-S).

2.4 Our diagnostic procedure

The next step, after the analysis of linguistic cate-
gories of errors, was to create additional diagnos-
tic sets. The goal of this approach was to find, or
create, more examples that reflect the most chal-
lenging linguistic properties; these can be sen-
tence and document level dependencies and can
also include a few ambiguous examples. These
ambiguities are for instance names that contain
words in common usage. We selected 65 examples
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annotated class agreement [%] Kappa
SL-S 94.99 0.572
SL-C 69.64 0.389
DL-CR 78.00 0.554
DL-S 81.44 0.536
G-A 68.96 0.252
G-HC 74.46 0.340

Table 3: Inter-annotator statistics (agreement and
Kappa) at the very first stage of the annotation proce-
dure, before discussing each controversial example and
the super-annotation stage. The statistics are calculated
for those categories that were annotated by human an-
notators.

from Wikipedia articles per two groups of linguis-
tic problems: sentence-level and document-level
contexts.2

The first diagnostic set comprises sentences in
which the properties of a language, general knowl-
edge or a sentence structure are sufficient to iden-
tify a NE class. We use this Template Sen-
tences (TS) to check whether a model will have
the same quality after changing words, i.e. a name
of an entity. For each sentence we prepared at least
2 extra entities with different lengths of words
which are well suited to the context. For exam-
ple in a sentence: ”Atlético’s best years coincided
with dominant Real Madrid teams.”, the football
team ”Atlético” can be replaced with ”Deportivo
La Coruña”.

The second batch of documents was a group of
sentences in which a sentence context is not suffi-
cient to designate a NE, so we need to know more
about the particular NE, e.g. we need to look for
its co-references in the document, or we require
more context, e.g. a whole table of sports re-
sults, not only one row. (This particular case often
occurs in the CoNLL 2003 set when referring to
sports results.) We called this data set Document
Context Sentences (DCS). In this data set we an-
notated NEs and their co-references that are also
NEs. An example of such a sentence and its con-
text is as follows: ”In 2003, Loyola Academy (X,
ORG) opened a new 60-acre campus ... The prop-
erty, once part of the decommissioned NAS Glen-
view, was purchased by Loyola (X,ORG) in 2001.”
The second occurrence of the ”Loyola” name is
difficult to recognize as an organization without
its first occurrence, i.e. ”Loyola Academy”.

2Our prepared diagnostic data sets are avail-
able at https://github.com/applicaai/
ner-resources

The other type of a diagnostic set is fairly sim-
ple. It is generated from random words and let-
ters that are capitalized or not. Its purpose is just
to check if a model over-fits a particular data set
(in our case, the CoNLL 2003 set). A scrutinized
model should not return any entities on those Ran-
dom Sentences (RS). We generated 2 thousands of
these pseudo-sentences.

3 Results

3.1 Annotation quality

In Table 4 we gathered our model’s results for the
standard CoNLL 2003 test set and the same set
after the re-annotation and correction of annota-
tion errors. We replaced only those annotations
(gold standard) which we (all team members) were
sure of. Those sentences in which the class of
an entity occurrence was ambiguous were not cor-
rected. This shows that the models are better than
we thought they were, and so we corrected only
the test set and left the inconsistencies.3.

Stan-
ford

CMU ELMO FLAIR BERT

ALL-O 88.13 89.78 92.39 92.83 91.62
ALL-C 88.73 90.39 93.21 93.79 92.33
PER-O 93.31 95.74 97.07 97.49 96.14
PER-C 93.94 96.49 97.81 98.08 96.88
ORG-O 84.23 86.90 90.68 91.34 90.61
ORG-C 84.89 87.53 91.61 92.64 91.44
LOC-O 90.83 92.02 93.87 94.01 92.85
LOC-C 91.58 92.62 94.92 94.72 93.59
MISC-O 79.10 77.31 82.31 82.89 80.81
MISC-C 79.37 77.58 82.47 84.40 81.10

Table 4: Results for selected models on the original
(designated as ending ’...-O’) and re-annotated / cor-
rected (’...-C’) CoNLL 2003 test set concerning NE
classes (ALL comprise PER, ORG, LOC, MISC). The
given metric is a multilabel-F1 score (percentages).

3.2 Linguistic categories statistics

In the CoNLL 2003 test set, we chose as samples
words and sentences in which at least one model
made a mistake. The set of errors comprises 1101

3A small part of the data set of annotation cor-
rections and also the debatable cases will be available
at our github – https://github.com/applicaai/
ner-resources. We decided not to open the whole data
set, because it is the test set and the tuning models on this set
would lead to unfair results. On the other hand, we could not
perform the analysis on a validation set because it is rather
poor with respect to different kinds of linguistic properties.
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named entities. The results of each model on this
set in terms of our linguistic categories are pre-
sented in Fig. 1, Fig. 2 and in Table 5.

Most mistakes were made by the Stanford and
CMU models, 703 and 554 respectively. ELMO,
FLAIR and BERT, which use contextualised lan-
guage models, performed much better. These em-
bedded features help the models to understand
words in their context and thus resolve most prob-
lems with ambiguities.

The CMU model has most problems with sen-
tence level context and ambiguity. This is prob-
ably due to the fact that this model uses non-
contextualized embedded features (Fig. 2). The
Stanford model fares the worst in terms of struc-
tured data (almost twice as many errors as the
other models), which means that it is not good at
defining an entity type within a very limited con-
text (Tab. 5). The Stanford model’s hand-crafted
features do not store information about the proba-
bilities of words which could represent a specific
entity type. It generates much more errors than the
other models.

Stan-
ford

CMU ELMO FLAIR BERT

DE-WT 10 6 9 8 10
DE-BS 38 39 33 33 40
SL-S 46 21 13 16 11
SL-C 448 378 250 223 300
DL-CR 372 316 198 184 263
DL-S 202 107 97 100 117
DL-C 247 175 144 146 170
G-A 219 183 98 101 94
G-HC 72 68 65 59 65
G-I 19 20 21 20 20
Errors 703 554 395 370 472
Unique
errors 235 93 23 12 79

Table 5: Number of errors for a particular model and
a particular class of errors. The total number of anno-
tated errors is 1101.

Modern techniques using contextualized lan-
guage models like ELMO, FLAIR and BERT re-
duced a number of mistakes in SL-C category
by more than 50% in comparison to the Stanford
model. But they are unable to fix most errors in
general problems related to inconsistency (G-I),
general hard cases (G-HC) or word typos (DE-
WT). See Figure 4 for more details.

Nevertheless, there are still a lot of common

3.65%

0.756%

14.1%

2.9%

2.52%

27.8%

2.64%

3.27%

21.2%

5.16%
3.15% 5.04%

1.26%

4.53%

2.02%

CMU ELMO

FLAIR BERT

Figure 1: Venn diagram for errors in the CMU, FLAIR,
BERT, ELMO models. The four models generate 794
errors and 221 are common to all of them. The Stanford
model as the most error-prone is here not referred to.

problems (27.8%). In common errors (Fig. 3), SL-
C (sentence level context) and DL-CR (document
level co-reference) co-occur the most often. Thus,
if a model also takes into account the context of
a whole document, it can be of great benefit. Con-
sidering a document structure (DL-S) in modeling
is also very important. This also can help to re-
solve a lot of ambiguity issues (G-A). Here is an
example of such a situation: ”Pace outdistanced
three senior finalists...”, ”Pace” is a person’s sur-
name, but one is able to find it out only when
analysing the whole document and finding refer-
ences to it in other sentences that directly point to
the class of the named entity.

We must be aware of the fact that some prob-
lems cannot be resolved with this data set, not
even in general. Those problems have roots in two
main areas: data set annotation (word typos, bad
segmentation, inconsistencies) and a complicated
structure of a language. Generally in most lan-
guages it is easier to say what entity represents a
real word instance than to define an exact entity
type (especially when we use a metonymic sense
of a word), e.g. ’Japan’ can be a name of a country
or of a sports team.

3.3 Diagnostic data sets

Looking at the models’ results in our diagnostic
data sets (Tab. 6), the first and most important ob-
servation is that we achieved significantly lower
results than originally on the CoNLL 2003 test
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Figure 2: Correspondence analysis for the models’ er-
rors. ELMO, FLAIR and BERT are more affected by
G-HC and G-I, FLAIR is also reduced with DL-C and
DE-WT. See Table 5 for more details and Table 2 for
names of categories.

Figure 3: Heatmap for errors from the five considered
models. 197 errors are common to all the models. In
this figure we can see which linguistic categories tend
to occur together.

set4. The reason for this is that diagnostic exam-
ples were selected for a broader range of topics
(not only politics or sports). In particular, docu-
ment context sentences (DCS) contain 364 unique
entities of which only 47 appeared in an exact
word form in the training data, and only 42 of them
have the same entity type (organization, location
or person) - the same type as in the CoNLL 2003

4We add statistics and a few examples from our diagnostic
data sets in the supplementary materials.
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Figure 4: Radar plot with the strong and weak sides of
NER models. A radius corresponds to a number of er-
rors in a given linguistic category, the smaller the better.
See Table 5 for more details.

training set. Additionally, those sentences are also
difficult due to their linguistic properties (for some
entities you must analyse a whole article to prop-
erly distinguish their type).

As far as the results of the diagnostic sets are
concerned, we observed much better results for
solutions using embeddings generated by the lan-
guage models. It seems that by using ELMO
embeddings we can outperform the FLAIR and
BERT-Base models in case of sentences about
general topics, in which the context of a whole
sentence is more important than properties of
words composing entities.

Moreover, when we tested all the models on
random sentences (RS), this was not so good as we
might have expected. All the models are very sen-
sitive to words starting with or consisting of cap-
ital letters. Results from this diagnostic set could
help to choose a model that must work properly
on documents which were produced by the OCR
engine with their many mistakes and misspellings.

Another interesting idea is to train or just test
a model on some template sentences (TS). With
such a data set we can test a model’s ability to de-
tect proper boundaries of an entity. We can do it
by replacing a template entity with another one
consisting of a different number of words. We
could also adjust our models to a particular do-
main, e.g.to change entities with a PERSON type
in an original data set to be more globally diversi-
fied, if we have to extract person names from the
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whole world (Asian or Russian names).

Stan-
ford

CMU ELMO FLAIR BERT

DCS (F1) 45.37 61.86 76.36 71.89 68.90
DCS (P) 43.66 58.07 73.11 69.35 59.06
DCS (R) 47.21 66.17 79.92 74.63 82.66
TS-O (F1) 68.96 79.66 89.45 88.51 83.47
TS-O (P) 76.92 78.33 85.48 85.25 75.18
TS-O (R) 62.50 81.03 93.81 92.04 93.81
TS-R (F1) 63.06 72.86 85.01 86.63 79.66
TS-R (P) 65.47 70.65 81.45 83.70 71.60
TS-R (R) 60.83 75.21 88.91 89.77 89.77
RS (No) 3571 3339 2096 1404 3086

Table 6: Diagnostic data sets results for selected mod-
els: ’DCS’ - Document Context Sentences, ’TS-O’
- Template Sentences with original entities, ’TS-R’ -
Template Sentences with replaced entities, ’RS’ - Ran-
dom Sentences. F1=multilabel F1-score, P=Precision,
R=Recall, No=number of returned entities (lower is
better). In the RS data set there are 2000 strings pre-
tending to be sentences.

4 Discussion

On the basis of our research, we can draw a num-
ber of conclusions that are not often addressed
to in publications about new neural models, their
achievements and architecture. The scope of any
assessment of new methods and models should be
broadened to the understanding of their mistakes
and the reasons why these models perform well
or poorly in concrete examples, contexts and word
meanings. These issues are particularly important
in text data sets, in which semantic meaning and
linguistic syntax are very complex.

In our effort to define linguistic categories for
problematic Named Entities and their statistics in
the CoNLL 2003 test set, we were able to draw
a few additional conclusions regarding data an-
notation and augmentation processes. Moreover,
our categories are similar to the taxonomy defined
in publication about errors analysis for Uyghur
Named Tagger (Abudukelimu et al., 2018).

4.1 The annotation process

The annotation process is a very tedious and ex-
haustive task for a person involved. Errors in data
sets are expected but what must be checked is their
impact on generalizing a model, e.g. one can cre-
ate entities in places where they do not occur and
check the model’s stability. There are some useful

applications for detecting annotation errors (Rat-
ner et al., 2017), (Graliński et al., 2019) and (Wis-
niewski, 2018) but they are not used very often.
Obviously, an appropriate and exhaustive docu-
mentation for the data set creation and annota-
tion process is crucial. All annotated entity types
should be described in details and examples of
border cases should be given. In our analysis of
the CoNLL 2003 data set we did not find any doc-
umentation. We have made our own assumptions
and tried to guess why some classes are annotated
in a given way. However, the work was hard and
required many discussions and extended reviews
of literature.

Secondly, there is a need for extended data sets
with a broadened annotation process, similar to
that of our diagnostic sets. E.g. linguists can ex-
tend their work not only just to the labelling of
items (sentences), but also to indicating the scope
of context that is necessary to recognise an entity,
and to extending annotations for difficult cases or
adding sub-types of entities.

Our work on diagnostic data sets is an attempt
to extend an annotation process by focusing only
on specific use cases which are less represented in
the original data set.

4.2 Extended context

A new model training process itself should consist
of more augmentation of the data set. Currently,
there is some work being done on this topic, e.g.
a semi-supervised context change with cutting the
neighbourhood around NEs using a sliding win-
dow (Clark et al., 2018). Other techniques could
be a random change of the first letter (or whole
words) of NEs so that the model would not be so
vulnerable to capitalized letters in names or small
changes in sentences (e.g. adding or removing a
dot at the end of a sentence).

Furthermore, a sentence itself is not always suf-
ficient to recognise a class of a NE. In these cases,
in both training and test data sets, there should be
more samples where there are indications of co-
references that are important to recognise particu-
lar NEs. Then, the input of a model should com-
prise a sentence and embedded features (or any
representation) of co-references or their contexts.
E.g. ”Little was banned. Peter Little took part
in the last match with Welsh team.” - in the first
sentence, we are are not sure if it is a NE. Then
”Peter Little” indicates the proper NE type. An
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example of a model and data processing pipeline
(i.e. memory of embeddings) that takes into con-
sideration the same names in different sentences
is to be found in (Akbik et al., 2019) and (Zhang
et al., 2018).

Another important improvement is adding in-
formation about document layout or the structure
of a text, e.g. a table, its rows and columns, and
headings. In CoNLL 2003, there are many sports
news, stock exchange reports or timetables where
the structure of a text helps to understand its con-
text, and thus to better recognise its NEs. Such
a solution for another domaininvoice information
extractionis elaborated on by (Katti et al., 2018)
or (Liu et al., 2019). The solutions mentioned here
combine character information with document im-
age information in one architecture of a neural net-
work.

The CoNLL 2003 test set is certainly too small
to test the generalisation and stability of a model.
Faced with this issue, we must find new techniques
to prevent over-fitting. For instance, we could
check a model’s resistance to examples prepared
in our diagnostics data sets, e.g. after changing a
NE in a template sentence, the model should find
the entity in the same place. We could also pre-
pare small modifications to our original sentences,
e.g. add or remove a dot at the end of an exam-
ple and compare results (similarly to adversarial
methods).

5 Concluding remarks

Mistakes are not all created equal. A comparison
of models based on scores like F1 is rather simplis-
tic. In this paper we defined 4 major and 11 minor
linguistic categories of errors for NER problems.
For the CoNLL 2003 data set and five impor-
tant ML models (Stanford, CMU, ELMO, FLAIR,
BERT-base) we re-annotated all errors with re-
spect to the newly proposed ontology.

The presented analysis helps better understand
a source of problems in recent models and also to
better understand why some models are more reli-
able on one data set but less not on another.
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Abstract

Document embeddings, created with methods
ranging from simple heuristics to statistical
and deep models, are widely applicable. Bag-
of-vectors models for documents include the
mean and quadratic approaches (Torki, 2018).
We present evidence that quadratic statistics
alone, without the mean information, can of-
fer superior accuracy, fast document compar-
ison, and compact document representations.
In matching news articles to their comment
threads, low-rank representations of only 3–4
times the size of the mean vector give most
accurate matching, and in standard sentence
comparison tasks, results are state of the art
despite faster computation. Similarity mea-
sures are discussed, and the Frobenius prod-
uct implicit in the proposed method is con-
trasted to Wasserstein or Bures metric from the
transportation theory. We also shortly demon-
strate matching of unordered word lists to doc-
uments, to measure topicality or sentiment of
documents.

1 Introduction

Today, most computational models for natural
language are based on distributional representa-
tions. Words are routinely represented by word
embeddings (Mikolov et al., 2013), most com-
monly as fixed-dimensional real-valued vectors,
such as GloVe (Pennington et al., 2014) and fast-
Text (Mikolov et al., 2018). Even though there is
extensive literature on using, e.g., character-level
and other sub-word information (Lee et al., 2017;
Radford et al., 2017; Mikolov et al., 2018) or non-
Euclidean embedding spaces (Nickel and Kiela,
2017; Muzellec and Cuturi, 2018), the standard
embeddings remain currently as the default build-
ing block for practical tools.

Most applications do not, however, care about
individual words. Instead, we may be concerned

about the meaning of sentences or retrieval of doc-
uments, or in general, units larger than words.
Distributed representations can be built for these
larger units as well. Although sentences and docu-
ments differ as linguistic concepts, computational
models for them can be similar when they are con-
sidered as sequences or even (unordered) bags of
words.

Document representations often build on word
embeddings. Already the mean of the word vec-
tors turns out to be a surprisingly good representa-
tion (Wieting et al., 2015b), and accounting for the
importance of words by a weighting scheme im-
proves it further (Arora et al., 2016; Gupta et al.,
2019). Even though the bare mean clearly ig-
nores information, it is very efficient to compute.
On the other end of the spectrum, document em-
beddings are built with computationally extremely
heavy deep learning models such as ELMo (Peters
et al., 2018), ULMFiT (Howard and Ruder, 2018),
and BERT (Devlin et al., 2018). Deep models pro-
duce rich representations, but the amount of data
and computation needed for training make them
prohibitive for many applications.1

Our work falls between these two extremes.
With the understanding that mean vectors may
miss important aspects of documents, we want to
develop fast and easy-to-use tools. This rules out
complex deep networks. Instead, we focus on
using second-order interactions between words,
building on covariance of the embeddings of indi-
vidual words, following the recent works of Torki
(2018) and Nikolentzos et al. (2017).

The motivation of the paper is on finding fast
and accurate ways to compare documents, or, al-
ternatively, documents and semantics spanned by
word lists. We start by evaluating document sim-

1For example BERT takes 0.5 secs to process a sentence
on a CPU (Nvidia blog, our experiments), and getting good
document representations may require fine-tuning.
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ilarity as pairwise similarities between words and
show that this induces a compact approximative
representation for the documents themselves. We
relate the pairwise similarity to Wasserstein or Bu-
res metric, used recently in various machine learn-
ing tasks (Arjovsky et al., 2017; Muzellec and
Cuturi, 2018) and in quantum information theory
(Bhatia et al., 2018).

The main result of these derivations is a prac-
tical document embedding strategy that builds on
pre-trained word embeddings. The document em-
beddings are of relatively low dimension, larger
than the word embeddings only by a small fac-
tor. They allow for efficient comparisons and are
easy to implement and use in downstream tasks
of document retrieval, sentence classification, etc.
We demonstrate competitive performance against
state-of-the-art methods in standard sentence sim-
ilarity tasks (Conneau and Kiela, 2018), with a
lower computational cost. We further demonstrate
the approach in matching articles to their comment
chains, and briefly in scoring moral sentiment and
topicality defined by word lists.

2 Related work

Work on document representations has a long his-
tory in information retrieval. Sentence embed-
dings (Arora et al., 2016; Perone et al., 2018) is
a related topic that has lately become more promi-
nent, maybe because of the fast growth of social
media platforms where communication is mostly
done via short messages. For this paper, we treat
sentences as short documents.

The mainline of research deals with building
document vectors from pre-trained word vectors.
The straightforward way averages over the word
vectors. Wieting et al. (2015b) show that com-
plex computations are not necessary for good doc-
ument vectors. Instead, smart weighting under the
averaging model is usually sufficient. On top of
that work, weighting schemes and other heuristics
have been proposed. The latest include common
component removal (Arora et al., 2016), and the
weighting schemes SIF (Arora et al., 2016), and P-
SIF (Gupta et al., 2019), similar in idea to TF-IDF
weighting. As alternatives to usage of pre-trained
word embeddings, one can train directly document
embeddings like skip-thought (ST) vectors (Kiros
et al., 2015) basically generalizing the word2vec
training method to sentences, or train the word em-
beddings and document embeddings together, but

still within the bag-of-the-words averaging frame-
work as is done with Paragraph Vectors (Le and
Mikolov, 2014) and Doc2VecC (Chen, 2017).

Our core contributions are in the use of
second-order information—covariance of the
word vectors—for improving the representations.
To our best knowledge, there is quite limited
previous work in this direction. Torki (2018) used
covariance matrices as (quite high-dimensional)
representation for documents and Nikolentzos
et al. (2017) represented documents with Gaus-
sian distributions and used divergence metrics to
compare the imposed distributions. We provide
technical and computational analysis of the
covariance approach, discuss similarity measures
for the representations, including Frobenius
and Wasserstein inner products, and show how
low-rank approximations can then speed up the
comparisons and make the representations more
compact.

A completely different approach is taken by the
deep learning community, with the use of uni-
versal language and transformer models such as
ELMo (Peters et al., 2018), ULMFiT (Howard and
Ruder, 2018), and BERT (Devlin et al., 2018). The
accuracy of these deep learning models is state of
the art, but the computational cost and need for
training data are high. At the time of writing, there
are no pre-trained models available for the Finnish
language used in our experiments, and training
such a base model would be costly as shown by
Strubell et al. (2019).

3 Representations and similarities

Most applications compare word embeddings by
the cosine similarity, cos(w1, w2) =

wT
1 w2

|w1||w2| ,
where w1, w2 ∈ Rd are the embeddings (vectors).
Cosine similarity is invariant to lengths of the vec-
tors. Lengths typically do not encode semantics
but relate to aspects like frequency of the word or
homogeneity of its context.

Documents or sentences (later simply docu-
ments) are, in the absence of a sequence model,
treated as bags of words. That is, methods for
comparing documents are invariant to word order.
We define for later purposes a document matrix,

D =




. . . w1 . . .

. . . w2 . . .

. . . . . . . . . . . .

. . . wn . . .


 ∈ R

n×d , (1)
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as a collection of word vectors. Although
the representation as such is not order-invariant,
order-invariant ways to compare documents
can be derived for this representation. The
simplest is the cosine similarity of means,
cos(1TD1/n1, 1

TD2/n2). Performance of docu-
ment mean vectors in benchmarks is not quite a
state of the art, but decent enough for many appli-
cations (Wieting et al., 2015b).

A refinement from the simple average is to
reweigh the word vectors before averaging, either
in a general way or by specializing into the cur-
rent corpus. Term-frequency inverse-document-
frequency (TF-IDF) weighting is the classic way.
Later variations of weighting schemes are smooth
inverse frequency (SIF) (Arora et al., 2016) and
its derivative partition SIF (P-SIF) (Gupta et al.,
2019). They use weighted mean with weights
computed from corpus; SIF uses α/(α + p(w)),
where α > 0 controls the smoothing based on em-
pirical probability p(w) of word w. The precom-
putation of weights for the whole corpus makes
SIF unusable in some cases where the whole cor-
pus is not available or is extremely large, and pro-
hibits online processing. The issue is even more
severe with P-SIF that requires more elaborate pre-
processing.

For further improvement within the mean vec-
tor framework, it should be possible to improve
performance either by (a) computing word em-
beddings in a way that optimizes the document
embeddings (still computed as word vector aver-
ages), or by (b) transformations of the document
averages in a way that takes the current document
corpus into account. An example of the former is
the Doc2VecC embedding (Chen, 2017), and SIF
(Arora et al., 2016) demonstrates the latter by re-
moving variation common to the corpus by pro-
jecting away the main variation over documents.

Still, a third way to improve performance would
be to expand the representation from average
while maintaining order invariance for model sim-
plicity. This leads to second-order representations
discussed next.

4 Second-order document
representations

Our motivation arises from an empirical observa-
tion that mean vectors are not necessarily efficient
summaries of documents (Fig. 1). At least with
the word2vec embeddings, the distribution of word

Figure 1: Words of a Finnish news article as word2vec
vectors, projected to the 2D space of principal varia-
tion. The broad tail up right contains words related to
health care and social services, especially those of se-
niors. The lower right tail is about politics. The mean
vector (red star) makes a compromise between the tails,
and is determined to a large degree by the numerous
non-descriptive words projected closer to the origin. A
representation that takes higher moments into account
would catch the tails better. This structure seems to be
typical to most of the documents in our corpora.

vectors (on the 2D-space of their principal vari-
ance) is strongly skewed, with a comet-like shape,
often with more than one separate ”tails”. Mean is
not an efficient statistic for such distribution, and
it is an especially poor description of the tails that
seem to carry the most descriptive words.

A representation based on higher-order mo-
ments would better catch the characteristics of the
word vectors. Second moments, or covariance if
centered to the means, would lose the asymmetry
of the distributions, but the advantages compared
to still higher-order moments are (relative) com-
pactness and elegant algebra.

A question remains how second-order represen-
tations should be compared pairwise. A related
worry is the computational efficiency, as the com-
putational cost for naive second-order represen-
tations scales quadratically with the dimension-
ality of the embedding. Below, we first present
an extension of cosine similarity to pairs of un-
ordered collections of word vectors, and note how
this induces a second-order representation for doc-
uments, and is interpretable as a Frobenius inner
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product. We note a connection of this approach
to existing work, compare to Bures and Wasser-
stein metric (later referred only as Wasserstein)
and optimal transport theory, and later in the paper
present empirical evidence of good performance
of low-rank approximations of these representa-
tions.

4.1 Extending cosine similarity to documents
Using the notation of (1), let A ∈ Rn×d, B ∈
Rm×d be the word vectors of two documents, sen-
tences, or other unordered collections of words,
with word counts (n,m) and embedding of di-
mensionality d.

The core of cosine similarity of single words
a, b is the ordinary inner product cos(a, b) ∝ aT b,
with a normalization such that cos(a, a) = 1 for
any a 6= 0. We generalize this to similarities
of word collections A and B, as the normalized
square sum of all pairwise dot products:

Z(A,B)h2(A,B) ≡
∑

a,b

(aT b)2 =
∑

a,b

abT baT

=
∑

a

aBTBaT =
∑

a

Tr(BaTaBT )

= Tr(BATABT ) = Tr(ATABTB)

with Z(A,B) such that h2(A,A) = 1 for any
A 6= 0. The unnormalized trace structure appears
so often later in the paper, that we define a shorter
notation for it:

A ∗B ≡ [Tr(BATABT )]1/2. (2)

The trace is interpretable as the Frobenius inner
product of covariance-like but unnormalized ma-
trices CA ≡ ATA and CB ≡ BTB:

(A ∗B)2 = Tr(CT
ACB) . (3)

With normalization, the similarity then becomes

h2(A,B) =
(A ∗B)2

(A ∗A) (B ∗B)
≡ A′ ∗B′ , (4)

where the last expression prenormalizes the word
list matrices so that

A′ ≡ A/(A ∗A)1/2 . (5)

Finally, one can centralize word matrices before
computing the similarity, A0 = A − 1TmA, etc.,
without affecting the formalism:

h(A0, B0) = A′0 ∗B′0 . (6)

Torki (2018) introduced a document represen-
tation named DoCoV and extended it in experi-
ments to include mean vector gaining an increase
in performance. This variant of the DoCoV rep-
resentation is defined as vec(mA, A

T
0A0), where

the vec operation concatenates the arguments and
flattens the matrices row by row. This is similar to
our cross product CA but includes the mean. For
computing similarities they used dot products

mT
AmB + vec(AT

0A0)
T vec(BT

0 B0)

= mT
AmB + (A0 ∗B0)

2 .

We note that this is the similarity h2 introduced
above, summed to the cosine similarity of the
means, but the normalization of the dot product
by Torki (2018) is for the entire concatenated vec-
tors, which is reasonable as long as mean and
covariance are treated as commensurable. There
is a unit inconsistency in the concatenation, for
the covariance term is quadratic while the mean
is not. Our reinterpretation and slight reformula-
tion of the similarity as h2 offers a way of sub-
stantially shrinking the document representations
(Section 5), and including the mean does not seem
empirically important.

4.2 Connection to transport theory

Wasserstein metric compares two (elliptic or gaus-
sian) distributions defined by their means and co-
variances. It emerges in the optimal transport the-
ory as a measure of minimum-path transport of the
probability mass of distribution (mA, CA) to dis-
tribution (mB, CB):

W2((mA, CA), (mB, CB)) =

||mA −mB||2+

Tr

(
CA + CB − 2

(
C

1/2
A CB C

1/2
A

)1/2)
.

For covariances computed from word vectors,
CA = ATA, etc., we would like to have scale
invariance similar to cosine or the Frobenius co-
sine above. But it is not clear how to obtain scale
invariance in a principled way, for the scales of
terms TrCA and TrCB vary differently from the
scale of the cross term.

Within the context of their elliptical embed-
dings, Muzellec and Cuturi (2018) define a Bu-
res or Wasserstein cosine by normalizing the sole
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cross term2:

hW(CA, CB) =
Tr
(
C

1/2
A CB C

1/2
A

)1/2

[TrCA]1/2 [TrCB]1/2
.

This form is surprisingly close to the ”Frobenius
cosine” of Eq. 4, and allows prenormalization of
representations: First by applying the cyclic prop-
erty of trace, and then moving normalizations to
be computed first, we have

hW(CA, CB) =
Tr
(
CT
A CB

)1/2

[TrCA]1/2 [TrCB]1/2

= Tr

([
CA

TrCA

]T [ CB

TrCB

])1/2

.

The difference to our similarity defined in Eq. 4
is only in the order of the outer square root and
trace operators. If one denotes the eigenvalues of
the suitably normalized matrix CACB by η2i , the
Wasserstein cosine is equal to

∑
i ηi, while the

Frobenius cosine equals to (
∑

i η
2
i )1/2. The latter

obviously gives more weight to ”high-variance co-
variation” of CA and CB , that is, for larger eigen-
values. When only one eigenvalue is non-zero, the
cosines are equal.

Matrix square root in the Wasserstein cosine,
however, seems to require matrix diagonalization
for every document comparison, which would be
of computational complexity O(d3).

So although deriving anything equivalent to
Frobenius cosine by starting from the Wasserstein
metrics seems hard, similarities may be worth
further investigation, either empirical or theoreti-
cal. An empirical comparison, presented in Fig-
ure 2, suggests that in practice the two cosines are
quite closely related. Experiments later in the pa-
per indicate better practical performance from the
Frobenius cosine, in some applications. Frobenius
cosine is notably faster to compute in practice, as
shown in the next section.

2Or actually they have two separately normalized terms,
one for means as ordinary cosine, and one for quadratics. We
test the two-term version of our Frobenius product briefly in
the experimental section and find that the mean term does
not help performance there. The supplementary material of
Muzellec and Cuturi (2018) easily leads to a similar conclu-
sion with the Wasserstein cosine.

Figure 2: For our document collection of Finnish news
articles and their comments, the Frobenius and Wasser-
stein cosines are closely related with correlation coeffi-
cient r = 0.95.

5 Computation and low-rank
approximation

The Frobenius cosine of Eq. 4 can be computed by
using word matricesA (of size n×d) as document
representations. Comparing these by pairwise vec-
tor inner products (Eq. 2) would have computa-
tionally cost of O(nAnBd) — efficient for short
word lists but not when lengths n approach or ex-
ceed d.

On the other hand, one can follow in the foot-
steps of Torki (2018) and represent documents as
covariance-like inner products ATA, which are of
dimensionality d(d + 1)/2. Torki (2018) named
this method as DoCoV descriptor. In this case,
the Frobenius complexity would then be O(d2),
which for long documents is cheaper than a pair-
wise comparison of word lists, but still expen-
sive compared to inner products of mean vectors,
O(d).

Key to low-order approximations is to note that
the rows of the word listsA etc. do not need to rep-
resent words: Instead, any vectors Â would give
the same Frobenius product (and cosine) as long
as the covariances are preserved, that is, ÂT Â =
ATA. If Â is just an approximation of A, of, say,
dimensionality k × d and of similar size for all
documents, the pairwise Frobenius computation
(Eq. 2) would be of complexity O(k2d).

Our approximation and computation strategy is
therefore to replace A with a suitable approxima-
tion Â, and compute the Frobenius inner product

638



without ever realizing the covariance matrices, by

Â ∗ B̂ =

(∑

kl

(Â)Tk·(B̂)l·

)1/2

. (7)

For prenormalized approximations (Eq. 5), this is
directly the desired similarity h2 (as in Eq. 4).

We cannot optimize for approximation errors of
pairwise Frobenius cosines, so we choose to opti-
mize representations so that A ∗A = Tr(ATA) is
well preserved. Remembering that, for a symmet-
ric matrix, trace is the sum of its eigenvalues, we
may specifically choose a decomposition HTH of
ATA such that dropping rows from H minimizes
the approximation error in Tr(ATA). The optimal
H consists of the eigenvectors of ATA multiplied
by square roots of their eigenvalues:

ATA = UTΛ
1
2 Λ

1
2U = (UΛ

1
2 )T (UΛ

1
2 ) ≡ HTH .

Now Tr(ATA) =
∑

i λi, where λ are the diag-
onal of Λ, the eigenvalues. All eigenvalues of a
positive semidefinite matrix are non-negative, so
trace is best approximated with a Ĥ that contains
the eigenvectors associated to largest eigenvalues
(the square roots of the eigenvalues multiplied in):

Â = Ĥ =




√
λ1u1√
λ2u2
. . .√
λ3uk


 ∈ R

k×d . (8)

Let the SVD of the word list matrix be A =
UΛ′V T . Then ATA = V Λ′UTUΛ′V T =
V Λ′2V T , the last form being the eigenvalue de-
composition ofATA. So the approximation Ĥ can
be obtained directly from the SVD of the word list
A, without computing the covariance matrix. This
is relatively cheap for small ranks k, and can be
scaled up for documents with very large n with
stochastic methods (Halko et al., 2011). The com-
plexity depends on the SVD algorithm chosen.

Note that analogously to the original word lists,
the above approximation is applicable to centered
word lists A0, and the normalized counterparts
A′ and A′0, as long as normalization of represen-
tations is done after approximation (to preserve
h2(Â′, Â′) = 1).

The Frobenius cosine can, therefore, be ef-
ficiently computed with Eq. 7 of complexity
O(k2d), if the documents are approximated by the
first k principal vectors of the word list SVD. Sav-
ings, compared to full covariances, are of order
k/d for space, and k2/d for document comparison
times.

6 Method summary

The pre-computation process for online compari-
son document comparison or search is as follows:

1. Choose suitable word embeddings for the
corpus, defining factors being language and
the domain.

2. Collect word vectors of each document into
matrix A, as in Eq. 1.

3. Choose a rank k, typically 2–20. Compute
the k-rank (SVD left side) approximation Â0

of centered documents like in Eq. 8. Prenor-
malize (Eq. 5) and store Â′0.

4. Compare documents by Â′0 ∗ B̂′0, using the
pairwise dot products as in Eq. 7 for compu-
tation.3

Representations for new, upcoming documents re-
peat steps 2–3. (There is no global model to update
or refer to.)

7 Experiments

To validate the proposed representations and the
similarity h2, we conducted two separate exper-
iments and one demonstration. In the first one,
proposed methods are compared to state-of-the-
art sentence embedding models on the tasks of
Facebook’s SentEval library (Conneau and Kiela,
2018). The other experiment and the demonstra-
tion apply the techniques to news articles and their
comments on three Finnish media sites. For the
latter experiment, 88,986 articles with comments
were gathered from the associated websites.

For English we use fastText (Mikolov et al.,
2018) embeddings with d = 300, but note that
similar results were achieved also with GloVe
(Pennington et al., 2014) and Word2Vec (Mikolov
et al., 2013). For Finnish, we use word2vec em-
beddings, provided by the Turku NLP group4,
since fastText does not provide adequate embed-
dings for Finnish.

3With rank k = 1, the similarity h2 is equal to square
of the cosine between directions of principal variation. The
principal vectors have no well-defined polarity, so taking a
square or absolute value of the cosine is important.

4Older version of the fin-word2vec.bin embeddings with
dimension 300, linked from http://bionlp.utu.fi/
finnish-internet-parsebank.html.
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7.1 Textual similarity tasks
As an initial experiment on the quality of the
second-order representations, we evaluated them
with the standard unsupervised similarity tasks
(STS12 - STS16) using SentEval library by Face-
book (Conneau and Kiela, 2018).

We compare a few different low-rank approx-
imations using our proposed method against the
state-of-the-art unsupervised and semi-supervised
methods in Table 1. We see that already at k = 10,
the approximation reaches close to the accuracy of
the full rank, within this dataset, while decreas-
ing the size of representations significantly (here
300× 10 vs. 300× 300). It surpasses most of the
other unsupervised methods and compares well
with the semi-supervised methods. Interestingly,
already the rank-1 approximation is better than the
classical mean vector approach (Glove Avg in Ta-
ble 1), while having the same computational com-
plexity.

Our low-rank estimation is on par with the re-
lated unsupervised method, DoCoV, and the only
model reaching clearly higher scores is the P-SIF
+ PSL by Gupta et al. (2019), which uses compu-
tationally relatively heavy reweighting.

Figure 3 demonstrates the validity of the low-
rank approximation, by plotting the STS evalua-
tion scores against the rank k of the approxima-
tion. The results are as expected: Using more
components retains more information, and k ≈
5 . . . 10 is roughly enough for all tasks. Contrary
to the experiment of the next section, using too
large k does not hurt performance (except nomi-
nally in some cases).5

7.2 Comments vs. article
Many news sites contain a comment section asso-
ciated with articles. It can be useful to compare
articles to the comments, for example for modera-
tion: If the discussion drifts too far from the origi-
nal topic, human attention may be needed. In this
experiment, we tried to find real article–comment
pairs from a set in which half of the pairs were
fake, as a proxy for the moderation task. It tests
the semantic resolution of the similarity measures
and has the convenience of known ground truth.

We crawled articles and their comment sections
from three Finnish news sources: Yle (national

5This may be because of the relative shortness of sen-
tences here, vs. documents in the other experiment. The
short sentences cannot even span a high-dimensional repre-
sentation.

Figure 3: STS scores vs. rank k of the covariance
approximation. Performance on these sentence tasks
mostly saturates at k = 5 . . . 25.

broadcasting company), Uusi Suomi (news and
blogging platform), and Iltalehti (a tabloid). Com-
ments were concatenated to a single document
(per article), retaining all article–comment pairs
with at least 100 words on both sides. This gave
16,263, 18,548, and 9,682 pairs for Iltalehti, Uusi
Suomi and Yle, respectively. The pairs were con-
catenated to sets of fake pairs of equal size, ob-
tained by permuting the real pairs. We then rank
the pairs according to decreasing similarity, and
consider real pairs positive instances for retrieval
measures. Figure 4 shows the ROC-like curves
for our proposed h2 of Eq. 7 (with rank k = 4),
and two baselines based on document means, one
computed directly from the word vectors and one
after SIF weighting. The proposed method per-
forms clearly better than average-based methods
for all news sources, demonstrating the benefits of
including second moments. It also outperforms
the Wasserstein cosine hW while having a clear
advantage also in computation speed, and center-
ing improves the results.

To see the effect of the rank, we ran the same
test for various values of k and evaluated the re-
call at the selected value of precision (5% of fake
pairs retrieved). All ranks k > 0 outperform the
baseline of mean-vector cosine (horizontal line),
except for Uusi Suomi at k = 1 (Figure 5). A bit
unexpectedly, optimum is already at low values of
k, which is nice from the computational perspec-
tive and suggests a regularization effect from SVD
maybe worth of further study.

Finally, we wanted to see if adding a conven-
tional mean term to the similarity computed with
centralized second-order terms only helps with
resolution, and ran the tests with various values
of the weight α for the second-order term. One
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Unsupervised Semi-supervised Ours
Glove Glove P-SIF PSL Glove PSL Frob. Frob. Frob.

Task ST Avg tf-idf DoCoV PSL Avg WR WR k = 1 k = 10 k = 300

STS12 30.8 52.5 58.7 56.4 65.7 52.8 56.2 59.5 54.1 59.4 59.7
STS13 24.8 42.3 52.1 62.1 64.0 46.4 56.6 61.8 56.0 62.1 62.1
STS14 31.4 54.2 63.8 70.3 74.8 59.5 68.5 73.5 59.4 69.3 69.4
STS15 31.0 52.7 60.6 76.2 77.3 60.0 71.7 76.3 64.0 74.5 74.6
STS16 51.4 47.2 51.1 73.0 73.7 63.3 72.4 72.5 58.5 70.3 70.3

Table 1: Our method vs. other unsupervised and semi-supervised methods (from Gupta et al., 2019) on semantic
textual similarity (STS) tasks, evaluated as Pearson correlations to human ground truth. ST stands for skip-thought
vectors (Kiros et al., 2015), WR for SIF weighting combined with common component removal (Arora et al.,
2016), and PSL for PARAGRAM-SL999 word vectors (Wieting et al., 2015a).

Figure 4: Fake vs. real pairs retrieved (ROC curves), in the article–comment matching tasks, for the three news
sources, and for different matching methods. Cosine of mean vectors with original word2vec weights (blue; solid)
and SIF weights (blue; dotted) perform practically identically. Quadratic approaches are all better, in general
Frobenius (red) outperforming Wasserstein (green), and centered covariances (solid) outperforming non-centered
ones (dotted). More fine-grained evaluations over k and mean-vector cosine mixing (Fig. 5 and 6) are run for 5%
of the fake pairs retrieved (at the middle of x-axis).

source (Uusi Suomi) peaks around α = 0.5,
but for other sources, the performance increases
monotonically with the weight of h2. Apparently,
mean vector is at least sometimes redundant if just
low-rank second-order information is available.6

7.3 Media segmentation

Finally, the classic task of scoring documents for
sentiment or topic by a word list is amenable to
the application of the Frobenius similarity h2. The
target word list is usually just an unordered collec-
tion of words, although it may be weighted. Ex-
tensive sets of word lists are curated, for exam-
ple, by LIWC. Likely, the semantics of such a list
would sometimes be better operationalized by the

6The appendix of (Muzellec and Cuturi, 2018) gives sim-
ilar impression for Wasserstein cosine: The performance is
relatively flat over wide range of α and sometimes seems to
increase monotonically.

suggested quadratic representation rather than by
the list itself or its vectorized mean (with respect
to an embedding).

As an example, we just present a single finding
in Figure 7. The moral content of the comment
chains of online news articles seems to vary by
source, and climate change as a topic has differ-
ing effects, depending on the platform. The moral
word lists were manually augmented and trans-
lated from the lists available from the developers
of the Moral Foundations Theory (MFT)7.

8 Conclusions

As already demonstrated by Torki (2018) and
Nikolentzos et al. (2017), taking second mo-
ments of word vectors into document represen-

7https://www.moralfoundations.org/
othermaterials
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Figure 5: Frobenius recall of the article–comment
matching task (proportion of real pairs retrieved when
5% of fake pairs are retrieved), as a function of rank
k. For all news sources, performance saturates at rather
low orders, k = 2 . . . 10. Horizontal lines indicate re-
call with cosine of mean word vectors, which ignores
second moments of the document.

Figure 6: A recall measure on the article–comment
matching task (proportion of real pairs retrieved when
5% of fake pairs are retrieved), when matching is
with a mixture cos +αh2 of ordinary cosine of means
and centered Frobenius similarity (with rank k = 3).
Adding mean information (smaller α) generally de-
grades performance except for one news source (Uusi
Suomi) which peaks at α ≈ 0.5.

tations improves document matching. Surpris-
ingly, the often-used mean vector seems to then
become about irrelevant, a finding that needs to
be replicated with other embeddings and larger
experiments. There may exist efficient, ICA-like
schemes relying on even higher moments to opti-
mize the representations.

The second-order representations, and an asso-
ciated similarity measure equivalent to the Frobe-
nius inner product, can be derived by extending
the Euclidean inner product into sets of words in a
natural, pairwise manner. Empirically, the Frobe-
nius similarity closely approximates Wasserstein
similarity, familiar from transport theory, but al-

Figure 7: Moral sentiment of text, in the sense of the
Moral Foundation Theory (Graham et al., 2013), has
been measured by counting words appearing on a cu-
rated list (Garten et al., 2016). Moral word lists can
also be related to documents with our h2. On a blog-
ging platform (Uusi Suomi), climate change as a promi-
nent topic does not always rise moral comments at all
(comments are probably technical). Points represent
single article–comment pairs for articles of high topi-
cality. Left: fairness, negative polarity; right: fairness,
positive polarity.

lows efficient low-rank approximations of other-
wise high-dimensional representations. The rela-
tionships of the two similarities may be worth fur-
ther investigation, both theoretical and empirical.

Low-rank approximations are not only compu-
tationally useful, but also may sometimes have
a regularizing effect that improves matching.
Like mean vectors, second-order representations
are useful as an alternative to traditional word-
occurrence scoring, on quantifying sentiment and
topicality of documents. Our experiments also
show that rank-1 approximations are better rep-
resentations of the documents than the mean vec-
tors, while having the same representation size and
computational complexity. There is an interesting
contrast to the SIF preprocessing, where one step
is to remove the corpus-wide largest component of
variance to enhance the performance. While these
two results are not contradictory, the combination
is somewhat counter-intuitive.

Compared to other embedding methods, our ap-
proach requires only low precomputation effort
and is local to document. The locality allows on-
line processing that would be hard to implement
with methods requiring preprocessing the corpus.
If the online property is not needed, second-order
representations are compatible with smart weight-
ing schemes like SIF (Arora et al., 2016) or P-SIF
(Gupta et al., 2019), and also with corpus-wide
preprocessing schemes like projections and scal-
ings.
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Abstract

Supervised machine learning assumes the
availability of fully-labeled data, but in many
cases, such as low-resource languages, the
only data available is partially annotated. We
study the problem of Named Entity Recogni-
tion (NER) with partially annotated training
data in which a fraction of the named enti-
ties are labeled, and all other tokens, entities or
otherwise, are labeled as non-entity by default.
In order to train on this noisy dataset, we need
to distinguish between the true and false neg-
atives. To this end, we introduce a constraint-
driven iterative algorithm that learns to detect
false negatives in the noisy set and downweigh
them, resulting in a weighted training set.
With this set, we train a weighted NER model.
We evaluate our algorithm with weighted vari-
ants of neural and non-neural NER models on
data in 8 languages from several language and
script families, showing strong ability to learn
from partial data. Finally, to show real-world
efficacy, we evaluate on a Bengali NER corpus
annotated by non-speakers, outperforming the
prior state-of-the-art by over 5 points F1.

1 Introduction
Most modern approaches to NLP tasks rely on super-
vised learning algorithms to learn and generalize from
labeled training data. While this has proven successful
in high-resource scenarios, this is not realistic in many
cases, such as low-resource languages, as the required
amount of training data just doesn’t exist. However,
partial annotations are often easy to gather.

We study the problem of using partial annotations to
train a Named Entity Recognition (NER) system. In
this setting, all (or most) identified entities are correct,
but not all entities have been identified, and crucially,
there are no reliable examples of the negative class.
The sentence shown in Figure 1 shows examples of
both a gold and a partially annotated sentence. Such
partially annotated data is relatively easy to obtain: for

Figure 1: This example has three entities: Arsenal,
Unai Emery, and Arsene Wenger. In the Partial row,
the situation addressed in this paper, only the first and
last are tagged, and all other tokens are assumed to be
non-entities, making Unai Emery a false negative as
compared to Gold. Our model is an iteratively learned
binary classifier used to assign weights to each token
indicating its chances of being correctly labeled. The
Oracle row shows optimal weights.

example, a human annotator who does not speak the
target language may recognize common entities, but
not uncommon ones. With no reliable examples of the
negative class, the problem becomes one of estimating
which unlabeled instances are true negatives and which
are false negatives.

To address the above-mentioned challenge, we
present Constrained Binary Learning (CBL) – a novel
self-training based algorithm that focuses on iteratively
identifying true negatives for the NER task while im-
proving its learning. Towards this end, CBL uses
constraints that incorporate background knowledge re-
quired for the entity recognition task.

We evaluate the proposed methods in 8 languages,
showing a significant ability to learn from partial data.
We additionally experiment with initializing CBL with
domain-specific instance-weighting schemes, showing
mixed results. In the process, we use weighted vari-
ants of popular NER models, showing strong perfor-
mance in both non-neural and neural settings. Finally,
we show experiments in a real-world setting, by em-
ploying non-speakers to manually annotate romanized
Bengali text. We show that a small amount of non-
speaker annotation combined with our method can out-
perform previous methods.
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2 Related Work

The supervision paradigm in this paper, partial su-
pervision, falls broadly under the category of semi-
supervision (Chapelle et al., 2009), and is closely re-
lated to weak supervision (Hernández-González et al.,
2016)1 and incidental supervision (Roth, 2017), in the
sense that data is constructed through some noisy pro-
cess. However, all of the most related work shares a
key difference from ours: reliance on a small amount
of fully annotated data in addition to the noisy data.

Fernandes and Brefeld (2011) introduces a transduc-
tive version of structured perceptron for partially an-
notated sequences. However, their definition of partial
annotation is labels removed at random, so examples
from all classes are still available if not contiguous.

Fidelity Weighted Learning (Dehghani et al., 2017)
uses a teacher/student model, in which the teacher has
access to (a small amount) of high quality data, and
uses this to guide the student, which has access to (a
large amount) of weak data.

Hedderich and Klakow (2018), following Gold-
berger and Ben-Reuven (2017), add a noise adaptation
layer on top of an LSTM, which learns how to correct
noisy labels, given a small amount of training data. We
compare against this model in our experiments.

In the world of weak supervision, Snorkel (Ratner
et al., 2017; Fries et al., 2017), is a system that com-
bines automatic labeling functions with data integra-
tion and noise reduction methods to rapidly build large
datasets. They rely on high recall and consequent re-
dundancy of the labeling functions. We argue that in
certain realistic cases, high-recall candidate identifica-
tion is unavailable.

We draw inspiration from the Positive-Unlabeled
(PU) learning framework (Liu et al., 2002, 2003; Lee
and Liu, 2003; Elkan and Noto, 2008). Originally in-
troduced for document classification, PU learning ad-
dresses problems where examples of a single class (for
example, sports) are easy to obtain, but a full labeling
of all other classes is prohibitively expensive.

Named entity classification as an instance of PU
learning was introduced in Grave (2014), which uses
constrained optimization with constraints similar to
ours. However, they only address the problem of
named entity classification, in which mentions are
given, and the goal is to assign a type to a named-entity
(like ‘location’, ‘person’, etc.) as opposed to our goal
of identifying and typing named entities.

Although the task is slightly different, there has been
work on building ‘silver standard’ data from Wikipedia
(Nothman et al., 2008, 2013; Pan et al., 2017), using
hyperlink annotations as the seed set and propagating
throughout the document.

Partial annotation in various forms has also been
studied in the contexts of POS-tagging (Mori et al.,

1See also: https://hazyresearch.github.io/
snorkel/blog/ws_blog_post.html

2015), word sense disambiguation (Hovy and Hovy,
2012), temporal relation extraction (Ning et al., 2018),
dependency parsing (Flannery et al., 2012), and named
entity recognition (Jie et al., 2019).

In particular, Jie et al. (2019) study a similar problem
with a few key differences: since they remove entity
surfaces randomly, the dataset is too easy; and they do
not use constraints on their output. We compare against
their results in our experiments.

Our proposed method is most closely aligned with
the Constraint Driven Learning (CoDL) framework
(Chang et al., 2007), in which an iterative algorithm
reminiscent of self-training is guided by constraints
that are applied at each iteration.

3 Constrained Binary Learning

Our method assigns instance weights to all negative el-
ements (tokens tagged as O), so that false negatives
have low weights, and all other instances have high
weights. We calculate weights according to the confi-
dence predictions of a classifier trained iteratively over
the partially annotated data. We refer to our method as
Constrained Binary Learning (CBL).2

We will first describe the motivation for this ap-
proach before moving on to the mechanics. We start
with partially annotated data (which we call set T ) in
which some, but not all, positives are annotated (set P ),
and no negative is labeled. By default, we assume that
any instance not labeled as positive is labeled as nega-
tive as opposed to unlabeled. This data (set N ) is noisy
in the sense that many true positives are labeled as neg-
ative (these are false negatives). Clearly, training on T
as-is will result in a noisy classifier.

Two possible approaches are: 1) find the false nega-
tives and label them correctly, or 2) find the false neg-
atives and remove them. The former method affords
more training data, but runs the risk of adding noise,
which could be worse than the original partial annota-
tions. The latter is more forgiving because of an asym-
metry in the penalties: it is important to remove all false
negatives in N , but inadvertently removing true nega-
tives from N is typically not a problem, especially in
NER, where negative examples dominate. Further, a
binary model (only two labels) is sufficient in this case,
as we need only detect entities, not type them.

We choose the latter method, but instead of remov-
ing false negatives, we adopt an instance-weighting ap-
proach, in which each instance is assigned a weight
vi ≥ 0 according to confidence in the labeling of that
instance. A weight of 0 means that the loss this instance
incurs during training will not update the model.

With this in mind, CBL takes two phases: first, it
learns a binary classifier λ using a constrained iterative
process modeled after the CODL framework (Chang
et al., 2007), and depicted in Figure 2. The core of

2Publication details (including code) can be found at
cogcomp.org/page/publication_view/888
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Require:
P : positive tokens
N : noisy negative tokens
C : constraints

1: T = N ∪ P
2: V ← Initialize T with weights (Optional)
3: while stopping condition not met do
4: λ← train(T, V )
5: T̂ ← predict(λ, T )
6: T, V ← inference(T̂ , C)
7: end while
8: return λ

Figure 2: Constrained Binary Learning (CBL) algo-
rithm (phase 1). The core of the algorithm is in the
while loop, which iterates over training on T , predict-
ing on T and correcting those predictions.

the algorithm is the train-predict-infer loop. The train-
ing process (line 4) is weighted, using weights V . At
the start, these can be all 1 (Raw), or can be initialized
with prior knowledge. The learned model is then used
to predict on all of T (line 5). In the inference step (line
6), we take the predictions from the prior round and the
constraints C and produce a new labeling on T , and a
new set of weights V . The details of this inference step
are presented later in this section. Although our ulti-
mate strategy is simply to assign weights (not change
labels), in this inner loop, we update the labels on N
according to classifier predictions.

In the second phase of CBL, we use the λ trained
in the previous phase to assign weights to instances as
follows:

vi =

{
1.0 if xi ∈ P
Pλ(yi = O | xi) if xi ∈ N

(1)

Where Pλ(yi = O | xi) is understood as the clas-
sifier’s confidence that instance xi takes the negative
label. In practice it is sufficient to use any confidence
score from the classifier, not necessarily a probability.
If the classifier has accurately learned to detect entities,
then for all the false negatives in N , Pλ(yi = O|xi) is
small, which is the goal.

Ultimately, we send the original multiclass partially
annotated dataset along with final weights V to a stan-
dard weighted NER classifier to learn a model. No
weights are needed at test time.

3.1 NER with CBL
So far, we have given a high-level view of the algo-
rithm. In this section, we will give more low-level de-
tails, especially as they relate to the specific problem
of NER. One contribution of this work is the inference
step (line 6), which we address using a constrained In-
teger Linear Program (ILP) and describe in this section.
However, the constraints are based on a value we call
the entity ratio. First, we describe the entity ratio, then

we describe the constraints and stopping condition of
the algorithm.

3.1.1 Entity ratio and Balancing
We have observed that NER datasets tend to hold a rel-
atively stable ratio of entity tokens to total tokens. We
refer to this ratio as b, and define it with respect to some
labeled dataset as:

b =
|P |

|P |+ |N | (2)

where N is the set of negative examples. Previous
work has shown that in fully-annotated datasets the en-
tity ratio tends to be about 0.09 ± 0.05, depending on
the dataset and genre (Augenstein et al., 2017). Intu-
itively, knowledge of the gold entity ratio can help us
estimate when we have found all the false negatives.

In our main experiments, we assume that the en-
tity ratio with respect to the gold labeling is known
for each training dataset. A similar assumption was
made in Elkan and Noto (2008) when determining the
c value, and in Grave (2014) in the constraint determin-
ing the percentage of OTHER examples. However, we
also show in Section 4.8 that knowledge of this ratio is
not strictly necessary, and a flat value across all datasets
produces similar performance.

With a weighted training set, it is also useful to de-
fine the weighted entity ratio.

b =
|P |

|P |+∑i∈N vi
(3)

When training an NER model on weighted data, one
can change the weighted entity ratio to achieve differ-
ent effects. To make balanced predictions on test, the
entity ratio in the training data should roughly match
that of the test data (Chawla, 2005). To bias a model to-
wards predicting positives or predicting negatives, the
weighted entity ratio can be set higher or lower respec-
tively. This effect is pronounced when using linear
methods for NER, but not as clear in neural methods.

To change the entity ratio, we scale the weights in N
by a scaling constant γ. Targeting a particular b∗, we
may write:

b∗ =
|P |

|P |+ γ
∑
i∈N vi

(4)

We can solve for γ:

γ =
(1− b∗)|P |
b∗
∑
i∈N vi

(5)

To obtain weights, v∗i , that attain the desired entity
ratio, b∗, we scale all weights in N by γ.

v∗i = γvi (6)

In the train-predict-infer loop, we balance the
weights to a value near the gold ratio before training.
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3.1.2 Constraints and Stopping Condition
We encode our constraints with an Integer Linear Pro-
gram (ILP), shown in Figure 3. Intuitively, the job of
the inference step is to take predictions (T̂ ) and use
knowledge of the task to ‘fix’ them.

In the objective function (Eqn. 8), token i is repre-
sented by two indicator variables y0i and y1i, represent-
ing negative and positive labels, respectively. Associ-
ated prediction scores C0 and C1 are from the classifier
λ in the last round of predictions. The first constraint
(Eqn. 9) encodes the fact that an instance cannot be
both an entity and a non-entity.

The second constraint (Eqn. 10) enforces the ratio of
positive to total tokens in the corpus to match a required
entity ratio. |T | is the total number of tokens in the
corpus. b is the required entity ratio, which increases at
each iteration. δ allows some flexibility, but is small.

Constraint 11 encodes that instances in P should be
labeled positive since they were manually labeled and
are by definition trustworthy. We set ξ ≥ 0.99.

This framework is flexible in that more complex
language- or task-specific constraints could be added.
For example, in English and many other languages with
Latin script, it may help to add a capitalization con-
straint. In languages with rich morphology, certain suf-
fixes may indicate or contraindicate a named entity. For
simplicity, and because of the number of languages in
our experiments, we use only a few constraints.

After the ILP has selected predictions, we assign
weights to each instance in preparation for training the
next round. The decision process for an instance is:

vi =

{
1.0 If ILP labeled xi positive
Pλ(yi = O | xi) Otherwise

(7)
This is similar to Equation (1), except that the set of

tokens that the ILP labeled as positive is larger than P .
With new labels and weights, we start the next iteration.

The stopping condition for the algorithm is related
to the entity ratio. One important constraint (Eqn.
10) governs how many positives are labeled at each
round. This number starts at |P | and is increased by
a small value3 at each iteration, thereby improving re-
call. Positive instances are chosen in two ways. First,
all instances in P are constrained to be labeled positive
(Eqn. 11). Second, the objective function ensures that
high-confidence positives will be chosen. The stopping
condition is met when the number of required positive
instances (computed using gold unweighted entity ra-
tio) equals the number of predicted positive instances.

4 Experiments
We measure the performance of our method on 8 dif-
ferent languages using artificially perturbed labels to

3The size of this value is related to how much we trust the
ranking induced by prediction confidences. If we believed
the ranking was perfect, we could take as many positives as
we wanted and be finished in one round.

max
y

|T |∑

i

C0iy0i + C1iy1i (8)

s.t. ∀i, y0i + y1i = 1 (9)

b− δ ≤
∑

i

y1i/|T | ≤ b+ δ (10)

∀i, xi ∈ P,
∑

i

y1i ≥ ξ|P |, (11)

Figure 3: ILP for the inference step

simulate the partial annotation setting.

4.1 Data
We experiment on 8 languages. Four languages –
English, German, Spanish, Dutch – come from the
CoNLL 2002/2003 shared tasks (Tjong Kim Sang and
De Meulder, 2003a,b). These are taken from newswire
text, and have labelset of Person, Organization, Loca-
tion, Miscellaneous.

The remaining four languages come from the
LORELEI project (Strassel and Tracey, 2016). These
languages are: Amharic (amh: LDC2016E87), Arabic
(ara: LDC2016E89), Hindi (hin: LDC2017E62), and
Somali (som: LDC2016E91). These come from a vari-
ety of sources including discussion forums, newswire,
and social media. The labelset is Person, Orga-
nization, Location, Geo-political entity. We define
train/development/test splits, taking care to keep a sim-
ilar distribution of genres in each split. Data statistics
for all languages are shown in Table 1.

4.2 Artificial Perturbation
We create partial annotations by perturbing gold anno-
tated data in two ways: lowering recall (to simulate
missing entities), and lowering precision (to simulate
noisy annotations).

To lower recall, we replace gold named entity tags
with O tags (for non-name). We do this by grouping
named entity surface forms, and replacing tags on all
occurrences of a randomly selected surface form until
the desired amount remains. For example, if the to-
ken ‘Bangor’ is chosen to be untagged, then every oc-
currence of ‘Bangor’ will be untagged. We chose this
slightly complicated method because the simplest idea
(remove mentions randomly) leaves an artificially large
diversity of surface forms, which makes the problem of
discovering noisy entities easier.

To lower precision, we tag a random span (of a ran-
dom start position, and a random length between 1 and
3) with a random named entity tag. We continue this
process until we reach the desired precision. When
both precision and recall are to be perturbed, the re-
call adjustment is made first, and then the number of
random spans to be added is calculated by the entities
that are left.
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Train Test

Lang. b (%) Tag Tok b (%) Tag Tok

English 16.6 23K 203K 17.3 5K 46K
Spanish 12.3 18K 264K 11.9 3K 51K
German 8.0 11K 206K 9.9 3K 51K
Dutch 9.5 13K 202K 8.3 4K 68K
Amharic 11.2 3K 52K 11.3 1K 18K
Arabic 12.6 4K 60K 10.2 931 16K
Hindi 7.38 4K 74K 7.53 1K 25K
Somali 11.2 4K 57K 11.9 1K 16K

Table 1: Data statistics for all languages, showing num-
ber of tags and tokens in Train and Test. The tag
counts represent individual spans, not tokens. That is,
“[Barack Obama]PER” counts as one tag, not two. The
b column shows the entity ratio as a percentage.

4.3 NER Models

In principle, CBL can use any NER method that can
be trained with instance weights. We experiment with
both non-neural and neural models.

4.3.1 Non-neural Model
For our non-neural system, we use a version of Cog-
comp NER (Ratinov and Roth, 2009; Khashabi et al.,
2018) modified to use Weighted Averaged Percep-
tron. This operates on a weighted training set Dw =
{(xi, yi, vi)}Ni=1, where N is the number of training
examples, and vi ≥ 0 is the weight on the ith training
example. In this non-neural system, a training exam-
ple is a word with context encoded in the features. We
change only the update rule, where the learning rate α
is multiplied by the weight:

w = w + αviyi(wTxi) (12)

We use a standard set of features, as documented
in Ratinov and Roth (2009). In order to keep the
language-specific resources to a minimum, we did not
use any gazetteers for any language.4 One of the most
important features is Brown clusters, trained for 100,
500, and 1000 clusters for the CoNLL languages, and
2000 clusters for the remaining languages. We trained
these clusters on Wikipedia text for the four CoNLL
languages, and on the same monolingual text used to
train the word vectors (described in Section 4.3.2).

4.3.2 Neural Model
A common neural model for NER is the BiLSTM-CRF
model (Ma and Hovy, 2016). However, because the
Conditional Random Field (CRF) layer calculates loss
at the sentence level, we need a different method to in-
corporate token weights. We use a variant of the CRF
that allows partial annotations by marginalizing over all
possible sequences (Tsuboi et al., 2008).

4Separate experiments show that omitting gazetteers im-
pacts performance only slightly.

When using a standard BiLSTM-CRF model, the
loss of a dataset (D) composed of sentences (s) is cal-
culated as:

L = −
∑

s∈D
logPθ(y

(s)|x(s)) (13)

Where Pθ(y(s)|x(s)) is calculated by the CRF over
outputs from the BiLSTM. In the marginal CRF frame-
work, it is assumed that y(s) is necessarily partial, de-
noted as y

(s)
p . To incorporate partial annotations, the

loss is calculated by marginalizing over all possible
sequences consistent with the partial annotations, de-
noted as C(ysp).

L = −
∑

s∈D
log

∑

y∈C(y
(s)
p )

Pθ(y|x(s)) (14)

However, this formulation assumes that all possible
sequences are equally likely. To address this, Jie et al.
(2019) introduced a way to weigh sequences.

L = −
∑

s∈D
log

∑

y∈C(y
(s)
p )

q(y|x(s))Pθ(y|x(s)) (15)

It’s easy to see that this formulation is a generaliza-
tion of the standard CRF if q(.) = 1 for the gold se-
quence y, and 0 for all others.

The product inside the summation depends on tag
transition probabilities and tag emission probabilities,
as well as token-level “weights” over the tagset. These
weights can be seen as defining a soft gold labeling for
each token, corresponding to confidence in each label.

For clarity, define the soft gold labeling over each
token xi as Gi ∈ [0, 1]L, where L is the size of the
labelset. Now, we may define q(.) as:

q(y|x(s)) =
∏

i

Gyii

Where Gyii is understood as the weight in Gi that
corresponds to the label yi.

We incorporate our instance weights in this model
with the following intuitions. Recall that if an instance
weight vi = 0, this indicates low confidence in the label
on token xi, and therefore the labeling should not up-
date the model at training time. Conversely, if vi = 1,
then this label is to be trusted entirely.

If vi = 0, we set the soft labeling weights over xi to
be uniform, which is as good as no information. Since
vi is defined as confidence in the O label, the soft la-
beling weight for O increases proportionally to vi. Any
remaining probability mass is distributed evenly among
the other labels.

To be precise, for tokens in N , we calculate values
for Gi as follows:

GOi = max(1/L, vi)

Gnon-O
i =

1−GOi
L− 1
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For example, consider phase 1 of Constrained Binary
Learning, in which the labelset is collapsed to two la-
bels (L = 2). Assuming that the O label has index 0,
then if vi = 0, then Gi = [0.5, 0.5]. If vi = 0.6, then
Gi = [0.6, 0.4].

For tokens in P (which have some entity label with
high confidence), we always set Gi with 1 in the given
label index, and 0 elsewhere.

We use pretrained GloVe (Pennington et al., 2014)
word vectors for English, and the same pretrained vec-
tors used in Lample et al. (2016) for Dutch, German,
and Spanish. The other languages are distributed with
monolingual text (Strassel and Tracey, 2016), which
we used to train our own skip-n-gram vectors.

4.4 Baselines
We compare against several baselines, including two
from prior work.

4.4.1 Raw annotations
The simplest baseline is to do nothing to the partially
annotated data and train on it as is.

4.4.2 Instance Weights
Although CBL works with no initialization (that is, all
tokens with weight 1), we found that a good weight-
ing scheme can boost performance for certain models.
We design weighting schemes that give instances in N
weights corresponding to an estimate of the label con-
fidence.5 For example, non-name tokens such as re-
spectfully should have weight 1, but possible names,
such as Russell, should have a low weight, or 0. We
propose two weighting schemes: frequency-based and
window-based.

For the frequency-based weighting scheme, we ob-
served that names have relatively low frequency (for
example, Kennebunkport, Dushanbe) and common
words are rarely names (for example the, and, so). We
weigh each instance in N according to its frequency.

vfreq
i = freq(xi) (16)

where freq(xi) is the frequency of the ith token in
N divided by the count of the most frequent token. In
our experiments, we computed frequencies over P+N ,
but these could be estimated on any sufficiently large
corpus. We found that the neural model performed
poorly when the weights followed a Zipfian distribu-
tion (e.g. most weights very small), so for those ex-
periments, we took the log of the token count before
normalizing.

For the window-based weighting scheme, noting that
names rarely appear immediately adjacent to each other
in English text, we set weights for tokens within a win-
dow of size 1 of a name (identified in P ) to be 1.0, and
for tokens farther away to be 0.

vwindow
i =

{
1.0 if di ≤ 1

0.0 otherwise
(17)

5All elements of P always have weight 1

where di is the distance of the ith token to the nearest
named entity in P .

Finally, we combine the two weighting schemes as:

vcombined
i =

{
1.0 if di ≤ 1

vfreq
i otherwise

(18)

4.4.3 Self-training with Marginal CRF

Jie et al. (2019) propose a model based on marginal
CRF (Tsuboi et al., 2008) (described in Section 4.3.2).
They follow a self-training framework with cross-
validation, using the trained model over all but one fold
to update gold labeling distributions in the final fold.
This process continues until convergence. They use a
partial-CRF framework similar to ours, but taking pre-
dictions at face value, without constraints.

4.4.4 Neural Network with Noise Adaptation

Following Hedderich and Klakow (2018), we used a
neural network with a noise adaptation layer.6 This
extra layer attempts to correct noisy examples given
a probabilistic confusion matrix of label noise. Since
this method needs a small amount of labeled data, we
selected 500 random tokens to be the gold training set,
in addition to the partial annotations.

As with our BiLSTM experiments, we use pretrained
GloVe word vectors for English, and the same pre-
trained vectors used in Lample et al. (2016) for Dutch,
German, and Spanish. We omit results from the re-
maining languages because the scores were substan-
tially worse even than training on raw annotations.

4.5 Experimental Setup and Results

We show results from our experiments in Table 2. In
all experiments, the training data is perturbed at 90%
precision and 50% recall. These parameters are similar
to the scores obtained by human annotators in a foreign
language (see Section 5). We evaluate each experiment
with both non-neural and neural methods.

First, to get an idea of the difficulty of NER in each
language, we report scores from models trained on
gold data without perturbation (Gold). Then we re-
port results from an Oracle Weighting scheme (Ora-
cle Weighting) that takes partially annotated data and
assigns weights with knowledge of the true labels.
Specifically, mislabeled entities in set N are given
weight 0, and all other tokens are given weight 1.0.
This scheme is free from labeling noise, but should
still get lower scores than Gold because of the smaller
number of entities. Since our method estimates these
weights, we do not expect CBL to outperform the Or-
acle method. Next, we show results from all baselines.
The bottom two sections are our results, first with no
initialization (Raw), and CBL over that, then with Com-
bined Weighting initialization, and CBL over that.

6The code was kindly provided by the authors.
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Method \ Language Tool eng deu esp ned amh ara hin som avg

Gold Cogcomp 89.1 72.5 82.5 82.6 67.2 53.4 74.4 80.3 75.3
BiLSTM-CRF 90.3 77.3 85.2 81.1 69.2 52.8 73.8 82.3 76.5

Oracle Weighting Cogcomp 83.7 65.7 76.2 76.4 54.3 42.0 56.3 68.5 65.4
BiLSTM-CRF 87.8 70.2 78.5 70.4 60.4 43.4 57.6 73.2 67.7

Noise Adaptation (Hedderich, 2018) 61.5 46.1 57.3 41.5 – – – – –
Self-training (Jie et al., 2019) 82.3 65.2 76.3 65.5 52.1 40.1 55.1 65.3 62.7

Raw Annotations Cogcomp 54.8 36.9 49.5 47.9 31.0 32.6 30.9 44.0 40.9
BiLSTM-CRF 73.3 57.7 61.9 58.3 42.2 36.8 47.5 54.9 54.1

CBL-Raw CogComp 74.7 63.0 68.7 67.0 45.0 37.8 50.6 67.9 59.3
BiLSTM-CRF 84.6 67.9 79.6 70.0 52.9 42.1 55.2 70.4 65.3

Combined Weighting Cogcomp 75.2 56.6 70.8 70.8 46.5 44.1 57.5 60.2 60.2
BiLSTM-CRF 73.5 60.3 64.9 61.9 48.0 38.0 49.0 56.6 56.5

CBL-Combined Cogcomp 77.3 61.8 74.0 72.4 49.2 43.7 58.2 67.6 63.0
BiLSTM-CRF 81.1 64.9 74.9 63.4 52.2 39.8 52.0 67.0 61.9

Table 2: F1 scores on English, German, Spanish, Dutch, Amharic, Arabic, Hindi, and Somali. Each section
shows performance of both Cogcomp (non-neural) and BiLSTM (neural) systems. Gold is using all available gold
training data to train. Oracle Weighting uses full entity knowledge to set weights on N . The next section shows
prior work, followed by our methods. The column to the farthest right shows the average score over all languages.
Bold values are the highest per column. On average, our best results are found in the uninitialized (Raw) CBL
from BiLSTM-CRF.

4.6 Analysis

Regardless of initialization or model, CBL improves
over the baselines. Our best model, CBL-Raw BiLSTM-
CRF, improves over the Raw Annotations BiLSTM-
CRF baseline by 11.2 points F1, and the Self-training
prior work by 2.6 points F1, showing that it is an effec-
tive way to address the problem of partial annotation.
Further, the best CBL version for each model is within
3 points of the corresponding Oracle ceiling, suggest-
ing that this weighting framework is nearly saturated.

The Combined weighting scheme is surprisingly ef-
fective for the non-neural model, which suggests that
the intuition about frequency as distinction between
names and non-names holds true. It gives modest
improvement in the neural model. The Self-training
method is effective, but is outperformed by our best
CBL method, a difference we discuss in more detail
in Section 4.7. The Noise Adaptation method outper-
forms the Raw annotations Cogcomp baseline in most
cases, but does not reach the performance of the Self-
training method, despite using some fully labeled data.

It is instructive to compare the neural and non-neural
versions of each setup. The neural method is better
overall, but is less able to learn from the knowledge-
based initialization weights. In the non-neural method,
the difference between Raw and Combined is nearly
20 points, but the difference in the neural model is
less than 3 points. Combined versions of the non-
neural method outperform the neural method on 3 lan-
guages: Dutch, Arabic, and Hindi. Further, in the
neural method, CBL-Raw is always worse than CBL-

Combined. This may be due to the way that weights
are used in each model. In the non-neural model, a low
enough weight completely cancels the token, whereas
in the neural model it is still used in training. Since
the neural model performs well in the Oracle setting,
we know that it can learn from hard weights, but it
may have trouble with the subtle differences encoded
in frequencies. We leave it to future work to discover
improved ways of incorporating instance weights in a
BiLSTM-CRF.

In seeking to understand the details of the other re-
sults, we need to consider the precision/recall tradeoff.
First, all scores in the Gold row had higher precision
than recall. Then, training on raw partially annotated
data biases a classifier strongly towards predicting few
entities. All results from the Raw annotations row have
precision more than double the recall (e.g. Dutch Preci-
sion, Recall, F1 were: 91.5, 32.4, 47.9). In this context,
the problem this paper explores is how to improve the
recall of these datasets without harming the precision.

4.7 Difference from Prior Work

While our method has several superficial similarities
with prior work, most notably Jie et al. (2019), there
are some crucial differences.

Our methods are similar in that they both use a model
trained at each step to assign a soft gold-labeling to
each token. Each algorithm iteratively trains models
using weights from the previous steps.

One difference is that Jie et al. (2019) use cross-
validation to train, while we follow Chang et al. (2007)
and retrain with the entire training set at each round.
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Avg F1

Method \ b 10% 15% Gold

Oracle Weighting 65.8 65.9 65.4
Raw annotations 40.9 40.9 40.9
Combined Weighting 59.9 60.2 60.2
CBL-Combined 62.4 62.3 63.0

Table 3: Experimenting with different entity ratios.
Scores reported are average F1 across all languages.
Gold b value refers to using the gold annotated data
to calculate the optimal entity ratio. This table shows
that exact knowledge of the entity ratio is not required
for CBL to succeed.

However, the main difference has to do with the fo-
cus of each algorithm. Recall the discussion in Sec-
tion 3 regarding the two possible approaches of 1) find
the false negatives and label them correctly, and 2) find
the false negatives and remove them. Conceptually, the
former was the approach taken by Jie et al. (2019), the
latter was our approach. Another way to look at this is
as focusing on predicting correct tag labels ((Jie et al.,
2019)) or focus on predicting O tags with high confi-
dence (ours).

Even though they use soft labeling (which they show
to be consistently better than hard labeling), it is possi-
ble that the predicted tag distribution is incorrect. Our
approach allows us to avoid much of the inevitable
noise that comes from labelling with a weak model.

4.8 Varying the Entity Ratio
Recall that the entity ratio is used for balancing and
for the stopping criteria in CBL. In all our experiments
so far, we have used the gold entity ratio for each lan-
guage, as shown in Table 1. However, exact knowl-
edge of entity ratio is unlikely in the absence of gold
data. Thus, we experimented with selecting a default b
value, and using it across all languages, with the Cog-
comp model. We chose values of 10% and 15%, and
report F1 averaged across all languages in Table 3.

While the gold b value is the best for CBL-
Combined, the flat 15% ratio is best for all other meth-
ods, showing that exact knowledge of the entity ratio is
not necessary.

5 Bengali Case Study
So far our experiments have shown effectiveness on
artificially perturbed labels, but one might argue that
these systematic perturbations don’t accurately simu-
late real-world noise. In this section, we show how our
methods work in a real-world scenario, using Bengali
data partially labeled by non-speakers.

5.1 Non-speaker Annotations
In order to compare with prior work, we used the
train/test split from Zhang et al. (2016). We removed

Num tokens 49K
Num sentences 2435
Num name tokens 2326
Entity ratio 4.66%
Num unique name tokens 664
Annotator 1 Prec/Rec/F1 84/34/48
Annotator 2 Prec/Rec/F1 79/28/42
Combined Prec/Rec/F1 83/32/47

Table 4: Bengali Data Statistics. The P/R/F1 scores are
computed for the non-speaker annotator with respect to
the gold training data.

all gold labels from the train split, romanized it7 (Her-
mjakob et al., 2018), and presented it to two non-
Bengali speaking annotators using the TALEN inter-
face (Mayhew and Roth, 2018). The instructions were
to move quickly and annotate names only when there
is high confidence (e.g. when you can also identify
the English version of the name). They spent about
5 total hours annotating, without using Google Trans-
late. This sort of non-speaker annotation is possible
because the text contains many ‘easy’ entities – foreign
names – which are noticeably distinct from native Ben-
gali words. For example, consider the following:

• Romanized Bengali: ebisi’ra giliyyaana phinnd-
dale aaja pyaalestaaina adhiinastha gaajaa theke
aaja raate ekhabara jaaniyyechhena .

• Translation8: ABC’s Gillian Fondley has re-
ported today from Gaza under Palestine today.

The entities are Gillian Findlay, ABC, Palestine, and
Gaza. While a fast-moving annotator may not catch
most of these, ‘pyaalestaaina’ could be considered an
‘easy’ entity, because of its visual and aural similarity
to ‘Palestine.’ A clever annotator may also infer that if
Palestine is mentioned, then Gaza may be present.

Annotators are moving fast and being intentionally
non-thorough, so the recall will be low. Since they do
not speak Bengali, there are likely to be some mistakes,
so the precision may drop slightly also. This is exactly
the noisy partial annotation scenario addressed in this
paper. The statistics of this data can be seen in Table 4,
including annotation scores computed with respect to
the gold training data for each annotator, as well as the
combined score.

We show results in Table 5, using the BiLSTM-CRF
model. We compare against other low-resource ap-
proaches published on this dataset, including two based
on Wikipedia (Tsai et al., 2016; Pan et al., 2017), an-
other based on lexicon translation from a high-resource
language (Mayhew et al., 2017). These prior meth-
ods operate under somewhat different paradigms than

7This step is vitally important. We used www.isi.edu/
˜ulf/uroman.html

8From translate.google.com
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Test

Scheme P R F1

(Zhang et al., 2016) - - 34.8
(Tsai et al., 2016) - - 43.3
(Pan et al., 2017) - - 44.0
(Mayhew et al., 2017) - - 46.2

BILSTM-CRF
Train on Gold 71.6 70.2 70.9
Raw annotations 73.0 23.8 35.9
Combined Weighting 65.9 34.2 45.0
CBL-Raw 57.8 47.3 52.0
CBL-Combined 58.3 44.2 50.2

Table 5: Bengali manual annotation results. Our meth-
ods improve on state of the art scores by over 5 points
F1 given a relatively small amount of noisy and incom-
plete annotations from non-speakers.

this work, but have the same goal: maximizing perfor-
mance in the absence of gold training data.

Raw annotations is defined as before, and gives sim-
ilar high-precision low-recall results. The Combined
Weighting scheme improves over Raw annotations by
10 points, achieving a score comparable to the prior
state of the art. Beyond that, CBL-Raw outperforms
the prior best by nearly 6 points F1, although CBL-
Combined again underwhelms.

To the best of our knowledge, this is the first result
showing a method for non-speaker annotations to pro-
duce high-quality NER scores. The simplicity of this
method and the small time investment for these results
gives us confidence that this method can be effective
for many low-resource languages.

6 Conclusions

We explore an understudied data scenario, and intro-
duce a new constrained iterative algorithm to solve it.
This algorithm performs well in experimental trials in
several languages, on both artificially perturbed data,
and in a truly low-resource situation.
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Abstract

Event trigger extraction is an information ex-
traction task of practical utility, yet it is chal-
lenging due to the difficulty of disambiguating
word sense meaning. Previous approaches rely
extensively on hand-crafted language-specific
features and are applied mainly to English
for which annotated datasets and Natural Lan-
guage Processing (NLP) tools are available.
However, the availability of such resources
varies from one language to another. Recently,
contextualized Bidirectional Encoder Repre-
sentations from Transformers (BERT) models
have established state-of-the-art performance
for a variety of NLP tasks. However, there
has not been much effort in exploring language
transfer using BERT for event extraction.

In this work, we treat event trigger extrac-
tion as a sequence tagging problem and pro-
pose a cross-lingual framework for training it
without any hand-crafted features. We exper-
iment with different flavors of transfer learn-
ing from high-resourced to low-resourced lan-
guages and compare the performance of differ-
ent multilingual embeddings for event trigger
extraction. Our results show that training in
a multilingual setting outperforms language-
specific models for both English and Chinese.
Our work is the first to experiment with two
event architecture variants in a cross-lingual
setting, to show the effectiveness of contextu-
alized embeddings obtained using BERT, and
to explore and analyze its performance on Ara-
bic.

1 Introduction

Event trigger extraction, as defined the Automatic
Content Extraction multilingual evaluation bench-
mark (ACE2005) (Walker, 2006), is a subtask of
event extraction which requires systems to de-
tect and label the lexical instantiation of an event,
known as a trigger. As an example, in the sen-
tence ”John traveled to NYC for a meeting”, trav-

Israeli army prevent Palestinian militants from leaving the area   .
Artifact Origin

Davis is leaving to become chairman of the London School of Economics  .
position

Movement Transport

End-Position

(1)

(2)

Figure 1: Examples of importance of context in trigger
disambiguation.

eled is a trigger of a Movement-Transport event.
Trigger detection is typically the first step in ex-
tracting the structured information about an event
(e.g. the time, place, and participant arguments;
distinguishing between past, habitual, and future
events). This definition of the task restricts it
to events that can be triggered explicitly by ac-
tual words and makes it context-vulnerable: the
same event might be expressed by different trig-
gers and a specific trigger can represent different
event types depending on the context.

Event trigger extraction is challenging as it in-
volves understanding the context in order to be
able to identify the event that the trigger refers to.
Figure 1 shows two examples where context plays
a crucial role in disambiguating the word sense
of leaving, which is a trigger for a Movement-
Transport event in the first sentence and for an
End-Position event in the second sentence.

Due to the complexity of the task and the
difficulty in constructing a standard annotation
scheme, there exists limited labeled data, for only
a few languages. The earliest work has focused
mainly on English, for which there are relatively
many annotated sentences, and relies extensively
on language-specific linguistic tools to extract the
lexical and syntactic features that need to be com-
puted as a pre-requisite for the task (Ji and Grish-
man, 2008; Liao and Grishman, 2010; Hong et al.,
2011; Li et al., 2013).

Simply generating annotated corpora for each
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language of interest is not only costly and time-
consuming, it is also not necessarily guaranteed
to address the great NLP divide, where perfor-
mance depends on the language, the ability to gen-
erate language-specific features, and the quality
tools (in this case, syntactic parsers) available for
each language. In an attempt to reduce the great
NLP divide, we observe a tendency of practition-
ers drifting away from linguistic features and more
towards continuous distributed features that can
be obtained without hand-engineering, based sim-
ply on publicly available corpora. Recently, ap-
proaches have tried to overcome the limitation of
traditional lexical features, which can suffer from
the data sparsity problem and inability to fully
capture the semantics of the words, by making use
of sequential modeling methods including variants
of Recurrent Neural Networks (RNN) and Convo-
lutional Neural Networks (CNN), and/or Condi-
tional Random Fields (CRF). (Chen et al., 2015;
Liu et al., 2016; Nguyen et al., 2016; Sha et al.,
2018; Liu et al., 2018b).

Existing approaches which take into consider-
ation the cross-lingual aspect of event trigger ex-
traction tend to either take inspiration from ma-
chine translation, distant supervision or multi-
tasking. Machine translation is used by Liu et al.
(2018a) to project monolingual text to parallel
multilingual texts to model the confidence of clues
provided by other languages. However, this ap-
proach suffers from error propagation of machine
translation.

Another approach relies on multilingual embed-
dings, which can be pre-trained beforehand on
large monolingual corpora, using no explicit par-
allel data, and bridging the gap between differ-
ent languages by learning a way to align them
into a shared vector space. The ability of these
models to represent a common representation of
words across languages makes them attractive to
numerous downstream NLP applications. Multi-
lingual Unsupervised and Supervised Embeddings
(MUSE) is a framework for training cross-lingual
embeddings in an unsupervised manner, which
leads to competitive results, even compared to su-
pervised approaches (Conneau et al., 2017). How-
ever, there is no prior work leveraging this kind of
representation for cross-lingual event trigger ex-
traction.

More recently, BERT, a deep bidirectional rep-
resentation which jointly conditions on both left

and right context (Devlin et al., 2019), was pro-
posed, which unlike MUSE, provides contextu-
alized word embeddings, and has been shown
to achieve state-of-the-art performance on many
NLP tasks. In particular, (Yang et al., 2019)
propose a method based on BERT for enhanc-
ing event trigger and argument extraction by gen-
erating more labeled data. However, it has not
been applied in the context of cross-lingual trans-
fer learning.

In this paper, we investigate the possibility of
automatically learning effective features from data
while relying on zero language-specific linguis-
tic resources. Moreover, we explore the applica-
tion of multilingual embeddings to the event trig-
ger extraction task in a direct transfer of anno-
tation scheme where ground truth is only needed
for one language and can be used to predict labels
in other languages and other boosted and joint
multilingual schemes. We perform a systematic
comparison between training using monolingual
versus multilingual embeddings and the difference
in gain on performance with respect to different
train/test language pairs. We evaluate our frame-
work using two embedding approaches: type-
based unsupervised embeddings (MUSE) and con-
textualized embeddings (BERT). For the latter, we
demonstrate that our proposed model achieves a
better (or comparable) performance for all lan-
guages compared to some benchmarks for event
extraction on the ACE2005 dataset.

The main contributions of the paper can be sum-
marized as follows:

(1) We apply different state-of-the-art NN archi-
tectures for sequence tagging on trigger extraction
and compare them to feature-based baselines and
multilingual projection based models.

(2) We achieve a better performance using con-
textualized word representation learning in event
trigger extraction backed up with both quantitative
and qualitative analysis.

(3) We evaluate the effectiveness of a multilin-
gual approach using zero-shot transfer learning,
targeted cross-lingual and joint multilingual train-
ing schemes.

(4) We investigate event trigger extraction per-
formance when using Arabic.

2 Methodology

We treat trigger extraction as a sequence tagging
problem for which we start by designing a ba-
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sic state-of-the-art approach for sequence tagging
based on bidirectional Long Short Term Memory
(bi-LSTM) with word and character embeddings
and a CRF layer on top of it. Then, we describe
an approach that trains BERT with a CRF layer
for the task. In both architectures, the input is in
the form of BIO notation used to differentiate be-
tween the beginning (B), inside (I) and (O) for no
associated trigger labels.

2.1 Bi-LSTM-Char-CRF networks

The Bi-LSTM-Char-CRF for sequence tagging
model is a hierarchical neural network model
based on three components: character-level using
character embeddings, word-level using bi-LSTM
over word embeddings and sequence-level using
CRF. The architecture of the model is depicted in
Figure 2.

LSTM LSTM LSTM...

CRF Loss +Softmax Layer  

O
B-Personnel:
End-Position O

...

v0 v1 vn

...... ...

Fo
rw
ar
d

Ba
ck
w
ar
d

I-Personnel:
End-Position

Character 
Embeddings

Word 
Embeddings

Figure 2: Bidirectional LSTM with character embed-
dings and CRF layer

2.1.1 Bi-LSTM networks
LSTMs (Hochreiter and Schmidhuber, 1997) are
variants of RNNs that help learn long-range de-
pendencies efficiently thanks to their use of mem-
ory and forget cells. Those cells help control the
amount of the input to be retained/forgotten from
previous states.

Given an input character or word embeddings
representation xt for a given time step t, we
use bidirectional LSTMs by encoding features in
their forward: fhi =

−−−−→
LSTM(xi) and backward

bhi =
←−−−−
LSTM(xi) directions and concatenating

them hi = [fhi, bhi] to capture information from
both the past and future.

2.1.2 Character Embeddings
Character embeddings are used to capture or-
thographic patterns and to deal with out-of-
vocabulary words, especially in the cross-lingual
setting. We follow the same setup as Lample et al.
(2016) to obtain character embeddings using bi-
LSTM. Specifically, we concatenate both charac-
ter and word-level features and use a bi-LSTM on
top of that.

2.1.3 CRF Layer
The encoded character and word-level features are
fed to a CRF layer to learn inter-dependencies be-
tween output trigger tags and find the optimal tag
sequence. This layer simulates bi-LSTM in its use
of past and future tags to predict the current tag.
Following Lafferty et al. (2001), CRF layers de-
fine a transition matrix A and use a score Aij to
model the transition from the ith state to the jth

for a pair of consecutive time steps. The scores
[fθ]i,t of the matrix is the score output by the net-
work with parameters θ, for the sentence [x]N1 and
for the ith tag, at the tth word. The score of a
sequence of tags [y]N1 for a particular sequence of
words [x]N1 is the sum of transition scores and net-
work scores which are computed efficiently using
dynamic programming.

s([x]N1 , [i]
N
1 ) =

N∑

t=1

([A][i]t−1,[i]t + [fθ][i]t,t) (1)

2.2 BERT-CRF
BERT is a multi-layer bidirectional transformer
encoder, an extension to the original Transformer
model (Vaswani et al., 2017). The input represen-
tation consists of a concatenation of WordPiece
embeddings (Wu et al., 2016), positional embed-
dings, and the segment embedding. A special to-
ken ([CLS]) is inserted at the beginning of each
sentence and another special token ([PAD]) is used
to normalize the length of sentences (no ([SEP])
token is used in this case). The pre-trained BERT
model provides a powerful contextualized repre-
sentation which gives the state-of-the-art perfor-
mance for many NLP tasks. We use BERT-CRF,
which adds a CRF layer on top of BERT’s contex-
tualized embeddings layer.

3 Experimental Setup

3.1 Dataset
We evaluate our approach on the ACE2005
sentence-level event mention multilingual bench-
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mark.1 This dataset is annotated with 33 event
subtypes which, when represented in BIO anno-
tation, results in a 67-way labeling task. For a
sound comparison, we use the same data split as
the English baseline (as detailed in Section 3.3).
To the best of our knowledge, there are no Ara-
bic benchmark systems, so we produced our own
split.2 Statistics of the split for train, validation,
and test for the three languages: English (EN),
Chinese (ZH) and Arabic (AR) are included in Ta-
ble 1.
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Event Detection Model

Transfer Learning
O
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他

Figure 3: A zero-shot transfer learning architecture for
cross-lingual event trigger extraction

3.2 Evaluation
We design different experiments for the evalua-
tion of trigger extraction, where we train several
language-specific and multilingual models using
different embeddings and sequence labeling ar-
chitectures. We evaluate the following training
schemes:

• Monolingual Baselines: We train and fine-
tune on EN, ZH or AR using monolin-
gual FastText embeddings and testing on the
trained language.

• Zero-Shot learning experiments: As depicted
in Figure 3, we train and fine-tune on EN
using multilingual embeddings (MUSE or
BERT(multi)) and test on ZH and AR assum-
ing no resources for those languages. To sim-
plify experiments, we evaluate direct transfer
only from EN since it is a high-resourced tar-
get language for learning projections needed

1https://catalog.ldc.upenn.edu/
LDC2006T06

2Our document splits are available in:
https://github.com/meryemmhamdi1/
cross-ling-ev-extr

in multilingual embeddings. We also believe
AR and ZH are not good language-pair can-
didates, so we expect training on AR and test-
ing on ZH and EN or training on ZH and
testing on AR and EN would not lead to im-
provements.

• Targeted cross-lingual experiments: For each
test language (ZH and AR), we train and fine-
tune using multilingual embeddings on lan-
guage pairs involving the test language in ad-
dition to EN to test to what extent adding
training instances from the target language
boosts the performance over zero-shot learn-
ing from EN only. When testing on EN, we
train on EN+AR and EN+ZH.

• Joint multilingual experiments: We train and
fine-tune on all languages (EN, ZH, and AR)
using multilingual embeddings and testing on
EN, ZH and AR. The hypothesis to be tested
is whether a single language-independent
model can work well across languages.

3.3 Baselines

We compare our methodology against different
systems based on:

• Discrete Only: hand-crafted features only;
Ji’s Cross-Entity’08 (Ji and Grishman, 2008);
Liao’s Cross-Event’10 (Liao and Grishman,
2010); and Li’s Joint-Beam’13 (Li et al.,
2013).

• Discrete + Continuous: using a combina-
tion of both linguistic features and trainable
continuous features; Chen’s Dynamic CNN
(DMCNN’15) (Chen et al., 2015); Nguyen’s
Joint RNN (JRNN’16) (Nguyen et al., 2016);
Liu’s Jointly Multiple Events (JMEE’18)
(Liu et al., 2018b); and Zhang’s Generative
Adversarial Imitation Learning (GAIL’19)
(Zhang and Ji, 2018).

• Continuous Only: language-independent fea-
tures only; Feng’s Hybrid Neural Network
(HNN)’16 (Feng et al., 2016) and Liu’s Gated
Multilingual Attention (GMLATT)’18 (Liu
et al., 2018a).

For cross-lingual results, we include a compar-
ison with ZH baselines; Li’s Maximum Entropy
(MaxEnt)’13 (Li et al., 2013); Chen’s Rich-C’12
(Chen and Ng, 2012); Feng’s HNN’16 (Feng et al.,

659



Lang
Training Validation Test
#doc #triggers #doc #triggers #doc #triggers

EN 529 4,420 30 505 40 424
ZH 557 2,213 32 111 44 197
AR 354 1,986 21 112 28 169

Table 1: Number of training, dev, test triggers and documents per language in ACE2005 dataset

2016); and Hsi’s Multi’16 (Hsi et al., 2016). More
decriptions are included in Sections 5.1 and 5.2.

3.4 Hyper-parameters and Embeddings

We describe the hyper-parameters leading to the
best attainable performance for each event trigger
extraction architecture. They are selected based on
random search and performance on the validation
dataset. For Bi-LSTM-Char-CRF, we train char-
acter embeddings using a single bi-LSTM layer
with 100 hidden units and use another single layer
of bi-LSTM with 300 hidden units to train on the
concatenated word and char embeddings. We use
a dropout rate of 0.5. We optimize using Adam
with learning rate of 0.01, weight decay rate of
0.9, β1 = 0.7, β2 = 0.999 and ε = 1e−8.

For monolingual embeddings, we use 300-
dimensional word embeddings for EN, ZH, and
AR from fastText (Bojanowski et al., 2017). For
multilingual experiments, we use MUSE library 3

to train unsupervised alignments from ZH and AR
to EN resulting in a unified vector space for the
three languages. We use the same training hyper-
parameters across monolingual and multilingual
training to ensure a fair comparison.

For BERT-CRF, we train monolingual EN and
ZH using cased BERT-Base and BERT-ZH mod-
els4 respectively and for all multilingual exper-
iments, we use the recommended multi-cased
BERT-Base model.5 All models were trained us-
ing 12 layers with 768 hidden size and 12 self-
attention heads and 110 Million parameters. We
fine tune all BERT models with their default pa-
rameters. We use Adam with learning rate of 0.01,
weight decay rate of 0.9, β1 = 0.9, β2 = 0.999
and ε = 1e−6.

For all experiments, we use a batch size of 32
and limit the maximum sequence length of sen-
tences to 128, padding or cutting otherwise. In

3https://github.com/facebookresearch/
MUSE

4No pre-trained BERT model exists for Arabic.
5https://github.com/google-research/

bert

the end, we report F1 for both trigger identifica-
tion and classification tasks computed using the
seqeval6 framework for sequence labeling evalua-
tion based on the CoNLL-2000 shared task, com-
plying with previous work. Trigger classification
doesn’t assume the identification is correct but
rather gives a stricter performance metric for mea-
suring whether the trigger is not only identified but
also correctly classified.

4 Results

Table 2 shows F1 scores of trigger identification
and classification tested on EN, ZH and AR across
two event architectures: Bi-LSTM-Char-CRF and
BERT-CRF and using different embeddings and
training schemes (fine-grained performance anal-
ysis based on precision, recall scores can be found
in Appendix A).

4.1 Comparison with Feature-Based
State-of-the-art

Before digging deeper into the comparison of our
results with previous state-of-the-art methodology,
it is worth comparing the different approaches
taken by the prior work. For both EN and ZH,
we observe that the best F1 scores over trigger
identification and classification are obtained by
Liu’s JMEE in the first place and Feng’s HNN
with a close performance (with scores of 73.7%
and 73.4% on trigger classification). For the mul-
tilingual case (ZH), it is clear that Feng’s HNN
is very competitive, whereas models relying on
machine translation, namely Liu’s GMLATT and
Hsi’s multi, lag behind the rest of models.

It is not surprising that a neural-based system
outperforms other hand-crafted architectures since
the former can capture richer sequence informa-
tion beyond sentence-level than traditional NLP
pre-processing such as dependency parsing and
avoid errors propagated from such tools.

6https://github.com/chakki-works/
seqeval

660



Model
Train
Lang

Embed
-dings

Test Lang

EN ZH AR
Ident Class Ident Class Ident Class

† Ji’s Cross-Entity’08

EN

- N/A 68.3 - - - -
† Liao’s Cross-Event’10 - N/A 68.8 - - - -
† Li’s Joint-Beam’13 - 70.4 67.5 - - - -
‡ Chen’s DMCNN’15 Skip-Gram 73.5 69.1 - - - -
‡ Nguyen’s JRNN’16 C-BOW 71.9 69.3 - - - -
‡ Lius’s JMEE’18 Glove 75.9 73.7 - - - -
‡ Zhang’s GAIL’19 ELMo 73.9 72.0 - - - -
+ Feng’s HNN’16 Skip-Gram 75.9 73.4 - - - -
+ Liu’s GMLATT’18 Skip-Gram 74.1 72.4 - - - -
† Li’s MaxEnt’13

ZH

- - - 60.6 57.6 - -
† Chen’s Rich-C’12 - - - 66.7 63.2 - -
‡ Hsi’s Multi’16 multi proj - - N/A 39.6 - -
+ Feng’s HNN’16 Skip-Gram - - 68.2 63.0 - -

∗ Bi-LSTM-Char-CRF

Test Lang FastText 67.5 63.2 86.6 69.5 54.9 52.8
Test Lang

MUSE

68.9 62.5 29.6 25.0 20.3 18.7
EN - - 61.3 48.8 53.0 42.2
EN+ZH 69.5 65.8 77.2 70.6 - -
EN+AR 70.6 66.9 - - 56.1 53.2
All 66.5 61.6 72.6 64.3 69.4 62.3

∗ BERT-CRF

Test Lang Bert(Base) 79.2 75.3 84.4 79.9 - -
Test Lang

BERT
(multi)

77.8 73.1 83.7 79.8 69.8 66.7
EN - - 76.8 68.5 37.8 30.9
EN+ZH 79.8 75.2 84.7 81.2 - -
EN+AR 79.3 74.5 - - 74.9 69.5
All 79.2 73.5 87.7 83.2 73.2 68.9

Table 2: Comparison of performance with different train/test language pairs using prior work baselines in the
1st half and our method using Bi-LSTM-Char-CRF and BERT-CRF in the 2nd half. †, + and ‡ denote baseline
approaches using Discrete Only, Discrete + Continuous and Continuous Only features respectively, whereas ∗

denotes our own approaches. A ’-’ designates that the experiment doesn’t apply for that test language.

We observe that in general our language-
independent (monolingual) Bi-LSTM-Char-CRF
and BERT-CRF methods are on par with or outper-
form best attainable results. In particular, BERT-
CRF trained monolingually using BERT(Base)
embeddings outperforms other baselines for
both EN and ZH, with F1-scores of 79.2 and 75.3
on trigger identification and classification, respec-
tively, amounting to a 3.3% and 1.6% gain for EN.
For ZH, we obtain F1-scores of 84.4% and 79.9%,
amounting to an increase of 16.2% and 16.9%
over the previous state-of-the-art. On the other
hand, although results using Bi-LSTM-Char-CRF
lag behind state-of-the-art for EN, incurring a loss
of 10.5% over trigger classification, they are com-
petitive for ZH, with scores of 86.6% and 69.5%

and gains of 17.9% and 6.2% over Feng’s HNN
for trigger identification and classification respec-
tively.

4.2 Comparison between MUSE and BERT
Embeddings

We observe a significant difference in perfor-
mance in favor of BERT-CRF compared to Bi-
LSTM-Char-CRF with a gain of 12.1%, 10.4%,
and 13.9% on the classification task. The bet-
ter performance of BERT-CRF compared to Bi-
LSTM-Char-CRF can be attributed to the fact that
BERT is able to learn contextualized representa-
tion and long-range dependencies at different lev-
els of granularity. Table 3 provides some examples
where the surface form of the trigger is hard to dis-
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ambiguate without context information. Recon-
sidering the second example from the introduc-
tion, we notice that a Bi-LSTM-Char-CRF fails to
effectively associate it with position context clues.

4.3 Cross-lingual Event Trigger Extraction

In general, we observe that multilingual train-
ing leveraging multilingual embeddings provides
a boost in performance for both event architec-
tures, especially for EN and AR. More precisely,
there is a gain of 3.1% and 4.0% for EN and ZH
respectively on the identification performance of
multilingual over monolingual models. We notice
that AR benefits the most from multilingual train-
ing with an improvement of 9.5% and 2.8% on
the classification score with BERT-CRF and Bi-
LSTM-Char-CRF respectively. This supports our
claim about the effectiveness of multilingual mod-
els which are efficient to train and are more robust
than monolingual models.

Although F1-scores for zero-shot transfer
learning(train: EN, test: ZH/AR) are not the
best among multilingual experiments, they are still
promising and exceed prior published work given
the fact that no data from the target language was
used to fine-tune. In particular, training with
EN using BERT-CRF was helpful for ZH with
a performance not far from monolingual perfor-
mance. The same can be observed in the case of
EN→ZH and EN→AR using MUSE. The lower
performance of EN→AR using BERT-CRF raises
questions about the quality of BERT(multi) em-
bedding model training for Arabic.

Not surprisingly, training given a reason-
able amount of language-specific resources
from the test language under a targeted cross-
lingual scheme(train: EN+ZH/EN+AR, test:
EN/ZH/AR), boosts (with rare exceptions)
the performance over both monolingual train-
ing and zero-shot learning: EN+AR>EN,
EN+ZH>ZH>EN and EN+AR>EN>AR when
testing on ZH, AR and even for EN for which we
have a strong monolingual baseline.

When all languages are used to train one sin-
gle joint multilingual model (train: All, test:
EN/AR/ZH) we don’t always notice improve-
ments over monolingual models. To gain more in-
sight into why multilingual training boosts perfor-
mance over monolingual models, we include some
examples of when EN is complementary to ZH
and AR and without which the model fails to iden-

tify some events. In the Chinese example, there
are only 12 ”nearby” Chinese words to the trigger
word 解散 (Jiěsàn) in ZH training data, whereas
there are 4 times as many nearby words in EN (e.g.
disband, dissolve, shut, cease, etc).

5 Related Work

Since this work is at the intersection of (i) event
extraction and (ii) multilingual event extraction,
we present previous work in relation to each do-
main separately in addition to (iii) a description
of cross-lingual approaches for other tasks which
motivate our current work.

5.1 Event Extraction in English

Previous works in event extraction on ACE2005
benchmark dataset are mostly focused on English
and can be categorized based on the degree of
hand-crafted features used and whether they are
trained in a pipelined or joint fashion. While some
systems such as Cross-Document (Ji and Grish-
man, 2008) and Cross-Event (Liao and Grishman,
2010) leverage document-level information to en-
hance the performance of event extraction in a
pipelined fashion, others propose a more struc-
tured framework for joint training of both trigger
labeling and argument extraction (Li et al., 2013).

Other approaches explore neural networks on
top of linguistic features employing architec-
tures like Dynamic Multi-Pooling CNNs (DM-
CNN) (Chen et al., 2015) and bidirectional RNNs
(JRNN) with manually crafted features (Nguyen
et al., 2016). A joint approach was proposed by
Liu et al. (2018b) to extract multiple events based
on syntactic graph convolution network. More re-
cently, Zhang and Ji (2018) propose an approach
based on inverse reinforcement learning using
Generative Adversarial Networks (GAN) to alle-
viate mistakes related to ambiguous labels mak-
ing the model less vulnerable to biased, supervised
datasets like ACE2005.

However, the majority of the described ap-
proaches involves to some degree the use of lin-
guistic features. This is labor intensive and re-
quires rich external resources, which are not nec-
essarily available for low-resource languages.

5.2 Cross-lingual Event Extraction

Previous works for cross-lingual event extraction
conducted in a semi-supervised way range from
purely supervised approaches to those using ma-

662



MUSE BERT
Davies is leaving to become chairman of the London
School of Economics

Movement:
Transport

Personnel:
End-Position

The EU is set to release 20 million euros (US 21) million
in immediate humanitarian aid ...

Justice:
Release-Parole

Transaction:
Transfer-Money

Palestinian uprising as Isreal removed all major checkpoints
in the coastal territory.

Conflict:
Demonstrate

Conflict:
Attack

BERT(mono) BERT(multi all)
. . . �é 	Jj. ÊË @ éJ
Ê« �I 	�Q 	̄ �IJ
k �éÓ@Q 	ªË @ 	áÓ ÈA 	J�P@ ÕÎ��
 ÕË
”Arsenal has not been released from the fine ...”

O Justice:Fine

ÈA 	�	� úÍ@ �èPñ�JË @ Èñj�J�K 	à@ @Pñ 	̄ ù

	®J. 	�K


”The stone revolution must immediately turn into a fight.”
O Conflict:Attack

由于月之海已经宣布年底前要解散，所以使得...
”Since ’the sea of the moon’ has been announced to be
disbanded before the end of the year, ... ”

B-Business:
Declare-
Bankruptcy

Business:
End-Org

Table 3: Examples of trigger extraction mislabeled by MUSE but correctly labeled by BERT and those
missed/mislabeled with monolingual training only and corrected with multilingual BERT model.

chine translation techniques or word alignment
data. Feng et al. (2016) propose a language-
independent approach that doesn’t require any lin-
guistic feature engineering. However, this ap-
proach still requires equally abundant labeled data
for different languages and implies the need to
train a new model for each language indepen-
dently.

Hsi et al. (2016) exploit both language-
dependent and language-independent features in
the form of universal features such as universal
dependencies, limited bilingual dictionaries and
aligned multilingual word embeddings to train a
model with multiple languages. However, this
work lags behind in terms of the neural approach
used and doesn’t investigate the effectiveness of
leveraging multiple source languages.

Liu et al. (2018b) propose gated cross-lingual
attention as a mechanism to exploit the inher-
ent complementarity of multilingual data which
helps with data scarcity and trigger disambigua-
tion. However, this approach relies on machine
translation which suffers from error propagation.

5.3 Cross-lingual Tasks
Cross-lingual embeddings are of practical useful-
ness in many tasks in natural language process-
ing (NLP) and information extraction (IE). In each
case, a model is trained on one language and trans-
ferred to unseen languages. Downstream appli-
cations on which they are applied include part-
of-speech (POS) tagging (Cohen et al., 2011),

cross-lingual document classification ((Klemen-
tiev et al., 2012); (Schwenk and Li, 2018)) named
entity recognition (Xie et al., 2018). More re-
cently, BERT was developed as an extension to
the transformer architecture and achieved signif-
icant improvement in performance for many NLP
tasks.

The gain in performance associated with multi-
lingual training is what encouraged us to explore
this methodology on event trigger extraction. To
the best of our knowledge, there is no prior work
adopting conventional or contextualized multilin-
gual embeddings for event trigger detection.

6 Conclusion

In this work, we propose a cross-lingual approach
for event trigger extraction using a direct trans-
fer of annotation framework based on multilingual
embeddings. Compared to previous approaches,
our approach doesn’t rely on hand-crafted linguis-
tic features or machine translation.

We evaluate this approach using event trigger
extraction architectures with type-based unsuper-
vised embeddings (FastText and MUSE) and su-
pervised embeddings tuned to the context (BERT).
Our results for both English and Chinese show
competitive performance with baselines on the
ACE2005 benchmark even in the zero-shot learn-
ing scheme. Although results using MUSE are
lower for English, they are on par with Chinese
baselines and better for Arabic compared to BERT.
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We observe a generous boost in performance when
English is added to the target language, and when
all languages are combined together to train one
cross-lingual model, especially for Arabic. Our re-
sult are promising compared to both feature-based
approaches and cross-lingual approaches based on
machine translation.
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Abstract

We propose a novel deep structured learning
framework for event temporal relation extrac-
tion. The model consists of 1) a recurrent
neural network (RNN) to learn scoring func-
tions for pair-wise relations, and 2) a struc-
tured support vector machine (SSVM) to make
joint predictions. The neural network automat-
ically learns representations that account for
long-term contexts to provide robust features
for the structured model, while the SSVM in-
corporates domain knowledge such as tran-
sitive closure of temporal relations as con-
straints to make better globally consistent de-
cisions. By jointly training the two com-
ponents, our model combines the benefits of
both data-driven learning and knowledge ex-
ploitation. Experimental results on three high-
quality event temporal relation datasets (TCR,
MATRES, and TB-Dense) demonstrate that
incorporated with pre-trained contextualized
embeddings, the proposed model achieves sig-
nificantly better performances than the state-
of-the-art methods on all three datasets. We
also provide thorough ablation studies to in-
vestigate our model.

1 Introduction

Event temporal relation extraction aims at building
a graph where nodes correspond to events within a
given text, and edges reflect temporal relations be-
tween the events. Figure 1a illustrates an example
of such graph for the text shown above. Different
types of edges specify different temporal relations:
the event filed is SIMULTANEOUS with claiming,
overruled is BEFORE claiming, and overruled is
also BEFORE filed. Temporal relation extraction
is beneficial for many downstream tasks such as
question answering, information retrieval, and nat-
ural language generation. An event graph can po-

∗ The authors contribute equally, alphabetical order.

filed

imposed overruled

claiming

simultaneous before

Both U.S. and British officials filed objections to the
court's jurisdiction in 1995, claiming Security Council
resolutions imposed on Lybia to force the suspects'
extradition overruled a 1971 Convention which gives
Libya the right  to try the men.

(a) Ground-Truth Sub-graph

filed claimingoverruled

(b) Local Model Predictions

filed claimingoverruled

(c) Structured Model Predictions

Figure 1: An illustration of a paragraph with its partial
temporal graph. (a) shows the Ground-Truth tempo-
ral graph, in which case temporal relation SIMULTA-
NEOUS and BEFORE are presented. (b) and (c) are
the local and structured predictions, respectively, for
three of the event pairs in (a). Local predictions are in-
compatible with temporal transitivity rule: overruled
has to be BEFORE claiming if overruled is BEFORE
filed and filed is SIMULTANEOUS with claiming. The
structured model achieves coherence by reversing the
temporal order between claiming and overruled.

tentially be leveraged to help time-series forecast-
ing and provide guidances for natural language
generation. The CaTeRs dataset (Mostafazadeh
et al., 2016) which annotates temporal and causal
relations is constructed for this purpose.

A major challenge in temporal relation extrac-
tion stems from its nature of being a structured
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prediction problem. Although a relation graph can
be decomposed into individual relations on each
event pair, any local model that is not informed
by the whole event graph will usually fail to make
globally consistent predictions, thus degrading the
overall performance. Figure 1b gives an exam-
ple where the local model classifies the relation
between overruled and claiming incorrectly as it
only considers pairwise predictions: graph tempo-
ral transitivity constraint is violated given the rela-
tion between filed and claiming is SIMULTANE-
OUS. In Figure 1c, the structured model changes
the prediction of relation between overruled and
claiming from AFTER to BEFORE to ensure com-
patibility of all predicted edge types.

Prior works on event temporal relation extrac-
tion mostly formulate it as a pairwise classifi-
cation problem (Bethard, 2013; Laokulrat et al.,
2013; Chambers, 2013; Chambers et al., 2014)
disregarding the global structures. Bramsen et al.
(2006a); Chambers and Jurafsky (2008); Do et al.
(2012); Ning et al. (2018b,a) explore leveraging
global inference to ensure consistency for all pair-
wise predictions. There are a few prior works
that directly model global structure in the train-
ing process (Yoshikawa et al., 2009; Ning et al.,
2017; Leeuwenberg and Moens, 2017). How-
ever, these structured models rely on hand-crafted
features using linguistic rules and local-context,
which cannot adequately capture potential long-
term dependencies between events. In the exam-
ple shown in Figure 1, filed occurs in much earlier
context than overruled. Thus, incorporating long-
term contextual information can be critical for cor-
rectly predicting temporal relations.

In this paper, we propose a novel deep struc-
tured learning model to address the shortcomings
of the previous methods. Specifically, we adapt
the structured support vector machine (SSVM)
(Finley and Joachims, 2008) to incorporate lin-
guistic constraints and domain knowledge for
making joint predictions on events temporal rela-
tions. Furthermore, we augment this framework
with recurrent neural networks (RNNs) to learn
long-term contexts. Despite the recent success of
employing neural network models for event tem-
poral relation extraction (Tourille et al., 2017a;
Cheng and Miyao, 2017; Meng et al., 2017; Meng
and Rumshisky, 2018), these systems make pair-
wise predictions, and do not take advantage of
problem structures.

We develop a joint end-to-end training scheme
that enables the feedback from global structure to
directly guide neural networks to learn representa-
tions, and hence allows our deep structured model
to combine the benefits of both data-driven learn-
ing and knowledge exploitation. In the ablation
study, we further demonstrate the importance of
each global constraints, the influence of linguis-
tic features, as well as the usage of contextualized
word representations in the local model.

To summarize, our main contributions are:

• We propose a deep SSVM model for event
temporal relation extraction.

• We show strong empirical results and estab-
lish new state-of-the-art for three event rela-
tion benchmark datasets.

• Extensive ablation studies and thorough error
analysis are conducted to understand the ca-
pacity and limitations of the proposed model,
which provide insights for future research on
temporal relation extraction.

2 Related Work

Temporal Relation Data. Temporal relation
corpora such as TimeBank (Pustejovsky et al.,
2003) and RED (O’Gorman et al., 2016) facilitate
the research in temporal relation extraction. The
common issue in these corpora is missing anno-
tation. Collecting densely annotated temporal re-
lation corpora with all event pairs fully annotated
has been reported to be a challenging task as an-
notators could easily overlook some pairs (Cassidy
et al., 2014; Bethard et al., 2007; Chambers et al.,
2014). TB-Dense dataset mitigates this issue by
forcing annotators to examine all pairs of events
within the same or neighboring sentences. Recent
data construction efforts such as MATRES (Ning
et al., 2018a) and TCR (Ning et al., 2018b) fur-
ther enhance the data quality by using a multi-
axis annotation scheme and adopting start-point
of events to improve inter-annotator agreements.
However, densely annotated datasets are relatively
small both in terms of number of documents and
event pairs, which restricts the complexity of ma-
chine learning models used in previous research.

Event Temporal Relation Extraction The se-
ries of TempEval competitions (Verhagen et al.,
2007, 2010; UzZaman et al., 2013) attract many
research interests in predicting event temporal re-
lations. Early attempts (Mani et al., 2006; Verha-
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gen et al., 2007; Chambers et al., 2007; Verha-
gen and Pustejovsky, 2008) only use local pair-
wise classification with hand-engineered features.
Later efforts, such as ClearTK (Bethard, 2013),
UTTime (Laokulrat et al., 2013), and NavyTime
(Chambers, 2013) improve earlier work by feature
engineering with linguistic and syntactic rules.
A noteworthy work, CAEVO (Chambers et al.,
2014), builds a pipeline with ordered sieves. Each
sieve is either a rule-based classifier or a machine
learning model; sieves are sorted by precision, i.e.
decisions from a lower precision classifier cannot
contradict those from a higher precision model.

More recently, neural network-based methods
have been employed for event temporal rela-
tion extraction (Tourille et al., 2017a; Cheng and
Miyao, 2017; Meng et al., 2017; Han et al., 2019a)
which achieved impressive results. However, they
all treat the task as a pairwise classification prob-
lem. Meng and Rumshisky (2018) considered in-
corporating global context for pairwise relation
predictions, but they do not explicitly model the
output graph structure for event temporal relation.

There are a few prior works exploring struc-
tured learning for temporal relation extrac-
tion (Yoshikawa et al., 2009; Ning et al., 2017;
Leeuwenberg and Moens, 2017). However, their
local models use hand-engineered linguistic fea-
tures. Despite the effectiveness of hand-crafted
features in previous research, the design of fea-
tures usually fails to capture long-term context in
the discourse. Therefore, we propose to enhance
the hand-crafted features with contextual repre-
sentations learned through RNN models and de-
velop an integrated joint training process.

3 Methods

We adapt the notations from Ning et al. (2018a),
where R denotes the set of all possible relations;
E denotes the set of all event entities.

3.1 Deep SSVM
Our deep SSVM model adapts the SSVM loss as

L =

l∑

n=1

1

Mn

[
max

(
0,∆(yn, ŷn) + (1)

S(ŷn;xn)− S(yn;xn)
)]

+ C||Φ||2,

where Φ denotes model parameters, n indexes
instances, Mn is the number of event pairs in
instance n. yn, ŷn denote the gold and pre-
dicted global assignments for instance n, each of

, , , , . . . , , . . . , , . . . ,��,1 ��,2 ��,3 ��,4 ��,� ��,� ��,�

, , , , . . . , , . . . , , . . . ,��,1 ��,2 ��,3 ��,4 ��,� ��,� ��,�

�1 �2 �3 �4 ...... �� �� ��...... ......

�1 �2 �3 �4 ...... �� �� ��...... ......

�� ���� ��

Linear Layer

Input
Representations

��...... ......�� �� ��...... ......�1

BiLSTM Layers

BiLSTM Output

Scoring Layer

SSVM

Figure 2: An overview of the proposed deep structured
event relation extraction framework. The input repre-
sentations consist of BERT representations (vw,k) and
POS tag embeddings (vp,k). They are concatenated to
pass through BiLSTM layers and classification layers
to get pairwise local scores. Incompatible local pair-
wise prediction (denoted by red lines) is corrected by
the SSVM layer. Edge notation follows Figure 1 and
t1, ...tN denote tokens in the input sentence.

which consists of Mn one hot vectors yni,j , ŷ
n
i,j ∈

{0, 1}|R| representing true and predicted relation
labels for event pair i, j respectively. ∆(yn, ŷn) is
a distance measurement between the gold and the
predicted assignments; we simply use hamming
distance. C is a hyper-parameter to balance the
loss and the regularizer, and S(yn;xn) is a pair-
wise scoring function to be learned.

The intuition behind the SSVM loss is that it
requires the score of gold output structure yn to
be greater than the score of the best output struc-
ture under the current model ŷn with a margin
∆(yn, ŷn)1, or else there will be some loss.

The major difference between our deep SSVM
and the traditional SSVM model is the scoring
function. Traditional SSVM uses a linear function
over hand-crafted features to compute the scores,
whereas we propose to use a RNN for estimation.

3.2 RNN-Based Scoring Function

We introduce a RNN-based pair-wise scoring
function to learn features in a data-driven way and
capture long-term context in the input. The lo-
cal neural architecture is inspired by prior work
in entity relation extraction such as Tourille
et al. (2017b). As shown in Figure 2, the input
layer consists of word representations and part-of-

1Note that if the best prediction is the same as the gold
structure, the margin is zero.
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speech (POS) tag embeddings of each token in the
input sentence, denoted as vw,k and vp,k respec-
tively.2 The word representations are obtained via
pre-trained BERT (Devlin et al., 2018)3 model and
are fixed throughout training, while the POS tag
embeddings are tuned. The word and POS tag
embeddings are concatenated to represent an in-
put token, and then fed into a Bi-LSTM layer to
get contextualized representations.

We assume the events are labeled in the text and
use indices i and j to denote the tokens associ-
ated with an event pair (i, j) ∈ EE in the input
sentences of length N. For each event pair (i, j),
we take the forward and backward hidden vectors
corresponding to each event, namely fi, bi, fj , bj
to encode the event tokens. These hidden vectors
are then concatenated to form the input to the final
linear layer to produce a softmax distribution over
all possible pair-wise relations, which we refer to
as RNN-based scoring function.

3.3 Inference
The inference is needed both during training to ob-
tain ŷn in the loss function (Equation 1), as well
as during the test time to get globally compatible
assignments. The inference framework is estab-
lished by constructing a global objective function
using scores from local model and imposing sev-
eral global constraints: symmetry and transitivity
as in Bramsen et al. (2006b); Chambers and Ju-
rafsky (2008); Denis and Muller (2011); Do et al.
(2012); Ning et al. (2017); Han et al. (2019b), as
well as linguistic rules and temporal-causal con-
straints proposed by Ning et al. (2018a) to ensure
global consistency. In this work, we incorporate
the symmetry, transitivity, and temporal-causal
constraints.

Objective Function. The objective function of
the global inference maximizes the score of global
assignments as specified in Equation 24.

ŷ = arg max
∑

(i,j)∈EE

∑

r∈R
yr
i,jS(yr

i,j ;x) (2)

s.t. yr
i,j ∈ {0, 1} ,

∑

r∈R
yr
i,j = 1,

2Following the convention of event relation prediction lit-
erature (Chambers et al., 2014; Ning et al., 2018a,b), we only
consider event pairs that occur in the same or neighboring
sentences, but the architecture can be easily adapted to the
case where inputs are longer than two sentences.

3We use pre-trained bert-base-uncased model from
https://github.com/huggingface/pytorch-transformers.

4The objective function is specified on the instance level.

where yri,j is a binary indicator specifying if the
global prediction is equal to a certain label r ∈ R
and S(yri,j ,x), ∀r ∈ R is the scoring function ob-
tained from the local model. The output of the
global inference ŷ is a collection of optimal label
assignments for all event pairs in a fixed context.
The constraint following immediately from the ob-
jective function is that the global inference should
only assign one label to each pair of sample inputs.

Symmetry and Transitivity constraint. The
symmetry and transitivity constraints are used
across all models and experiments in the paper.
They can be specified as follows:

∀(i, j), (j, k) ∈ EE , yr
i,j = yr̄

j,i, (symmetry)

yr1
i,j + yr2

j,k −
∑

r3∈Trans(r1,r2)

yr3
i,k ≤ 1. (transitivity)

Intuitively, the symmetry constraint forces two
pairs with opposite order to have reversed rela-
tions. For example, if ri,j = BEFORE, then rj,i =
AFTER. Transitivity constraint rules that if (i, j),
(j, k) and (i, k) pairs exist in the graph, the label
(relation) prediction of (i, k) pair has to fall into
the transitivity set specifying by (i, j) and (j, k)
pairs. The full transitivity table can be found in
Ning et al. (2018a).

Temporal-causal Constraint. The temporal-
causal constraint is used for the TCR dataset
which is the only dataset in our experiments that
contains causal pairs and it can written as:

yci,j = yc̄j,i ≤ ybi,j , ∀(i, j) ∈ EE ,

where c and c̄ correspond to the label CAUSES and
CAUSED BY, and b represents the label BEFORE.
This constraint specifies that if event i causes event
j, then i has to occur before j. Note that this con-
straint only has 91.9% accuracy in TCR data (Ning
et al., 2018a), but it can help improve model per-
formance based on our experiments.

3.4 Learning
We develop a two-state learning approach to op-
timize the neural SSVM. We first train the lo-
cal scoring function without feedback from global
constraints. In other words, the local neural net-
work model is optimized using only pair-wise
relations in the first stage by minimizing cross-
entropy loss. During the second stage, we switch
to the global objective function in Equation 1 and
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TB-Dense MATRES TCR
# of Documents

Train 22 22 20
Dev 5 5 0
Test 9 9 5

# of Pairs
Train 4032 1098 1992
Dev 629 229 0
Test 1427 310 1008

Table 1: Data Overview

re-optimize the network to adjust for global prop-
erties5. We denote the local scoring model in the
first stage as local model, and the final model as
global model in the following sections.

4 Experimental Setup

In this section, we describe the three datasets that
are used in the paper. Then we define the evalua-
tion metrics. Finally, we provide details regarding
our model implementation and experiments.

4.1 Data

Experiments are conducted on TB-Dense, MA-
TRES and TCR datasets and an overview of data
statistics are shown in Table 1. We focus on event
relation, thus, all numbers refer to EE pairs6. Note
that in all three datasets, event pairs are always an-
notated by their appearance order in text, i.e. given
a labeled event pair (i, j), event i always appears
prior to event j in the text. Following Meng et al.
(2017), we augment event pairs with flipped-order
pairs. That is, if a pair (i, j) exists, pair (j, i) is
also added to our dataset with the opposite label.
The augmentation is applied to training and devel-
opment split, but test set remains unaugmented7.

TB-Dense (Cassidy et al., 2014) is based on
TimeBank Corpus but addresses the sparse-
annotation issue in the original data by introduc-
ing the VAGUE label and requiring annotators to
label all pairs of events/times in a given window.

MATRES (Ning et al., 2018b) is based on TB-
Dense data, but filters out non-verbal events. The
authors project events on multiple axes and only
keep those in the main-axis. These two factors ex-
plain the large decrease of event pairs in Table 1.

5We experiment with optimizing SSVM loss directly, but
model performance degrades significantly. We leave further
investigation for future work.

6For TCR, we also include causal pairs in the table.
7It is noted that if symmetric constraint is applied, scores

for testing on augmented or unaugmented set are equal.

TB-Dense MATRES TCR
Local Model

hid size 60 40 30
dropout 0.5 0.7 0.5
BiLSTM layers 1 2 1
learning rate 0.002 0.002 0.002

Structured Learning
learning rate 0.05 0.08 0.08
decay 0.7 0.7 0.9

Table 2: Best hyper-parameters

Start-point temporal scheme is adopted when out-
sourcing the annotation task, which contributes to
the performance improvement of machine learn-
ing models built on this dataset .

TCR (Ning et al., 2018a) follows the same an-
notation scheme for temporal pairs in MATRES.
It is also annotated with causal pairs. To get
causal pairs, the authors select candidates based
on EventCausality dataset (Do et al., 2011).

4.2 Evaluation Metrics

To be consistent with the evaluation metrics used
in baseline models, we adopt two slightly different
calculations of metrics.

Micro-average For all datasets, we compute the
micro-average scores. For densely annotated data,
the micro-average metric should share the same
precision, recall and F1 scores. However, since
VAGUE pairs are excluded in the micro-average
calculations of TCR and MATRES for fair com-
parisons with the baseline models, the micro-
average for precision, recall and F1 scores are dif-
ferent when reporting results for the two datasets.

Temporal Awareness (TE3) For TB-Dense
dataset, TE3 evaluation scheme (UzZaman et al.,
2013) is also adopted in previous research (Ning
et al., 2017, 2018a). TE3 score not only takes
into account of the number of correct pairs but
also capture how “useful” a temporal graph is. We
report this score for TB-Dense results only. For
more details of this metric, please refer to the orig-
inal paper (UzZaman et al., 2013).

4.3 Implementation Details

Since our work focuses on event relations, we
build our models to predict relations between EE
pairs only when conducting experiments. Thus, all
micro-average F1 scores only consider EE pairs.
Note that there are also time entities labeled in the
TB-Dense denoted as T . ET and T T pairs are
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Results Overview

5

SOTA for TCR: Ning et. al. ACL 2018a. 
SOTA for MATRES: Ning et. al. ACL 2018b.
SOTA for TB-Dense: Meng and Rumshisky. ACL 2018.
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Figure 3: Model Performance (F1 Score) Overview.
Our local and global models’ performances are aver-
aged over 3 different random seeds for robustness.

generally easier to predict using rule-based clas-
sifiers or date normalization technique (Do et al.,
2012; Chambers et al., 2014; Mirza and Tonelli,
2016). To be consistent with the baseline models
(Ning et al., 2018a,b) for TB-Dense data, we add
ET and T T pairs for TE3 evaluation metric8.

In the two-stage learning procedure, the local
model is trained by minimizing cross-entropy loss
with Adam optimizer. We use pre-trained BERT
embedding with 768 dimensions as the input word
representations and one-layer MLP as the classifi-
cation layer. As for the structured learning stage,
we observe performance boost by switching from
Adam optimizer to SGD optimizer with decay and
momentum9. To solve ILP in the inference process
specified in Section 3.3, we leverage off-the-shelf
solver provided by Gurobi optimizer, i.e. the best
solutions from the Gurobi optimizer are inputs to
the global training.

The hyper-parameters are chosen by the perfor-
mance on the development set10, and the best com-
bination of hyper-parameters can be found in Ta-
ble 2. We run experiments on 3 different random
seeds and report the average results.

Note that for TCR data, we need a separate
classifier for causal relations. Because of small
amount of causal pairs, we simply build an inde-
pendent final linear layer apart from the original
linear layer in Figure 2. In other words, there are
two final linear layers: only one of them is active
when training temporal or causal pairs.

5 Results and Analysis

Figure 3 shows an overview of our model perfor-
mance on three different datasets. As the chart

8We rely on annotated data to distinguish different pair
types, i.e. EE , ET and T T are assumed to be given.

9The weight decay in SGD is exactly the value C in Equa-
tion 1. We set the momentum in SGD as 0.9 in all datasets.

10We randomly select 4 documents from the training set as
development set for TCR.

Local Model Global Model
P R F1 P R F1

Before 82.1 86.9 84.3 81.3 90.0 85.4
After 67.1 73.2 69.7 70.9 70.9 70.9
Simultaneous 0.0 0.0 0.0 0.0 0.0 0.0
Vague 0.0 0.0 0.0 0.0 0.0 0.0
Micro-average 77.1 82.5 79.7 78.2 83.9 80.9**
Ning et al. (2018a) 71.1

Table 3: Model Performance Breakdown for TCR. To
make fair comparison, we exclude VAGUE pairs in
Micro-average score, which is why P, R and F1 are
different. **indicates global model outperforms local
model with p-value < 0.01 per McNemar’s test.

Local Model Global Model
P R F1 P R F1

Before 79.7 88.1 83.6 80.1 89.6 84.6
After 70.5 83.3 76.3 72.3 84.8 78.0
Simultaneous 0.0 0.0 0.0 0.0 0.0 0.0
Vague 0.0 0.0 0.0 0.0 0.0 0.0
Micro-average 76.2 84.9 80.3 77.4 86.4 81.7*
Ning et al. (2018b) 69

Table 4: Model Performance Breakdown for MATRES.
Again, we exclude VAGUE pairs in Micro-average
score. * indicates global model outperforms local
model with p-value < 0.05 per McNemar’s test.

illustrates, our RNN-based local models outper-
form state-of-the-art (SOTA) results and the global
models further improve the performance over lo-
cal models across all three datasets.

5.1 TCR

Detailed model performances for the TCR dataset
are shown in Table 3. We only report model per-
formance on temporal pairs. Both of our local and
global models outperform the baseline. Our global
model is able to improve overall model perfor-
mance by more than 1.2% over our local model;
per McNemar’s test, this improvement is statisti-
cally significant (with p-value < 0.01).

5.2 MATRES

Detailed model performances for the MATRES
dataset performances can be found in Table 4.
Similar to TCR, both our local and structured
models outperform this baseline and the global
model is able to improve overall model perfor-
mance by 1.4%; per McNemar’s test, this im-
provement is statistically significant (with p-value
< 0.05).

5.3 TB-Dense

Table 5 shows the breakdown performance for all
labels as well as the improvement from local to

671



Local Model Global Model
P R F1 P R F1

Before 73.5 52.7 61.3 71.1 58.9 64.4
After 71.6 60.8 65.3 75.0 55.6 63.5
Includes 17.5 4.8 7.4 24.6 4.2 6.9
Is Include 69.1 4.4 8.0 57.9 5.7 10.2
Simultaneous 0.0 0.0 0.0 0.0 0.0 0.0
Vague 57.9 81.5 67.7 58.3 81.2 67.8
Micro-average 62.6 63.2
Chambers et al. (2014) 49.4
Cheng and Miyao (2017) 52.9
Meng and Rumshisky (2018) 57.0

TE3 Metrics
EE only 62.1 61.9 62.2 62.7 58.9 62.5
+ ET , T T 58.6 63.6 61.0 59.0 64.0 61.4
Ning et al. (2018a) 52.1

Table 5: Model Performance Breakdown for TB-Dense
(all values are percentage). Upper Table: for event
pairs only, we adopt standard Micro-average score.
Lower Table: TE3 refers to the temporal awareness
score adopted by TE-3 Workshop. To make fair com-
parison with Ning et al. (2018a), we add CEAVO pre-
dictions on ET and T T pairs back into the calculation.

global model by adopting the two-stage structured
learning method in TB-Dense dataset. Both our
local and global models are able to outperform
previous SOTA in micro-average metric (reported
by Meng and Rumshisky (2018)) or in TE3 metric
(results from Ning et al. (2018a)).

Per McNemar’s test, the improvements from lo-
cal to global model only has p-value = 0.126, so
we are not able to conclude that the improvement
is statistically significant. We think one of the rea-
sons is the large share of VAGUE pairs (42.6%).
VAGUE pairs make our transitivity rules less con-
clusive. For example, ifR(e1, e2) = BEFORE and
R(e2, e3) = VAGUE, R(e1, e3) can be any rela-
tion types. Moreover, this impact is magnified by
our local model’s prediction bias towards VAGUE
pairs. As we can see in Table 5, the recall score
for VAGUE pairs are much higher than other re-
lation types, whereas precision score is moderate.
Our global model leverages local output structure
to enforce global prediction consistency, but when
local predictions contain many VAGUE pairs, it
introduces lots of noise too.

To make fair comparison between our model
and the best reported TE3 F1 score from Ning
et al. (2018a), we follow their strategy and add
CAEVO system’s predictions on T T and ET
pairs in the evaluation. The scores are shown in
Table 5. Our overall system outperforms the base-
line over 10% for both micro-average and TE3 F1
scores.

5.4 Error Analysis

To understand why both the local and structured
models make mistakes, we randomly sample 50
pairs from 345 cases where both models’ pre-
dictions are incorrect among all 3 random seeds.
We analyze these pairs qualitatively and catego-
rize them into four cases as shown in Table 6, with
each case (except other) paired with an example.

The first case illustrates that correct prediction
requires broader contextual knowledge. For ex-
ample, the gold label for transition and discuss
is BEFORE, where the nominal event transition
refers to a specific era in history that ends before
discuss in the second sentence. Human annota-
tors can easily infer this relation based on their
knowledge in history, but it is difficult for ma-
chines without prior knowledge. We observe this
as a very common mistake especially for pairs
with nominal events. As for the second case shows
that negation can completely change the temporal
order. The gold label for the event pair planned
and plans is AFTER because the negation token
no postpones the event planned indefinitely. Our
models do not pick up this signal and hence pre-
dict the relation as VAGUE.

Finally, “intention” events could make temporal
relation prediction difficult (Ning et al., 2018b).
Case 3 demonstrates that our models could ignore
the “intention” tokens such as aimed at in the
example and hence make an incorrect prediction
VAGUE between doubling and signed, whereas
the true label is AFTER because doubling is an
intention that has not occurred.

6 Ablation Studies

Although we have presented strong empirical re-
sults, the isolated contribution of each component
of our model has not been investigated. In this
section, we perform a though ablation study to un-
derstand the importance of structured constraints,
linguistic features, and the BERT representations.

6.1 Effect of the structured constraints

One of our core claims is that our learning ben-
efits from modeling the structural constraints of
event temporal graph. To study the contribution
of structured constraints, we provide an ablation
study on two constraints that are applied to all
three datasets: Symmetry and Transitivity.

A straightforward ablation study on symmetric
constraint is to remove it from our global inference
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Case 1 (32%): Connection with broader context
The program also calls for coordination of economic
reforms and joint improvement of social programs in the
two countries, where many people have become
impoverished during the chaotic post - Soviet transition
to capitalism. Kuchma also planned to visit Russian gas
giant Gazprom, most likely to discuss Ukraine’s DLRS
1.2 billion debt to the company.
Case 2 (20%): Negation
Annan has no trip planned so far. Meanwhile, Secretary
of State Madeleine Albright, Berger and Defense
Secretary William Cohen announced plans to travel
to an unnamed city in the us heartland next week,
to explain to the American people just why military
force will be necessary if diplomacy fails.
Case 3 (14%): Intention Axis
A major goal of Kuchma’s four - day state visit was the
signing of a 10-year economic program aimed at
doubling the two nations’ trade turnover, which fell to
DLRS 14 billion last year, down DLRS 2.5 billion from
1996. The two presidents on Friday signed the plan,
which calls for cooperation in the metallurgy, fuel,
energy, aircraft building, missile, space and chemical
industries.
Case 4: (34%) Other

Table 6: Error Categories and Examples in TB-Dense

step. However, even though we eliminate symmet-
ric constraint explicitly in global inference, it is
utilized implicitly in our data augmentation steps
(Section 4.1). To better understand the benefits
of the symmetry constraints, we study both the
contribution of explicitly applying symmetry con-
straint in our SSVM as well as its implicit impact
in data augmentation.

Hence, in this section, we view a pair with
original order and flipped order as different in-
stances for learning and evaluation. We denote the
pairs with original order as “forward” data, their
flipped-order counterparts as “backward” data,
and their combinations as “both-way” data.

We train four additional models to study the
impacts of symmetry and transitivity constraints:
1) local model trained on forward data; 2) global
model with transitivity constraint trained on for-
ward data; 3) local model trained on both-way
data; 4) global model with transitivity constraint
trained on both-way data, denoted asM1,M2,M3,
M4 respectively. M1 and M2 are models that do
not apply any symmetric property; M3 andM4 are
models that utilize symmetric property implicitly.

Additionally, evaluation setup should be re-
scrutinized if we remove the symmetry con-
straints. In the standard evaluation setup of
prior works, evaluation is only performed on
the pairs with their original order (forward data)
in text. This evaluation assumes a model will
work equally well for both forward and backward

TB-Dense Matres TCR
−−→
Test

←−→
Test

−−→
Test

←−→
Test

−−→
Test

←−→
Test

M1 :
−→
L 62.9 61.9 80.4 74.7 80.5 75.7

M2 :
−→
L + T 63.2 62.0 81.7 75.7 81.0 76.3

M3 :
←→
L 62.6 62.7 80.3 80.4 79.7 79.6

M4 :
←→
L + T 63.1 63.0 81.4 81.4 80.3 80.2

←→
L + S + T

(Proposed)
63.2 63.2 81.7 81.7 80.9 80.9

Table 7: Ablation over global constraints: Symmetry
and Transitivity. Test is conducted on forward test set
and both-way test set, which are denoted as

−−→
Test and←−→

Test respectively. The local models trained on forward
data and both-way data are denoted as

−→
L and

←→
L . Sym-

metry and Transitivity constraints are denoted as S and
T . The results demonstrate that symmetry and transi-
tivity constraints both improve model’s performance.

data, which certainly holds when we explicitly
impose symmetry constraints. However, as we
can observe in the later analysis, this assumption
fails when we remove symmetry constraints. To
demonstrate the improvement of model robustness
over backward data, we propose to test the model
on both forward and both-way data. If a model is
robust, it should perform well on both scenarios.

We summarize our analysis of the results in Ta-
ble 7 (F1 scores) as follows:

• Impact of Transitivity: By comparing M1

with M2 and M3 with M4, the consistent im-
provements across all three datasets demon-
strate the effectiveness of global transitivity
constraints.

• Impact of Implicit Symmetry (data augmen-
tation): Examining the contrast between M1

and M3 as well as M2 and M4, we can
see significant improvements in both-way
evaluation despite slight performance drops
in forward evaluation. These comparisons
imply that data augmentation can help im-
prove model robustness. Note that Meng and
Rumshisky (2018) leveraged this data aug-
mentation trick in their model.

• Impact of Explicit Symmetry: By comparing
the proposed model with M4, the consistent
improvements across all datasets demonstrate
the benefit of using explicit symmetry prop-
erty.

• Model Robustness: Although M1 and M2

show competitive results when evaluated on
forward test data, their performance degrade
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local- global- local- global-
w/ feat. w/ feat. w/o feat. w/o feat.

TB-Dense 62.5 63.0 62.6 63.2
MATRES 81.4 81.7 80.3 81.7

TCR 79.5 80.7 79.7 80.9

Table 8: Ablation study on linguistic feature usage.
Additional linguistic features do not lead to significant
improvement and even hurt performance in 2 out of 3
datasets. The results show that our proposed frame-
work is semantic-rich and capable of avoiding the us-
age of additional linguistic feature.

significantly in the both-way evaluation. In
contrast, the proposed model achieves strong
performances in both test scenarios (best F1
scores except for one), and hence proves the
robustness of our proposed method.

6.2 Effect of linguistic features

Previous research establish the success of lever-
aging linguistic features in event relation predic-
tion. One advantage of leveraging contextualized
word embedding is to provide rich semantic rep-
resentation and could potentially avoid the usage
of extra linguistic features. Here, we study the
impact of incorporating linguistic features to our
model by using simple features provided in the
original datasets: token distance, tense and polar-
ity of event entities. These features are concate-
nated with the Bi-LSTM hidden states before the
linear layer (i.e. fi, bi, fj , bj in Figure 2). Ta-
ble 8 shows the F1 scores of our local and global
model using or not using linguistic features re-
spectively. These additional features likely cause
over-fitting and hence do not improve model per-
formance across all three datasets we test. This
set of experiments show that linguistic features do
not improve the predicting power of our current
framework.

6.3 Effect of BERT representations

In this section, we explore the impact of con-
textualized BERT representations under our deep
SSVM framework. We replace BERT represen-
tations with the GloVe (Pennington et al., 2014)
word embeddings. Table 9 shows the F1 scores
of our local model and global model using BERT
and GloVe11 respectively. BERT improves the per-
formance with a significant margin. Besides, even
without BERT representations, our RNN-based lo-
cal model and the deep structured global model

11For GloVe model, additional linguistic features are used.

previous local- global- local- global-
SOTA Glove Glove BERT BERT

TB-Dense 57.0 56.6 57.0 62.6 63.2
MATRES 69.0 71.8 75.6 80.3 81.7

TCR 71.1 73.5 76.5 79.7 80.9

Table 9: Ablation over word representation: BERT vs
GloVe. Although BERT representation largely con-
tributes to the performance boost, our proposed frame-
work remains strong and outperforms current SOTA
approaches when GloVe is used.

still outperform (MATRES and TCR) or are com-
parable with (TB-Dense) current SOTA. These re-
sults confirm the improvements of our method.

7 Conclusion

In this paper, we propose a novel deep structured
model based on SSVM that combines the benefits
of structured models’ ability to encode structure
knowledge, and data-driven deep neural architec-
tures’ ability to learn long-range features. Our ex-
perimental results exhibit the effectiveness of this
approach for event temporal relation extraction.

One interesting future direction is further lever-
aging commonsense knowledge, domain knowl-
edge in temporal relation, and linguistics infor-
mation to create more robust and comprehensive
global constraints for structured learning. An-
other direction is to improve feature representa-
tions by designing novel neural architectures that
better capture negation and hypothetical phrases
as discussed in error analysis. We plan to leverage
large amount of unannotated corpora to help event
temporal relation extraction as well.
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Abstract

A typical architecture for end-to-end entity
linking systems consists of three steps: men-
tion detection, candidate generation and en-
tity disambiguation. In this study we inves-
tigate the following questions: (a) Can all
those steps be learned jointly with a model for
contextualized text-representations, i.e. BERT
(Devlin et al., 2019)? (b) How much entity
knowledge is already contained in pretrained
BERT? (c) Does additional entity knowledge
improve BERT’s performance in downstream
tasks? To this end, we propose an extreme
simplification of the entity linking setup that
works surprisingly well: simply cast it as a
per token classification over the entire entity
vocabulary (over 700K classes in our case).
We show on an entity linking benchmark that
(i) this model improves the entity representa-
tions over plain BERT, (ii) that it outperforms
entity linking architectures that optimize the
tasks separately and (iii) that it only comes
second to the current state-of-the-art that does
mention detection and entity disambiguation
jointly. Additionally, we investigate the use-
fulness of entity-aware token-representations
in the text-understanding benchmark GLUE,
as well as the question answering benchmarks
SQUAD V2 and SWAG and also the EN-DE
WMT14 machine translation benchmark. To
our surprise, we find that most of those bench-
marks do not benefit from additional entity
knowledge, except for a task with very small
training data, the RTE task in GLUE, which
improves by 2%.

1 Introduction

The goal of entity linking is, given a knowledge
base (KB) and unstructured data, e.g. text, to detect
mentions of the KB’s entities in the unstructured
data and link them to the correct KB entry. The
entity linking task is typically implemented by the
following steps:

• Mention detection (MD): text spans of poten-
tial entity mentions are identified,

• Candidate generation (CG): entity candidates
for each mention are retrieved from the KB,

• Entity disambiguation (ED): (typically) a mix
of useful coreference and coherence features
together with a classifier determine the entity
link.

Durrett and Klein (2014) were the first to propose
jointly modelling MD, CG and ED in a graphical
model and could show that each of those steps are
interdependent and benefit from a joint objective.
Other approaches only model MD and ED jointly
(Nguyen et al., 2016; Kolitsas et al., 2018), thus
these architectures depend on a CG step after men-
tion detection. Hachey et al. (2013); Guo et al.
(2013); Durrett and Klein (2014) showed the influ-
ence of CG on entity linking, because it can be the
coverage bottleneck, when the correct entity is not
contained in the candidates for ED. Yamada et al.
(2016, 2017) use a precomputed set of entity candi-
dates published by Pershina et al. (2015) for their
experiments on the CoNLL03/AIDA benchmark
dataset (Hoffart et al., 2011), and due to this their
experiments are comparable across studies with
regards to the CG step. MD has a similar impact
on entity linking performance, as it determines the
upper bound of linkable mentions.

BERT (Devlin et al., 2019) is a deep self-
attention-based architecture which is pretrained on
large amounts of data with a language modelling
objective. This model provides very rich linguis-
tic text-representations that have been shown to
be very useful for many NLP tasks. Since its ap-
pearance, BERT is being analyzed and applied in
various domains (Beltagy et al., 2019; Lee et al.,
2019). A recent study found that BERT automati-
cally learns the NLP pipeline (Tenney et al., 2019),
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i.e. a stack of increasingly higher level linguistic
functions. Zhang et al. (2019) investigated inject-
ing entity knowledge from noisy1 automatic entity
linking into the pretraining of BERT and they could
show that this improves relation extraction.

In this study we investigate the following ques-
tions:

(a) Can BERT’s architecture learn all entity
linking steps jointly? We propose an extreme
simplification of entity linking and cast it as a
per token classification over the entire entity vo-
cabulary, thus solving MD, CG and ED simulta-
neously (see Fig. 1). The entity vocabulary is
based on the 700K top most frequent entities in
English Wikipedia and the training data was de-
rived from English Wikipedia texts. We first trained
BERT-base-uncased on English Wikipedia (dubbed
BERT+Entity) and then fine-tuned and evaluated it
on an entity linking benchmark. We found that this
worked surprisingly well for entity linking, even if
we do not have any supervision on mention-spans,
i.e. BIO tags. An error analysis with validation
data revealed that only 3% of errors are purely due
to span errors, while most errors are due to wrong
Nil predictions which often coincided with entities
being infrequent.

(b) How much entity knowledge is already con-
tained in pretrained BERT? To investigate this
question, we froze BERT and only trained the entity
classifier of BERT+Entity on Wikipedia (dubbed
Frozen-BERT+Entity), i.e. the resulting entity clas-
sifier is adjusted for entity mentions for which plain
BERT already does assign distinct token repre-
sentations, such that correct entity classification
is possible. Then we fine-tuned and evaluated
Frozen-BERT+Entity on an entity linking bench-
mark. We find that the performance of Frozen-
BERT+Entity is 6% below BERT+Entity, show-
ing that BERT+Entity has learned additional entity
knowledge.

(c) Does additional entity knowledge improve
BERT’s performance in downstream tasks?
Due to training BERT+Entity with a per token
classification, the model is forced to assign dis-
tinct entity specific features to each token of an
entity mention. Downstream tasks could exploit
this, if additional entity information is necessary
for them. We evaluated BERT+Entity in the natural

1TagMe’s performance on various benchmark datasets
ranges from 37% to 72%. F1 (Kolitsas et al., 2018)
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Figure 1: Illustrating the simple neural end-to-end en-
tity linking setup. BERT+Entity predicts entity links
per token, where ”O” denotes a Nil prediction. The ex-
ample shows how context can help to link “Thor” to
Thor (Marvel Comics).

language understanding benchmark GLUE (Wang
et al., 2018), the question answering (QA) bench-
marks SQUAD V2 (Rajpurkar et al., 2018) and
SWAG (Zellers et al., 2018), and the machine trans-
lation benchmark EN-DE WMT14. We confirm
the finding from Zhang et al. (2019) that additional
entity knowledge is not beneficial for the GLUE
benchmark. To our surprise, we also find that ad-
ditional entity knowledge is neither helpful for the
two QA datasets nor for machine translation. The
only exception is the RTE task in GLUE in which
BERT+Entity improves 2%. This dataset has just
0.5-2% of the training data of the two larger natural
language inference datasets in GLUE.

Our contributions are: We are the first to study
the latter questions. We are also the first to propose
a fully neural model, that does MD, CG and ED
all in one model, i.e. performing entity linking
without any pipeline or any heuristics. We are also
the first to propose to model entity linking as a
token classification and show that this seems to be
a viable option. We also uncover that there is a lack
of tasks that evaluate additional entity knowledge
in pretrained language models.
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2 Related Work

Entity Linking Durrett and Klein (2014) is the
work that is closest to our approach, although not
neural. In their approach they model interactions
between the MD, CG and ED tasks jointly. They
find that the joint objective is beneficial, such that
each task improves. They also note that there is
no natural order of the tasks and they should in-
teract freely. Their approach to CG is to learn to
generate queries to the KB. Nguyen et al. (2016)
also propose jointly modelling MD and ED with
a graphical model and show that it improves ED
performance and is more robust. Kolitsas et al.
(2018) recently published their study in which they
propose the first neural model to learn MD and ED
jointly. Their proposed method is to overgenerate
mentions and prune them with a mention-entity
dictionary. The ED step reasons over the remain-
ing mentions if and to what they link to. However,
modern approaches for solving natural language
tasks operate on neural text-representations, and
the approaches discussed so far only yield entity-
links. Yamada et al. (2016, 2017) was the first to
investigate neural text representations and entity
linking, but their approach is limited to ED.

Pretrained Language Models ULM-
FIT (Howard and Ruder, 2018), ELMO (Peters
et al., 2018), BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019) are modern language
models that are very deep and wide (for NLP)
and are pretrained on large amounts of data.
They provide very rich text representations that
have shown to improve many NLP tasks by just
replacing the static word embeddings with deep
contextualized word embeddings. As Peters
et al. (2019) show, further training the deep
language models alongside the model that uses
the embeddings as input can be helpful, for which
the term “finetuning” is used. The current trend
in research is to investigate all aspects of these
language models, seeking insights in their inner
workings (Tenney et al., 2019), or their application
to various domains (Beltagy et al., 2019; Lee et al.,
2019). In this study, we investigate the factual
information in form of entities that is contained in
BERT, seeking to understand to what degree this
information is already identifiable in BERT and if
the entity knowledge can be improved.

3 End-To-End Neural Entity-Linking

In this section we describe the BERT+Entity, which
is a is straightforward extension of BERT, however,
as with the original BERT, the main challenge lies
in designing the training scheme, i.e. in our case
the creation of the training data. Our goal for the
experiments is to evaluate, if we can learn candi-
date generation, thus a desiderata is to make the
entity vocabulary as large as possible to be compa-
rable to other studies. The text data and the entity
linking annotations are derived from Wikipedia by
exploiting intra-Wikipedia links. This yields the
challenge that the annotations for entity links from
Wikipedia are assumed to be incomplete, i.e. not
every entity mention in Wikipedia is linked, which
we hypothesize can be detrimental during training.

3.1 Model

Our model is based on BERT, which is a deep
self-attention-based architecture (Vaswani et al.,
2017) that was trained on large amounts of text. Its
training objective is two-fold: (a.) predict missing
tokens from sentences, and (b.) classify if a second
sentence was an adjacent sentence. The input and
output token vocabulary are sub-words, i.e. the
vocabulary is computed from the training data by
determining the 30K most frequent character se-
quences, excluding spaces. Devlin et al. (2019)
made several pretrained BERT models publicly
available. They differ in size — i.e. token em-
bedding size and self-attention layer depth — and
whether the token vocabulary is cased or uncased.
BERT+Entity is a straightforward extension on top
of BERT, i.e. we initialize BERT with the publicly
available weights from the BERT-base-uncased
model and add an output classification layer on
top of the architecture. Given a contextualized to-
ken, the classifier computes the probability of an
entity link for each entry in the entity vocabulary.
Formally, let d be BERT’s token embedding size,
and E ∈ R|KB|×d the entity classification layer,
with |KB| being the number of entities in the KB,
V is the sub-word vocabulary, ci = BERT (h)[i]
is the i-th contextualized token computed by BERT
from context h = [v1, v2, ..., vi−1, vi, vi+1, ..., vm]
with each v ∈ V . Consequently, the probability
p(j|v, h) of word v — which is the i-th token in
context h — linking to entity j is computed by
σ(Ejci), where σ is the sigmoid function.
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3.2 Training Data

The entity vocabulary and training data are de-
rived from English Wikipedia texts2. We used
an extended version of WikiExtractor3 to extract
the text spans that are associated with an inter-
nal Wikipedia link to use as annotation, e.g. in
the sentence “The first Thor was all about intro-
ducing Asgard”, the text span “Thor” links to
https://en.wikipedia.org/wiki/Thor (film). BERT
is originally trained with sentences. However, for
entity linking, a larger context can help to disam-
biguate entity mentions, which is why we select
text fragments of such a length, that they span mul-
tiple sentences. For later use we collect (m, e) tu-
ples of entities e and their mentionm. This yields a
setM of potentially linkable strings and also lets us
compute the conditional probability p(e|m) based
on the #(m, e) counts.

Handling incomplete annotation A challenge
in using the Wikipedia links as annotation is that
most entities do not have all their mentions an-
notated, i.e. often only the first appearance in
an article is linked. We hypothesize that learn-
ing a classifier on such skewed data would yield
a skewed model. Our approach to counter miss-
ing annotations is two-fold: (i) We only select text
fragments that contain a minimum count of anno-
tated Wikipedia links. (ii) To account for unlinked
mentions in the fragments we use a Trie-based
matcher4 to annotate all occurrences of linkable
strings that we collected in M . As entity links we
annotate all possible entities this mention could
link to but only with the conditional probability
p(e|m), with the goal that the model remembers
a context independent entity prior. One issue is
that due to the incomplete annotation, the #(e,m)
counts yield p(Nil|“United States”) > 0, i.e. the
mention “United States” has a large non-zero prob-
ability to link to nothing. Based on the assump-
tion that the mentions of the most popular entities
should always link to something, we compute the
average of the probability of linking to Nil for the
k = 1000 most frequent entities

p̄Nil =
1

k

∑

j

#(mj , Nil)

#mi
.

2From a enwiki Wikipedia dump from 20.06.2017.
3https://github.com/samuelbroscheit/wikiextractor-

wikimentions
4https://github.com/vi3k6i5/flashtext

and use #(mi, Nil) − p̄Nil
(1−p̄Nil)

∗ #(mi, e∗)
to discount #(mi, Nil) such that
p(Nil|“United States”) ≈ 0, i.e. the model
should always link “United States” and men-
tions of less frequent entities get an increase in
probability to link to something.

4 Entity Linking Experiments

In the experiments we want to investigate how
the simple neural end-to-end entity linking model
BERT+Entity performs, i.e. if it learns something
additional on-top of BERT. Additionally, we inves-
tigated if the entity-aware token-representations are
useful for downstream tasks. We also discuss the
main engineering challenges training with such a
large entity vocabulary.

4.1 Data

Wikipedia We report two settings which differ in
size of the entity vocabulary, size of the fragments
and minimum number of entities per fragments.
The first setting was the initial study, and the sec-
ond one is a follow up study in which we changed
settings that potentially could improve entity link-
ing performance.

Setting I: We keep the 700K top most frequent
entities from the ≈ 6M entities in Wikipedia,
i.e. we chose the entity vocabulary as large as
it was technically feasible with regards to mem-
ory and training speed. To put it into context, the
CoNLL03/AIDA entity linking benchmark con-
tains 23, 5K entities in 1300 documents. We are
missing 30 entities from CoNLL03/AIDA that only
appear less than 10 times in the Wikipedia training
data. We chunk the Wikipedia texts into fragments
with a length of 110 tokens and an overlap of 20
tokens with the previous and following fragment.
We only keep fragments that contain at least 1 in-
frequent linked entity or at least 3 frequent ones.
This yields 8, 8M training instances from which
we take 1000 each for validation and testing.

Setting II: We keep the 500K top most frequent
entities, which is comparable to the entity vocab-
ulary of Kolitsas et al. (2018) and we have to add
≈ 1000 entities from CoNLL03/AIDA to the entity
vocabulary to be able to evaluate our model on that
benchmark. We increase the fragment size to 250
tokens and keep fragments that contain at least 1
linked entity but keep at most 500 fragments per
entity. This yields 2, 4M training instances from
which we take 500 each for validation and testing.
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Figure 2: Per token classification InKB scores on
the validation data during training on the Wikipedia
dataset in Setting II for 40 days. The jump at the 4-th
epoch happens when we switch from training Frozen-
BERT+Entity to BERT+Entity, i.e. when we start fine-
tuning BERT.

Entity Linking Benchmark To evaluate on
a commonly used benchmark dataset we use
CoNLL03/AIDA. It is the biggest manually an-
notated ED dataset. It contains 946 documents
in training, 216 in validation (testa/AIDA-VALID)
and 231 in test (testb/AIDA-TEST).

4.2 Training
We use a multi-class classification over the entity
vocabulary, i.e. the label y vector for one token vi
is defined by

yij = p(j|vi), for j ∈ {1, .., ||KB||}.

However, computing the loss over the whole entity
vocabulary would be infeasible, because the entity
mention vocabulary is very large and the gradi-
ents for the entity classifier would exceed our GPU
memory. Thus, to improve memory efficiency and
increase convergence speed, we use negative sam-
pling. After sampling text fragments for a batch
b, we collected the set N+b of all true entities —
according to the annotations discussed in Sec. 3.2
— that occurred in those text fragments. Ideally
we would update the representations of those en-
tities that do not occur in the set N+b which the
model is erroneously the most confident about. To
achieve this, we first performed a prediction for the
text fragments in the current batch and collected
for each token the top k predicted entities. We ag-
gregated the entities’ logits over the whole batch
and sorted the entities by their aggregated logits
into the list Nb− and removed from it any entity
contained in Nb+. We join Nb = Nb+ ∪ Nb−
and truncate Nb− such that |Nb| equals a given

maximum size. Each label vector yi for token ci
from fragment C in batch b was now defined over
the entities in Nb. Thus, we only predict over the
corresponding subset of the entity embedding table,
i.e. Ê = E(Nb). The loss for one fragment C in
batch b was computed by

L =
1

|Nb| ∗ |C|

|C|∑

i

|Nb|∑

j

−[yij · log σ(Êjci)

+(1− yij) · log(1− σ(Êjci))].

For training on Wikipedia we used Adam
(Kingma and Ba, 2015) with mini batch size 10,
gradient accumulation over 4 batches, maximum
label size 10240, the learning rate for BERT was
5e-5 and for the entity classifier 0.01. In Setting I
we train the model for 4 epochs, one epoch took
five days with two TitanXp/1080Ti. In the first
1.5 epochs we train Frozen-BERT+Entity and then
BERT+Entity. In Setting II we train the model for
14 epochs and one epoch took three days. In the
first 3 epochs we train Frozen-BERT+Entity and
then BERT+Entity.

For training on CoNLL03/AIDA we used Adam
(Kingma and Ba, 2015) with mini batch size 10,
gradient accumulation over 4 batches, maximum
label size 1024, learning rates for BERT 5e-5,
dropout in BERT 0.2, and we freeze the token
embeddings, the first two layers of BERT and
the entity classifier. We train the remaining pa-
rameters for up to 30 epochs and perform early
stopping according to strong match (see next Sec-
tion). One epoch took seven minutes with one
TITAN Xp/1080 Ti.

4.3 Performance Metrics

We compute the Micro InKB Precision, Recall and
F1 metrics and we only consider entities as true, if
they are in our KB. We compute a strong match, i.e.
every token in the gold annotated span has to be
classified correctly. We also report a weak match,
which we define as at least one token in the gold
annotated span having to link to the correct entity.
This setting accounts for annotation inconsisten-
cies, e.g. when the model and the annotation do not
agree on which mention “U.S. army” or “U.S.” to
annotate (can be either way). We also report strong
ED Precision@1, i.e. we ignore Nil predictions of
the model and only evaluate the top ranked entity
only for spans that have a gold entity.
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AIDA/testa AIDA/testb
strong F1 weak F1 ED strong F1 weak F1 ED

Kolitsas et al. (2018) indep. baseline 75.7 76.0 - 73.3 73.9 -
Kolitsas et al. (2018) 86.6 87.2 92.4 82.6 83.2 89.1

BERT 63.3 66.6 67.6 49.6 52.4 52.8

Setting I Frozen-BERT+Entity 76.8 79.6 80.6 64.7 68.0 68.6
BERT+Entity 82.8 84.4 86.6 74.8 76.5 78.8

Setting II Frozen-BERT+Entity 76.5 80.1 79.6 67.8 71.9 67.8
BERT+Entity 86.0 87.3 92.3 79.3 81.1 87.9

Table 1: Comparing entity linking results on CoNLL03/AIDA. strong F1 and weak F1 denote InKB F1 scores. ED
is Precision@1 for InKB. Kolitsas et al. (2018) also study a neural model, however, they only model MD and ED.
The independent baseline shows how their model performs when they use mentions detected by Stanford NLP. In
Frozen-BERT+Entity BERT is not trained and only the entity classifier on-top is trained.

4.3.1 Results

In Table 1 we compare our results to the most re-
cent results by Kolitsas et al. (2018) who studied a
neural approach that does joint modelling of MD
and ED, but not CG. They also provide a baseline
in which they show how their classifier performs
when MD and ED are independent, i.e. linking
mentions detected by Stanford NLP.

For the reported results denoted only with BERT,
the entity classifier is trained from scratch on
CoNLL03/AIDA and BERT is finetuned. This
shows the lower bound on this dataset, i.e. the
amount of information that we can learn with BERT
only from the CoNLL03/AIDA training data. Note,
that this cannot generalize to entities that are not
contained in training. The difference between
BERT and Frozen-BERT+Entity shows the amount
of entity knowledge that plain BERT already had,
which it transferred in the entity classifier during
training on Wikipedia. Finally, BERT+Entity is
the proposed model, in which both BERT and the
entity classifier have been trained on Wikipedia.

4.3.2 Discussion

Comparing BERT+Entity and Frozen-
BERT+Entity we see that there is a significant
amount of entity knowledge that BERT+Entity
learns additionally to Frozen-BERT+Entity,
i.e. training BERT+Entity increases the scores
between 6%-10% depending on the score and
dataset. However, it should also be noted that
Frozen-BERT+Entity already shows an increase
of 13%-16% over BERT, thus it already learns
for many entities distinct features that enable the

Reason for error #

no prediction 57
different than gold annotation

no obvious reason 13
semantic close 4
lexical overlap 5
nested entity 5

gold annotation wrong 12
span error 3
unclear 1

100

Table 2: Investigating the types of strong preci-
sion errors of BERT+Entity trained in Setting I on
CoNLL03/AIDA (testa) on 100 randomly sampled
strong precision errors from the validation dataset.

entity classifier to identify them. The improvement
of Frozen-BERT+Entity in contrast to BERT
on CoNLL03/AIDA shows that this pretraining
generalizes to validation and test data. We can
also observe that Setting II improves by a large
margin over Setting I and comes very close to the
results of Kolitsas et al. (2018). We conjecture
that the biggest impact on the performance from
changing the training from Setting I to Setting II,
was due to the downsampling of the training data
in favor of less frequent entities. This reduction
of training data in Setting II — caused by capping
the maximum amount of examples per entity —
enabled us to run more epochs in less time, which
might have improved the representations of less
frequent entities.
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Task Metric BERT-BERT-Ensemble BERT+Entity-Ensemble

CoLA Matthew’s corr. 59.92 59.97
SST-2 accuracy 92.73 92.43
MRPC F1/accuracy 89.16 90.13
STS-B Pearson/Spearman corr. 89.90 89.60
QQP accuracy 91.64 91.21
MNLI matched acc./mismatched acc. 84.96 84.78
QNLI accuracy 91.21 91.15
RTE accuracy 71.48 73.64
WNLI accuracy 56.33 56.33

SQUAD V2 matched/mismatched 76.89/73.83 76.36/73.46

SWAG accurracy 80.70 80.76

WMT14 EN-DE BLEU 22.51 22.20

Table 3: Experiments on downstream tasks with BERT+Entity trained in Setting I. The first group are the GLUE
tasks, then followed by SQUAD V2 and SWAG (for which only the dev set results are reported), and the results
for machine translation WMT14 EN-DE.

When we compare BERT+Entity with the two
results from Kolitsas et al. (2018), we observe
that BERT+Entity improves over the baseline that
models MD, CG and ED independently, and that
BERT+Entity comes second to the current state-of-
the-art in end-to-end entity linking. What can also
be observed is that the performance of all mod-
els drops from AIDA/testa to AIDA/testb. For
BERT+Entity, however, the drop is more severe,
obviously the model overfits to some patterns in
the training data that are present in the validation
data, but not in the test data. We hypothesize that
this might be due to some sport specific documents
that make roughly 1/4 of the dataset’s mentions.
However, without spoiling the test-set we cannot
know for sure.

In Table 2 we performed an error analysis for
the experiments for Setting I to learn what kind
of strong precision errors are responsible for the
performance of BERT+Entity. The largest source
of errors was that BERT+Entity did predict Nil in-
stead of an entity. We hypothesized that most of
the no prediction errors are because those entities
have only a low frequency in the training data, i.e.
this could be solved by increasing the model size
and improving the training time. Another source
of error we observed was that the context size was
too small due to the fragment size. A surprisingly
positive result from the error analysis was that in
only 3% a wrong span caused the error. Motivated
by the observations we devised the follow-up ex-

periment Setting II (see Section 4.1) in which we
changed some of the settings to potentially solve
the observed issues.

5 Downstream Tasks Experiments

In this section we discuss the downstream task re-
sults. We performed evaluations on the natural lan-
guage understand task GLUE, the question answer-
ing tasks SQUAD V2 and SWAG and the machine
translation benchmark EN-DE WMT14. We found
that only in one of the subtasks of GLUE —the nat-
ural language inference tasks RTE— BERT+Entity
performs better than BERT, for all other we can
observe no such effect. The reported results are for
Setting I, however, we repeated the experiments
with Setting II and observed the same outcomes.

5.1 Model

For the tasks GLUE, SQUAD V2 and SWAG
we extend hugginface’s implementation5 and con-
catenate the outputs of BERT and BERT+Entity
(dubbed BERT+Entity-Ensemble) or two BERTs
(dubbed BERT-BERT-Ensemble). For EN-DE
WMT14 we use BERT (dubbed BERT-2Seq) or
BERT+Entity (dubbed BERT+Entity-2Seq) as en-
coder and use a Transformer decoder by adapting
fairseqs Pytorch Seq2Seq Transformer implemen-
tation (Ott et al., 2019).

5https://github.com/huggingface/pytorch-pretrained-
BERT
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5.2 Training
For the GLUE benchmark, SQUAD and SWAG we
train the BERT+Entity-Ensemble and BERT-BERT-
Ensemble for 3 epochs and use the default hyper-
parameters from the implementation. The models
BERT-2Seq and BERT+Entity-2Seq we train for
4 epochs, with Adam as optimizer and learning
rate 5e-5, max 1000 tokens per batch, clip gradient
norm 0.1, dropout 0.2, label smoothing 0.1, and we
keep the encoders BERT and BERT+Entity fixed
for the first epoch and then train it together with
the decoder.

5.3 Results
We find that the additional entity knowledge is not
helpful in the evaluated tasks. The results in Table
3 show that, except for RTE, there seems to be no
advantage in having additional entity knowledge.
The question is, if this is (a) due to the entity over-
lap in training and testing such that also an entity
unaware model can learn the necessary model, or
(b) the entities are too scarce in the training data to
make a difference, or (c) the tasks themselves do
not require entity knowledge, i.e. other textual cues
are enough. We leave those questions for future
research.

6 Conclusion

In this study we investigated an extremely sim-
plified approach to entity linking that worked sur-
prisingly well and allowed us to investigate entity
knowledge in BERT. Even when there is a gap to
the current state-of-the-art in entity linking, we hy-
pothesize that this gap can be closed with larger
hardware capacity to scale up the model size and
effective training time. Apart from that, the model
is the first that performs entity linking without any
pipeline or any heuristics, compared to all prior
approaches. We found that with our approach we
can learn additional entity knowledge in BERT that
helps in entity linking. However, we also found
that almost none of the downstream tasks really
required entity knowledge, which is an interest-
ing observation and an open question for future
research.
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Abstract

Implicit discourse relations are not only more
challenging to classify, but also to annotate,
than their explicit counterparts. We tackle sit-
uations where training data for implicit rela-
tions are lacking, and exploit domain adapta-
tion from explicit relations (Ji et al., 2015).
We present an unsupervised adversarial do-
main adaptive network equipped with a recon-
struction component. Our system outperforms
prior works and other adversarial benchmarks
for unsupervised domain adaptation. Addi-
tionally, we extend our system to take advan-
tage of labeled data if some are available.

1 Introduction

Discourse relations capture the relationship be-
tween units of text—e.g., sentences and clauses—
and are an important aspect of text coherence.
While some relations are expressed explicitly with
a discourse connective (e.g., “for example”, “how-
ever”), relations are equally often expressed im-
plicitly without an explicit connective (Prasad
et al., 2008); in these cases, the relation needs to
be inferred.

Resources for implicit discourse relations are
scarce compared to the explicit ones, since they
are harder to annotate (Miltsakaki et al., 2004).
For example, among corpora annotated with dis-
course relations such as Arabic (Al-Saif and Mark-
ert, 2010), Czech (Poláková et al., 2013), Chi-
nese (Zhou and Xue, 2015), English (Prasad
et al., 2008), Hindi (Oza et al., 2009), and Turk-
ish (Zeyrek et al., 2013), only the Chinese, English
and Hindi corpora include implicit discourse rela-
tions (Prasad et al., 2014). In this low-resource
scenario, Ji et al. (2015) proposed training with
explicit relations via unsupervised domain adapta-
tion, viewing explicit relations as a source domain
with labeled training data, and implicit relations

as a target domain with no labeled data. The do-
main gap between explicit and implicit relations is
acknowledged by prior observations that the two
types of discourse relations are linguistically dis-
similar (Sporleder and Lascarides, 2008; Ruther-
ford and Xue, 2015).

We present a new system for the unsuper-
vised domain adaptation setup on the Penn Dis-
course Treebank (Prasad et al., 2008). Our sys-
tem is based on Adversarial Discriminative Do-
main Adaptation (Tzeng et al., 2017), which de-
couples source domain training and representa-
tion mapping between source and target. We im-
prove this framework by proposing a reconstruc-
tion component to preserve the discriminability of
target features, and incorporating techniques for
stabler training on textual data.

Experimental results show that even with
a simple architecture for representation learn-
ing, our unsupervised domain adaptation sys-
tem outperforms prior work by 1.4-2.3 macro
F1, with substantial improvements on Temporal
and Contingency relations. It is also superior to
DANN (Ganin et al., 2016), an adversarial frame-
work widely used in NLP (Chen et al., 2018; Gui
et al., 2017; Zhang et al., 2017; Fu et al., 2017;
Joty et al., 2017; Xu and Yang, 2017), by 5.7
macro F1.

Finally, we extend the system to incorporate
in-domain supervision as it is sometimes feasible
resource-wise to build a seed corpus that may not
be large enough to train a fully supervised system.
We simulate this scenario by enabling the system
to jointly optimize over a varying number of la-
beled examples of implicit relations. Our system
consistently outperforms two strong baselines.

2 Related Work

Sporleder and Lascarides (2008) and Rutherford
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and Xue (2015) observed that explicit and implicit
relations are linguistically dissimilar, warranting
an unsupervised domain adaptation approach in Ji
et al. (2015). They used a marginalized denois-
ing autoencoder to obtain generalized feature rep-
resentations across the source and target domains
with a linear SVM as the classification model. Our
system improves upon this work using an adver-
sarial network; we further generalize our network
to semi-supervised settings.

To supplement the training data of implicit dis-
course relations, prior works have used weak su-
pervision from sentences with discourse connec-
tives (Marcu and Echihabi, 2002; Sporleder and
Lascarides, 2008; Braud and Denis, 2014; Ji et al.,
2015), by analyzing connectives (Zhou et al.,
2010a,b; Biran and McKeown, 2013; Rutherford
and Xue, 2015; Braud and Denis, 2016; Wu et al.,
2017), using a multi-task framework with other
corpora (Lan et al., 2013; Liu et al., 2016; Lan
et al., 2017), or utilizing cross-lingual data (Wu
et al., 2016; Shi et al., 2017). The important dis-
tinction between this work and the research above
is that these are supervised systems that used all of
the annotated implicit annotation from PDTB dur-
ing training, while exploring non-PDTB corpora
for additional, noisy discourse cues; on the con-
trary, our main goal is to assume no labeled train-
ing data for implicit discourse relations.

Unsupervised domain adaptation with adver-
sarial networks has become popular in recent
years; this type of approach generates a repre-
sentation for the target domain with the goal that
the discriminator unable to distinguish between
the source and target domains. Prior works pro-
posed both generative approaches (Liu and Tuzel,
2016; Bousmalis et al., 2017; Sankaranarayanan
et al., 2018; Russo et al., 2018) and discrimina-
tive approaches (Ganin et al., 2016; Tzeng et al.,
2015, 2017). The discriminative DANN algorithm
from Ganin et al. (2016) is frequently used in NLP
tasks (Chen et al., 2018; Gui et al., 2017; Zhang
et al., 2017; Fu et al., 2017; Joty et al., 2017; Xu
and Yang, 2017). Our method builds upon Adver-
sarial Discriminative Domain Adaptation (Tzeng
et al., 2017), shown to outperform DANN in vi-
sual domain adaptation but has not been used in
NLP tasks. The key differences between the two
are discussed in Section 3.

Qin et al. (2017) adopted adversarial strate-
gies to supervised implicit discourse classification.

They train an adversarial model using implicit dis-
course relations with and without expert-inserted
connectives. Note again that theirs is a fully su-
pervised system using signals in addition to the
implicit relation annotations themselves, while our
main focus is unsupervised domain adaptation that
does not train on implicit relations.

3 Model Architecture

To classify discourse relations, our system takes a
pair of sentence arguments x as input, and outputs
the discourse relation y between these two argu-
ments. With unsupervised domain adaptation, we
have examples (Xs, Ys) from the source domain,
i.e., explicit discourse relations, and unlabeled ex-
amples (Xt) from a target domain, i.e., implicit
discourse relations.

We use ADDA (Tzeng et al., 2017) as our
underlying framework for domain adaptation.
ADDA first learns a discriminative representa-
tion for the classification task in the source do-
main, then learns a representation for the target
domain that mimics the distribution of the source
domain. The key insight here is asymmetric map-
ping, where the target representation is “updated”
until it matches with the source, a process more
similar to the original Generative Adversaial Net-
works (Goodfellow et al., 2014) than joint train-
ing as in DANN (Ganin et al., 2016). Intuitively,
since ADDA learns distinct feature encoders for
the source and target domains instead of using a
shared encoder, the same network doesn’t have to
handle instances from different domains.

Summarized in Figure 1, we first pre-train a
source encoder Ms and source classifier C (Sec-
tion 3.1), then train the target encoder Mt (initial-
ized with Ms) and discriminator D in an adversar-
ial way, to minimize the domain discrepancy dis-
tance between the target representation distribu-
tion Mt(Xt) and that of the source Ms(Xs) (Sec-
tion 3.2). Eventually, the target feature space is
trained to match the source, and the source classi-
fier C can be directly used on the target domain.

3.1 Base encoder and classifier

The source and target encoders Ms and Mt fol-
low the same architecture; Mt is initialized to be
Ms during adaptation. The encoders encode re-
lation arguments into latent representations, and
then feeds the representations into a classifier C
to predict the discourse relation.
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Figure 1: The framework of our proposed adversarial domain adaptation model, containing the pre-training stage,
the adversarial adaptation stage, and the testing stage. The dashed box shows the supervised component.

Encoder The encoder generates a representation
for each argument with an inner-attention Bidirec-
tional LSTM (Yang et al., 2016) shared between
the two arguments. Then, the representations of
the two arguments are concatenated to form the fi-
nal representation, shown in Figure 2.

Specifically, we encode each word in an argu-
ment into its word embeddings, which are fed into
a BiLSTM, to get the hidden representations zi us-
ing a fully-connected layer Wc on top of the con-
catenated hidden states hi = [~hi, ~hi]. We then ap-
ply an attention mechanism to induce a distribu-
tion of weights over all tokens in the argument; the
final argument representation Arg is a weighted
sum of zi based on the attention weights αi:

zi =Wchi + bc

ui = tanh(Wwhi + bw)

αi =
exp(uTi uw)∑
i exp(u

T
i uw)

Arg =
∑

i

αizi (1)

Where Wc, bc,Ww, bw, uw are model parameters.

Classifier The classifier consists of a single
fully-connected layer on top of the encoder, fin-
ished with a softmax classification layer.

The source encoder Ms and the classifier C are
trained using a supervised loss:

min
Ms,C

Lcls(Xs, Ys) =

E(xs,ys) −
∑

k

1[k = ys] logC(Ms(xs)) (2)

Figure 2: Neural structure of inner-attention BiLSTM
to encode relation argument pairs.

3.2 Unsupervised adversarial domain
adaptation

We then learn a target encoder Mt to generate fea-
tures for the target data which can be classified
with classifier C, without assuming labels Yt in
the target domain. This is achieved by training a
domain discriminator D, which classifies whether
a feature is from the source or the target domain,
and the target encoder Mt, that produces features
similar to the source domain features and tries to
fool the discriminator to predict the incorrect do-
main label.

The discriminator D is optimized according to
a standard supervised loss:

min
D
LadvD(Xs, Xt,Ms,Mt) =

− Exs [logD(Ms(xs))]

− Ext [log (1−D(Mt(xt)))] (3)

D consists of two fully-connected layers on top of
the encoder, finished with a softmax classification
layer.
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The target encoder Mt is optimized according
to a standard GAN loss with inverted labels:

min
Mt

LadvM (Xs, Xt, D) =

−Ext [logD(Mt(xt))] (4)

Spectral normalization To stabilize the train-
ing of the discriminator, we employ spectral
normalization, a weight normalization technique
(Miyato et al., 2018), which controls the Lips-
chitz constant of the discriminator function by
constraining the spectral norm of each layer. Spec-
tral normalization is easy to implement without
tuning any hyper-parameters and has a small ad-
ditional computational cost.

Label smoothing We utilize label smooth-
ing (Szegedy et al., 2016) to regularize the classi-
fier during pre-training, which prevents the largest
logit from becoming much larger than all oth-
ers, and therefore prevents overfitting and makes
the classifier, trained in the source domain, more
adaptable.

For a source domain training example xs with
ground-truth label ys and ground-truth distribu-
tion q(k|xs), the classifier computes the classifi-
cation probability over relation classes as p(k|xs)
for k ∈ {1...K}. With label smoothing, we re-
place the ground-truth label distribution q(k|xs) in
the standard cross-entropy loss as a linear combi-
nation of q(k|xs) and a uniform distribution over
classes u(k) = 1/K.

min
Ms,C

Lcls(Xs, Ys) = −
∑

k

q′(k) log (p(k))

q′(k|xs) = (1− ε)1[k = ys] + ε/K (5)

Reconstruction loss In order to classify the tar-
get representations using the source classifier, the
target encoder is trained to produce representa-
tions that mimic the source domain representa-
tions in the adversarial training stage. Since there
is no supervised loss applied in this stage, the tar-
get encoder may lose its ability to produce dis-
criminative features that are helpful during clas-
sification. We propose a reconstruction loss to
preserve the discriminability of the target encoder
when adversarially adapting its features.

Since we initialize the target encoder with the
source encoder, the initial representation (before
domain adaptation) of a target instance xt is the

Figure 3: The reconstruction loss component augment-
ing our unsupervised adversarial domain adaptor.

representation of target instances produced by the
source encoder Ms(xt) (which is then fixed). Af-
ter training, Mt(xt) adapts to the source domain
and becomes dissimilar to Ms(xt). The recon-
struction loss encourages the target encoder to pro-
duce features that can be reconstructed back to
Ms(xt) (Figure 3).

For a target example xt, we learn a reconstruc-
tion mapping Mr that maps the target representa-
tion Mt(xt) to Ms(xt):

xt →Mt(xt)→Mr(Mt(xt)) ≈Ms(xt) (6)

The target encoder Mt and the reconstruction
mapping Mr are optimized jointly with a recon-
struction loss:

min
Mt,Mr

Lrecon(Xt,Ms) =

Ext [||Mr(Mt(xt))−Ms(xt)||22] (7)

Mr consists of three fully-connected layers on top
of the encoder.

Unsupervised objective For unsupervised do-
main adaptation, our full objective is:

Lunsup(Xs, Ys,Xt,Ms,Mt, D) =

min
Ms,C

Lcls(Xs, Ys)+

min
D
LadvD(Xs, Xt,Ms,Mt)+

min
Mt

LadvM (Xs, Xt, D)+

min
Mt,Mr

Lrecon(Xt,Ms) (8)

3.3 Training
Summarized in Algorithm 1, the training proce-
dure consists of three stages: pre-training, adver-
sarial adaptation, and testing. During pre-training,
we train the source encoder Ms and the classifier
C according to Eq.(2). In the adversarial adap-
tation stage, we alternately train the discriminator
D, target encoderMt, and reconstruction mapping
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Algorithm 1: Adversarial Adaptation
Input: explicit sentences with labels {xs, ys}

implicit sentences without labels {xt}
Notations: source encoder Ms, classifier C,

target encoder Mt,
reconstruction mapping Mr ,
domain discriminator D

1 Train Ms, C through Eq.(2) with {xs, ys};
2 Initialize Mt as Ms;
3 Repeat
4 Train D through Eq.(3) with {xs, xt} and train Mt

through Eq.(4) with {xt};
5 Train Mt,Mr through Eq.(7) with {xt};

Output: Mt and C for relation prediction

Mr according to Eq.(3), Eq.(4), Eq.(7). Finally,
we test the model using the target encoder Mt and
classifier C. The steps (lines 4 and 5) in the Re-
peat loop execute once in one iteration, and we
optimized the model in two-step units.

4 Unsupervised Domain Adaptation
Experiments

We first evaluate our model for the default task:
unsupervised domain adaptation from explicit dis-
course relations to implicit discourse relations.

4.1 Settings

Data We train and test our model on the PDTB,
following the experimental setup of Ji et al.
(2015). The test examples are implicit relation in-
stances from PDTB sections 21-22. The explicit
training set consists of explicit examples from sec-
tions 02-20 and 23-24, and the explicit develop-
ment set consists of the explicit examples from
sections 00-01. The implicit training set and the
implicit development set consist of examples from
the same sections as the explicit sets. Evaluation is
done for the first-level relations—Temporal, Com-
parison, Contingency, and Expansion. Table 1
summarizes the statistics of the four top-level im-
plicit and explicit discourse relations in the PDTB.

Training Details We early-stopped training for
both stages before total convergence if the macro
F1 on the development set does not improve. Dur-
ing pre-training (Line 1 in Algorithm 1), we train
and validate the model on the explicit training and
development set. Early stopping happened after
around 20 epochs. During adversarial adaptation
(lines 4 and 5 in Algorithm 1), we train the model
on the explicit and implicit training sets without
relation labels Yt, and validate on the implicit de-

Explicit Implicit

Relation Train Dev Train Dev Test

Temporal 2904 288 704 68 54
Contingency 2792 181 3622 276 287
Comparison 4674 366 2104 146 191
Expansion 5342 450 7394 556 651

Table 1: The number of examples of the four top level
discourse relations in PDTB 2.0.

velopment set1. Early stopping happened after
around 5 epochs (with lines 4 and 5 executed once
in each epoch).

Model configuration The hyperparameters, as
well as the number of fully connected layers for
the classifier C, discriminator D and the recon-
struction mapping Mr, are all set according to the
performance on the development sets. We first set
the hyper-parameters of the encoders Ms,Mt and
classifier C based on development performance
during the pre-training stage. Then, we set the
hyper-parameters of D and Mr based on develop-
ment performance of the adaptation stage.

We use GloVe (Pennington et al., 2014) for
word embeddings with dimension 300. The max-
imum argument length is set to 80. The encoder
contains an inner-attention BiLSTM with dimen-
sion 50, producing a representation with dimen-
sion 200 for each example. The discriminator D
consists of 2 hidden layers with 200 and 200 neu-
rons on each layer. The reconstruction mapping
Mr contains 3 hidden layers with 120, 15 and
120 neurons on each layer. The label smooth-
ing parameter ε is 0.1. We use Adam (Kingma
and Ba, 2015) with learning rate 1e-4 for the base
encoder and classifier, and 1e-6 for the adversar-
ial domain adapter. We use SGD optimizer with
learning rate 1e-2 for the reconstruction compo-
nent. All the models were implemented using Py-
Torch (Paszke et al., 2017) and adapted from Con-
neau et al. (2017).

4.2 Systems
We experiment with three settings:

Implicit → Implicit A supervised implicit dis-
course relation classifier using the base encoder
and classifier, optimizing the standard cross-
entropy loss, using the full implicit training and

1Using a development set in the target domain is common
in unsupervised domain adaptation (Ganin et al., 2016; Liu
and Tuzel, 2016; Tzeng et al., 2017; Bousmalis et al., 2017;
Russo et al., 2018)
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Temporal Contingency Comparison Expansion Macro F1

Implicit→ Implicit 25.53 41.02 30.35 65.38 40.57

Explicit→ Implicit 22.22 22.35 23.06 57.86 31.37
+Domain Adaptation 30.62 42.71 25.00 52.23 37.64

+Spectral Normalization 30.20 45.42 21.90 58.72 39.06
+Label Smoothing 31.58 46.40 24.64 58.03 40.16

+Reconstruction 31.25 48.04 25.15 59.15 40.90

(Ji et al., 2015) 19.26 41.39 25.74 68.08 38.62
+weak supervision 20.35 42.25 26.32 68.92 39.46

DANN 26.19 34.20 25.74 54.70 35.21

Table 2: Per-class and macro average F1 (%) of unsupervised domain adaptation from explicit to implicit relations.

development sets. This model does not use the ex-
plicit relations.

Explicit → Implicit A discourse relation clas-
sifier using the explicit training set and implicit
development set, optimizing the standard cross-
entropy loss. This serves as a baseline without any
domain adaptation.

Domain adaptation Our full adaptation model
trained on the explicit training set, and adapted to
the implicit training set without relation labels. We
perform ablation study with different extensions
describe in Section 3: spectral normalization, label
smoothing, and reconstruction loss.

For benchmarking, we train an unsupervised
domain adaptation system using DANN (Ganin
et al., 2016), which jointly learns domain-invariant
representations and the classifier and is often used
in NLP (c.f. Section 2). We use the same encoder,
classifier and discriminator structures, with pa-
rameters tuned on the implicit development data.
The system is optimized using Adam with learn-
ing rate 2e-4 and the adaptation parameter 0.25,
chosen between 0.01 and 1 on a logarithmic scale.

4.3 Results

To evaluate our model, we train four-way classi-
fiers and report per-class and macro F1 scores.
Table 2 tabulates the experimental results for un-
supervised domain adaptation.

We also show reported results from Ji et al.
(2015). Even though they trained four binary clas-
sifiers (instead of doing multi-class classification),
it is the only prior work exploring unsupervised
domain adaptation for implicit discourse relation
classification. We include two settings: their best
system with labeled data from PDTB explicit re-
lations only (and an implicit development set),
and their system with additional weak supervision

from non-PDTB sources.2

Our full system achieves the best average
F1 measure, a 9.53% absolute increase from
Explicit→ Implicit. It also performs 2.28% better
than Ji et al. (2015)’s model trained without weak
supervision, and 1.44% better than their model
trained with weak supervision. The full system
achieved an average F1 comparable to the super-
vised Implicit→ Implicit, while Ji et al. (2015)’s
models did not. Comparing with DANN, our sys-
tem achieved superior performance for 3 of the 4
relations, showing that training target representa-
tions and the classifier in two stages outperforms
doing both jointly.

The largest improvements from the Explicit→
Implicit baseline are from Temporal (from 22.22
to 31.25) and Contingency (from 22.35 to 48.04)
relations. Our system performs ∼11% better for
Temporal, and ∼6% better for Contingency, than
Ji et al. (2015)’s binary classifiers. The Compar-
ison and Expansion relations improved by about
2% from the baseline, a smaller improvement
compared to the other two relations. Our Com-
parison performance is comparable with Ji et al.
(2015)’s model without weak supervision.

Notably, the performance for Expansion
dropped after domain adaptation (without ex-
tensions) by about 5%. We suspect that this is
because the distributions of Expansion among
other relations are very different (33% for ex-
plicit and 53% for implicit, c.f. Table 1). By
applying Spectral Normalization, the performance
improved and surpassed Explicit→ Implicit.

Component-wise, Spectral Normalization helps
two of the four relations (Contingency and Expan-
sion), but hurts the performance of Comparison.

2The weakly labeled data includes sentences extracted
from 1000 CNN articles, with explicit discourse connectives
but without annotated discourse relations.
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Figure 4: Normalized confusion matrices before and
after unsupervised domain adaptation.

Label smoothing improves performance for all re-
lations except Expansion; applying the reconstruc-
tion loss improves performance for all relations
except Temporal. Overall, the best result on this
task is to incorporate all components.

Error analysis Figure 4 shows the normalized
confusion matrices before and after unsupervised
domain adaptation. Before adaptation, Temporal
and Contingency relations are often misclassified
as Expansion, which is substantially improved af-
ter adaptation. The improvement in F score for
Comparison is milder due to lower precision and
higher recall, which is also reflected in the matri-
ces. Finally, the drop of performance in Expansion
adaptation can be traced through increased confu-
sion between Expansion and Contingency.

5 How about a little supervision?

We have so far presented an unsupervised domain
adaptation system that is not trained on any la-
bels Yt in the target domain. However, it is some-
times feasible to have some seed annotation that
can be used to improve prediction. Hence we ex-
tend the model with an optional supervised com-
ponent. We evaluate this extension by gradually

Figure 5: An extension component to incorporate su-
pervision with our unsupervised adversarial domain
adaptor.

adding labeled examples of implicit discourse re-
lations, simulating situations when different num-
bers of labeled examples are available.

5.1 Incorporating supervision

We extend the model with a supervised compo-
nent, where a subset XL

t ⊆ Xt has labels Y L
t .

Illustrated in Figure 5, we jointly optimize the tar-
get encoder Mt and the classifier C according to
an additional supervised loss:

min
Mt,C

Lsup(XL
t , Y

L
t ) =

E(xL
t ,y

L
t ) −

∑

k

1[k = yLt ] logC(Mt(x
L
t )) (9)

Effectively, we encourage the target encoder to
jointly extract more discriminative features for all
target examples (Xt), and learning target domain
representations close to the source.

The full objective incorporates supervision of
the in-domain labels by adding Lsup(XL

t , Y
L
t ) to

the unsupervised objective:

Lsup(Xs, Ys, Xt,Ms,Mt, D) =

Lunsup(Xs, Ys, Xt,Ms,Mt, D)+

min
Mt,C

Lsup(XL
t , Y

L
t ) (10)

5.2 Data and settings

We synthesize the labeled target subset (XL
t , Y

L
t )

(XL
t ⊆ Xt) by randomly extracting subsets from

the implicit training set and get their labels. The
sizes of this subset range from 1382 to 13824 with
a stepsize of 1382. Note that we use the entire im-
plicit training set (Xt without relation labels Yt)
in the adversarial adaptation process as unlabeled
data in the target domain, and the sampled labeled
data is used in the supervised component only.
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Figure 6: The average F1 (%) with varying numbers of
labeled implicit relation training data.

We use the same hyper-parameters as the unsuper-
vised experiment, except that we tune the learning
rate on the implicit development set.

5.3 Systems
We compare three settings:

Supervised baseline The encoder and classi-
fier trained on the sampled implicit instances
(XL

t , Y
L
t ), optimizing Eq.(9).

Pre-training baseline Our model with the su-
pervised component, but without the domain adap-
tation component. This setting is equivalent to
pre-training on the explicit instances then fine-
tuning on the sampled implicit instances. This is
trained on the explicit training set (Xs, Ys), plus
the sampled implicit instances (XL

t , Y
L
t ), opti-

mizing Eq.(5) and Eq.(9).

Semi-supervised domain adaptation Our full
model with both the supervised and adaptation
components, optimizing Eq.(10). The supervised
component uses the sampled implicit instances
(XL

t , Y
L
t ) for training.

5.4 Results
Since the added training data is randomly sam-
pled, we average the performance across 3 differ-
ent runs. Figure 6 shows the average F1 mea-
sure (y-axis) of the above three supervised sys-
tems, with varying numbers of labeled implicit re-
lation training data (x-axis). Standard errors are
also shown in the graph.

Our full system outperforms both the super-
vised baseline and the pre-training baseline, re-

gardless of the amount of labeled target data. This
evaluation also reveals that the pre-training base-
line also improves upon the supervised baseline
across the board, which means that the perfor-
mance of implicit relation classification can be im-
proved with pre-training on explicit relations.

Finally, the macro F1 of our system using full
supervision is 47.50. Since we focus on domain
adaptation and used very simple encoders, we do
not attempt to achieve state-of-the-art (e.g., Dai
and Huang (2018), Bai and Zhao (2018)). How-
ever this performance is on-par with many recent
work using multi-task or GANs, including Lan
et al. (2017) (47.80), Qin et al. (2017) (44.38, Re-
produced results on four-way classification), and
Liu et al. (2016) (44.98). These results confirm
that our framework generalizes well with respect
to the amount of supervision in the target domain.

6 Conclusion

Our work tackles implicit discourse relation clas-
sification in a low resource setting that is flexible
to the amount of supervision. We present a new
system based on the adversarial discriminative do-
main adaptation framework (Tzeng et al., 2017)
for unsupervised domain adaptation from explicit
discourse relation to implicit discourse relation.
We propose a reconstruction loss to preserve the
discriminability of features during adaptation, and
we generalize the framework to make use of pos-
sibly available seed data by jointly optimizing it
with a supervised loss. Our system outperforms
prior work and strong adversarial baselines on un-
supervised domain adaptation, and works effec-
tively with varying amount of supervision.
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Jaradat. 2017. Cross-language learning with adver-
sarial neural networks. In CoNLL.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Man Lan, Jianxiang Wang, Yuanbin Wu, Zheng-Yu
Niu, and Haifeng Wang. 2017. Multi-task attention-
based neural networks for implicit discourse re-
lationship representation and identification. In
EMNLP.

Man Lan, Yu Xu, and Zhengyu Niu. 2013. Leveraging
synthetic discourse data via multi-task learning for
implicit discourse relation recognition. In ACL.

Ming-Yu Liu and Oncel Tuzel. 2016. Coupled genera-
tive adversarial networks. In NIPS.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang Sui.
2016. Implicit discourse relation classification via
multi-task neural networks. In AAAI.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse re-
lations. In ACL.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and
Bonnie Webber. 2004. The Penn Discourse Tree-
bank. In LREC.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama,
and Yuichi Yoshida. 2018. Spectral normalization
for generative adversarial networks. In ICLR.

Umangi Oza, Rashmi Prasad, Sudheer Kolachina,
Dipti Misra Sharma, and Aravind Joshi. 2009. The
Hindi Discourse Relation Bank. In The Third Lin-
guistic Annotation Workshop.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.
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Abstract

Remarkable success has been achieved in the
last few years on some limited machine read-
ing comprehension (MRC) tasks. However, it
is still difficult to interpret the predictions of
existing MRC models. In this paper, we fo-
cus on extracting evidence sentences that can
explain or support the answers of multiple-
choice MRC tasks, where the majority of an-
swer options cannot be directly extracted from
reference documents.

Due to the lack of ground truth evidence sen-
tence labels in most cases, we apply distant
supervision to generate imperfect labels and
then use them to train an evidence sentence
extractor. To denoise the noisy labels, we
apply a recently proposed deep probabilistic
logic learning framework to incorporate both
sentence-level and cross-sentence linguistic
indicators for indirect supervision. We feed
the extracted evidence sentences into exist-
ing MRC models and evaluate the end-to-end
performance on three challenging multiple-
choice MRC datasets: MultiRC, RACE, and
DREAM, achieving comparable or better per-
formance than the same models that take as in-
put the full reference document. To the best of
our knowledge, this is the first work extracting
evidence sentences for multiple-choice MRC.

1 Introduction

Recently, there have been increased interests
in machine reading comprehension (MRC). In
this work, we mainly focus on multiple-choice
MRC (Richardson et al., 2013; Mostafazadeh
et al., 2016; Ostermann et al., 2018): given a
document and a question, the task aims to select
the correct answer option(s) from a small num-
ber of answer options associated with this ques-

* This work was done when H. W. and K. S. were at
Tencent AI Lab, Bellevue, WA.

tion. Compared to extractive and abstractive MRC
tasks (e.g., (Rajpurkar et al., 2016; Kočiskỳ et al.,
2018; Reddy et al., 2019)) where most questions
can be answered using spans from the reference
documents, the majority of answer options cannot
be directly extracted from the given texts.

Existing multiple-choice MRC models (Wang
et al., 2018b; Radford et al., 2018) take as input the
entire reference document and seldom offer any
explanation, making interpreting their predictions
extremely difficult. It is a natural choice for hu-
man readers to use sentences from a given text to
explain why they select a certain answer option in
reading tests (Bax, 2013). In this paper, as a pre-
liminary attempt, we focus on exacting evidence
sentences that entail or support a question-answer
pair from the given reference document.

For extractive MRC tasks, information retrieval
techniques can be very strong baselines to ex-
tract sentences that contain questions and their an-
swers when questions provide sufficient informa-
tion, and most questions are factoid and answer-
able from the content of a single sentence (Lin
et al., 2018; Min et al., 2018). However, we
face unique challenges to extract evidence sen-
tences for multiple-choice MRC tasks. The correct
answer options of a significant number of ques-
tions (e.g., 87% questions in RACE (Lai et al.,
2017; Sun et al., 2019)) are not extractive, which
may require advanced reading skills such as in-
ference over multiple sentences and utilization of
prior knowledge (Lai et al., 2017; Khashabi et al.,
2018; Ostermann et al., 2018). Besides, the ex-
istence of misleading wrong answer options also
dramatically increases the difficulty of evidence
sentence extraction, especially when a question
provides insufficient information. For example, in
Figure 1, given the reference document and ques-
tion “Which of the following statements is true ac-
cording to the passage?”, almost all the tokens in
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the wrong answer option B “In 1782, Harvard be-
gan to teach German.” appear in the document
(i.e., sentence S9 and S11) while the question gives
little useful information for locating answers. Fur-
thermore, we notice that even humans sometimes
have difficulty in finding pieces of evidence when
the relationship between a question and its correct
answer option is implicitly indicated in the doc-
ument (e.g., “What is the main idea of this pas-
sage?”). Considering these challenges, we argue
that extracting evidence sentences for multiple-
choice MRC is at least as difficult as that for ex-
tractive MRC or factoid question answering.

Given a question, its associated answer options,
and a reference document, we propose a method
to extract sentences that can potentially support or
explain the (question, correct answer option) pair
from the reference document. Due to the lack of
ground truth evidence sentences in most multiple-
choice MRC tasks, inspired by distant supervision,
we first extract silver standard evidence sentences
based on the lexical features of a question and its
correct answer option (Section 2.2), then we use
these noisy labels to train an evidence sentence
extractor (Section 2.1). To denoise imperfect la-
bels, we also manually design sentence-level and
cross-sentence linguistic indicators such as “adja-
cent sentences tend to have the same label” and
accommodate all the linguistic indicators with a
recently proposed deep probabilistic logic learn-
ing framework (Wang and Poon, 2018) for indirect
supervision (Section 2.3).

Previous extractive MRC and question answer-
ing studies (Min et al., 2018; Lin et al., 2018) indi-
cate that a model should be able to achieve compa-
rable end-to-end performance if it can accurately
predict the evidence sentence(s). Inspired by the
observation, to indirectly evaluate the quality of
the extracted evidence sentences, we only keep the
selected sentences as the new reference document
for each instance and evaluate the performance of
a machine reader (Wang et al., 2018b; Radford
et al., 2018) on three challenging multiple-choice
MRC datasets: MultiRC (Khashabi et al., 2018),
RACE (Lai et al., 2017), and DREAM (Sun et al.,
2019). Experimental results show that we can
achieve comparable or better performance than the
same reader that considers the full context. The
comparison between ground truth evidence sen-
tences and automatically selected sentences indi-
cates that there is still room for improvement.

Our primary contributions are as follows: 1) to
the best of our knowledge, this is the first work
to extract evidence sentences for multiple-choice
MRC; 2) we show that it may be a promising
direction to leverage various sources of linguis-
tic knowledge for denoising noisy evidence sen-
tence labels. We hope our attempts and observa-
tions can encourage the research community to de-
velop more explainable MRC models that simulta-
neously provide predictions and textual evidence.

2 Method

Reference Document
𝑺𝟏:  Started in 1636, Harvard University is the oldest of all the colleges and   

universities in the United States, followed by Yale, Princeton, Columbia... 
𝑺𝟑:   In the early years, these schools were nearly the same.
𝑺𝟒:   Only young men went to college. 
𝑺𝟓:   All the students studied the same subjects, and everyone

learned Latin and Greek……….
𝑺𝟗:   In 1782, Harvard started a medical school for young men who wanted to 

become doctors……….
𝑺𝟏𝟏: In 1825, besides Latin and Greek, Harvard began to teach modern 

languages, such as French and German.
𝑺𝟏𝟐: Soon it began to teach American history.
𝑺𝟏𝟑: As knowledge increased, Harvard and other colleges began to teach 

many new subjects. 
Question: Which of the following statements is true according to the passage?
Options:  A. in the early years, everyone can go to colleges.

B. in 1782, Harvard began to teach German.
C. in the early years, different colleges majored in different fields.
D. more and more courses were taught in college with the

improvement of knowledge.
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Questions 

Options

Passage
Reader

D

Figure 1: An overview of our pipeline. The input in-
stance comes from RACE (Lai et al., 2017).

We will present our evidence sentence extrac-
tor (Section 2.1) trained on the noisy training data
generated by distant supervision (Section 2.2) and
denoised by an existing deep probabilistic logic
framework that incorporates different kinds of lin-
guistic indicators (Section 2.3). The extractor is
followed by an independent neural reader for eval-
uation. See an overview in Figure 1.

2.1 Evidence Sentence Extractor
We use a multi-layer multi-head trans-
former (Vaswani et al., 2017) to extract evidence
sentences. Let Ww and Wp be the word (subword)
and position embeddings, respectively. Let M de-
note the total number of layers in the transformer.
Then, the m-th layer hidden state hm of a token is
given by:

hm =

{
Ww +Wp if m = 0

TB(hm−1) if 1 ≤ m ≤M
(1)

where TB stands for the Transformer Block, which
is a standard module that contains MLP, residual
connections (He et al., 2016) and LayerNorm (Ba
et al., 2016).

Compared to classical transformers, pre-trained
transformers such as GPT (Radford et al., 2018)
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and BERT (Devlin et al., 2018) capture rich world
and linguistic knowledge from large-scale exter-
nal corpora, and significant improvements are ob-
tained by fine-tuning these pre-trained models on
a variety of downstream tasks. We follow this
promising direction by fine-tuning GPT (Radford
et al., 2018) on a target task. Note that the pre-
trained transformer in our pipeline can also be eas-
ily replaced with other pre-trained models, which
however is not the focus of this paper.

We use (X,Y ) to denote all training data,
(Xi, Yi) to denote each instance, where Xi is a to-
ken sequence, namely,Xi = {X1

i , . . . , X
t
i}where

t equals to the sequence length. For evidence sen-
tence extraction, Xi contains one sentence in a
document, a question, and all answer options as-
sociated with the question. Yi indicates the proba-
bility that sentence inXi is selected as an evidence
sentence for this question, and

∑N
i=1 Yi = 1,

whereN equals to the total number of sentences in
a document. GPT takes as input Xi and produces
the final hidden state hMi of the last token in Xi,
which is further fed into a linear layer followed by
a softmax layer to generate the probability:

Pi =
exp(Wyh

M
i )∑

1≤i≤N exp(WyhMi )
(2)

whereWy is weight matrix of the output layer. We
use Kullback-Leibler divergence loss KL(Y ||P )
as the training criterion.

We first apply distant supervision to gener-
ate noisy evidence sentence labels (Section 2.2).
To denoise the labels, during the training stage,
we use deep probabilistic logic learning (DPL) –
a general framework for combining indirect su-
pervision strategies by composing probabilistic
logic with deep learning (Wang and Poon, 2018).
Here we consider both sentence-level and cross-
sentence linguistic indicators as indirect supervi-
sion strategies (Section 2.3).

As shown in Figure 2, during training, our
evidence sentence extractor contains two com-
ponents: a probabilistic graph containing vari-
ous sources of indirect supervision used as a su-
pervision module and a fine-tuned GPT used as
a prediction module. The two components are
connected via a set of latent variables indicating
whether each sentence is an evidence sentence or
not. We update the model by alternatively opti-
mizing GPT and the probabilistic graph so that
they reach an agreement on latent variables. Af-
ter training, only the fine-tuned GPT is kept to

make predictions for a new instance during test-
ing. We provide more details in Appendix A and
refer readers to Wang and Poon (2018) for how to
apply DPL as a tool in a downstream task such as
relation extraction.

2.2 Silver Standard Evidence Generation

Given correct answer options, we use a distant su-
pervision method to generate the silver standard
evidence sentences.

Inspired by Integer Linear Programming mod-
els (ILP) for summarization (Berg-Kirkpatrick
et al., 2011; Boudin et al., 2015), we model ev-
idence sentence extraction as a maximum cover-
age problem and define the value of a selected
sentence set as the sum of the weights for the
unique words it contains. Formally, let vi denote
the weight of word i, vi = 1 if word i appears in
the correct answer option, vi = 0.1 if it appears in
the question but not in the correct answer option,
and vi = 0 otherwise.1

We use binary variables ci and sj to indicate the
presence of word i and sentence j in the selected
sentence set, respectively. Occi,j is a binary vari-
able indicating the occurrence of word i in sen-
tence j, lj denotes the length of sentence j, and
L is the predefined maximum number of selected
sentences. We formulate the ILP problem as:

max
∑

i

vici s.t.
∑

j

sj ≤ L (3)

sj Occij ≤ ci, ∀i, j
∑

j

sj Occij ≥ ci,∀i (4)

ci ∈ {0, 1} ∀i sj ∈ {0, 1} ∀j

2.3 Linguistic Indicators for Indirect
Supervision

To denoise the imperfect labels generated by dis-
tant supervision (Section 2.2), as a preliminary
attempt, we manually design a small number of
sentence-level and cross-sentence linguistic indi-
cators incorporated in DPL for indirect supervi-
sion. We briefly introduce them as follows and
detail all indicators in Appendix A.3 and imple-
mentation details in Section 3.2.

We assume that a sentence is more likely to
be an evidence sentence if the sentence and the
question have similar meanings, lengths, coher-
ent entity types, same sentiment polarity, or the

1We do not observe a significant improvement by tuning
parameters vi on the development set.
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Figure 2: Deep probabilistic logic (DPL) framework for evidence sentence extraction. During testing, we only use
trained evidence sentence extractor for prediction.

sentence is true (i.e., entailment) given the ques-
tion. We assume that a good evidence sentence
should be neither too long nor too short (i.e., 5 ≤
# of tokens in sentence ≤ 40) considering infor-
mativeness and conciseness, and an evidence sen-
tence is more likely to lead to the prediction of
the correct answer option (referred as “reward”),
which is motivated by our experiments that ma-
chine readers take as input the silver (or gold)
standard evidence sentences achieve the best per-
formance except for human performance on three
multiple-choice machine reading comprehension
datasets (Table 2, Table 3, and Table 4 in Sec-
tion 3). We rely on both lexical features (e.g.,
lengths and entity types) and semantic features
based on pre-trained word/paraphrase embeddings
and external knowledge graphs to measure the
similarity of meanings. We use existing models or
resources for reward calculation, sentiment analy-
sis and natural language inference.

For cross-sentence indicators, we consider that
the same set of evidence sentences are less likely
to support multiple questions and two evidence
sentences that support the same question should be
within a certain distance (i.e., evidence sentences
for the same question should be within window
size 8 (in sentences)). We also assume that adja-
cent sentences tend to have the same label. We will
have more discussions about these assumptions in
the data analysis (Section 3.6).

3 Experiments

3.1 Datasets

We use the following three latest multiple-choice
machine reading comprehension datasets for eval-
uation. We show data statistics in Table 1.

MultiRC (Khashabi et al., 2018): MultiRC is a
dataset in which questions can only be answered
by considering information from multiple sen-
tences. A question may have multiple correct an-
swer options. Reference documents come from
seven different domains such as elementary school
science and travel guides. For each document,
questions and their associated answer options are
generated and verified by turkers.

RACE (Lai et al., 2017): RACE is a dataset col-
lected from English language exams designed for
middle (RACE-Middle) and high school (RACE-
High) students in China, carefully designed by En-
glish instructors. The proportion of questions that
requires reasoning is 59.2%.

DREAM (Sun et al., 2019): DREAM is a dataset
collected from English exams for Chinese lan-
guage learners. Each instance in DREAM con-
tains a multi-turn multi-party dialogue, and the
correct answer option must be inferred from the
dialogue context. In particular, a large portion of
questions require multi-sentence inference (84%)
and/or commonsense knowledge (34%).
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Dataset # of documents # of questions Average # of sentences per document
Train Dev Test Train Dev Test Train + Dev + Test

MultiRC 456 83 332 5,131 953 3,788 14.5 (Train + Dev)
DREAM 3,869 1,288 1,287 6,116 2,040 2,041 8.5
RACE 25,137 1,389 1,407 87,866 4,887 4,934 17.6

Table 1: Statistics of multiple-choice machine reading comprehension and question answering datasets.

3.2 Implementation Details

We use spaCy (Honnibal and Johnson, 2015) for
tokenization and named entity tagging. We use
the pre-trained transformer (i.e., GPT) released
by Radford et al. (2018) with the same pre-
processing procedure. When GPT is used as the
neural reader, we set training epochs to 4, use eight
P40 GPUs for experiments on RACE, and use one
GPU for experiments on other datasets. When
GPT is used as the evidence sentence extractor,
we set batch size 1 per GPU and dropout rate 0.3.
We keep other parameters default. Depending on
the dataset, training the evidence sentence extrac-
tor generally takes several hours.

For DPL, we adopt the toolkit from Wang
and Poon (2018). During training, we con-
duct message passing in DPL iteratively, which
usually converges within 5 iterations. We use
Vader (Gilbert, 2014) for sentiment analysis and
ParaNMT-50M (Wieting and Gimpel, 2018) to
calculate the paraphrase similarity between two
sentences. We use the knowledge graphs (i.e.,
triples in ConceptNet v5.6 (Speer and Havasi,
2012; Speer et al., 2017)) to incorporate com-
monsense knowledge. To calculate the natural
language inference probability, we first fine-tune
the transformer (Radford et al., 2018) on several
tasks, including SNLI (Bowman et al., 2015), Sci-
Tail (Khot et al., 2018), MultiNLI (Williams et al.,
2018), and QNLI (Wang et al., 2018a).

To calculate the probability that each sentence
leads to the correct answer option, we sample a
subset of sentences and use them to replace the full
context in each instance, and then we feed them
into the transformer fine-tuned with instances with
full context. If a particular combination of sen-
tences S = {s1, . . . , sn} leads to the prediction
of the correct answer option, we reward each sen-
tence inside this set with 1/n. To avoid the combi-
natorial explosion, we assume evidence sentences
lie within window size 3. For another neural
reader Co-Matching (Wang et al., 2018b), we use
its default parameters. For DREAM and RACE,

we set L, the maximum number of silver stan-
dard evidence sentences of a question, to 3. For
MultiRC, we set L to 5 since many questions have
more than 5 ground truth evidence sentences.

3.3 Evaluation on MultiRC
Since its test set is not publicly available, cur-
rently we only evaluate our model on the devel-
opment set (Table 2). The fine-tuned transformer
(GPT) baseline, which takes as input the full docu-
ment, achieves an improvement of 2.2% in macro-
average F1 (F1m) over the previous highest score,
66.5%. If we train our evidence sentence extrac-
tor using the ground truth evidence sentences pro-
vided by turkers, we can obtain a much higher F1m
72.3%, even after we remove nearly 66% of sen-
tences in average per document. We can regard
this result as the supervised upper bound for our
evidence sentence extractor. If we train the evi-
dence sentence extractor with DPL as a supervi-
sion module, we get 70.5% in F1m. The perfor-
mance gap between 70.5% and 72.3% shows there
is still room for improving denoising strategies.

3.4 Evaluation on RACE
As we cannot find any public implementations of
recently published independent sentence selectors,
we compare our evidence sentence extractor with
InferSent released by Conneau et al. (2017) as
previous work (Htut et al., 2018) has shown that
it outperforms many state-of-the-art sophisticated
sentence selectors on a range of tasks. We also in-
vestigate the portability of our evidence sentence
extractor by combing it with two neural readers.
Besides the fine-tuned GPT baseline, we use Co-
Matching (Wang et al., 2018b), another state-of-
the-art neural reader on the RACE dataset.

As shown in Table 3, by using the evidence sen-
tences selected by InferSent, we suffer up to a
1.9% drop in accuracy with Co-Matching and up
to a 4.2% drop with the fine-tuned GPT. In com-
parison, by using the sentences extracted by our
sentence extractor, which is trained with DPL as a
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Approach F1m F1a EM0

All-ones baseline (Khashabi et al., 2018) 61.0 59.9 0.8
Lucene world baseline (Khashabi et al., 2018) 61.8 59.2 1.4
Lucene paragraphs baseline (Khashabi et al., 2018) 64.3 60.0 7.5
Logistic regression (Khashabi et al., 2018) 66.5 63.2 11.8
Full context + Fine-Tuned Transformer (GPT, Radford et al. (2018)) 68.7 66.7 11.0

Random 5 sentences + GPT 65.3 63.1 7.2
Top 5 sentences by ESEDS + GPT 70.2 68.6 12.7
Top 5 sentences by ESEDPL + GPT 70.5 67.8 13.3

Top 5 sentences by ESEgt + GPT 72.3 70.1 19.2

Ground truth evidence sentences + GPT 78.1 74.0 28.6
Human Performance (Khashabi et al., 2018) 86.4 83.8 56.6

Table 2: Performance of various settings on the MultiRC development set. We use the fine-tuned GPT as the
evidence sentence extractor (ESE) and the neural reader (ESEDS: ESE trained on the silver standard evidence
sentences; ESEDPL: ESE trained with DPL as a supervision module; ESEgt: ESE trained using ground truth
evidence sentences; F1m macro-average F1; F1a: micro-average F1; EM0: exact match).

Approach Dev Test
Middle High All Middle High All

Sliding Window (Richardson et al., 2013; Lai et al., 2017) - - - 37.3 30.4 32.2
Co-Matching (Wang et al., 2018b) - - - 55.8 48.2 50.4
Full context + GPT (Radford et al., 2018) - - - 62.9 57.4 59.0

Full context + GPT 55.6 56.5 56.0 57.5 56.5 56.8
Random 3 sentences + GPT 50.3 51.1 50.9 50.9 49.5 49.9

Top 3 sentences by InferSent (question) + Co-Matching 49.8 48.1 48.5 50.0 45.5 46.8
Top 3 sentences by InferSent (question + all options) + Co-Matching 52.6 49.2 50.1 52.6 46.8 48.5
Top 3 sentences by ESEDS + Co-Matching 58.1 51.6 53.5 55.6 48.2 50.3
Top 3 sentences by ESEDPL + Co-Matching 57.5 52.9 54.2 57.5 49.3 51.6

Top 3 sentences by InferSent (question) + GPT 55.0 54.7 54.8 54.6 53.4 53.7
Top 3 sentences by InferSent (question + all options) + GPT 59.2 54.6 55.9 57.2 53.8 54.8
Top 3 sentences by ESEDS + GPT 62.5 57.7 59.1 64.1 55.4 58.0
Top 3 sentences by ESEDPL + GPT 63.2 56.9 58.8 64.3 56.7 58.9

Top 3 sentences by ESEDS + full context + GPT 63.4 58.6 60.0 63.7 57.7 59.5
Top 3 sentences by ESEDPL + full context + GPT 64.2 58.5 60.2 62.4 58.7 59.8

Silver standard evidence sentences + GPT 73.2 73.9 73.7 74.1 72.3 72.8
Amazon Turker Performance (Lai et al., 2017) - - - 85.1 69.4 73.3
Ceiling Performance (Lai et al., 2017) - - - 95.4 94.2 94.5

Table 3: Accuracy (%) of various settings on the RACE dataset. ESEDS: evidence sentence extractor trained on
the silver standard evidence sentences extracted from the rule-based distant supervision method.

supervision module, we observe a much smaller
decrease (0.1%) in accuracy with the fine-tuned
GPT baseline, and we slightly improve the accu-
racy with the Co-Matching baseline. For ques-
tions in RACE, introducing the content of an-
swer options as additional information for evi-
dence sentence extraction can narrow the accuracy
gap, which might be due to the fact that many
questions are less informative (Xu et al., 2018).
Note that all these results are compared with 59%
reported from Radford et al. (2018), if compared
with our own replication (56.8%), sentence extrac-
tor trained with either DPL or distant supervision
leads to gain up to 2.1%.

Since the problems in RACE are designed for
human participants that require advanced reading
comprehension skills such as the utilization of ex-
ternal world knowledge and in-depth reasoning,
even human annotators sometimes have difficul-
ties in locating evidence sentences (Section 3.6).
Therefore, a limited number of evidence sen-
tences might be insufficient for answering chal-
lenging questions. Instead of removing “non-
relevant” sentences, we keep all the sentences in a
document while adding a special token before and
after the extracted evidence sentences. With DPL
as a supervision module, we see an improvement
in accuracy of 0.9% (from 58.9% to 59.8%).
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For our current supervised upper bound (i.e., as-
suming we know the correct answer option, we
find the silver evidence sentences from rule-based
distant supervision and then feed them into the
fine-tuned transformer, we get 72.8% in accuracy,
which is quite close to the performance of Ama-
zon Turkers. However, it is still much lower than
the ceiling performance. To answer questions that
require external knowledge, it might be a promis-
ing direction to retrieve evidence sentences from
external resources, compared to only consider-
ing sentences within a reference document for
multiple-choice machine reading comprehension
tasks.

3.5 Evaluation on DREAM

See Table 4 for results on the DREAM dataset.
The fine-tuned GPT baseline, which taks as input
the full document, achieves 55.1% in accuracy on
the test set. If we train our evidence sentence ex-
tractor with DPL as a supervision module and feed
the extracted evidence sentences to the fine-tuned
GPT, we get test accuracy 57.7%. Similarly, if
we train the evidence sentence extractor only with
silver standard evidence sentences extracted from
the rule-based distant supervision method, we ob-
tain test accuracy 56.3%, i.e., 1.4% lower than
that with full supervision. Experiments demon-
strate the effectiveness of our evidence sentence
extractor with denoising strategy, and the useful-
ness of evidence sentences for dialogue-based ma-
chine reading comprehension tasks in which refer-
ence documents are less formal compared to those
in RACE and MultiRC.

Approach Dev Test

Full context + GPT† (Sun et al., 2019) 55.9 55.5

Full context + GPT 55.1 55.1
Top 3 sentences by ESEsilver-gt + GPT 50.1 50.4
Top 3 sentences by ESEDS + GPT 55.1 56.3
Top 3 sentences by ESEDPL + GPT 57.3 57.7

Silver standard evidence sentences + GPT 60.5 59.8
Human Performance† 93.9 95.5

Table 4: Performance in accuracy (%) on the DREAM
dataset (Results marked with † are taken from Sun et al.
(2019); ESEsilver-gt: ESE trained using silver standard
evidence sentences).

3.6 Human Evaluation

Extracted evidence sentences, which help neural
readers to find correct answers, may still fail to

convince human readers. Thus we evaluate the
quality of extracted evidence sentences based on
human annotations (Table 5).

Dataset Silver Sentences Sentences by ESEDPL

RACE-M 59.9 57.5
MultiRC 53.0 60.8

Table 5: Macro-average F1 compared with human an-
notated evidence sentences on the dev set (silver sen-
tences: evidence sentences extracted by ILP (Sec-
tion 2.2); sentences by ESEDPL: evidence sentences ex-
tracted by ESE trained on silver stand ground truth, GT:
ground truth evidence sentences).

MultiRC: Even trained using the noisy labels,
we achieve a macro-average F1 score 60.8% on
MultiRC, indicating the learning and generaliza-
tion capabilities of our evidence sentence extrac-
tor, compared to 53.0%, achieved by using the
noisy silver standard evidence sentences guided by
correct answer options.
RACE: Since RACE does not provide the ground
truth evidence sentences, to get the ground truth
evidence sentences, two human annotators anno-
tate 500 questions from the RACE-Middle devel-
opment set.2 The Cohen’s kappa coefficient be-
tween two annotations is 0.87. For negation ques-
tions which include negation words (e.g., “Which
statement is not true according to the passage?”),
we have two annotation strategies: we can either
find sentences that can directly imply the correct
answer option; or the sentences that support the
wrong answer options. During annotation, for
each question, we use the strategy that leads to
fewer evidence sentences.

We find that even humans have troubles in lo-
cating evidence sentences when the relationship
between a question and its correct answer option
is implicitly implied. For example, a significant
number of questions require the understanding of
the entire document (e.g., “what’s the best title
of this passage” and “this passage mainly tells
us that ”) and/or external knowledge (e.g., “the
writer begins with the four questions in order to
”, “The passage is probably from ” , and “If the

writer continues the article, he would most likely
write about ”). For 10.8% of total questions, at
least one annotator leave the slot blank due to the
challenges mentioned above. 65.2% of total ques-
tions contain at least two evidence sentences, and

2Annotations are available at https://github.
com/nlpdata/evidence.
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70.9% of these questions contain at least one ad-
jacent sentence pair in their evidence sentences,
which may provide evidence to support our as-
sumption adjacent sentences tend to have the same
label in Section 2.3.

The average and the maximum number of evi-
dence sentences for the remaining questions is 2.1
and 8, respectively. The average number of evi-
dence sentences in the full RACE dataset should
be higher since questions in RACE-High are more
difficult (Lai et al., 2017), and we ignore 10.8% of
the total questions that require the understanding
of the whole context.

3.7 Error Analysis

We analyze the predicted evidence sentences for
instances in RACE for error analysis. Tough with
a high macro-average recall (67.9%), it is likely
that our method extracts sentences that support
distractors. For example, to answer the question
“You lost your keys. You may call ”, our sys-
tem mistakenly extracts sentences “Please call
5016666” that support one of the distractors and
adjacent to the correct evidence sentences “Found
a set of keys. Please call Jane at 5019999.” in
the given document. We may need linguistic con-
straints or indicators to filter out irrelevant selected
sentences instead of simply setting a hard length
constraint such as 5 for all instances in a dataset.

Besides, it is possible that there is no clear sen-
tence in the document for justifying the correct-
ness of the correct answer. For example, to an-
swer the question “What does “figure out” mean
?”, neither “find out” nor the correct answer op-
tion appears in the given document as this question
mainly assesses the vocabulary acquisition of hu-
man readers. Therefore, all the extracted sentences
(e.g., “sometimes... sometimes I feel lonely, like
I’m by myself with no one here.”, “sometimes I feel
excited, like I have some news I have to share!”)
by our methods are inappropriate. A possible solu-
tion is to predict whether a question is answerable
following previous work (e.g., (Hu et al., 2019))
on addressing unanswerable questions in extrac-
tive machine reading comprehension tasks such as
SQuAD (Rajpurkar et al., 2018) before to extract
the evidence sentences for this question.

4 Related Work

4.1 Sentence Selection for Machine Reading
Comprehension and Fact Verification

Previous studies investigate paragraph retrieval for
factoid question answering (Chen et al., 2017;
Wang et al., 2018c; Choi et al., 2017; Lin et al.,
2018), sentence selection for machine reading
comprehension (Hewlett et al., 2017; Min et al.,
2018), and fact verification (Yin and Roth, 2018;
Hanselowski et al., 2018). In these tasks, most
of the factual questions/claims provide sufficient
clues for identifying relevant sentences, thus of-
ten information retrieval combined with filters can
serve as a very strong baseline. For example, in
the FEVER dataset (Thorne et al., 2018), only
16.8% of claims require composition of multi-
ple evidence sentences. For some of the cloze-
style machine reading comprehension tasks such
as CBT (Hill et al., 2016), Kaushik and Lipton
(2018) demonstrate that for some models, compa-
rable performance can be achieved by considering
only the last sentence that usually contains the an-
swer. Different from above work, we exploit infor-
mation in answer options and use various indirect
supervision to train our evidence sentence extrac-
tor, and previous work can actually be a regarded
as a special case for our pipeline. Compared to Lin
et al. (2018), we leverage rich linguistic knowl-
edge for denoising imperfect labels.

Several work also investigate content selection
at the token level (Yu et al., 2017; Seo et al., 2018),
in which some tokens are automatically skipped
by neural models. However, they do not utilize any
linguistic knowledge, and a set of discontinuous
tokens has limited explanation capability.

4.2 Machine Reading Comprehension with
External Linguistic Knowledge

Linguistic knowledge such as coreference res-
olution, frame semantics, and discourse rela-
tions is widely used to improve machine com-
prehension (Wang et al., 2015; Sachan et al.,
2015; Narasimhan and Barzilay, 2015; Sun et al.,
2018) especially when there are only hundreds
of documents available in a dataset such as
MCTest (Richardson et al., 2013). Along with
the creation of large-scale reading comprehension
datasets, recent machine reading comprehension
models rely on end-to-end neural models, and it
primarily uses word embeddings as input. How-
ever, Wang et al. (2016); Dhingra et al. (2017,
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2018) show that existing neural models do not
fully take advantage of the linguistic knowledge,
which is still valuable for machine reading com-
prehension. Besides widely used lexical fea-
tures such as part-of-speech tags and named entity
types (Wang et al., 2016; Liu et al., 2017; Dhin-
gra et al., 2017, 2018), we consider more diverse
types of external knowledge for performance im-
provements. Moreover, we accommodate exter-
nal knowledge with probabilistic logic to poten-
tially improve the interpretability of MRC models
instead of using external knowledge as additional
features.

4.3 Explainable Machine Reading
Comprehension and Question Answering

To improve the interpretability of question answer-
ing, previous work utilize interpretable internal
representations (Palangi et al., 2017) or reasoning
networks that employ a hop-by-hop reasoning pro-
cess dynamically (Zhou et al., 2018). A research
line focuses on visualizing the whole derivation
process from the natural language utterance to the
final answer for question answering over knowl-
edge bases (Abujabal et al., 2017) or scientific
word algebra problems (Ling et al., 2017). Jansen
et al. (2016) extract explanations that describe the
inference needed for elementary science questions
(e.g., “What form of energy causes an ice cube
to melt”). In comparison, the derivation sequence
is less apparent for open-domain questions, espe-
cially when they require external domain knowl-
edge or multiple-sentence reasoning. To improve
explainability, we can also check the attention map
learned by neural readers (Wang et al., 2016),
however, attention map is learned in end-to-end
fashion, which is different from our work.

A similar work proposed by Sharp et al. (2017)
also uses distant supervision to learn how to ex-
tract informative justifications. However, their ex-
periments are primarily designed for factoid ques-
tion answering, in which it is relatively easy to ex-
tract justifications since most questions are infor-
mative. In comparison, we focus on multi-choice
MRC that requires deep understanding, and we
pay particular attention to denoising strategies.

5 Conclusions

We focus on extracting evidence sentences for
multiple-choice MRC tasks, which has not been
studied before. We propose to apply distant su-

pervision to noisy labels and apply a deep proba-
bilistic logic framework that incorporates linguis-
tic indicators for denoising noisy labels during
training. To indirectly evaluate the quality of the
extracted evidence sentences, we feed extracted
evidence sentences as input to two existing neu-
ral readers. Experimental results show that we
can achieve comparable or better performance on
three multiple-choice MRC datasets, in compari-
son with the same readers taking as input the en-
tire document. However, there still exist signifi-
cant differences between the predicted sentences
and ground truth sentences selected by humans,
indicating the room for further improvements.
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Abstract

Conversational AI systems are gaining a lot
of attention recently in both industrial and
scientific domains, providing a natural way
of interaction between customers and adap-
tive intelligent systems. A key requirement
in these systems is the ability to efficiently
parse user queries, understand the intent be-
hind each query, and provide adequate re-
sponses to users. Therefore, many applications
such as conversation bots and smart IoT de-
vices has a natural language understanding
(LU) service integrated within. One of the
greatest challenges of language understanding
services is efficient utterance (sentence) repre-
sentation in vector space, which is an essential
step for most ML tasks. In this paper, we pro-
pose a novel approach for generating vector
space representations of conversational utter-
ances using pair-wise similarity metrics. The
proposed approach uses only a few corpora to
tune the weights of the similarity metric with-
out relying on external general purpose ontolo-
gies. Our experiments confirm that the gener-
ated vectors can improve the performance of
LU services in unsupervised, semi-supervised
and supervised learning tasks over state-of-
the-art prior works.

1 Introduction

Challenges of conversational AI systems: Con-
versational AI systems empower virtual assistants
in many applications such as conversation bots
(also known as Chatbots) and smart IoT devices.
Their ability to understand user spoken commands
and identify the user’s intent(s) is one of their
main benefits. However, this is a very challeng-
ing task due to the diversity of domains and lan-
guages they are required to support. For example,
Microsoft LUIS1 currently supports 12 languages,

1www.luis.ai/home

whereas IBM Watson 2 supports 10 languages in
their language understanding services. Moreover,
conversational text queries are often very short and
sparse, which hinders conventional text represen-
tations such as Bag-of-words (BOW) from captur-
ing adequate features of the utterance.

In LU services, a language understanding ap-
plication is often represented as a group of intents
and entities that serve a specific business applica-
tion. For example, a restaurant application may de-
fine intents such as Order Food, Show Menu and
Cancel Order. The task of the language under-
standing service then is to classify newly received
queries (utterances) into one (or more) of the de-
fined intents.

Although many prior works were focused on
constructing word-level vector representation such
as (Mikolov et al., 2013) and (Pennington et al.,
2014), generating an utterance-level vector repre-
sentation is still a challenging task. Existing lan-
guage modeling (LM) based approaches such as
Para2Vec (Le and Mikolov, 2014) rely on deep
neural networks to generate vector representa-
tions for the paragraph-level. However, these ap-
proaches are normally trained with an abundance
of utterances to achieve the required performance,
which is usually not present in the conversational
text domain (Boyanov et al., 2017). Moreover, pre-
trained vectors (i.e., vectors generated from an ex-
ternal corpus) provide the same vector represen-
tation for all domains (i.e. static). The desirable
characteristic on the other hand is that for the same
utterance to have different vector representations,
and correspondingly, different intents, in differ-
ent domains. Additionally, the current approaches
make the embeddings more prone to bias towards
the domain of the training data (Bolukbasi et al.,
2016).

2www.ibm.com/watson/
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We propose a vector representation method,
SIMVECS that generates dynamic utterance-level
vector representations for different LU applica-
tions. With SIMVECS, each utterance is repre-
sented as a vector of similarity scores to a set
of automatically identified “representative utter-
ances” within the same application. This way the
same utterance can have different representations
depending on the application. As an example: the
utterance ”I want a large pizza” can be of type
Order Food for a restaurant application, while
the same utterance can be of type None (i.e.,
outlier) for a bus-tracking application. Therefore,
application-determined vector representations are
essential for capturing the semantics of utterances
in LU services and hence accurate mapping to
user-defined intents.

The following list represents our key contribu-
tions:

1. A novel approach to combine multiple sim-
larity sub-metrics into one metric, automati-
cally adjusting the weight for each sub-metric
to the overall similarity score.

2. A novel approach for the vector representa-
tion of each utterance in a conversational AI
system.

3. A semi-supervised algorithm for refining the
vector representations based on user’s feed-
back.

The rest of the paper is organized as follows.
Section 2 covers related work and separates our
approach from existing solutions. Section 3 gives
an overview of the main components in our pro-
posed solution. Section 4 describes how we calcu-
late the similarity scores between utterances and
generate the vector representations. Sections 5, 6,
and 7 evaluate the generated vectors in unsuper-
vised, semi-supervised, and supervised learning
tasks respectively and compares the performance
of SIMVECS to several baselines.

2 Related Work

2.1 Similarity metrics

Measuring the similarity between natural lan-
guage sentences is crucial in many tasks such
as: Question-answering systems (Achananuparp
et al., 2008b) and information retrieval (Li et al.,

2006; Zahran et al., 2015). Authors in (Achananu-
parp et al., 2008a) provide an evaluation for 14 dif-
ferent similarity metrics. The authors reported the
best metric found was a composite between word-
order and ontology-based similarity. However, the
weights for how much each of the two sub-metrics
contributes to the overall similarity metric is se-
lected based on human intuition. Such selection
becomes harder when several sub-metrics are con-
sidered and multiple domains have to be satisfied.
We consider these weights as hyper-parameters
and hence use an automated technique that ap-
plies Genetic-Algorithms (GA) (Mitchell, 1996)
to find the optimal weights as it has been used in
multiple hyper-parameter tuning tasks such as in
(Friedrichs and Igel, 2005), (Lam et al., 2001), and
(Mahgoub et al., 2017).

2.2 Vector Representation

One of the most common vector representation
for both documents and sentences is the Bag-of-
Words (BOW) model (Harris, 1954). In BOW, the
sentence is represented as a binary vector that do-
nates the existence or absence of individual words
(i.e. vocabulary) in that sentence. One of the major
disadvantages of BOW representation is the loss of
word order. Consequently, two sentences with to-
tally different meaning can have very close repre-
sentation just because they use similar vocabulary.
A variation of the model is bag-of-ngrams (Mc-
namee and Mayfield, 2004), which aims at pre-
serving the word order. However, both represen-
tations are very sparse and generate vectors with
very high dimensions. (Mikolov et al., 2013) pro-
posed a technique that uses deep neural-networks
to learn efficient representations for the word level.
Although the trained vectors capture many seman-
tic features, generating a sentence-level represen-
tation from individual words vectors is still a chal-
lenging task. One simple approach is to represent
the sentence as weighted average of all the words
in the document. However, this approach has the
same weakness of not preserving the word or-
der (Le and Mikolov, 2014). A recent approach
proposed by (Le and Mikolov, 2014) generates
both word-level and paragraph-level representa-
tions. However, the approach relies on training the
network with a large corpus with billions of to-
kens, which is rarely available in the conversa-
tional text domain. Moreover, the generated vec-
tors can still suffer from being biased by the train-

709



ing data domain and cannot generalize for differ-
ent domains. (Dai and Le, 2015) proposed an ap-
proach to improve the vector representations with
pre-trained recurrent neural networks. The pro-
posed approach showed significant improvement
over both BOW and Paragraph vectors. SIMVECS

uses only a few corpora to tune the weights of the
similarity metric without relying on external gen-
eral purpose ontologies.

3 Overview of SIMVECS

SIMVECS relies on pair-wise similarity metrics.
Each metric serves as a function that assigns sim-
ilarity (or distance) scores to a pair of utterances.
Many similarity metrics have been proposed in the
literature. Although we use only six, our solution
is generic and can incorporate any additional sim-
ilarity sub-metrics.

3.1 Similarity sub-metrics definition
The six similarity sub-metrics which SIMVECS

uses are:
(1)Unigrams: measures similarity based on the
inverse-document-frequency (IDF) scores of com-
mon unigrams. The resulting score is then normal-
ized by dividing over the sum of IDF scores of all
unique words in the two utterances:

Simuni(Ui.Uj) =

∑
w∈Ui∩Uj

IDF [w]
∑

w′∈Ui∪Uj
IDF [w′]

(1)

(2)Character N-grams: measures similarity
based on the overlapping character n-gram to-
kenization. We use an equation similar to the
unigram except that words (and their correspond-
ing IDF scores) are replaced by overlapping
character N-grams. We use tokens of size n=4
as recommended by literature (Mcnamee and
Mayfield, 2004).
(3)Bigrams: similar to unigram except that it uses
tokens of two adjacent words. For each bigram,
we set the IDF score to be the max between the
two words in the token (presented as IDFbi).
(4)Trigrams: similar to bigrams except that it
uses tokens of three adjacent words.
(5)Utterance Length: this captures the similarity
between a pair of utterances based on their num-
ber of tokens. Although this might be a dangerous
feature to rely on individually, it becomes very
useful in the domain of conversational text when
combined with other features. For example, Table.
1 shows the average utterance lengths per intent in

the WebApp corpus. We observe a large variance
in utterance lengths of different intents. This is
because one might need more tokens to specify
a complex intent such as booking a flight (which
requires lots of details) than simpler intents like
asking for help or canceling a request. We use the
following formula for utterance length similarity:

Simlen(Ui.Uj) =
min(Length(Ui), Length(Uj))

max(Length(Ui), Length(Uj))
(2)

(6)Word order: measures the normalized differ-
ence of word order between the two utterances.

Simwo(Ui.Uj) = 1− ||ri− rj||
||ri+ rj|| (3)

where ri and rj are word order vectors (a vec-
tor which represents the order of each word in
the utterance) of utterancesUi andUj respectively.

3.2 IDF scores calculation

The first 4 metrics (i.e. unigram, bigram, trigrams,
and character N-grams) rely on pre-calculated IDF
scores. All these IDF scores are pre-calculated
from a large corpus of conversational text gener-
ated from Cortana virtual assistant3. This corpus
contains 18M utterances that resembles conversa-
tions between a user and Cortana in different do-
mains. With the calculated IDF scores, these sub-
metrics can be calculated and used to calculate a
composite similarity metric as follows:

Simcomp(Ui.Uj , W̄ ) = W̄ . ¯Sim

=
[
W1..W6

]




Simuni(Ui.Uj)
Simchar(Ui.Uj)
Simbi(Ui.Uj)
Simtri(Ui.Uj)
Simlen(Ui.Uj)
Simwo(Ui.Uj)




(4)

where Wi’s are normalized weights which repre-
sent the collaboration of each sub-similarity met-
ric to the overall metric. Wi’s serve as hyper-
parameters that control the quality of the com-
posite similarity metric. The different sub-metrics
have different relative importances in detecting
similarities between utterances within the applica-
tion. Therefore, the weights should be tuned auto-
matically according to the LU application.

3https://www.microsoft.com/en-us/cortana
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3.3 Application-based weights tuning
In this section, we describe our method in tun-
ing the weight (Wi) for every sub-metric in Eq.
4. First, we use 15 real-world applications from
a popular language understanding service to serve
as our training and testing data set. These appli-
cations represent different domains (e.g. restau-
rants, flight booking services, smart homes, etc.)
and they are created by system admins. Therefore,
they contain a user-defined label for every utter-
ance, which serves as our ground truth. For every
pair of utterances with the same label, we assign
a similarity score of 1 (max similarity). Similarly,
for every pair of utterances with different labels,
we assign a similarity score of 0 (min similarity).
Now the task of tuning the weights for the sub-
metrics can be viewed as an optimization problem,
which is given by the following formula:

W̄ ∗ = argmin
W̄

∑

∀i,j
RMSE(Simgt(Ui.Uj),

Simcomp(Ui.Uj , W̄ )) (5)

Where Simgt is the ground truth similarity (ei-
ther 0 or 1), RMSE is the root mean square
error between the estimated similarity score and
the ground truth. Therefore, the target of equa-
tion 5 is to find the vector of weights that mini-
mizes the differences between the estimated sim-
ilarity scores and the ground truth similarly pro-
vided by application users. We use genetic algo-
rithms (GA) to find the best values of W̄ ∗. GA is
a metaheuristic optimization algorithm that is in-
spired by biological evolution. It has the nice fea-
ture of balancing between exploration (a.k.a mu-
tation) and exploitation (a.k.a crossover) of differ-
ent solution candidates (a.k.a chromosome) in the
search space (Črepinšek et al., 2013). GA is fa-
vorable in solving optimization problems which
convexity is not known, since it does not rely on
derivative information in finding good search di-
rections (i.e. derivative-free). We used all pair-
wise utterances from the 15 applications to train
and validate our approach. Each candidate solu-
tion in GA simply represents a vector of weights
in Eq. 4, and the fitness function is the resulting
sum or RMSEs across all pairs of utterances (the
lower the better). We perform 5-fold cross valida-
tion on the 15 applications and take the average of
the best vectors of each fold. The resulting vector
is then used for all subsequent experiments.

Intents Avg. Tokens Std. Tokens

Change Password 8.625 1.4
Delete account 7.35 1.11

Download video 7 0
Export data 10.2 2.28

Table 1: Average number of tokens per utterance for the
WebApp Corpora.

4 Similarity-based utterance
representation

We estimate all pair-wise similarity scores using
Eq. 4 and store them in a matrix of size NxN
where N is the number of utterances. We then ap-
ply Principal Component Analysis (PCA) (Wold
et al., 1987) to reduce the dimensionality of this
matrix. This pair-wise similarity matrix, SimMa-
trix for short, is then used to generate the vector
representation for each utterance. Consider the ex-
ample shown in Fig. 1. On the left hand, we show
10 utterances (selected from (Coucke et al., 2018))
and their corresponding intents. On the right hand,
we show the corresponding SimMatrix (before we
apply PCA). The resulting matrix is a symmet-
ric matrix with all its diagonal values = 1, repre-
senting maximum similarity. Then we use PCA to
reduce the number of columns, loosely speaking,
creating a set of representative utterances in a data-
driven manner. At this point, we use each row as
the vector representation of the corresponding ut-
terance. Thus, each representative utterance serves
as a dimension in the vector space, allowing utter-
ances with similar neighbors to have similar vector
representations.

This approach has a number of advantages
over conventional vector representations (such
as BOW) and LM based techniques (such as
Para2Vec) in the domain of conversational text un-
derstanding. The data collected by (Braun et al.,
2017) shows that conversational text tends to be
very short with an average of 7.8 tokens per utter-
ance. Moreover, 80% of the collected utterances
are shorter than 9 tokens. This makes BOW rep-
resentation very sparse. Also for LM-based tech-
niques, it is hard to learn efficient vector represen-
tations because of the shortness of the context se-
quences used for training. Another advantage of
SIMVECS is the easier detection of utterances that
have no intent (i.e. the ”None” intent utterances).
As shown Fig. 1, the “None” intent utterances are
expected to have similarity scores close to zero to
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all other utterances, including other “None” utter-
ances. This makes them located closer to the origin
in SIMVECS’s vector space and allows distance-
based clustering techniques (such as K-means) to
group ”None” intent utterances in the same clus-
ter. The second advantage is representative vec-
tor lengths: instead of using vectors of arbitrary
lengths or length equal to the vocabulary size, we
use vectors of length equal to the number of repre-
sentative utterances in the given application. This
can reduce the size of the generated vector repre-
sentation significantly, especially when large vo-
cabularies are used, while the LU application it-
self may have only a few tens or hundreds of utter-
ances.

5 Unsupervised learning with
conversational text

The problem of applying unsupervised learning
techniques to text documents has been studied
by many researchers in several domains such as
(Beil et al., 2002),(Aggarwal and Zhai, 2012), and
(Huang, 2008). The problem becomes more chal-
lenging with conversational text because of the
shortness and the sparsity of the documents (Chen
et al., 2011). We can categorize these techniques
based on the input they need to perform cluster-
ing into two categories: 1) Techniques that require
a vector representation for the data points, such
as K-means and SVD. 2) Techniques that require
a similarity (distance) function such as Affinity-
Propagation (Frey and Dueck, 2007) and DB-
SCAN (Ester et al., 1996). However, the second
category still requires an efficient vector represen-
tation to estimate the distances between pairs of
utterances. We evaluate the efficacy of SIMVECS

generated vectors in the unsupervised learning
task against several baselines. We vary the vector
representation while the clustering algorithm itself
(K-means) remains the same. We show a compar-
ison against the following techniques:
Spherical K-means (Buchta et al., 2012): This
baseline uses BOW representation for the utter-
ances and cosine-similarity as a distance function.
LDA (Blei et al., 2003): This baseline represents
documents as probability distributions over latent
topics. Documents with similar topic assignments
are grouped together. Similar to K-means, it takes
the number of latent topics (clusters) as an input.
We set the number of topics to the number of in-
tents in the corpus and then assign each utterance

Corpora # Intents # Utterances # Tokens

AskUbuntu 5 162 1289
Chatbot 2 200 1539
WebApp 8 89 717

Combined 15 451 3545

Table 2: Conversational text corpora details.

to the cluster with the maximum probability.
LDA + K-means: Here we use LDA’s latent topic
distribution as a vector representation to the utter-
ance. Then we apply K-means for clustering the
utterances.
Seq-Auto-encoder + K-means (Dai and Le,
2015): A Neural-network based technique using
recurrent language models. The network is trained
on a large corpus of conversational text generated
from the same Cortana corpus used for generating
the IDF scores. Afterwards, the network is used to
encode each utterance of the test data in a vector
of length 1024. K-means is then used to cluster the
utterances.
Fast-text + K-means (Joulin et al., 2016): Also
a Neural-network based technique that incorpo-
rates several features such as BOW and N-gram
features. The model generates word-level vectors
which are averaged together to form sentence-
level representations. We used English pre-trained
word vectors4. These vectors are pre-trained with
16 billion tokens collected from Wikipedia 2017,
UMBC webbase corpus and statmt.org news.
SIMVECS+ K-means: K-means applied to our
similarity-based vectors.
To make the comparison fair, K-means algorithm
with the same number of clusters (K*) is used for
the all techniques (Except LDA). Here K* is the
number of intents in the corpora. For LDA, we set
number of latent topics to be also K*.

5.1 Dataset description

We use the conversational text dataset presented
in (Braun et al., 2017)5. The dataset represents a
collection of three corpora, two corpora were ex-
tracted from StackExchange (Ask Ubuntu & We-
bApp), while the third one was extracted from a
Telegram chatbot. Combined is a corpus that com-
bines the intents of all three. Table 2 shows the
number of intents, number of utterances, and num-
ber of tokens for each corpus in the dataset.

4https://fasttext.cc/docs/en/english-vectors.html
5The dataset is publicly available and can be obtained

here: https://github.com/sebischair/NLU-Evaluation-Corpora
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1 0.3 0.03 0.03 0.03 0.02 0.1 0.12 0 0

0.3 1 0.03 0.03 0.03 0.01 0.03 0.04 0 0

0.03 0.03 1 0.23 0.03 0.01 0.03 0.03 0 0

0.03 0.03 0.23 1 0.03 0.01 0.03 0.03 0 0

0.03 0.03 0.03 0.03 1 0.19 0.08 0.1 0 0

0.02 0.01 0.01 0.01 0.19 1 0.06 0.07 0 0

0.1 0.03 0.03 0.03 0.08 0.06 1 0.41 0 0

0.12 0.04 0.03 0.03 0.1 0.07 0.41 1 0 0

0 0 0 0 0 0 0 0 1 0.01

0 0 0 0 0 0 0 0 0.01 1

Utterance 
ID

Intent Utterance

U1 AddToPlaylist add the current tune, to my,  Rock Gaming, playlist

U2 AddToPlaylist add villotta, to The MetalSucks Playlist, playlist

U3 SearchCreative
Work

Please look up the Atheist Manifesto: The Case Against 
Christianity,  album, .

U4 SearchCreative
Work

Please look up the painting,  Beyond Iconic: 
Photographer Dennis Stock, .

U5 BookRestaurant book a spot for 8, at The Kitchin, on october the 13th, 
2039,

U6 BookRestaurant Book a reservation for 8, at a restaurant, that serves 
chicken fried bacon, in Aruba,

U7 RateBook Give the current,  book, im reading zero,  points, out of 
6, 

U8 RateBook rate the current,  book,  three, out of 6,

U9 None PayPal

U10 None OkCupid

𝑈ଵ

𝑈ଶ

𝑈ଵ

𝑈ଷ

𝑈ସ

𝑈ହ

𝑈

𝑈

𝑈଼

𝑈ଽ

𝑈ଵ 𝑈ଶ 𝑈ଷ 𝑈ସ 𝑈ହ 𝑈 𝑈 𝑈଼ 𝑈ଽ 𝑈ଵ

Figure 1: An example showing extracting the vector representation for each utterance. The table on the left shows
10 utterances (examples) for 5 different intents, whereas the table on the right shows the corresponding SimMatrix
for the 10 utterances. Each row (or column) is then used as the vector representation for the corresponding utterance

5.2 Unsupervised learning results

In this section, we show the efficacy of
SIMVECS’s vector representation and compare to
other baseline techniques. We collected both pu-
rity and normalized mutual information (NMI)
scores for the generated clusters. We omit NMI
scores for space reasons as it shows the same trend
as purity. As shown in table 3, SIMVECS shows
better performance (in terms of Purity) in compari-
son to other baseline except in one corpors, ”Chat-
bot”. Our solution (SIMVECS+ K-means) outper-
forms all baselines by at least 10% on average.
Fast-text, Seq-Auto-Encoder, and BOW have very
similar performance. We also notice that LDA+K-
means outperforms LDA by 9%, suggesting that
using topic distributions as vector representations
is more efficient than mapping the utterance to the
topic with the maximum corresponding probabil-
ity. We also notice that Fast-text outperforms all
other techniques (including SIMVECS) in one cor-
pus (Chatbot). The reason is that Fast-text through
training on billions of words, can find similari-
ties between words that belong to the same do-
main. For example: the vector representation for
the words ”Pizza” and ”Burger” have a cosine-
similarity of 0.63 using Fast-text vectors as both
words are very frequent in the ”Restaurants” do-
main. Although this might be useful in some situ-
ations, it can be very misleading in others, caus-

ing non-similar utterances to have high silimar-
ity scores. For instance, a particular restaurant
might only serve burgers while any pizza orders
are not supported and therefore should be con-
sidered outliers (i.e. ”None” intent). This means
the similarity between the two words will cause
an overlap between these two intents (”Order” and
”None”), driving the clustering algorithm to mis-
takenly combine the two intents into one cluster.
This behavior is highlighted in the poor perfor-
mance of Fast-text in all other corpora compared
to SIMVECS.

6 Semi-Supervised learning with
conversational text

In this section, we evaluate the efficacy of
SIMVECS vector representations in semi-
supervised learning tasks. One of the main
requirements in language understanding services
is to improve their performance during operation
using active learning techniques. This is achieved
by adapting to different user perspectives in
different domains. Moreover, it is hard in many
cases to perform clustering efficiently without
taking the user perspective into consideration. For
instance, Fig. 2 shows an example of two groups
of utterances that can be clustered at different
levels of granularity based on the user’s needs. In
many such cases, the same set of utterances can be
clustered in different ways according to different
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Corpora Combined AskUbuntu Chatbot WebApplications Average

Spherical Kmeans 61% 63% 61% 64% 62%
LDA 46% 59% 61% 35% 50%

LDA+Kmeans 55% 67% 62% 54% 59%
Seq-Auto-encoder+Kmeans 65% 64% 62% 57% 62%

Fast-Text+Kmeans 53% 56% 94% 49% 63%
SIMVECS+Kmeans 71% 83% 61% 76% 73%

Table 3: Purity scores for SIMVECS vs several baselines

criteria. Moreover, it is not known which criteria
is to be used by the clustering algorithm with-
out user feedback. Therefore, semi-supervised
learning is typically used in directing SIMVECS

to the correct context-sensitive clustering. In this
section, we evaluate the ability of SIMVECS in
a semi-supervised learning mode, compared to
several baselines.

In semi-supervised clustering, few data points
are labeled and used as constraints to the cluster-
ing technique. These constraints are of the form
“Must-Link” and “Cannot-Link” for pairs of
data points. A “Must-Link” constraint arises when
the user indicates that two utterances belong to the
same intent, while a “Cannot-Link” constraint is
when to the user indicates two utterances as be-
longing to different intents. We propose a sim-
ple algorithm to refine SIMVECS vectors based
on the provided constraints: Whenever a “Must-
Link” constraint is provided for a pair of points,
we collapse their 2 vectors into one vector in the
space. This is achieved by taking the max value
of each entry of the corresponding indexes. Thus,
the resulting vector is closer to neighbors of both
points, shrinking the distances between neighbors
of both utterances.Moreover, because each feature
(dimension) in the space is a representative utter-
ance, after the collapsing of two utterances, we
perform PCA to come up with the new dimensions
after the user is done with the labeling.

On the other hand, whenever a “Cannot-Link”
constraint is provided, the similarity score be-
tween the two utterances is set to zero in the cor-
responding entry in SimMatrix. This increases the
distance between the two points and transitively,
between the neighbors of these two points.
To evaluate the effieciency of the resulting vec-
tore, we vary the amount of user-labeled data
points and estimate the corresponding cluster-
ing purity scores. As shown in Fig. 3, semi-

supervised learning can significantly improve the
performance of the clustering algorithm. We com-
pare the performance of SIMVECS to BOW, Seq-
Auto-encoder, and Fast-text. We use constrained
K-means (COP-Kmeans) (Wagstaff et al., 2001) as
the semi-supervised learner for SIMVECS as well
as all baseline techniques. We see that SIMVECS

achieves its maximum gain against other tech-
niques when the proportion of labeled data is
small. This is very useful in our problem as it re-
duces the labeling effort required from the user
side to assist the clustering algorithm. The results
show improvements over all three baselines, while
the difference between the approaches shrinks
with more labeled data points as expected. Also
we notice that with few labeled data points (from
10% to 30%), Seq-Auto-encoder and Fast-text
representations are performing better than BOW.
However, with more labeled data (≥ 50%) BOW
starts to perform better. The reason is that with
more labeled data points, the training examples
(constraints) start to cover most of the expressions
that can be used for a particular intent.

7 Supervised learning with
conversational text

Supervised learning is critical to language un-
derstanding services in order to identify both in-
tents and entities in new utterances coming in the
stream. We compare the performance of intent
classifiers when SIMVECS is used against BOW,
Seq-auto-encoders, and Fast-text vector represen-
tations. For all corpora, a linear SVM classifier is
trained per intent in one-vs-all fashion. For each
intent, the utterances that belong to that intent rep-
resent the positive class, whereas all other utter-
ances represent the negative class. We apply 5-
fold cross validation and calculate the average F1-
Score across all runs. Fig. 4 shows the improve-
ment in F1-Score with both variants over baseline
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Figure 2: Example of clustering with different levels of granularity. Without user feedback, it is not clear whether
the clustering algorithm should put all the utterances in the same cluster (Get Weather) or split them into two
separate clusters (Is Worm & Weather Update).

Figure 3: Improvement on clusters Purity using
SIMVECS with COP-Kmeans vs several baselines

techniques. An improvement of 29% is observed
over Fast-text representation, whereas an improve-
ment of 13% over Seq-Auto-encoder representa-
tion is observed. SIMVECS is only slightly better
than BOW (3% improvement on average). Addi-
tionally, we introduce a variant of SIMVECS that
doesn’t use the automatically tuned weights shown
in Eq. 4. Instead, we concatenate all 6 similar-
ity sub-metrics with all other utterances into one
vector and use the resulting vector as the utter-
ance representation (called Expanded-SIMVECS).
Notice that this approach generates vector repre-
sentations of size 6X compared to SIMVECS. We
notice that using SIMVECS with our pre-trained
weights is achieving better results than Expanded-
SIMVECS across all corpora. The reason is that as
Expanded-SIMVECS increases the number of di-
mensions, it also increases the sparsity of the space
and hence requires more training data, which is
known as ”the curse of dimensionality” (Poggio
et al., 2017). We also notice that the performance
gain is proportional to the number of intents in
the corpus. The peak gains of 8%, 25%, and 48%
over BOW, Seq-Auto-encoder, and Fast-text re-
spectively are observed with ”Combined” corpora

Figure 4: Improvement on classification accuracy using
SIMVECS vs several baselines.

(which combines the 15 intents in all three cor-
pora).

8 Background

In this section, we give the formulas used to es-
timate our evaluation metrics: Purity (Manning
et al.) and F1-Score (Sasaki et al., 2007).

8.1 Purity:

is evaluated by the given formula:

Purity =
1

N

k∑

i=1

Maxj |Ci ∩ tj | (6)

Where N is the number of data points, k is the
number of clusters, Ci is a generated cluster, and
tj is the intent which represents the majority inCi.

8.2 F1-Score:

is evaluated by the given formula:

F1 = 2.
P ∗R
P +R

(7)

Where P is the precision, and R is the recall.

715



9 Discussion

One of the practical challenges in implementing
SIMVECS can be the size of the SimMatrix, partic-
ularly when the number of utterances grows very
large. Currently, this is not be a critical issue for
current LU services as they tend to limit the num-
ber of utterances per application to a few thou-
sands. But the maximium number of supported ut-
terances is expected to grow in the future. For ex-
ample, IBM Watson currently limits the number
of utterances to 25,000 per workspace (applica-
tion) whereas Microsoft LUIS limits the number
of utterances to 15,000 per application. One ap-
proach to improve the scalability of SIMVECS is
by constraining further the number of dimensions
of the vector space thus reducing the memory re-
quirements for storing SimMatrix. For reducing
the computational time, multi-threading can be
used to calculate similarity scores between dif-
ferent pairs of utterances concurrently and hence
speedup the matrix construction process.

10 Conclusion

This paper introduces SIMVECS, a similarity-
based vector representation technique designed to
overcome prior work limitations in the field of
conversational AI. We discussed the main chal-
lenges in vector representation for conversational
AI applications and how SIMVECS overcomes
these challenges. Through evaluation on differ-
ent corpora and for different learning tasks, we
showed the efficacy of vector representations gen-
erated by SIMVECS over several baselines.
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Abstract

Conventional chatbots focus on two-party re-
sponse generation, which simplifies the re-
al dialogue scene. In this paper, we strive
toward a novel task of Response Generation
on Multi-Party Chatbot (RGMPC), where the
generated responses heavily rely on the inter-
locutors’ roles (e.g., speaker and addressee)
and their utterances. Unfortunately, complex
interactions among the interlocutors’ roles
make it challenging to precisely capture con-
versational contexts and interlocutors’ infor-
mation. Facing this challenge, we present
a response generation model which incorpo-
rates Interlocutor-aware Contexts into Recur-
rent Encoder-Decoder frameworks (ICRED)
for RGMPC. Specifically, we employ interac-
tive representations to capture dialogue con-
texts for different interlocutors. Moreover,
we leverage an addressee memory to enhance
contextual interlocutor information for the tar-
get addressee. Finally, we construct a corpus
for RGMPC based on an existing open-access
dataset. Automatic and manual evaluations
demonstrate that the ICRED remarkably out-
performs strong baselines.

1 Introduction

Human computer conversation has been an impor-
tant and challenging task in NLP and AI since the
Turing Test was proposed in 1950 (Turing, 1950).
Recently, with the rapid growth of social conver-
sation data available on the Internet, data-driven
chatbots are able to learn to generate responses di-
rectly and have attracted much more attention than
before (Li et al., 2016a; Tian et al., 2017).

Researches in this area mostly focus on the dia-
log with two interlocutors (Maı́ra Gatti de Bayser
et al., 2017). However, the real-life interaction in-
volves a substantial part of Multi-Party Chatbot-
s (MPC, such as internet forum and chat group),
which is a form of conversation with multiple in-

t Speaker Addressee Utterance

1 Alan ( ) Bert ( ) the main ubuntu

2 Carl ( ) - i

n-1 Carl ( ) Jack ( ) i

n Carl ( )

n+1 Jack ( ) Carl ( ) mate is a recent reincarnation i

(Generated) ResponseResponding
Speaker

Target
Addressee

Context

Figure 1: An example of Multi-Party Chatbots (MPC).
At each turn, a speaker said one utterance to an ad-
dressee. There are many interlocutors (e.g., Alan, Bert
and so on) in a conversation, where ai represents inter-
locutor’s ID.

terlocutors (Ouchi and Tsuboi, 2016). For ex-
ample, there are more than three interlocutors
(a1, a2, a3...am) involved in the conversation in
Figure 1, and their roles (e.g., speaker and ad-
dressee) may change across different dialog turns.

As shown in Figure 1, at each turn, the core is-
sue of MPC is to capture who (speaker) talks to
whom (addressee) about what (utterance). In order
to obtain responses in MPC, in our best knowl-
edge, previous approaches usually employ a re-
sponse selection paradigm, which simply select-
s one response from a set of existing utterances
as the final response according to the contexts.
Obviously, this paradigm, which could not gen-
erate new responses, is not so flexible. In this s-
tudy, to build a more broadly applicable system,
we concentrate on producing new responses word
by word, named as Response Generation on Multi-
Party Chatbots (RGMPC).

RGMPC is a very challenging task. The pri-
mary challenge is that the generated response has
strong relevance to the interlocutor’s roles, such as
the speaker and the addressee. For example, in the
same context of Figure 1, what a1 says to a2 is d-
ifferent from what a1 says to a3 because different
addressees (a2 and a3) have different information
demands. Similarly, as for the same addressee, ut-
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terances from different speakers may be differen-
t because each speaker has personal background
knowledge and style of speaking. Moreover, the
roles of the same interlocutor may vary across d-
ifferent dialog turns. For instance, in Figure 1, a3
plays different roles in different dialog turns: s-
peaker in the turn 2 and n-1, addressee in the turn
n and n+1.

Therefore, it is very important for RGMPC to
capture interlocutor information. Currently, most
response generation methods consider only the
contextual utterance information (Serban et al.,
2016, 2017) but neglect the interlocutor informa-
tion. Although some researches have exploited the
interlocutor information for response generation,
they are still suffering from certain critical limita-
tions. Li et al. (2016b) learn a fixed vector for each
person from all conversational texts in the training
corpus. However, as a global representation, the
fixed person vector needs to be trained from large-
scale dialogue turns for each interlocutor, and it
may have a sparsity issue since some interlocu-
tors have very few dialogue turns.

To address the aforementioned problems of
RGMPC, this paper incorporates Interlocutor-
aware Contexts into a Recurrent Encoder-Decoder
model (ICRED) for RGMPC, which is also an
end-to-end framework. Specifically, in order to
capture interlocutor information, we exploit in-
teractive interlocutor representations learned from
current dialog context rather than the fixed person
vectors (Li et al., 2016b) obtained from all dialogs
in the training corpus. We expect that the learned
contextual interlocutor representation could be a
good alternative to the fixed person vectors (Li
et al., 2016b) due to its ability of alleviating the
sparsity issue. Furthermore, from the view of con-
versation analysis, responses are usually used for
answering the addressee’s question or expanding
the addressee’s utterances. Therefore, we original-
ly introduce an addressee memory mechanism to
enhance contextual information for the target ad-
dressee especially. Finally, both of the interactive
interlocutor representation and addressee memory
are utilized for decoding response utterances. In
particular, the addressee memory is leveraged to
capture the addressee information for each gener-
ated word dynamically.

In order to prove the effectiveness of the pro-
posed model, we construct a dataset for RGMPC

based on an open dataset1. Experimental results
show that the proposed model is fairly competitive
on both automatic and manual evaluations com-
pared with state-of-the-arts.

In brief, the main contributions of the paper are
as follows:

(1) We propose an end-to-end response gen-
eration model called ICRED which incorpo-
rates Interlocutor-aware Contexts into Recurrent
Encoder-Decoder framework for RGMPC.

(2) We leverage an addressee memory mecha-
nism to enhance contextual interlocutor informa-
tion for the addressee.

(3) We construct an open-access dataset for
RGMPC. Both automatic and manual evaluation-
s demonstrate that our model is remarkably better
than strong baselines in this dataset.

2 Task Formulation

Data Notation

Input
Context C = [(at

spk, a
t
adr, ut)]nt=1

Responding Speaker an+1
spk (or ares)

Target Addressee an+1
adr (or atgt)

Output Response un+1 (or {rj}Lr
j=1)

Table 1: Notations for RGMPC.

On multi-party chatbots, lots of interlocutors
talk about one or more topics. At each dialogue
turn (or time step) t, there is a speaker (atspk),
who may talk something (ut) to a specific ad-
dressee (atadr), while the others are observers. As
shown in Table 1, given the context C of previ-
ous n dialog turns, the responding speaker ares
and the target addressee atgt at time step n+1,
the task of RGMPC aims to automatically gener-
ate the next utterance un+1 as the final response.
Here, C is a list ordered by the time step t: C =
[Ct]nt=1 = [(atspk, a

t
adr,u

t)]nt=1, where Ct means
atspk says ut to atadr at time step t, n is the maxi-
mum number of previous dialog turns in a context.
ut = (wt1, w

t
2...w

t
Lu

) is the input utterance (word
sequence) at time step t, where Lu is the number
of maximum words in utterances.

3 Methodology

The overview of the proposed ICRED for RGMPC
is shown in Figure 2 along with its caption. The
details are as follows.

1The dataset is available at http-
s://www.dropbox.com/s/4chh64yaxajh0j7/RGMPC.zip?dl=0
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Utterance Encoder
Layer

Speaker Interaction
Layer

Addressee Memory
Layer

Decoder layer
Contextual Addressee VectorAttentional Addressee Vector Contextual Speaker Vector Response:

Bi-GRU

Decoder

Bi-GRU Bi-GRU Bi-GRU

:   Speaker GRU

: Addressee GRU

:  Observer GRU

Figure 2: Overall structure of the proposed ICRED for RGMPC. At each time step t, (ai, aj ,ut) means that
a speaker ai said an utterance ut to an addressee aj , where the time step t is denoted on the bottom, and the
superscript t may be omitted for brevity. Our ICRED includes: 1© Utterance Encoder Layer: encoding each
utterance (ut) into distributed vectors; 2© Speaker Interaction Layer: capturing interactive interlocutor information
from contexts, and it updates all interlocutors’ representation by different GRUs according to their roles at each
time step, where the embedding for an interlocutor ai is obtained by extracting the i-th column (Ai) from the
interlocutor embedding matrix A; 3© Addressee Memory Layer: enhancing contextual information for the target
addressee (a3); 4© Decoder Layer: generating responses.

3.1 Utterance Encoder Layer

The utterance encoder layer transforms input ut-
terance into distributional representations. We
leverage the bi-directional Gated Recurrent U-
nits (GRU) (Cho et al., 2014) to capture the
long-term dependency. For an utterance ut =
(wt1, w

t
2...w

t
Lu

) at time step t, the concatenated
representation for hidden states in bi-directions is
denoted as hti = [

−→
h t
i,
←−
h t
Lu−i+1] , where hti is con-

sidered as the contextual word representation of
the input word wti . The state (htLu

) of the last word
is treated as the representation of the utterance at
time step t, which is denoted as ht, and it could be
sent to the speaker interaction layer for updating
contextual representation.

3.2 Speaker Interaction Layer

The speaker interaction layer is leveraged to obtain
the interlocutor information in the context. Simi-
lar to the Speaker Interaction RNNs (Zhang et al.,
2018), we utilize the interactive speaker encoder
for RGMPC.

As shown in Figure 2, an interlocutor embed-
ding matrix A is used to record all interlocutors’
representation, and A is initiated with a zero ma-
trix. Each column of A corresponds to an inter-
locutor’s embedding: Ai = A[∗, ai], where Ai is
the embedding for the interlocutor ai. The speaker
interaction layer updates the entire interlocutors’
embeddings at each time step based on their roles

(speaker, addressee or observer). Embeddings for
the speaker, addressee and observer are updated
by following role-differentiated GRUs: GRUS ,
GRUA and GRUO, respectively.

Atspk = GRUS(A
t−1
spk ,h

t) (1)

Atadr = GRUA(A
t−1
adr ,h

t) (2)

Atobv = GRUO(A
t−1
obv ,h

t) (3)

where Atspk (Atadr / Atobv) is the embedding for the
speaker (addressee / observer) at time step t, and
ht is the utterance representation obtained from
the utterance encoder layer. Take the first time step
“(a1, a2,u1)” in Figure 2 as an example, when
a1 says u1 to a2, the speaker’s (a1’s) embedding
A1 is updated by the speaker GRU—GRUS , and
the addressee’s (a2’s) embedding A2 is updated
by the addressee GRU—GRUA, while other inter-
locutors’ embeddings are updated by the observer
GRU—GRUO. Note that the addressee may be
missing (such as “(a3,−,u2)” at time step 2 in
Figure 2), where embeddings for all interlocutors
except for the speaker are updated by the observ-
er GRU. The interlocutor embedding matrix (A)
is updated up to the maximum time step n. The
final interlocutor embedding matrix is used in de-
coding.

3.3 Addressee Memory Layer
The interlocutor embedding matrix is updated by
utterance representations and interlocutor’s roles,

720



so it captures interlocutor’s context on the utter-
ance level. In fact, contextual word representation
is important for response generation, too. A con-
text contains consecutive utterances, and each ut-
terance is a word sequence. Therefore, memoriz-
ing all contextual word representations in the en-
tire context is complex, and it is difficult to work
on large-scale utterances in one context.

Intuitively, from the view of conversational
analysis, responses are usually used for answer-
ing the addressee’s question or expanding the ad-
dressee’s utterances. Therefore, we design an ad-
dressee memory layer, which only memorizes the
contextual word representations (noted as Mtgt)
in the last utterance said by the target addressee,
and the contextual representation for each word is
obtained from the utterance encoder layer. Take
“(am, a3, ?)” at time step n+1 in Figure 2 as an
example, un−1 is the last utterance said by the
target addressee a3 because of “(a3, am,un−1)”
at time step n-1, so the addressee memory layer
merely memorizes contextual word representation
Mtgt = [hn−11 ,hn−12 , ...,hn−1Lu

] from the utterance
un−1, where hn−1i is obtained from Section 3.1.

3.4 Decoder Layer

The decoder is responsible for generating target
sequences. Different from a single contextual rep-
resentation in previous work (Serban et al., 2017),
the speaker interaction layer is able to capture dif-
ferent interlocutor information from contexts (e.g.,
personal background knowledge and style of s-
peaking for the responding speaker, special infor-
mation demands for the target addressee). More-
over, the addressee memory layer records contex-
tual word representation for the target addressee.
Therefore, we extract contextual speaker vec-
tor Ares for the responding speaker ares from
the final interlocutor embedding matrix A (e.g.,
the responding speaker’s embedding obtained by
Am = A[∗, am] for the responding speaker am in
Figure 2). Similarly, contextual addressee vec-
tor Atgt for the target addressee is also extract-
ed from A. However, Ares and Atgt keep same
for each generated word. In order to capture dy-
namic information for different generated words,
we leverage an attention mechanism to selective-
ly reads different contextual word representations
from the addressee memory. For each target word,
the decoder attentively reads the contextual word

representation as follows:

cj =
∑Lu

k=1
αjkMtgt[∗, k]; (4)

αjk =
eρ(sj−1,Mtgt[∗,k])

∑
k′ e

ρ(sj−1,Mtgt[∗,k′]) (5)

where cj is the attentional addressee vector,
Mtgt[∗, k] is the contextual word representation
for the k-th word in the addressee memory, and
sj represents the hidden state in decoding GRU.
A function ρ is leveraged to compute the attentive
strength, which is calculated by a projected matrix
to connect sTj−1 and Mtgt[∗, k]. Finally, the atten-
tional addressee vector cj , contextual speaker vec-
tor Ares and contextual addressee vector Atgt are
concatenated to estimate the probability for pre-
dicted words:

p(rj |r<j , aspk, atgt, C) =
p(rj |rj−1, cj , Ares, Atgt, sj)

(6)

sj = GRUdec(sj−1, [cj , Ares, Atgt, xj−1]) (7)

where sj is the hidden state of the decoding
GRU—GRUdec. xj is the word vector of the
predicted target word rj , and rj is typically per-
formed by a softmax classifier over a settled vo-
cabulary based on word embedding similarity.

3.5 Learning
The proposed ICRED for RGMPC is totally differ-
entiable, and it can be optimized in an end-to-end
manner using back-propagation. Given the con-
text C, responding speaker ares, target addressee
atgt and target word sequence {rj}Lr

j=1, the objec-
tive function is to minimize the loss function:

L =
−1
Lr

Lr∑

j=1

log[p(rj |r<j , C, ares, atgt] + λL2

(8)

It contains a negative log-likelihood for gener-
ated responses and L2 regularization (L2), where
λ is a hyperparameter for L2.

4 Experiment

4.1 Dataset
Our dataset is constructed based on the Ubuntu
multi-party chatbot corpus2, which has been wide-
ly used as the evaluation dataset for the response
selection task (Ouchi and Tsuboi, 2016; Zhang

2https://github.com/hiroki13/response-ranking
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Total Train Dev Test
# Contexts 423.5K 338.9K 42.3K 42.3K
# Speaker 35.3K 33.5K 15.6K 15.6K

# Addressee 23.4K 22.4K 10.8K 10.8K
# Vocab 276.1K 254.8K 82.2K 82.0K
# Tokens 26.3M 21.0M 2.62M 2.62M

Avg. Tok/Ctx 51.4 51.5 51.4 51.3
Avg. Tok/Res 10.6 10.6 10.7 10.6

Table 2: Data statistics. “#” means number, and “Avg.
Tok/Ctx (or Res)” is the number of tokens per context
(or response).

et al., 2018). The original data comes from the
Ubuntu IRC chat log, where each line consists of
(Time, Speaker, Utterance). If the addressee is ex-
plicitly mentioned in the utterance, it is extracted
as the addressee. Otherwise, all interlocutors ex-
cept the speaker are observers. Considering that
generating new responses in this paper is more
complicated than retrieving responses, the genera-
tive task requires higher-quality data. We suppose
that the responding speaker and target addressee
have appeared in the context, where the contextual
window is set to 5. Moreover, the words are tok-
enized by NLTK, and some general responses are
removed by human rules3. Finally, we randomly
split the dataset into Train/Dev/Test (8:1:1), and it
is publicly available1. The detailed statistics of the
dataset are shown in Table 2.

4.2 Implement Details

In order to keep our model comparable to other
typical existing methods, we keep the same param-
eters and experimental environments for ICRED
and the comparative models. We take a maxi-
mum of 20 words for the utterance. The word vec-
tor dimension is 300 and it is initialized with the
public released fasttext4 pre-trained on Wikipedi-
a. The utterance and interlocutor are encoded by
512-dimensional and 1024-dimensional vectors,
respectively. The joint loss function with 0.0001
L2 weight is minimized by an Adam optimizer.
We implemented all the models with Tensorflow
on an NVIDIA TITAN X GPU.

4.3 Automatic Evaluation Metrics

Automatic evaluations (AEs) for Natural Lan-
guage Generation (NLG) is a challenging and
under-researched problem (Novikova et al., 2017).

3We list some general responses, such as containing “i
don’t know”, “you are welcome”.

4https://github.com/facebookresearch/fastText

Following (Liu et al., 2018), we leverage two ref-
erenced measurements (BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004)5) for automatic e-
valuations. Considering that current data-driven
approaches tend to generate short and generic
(meaningless) responses, two unreferenced (“in-
trinsic”) metrics are also leveraged to the evalu-
ation. The first one is the average length of re-
sponses, which is an objective and surfaced metric
reflected the substance of responses (Mou et al.,
2016; He et al., 2017a). The other one is the
number of nouns6 per response (Liu et al., 2018),
which shows the richness of responses since nouns
are usually content words. Note that the unrefer-
enced metrics could enrich the evaluations, though
they are weak metrics. The detailed results and
analyses are shown as follows.

4.4 The Effectiveness of ICRED for RGMPC

Model Referenced Unreferenced
BLEU ROUGE Length #Noun

Seq2Seq 8.86 7.62 9.48 1.24
Persona Model 9.12 7.38 11.04 1.29

VHRED 9.38 7.65 10.25 1.55
ICRED (ours) 10.63 8.73 11.34 1.68

Table 3: Overall comparisons of ICRED.

Comparison Methods. We compared ICRED
with the following methods:

(1) Seq2Seq (Sutskever et al., 2014): Seq2Seq
is one of the mainstream methods for text gener-
ation. In order to capture as much information as
possible, the input sequence is all utterances con-
catenated in order in a context.

(2) Persona Model (Li et al., 2016b): The
persona-based model modified a Seq2Seq to en-
code a global vector for each interlocutor that ap-
pears in the training data, and it could alleviate the
issue of speaker consistency for response genera-
tion.

(3) VHRED (Serban et al., 2017): VHRED is
essentially a conditional variational auto-encoder
with hierarchical encoders, and it extends HRED
(Serban et al., 2016) by adding a high-dimensional
latent variable for utterances.

Comparative Results. Table 3 demonstrates
overall comparisons of ICRED. We can clearly ob-
tain the following observations:

5Implemented by https://github.com/Maluuba-/nlg-eval.
BLEU and ROUGE are transformed into percentages (%).

6NLTK is utilized for part-of-speech tagging.
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Interlocutor’s Persona Model ICRED (ours)
Dialogue Turns BLEU ROUGE BLEU ROUGE

[0, 100] 8.47 6.72 10.63 8.60
(100, 1000] 8.87 7.14 10.50 8.61

(1000, 5000] 9.48 7.74 10.77 8.90
(5000, +∞) 9.51 7.80 10.60 8.79

Table 4: Performances on sparse and plentiful learn-
ing data with different numbers of interlocutor’s dia-
logue turns, where the test data is divided into different
intervals according to the number of dialogue turns in
training dataset said by target addressee (named as in-
terlocutor’s dialogue turns).

(1) ICRED obtains the highest performance on
all metrics (marked as bold), and it indicates
that incorporating interlocutor-aware context into
RGMPC contributes to generating better respons-
es.

(2) Although the persona-based model utilizes
interlocutor information, it performs poorly. The
average dialogue turn for the interlocutor is more
than 5000 in (Li et al., 2016a), while there is less
than 100 dialogue turns per interlocutor in our
dataset. Therefore, it is hard to learn a global vec-
tor for each interlocutor from the sparse corpus.
In contrast, our ICRED performs well on such a
sparse corpus (details in Section 4.5).

(3) VHRED brings slight improvements over
the Seq2Seq and persona-base model. Even that
VHRED enhances the contextual information by a
high-dimensional latent variable, VHRED is still
remarkably worse than ICRED because VHRED
neglects the interlocutor information.

4.5 The Effect of Sparse Data on ICRED

Comparison Settings. Persona model (Li et al.,
2016b) may have a sparsity issue since some in-
terlocutors have very few dialogue turns. To in-
vestigate whether ICRED has the sparsity issue or
not, we divide the test data into four intervals ac-
cording to the number of training dialogue turn-
s said by the target addressee (called interlocu-
tor dialogue turns), where small turns represen-
t sparse learning data (e.g., “[0, 100]”) and large
turns mean plentiful learning data (e.g., “(5000,
+∞)”).

Comparative Results. Table 4 reports the per-
formances of persona model and ICRED on differ-
ent interlocutor’s dialogue turns for learning. We
can clearly see that the persona model has a spar-
sity issue: it performs very poorly on sparse learn-
ing data (e.g., BLEU score = 8.47 on “[0, 100]”)

while it achieves good performances on plentiful
learning data (e.g., BLEU score = 9.51 on “(5000,
+∞)”), which demonstrates that the fixed person
vectors in the persona model need to be learned
from large-scale training data for each interlocu-
tor. In contrast, ICRED exploits interactive inter-
locutor representation learned from current dialog
context rather than the fixed person vectors ob-
tained from all training dialog utterances. There-
fore, ICRED has no sparsity issues and it performs
closely on sparse and plentiful learning data.

4.6 Ablation Study for Model Components

Model Referenced Unreferenced
BLEU ROUGE Length #Noun

ICRED 10.63 8.73 11.34 1.68
w/o Adr Mem 10.25 8.23 10.73 1.27

w/o Ctx Spk Vec 10.13 8.22 10.86 1.59
w/o Ctx Adr Vec 9.95 8.18 10.93 1.26

Table 5: Ablation Experiments by removing the main
components.

Comparison Settings. In order to validate the
effectiveness of model components, we have tried
to remove some main components in decoding as
follows. (1) w/o Adr Mem: without the addressee
memory, such as removing cj in Equation 6-7; (2)
w/o Ctx Spk Vec: without the contextual speak-
er vector, such as removing Ares in Equation 6-7;
(3) w/o Ctx Adr Vec: without the contextual ad-
dressee vector, such as removing Atgt in Equation
6-7.

Comparative Results. Results of the abla-
tion study are shown in Table 5. We can see
that removing any component causes obvious per-
formance degradation. In particular, “w/o C-
tx Adr Vec” performs the worst on almost all of
the metrics, which demonstrates the importance of
contextual information for the target addressee.

4.7 The Effectiveness of Addressee Memory

Memory Type Referenced Unreferenced
BLEU ROUGE Length #Noun

addressee memory 10.63 8.73 11.34 1.68
all utterance memory 10.39 8.78 11.38 1.37

latest memory 10.43 8.40 10.16 1.28
speaker memory 10.03 8.28 10.72 1.66

w/o memory 10.25 8.23 10.73 1.27

Table 6: Performances over different memory types.

Comparison Settings. In order to demonstrate
the effectiveness of the addressee memory, we
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umount -f does n't even work

@Pricey i have right now 12.04 ubuntu i do not want 
to update any of the other packages other than btrfs

@Hanumaan the quantal kernel is out of life

@k1l i have right now this kernel `` 3.2.0-53-generic # 81-ubu-
ntu smp thu aug 22 21:01:03 utc 2013 x86_64 x86_64 x86_64

@Hanumaan you can update the original precise kernel with 
sudo apt-get update & & sudo apt-get install linux-generic

carter

Hanu
maan

k1l_

Hanu
maan

k1l_

Dialogue
Context

@Hanumaan if you want a more recent kernel you 
can install a enablement stack backports kernelk1l_

i 'm not using the OOV

you can not use the OOV of OOV ?

if you want a new kernel , you can install the 
kernel from the kernel repo

Seq2Seq

ICRED

Persona
Model

Model Response

Gold 
Response

i 'm not going to try to install the ubuntu versionVHRED

Figure 3: An example of different model responses for the same dialogue context. The input dialogue context is
on the left. The gold (referenced) response and model responses are on the top right and bottom right, respectively.
The rounded rectangle is the message box, where the italic behind “@” is the addressee, and the solid-line box
near to the message box represents the speaker or model.

change the memory type, and then the attention
model in Equation 5 is based on the new memory.
The comparison settings are shown as follows. (1)
addressee memory: memorizing contextual word
representations in the last utterance said by the tar-
get addressee (e.g., un−1 in Figure 2); (2) all utter-
ance memory: memorizing contextual word repre-
sentations in all utterances of the context (e.g., u1

to un in Figure 2); (3) latest memory: memorizing
contextual word representations of the latest utter-
ance in the context (e.g., the latest utterance un in
Figure 2); (4) speaker memory: memorizing con-
textual word representations in the last utterance
said by the responding speaker; (5) w/o memory:
without any memory.

Comparative Results. We report the results of
different memory types as shown in Table 6. It
can see that our method, the addressee memory,
achieves the best or near-best performances on al-
l metrics. Although memorizing all utterances is
competitive, the complexity of all utterance mem-
ory is n times compared with the one in the ad-
dressee memory, where n is the number of utter-
ances in a context. The speaker memory performs
closely to without memory, which indicates that
not all memories can improve the performance.

4.8 Manual Evaluations

Besides automatic evaluations, we employ manu-
al evaluations (MEs), which is important for re-
sponse generation. Similar to (He et al., 2017b;
Zhou et al., 2018), and we select three metrics for
MEs, which measure the following aspects. (1)
Fluency: measuring whether responses are gram-
matically correct or wrong. (2) Consistency: mea-
suring whether responses are coherent to the con-
text or not. (3) Informativeness: measuring how
much informational (knowledgeable) content ob-
tained from the responses.

Model Flu. Con. Inf.
ICRED vs. Seq2Seq 77.25 83.69 84.35
ICRED vs. Persona. 78.44 80.41 82.35
ICRED vs. VHRED 73.20 81.29 79.47

Table 7: Manual evaluations (%) with fluency (Flu.),
consistency (Con.) and informativeness (Inf.). The S-
core is the percentage that ICRED wins baselines after
removing the “tie” pairs.

We conduct a pair-wise comparison between the
response generated by ICRED and the one for the
same input by three typical baselines. We sample
100 responses from each compared methods. Two
curators judge (win, tie and lose) between these t-
wo methods. The Cohen Kappa of inter-annotator
statistics is 0.750, 0.658 and 0.580 for the fluen-
cy, consistency and informativeness, respective-
ly. As shown in Table 7, the score is the percent-
age that ICRED wins baselines after removing the
“tie” pairs, and we can obtain that ICRED is sig-
nificantly (sign test, p-value < 0.005) superior to
all baselines on any metric. It demonstrates our
model is able to deliver more fluent, consistent and
informative responses.

4.9 Case Study
Figure 3 shows an example of responses on d-
ifferent models for the same dialogue context.
It is clearly observed that our model (ICRED)
generates more fluent, consistent and knowledge-
able (marked as underline) responses compared to
baselines. In particular, the response given by I-
CRED “if you want a new kernel , you can install
the kernel from the kernel repo”, not only explain-
s the reason for kernel installation but also sug-
gests a source of the installation. It fully captures
the context and then produces a fluent, consistent
and knowledgeable response, which is semantical-
ly similar to the gold one.
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4.10 Discussion
Interlocutor Prediction and RGMPC. The
above methods assume that the responding speak-
er and target addressee are given for RGMPC.
Though the speaker and the addressee could be
obtained in some situations (e.g., extracted from
chat logs), it is still a researchable task to in-
terlocutor prediction. There have been some re-
searches to predict either the responding speaker
or the target addressee based on the given textual
contexts or multimodal information (Akhtiamov
et al., 2017a; Meng et al., 2017; Akhtiamov et al.,
2017b). Nevertheless, in order to obtain the inter-
action between interlocutor prediction and RGM-
PC, we further design a joint model for RGMPC
and interlocutor prediction. Note that both the s-
peaker and the addressee are predicted based on
textual contexts, simultaneously. Firstly, the re-
sponding speaker is predicted from contexts:

p(ares|C) = σ([hC ;hnLu
] ·W ·Ares) (9)

where hC is a summary contextual vector, which
is max-pooled by the final interlocutor embedding
matrix (A), and hnLu

is the hidden state of the last
utterance. W is a projected matrix. ares and Ares
are the ID and the embedding of the responding
speaker, respectively. The responding speaker is
predicted by a softmax classifier based on the em-
bedding similarity, and the target addressee is ob-
tained in the same way. Secondly, the predicted in-
terlocutors replace the gold ones for the addressee
memory and extracting interlocutor’s embeddings
from A. Finally, the interlocutor prediction loss
is added to the response generation loss for train-
ing. Table 8 shows the response generation perfor-
mance on the situation that responding interlocu-
tors are given and predicted. We can observe that:

(1) The overall performance on predicted inter-
locutors (“* / *” in Table 8) is slightly worse than
the one with gold interlocutors (the first line in Ta-
ble 8). Nevertheless, “* / *” still outperforms the
strongest baseline (VHRED in Table 3).

(2) The correctness of interlocutor prediction
has a significant impact on response generation
performance. It performs the best when the re-
sponding speaker and the target addressee are pre-
dicted correctly. “False / False” (both are mispre-
dicted) obtains the worst performance on the ref-
erenced metrics. These results demonstrate that
both responding speaker and target addressee con-
tribute to generating better responses.

Person Speaker / Referenced Unreferenced
Addressee BLEU ROUGE Length #Noun

Gold True / True 10.63 8.73 11.34 1.68

Predict

∗ / ∗ 9.62 7.88 11.99 1.44
True / True 10.05 8.36 12.04 1.43
True / ∗ 9.91 8.18 11.95 1.43
∗ / True 9.89 8.21 11.97 1.43

False / False 9.20 7.41 12.18 1.47

Table 8: Performance on learning interlocutor predic-
tion and RGMPC. “True” and “False” means right and
wrong interlocutor, respectively. “*” represents both
“True” and “False”. The correctness of the responding
speaker and target addressee is segmented by “/”. For
example, “True / *” means that the responding speaker
is right, and the target addressee is right or wrong.

(3) Surprisingly, the unreferenced metrics per-
form well on “False / False”. One possible reason
is that the wrong interlocutors also capture rich
contexts, and it generates long and meaningful re-
sponses but with a weak correlation to the gold in-
terlocutors. Therefore, it achieves very poor per-
formance on the referenced metrics.

5 Related Work

Our work is inspired by a large number of appli-
cations utilizing recurrent encoder-decoder frame-
works (Cho et al., 2014) on NLP tasks such as
machine translation (Bahdanau et al., 2015) and
text summarization (Chopra et al., 2016). Recent-
ly, many researches extend the encoder-decoder
framework on response generation. HRED (Ser-
ban et al., 2016) utilizes hierarchical encoder to
capture the context. VHRED (Serban et al., 2017)
extends HRED by adding a high-dimensional la-
tent variable for utterances. These researches
demonstrate the importance of contexts on re-
sponse generation.

Our work is also inspired by researches on
multi-party chatbots. Dielmann and Renals (2008)
automatically recognize dialogue acts in multi-
party speech conversations. Recently, some s-
tudies focus on the three elements (speaker, ad-
dressee, response) on multi-party chatbots. Meng
et al. (2017) introduce speaker classification as a
surrogate task. Addressee selection is researched
by (Akhtiamov et al., 2017b). Some researches
strive to the response selection (Ouchi and Tsub-
oi, 2016; Zhang et al., 2018). However, the re-
sponse selection heavily relies on the candidates,
and it can not generate new responses in new di-
alogue contexts. Response generation could solve
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this problem. Li et al. (2016b) learn fixed per-
son vector for response generation. Unfortunately,
it needs to be obtained from large-scale dialogue
turns, which has a sparsity issue: some interlocu-
tors have very little dialog data. Differently, our
model has no such restrictions.

6 Conclusion

In this study, we formalize a novel task of
Response Generation for Multi-Party Chatbot-
s (RGMPC) and propose an end-to-end model
which incorporates Interlocutor-aware Contexts
into Recurrent Encoder-Decoder frameworks (I-
CRED) for RGMPC. Specifically, we employ in-
teractive speaker models to capture contextual in-
terlocutor information. Moreover, we leverage an
addressee memory mechanism to enrich contextu-
al information. Furthermore, we propose to pre-
dict both the speaker and the addressee when gen-
erating responses. Finally, we construct a corpus
for RGMPC. Experimental results demonstrate the
ICRED remarkably outperforms strong baselines
on automatic and manual evaluation metrics.
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Abstract

We introduce Episodic Memory QA, the
task of answering personal user questions
grounded on memory graph (MG), where
episodic memories and related entity nodes
are connected via relational edges. We cre-
ate a new benchmark dataset first by gen-
erating synthetic memory graphs with simu-
lated attributes, and by composing 100K QA
pairs for the generated MG with bootstrapped
scripts. To address the unique challenges
for the proposed task, we propose Memory
Graph Networks (MGN), a novel extension of
memory networks to enable dynamic expan-
sion of memory slots through graph traver-
sals, thus able to answer queries in which con-
texts from multiple linked episodes and exter-
nal knowledge are required. We then propose
the Episodic Memory QA Net with multiple
module networks to effectively handle various
question types. Empirical results show im-
provement over the QA baselines in top-k an-
swer prediction accuracy in the proposed task.
The proposed model also generates a graph
walk path and attention vectors for each pre-
dicted answer, providing a natural way to ex-
plain its QA reasoning.

1 Introduction

The task of question and answering (QA) has been
extensively studied, where many of the existing
applications and datasets have been focused on
the fact retrieval task from a large-scale knowl-
edge graph (KG) (Bordes et al., 2015), or machine
reading comprehension (MRC) approaches given
unstructured text (Rajpurkar et al., 2018). In this
work, we introduce the new task and dataset for
Episodic Memory QA, in which the model an-
swers personal and retrospective questions based
on memory graphs (MG), where each episodic
memory and its related entities (e.g. knowledge
graph (KG) entities, participants, ...) are repre-

Figure 1: Illustration of Episodic Memory QA with
user queries and memory graphs (MG) with knowledge
graph (KG) entities. Relevant memory nodes are pro-
vided as initial memory slots via graph search lookup.
The Memory Graph Network walks from the initial
nodes to attend to relevant contexts and expands the
memory slots when necessary. The main QA model
takes these graph traversal paths and expanded memory
slots as input, and predicts correct answers via multiple
module networks (e.g. COUNT, CHOOSE, etc.)

sented as the nodes connected via corresponding
edges (Figure 1). Examples of such queries in-
clude “Where did we go after we had brunch with
Jon?”, “How many times did I go to jazz concerts
last year?”, etc. For Episodic Memory QA, a ma-
chine has to understand the contexts of a question
and navigate multiple MG episode nodes as well
as KG nodes to gather comprehensive information
to match the query requirement.

While the ability of querying a personal
database could lead to many potential applica-
tions, previous work in this domain (Jiang et al.,
2018) is limited due to the lack of a large-scale
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Figure 2: Overall architecture of the Episodic Memory QA Network. For an input query q, candidate memory
nodes m = {m(k)} are provided as input memory slots for the Memory QA Network. The Memory Graph
Network then traverses the memory graph to expand the initial memory slots and activate other relevant entity and
memory nodes based on the input queries. The Answer Module Networks execute the predicted neural programs
to decode answers given the memory graph network outputs.

dataset and a unique set of challenges unseen in
other tasks: For example, we observe that 1) Mem-
ory QA queries often include ambiguous and in-
complete descriptions of reference memory (as
opposed to many conventional Fact QAs with
unambiguous mentions, e.g. “Who painted the
Mona Lisa?”), hence requiring extensive candi-
date memory generation. Another challenge we
observe is the case where 2) target memory is only
indirectly linked to reference memory or entities
(e.g. “Where did we go after brunch?”), which
makes the conventional information retrieval (IR)
approaches for generating answer candidates inef-
fective. In addition, 3) queries are not confined to
retrieval tasks, but include various types of ques-
tions such as counting, set comparing, etc., many
of which remain unsolved or not considered in
many QA tasks.

To this end, we propose a new model called the
Memory Graph Network (MGN) to address the
specific challenges stated above that come with
Memory QA. While Memory Networks have suc-
cessfully been used in QA applications, typical
limitations are that memory slots are limited to
the fixed number of slots, often in sentence or
bag-of-symbols forms. MGN extends the popular
memory networks by storing graph nodes as mem-
ory slots and by allowing the network to dynam-
ically expand memory slots through graph traver-
sals. We then implement the main Episodic Mem-
ory QA Network with multiple module networks
such as CHOOSE, COUNT, etc., to effectively han-
dle various question types not easily handled via

graph networks.
To bootstrap a large-scale dataset collection for

Episodic Memory QA, we first build a synthetic
memory graph generator, which creates multiple
episodic memory graph nodes connected with real
entities (e.g. locations, events, public entities) ap-
pearing on common-fact KGs. By creating a real-
istic memory graph that is synthetically generated,
we avoid the need for inferring memory graphs
from other structured data (e.g. photo albums)
which are often limited in size. We then generate
100K QA pairs for each memory node with tem-
plates composed by human annotators, combined
with 1K manual paraphrasing steps. More details
for dataset collection are provided in Section 3.

2 Method

Figure 2 illustrates the overall architecture and
the model components that make up the Episodic
Memory QA Net. We examine each module in de-
tail and provide our rationale about its formulation
in the following sections.
Input Module (Section 2.1): For a given query
q, its relevant memory nodes m = {m(k)}Kk=1

for slot size K are given as initial memory slots.
At test time, relevant memory nodes can be re-
trieved from a graph search engine that measures
textual similarity (e.g. n-gram TF-IDF) between
its connected node contexts and query. The Query
Encoder then encodes the input query with a lan-
guage model, and the Memory Encoder encodes
each memory slot for both structural and semantic
properties of each memory.
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Figure 3: Memory Graph Network (MGN) Walker. Input query q and candidate memory nodes m = {m(k)}
are encoded with the query encoder and the memory encoder, respectively (left). The decoder (right) predicts both
the optimal paths and the final nodes p = {pt}Tt=1 based on their relevance scores as well as soft-attention based
walk paths, which expands the initial memory slots.

Memory Graph Networks (MGN) (Section 2.2):
Many previous work in QA or MRC systems
use memory networks to evaluate multiple an-
swer candidates with transitive reasoning, and typ-
ically store all potentially relevant raw sentences
or bag-of-symbols as memory slots. However,
naive increase of memory slot size or retention-
based sequential update of memory slots often in-
crease search space for answer candidates, lead-
ing to poor precision especially for the Episodic
Memory QA task. To overcome this issue, with
MGN we store memory graph nodes as initial
memory slots, where additional contexts and an-
swer candidates can be succinctly expanded and
reached via graph traversals. For each (q,m(k))
pair, MGN predicts optimal memory slot expan-
sion steps: p(k) = {[p(k)

e,t ;p
(k)
n,t ]}Tt=1 for edge paths

pe and corresponding node paths pn (Figure 3).
QA Modules (Section 2.3, 2.4): An estimated an-
swer â = QA(m,q) is predicted given a query
and MGN graph path output from initial memory
slots. Specifically, the model outputs a module
program {u(k)} for several module networks (e.g.
CHOOSE, COUNT, ...) via module selector, each
of which produces an answer vector . The aggre-
gated result of module network outputs determines
the top-k answers.

2.1 Input Encoding

Query encoder: We represent each textual query
with an attention-based Bi-LSTM language model

(Conneau et al., 2017) with GloVe (Pennington
et al., 2014) distributed word embeddings trained
on the Wikipedia and the Gigaword corpus with a
total of 6B tokens.
Memory encoder: We represent each memory
node based on both its structural features (graph
embeddings) and contextual multi-modal features
from its neighboring nodes (e.g. attribute values).

Structural contexts of each memory node (ms)
are encoded via graph embeddings projection ap-
proaches (Bordes et al., 2013), in which nodes
with similar relation connectivity are mapped
closer in the embeddings space. The model for
obtaining embeddings from a MG (composed of
subject-relation-object (s, r, o) triples) can be for-
mulated as follows:

P (Ir(s, o)=1|θ) = score
(
e(s), er(r), e(o)

)
(1)

where Ir is an indicator function of a known re-
lation r for two entities (s,o) (1: valid relation, 0:
unknown relation), e is a function that extracts em-
beddings for entities, er extracts embeddings for
relations, and score(·) is a function (e.g. multi-
layer perceptrons) that produces a likelihood of a
valid triple.

For contextual representation of memories
(mc), we compute attention-weighted sum of tex-
tual representation of neighboring nodes and at-
tributes (connected via rj ∈ R), using the same
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language model as the query encoder:

mc =
∑

γjmc,j

γ = σ(Wqγq)

Note that the query attention vector γ attenuates
or amplifies each attribute of memory based on a
query vector to better account for query-memory
compatibility accordingly. We then concatenate
the structural features with semantic contextual
features to obtain the final memory representation
(m = [ms;mc]).

2.2 Memory Graph Network

Inspired by the recently introduced graph traversal
networks (Moon et al., 2019) which output dis-
crete graph operations given input contexts, we
formulate our MGN as follows. Given a set of ini-
tial memory slots (m) and a query (q), the MGN
model outputs a sequence path of walk steps (p)
within MG to attend to relevant nodes or expand
initial memory slots (Figure 3):

{p(k)} = MGN(q, {m(k)}) (2)

Specifically, we define the attention-based
graph decoder model which prunes unattended
paths, which effectively reduce the search space
for memory expansion. We formulate the decod-
ing steps for MGN as follows (bias terms for gates
are omitted for simplicity of notation):

it = σ(Whiht−1 +Wcict−1)

ct = (1− it)� ct−1
+ it � tanh(Wzczt +Whcht−1)

ot = σ(Wzozt +Whoht−1 +Wcoct)

ht = WALK(x, zt) = ot � tanh(ct) (3)

where zt is a context vector at decoding step t,
produced from the attention over graph relations
which is defined as follows:

x = Wqmx[q;m
(k)]

αt = σ(Whαht−1 +Wxαx)

zt = ht−1 +
∑

rj∈R
αt,jrj (4)

where αt ∈ R|R| is an attention vector over the re-
lations space, rk is relation embeddings, and zt is
a resulting node context vector after walking from
its previous node on an attended path.

The graph decoder is trained with the ground-
truth walk paths by computing the combined loss
of Lwalk(m,q,p) =

∑
i,t Le + Ln between pre-

dicted paths and each of {pe,pn}, respectively
(Le: loss for edge paths, and Ln for node paths):
∑

p̃e 6=p
(i)
e,t

max[0, p̃e · pe,t(i)−αtr · (p(i)
e,t− ỹe)

>]

+
∑

p̃n 6=p
(i)
n,t

max[0, p̃n · pn,t(i)−ht(i) · (p(i)
n,t− p̃n)

>]

At test time, we expand the memory slots by
activating the nodes along the optimal paths based
on the sum of their relevance scores (left) and soft-
attention-based output path scores (right) at each
decoding step:

p
(k)
n,t = argmax

p
(k)
n ∈VR,1(p

(k)
n,t−1)

ht · p(i)
n

>
+
∑

αt,jrj · p(k)
e

>

(5)

2.3 Module Networks
MGN outputs are then passed to module networks
for the final stage of answer prediction. We ex-
tend the previous work in module networks (Kot-
tur et al., 2018), often used in VQA tasks, to
accommodate for graph nodes output via MGN.
We first formulate the module selector which out-
puts the module label probability {u(k)} given in-
put contexts for each memory node, trained with
cross-entropy loss Lmodule:

{u(k)} = Softmax(MLP(q, {m(k)})) (6)

We then define the memory attention to attenu-
ate or amplify all activated memory nodes based
on their compatibility with query, formulated as
follows:

β = MLP(q, {m(k)}, {p(k)}) (7)

α = Softmax(W>
β β) ∈ RK (8)

For this work, we propose the following four
modules: CHOOSE, COUNT, CONFIRM, SET OR,
and SET AND, hence u(k) ∈ R5. Note that the
formulation can be extended to the auto-regressive
decoder in case sequential execution of modules is
required.
CHOOSE module outputs answer space vector

by assigning weighted sum scores to nodes along
the MGN soft-attention walk paths. End nodes
with the most probable walk paths thus get the
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highest scores, and their node attribute values are
considered as answer candidates. COUNT mod-
ule counts the query-compatible among the ac-
tivated nodes, a = W>

K([α;max{α};min{α}]).
CONFIRM uses a similar approach to COUNT, ex-
cept it outputs a binary label indicating whether
the memory nodes match the query condition:
a = W>

b ([α;max{α};min{α}]). SET modules
either combine or find intersection among answer
candidates by updating the answer vectors with
a = max{W>

s {a(k)}} or a = min{W>
s {a(k)}}.

2.4 Answer Decoding

Answers from each module network (Section 2.3
are then aggregated as weighted sum of answer
vectors with module probability (Eq.6), guided by
memory attention (Eq.7). Predicted answers are
evaluated with cross-entropy loss Lans

We observe that the model performs better when
the MGN component of the model is pre-trained
with ground-truth paths. We thus first train the
MGN network with the same training split (with-
out answer labels), and then train the entire model
with module networks, fully end-to-end super-
vised with L = Lwalk + Lmodule + Lans.

3 Dataset

To empirically evaluate the proposed approach
for the Episodic Memory QA task, we create a
new dataset, MemQA, of 100K question and an-
swer pairs composed based on synthetic memory
graphs that are artificially generated. We specifi-
cally use the synthetically generated MG to avoid
the need for inferring memory graphs from other
structured data (such as publicly available photo
albums such as Flicker, etc.) which are often
limited in size and domains. We bootstrap our
large-scale realistic memory graph dataset with the
following procedures: first, we construct a syn-
thetic social graph with a set number of artifi-
cial users, each with randomly generated interest
embeddings. We then create a realistic memory
graph by randomly choosing participants within
the synthetic social graph as well as activities and
associated entities from the curated list (of lo-
cations, events, public entities, etc.), which is a
subset of common-fact Freebase knowledge base
(Bast et al., 2014). Each generated memory node
thus has connections to entities appearing in KGs,
comprising the memory graph together. Finally,
given a set of reference memory nodes and neigh-

Answer Type % Examples

Location 18 Mt. Rainier, AMC Theater
KG entities & events 17 Iron Man, Coachella
Common nouns, etc. 16 skiing, movie
Person / Group 16 Mark, Jon
Count 15 zero, three
Date / Time 10 01-02-2018, 7 PM
Yes/No 6 -
Miscellaneous 2 -

Table 1: Types of Answers in MemQA

boring attributes, we pragmatically generate tar-
get ground-truth answer samples (e.g. single-hop
/ multi-hop node value, count, set comparison,
yes/no, etc.) We then collect QA pairs for each
sample with templates composed with human an-
notators, which are combined with 1K manual
paraphrasing steps for added variety and confirma-
tion. We randomly split the QA corpus into into
train (70%), validation (15%), and test sets (15%).

4 Empirical Evaluation

Task: Given a query and a set of initial mem-
ory graph nodes via graph search, we evaluate the
model on the open-ended question answering pre-
diction task.

4.1 Baselines

We choose as baselines the following QA systems
(see Section 5 for details), and modify them ac-
cordingly to make comparisons with our task:

• MemN2N (Sukhbaatar et al., 2016): uses the
end-to-end memory networks with the static
set of initial memory slots. Each memory
slot is represented with a bag-of-symbols for
surrounding attributes and nodes. We use a
single Softmax layer for answer classifica-
tion. Memory slot size is tuned as a hyper-
parameter.

• MemexNet (Jiang et al., 2018): uses the tex-
tual representation for multi-modal attributes,
and frames the problem into a classification
problem via text kernel match approaches
to predict approximate answers. Since the
dataset does not contain images, we omit the
CNN representations.

We also consider several configurations of our
proposed approach to examine contributions of
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Components Model Precision@k

k=1 3 5 10

A MemN2N (Sukhbaatar et al., 2016) 29.7 43.8 51.0 50.5
A Memex (Jiang et al., 2018) 32.6 50.3 58.2 59.1

G MemQANet (ablation) 36.7 56.8 63.5 67.9
G + N MemQANet (ablation) 41.1 65.8 75.5 80.0
G + N + E MemQANet (proposed) 45.8 68.1 75.7 80.9

Table 2: QA performance on the MemQA dataset (metric: precision@k). Our proposed model is compared against
the selected baseline models as well as several ablation variations of the proposed model (model components (G):
Memory Graph Network, (N): Module Networks, (E): graph embeddings).

each component (model components (G): Mem-
ory Graph Network, (N): Module Networks, (E):
structural graph embeddings).

• (Proposed; G+N+E): is the proposed ap-
proach as described in Figure 2.

• (G+N): does not structural graph embeddings
for MGN, and relies on semantic representa-
tion of surrounding nodes.

• (G): does not use any of the module networks
(e.g. COUNT, ...), and predicts MGN graph
output as answers instead.

4.2 Results

Parameters: We tune the parameters of each
model with the following search space (bold in-
dicate the choice for our final model): graph em-
beddings size: {64, 128, 256, 512}, Bi-LSTM hid-
den states for the language model: {64, 128, 256,
512}, MGN hidden states: {64, 128, 256, 512},
word embeddings size: {100, 200, 300}, and max
memory slots: {1, 5, 10, 20, 40, 80}. We opti-
mize the parameters with Adagrad (Duchi et al.,
2011) with batch size 10, learning rate 0.01, ep-
silon 10−8, and decay 0.1.

Main Results: Table 2 shows the results of the
top-k predictions of the proposed model and the
baselines. It can be seen that the proposed Mem-
ory QA model outperforms other QA baselines for
precision at all ks.

Specifically, with the MGN walker model, the
MemQA model learns to condition its walk path
on query contexts and attend and expand mem-
ory nodes, thus outperforming the baseline mod-
els that simply rely on their initial memory slots,
typically large in size to maintain reasonable re-
call. The node expansion via MGN allows the

model to keep the initial memory slots small (10)
and expand only when necessary (e.g. for queries
that require references to related memories, ”...
where did I go after ...”), thus improving the preci-
sion performance. Note that memory slot sizes for
baselines are tuned for their performance on the
validation set.

In addition, it can be seen that the neural module
components (G+N and G+N+E) greatly outper-
form the ablation model (G) and the baselines by
aggregating answers with the modules specifically
designed for various types of questions. These
neural modules allow the model to answer ques-
tions that are typically hard to answer (e.g. count,
set comparison, etc.) by explicitly reducing the
answer space accordingly.

Note also that the graph embeddings (G+N+E)
improve the performance over the ablation model
that does not use structural contexts (G+N), in-
dicating that the model learns to better leverage
knowledge graph contexts to answer questions.

Error Analysis: Table 3 shows some of the ex-
ample output from the proposed model, given the
input question and memory graph nodes. It can be
seen that the model is able to predict answers by
combining answer contexts from multiple compo-
nents (walk path, node attention, neural modules,
etc.) In general, the MGN walker successfully ex-
plores the respective single-hop or multi-hop re-
lations within the memory graph, while keeping
the initial memory slots small enough. The acti-
vated nodes via graph traversals are then used as
input for each neural module, the aggregated re-
sults of which are the final top-k answer predic-
tions. There are some cases where the final answer
prediction is incorrect, whereas its walk path is
correctly predicted. This is due to inaccurate pre-
diction of memory attention vector given a query
and initial memory slots, which requires compre-
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Question and Answer Model Preidction

Walk Path Neural Module Top-k Answers

Q: Where did Jon and I go after we watched m1→ (NEXT ID)→m′1 CHOOSE
Symphony Hall,

Avengers? // A: Symphony Hall → (LOCATION) AMC Theatre, ...

Q: Who did I go skiing with last year? m1→ (PARTICIPANT)
SET OR

{Emma, Jacob},
A: {Emma, Jacob} m3→ (PARTICIPANT) {Emma, Noah}, ...

Q: How many sci-fi movies have I watched m1→ (ENTITY)→ e′1 COUNT
Three,

last year? // A: Two → (GENRE)→ a′1 Two, Four, ...

Table 3: Error Analysis: Model predictions of walk paths (with expanded memory nodes noted with ’) are partially
shown for each question and ground-truth answer pair. The full reference memory graphs are not shown here due
to space constraints. Initial memory slot size = 10.

hensive understanding of surrounding knowledge
nodes in the context of the query.

5 Related Work

Memory Networks: Weston et al. (2014);
Sukhbaatar et al. (2016) propose Memory Net-
works with explicit memory slots to contain aux-
iliary multi-input, now widely used in many QA
and MRC tasks for its transitive reasoning capabil-
ity. Traditional limitations are that memory slots
for storing answer candidates are fixed in size,
and naively increasing the slot size typically de-
creases the precision. Several work extend this
line of research, for example by allowing for dy-
namic update of memory slots given streams of
input (Kumar et al., 2016; Tran et al., 2016; Xu
et al., 2019), reinforcement learning based reten-
tion control (Jung et al., 2018), etc. By allowing
for storing graph nodes as memory slots and for
slot expansion via graph traversals, our proposed
Memory Graph Networks (MGN) effectively by-
pass the issues.

Structured QA systems: often answer ques-
tions based on large-scale common fact knowl-
edge graphs (Bordes et al., 2015; tau Yih et al.,
2015; Xu et al., 2016; Jain, 2016; Yin et al., 2016;
Dubey et al., 2018), typically via an entity linking
system and a QA model for predicting graph oper-
ations through template matching approaches, etc.
Our approach is inspired by this line of work, and
we utilize the proposed module networks and the
MGN walker model to address unique challenges
to Episodic Memory QA.

Machine Reading Comprehension (MRC)
systems: aim at predicting answers given evidence
documents, typically in length of a few paragraphs
(Seo et al., 2017; Rajpurkar et al., 2016, 2018; Cao

et al., 2019; tau Yih et al., 2015). Several recent
work address multi-hop reasoning within multi-
ple documents (Yang et al., 2018; Welbl et al.,
2018; Bauer et al., 2018; Clark et al., 2018) or
conversational settings (Choi et al., 2018; Reddy
et al., 2018), which require often complex reason-
ing tools. Unlike in MRC systems that typically
rely on language understanding, we effectively uti-
lize structural properties of memory graph to tra-
verse and highlight specific attributes or nodes that
are required to answer questions.

Visual QA systems: aim to answer questions
based on contexts from images (Antol et al., 2015;
Wang et al., 2018; Wu et al., 2018). Recently, neu-
ral modules (Kottur et al., 2018) are proposed to
address specific challenges to VQA such as visual
co-reference resolutions, etc. Our work extends
the idea of neural modules for Episodic Memory
QA by implementing modules that can take graph
paths as input for answer decoding. Jiang et al.
(2018) proposes visual memex QA which tackles
similar problem domains given a dataset collected
around photo albums. Instead of relying on meta
information and multi-modal content of a photo
album, our work explicitly utilizes semantic and
structural contexts from memory and knowledge
graphs. Another recent line of work for VQA in-
cludes graph based visual learning (Hudson and
Manning, 2019), which aims to represent each im-
age with a sub-graph of visual contexts. While
graph-based VQA operates on a graph constructed
from a single scene, Episodic Memory QA oper-
ates on a large-scale memory graph with knowl-
edge nodes. We therefore propose memory graph
networks to handle ambiguous candidate nodes, a
main contribution of the proposed work.
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6 Conclusions

We introduce Episodic Memory QA, the task
of answering personal user questions grounded
on memory graph (MG). The dataset is gener-
ated with synthetic memory graphs with simu-
lated attributes, and accompanied with 100K QA
pairs composed via bootstrapped scripts and man-
ual annotations. Several novel model compo-
nents are proposed for unique challenges for the
Episodic Memory QA: 1) Memory Graph Net-
works (MGN) extends the conventional memory
networks by enabling dynamic expansion of mem-
ory slots through graph traversals, which also nat-
urally allows for explainable predictions. 2) Sev-
eral neural module networks are proposed for the
proposed task, each of which takes queries and
memory graphs as input to infer answers. 3) The
main Episodic Memory QA Net aggregates an-
swer prediction from each neural module to gener-
ate final answer candidates. The empirical results
demonstrate the efficacy of the proposed model in
the Memory QA reasoning.
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Abstract

We consider the importance of different ut-
terances in the context for selecting the
response usually depends on the current
query.1 In this paper, we propose the model
TripleNet to fully model the task with the
triple 〈context, query, response〉 instead of
〈context, response〉 in previous works. The
heart of TripeNet is a novel attention mecha-
nism named triple attention to model the rela-
tionships within the triple at four levels. The
new mechanism updates the representation for
each element based on the attention with the
other two concurrently and symmetrically. We
match the triple 〈C,Q,R〉 centered on the re-
sponse from char to context level for predic-
tion. Experimental results on two large-scale
multi-turn response selection datasets show
that the proposed model can significantly out-
perform the state-of-the-art methods. 2

1 Introduction

To establish a human-machine dialogue system
is one of the most challenging tasks in Artifi-
cial Intelligence (AI). Existing works on build-
ing dialogue systems are mainly divided into two
categories: retrieval-based method (Yan et al.,
2016; Zhou et al., 2016), and generation-based
method (Vinyals and Le, 2015). The retrieval-
based method retrieves multiple candidate re-
sponses from the massive repository and selects
the best one as the system’s response, while
the generation-based method uses the encoder-
decoder framework to generate the response,
which is similar to machine translation.

1In this paper, we define the last message which is waiting
for a response as the ‘query,’ the conversation history includ-
ing the query as ‘context,’ and each message in the context as
an ‘utterance.’

2 TripleNet source code is available at https://
github.com/wtma/TripleNet.

A: i downloaded angry ip scanner and now it doesn’t
work and i can’t uninstall it
B: you installed it via package or via some

:::::
binary

::::::
installer
A: i installed from ubuntu soft center
B: hm i do n’t know what package it is but it should let
you remove it the same way
A: ah makes sense then ... hm

:::
was

:
it
:
a
::::

deb
::
file

True Response: i think
:
it
::::
was

::::::
another

:::::
format mayge

sth starting with r
False Response: thanks i appreciate it try sudo apt-get
install libxine-extracodecs

Figure 1: A real example in the Ubuntu Corpus. The
upper part is the conversation between speaker A and
B. The speaker A want to uninstall the ip scanner and
the current query is about the format of the package, so
the true response is about the format, but the existing
conversation model can be easily misled by the high
frequency term ‘install’ as they deal with the query and
other utterances in the same way.

In this paper, we are focusing on the retrieval-
based method because it is more practical in ap-
plications. Selecting a response from a set of can-
didates is an important and challenging task for
the retrieval-based method. Many of the previous
approaches are based on Deep Neural Network
(DNN) to select the response for single-turn con-
versation (Lu and Li, 2013). We study multi-turn
response selection in this paper, which is rather
difficult because it not only requires identification
of the important information such as keywords,
phrases, and sentences, but also the latent depen-
dencies between the context, query, and candidate
response.

Previous works (Zhou et al., 2018; Wu et al.,
2017) show that representing the context at dif-
ferent granularities is vital for multi-turn response
selection. However, it is not enough for multi-turn
response selection. Figure 1 illustrates the prob-
lem with a real example in Ubuntu Corpus. As
demonstrated, the following two points should be
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modeled to solve the problem: (1) the importance
of current query should be highlighted, because it
has great impact on the importance of different ut-
terances in the context. For example, the query in
the case is about the format of the file (‘deb file’),
which leads the last two utterances (including the
query) are more important than the previous ones.
If we only match the response with the context, the
model may be misled by the high frequency word
‘install’ and choose the false candidate. (2) the
information of different granularities is important,
which includes not only the word, utterance, and
context level, but also the char level. For exam-
ple, the different tenses (‘install,’ ‘installed’) and
the misspelling word (‘angry’) appear constantly
in the conversation. Similar to the role of ques-
tion for the task of machine reading comprehen-
sion (Seo et al., 2016; Cui et al., 2017; Chen et al.,
2019), the query in this task is also the key to se-
lecting the response. In this paper, we propose
a model named TripleNet to excavate the role of
query. The main contributions of our work are
listed as follows.

• we use a novel triple attention mechanism to
model the relationships within 〈C,Q,R〉 in-
stead of 〈C,R〉;

• we propose a hierarchical representation
module to fully model the conversation from
char to context level;

• The experimental results on Ubuntu and
Douban corpus show that TripleNet signifi-
cantly outperform the state-of-the-art result.

2 Related Works

Earlier works on building the conversation sys-
tems are generally based on rules or templates
(Walker et al., 2001), which are designed for
the specific domain and need much human ef-
fort to collect the rules and domain knowledge.
As the portability and coverage of such systems
are far from satisfaction, people pay more atten-
tion to the data-driven approaches for the open-
domain conversation system (Ritter et al., 2011;
Higashinaka et al., 2014). The main challenge for
open-domain conversation is to produce a corre-
sponding response based on the current context.
As mentioned previously, the retrieval-based and
generation-based methods are the mainstream ap-
proaches for conversational response generation.

In this paper, we focus on the task response selec-
tion which belongs to retrieval-based approach.

The early studies of response selection gener-
ally focus on the single-turn conversation, which
use only the current query to select the response
(Lu and Li, 2013; Ji et al., 2014; Wang et al.,
2015). Since it is hard to get the topic and inten-
tion of the conversation by single-turn, researchers
turn their attention to multi-turn conversation and
model the context instead of the current query to
predict the response. First, Lowe et al. (2015) re-
leased the Ubuntu Dialogue dataset and proposed
a neural model which matches the context and
response with corresponding representations via
RNNs and LSTMs. Kadlec et al. (2015) eval-
uate the performances of various models on the
dataset, such as LSTMs, Bi-LSTMs, and CNNs.
Later, Yan et al. (2016) concatenated utterances
with the reformulated query and various features
in a deep neural network. Baudiš et al. (2016) re-
garded the task as sentence pair scoring and imple-
mented an RNN-CNN neural network model with
attention. Zhou et al. (2016) proposed a multi-
view model with CNN and RNN, modeling the
context in both word and utterance view. Further,
Xu et al. (2017) proposed a deep neural network
to incorporate background knowledge for conver-
sation by LSTM with a specially designed recall
gate. Wu et al. (2017) proposed matching the con-
text and response by their word and phrase rep-
resentations, which had significant improvement
from previous work. Zhang et al. (2018) intro-
duced a self-matching attention to route the vital
information in each utterance, and used RNN to
fuse the matching result. Zhou et al. (2018) used
self-attention and cross-attention to construct the
representations at different granularities, achiev-
ing a state-of-the-art result.

Our model is different from the previous meth-
ods: first we model the task with the triple
〈C,Q,R〉 instead of 〈C,R〉 in the early works, and
use a novel triple attention matching mechanism
to model the relationships within the triple. Then
we represent the context from low (character) to
high (context) level, which constructs the repre-
sentations for the context more comprehensively.

3 Model

In this section, we will give a detailed introduction
of the proposed model TripleNet. We first formal-

738



Response

Word 
Level

Utterance 
Level

Context
Level

Char Input

Self-
attention

Utterance1 Utterancen

Context

g(C,Q,R)
Hier-LSTM

…

…

R

Query

 Word embedding

Char embedding

Char 
Level

CNN CNN CNN

…Word Input

P Q

Dot

Dot

Sub & BN

Softmax

Q’

Bi-directional Attention Function (BAF)

Sub & BN

Softmax
Transpose

Dot

P’

C Q

RBAF BAF

BAF

C’

R’

Q’

Triple Attention

Input

Input Input

C Q

C Q

C Q

C Q

R

R

R

C Q

RBAF BAF

BAF

C’

R’

Q’

C Q

RBAF BAF

BAF

C’

R’

Q’

C Q

RBAF BAF

BAF

C’

R’

Q’

C Q

RBAF BAF

BAF

C’

R’

Q’

Output

Match

C1

C2

R2 R1

Q2

Q1

Figure 2: The neural architecture of the model TripleNet. (best viewed in color)

ize the problem of the response selection for multi-
turn conversation. Then we briefly introduce the
overall architecture of the proposed model. Fi-
nally, the details of each part of our model will
be illustrated.

3.1 Task Definition
For the response selection, we define the task as
given the context C, current query Q and candi-
date response R, which is different from almost
all the previous works (Zhou et al., 2018; Wu
et al., 2017). We aim to build a model function
g(C,Q,R) to predict the possibility of the candi-
date response to be the correct response.

score = g(C,Q,R) (1)

The information in context is composed of four
levels: context, utterances, words and char-
acters, which can be formulated as C =
(u1, u2, ..., ui, ..., un), where ui represents the ith
utterance, and n is the maximum utterance num-
ber. The last utterance in the context is query
Q = Un; we still use query as the end of con-
text to maintain the integrity of the information in

context. Each utterance can be formulated as ui =
(w1, ..., wj , .., wm), where wj is the jth word in
the utterance and m is the maximum word num-
ber in the utterance. Each word can be represented
by multiply characters wj = (ch1, ..., chk, .., chl),
where chk is the kth char and l is the length of the
word in char-level. The latter two levels are simi-
lar in the query and response.

3.2 Model Overview

The overall architecture of the model TripleNet is
displayed in Figure 2. The model has a bottom-
up architecture that organizes the calculation from
char to context level. In each level, we first uses
the hierarchical representation module to construct
the representations of context, response and query.
Then the triple attention mechanism is applied to
update the representations. At last, the model
matches them while focused on the response and
fuses the result for prediction.

In the hierarchical representation module, we
represent the conversation in four perspectives in-
cluding char, word, utterance, and context. In the
char-level, a convolutional neural network (CNN)
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is applied to the embedding matrix of each word
and produces the embedding of the word by con-
volution and maxpooling operations as the char-
level representation. In word-level, we use a
shared LSTM layer to obtain the word-level em-
bedding for each word. After that, we use self-
attention to encode the representation of each ut-
terance into a vector which is the utterance-level
representation. At last, the utterance-level rep-
resentation of each utterance is fed into another
LSTM layer to further model the information
among different utterances, forming the context-
level representation.

The structure of the triple attention mechanism
can be seen in the right part of Figure 2. We first
design a bi-directional attention function (BAF) to
calculate the attention between two sequences and
output their new representations. To model the re-
lationship of the triple 〈C,Q,R〉, we apply BAF to
each pair within the triple and get two new repre-
sentations for each one element, and then we add
them together as its final attention-based represen-
tation. In the triple attention mechanism, we can
update the representation of each one based on the
attention result with the other two simultaneously,
and each element participates in the whole calcu-
lation in the same way.

3.3 Hierarchical Representation
Char-level Representation. At first, we embed
the characters in each word into fixed size vec-
tors and use a CNN followed by max-pooling to
get character-derived embeddings for each word,
which can be formulated by

chj,t = tanh(W j
1 ∗ xt:t+sj−1 + bj1) (2)

chj =MaxPoolingLt=0[chj,t] (3)

where W j
1 , bj1 are parameters, xt:t+sj−1 refers

to the concatenation of the embedding of
(xt,...,xt+sj−1), sj is the window size of jth fil-
ter, and the ch is the representation of the word in
char-level.
Word-level Representation. Furthermore, we
embed word x by pre-trained word vectors, and
we also introduce a word matching (MF) feature
to the embedding to make the model more sensi-
tive to concurrent words. If the word appears in
the response and context or query simultaneously,
we set the feature to 1, otherwise to 0.

e(x) = [We · x; ch(x);MF ] (4)

where e(x) to denotes the embedding representa-
tion, We is the pre-trained word embedding, and
ch(x) is the character embedding function. We
use a shared bi-directional LSTM to get contex-
tual word representations in each utterance, query,
and the response. The representation of each word
is formed by concatenating the forward and back-
ward LSTM hidden output.

←−−
h(x) =

←−−−−
LSTM(e(x)) (5)

−−→
h(x) =

−−−−→
LSTM(e(x)) (6)

h(x) = [
←−−
h(x);

−−→
h(x)] (7)

where h(x) is the representation of the word. We
denote the word-level representation of the context
as hu ∈ Rm∗dw and the response as hr ∈ Rm∗dw ,
where dw is the dimension of Bi-LSTMs. Un-
til now, we have constructed the representations
of context, query, and response in char and word
level, and we only represent the latter two in these
two levels because they don’t have such rich con-
textual information as the context.
Utterance-level Representation. Given the
kth utterance uk = [hiuk

]mi=1, we construct
the utterance-level representation by self-attention
(Lin et al., 2017):

αk
i = softmax(W3tanh(W2huk

(i)T )) (8)

uk =
∑m

i=1
hiuk

αk
i (9)

where W2 ∈ Rd∗dw , W3 ∈ Rd are trainable
weights, d is a hyperparameter, uk is the utterance-
level representation, and αk

i is the attention weight
for the ith word in the kth utterance, which signi-
fies the importance of the word in the utterance.
Context-level Representation. To further model
the continuity and contextual information among
the utterances, we fed the utterance-level repre-
sentations into another bi-directional LSTM layer
to obtain the representation for each utterance in
context perspective.

ck = Bi-LSTM([uk]
n
k=1) (10)

where ck ∈ Rdc is the context-level representation
for the kth utterance in the context and dc is the
output size of the Bi-LSTM.

3.4 Triple Attention
In this part, we update the representations of
context, query, and response in each level
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by triple attention, the motivation of which
is to model the latent relationships within
〈context, query, response〉 .

Given the triple 〈C,Q,R〉 , we fed each of its
pairs into bi-directional attention function (BAF).

C1, Q1 = BAF (C,Q) (11)

C2, R1 = BAF (C,Q) (12)

Q2, R2 = BAF (C,R) (13)

C ′ = BN(C1 + C2) (14)

Q′ = BN(Q1 +Q2) (15)

R′ = BN(R1 +R2) (16)

where BN denotes the batch normalization layer
(Ioffe and Szegedy, 2015) which is conducive to
preventing vanishing or exploding of gradients.
BAF produces the new representations for two
sequences (P, Q) by the attention from two direc-
tions, which is inspired by Seo et al. (2016). We
can formulate it by

Mpq = P T tanh(W3Q) (17)

Attpq = softmax(Mpq) (18)

Attqp = softmax(MT
pq) (19)

P ′ = P − Q̃; Q̃ = QAttpq; (20)

Q′ = Q− P̃ ; P̃ = PAttqp; (21)

where Attpq, Attqp are the attention between P
and Q in two directions, P ′, Q′ are the new repre-
sentations the two sequences (P, Q), and we apply
a batch normalization layer upon them too.

We find that the triple attention has some inter-
esting features: (1) triple, the representation for
each element in the triple 〈C,Q,R〉 is updated
based on the attention to the other two concur-
rently; (2) symmetrical, which means each ele-
ment in the triple plays the same role in the struc-
ture because their contents are similar in the whole
conversation; (3) unchanged dimension, all the
outputs of triple attention has the same dimensions
as the inputs, so we can stack multiple layers as
needed.

3.5 Triple Matching and Prediction

Triple Matching. We match the triple 〈C,Q,R〉
in each level with the cosine distance using new
representations produced by triple attention. This
process focuses on the response because it is our
target. For example, in the char-level, we match

the triple by

M̃1
rc(i, k, j) = cosine(ch′r(i), ch

′
uk
(j)) (22)

M1
rc(i, k) = max

0<j<m
M̃1(i, j, k) (23)

M1
rq(i, j) = cosine(ch′r(i), ch

′
q(j)) (24)

M1 = [M1
rc(i, k);M

1
rq(i, j)] (25)

where ch′ is the representation updated by triple
attention, M1 ∈ Rm∗(n+m) is the char-level
matching result, the word-level matches the triple
in the same way, and the utterance and the con-
text level match the triple without the maxpooling
operation. We use M2, M3, M4 as the matching
results in the word, utterance and context levels.
Fusion. After obtaining the four-level matching
matrix, we use hierarchical RNN to get highly ab-
stract features. Firstly, we concatenate the four
matrices to form a 3D cube M ∈ Rm∗(n+m)∗4 and
we use m as one of the matrix in M , which de-
notes the matching result for one word in response
in four levels.

M = [M1;M2;M3;M4] (26)

m̃ =MaxPoolingn+m
i=0 [Bi-LSTM(mi)] (27)

v =MaxPoolingmj=0[Bi-LSTM(m̃j)] (28)

Where mi and m̃j are the ith, jth row in the ma-
trix m and m̃. We merge the results from different
time steps in the outputs of LSTM by max-pooling
operation. Until now, we encode the matching re-
sult into a single feature vector v.
Final Prediction. For the final prediction, we fed
the vector V into a full-connected layer with sig-
moid output activation.

g(C,Q,R) = sigmoid(W4 · v + b4) (29)

where W4, b4 are trainable weights. Our purpose
is to predict the matching score between the con-
text, query and candidate response, which can be
seen as a binary classification task. To train our
model, we minimize the cross entropy loss be-
tween the prediction and ground truth.

4 Experiments

4.1 Dataset
We first evaluate our model on Ubuntu Dialogue
Corpus (Lowe et al., 2015) because it is the largest
public multi-turn dialogue corpus which consists
of about one million conversations in the specific
domain. To reduce the number of unknown words,
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Ubuntu Dialogue Corpus Douban Conversation Corpus
R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

DualEncoder 90.1 63.8 78.4 94.9 48.5 52.7 32.0 18.7 34.3 72.0
MV-LSTM 90.6 65.3 80.4 94.6 49.8 53.8 34.8 20.2 35.1 71.6
Match-LSTM 90.4 65.3 80.4 94.6 49.8 53.8 34.8 20.2 34.8 71.0
DL2R 89.9 62.6 78.3 94.4 48.8 52.7 33.0 19.3 34.2 70.5
Multi-View 90.8 66.2 80.1 95.1 50.5 54.3 34.2 20.2 35.0 72.9
SMN 92.6 72.6 84.7 96.1 52.9 56.9 39.7 23.3 39.6 72.4

RNN-CNN 91.1 67.2 80.9 95.6 - - - - - -
DUA - 75.2 86.8 96.2 55.1 59.9 42.1 24.3 42.1 78.0
DAM 93.8 76.7 87.4 96.9 55.0 60.1 42.7 25.4 41.0 75.7

TripleNet 94.3 79.0 88.5 97.0 56.4 61.8 44.7 26.8 42.6 77.8
TripleNetelmo 95.1 80.5 89.7 97.6 60.9 65.0 47.0 27.8 48.7 81.4
TripleNetensemble 95.6 82.1 90.9 98.0 63.2 67.8 51.5 31.3 49.4 83.2

Table 1: Experimental results on two public dialogue datasets. The table is segmented into three sections: Non-
Attention models, Attention-based models and our models. The italics denotes the previous best results, and the
scores in bold express the new state-of-the-art result of single model without any pre-training layer.

we use the shared copy of the Ubuntu corpus
by Xu et al. (2017) which replaces the numbers,
paths, and URLs by specific symbols.3 Further-
more, to verify the generalization of our model,
we also carry out experiments on Douban Con-
versation Corpus (Wu et al., 2017), which shares
similar format with the Ubuntu corpus but is open-
domain and in the Chinese language.

For the Ubuntu corpus, we use the recall at
position k in n candidate responses (Rn@k) as
evaluation metrics, and we use MAP (Mean Av-
erage Precision), MRR (Mean Reciprocal Rank),
and Precision-at-one as the additional metrics for
Douban corpus, following the previous work (Wu
et al., 2017).

4.2 Experiment Setup

We implement our model by Keras (Chollet et al.,
2015) with TensorFlow backend. In the Embed-
ding Layer, the word embeddings are pre-trained
using the training set via GloVe (Pennington et al.,
2014), the weights of which are trainable. For char
embedding, we set the kernel shape as 3 and filter
number as 200 in the CNN layer. For all the Bi-
directional LSTM layers, we set their hidden size
to 200. We use Adamax (Kingma and Ba, 2014)
for weight updating with an initial learning rate of
0.002. For ensemble models, we generate 6 mod-
els for each corpus using different random seeds
and merge the result by voting.

For better comparison with the baseline mod-
els, the main super parameters in TripleNet, such

3https://www.dropbox.com/s/
2fdn26rj6h9bpvl/ubuntudata.zip

as the embedding size, max length of each turn,
and the vocabularies, are the same as those of the
baseline models. The maximum number of con-
versation turns, which changes with the models, is
12 in our model, 9 in DAM (Wu et al., 2017), and
10 in SMN (Wu et al., 2017).

4.3 Baseline Models

We basically divided baseline models into two cat-
egories for comparisons.
Non-Attention Models. The majority of the
previous works on this task are designed with-
out attention mechanisms, including the Sequen-
tial Matching Network (SMN) (Wu et al., 2017),
Multi-View model (Zhou et al., 2016), Deep
Learning to Respond (DL2R) (Yan et al., 2016),
Match-LSTM (Wang and Jiang, 2016), MV-
LSTM (Wan et al., 2016), and DualEncoder (Lowe
et al., 2015).
Attention-based Models. The attention-based
models typically match the context and the candi-
date response based on the attention among them,
including DAM (Zhou et al., 2018), DUA (Zhang
et al., 2018), and RNN-CNN (Baudiš et al., 2016).

4.4 Overall Results

The overall results on two datasets are depicted
in Table 1. Our results are obviously bet-
ter on the two datasets compared with recently
attention-based model DAM, which exceeds 2.3%
inR10@1 of Ubuntu and 2.6% in P@1 of Douban.
Furthermore, our score is significantly exceeding
in almost all metrics except the R10@5 in Douban
when compared with DUA, which may be be-
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cause the metric is not very stable as the test set
in Douban is very small (1000).

To further improve the performance, we utilize
pre-trained ELMo (Peters et al., 2018) and fine-
tune it on the training set in the Ubuntu condi-
tion while we train ELMo from scratch using the
Douban training set. As the baseline of Douban
corpus is relatively lower, we observe much big-
ger improvements in the corpus using ELMo. The
model ensemble has further improvements based
on the single model with ELMo; the score of
R10@1 in Ubuntu is close to the average per-
formance of human experts at 83.8 (Lowe et al.,
2016).

Compared to non-attention models such as the
SMN and Multi-view, which match the context
and response at two levels, TripleNet shows sub-
stantial improvements. On R10@1 for Ubuntu
corpus, there is a 6.3% absolute improvement
from SMN and 12.8% from Multi-view, showing
the effectiveness of triple attention.

4.5 Model Ablation

To better demonstrate the effectiveness of
TripleNet, we conduct the ablations on the model
under the Ubuntu corpus for its larger data size.

We first remove the triple attention and match-
ing parts (-TAM); the result shows a marked de-
cline (2.4% in R10@1), which is in the second
part of Table 2. The performance of the model
is similar to the baseline model DAM. This in-
dicates that our four-level hierarchical represen-
tation may play a similar role to the five stacks
Transformer in DAM. We then remove the triple
attention part, which means we match the pairs
〈C,R〉 and 〈Q,R〉 with their original represen-
tation in each level; the score of R10@1 drops
1.4%, which shows the effect of triple attention.
We also have tried to remove all the parts related
to the query (-Query). That means the attention
and matching parts are only calculated within the
pair 〈C,R〉. It is worth mentioning that the infor-
mation of the query is still contained at the end of
the context. The performance also has a marked
drop (1.6% inR10@1), which shows that it is nec-
essary to model the query separately. To find out
which subsection in those parts is more important,
we remove each one of them.
Triple attention matching ablation. As we can
see in the third part of Table 2, when attention be-
tween context and response is removed (-ACR),

R2@1 R10@1 R10@2 R10@5

TripleNet 94.3 79.0 88.5 97.0

-TAM 93.5 76.6 86.8 96.6
-Atri 93.8 77.6 87.6 96.9
-Query 93.8 77.4 87.3 96.6

-ACR 94.1 78.4 87.9 97.0
-AQR 94.1 78.5 88.1 97.0
-ACQ 94.3 78.7 88.3 97.0
-MCR 93.7 76.9 87.0 96.7
-MQR 94.4 78.5 88.1 97.1

-char 94.1 78.3 88.0 97.1
-word 94.3 78.5 88.2 97.0
-utterance 94.1 78.6 88.1 97.1
-context 94.0 78.4 88.0 97.0

Table 2: Ablation studies on Ubuntu Dialogue Corpus.
The letter ‘A’ stands for the subsection in triple atten-
tion, and ‘M’ the is triple matching part.

the largest decrease (0.6% in R10@1) appears,
which indicates that the relationship between con-
text and response is most important in the triple.
The attentions in the other two pairs 〈C,Q〉 and
〈Q,R〉 all lead to a slight performance drop (0.3
and 0.5 in R10@1), which may be because they
overlap with each other for updating the represen-
tation of the triple.

When we remove the matching between con-
text and response, we find that the performance
of the model has a marked drop (2.1 in R10@1),
which shows that the relationship within 〈C,R〉 is
the base for selecting the response. The query and
response matching part also leads to a significant
decline. This shows that we should pay more at-
tention to query within the whole context.
Hierarchical representation ablation. To find
out the calculation of which level is most impor-
tant, we also tried to remove each level calcu-
lation from the hierarchical representation mod-
ule, which can be seen in the fourth part of Ta-
ble 2. To our surprise, when we remove char (-
char) and context level calculation (-context), we
observe that the reduction (0.5 in R10@1) is more
significant than the other two, indicating that we
should pay more attention to the lowest and high-
est level information. Also by removing the other
two levels, there is also a significant reduction
from TripleNet, which means each level of the
three is indispensable for our TripleNet .

From the experiments in this part, we find that
each subsection of the hierarchical representation
module only leads to a slight performance drop.
Maybe it’s because the representation from each
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Figure 3: The attention visualization among the query, context, and response in word-level.

level represent the conversation from a unique
and indispensable perspective, and the information
conveyed by different representations may have
some overlap.

5 Analysis and Discussion

5.1 Visualization

By decoding our model for the case in Figure 1,
we find that our model TripleNet can choose the
true response. To analyze in detail how triple at-
tention works, we get the attention in word-level as
the example and visualize it in Figure 3. As there
are so many words in the context, we only use the
second utterance in the upper part of Figure 1 for
its relatively rich semantics.

In the query-context attention, the query mainly
pays attention to the keyword ‘package.’ This is
helpful to get the topic of the conversation. While
the attention of context focuses on the word ‘a’
which is near the key phrase ‘deb file,’ which may
be because the representation of the word catches
some information from the words nearby by Bi-
LSTM. In the query-response attention, the result
shows that the attention of the query mainly fo-
cuses on the word ‘format,’ which is the most im-
portant word in the response. But we can also
find that the response does not catch the impor-
tant words in the query. In the response-context
attention, the response pays more attention to the
word ‘binary,’ which is another important word in
the context.

From the three maps, we find that each attention
can catch some important information but miss
some useful information too. If we join the infor-
mation in query-context and response-context at-
tention, we can catch the most import information
in the context. Furthermore, the query-response
attention can help us catch the most important
word in the response. So it is natural for TripleNet

Figure 4: The decrease of the performance when the
utterancei is removed in Ubuntu Corpus.

to select the right response because the model can
integrate the three attentions together.

5.2 Discussion

In this section, we will discuss the importance of
different utterances in the context. To find out the
importance of different utterances in the context,
we conduct an experiment by removing each one
of them with the model (-Query) in the ablation
experiment part because the model deals all the
utterances include the query in the same way. For
each experiment in this part, we remove the ith
(0 < i < 13 and Q = U12) utterance in the con-
text both in training and evaluation processes and
report the decrease of performance in Figure 4. We
find that the removing of the query leads the most
significant decline (more than 6% in R10@1), that
indicates the query is much more important than
any other utterances. Furthermore, the decrease is
stable before the 9th utterances and raises rapidly
in the last 3 utterances. We can deduce that the last
three utterances are more important than the other
ones.

From the whole result, we can conclude that it’s
better to model the query separately than deal all
of the utterances in the same way for their signif-
icantly different importance; we also find that we
should pay more attention to the utterances near
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the query because they are more important.

6 Conclusion

In this paper, we propose a model TripleNet for
multi-turn response selection. We model the con-
text from low (character) to high (context) level,
update the representation by triple attention within
〈C,Q,R〉, match the triple focused on response,
and fuse the matching results with hierarchical
LSTM for prediction. Experimental results show
that the proposed model achieves state-of-the-art
results on both Ubuntu and Douban corpus, which
ranges from a specific domain to open domain,
and English to Chinese language, demonstrating
the effectiveness and generalization of our model.
In the future, we will apply the proposed triple at-
tention mechanism to other NLP tasks to further
testify its extensibility.
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Abstract
Machine reading comprehension (MRC) has
attracted significant amounts of research atten-
tion recently, due to an increase of challenging
reading comprehension datasets. In this pa-
per, we aim to improve a MRC model’s abil-
ity to determine whether a question has an an-
swer in a given context (e.g. the recently pro-
posed SQuAD 2.0 task). Our solution is a re-
lation module that is adaptable to any MRC
model. The relation module consists of both
semantic extraction and relational information.
We first extract high level semantics as objects
from both question and context with multi-
head self-attentive pooling. These semantic
objects are then passed to a relation network,
which generates relationship scores for each
object pair in a sentence. These scores are
used to determine whether a question is non-
answerable. We test the relation module on
the SQuAD 2.0 dataset using both the BiDAF
and BERT models as baseline readers. We ob-
tain 1.8% gain of F1 accuracy on top of the
BiDAF reader, and 1.0% on top of the BERT
base model. These results show the effective-
ness of our relation module on MRC.

1 Introduction

Ever since the release of many challenging large
scale datasets for machine reading comprehension
(MRC) (Rajpurkar et al., 2016; Joshi et al., 2017;
Trischler et al., 2016; Yang et al., 2018; Reddy
et al., 2018; Jia and Liang, 2017), there have been
correspondingly many models for these datasets
(Yu et al., 2018; Seo et al., 2017; Liu et al., 2018b;
Hu et al., 2017; Xiong et al., 2017; Wang et al.,
2018; Liu et al., 2018c; Tay et al., 2018). Know-
ing what you don’t know (Rajpurkar et al., 2018) is
important in real applications of reading compre-
hension. Unanswerable questions are common-
place in the real world, and SQuAD 2.0 was re-
leased specifically to target this problem (see Fig-
ure 1 for an example of non-answerable ques-
tions).

Example 1
Context: Each year, the southern California area has
about 10,000 earthquakes. Nearly all of them are so small
that they are not felt. Only several hundred are greater
than magnitude 3.0, and only about 1520 are greater than
magnitude 4.0. The magnitude 6.7 1994 Northridge
earthquake was particularly destructive, causing a sub-
stantial number of deaths, injuries, and structural col-
lapses. It caused the most property damage of any earth-
quake in U.S. history, estimated at over $20 billion.
Question: What earthquake caused $20 million in dam-
age?
Answer: None.

Figure 1: An example of non-answerable question in
SQuAD 2.0. Highlighted words are the output from
the BERT base model. The true answer is “None”.

One problem that most of the early MRC read-
ers have in common is the inability to predict
non-answerable questions. Readers on the popular
SQuAD dataset have to be modified in order to ac-
commodate a non-answerable possibility. Current
methods on SQuAD 2.0 generally attempt to learn
a single fully connected layer (Clark and Gardner,
2018; Liu et al., 2018a; Devlin et al., 2018) in or-
der to determine whether a question/context pair is
answerable. This leaves out relational information
that may be useful for determining answerabil-
ity. We believe that relationships between different
high-level semantics in the context are helpful to
make better answerable or unanswerable decision.
For example, “Northridge earthquake” is mistak-
enly taken as the answer to the question about
what earthquake caused $20 million in damage.
Because “$20 billon” is positioned far away from
“Northridge earthquake”, it is hard for a model
to link these two concepts together and recognize
the mismatch of “$20 million” in the question and
“$20 billion” in the context.

Motivated by exploiting high level semantic re-
lationships in the context, our first step is to ex-
tract meaningful high-level semantics from ques-
tion/context. Multi-head self-attentive pooling
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(Lin et al., 2017) has shown to be able to ex-
tract different views of a sentence with multiple
heads. Each head from the multi-head self atten-
tive pooling has different weights on the context
with learned parameters. This allows each head
to act as a filter in order to emphasize part of the
context. By summing up the weighted context, we
obtain a vector representing an instance of a high-
level semantic, which we can call it an “object”.
With multiple heads, we generate different seman-
tic objects, which are then fed in to a relation net-
work.

Relation networks (Santoro et al., 2017) are
specifically designed to model relationships be-
tween pairs of objects. In the case of reading
comprehension, an object would ideally be phrase
level semantics within a sentence. Relation net-
works are able to accomplish modeling these re-
lationships by constraining the network to learn a
score for each pair of these objects. After learn-
ing all of the pairwise scores, the relation network
then summarizes all of the relations to a single
vector. By taking a weighted sum of all of the re-
lation scores that the sentence has, we generate a
non-answerable score that is trained jointly with
answer span scores from any MRC model to de-
termine non-answerability.

In addition, we add in plausible answers from
unanswerable examples to help train the relation
module. These plausible answers help the base
model learn a better span prediction and are also
used to help guide our object extractor to extract
relevant semantics. We train a separate layer for
start-end probabilities based on the plausible an-
swers. We then augment the context vector with
hidden states from this layer. This allows the
multi-head self-attentive pooling to focus on ob-
jects related to the proposed answer span, and dif-
ferentiate from other objects that are not as rele-
vant in the context.

In summary we propose a new relation module
dedicated to learning relationships between high-
level semantics and deciding whether a question is
answerable. Our contributions are four-fold:

1. Introduce the concept of using multi-head
self-attentive pooling outputs as high level se-
mantic objects.

2. Exploit relation networks to model the rela-
tionships between different objects in a con-
text. We then summarize these relationships
to get a final decision.

3. Introduce a separate feed-forward layer
trained on plausible answers so that we can
augment the context vector passed into the
object extractor. This results in the object ex-
tractor extracting phrases more relevant to the
proposed answer span.

4. Combining all of the above into a flexible re-
lation module that can be added to the end
of a question answering model to boost non-
answerable prediction.

To our knowledge, this is the first case of utiliz-
ing an object extractor to extract high level seman-
tics, and a relation networks to encode relation-
ships between these semantics in reading compre-
hension. Our results show improvement on top of
the baseline BiDAF model and the state-of-the-art
reader based on BERT, on the SQuAD 2.0 task.

2 Related Work

Relation Networks (RN) were first proposed by
(Santoro et al., 2017) in order to help neural mod-
els to reason over the relationships between two
objects. Relation networks learn relationships be-
tween objects by learning a pairwise score for each
object pair. Relation networks have been applied
to CLEVR (Johnson et al., 2017) as well as bAbI
(Weston et al., 2015). In the CLEVR dataset, the
object inputs to the relation network are visual ob-
jects in an image, extracted by a CNN, and in bAbI
the object inputs are sentence encodings. In both
tasks, the relation network is then used to compute
a relationship score over these objects. Relation
Networks were further applied to general reason-
ing by training the model on images (You et al.,
2018).

MAC (Memory, Attention and Composition)
networks (Hudson and Manning, 2018) are differ-
ent models that have also been shown to learn re-
lations from the CLEVR dataset. MAC networks
operate with read and write cells. Each cell would
compute a relation score between a knowledge
base and question and write it into memory. Mul-
tiple read and write cells are strung together se-
quentially in order to model long chains of multi-
hop reasoning. Although MAC networks do not
explicitly reason between pairwise objects as re-
lation networks do, MAC networks are an inter-
esting way of generating multi-hop reasoning be-
tween objects within a context.
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Figure 2: Relation Module on BERT. S and E are hidden states trained by plausible answers. We then concatenate
S and E with the contextual representation to feed into the object extractor. After we obtain the extracted objects,
we then feed into a Relation Network and pass it down for NA predictions.

Another similar line of work investigated pre-
training relationship embeddings across word
pairs on large unlabelled corpus (Jameel et al.,
2018; Joshi et al., 2018). These pre-trained pair-
wise relational embeddings were added to the at-
tention layers of BiDAF, where higher level ab-
stract reasoning occurs. The paper showed an im-
pressive gain of 2.7% on the SQuAD 2.0 develop-
ment set on top of their version of BiDAF.

Many MRC models have been adapted to work
on SQuAD 2.0 recently (Hu et al., 2019; Liu et al.,
2018a; Sun et al., 2018; Devlin et al., 2018). (Hu
et al., 2019) added a separately trained answer ver-
ifier for no-answer detection with their Mnemonic
Reader. The answer sentence that is proposed by
the reader and the question are passed to three
combinations of differently configured verifiers
for fine-grained local entailment recognition. (Liu
et al., 2018a) just added one layer as the unanswer-
able binary classifier to their SAN reader. (Sun
et al., 2018) proposed the U-net with a univer-
sal node that encodes the fused information from
both the question and passage. The summary U-
node, question vector and two context vectors are
passed to predict whether the question is answer-
able. Plausible answers were used for no-answer
pointer prediction, while in our approach, plausi-
ble answers were used to augment context vector
for object extraction that later help the no-answer
prediction.

Pretraining embeddings on large unlabelled cor-
pus has been shown to improve many downstream
tasks (Peters et al., 2018; Howard and Ruder,
2018; Alec et al., 2018). The recently released

BERT (Devlin et al., 2018) greatly increased the
F1 scores on the SQuAD 2.0 leaderboard. BERT
consists of stacked Transformers (Vaswani et al.,
2017), that are pre-trained on vast amounts of un-
labeled data with a masked language model. The
masked language model helps finetuning on down-
stream tasks, such as SQuAD 2.0. BERT models
contains a special CLS token which is helpful for
the SQuAD 2.0 task. This CLS token is trained
to predict if a pair of sentences follow each other
during the pre-training, which helps encode entail-
ment information between the sentence pair. Due
to a strong masked language model to help predict
answers and a strong CLS token to encode entail-
ment, BERT models are the current state-of-the art
for SQuAD 2.0.

3 Relation Module

Our relation module is flexible, and can be placed
on top of any MRC model. We now describe the
relation module in detail.

3.1 Augmenting Inputs

Figure 2 shows our relation module on top of the
base reader BERT. In addition to the original start-
end prediction layers trained from true answers in
the base reader, we include a separate start-end
prediction layer, with separate parameters, trained
specifically on plausible and true answers avail-
able in SQuAD 2.0. The context output C from
BERT is projected into two hidden state layers S
and E, where C, S and E ∈ RL×h, L is the
context length and h is the hidden size. The S
and E layers are then projected down to a hidden
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dimension of 1, and trained with Cross-Entropy
Loss against the plausible and true answer starts
and ends. The hidden states S and E of this layer
are concatenated with the last context layer output
C and projected back to the original dimension to
obtain the augmented context vector X , which is
fused with start-end span information.

S = tanh(CW1 + b1) (1)

E = tanh(CW2 + b2) (2)

X = [C;S;E]W (3)

where [;;] is concatenation of multiple tensors and
X ∈ RL×h. This process is shown in Figure 2,
where S and E are hidden states trained on plau-
sible and true answer spans. This tensor X and
the last question layer output Q are passed to the
object extractor layer.

3.2 Object Extractor
The augmented context tensor X (and separately,
question tensorQ) is passed through the object ex-
tractor to generate object representations from the
tensor. We pass the inputs through a multi-head
self-attentive pooling layer. This object extractor
can be thought of as a set filters extracting out ar-
eas of interest within a sentence. We multiply the
input tensorX with a multi-head self attention ma-
trix A which is defined as

A = Softmax(W4σ(W3X
T )) (4)

O = AX (5)

where W3 ∈ Rh×h, and W4 ∈ Rn×h; σ is an ac-
tivation function, such as tanh; n is the number
of heads, and h is the hidden dimension. The out-
put O ∈ Rn×h contains the n objects with hidden
dimension h that are passed to the next layer.

3.2.1 Object Extraction Regularization
In order to help encourage the multiple heads to
extract different meaningful semantics in the text,
a regularization loss (Xia et al., 2018) is intro-
duced to encourage each head to attend to slightly
different sections of the context. Overlapping ob-
jects centered on the answer span are expected,
due to information fused from S and E, but we do
not want the entire weight distribution of the head
to be solely focused on the answer span. As we
show in later figures, many heads heavily weight
the answer span, but also weight information rel-
evant to the answer span needed to make a bet-
ter non-answerable prediction. Our regularization

Figure 3: Illustration of a Relation Network. The gθ is
a MLP to score relationships between pairs

term also helps prevent the multi-headed attentive
pooling from learning a noisy distribution over all
of the context. This regularization loss is defined
as

Laux = α||AAT − I||2 (6)

where A is the weight matrix for the attention
heads and I is the identity matrix. α is set to be
0.0005 in our experiments.

3.3 Relation Networks
Extracted objects are subsequently passed to a re-
lation network. We use two layer MLP gθ (in Fig-
ure 3) as a scoring function to compute the simi-
larity between objects. In the question-answering
task, the context contains the contextual informa-
tion necessary to determine whether a question is
answerable. Phrases and ideas from various parts
of the context need to come together in order to
fully understand whether or not a question is an-
swerable. Therefore our relation module takes all
pairs of context objects to score, and use the ques-
tion objects to guide the scoring function. We use
2 question heads q0, q1, so our scoring function is:

ri =
n∑

j=0

ωi,j ∗ gθ(oi, oj , q0, q1) (7)

z =
n∑

i=0

γi ∗ fφ(ri) (8)

where the outputs ri is the weighted sum of the
relation values for object oi from O, and z is a
summarized relation vector. The weights Ωi =
[ωi,0, ..., ωi,n] and Γ = [γ0, ..., γn] are computed
by projecting down the relations scores into a hid-
den size of 1, and applying softmax.

Ωi = Softmax(gθ(oi, :, q0, q1)wg) (9)

Γ = Softmax(fφ(:)wf ) (10)
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gθ and fφ are two layer MLP with activation func-
tion tanh to compute and aggregate relational
scores. Figure 3 shows the process of a single rela-
tion network, where two context objects and ques-
tion objects are passed in to gθ to obtain the output
z.

We project the weighted sum of fφ with a lin-
ear layer to a single value as a representation of
the non-answerable score. This score is combined
with the start/end logits from the base reader, and
trained jointly with the reader’s cross-entropy loss.
By training jointly, the model is able to make a bet-
ter prediction based on the confidence of the span
prediction, as well as the confidence based on the
non-answerable score from the relation module.

4 Question Answering Baselines

We test the relation module on top of our own Py-
Torch implementation of the BiDAF model (Seo
et al., 2017), as well as the recent released BERT
base model (Devlin et al., 2018) for the SQuAD
2.0 task. For both of these models, we obtain im-
provement from adding the relation module. Note
that, we do not test our relation module on top of
the current leaderboard, as the details are not yet
out. We also do not test on top of BERT + Syn-
thetic Self Training (Devlin, 2019) due to lack of
computational resources available. We are show-
ing the effectiveness of our method and not trying
to compete with the top of the leaderboard.

4.1 BiDAF

We implement the baseline BiDAF model for
SQuAD 2.0 task (Clark and Gardner, 2018) with
some modifications: adding features that are com-
monly used in question answering tasks such as
TF-IDF, POS/NER tagging, etc, and the auxiliary
training losses from (Hu et al., 2019). These mod-
ifications to the original BiDAF bring about 3.8%
gain of F1 on the SQuAD 2.0 development set (see
Table 1).

The input to the relation module is the con-
text vector that is generated from the bi-directional
attention flow layer. This context layer is aug-
mented with the hidden states of linear layers
trained against plausible answers, which also takes
the context layer from the attention flow layer as
input. This configuration is shown in Figure 4.

Figure 4: Relation Module applied on BiDAF.

4.2 BERT

BERT is a masked language model pre-trained
on large amounts of data that is the core compo-
nent of all of the current state-of-the-art models
on the SQuAD 2.0 task. The input to BERT is
the concatenation of a question and context pair
in the form of [“CLS”; question; “SEP”; context;
“SEP”]. BERT comes with its own special “CLS”
token, which is pre-trained on a next sentence pair
objective in order to encode entailment informa-
tion between the two sentences during the pre-
training scheme.

We leverage this “CLS” node with the relation
module by concatenating it with the output of our
Relation Module, and projecting the values down
to a single dimension. This combines the infor-
mation stored in the “CLS” token that has been
learned from the pre-training, as well as the infor-
mation that we learn through our relation module.
We allow gradients to be passed through all layers
of BERT, and finetune the initialized weights with
the SQuAD 2.0 dataset.

5 Experiments

We experiment on the SQuAD 2.0 dataset (Ra-
jpurkar et al., 2018) which contains question and
context examples that are crowd-sourced from
Wikipedia. Each example contains an answer span
in the passage, or an empty string, indicating that
an answer doesn’t exist. The results are reported
on the SQuAD 2.0 development set.
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Model EM(%) F1(%)
(Clark and Gardner, 2018) 61.9 64.8
Our Implementation of BiDAF 65.7 68.6
BiDAF + Relation Module 67.7 70.4
BERT-base 73.6 76.6
BERT-base + Relation Module 74.2 77.6
BERT-large 78.9 82.1
BERT-large + Relation Module 79.2 82.6

Table 1: Model performance on SQuAD 2.0 develop-
ment set averaged over three random seeds.

Model EM(%) F1(%)
BERT-base 70.7 74.4
BERT-base +Answer Verifier 71.7 75.5
BERT-base + Relation Module 73.2 76.8

Table 2: SQuAD 2.0 leaderboard numbers on the
BERT-base Models. Our model shows improvement
over the public BERT-base models on the official eval-
uation.

We use the following parameters in our BiDAF
experiment: 16 context heads, 2 question heads.
We set our regularization loss weight for the object
extractor to be 0.0005. We use Adam optimizer
(Kingma and Ba, 2014), with a start learning rate
of 0.0008 and decay the learning rate by 0.5 with
a patience of 3 epochs. We add auxiliary losses for
plausible answers, and re-rank the non-answerable
loss as in (Hu et al., 2019).

BERT comes in two different sizes, a BERT-
base model (comprising of roughly 110 million
parameters), and a BERT-large model (comprising
of roughly 340 million parameters). We use the
BERT-base model to run our experiments due to
the limited computing resources that training the
BERT-large model would take. We only use the
BERT-large model to show that we still get im-
provements with the relation module. The relation
module on top of the BERT-base model only con-
tains roughly 10 million parameters.

We use the BERT-base model to run our ex-
periments with the same hyper-parameters given
on the official BERT GitHub repository. We use
16 context objects, 2 question heads, and a regu-
larization loss of 0.0005. We also show that on
top of the BERT-large model, on the development
set, our relation module still obtains performance
gain1. We use the same number of objects, and the
same regularization losses for the BiDAF model
experiments.

1We do not have enough time to get official SQuAD 2.0
evaluation results for the large BERT models.

Answerable Non-Answerable
BERT-base 81.5 78.3
+ Relation Module 82.1 82.1

Table 3: Prediction accuracies on answerable and non-
answerable questions on development set.

Table 1 presents the results of the baseline read-
ers with and without the relation module on the
SQuAD development set. Our proposed relation
module improves the overall F1 and EM accuracy:
2.0% gain on EM and 1.8% gain on F1 on the
BiDAF, as well as 0.8% gain on EM and 1.0%
gain on F1 on the BERT-base model. Our rela-
tion module is able to take relational information
between object-pairs and form a better no-answer
prediction than a model without it. The module
obtains less gain (0.5% gain of F1) on BERT large
model due to the better performance of BERT
large model. This module is reader independent
and works for any reading comprehension model
related to non-answerable tasks.

Table 2 presents performance of three BERT-
base models with minimum additions taken from
the official SQuAD 2.0 leaderboard. We see that
our relation module gives more gain than an An-
swer Verifier on top of the BERT-base model. Our
module gains 1.3% F1 over the Answer Verifier.

Since our relation module is designed to help
a MRC model’s ability to judge non-answerable
questions, we examine the accuracy when a ques-
tion is answerable and when a question is non-
answerable. Table 3 compares these accuracy
numbers for these questions with and without the
relation module on top of the BERT-base model.
The relation module improves prediction accu-
racy for both types of questions, and with more
accuracy gain on the non-answerable questions:
close to 4% gain on the non-answerable questions,
which is more than 200 non-answerable questions
are correctly predicted.

6 Ablation Study

We conduct an ablation study to show how dif-
ferent components of the relation module affects
the overall performance for the BERT-base model.
First we test only adding plausible answers on
top of the BERT-base model, in order to quan-
tify the gain in span prediction that adding these
extra answers in would give. We show that with
just adding plausible answers, the average of the
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Model EM(%) F1(%)
BERT-base 73.6 76.6
BERT-base+Plausible Answers 73.5 76.9
BERT-base+RM-Plausible Answers 73.6 76.9
BERT-base+RM (4 heads) 74.1 77.4
BERT-base+RM (16 heads) 74.2 77.6
BERT-base+RM (64 heads) 74.0 77.2

Table 4: Ablation study on our Relation Module. We
experiment with just having plausible answers, just
having relation network, and different number of heads
for the objects extracted by the relation network. Each
of these values are averaged over three random seeds.

three seeds gain only about a 0.3 F1. This gain
in F1 is due to the BERT layers being fine-tuned
on more answer span data that we provide. Next
we study the effects of removing augmenting the
context vector with plausible answers. We feed
the output of our BERT-base model directly into
the object extractor and subsequently to the rela-
tion network. This quantifies the effect of forcing
the self-attentive heads to focus on a plausible an-
swer span. We notice that this performs compa-
rably to just adding plausible answers, also with
only around a 0.3 F1 gain.

Finally, we conduct a study to see the effects
of different number of heads on our relation mod-
ule. We experiment with 4, 16, and 64 heads, with
16 heads performing the best out of these three
configurations. Having too few heads hinders the
performance due to not enough information be-
ing propagated for the relation network to operate
on. Having too many heads will introduce redun-
dant information, as well as incorporating extrane-
ous noise for our model to sift through to generate
meaningful relations.

7 Analysis

In order to gain better understanding on how the
relation module helps on the unanswerable predic-
tion, we examine the objects extracted from the
multi-head self-attentive pooling. This is to check
whether the relevant semantics are extracted for
the relation network. Examples are selected from
the development set for data analysis.

In Example 1, the BERT-base model incorrectly
outputs “Northridge earthquake” (in red) as the an-
swer. However, after adding our relation module,
the model rejects this possible answer and outputs
a non-answerable prediction.

The two objects from the question highly at-
tend to token “million” (see the bottom subplot

Example 1
Context: Each year, the southern California area has
about 10,000 earthquakes. Nearly all of them are so small
that they are not felt. Only several hundred are greater
than magnitude 3.0, and only about 1520 are greater than
magnitude 4.0. The magnitude 6.7 1994 Northridge
earthquake was particularly destructive, causing a sub-
stantial number of deaths, injuries, and structural col-
lapses. It caused the most property damage of any earth-
quake in U.S. history, estimated at over $20 billion.
Question: What earthquake caused $20 million in dam-
age?
Answer: None.

Figure 5: In each subplot, each row represents one ob-
ject from our object extractor; for each object we high-
light the top 5 tokens with highest weights in the entire
context and question. We show the two windows where
the majority of these top 5 weights occur. For exam-
ple, the top purple object in the context looks at key
phrases such as “##ridge earthquake” in the top sub-
plot and “billion” in the middle subplot; the blue object
in the question looks at “20 million in” in the bottom
subplot.

in Figure 5). The top row purple object covers
token “1994” , “##ridge earthquake” in the pos-
sible answer span window, and “billion” near the
end of the context window. We hypothesize that
the relation network rejects the possible answer
“Northridge earthquake” due to the mismatch of
“million” in the question objects and “billion” in
the purple context object, and relation scores from
all other object pairs.

Example 2 shows another example of non-
answerable question and context pair. The BERT-
base model incorrectly outputs “input encoding”
(in red) as its prediction, while adding our rela-
tion module on the BERT-base model predicts cor-
rectly that the question is not answerable. Fig-
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Example 2
Context: Even though some proofs of complexity-
theoretic theorems regularly assume some concrete
choice of input encoding, one tries to keep the discus-
sion abstract enough to be independent of the choice of
encoding. This can be achieved by ensuring that different
representations can be transformed into each other effi-
ciently.
Question: What is the abstract choice typically assumed
by most complexity-theoretic theorems?
Answer: None.

Figure 6: In each subplot, each row represents one ob-
ject from our object extractor; for each object we high-
light the top 5 tokens with highest weights in the entire
context and question. We show a window where the
majority of the top 5 weights occur. For example, there
are numerous objects in the context window that look
at the key phrase “some concrete” in the top subplot;
the two objects in the question look at the key phrase
“the abstract” in the bottom subplot.

ure 6 gives a visual illustration of objects extracted
from context and question. In Figure 6, the up-
per plot illustrates the 16 semantic objects shown
in this context window and the lower plot illus-
trates the two semantic objects from the question.
We see that from the upper plot, “some concrete”
and “input encoding” are highlighted, while in
the lower plot, “what”, “the abstract”, “most” are
highlighted. The mismatch of “the abstract” from
the question objects and “some concrete” from the
context objects helps indicate that the question is
unanswerable.

8 Conclusion

In this work we propose a new relation module that
can be applied on any MRC reader and help in-
crease the prediction accuracy on non-answerable
questions. We extract high level semantics from
multi-head self-attentive pooling. The semantic
object pairs are fed into the relation network which
makes a guided decision as to whether a ques-
tion is answerable. In addition we augment the
context vector with plausible answers, allowing

us to extract objects focused on the proposed an-
swer span, and differentiate from other objects that
are not as relevant in the context. Our results on
the SQuAD 2.0 dataset using the relation mod-
ule on both BiDAF and BERT models show im-
provements from the relation module. These re-
sults prove the effectiveness of our relation mod-
ule.

For future work, we plan to generalize the rela-
tion module to other aspects of question answer-
ing, including span prediction or multi-hop rea-
soning.
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Abstract

Task oriented language understanding (LU) in
human-to-machine (H2M) conversations has
been extensively studied for personal digital
assistants. In this work, we extend the task ori-
ented LU problem to human-to-human (H2H)
conversations, focusing on the slot tagging
task. Recent advances on LU in H2M con-
versations have shown accuracy improvements
by adding encoded knowledge from different
sources. Inspired by this, we explore sev-
eral variants of a bidirectional LSTM architec-
ture that relies on different knowledge sources,
such as Web data, search engine click logs, ex-
pert feedback from H2M models, as well as
previous utterances in the conversation. We
also propose ensemble techniques that aggre-
gate these different knowledge sources into a
single model. Experimental evaluation on a
four-turn Twitter dataset in the restaurant and
music domains shows improvements in the
slot tagging F1-score of up to 6.09% compared
to existing approaches.

1 Introduction

Spoken Language Understanding (SLU) is the first
component in digital assistants geared towards
task completion, such as Amazon Alexa or Mi-
crosoft Cortana. The input to an SLU compo-
nent is a natural language utterance from the user
and its output is a structured representation that
can be used by the downstream dialog components
to select the next action. The structured repre-
sentation used by most standard dialog agents is
a semantic frame consisting of domains, intents
and slots (Tur and De Mori, 2011). For example,
the structured representation of “Find me a cheap
Italian restaurant” is the domain Restaurant,
the intent find place, and slots [cheap]price range,

∗Work done while the author was at Microsoft Corpora-
tion

Figure 1: Example of language understanding for task
completion on a H2H conversation. In this work, our
goal is to identify useful slots (marked with red rectan-
gles).

[Italian]cuisine, [restaurant]place type. Different
sub-tasks within SLU have been extensively stud-
ied for human-to-machine (H2M) task completion
scenarios (Sarikaya et al., 2016).

We extend the task oriented SLU problem to
human-to-human (H2H) conversations. A digi-
tal assistant can listen to the conversation between
two or more humans and provide relevant informa-
tion or suggest actions based on the structured rep-
resentation captured with SLU. Figure 1 shows an
example of capturing intents and slots expressed
implicitly during a conversation between two hu-
mans. The digital assistant can show general in-
formation about the restaurant Mua, and provide
the opening hours based on the captured structured
representation. These types of H2H task comple-
tion scenarios may allow digital assistants to sug-
gest useful information to users in advance with-
out them needing to explicitly ask questions.

In this paper, we investigate SLU oriented to-
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wards task completion for H2H scenarios with a
specific focus on solving the slot tagging task.
Some early conceptual ideas on this problem were
presented in DARPA projects on developing cog-
nitive assistants, such as CALO1 and RADAR2.
This work can be seen as an effort to formalize the
problem and propose a practical framework.

SLU for task completion in H2H conversations
is a challenging problem. Firstly, since the prob-
lem has not been studied before, there are no ex-
isting datasets to use. Therefore, we built a multi-
turn dataset for two H2H domains that we found to
be prevalent in Twitter conversations: Music and
Restaurants. The dataset is described in more de-
tail in Section 4. Secondly, the task is harder than
H2M conversations in several aspects. It is hard
to identify the semantics of noisy H2H conversa-
tion text with slang and abbreviations, and such
conversations have no explicit commands toward
the digital assistants requiring the assistant to in-
directly infer users intent.

In this work, we introduce a modular architec-
ture with a core bi-directional LSTM network, and
additional network components that utilize knowl-
edge from multiple sources including: sentence
embeddings to encode semantics and intents of
noisy texts with web-data and click logs, H2M
based expert feedback, and contextual models re-
lying on previous turns in the conversation. The
idea of adding components is inspired from some
recent advances in H2M SLU that use additional
encoded information (Chen et al., 2016; Su et al.,
2018; Kim et al., 2017; Jha et al., 2018). How-
ever, these work only considered adding a compo-
nent from a single knowledge resource. Further-
more, since these additional components bring in
information from different perspectives, we also
experimented with deep learning based ensemble
methods. Our best ensemble method outperforms
existing methods by 6.09% for the Music domain
and 2.62% for the Restaurant domain.

In summary, this paper makes the following
contributions:

• A practical framework on slot tagging for
task oriented SLU on H2H conversations us-
ing bidirectional LSTM architecture.

• Extension of the LSTM architecture utilizing
knowledge from external sources (e.g. Web

1https://en.wikipedia.org/wiki/CALO
2https://www.cmu.edu/cmnews/extra/

030718_darpa.html

data, click logs, H2M expert feedback, and
pervious sentences) with deep learning based
ensemble methods

• Newly developed dataset for evaluating task
oriented LU on H2H conversations

We begin by describing our methods for H2H
slot tagging in Section 3. We then describe the
data used in our experiments in Section 4 and dis-
cuss results in Section 5. This is followed by a
review of the related work and conclusion.

2 Related Work

LU involves domain classification, intent classifi-
cation, and slot tagging (Tur and De Mori, 2011;
Sarikaya et al., 2016). Recently various deep neu-
ral network (DNN) models have been studied to
solve each of these task, such as deep belief net-
work (Sarikaya et al., 2011), deep convex network
(Deng et al., 2012), RNN and LSTM (Ravuri and
Stolcke, 2015; Mesnil et al., 2015).

Recent advances in LU use additional encoded
information to improve DNN based models. There
have been some attempts to use data or models
from existing domains. One direction is to do
transfer learning. Kim et al. (2017) and Jha et al.
(2018) utilized previously trained models relevant
to the target domain as expert models. They use
the output of expert models as additional input to
add relevant knowledge while training for the tar-
get domain. Goyal et al. (2018) reused low-level
features from previously trained models and only
retrained high level layers to adapt to a new do-
main.

There have also been some attempts to use con-
textual information. Xu and Sarikaya (2014) used
past predictions of domains and intents in the pre-
vious turn for predicting current utterance. Chen
et al. (2016) expanded upon this work by using a
set of past utterances utilizing a memory network
(Sukhbaatar et al., 2015) with an attention model.
Subsequent works attempted to use the order and
time information. Bapna et al. (2017) addition-
ally used the chronological order of previous sen-
tences, and Su et al. (2018) used time decaying
functions to add temporal information.

Our work trains a sentence embedding that en-
codes the semantics and intents. DSSM and its
variants (Huang et al., 2013; Shen et al., 2014;
Palangi et al., 2016) are used for training sentence
embedding, which were originally used for finding
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Figure 2: Overview of our slot tagging architecture. Our architecture consists with the core network (Section 3.1)
and additional network components utilizing knowledge from multiple sources (Each discussed in Section 3.2.1,
3.2.2, 3.2.3). A network ensembling approach is applied on additional components (Section 3.3), figure shows
with the attention mechanism.

relevance between the query and retrieved docu-
ments in a search engine. Also there have been at-
tempts to use sentence embeddings similar to our
data (Twitter). Dhingra et al. (2016) trained an em-
bedding for predicting hash tags of a tweet using
RNNs, Vosoughi et al. (2016) used an encoder-
decoder model for sentiment classification.

All of the previous methods have studied LU
components for task completion in H2M con-
versations. On the other hand, prior work on
LU on H2H conversations has focused on dia-
log state detection and tracking for spoken dia-
log systems. Shi et al. (2017) used CNN model,
and later extended multiple channel model for a
cross-language scenario (Shi et al., 2016). Jang
et al. (2018) used attention mechanism to focus
on words with meaningful context, and Su et al.
(2018) used a time decay model to incorporate
temporal information.

3 Methods

Figure 2 shows the overview of our slot tag-
ging architecture. Our modular architecture is a
core LSTM-based network and additional network
components that encode knowledge from multiple
sources. Slot prediction is done with the final feed
forward layer, whose input is the composition of
the output of the core network and the additional
components. We first describe our core network
and then the additional network components, fol-
lowed by our network ensembling approach.

3.1 Core Network
Our core network is a bidirectional model simi-
lar to Lample et al. (2016). The first character-
level bidirectional LSTM layer extracts the encod-
ing from a sequence of characters from each word.
Each character c is represented with a character
embedding ec ∈ R25, and the sequence of the em-
bedding is used as the input. The layer outputs

f c = LSTMforward(e
c) (1)

bc = LSTMbackward(e
c) (2)

for each character, where f c, bc ∈ R25.
The second word-level bidirectional LSTM

layer extracts the encoding from a sequence of
words for each sentence. For each word wi, the
input of the layer is gi = f ci ⊕ bci ⊕ ewi where f ci
and bci is the output of previous layer, ewi ∈ R100

is the word embedding vector, and ⊕ is a con-
catenation operator of vectors. We use pre-trained
GloVe with 2B tweets 3 (Pennington et al., 2014)
for the word embedding. The forward and back-
ward word-level LSTM’s produce

fwi = LSTMforward(gi) (3)

bwi = LSTMbackward(gi) (4)

where fwi , b
w
i ∈ R100. Finally, slot li is predicted

with the last feed forward layer with the input hi =
fwi ⊕ bwi .

3Downloaded from https://nlp.stanford.edu/
projects/glove/
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Our model is trained using stochastic gradient
descent with Adam optimizer (Kingma and Ba,
2015), with the mini batch size 64 and the learning
rate 0.7×10−3. We also apply dropout (Srivastava
et al., 2014) on embeddings and other layers to
avoid overfitting. The learning rate and dropout ra-
tio were optimized using random search (Bergstra
and Bengio, 2012). The core network can be used
alone for slot tagging, however we discuss our ad-
ditional network components in the following sec-
tions for improving our architecture.

3.2 Additional Network Components

In this section, we discuss additional network
components that encode knowledge from different
sources. Encoded vectors are used as additional
input to the feed forward layer as shown in Fig-
ure 2.

3.2.1 Sentence Embedding for H2H
Conversations

Texts from H2H conversations are noisy and con-
tain slang and abbreviations, which can make
identifying their semantics challengins. In addi-
tion, it can be challenging to infer their intents
since there are no explicit commands toward the
digital assistants. The upper part of Figure 3
shows part of a conversation from Twitter. The
sentence lacks the semantics needed to fully un-
derstand ”club and country”. However, if we fol-
low the URL in the original text, we can get addi-
tional information to assist with the understand-
ing. For instance, the figure shows texts found
from two sources, 1) web page title of the URL
in the tweet and 2) web search engine queries
that lead to the URL in the tweet. We use web
search queries and click logs from a major com-
mercial Web search engines to find queries that
lead to clicks on the URL. Using this informa-
tion, we can infer from the Web page title that
the ”club and country” referred to in the tweet are
Atletico Madrid and Nigeria. Furthermore, the
search queries from the search engine logs indi-
cates possible user intents.

In our approach, we encode knowledge found
from these two sources based on the URL. In
our dataset, we were able to gather 2.35M pairs
of tweet text with URL and web search engine
queries that lead to the same URL, and 420K pairs
of tweet text and web page titles of the URL. We
then use this information to train a sentence em-
bedding model that can be used to encode the

semantics and implicit intents of each H2H con-
versation sentence. Our approach is to train a
model that projects texts from H2H conversation
and texts from each knowledge sources into a
same embedding space, keeping the correspond-
ing text pairs close to each other with other non-
relevant texts being apart, as shown in Figure 3.
The learned embedding model F then can be used
to represent any texts from H2H sentences with a
vector with semantically similar texts (or similar
intents) being projected close to each other in the
embedding space. Embeddings are used as addi-
tional component of our modular architecture, so
that the semantic and intent information can be uti-
lized in our slot tagging model.

We use the deep structured semantic model
(DSSM) architecture (Huang et al., 2013) to train
the sentence embedding encoder. DSSM uses
letter-trigram word hashing, so it is capable of
partially matching noisy spoken words so that we
can get more robust sentence embeddings for H2H
conversations. Let S be the set of sentences from
the H2H conversations that have the URL. For
each sentence s ∈ S, we find corresponding texts
(web page title of the URL, web search engine
queries to the URL) T+

s and randomly choose
non-related texts T−s from corresponding texts of
other sentences (in other words, from different
URLs). Like the original DSSM model, each sen-
tence s, t+s ∈ T+

s , and t−s ∈ T−s are initially en-
coded with letter-trigram word hashing vector x,
and used as the input of two consecutive dense lay-
ers,

x′ =W1x+ b1 (5)

y =W2x
′ + b2 (6)

where x′ ∈ R1000 and y ∈ R300. We train the
model to favor choosing t+s ∈ T+

s over t−s ∈ T−s
for each s. So the loss function is defined as mini-
mizing the likelihood,

loss = −log
∏

s,T+
s

P (T+
s |s) (7)

P (T+
s |s) =

∏

s,t+s ∈T+
s

exp(γsim(s, t+s ))∑
t∈T exp(γsim(s, t))

(8)

sim(s, t+s ) = cos(ys, yt+s ) (9)

where cos is cosine similarity of two encoded vec-
tors. Please refer to the original paper (Huang
et al., 2013) for further details. The dropout ratio,
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Figure 3: Example of H2H conversation text with URL link and corresponding texts found by following the URL.
We use those two sources of corresponding texts to train sentence embedding models. Each model projects the
original text and its corresponding texts to a close position in the sentence embedding space, while non-relevant
texts are being apart.

learning rate, and γ are selected based on a ran-
dom search (Bergstra and Bengio, 2012), which
are 0.0275, 0.4035 × 10−2, and 15 respectively.
The output of the second dense layer y of trained
model is used as the sentence embedding: for
each sentence we extract the sentence embedding
vs ∈ R300.

3.2.2 Contextual Information

Contextual information extracted from previous
sentences is known to be useful to improve un-
derstanding of human spoken language on other
scenarios (Xu and Sarikaya, 2014; Chen et al.,
2016; Su et al., 2018). To obtain knowledge from
a previous sentence in the conversation, we ex-
tract a contextual encoded vector using the mem-
ory network (Chen et al., 2016), which uses the
weighted sum of the output of word-level bidirec-
tional LSTM h in the core network (Section 3.1)
from previous sentences. We did not consider a
time decaying model (Su et al., 2018) since our
data has a small number of turns.

We tested the model with some variations on
1) number of previous sentences to use and 2)
weighting scheme (uniform or with attention).
using the implementation from the original pa-

per4. From our experiments, the best result was
achieved using the previous two sentences with a
uniform weight. We use this model to extract the
contextual encoded vector vc ∈ R100.

3.2.3 Human-to-Machine Expert Feedback
Kim et al. (2017) and Jha et al. (2018) introduced a
transfer learning method, which reuses the knowl-
edge from existing trained models on relevant do-
mains (i.e. expert models) to take advantage of
previous knowledge to train on a new domain.
They extract the output of the expert model and
use it as an additional input of feed forward layer
for the model on a new domain.

We adopt this idea to take advantage of mas-
sive amount of labeled data for H2M conversa-
tions. Instead of transferring knowledge from do-
main to domain, we transfer the knowledge of dif-
ferent tasks within a similar domain. For exam-
ple, we use Places (H2M) domain for the Restau-
rant (H2H) domain, and Entertainment (H2M)
domain for the Music (H2H) domain. We use pre-
viously trained slot tagging models on H2M con-
versations on similar domains as our expert model,
which has the same architecture as our core net-

4https://github.com/yvchen/
ContextualSLU
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work (Section 3.1). These H2M models were orig-
inally used for the SLU component of a commer-
cial digital assistant. The output of word-level
bidirectional LSTM h is then extracted as the en-
coded vector from H2M expert model ve ∈ R200.

3.3 Network Ensemble Approaches

Since additional network components (sentence
embedding vs, contextual information from pre-
vious turns of the conversation vc, and H2M based
expert feedback ve) bring information from differ-
ent perspectives, we discuss how to compose them
into a single vector k with various ensemble ap-
proaches.

• Concatenation: Here, we simply concate-
nate all encodings into a single vector,

k = vs ⊕ vc ⊕ ve (10)

• Mean: We first apply a separate dense layer
to each encoded vector to match dimensions
and transform into the same latent space, and
then take the arithmetic mean of transformed
vectors.

v′{s,c,e} =W{s,c,e} + b{s,c,e} (11)

k = mean(v′s, v
′
c, v
′
e) (12)

In the Figure 2, we denote the dense
layer applied to each encoded vector v{s,c,e}
as D{s,c,e} for simplicity of representation.
Each transformed vector v′{s,c,e} ∈ R100, so
k ∈ R100.

• Attention: We apply an attention mechanism
to apply different weights on the encoded
vectors for each sentence. For our problem,
it is not straightforward to define a context
vector for each sentence to calculate the im-
portance of each encoded vector; therefore,
we adopted the idea of using a global con-
text vector (Yang et al., 2016). The global
context vector u ∈ R100 can be thought as
a fixed query of “finding the informative en-
coded vector for slot tagging” used for each
sentence. The weight of each encoded vec-
tor is calculated with the standard equation of
calculating the attention weight, which is the
softmax of the dot product of encoding and

context vector,

w{s,c,e} =
exp(tanh(v′{s,c,e})

ᵀu)
∑

v′∈{v′s,v′c,v′e} exp(tanh(v′)ᵀu))
(13)

k = wsv
′
s + wcv

′
c + wev

′
e (14)

where v′{s,c,e} are same as Equation 11.

The combined single vector k is then aggre-
gated with the output of core network h, k ⊕ h
is used as the input of the final feed forward layer
as shown in Figure 2. The same hyperparameters
(mini batch size, learning rate, dropout ratio) and
optimizer is used as stated in the baseline model
(Section 3.1).

4 Data

Although some datasets with H2H conversa-
tions are available (Forsythand and Martell, 2007;
Danescu-Niculescu-Mizil and Lee, 2011; Nio
et al., 2014; Sordoni et al., 2015; Lowe et al., 2015;
Li et al., 2017), they were not feasible to use for
experimenting on our task. All datasets excluding
the Ubuntu Dialogue (Lowe et al., 2015) were col-
lected without any restrictions on the domain and,
as a result, there were insufficient training sam-
ples to train a slot tagging model for a specific do-
main. In addition, the Ubuntu Dialogue dataset
(Lowe et al., 2015) focuses on questions related to
Ubuntu OS, which is not an attractive domain an
intelligent focus that focuses on task completion
rather than question answering.

Since there were no existing datasets that were
sufficient for our task in H2H conversation, we
built our own dataset for the experiments. It
was difficult to acquire actual H2H conversations
from instant messages due to privacy concerns.
Therefore, we chose to use public conversations
on Twitter and extracted sequences in which two
users engage in a multi-turn conversation. Using
this approach, we were able to collect 3.8 million
sequences of four-turn conversations using Twitter
Firehose.

We focused on two domains for our experi-
ments: Restaurants and Music. To acquire the
dataset for each domain, we first defined a set
of key phrases and found the candidate conversa-
tions with at least one of those key phrases. Key
phrases consisted of the top 100 most frequently
used unigrams and bigrams on each relevant do-
main from the H2M conversation dataset. We used
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Restaurant
A: [lunch]meal type?
B: [lunch]meal type sounds good. Our routine
usually involves sitting at [Nano’s]place name
with our packed/purchased [lunches]meal type
care to join?
A: great. I’ll get something from
[physiol]place name and meet you there at...?
B: I’ll be there in [5-10 mins]time

Music
A: [quavo]media person got another one
B: I was bout to listen earlier but it said
[feat]media role [Lil Uzi Vert]media person lol
A: he [rap]media genre for about two minutes you
don’t even gotta listen to [lil uzi]media person
B: [quavo]media person already a legend man

Table 1: Example conversation in each domain of our
dataset

the H2M Places domain to find the top n-grams for
the Restaurant domain and the H2M Entertain-
ment domain to find top n-grams for the Music
domain. Places includes other type of places be-
sides restaurants (e.g. tour sights), and also Enter-
tainment includes other genre (e.g. movies). So
we manually replaced unigrams and bigrams that
were not music or entertainment related, and also
some terms that are too general (e.g. time, call,
find). We were able to gather 16K and 22K candi-
date conversations for the Restaurant and Music
domains, respectively, using the keyphrases.

We randomly sampled 10K conversations for
each domain for annotating slots and domain. An-
notation was done by managed judges, who had
been trained over time for annotating SLU com-
ponents such as intents, slots and domains. A
guideline document was provided with the pre-
cise definition and annotated examples of each of
the slots and intents. Agreement between judges
and manual inspection of samples for quality as-
surance was done by a linguist trained for manag-
ing annotation tasks. We also ensured that judges
did not attempt to guess at the underlying intents
and slots, and annotate objectively within the con-
text from the text. We only keep the conversations
that are labeled relevant to each domain by annota-
tors. Table 1 shows an example conversation from
the dataset in each domain, and Table 2 shows the
dataset statistics.

Domain #Conv. #Words/Conv. #Slots
Restaurant 6,514 37.64 155

Music 5,582 44.72 206

Table 2: Statistics of our dataset. Each column shows
the number of items in the dataset. ”Conv.” stands for
conversations.

5 Experiments

5.1 Experimental Setup
All experiments were done with 10-fold cross val-
idation for the slot tagging task, and we generated
training, development, test datasets using 80%,
10%, and 10% of the data. The development
dataset is used for hyperparameter tuning with ran-
dom search (Bergstra and Bengio, 2012) and early
stopping. The baseline is set with core network
only (Section 3.1). We evaluated the performance
of each of the models with precision, recall, and
F1. We checked for statistical significance over the
baseline at the p-value < 0.05 using the Wilcoxon
signed-rank test.

5.2 Evaluation on Adding Sentence
Embeddings for H2H Conversations

In this section, we evaluate adding the sentence
embeddings into our slot tagging architecture in-
troduced in Section 3.2.1. Table 3 shows the re-
sults of adding sentence embeddings, compared
with the baseline and existing sentence embed-
ding methods. We extracted two months of recent
tweets that had non-twitter domain URLs in the
text for our method. Below is the brief description
of each method:

• DSSM (Deep Structured Semantic Model)
(Huang et al., 2013): Pre-trained DSSM
model from the authors , trained with pairs
of (Major commercial web search engine
queries, clicked page titles).

• Tweet2Vec (Dhingra et al., 2016): The model
was originally used to predict hashtags of a

5Slots in Restaurant domain include absolute location,
amenities, atmosphere, cuisine, date, distance, meal type,
open status, place name, place type, price range, product,
rating, service provided, time.

6Slots in Music domain include app name, me-
dia award, media category, media content rating,
media genre, media keyword, media language, me-
dia lyrics, media nationality, media person, me-
dia price, media release date, media role, media source,
media technical type, media title, media type, me-
dia user rating, radio call sign, radio frequency
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Model
Restaurant Music

P R F1 P R F1
Core Network (Baseline) 71.23 62.68 66.63 64.33 44.14 51.61
+ DSSM (Huang et al., 2013) 70.82 61.60 65.88∗ 62.83 43.76 51.57
+ Tweet2Vec (Dhingra et al., 2016) 70.58 59.99 64.75∗ 62.67 41.38 49.79∗

+ Ours (Tweets, Web Search Engine Queries) 71.73 62.38 66.70 63.13 44.09 51.86
+ Ours (Tweets, Web Paage Titles) 71.19 63.51 67.11∗ 63.70 44.44 52.32

Table 3: Comparison of adding sentence embedding component to our architecture. P, R, F1 stands for precision,
recall, F1-score (%) respectively. * denotes the F1-score is statistically significant compared to the baseline.

tweet. We use the pre-trained model from the
authors, which used 2M tweets for training.

• Ours (Tweets, Web Search Engine Queries):
Trained our model with 2.35M pairs of
(Tweet text with shared URL, Web serach en-
gine queries that lead to the shared URL). We
extracted most frequent queries (up to eight)
found from the major commercial web search
engine query logs.

• Ours (Tweets, Web Page Titles): Trained our
model with 420K pairs of (Tweet text with
shared URL, web page title of URL).

The result shows that adding our proposed sen-
tence embedding network improves the slot tag-
ging result compared to the baseline, while other
previous methods have a negative effect. This
implies that 1) a sentence embedding specifically
trained for H2H conversation texts are needed
(compared with original DSSM), 2) our idea of
embedding semantics and intentions from web
data and search engine query logs can help to
improve the slot tagging task (compared to the
Tweet2Vec). Since our sentence embedding net-
work trained with web page titles gives the most
significant improvement, we used this for further
evaluation.

5.3 Evaluation on Utilizing Knowledge
Sources

We also tested adding contextual information and
H2M expert feedback network components to our
slot tagging architecture. Contextual informa-
tion is extracted from previous two sentences with
uniform weighting. For the H2M expert model,
we used the pretrained model of Entertainment
domain for the target Music domain, and the
Places domain for the target Restaurant domain
for H2M LU.

The upper part (rows 2-4) in Table 4 shows the
result of adding each. Results show that 1) adding

network component from each knowledge source
leads to an improvement on at least one of the do-
main, 2) improvement on each method varies with
the domain. Adding sentence embeddings and
contextual information led to significant improve-
ments for the Restaurant domain while contex-
tual information and H2M expert feedback led to
significant improvements for the Music domain.

5.4 Evaulation on Network Ensemble
Approaches

We also conducted an experiment to include all
network components to see if we can improve fur-
ther by considering multiple knowledge sources
together. The result is shown in the lower part (row
5-7) of Table 4 with different ensembling meth-
ods introduced in Section 3.3. It shows that any of
the ensemble approaches to add all of the network
components leads to better results than adding ei-
ther of them individually.

The result implies that each of the proposed
method improves the slot tagging method from
different perspectives so all of them can be con-
sidered. Also, we see that attention has the best
results among ensemble approaches, with 2.62%
higher F1 score for the Restaurant domain, and
6.09% for the Music domain compared to the
baseline. This implies the attention model can
help to find the best way to ensemble additional
components by predicting the importance of each
component for each sentence. Especially, we
could see a statistically significant improvement
on the Music domain compared with other meth-
ods. We believe this is because the improvement
of each network component on the Music domain
is more obvious compared to the Restaurant do-
main. We would like to test in other domains for
the future work.
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Model
Restaurant Music

P R F1 P R F1
Core Network (Baseline) 71.23 62.68 66.63 64.33 44.14 51.61
+ Sentence Embedding 71.19 63.51 67.11∗ 63.70 44.44 52.32
+ Contextual 72.74 64.75 68.47∗ 64.42 49.16 55.72∗

+ H2M Expert 71.91 61.21 66.63 64.14 44.67 52.64∗

+ Ensemble (Concatenation) 74.09 64.89 69.21∗ 66.41 50.10 57.07∗

+ Ensemble (Mean) 73.20 65.43 69.07∗ 65.18 51.01 57.11∗

+ Ensemble (Attention) 74.03 65.11 69.25∗ 66.19 51.29 57.70∗∗

Table 4: Comparison on adding additional network components from each knowledge source and network ensem-
ble approaches that adds all components. P, R, F1 stands for precision, recall, F1-score (%) respectively. * denotes
the F1 score is statistically significant compared to the baseline. ** denotes the F1 score of ensemble model is also
statistically significant compared to the concatenation ensemble model.

6 Conclusion

We studied slot tagging in H2H online text con-
versations. Starting from a core network with
bidirectional LSTM, we proposed to use addi-
tional network components and ensemble them to
augment useful knowledge from multiple sources
(web data, search engine click logs, H2M expert
feedback, and previous utterances). Experiments
with our four-turn Twitter dataset on Restaurant
and Music domains showed that our method im-
proves up to 6.09%-points higher F1 on slot tag-
ging compared to existing approaches. For fu-
ture work, we plan to study our model on domain
and intent classification, and also on additional do-
mains.

Acknowledgement

We would like to thank Eric Mei and Soumya Ba-
tra for their help on data collection and labeling.

References
Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and

Larry Heck. 2017. Sequential dialogue context
modeling for spoken language understanding. In
Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, pages 103–114.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Yun-Nung Chen, Dilek Hakkani-Tür, Gökhan Tür,
Jianfeng Gao, and Li Deng. 2016. End-to-end mem-
ory networks with knowledge carryover for multi-
turn spoken language understanding. In INTER-
SPEECH, pages 3245–3249.

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A

new approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the
2nd Workshop on Cognitive Modeling and Compu-
tational Linguistics, pages 76–87. Association for
Computational Linguistics.

Li Deng, Gokhan Tur, Xiaodong He, and Dilek
Hakkani-Tr. 2012. Use of kernel deep convex net-
works and end-to-end learning for spoken language
understanding. In IEEE Workshop on Spoken Lan-
guage Technologies (SLT).

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. 2016.
Tweet2vec: Character-based distributed representa-
tions for social media. In The 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), page 269.

Eric N Forsythand and Craig H Martell. 2007. Lex-
ical and discourse analysis of online chat dialog.
In International Conference on Semantic Computing
(ICSC 2007), pages 19–26. IEEE.

Anuj Kumar Goyal, Angeliki Metallinou, and Spyros
Matsoukas. 2018. Fast and scalable expansion of
natural language understanding functionality for in-
telligent agents. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), volume 3, pages
145–152.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Conference on infor-
mation and knowledge management (CIKM), pages
2333–2338.

Youngsoo Jang, Jiyeon Han, Byung-Jun Lee, and Kee-
Eung Kim. 2018. Cross-language neural dialog state
tracker for large ontologies using hierarchical atten-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 26(11):2072–2082.

765



Rahul Jha, Alex Marin, Suvamsh Shivaprasad, and
Imed Zitouni. 2018. Bag of experts architectures
for model reuse in conversational language under-
standing. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), volume 3, pages 153–161.

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017. Domain attention with an ensemble of ex-
perts. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), volume 1, pages 643–653.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
Amethod for stochastic optimization. In Proceed-
ings of the 3rd International Conference of Learning
Representations (ICLR).

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceed-
ings of the The 8th International Joint Conference
on Natural Language Processing (IJCNLP), pages
986–995.

Ryan Lowe, Nissan Pow, Iulian V Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn di-
alogue systems. In 16th Annual Meeting of the
Special Interest Group on Discourse and Dialogue
(SIGDIAL), page 285.
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Abstract
This paper describes a novel approach for the
task of end-to-end argument labeling in shal-
low discourse parsing. Our method describes a
decomposition of the overall labeling task into
subtasks and a general distance-based aggrega-
tion procedure. For learning these subtasks, we
train a recurrent neural network and gradually
replace existing components of our baseline by
our model. The model is trained and evalu-
ated on the Penn Discourse Treebank 2 corpus.
While it is not as good as knowledge-intensive
approaches, it clearly outperforms other mod-
els that are also trained without additional lin-
guistic features.

1 Introduction
Shallow discourse parsing (SDP) is a challeng-
ing problem in NLP with the aim to identify lo-
cal coherence relations in text. Discourse rela-
tions are used in text to connect individual seg-
ments of text logically. The Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008a) adopts a non-
hierarchical view on discourse relations. As an ex-
ample from the PDTB, the sentence:

• We would stop index arbitragewhen the mar-
ket is under stress.

contains an explicit discourse relation which is sig-
naled through the underlined connective (Conn)
and further consists of two arguments (Arg1 in
italics and Arg2 in bold). In addition, a sense is
assigned to a relation, such as Condition.
Discourse analysis, however, does not work on

a sentence-level, but takes full documents into ac-
count. Often, short paragraphs suffice to show the
challenge in extracting overlapping relations. To il-
lustrate the problem,we split the paragraphs shown
in Figure 1 into small text chunks. Though our im-
plementation works on the level of individual to-

If you think you have stress-related problems on the job,
there’s good news and bad news. You’re probably right, and
you aren’t alone.
. . .
Even the courts are beginning to recognize the link between
jobs and stress-related disorders in compensation cases, ac-
cording to a survey by the National Council on Compensation
Insurance. But although 56% of the respondents in the study
indicated that mental-health problems were fairly pervasive
in the workplace, there is still a social stigma associated with
people seeking help.
Figure 1: Excerpt from text WSJ 1582 (PDTB corpus)

Text Chunk R1 R2 R3
If Conn Arg1
you think you have
stress-related problems on
the job,

Arg2 Arg1

there’s good news and bad
news.

Arg1 Arg1

You’re probably right, Arg2 Arg1
and Arg2 Conn
you aren’t alone Arg2 Arg2

Table 1: First sample paragraph split into text chunks.

kens, we here use these chunks to highlight chal-
lenges in discourse argument labeling. The chunks
are delimited such that no smaller part would play
exactly the same role for the various relations in-
volved.
The first example (cf. Table 1) shows that (1)

each relations argument contains an arbitrary num-
ber of tokens. Further, (2) chunks may have mul-
tiple functions (class labels) referring to different
individual relations, e.g. the “if” of the first chunk
is the connective of R1, while in R2 it is part of the
first argument. As a special case, (3) they can have
the same class label but pointing to different rela-
tions. Finally, (4) there is no generally fixed linear
order for the classes Arg1, Arg2, Conn, although
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Text Chunk R4 R5
Even the courts are beginning to
recognize the link between jobs and
stress-related disorders in
compensation cases, according to a
survey by the National Council on
Compensation Insurance.

Arg1

But Conn Arg1
although Conn
56% of the respondents in the study
indicated that mental-health
problems were fairly pervasive in the
workplace

Arg2 Arg2

there is still a social stigma
associated with people seeking help.

Arg2 Arg1

Table 2: Second sample paragraph split into text
chunks.

the connective is always syntactically integrated
with the second argument.
In the second example (cf. Table 2), (5) argu-

ments can cover whole sentences as demonstrated
by R4. (6) Although two connectives are next to
each other, they can have different arguments and
thus constitute different relations. Finally, (7) argu-
ments can also consist of non-continuous chunks
as in R5.
SDP consists of the main tasks of identifying

connectives, demarcating their arguments, assign-
ing senses to them, and finding the senses of so-
called implicit relations holding between adjacent
text spans, which are not explicitly signaled by a
connective. Lin et al. (2014) presented a full end-
to-end shallow discourse parser that solves these
subtasks with a sequential pipeline architecture,
which served as a model for the vast majority of
follow-up work. Recently, however, most work has
addressed specifically the last-mentioned task of
identifying the senses of implicit relations, which
has been found to be by far the most challenging
one.
The focus of our work, in contrast, is on iden-

tifying and delimiting the arguments of relations
as well as the disambiguation of connectives. Our
aim is to do this without any engineering of lin-
guistic features, so that the approach can be eas-
ily applied to new corpora and new languages.
With this perspective, we follow in particular the
proposals of Wang et al. (2015) and Hooda and
Kosseim (2017). The first work applies a recur-
rent neural network on selected sentences and la-
bels these sentences on a token-level. The second
work extends this idea and uses an LSTM on a re-
stricted form of the argument labeling task. The

authors show the feasibility of a neural model for
explicit argument labeling on pre-extracted argu-
ment spans. They prepare a dataset of argument
spans (extracted from their context) and train a re-
current neural network to label each token’s posi-
tion in such a span .
In our work, we extend this idea to make it appli-

cable within the full SDP setting, i.e., on running
text rather than on previously extracted individual
relations. As a baseline approach, we use our reim-
plementation of the system of Lin et al. (2014). We
study different applications of our neural model
and substitute corresponding components for argu-
ment extraction from the baseline pipeline: First
we address extracting the arguments of connec-
tives that are already given; this is a sensible as-
sumption since models for connective classifica-
tion (Pitler and Nenkova, 2009) work quite well.
Then, we extend this approach by removing the
dependency on previously identified connectives.
This step is not easy, because the connectives serve
to identify the number of explicit relations in a doc-
ument. Because the number of relations is initially
not clear when connectives are missing, we adapt a
sliding window approach for decomposing the text
in overlapping windows. We then develop a pro-
cess of identical prediction steps (one for each pos-
sible window within a document) and one final ag-
gregation step, which combines the individual re-
sults into the final set of predicted relations. As an
outlook, we study the capacity of our neural model
for the joint prediction of explicit and implicit re-
lation arguments.
The main contributions of this paper are
1. integrating a BiLSTMmodel into the shallow

discourse pipeline architecture, and
2. addressing the problem of jointly predicting

connective and arguments with a moving-
window approach for handling overlapping
relations in running text.

In the following, Section 2 discusses relevant re-
latedwork, and Section 3 explains ourmethod. The
experiments and results are presented in Section 4,
followed by a discussion in Section 5 and conclu-
sions in Section 6.
2 Related Work
The task of shallow discourse parsing was initi-
ated by the development of the second version
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of the Penn Discourse Treebank (PDTB2) (Prasad
et al., 2008b) and further by the shared tasks at
CoNLL 2015 and 2016 (Xue et al., 2015, 2016).
Successful systems at these competitions were
those of Wang et al. (2015); Wang and Lan
(2016); Oepen et al. (2016). They followed the
pipeline model of (Lin et al., 2014), which con-
sists of successive tasks of connective identifica-
tion, argument labeling, and sense classification
for both explicit and implicit relations. Similar
to other approaches used for argument extraction
(e.g., (Wang et al., 2015; Laali et al., 2016; Oepen
et al., 2016)), these competing systems use stan-
dard supervised machine learning models in com-
bination with handcrafted linguistic features, such
as syntactic, positional, and lexical features.
For argument labeling (or ‘extraction’), the ex-

act boundaries of both arguments must be iden-
tified. At the CoNLL shared task 2016, Stepanov
and Riccardi (2016) reported the best scores for
argument extraction with F-measures of 49.64%
for Arg1 and 76.51% for Arg2. In contrast to the
systems mentioned before, their approach involves
conditional random fields (CRF) (Lafferty et al.,
2001), which are generally popular for the task of
sequence labeling. Also, Ghosh et al. (2011b,a)
formulate argument extraction as a token-level se-
quence labeling problem and use a pipeline of cas-
caded conditional random fields to mark up each
token in a window. On top of a connective classi-
fier, they first predict Arg2 due to the closeness to
the connective. For the prediction of Arg1, they
use the same feature set as for the former predic-
tion and additionally take the Arg2 predictions
into account. Similar to us, they use a window
around the connective (2 sentences before and af-
ter the sentence with the connective). They report
scores of about 79% F-measure for Arg2 and 57%
F-measure for Arg1 with their approach. Our ap-
proach differs from theirs in that we use tokens in-
stead of full sentences to create windows. This is
necessary because a single sentence might contain
multiple connectives and participate in more than
one discourse relation (cf. the examples shown in
Section 1).
A moving-window approach similar to ours is

used, for example, by Graves and Schmidhuber
(2005) in their work on phoneme classification.
The task is quite different for SDP argument label-
ing, however, as a word’s label highly depends on
the word’s context and the corresponding relation

the word is associated with. Thus, we cannot apply
such an approach directly and hence define an ag-
gregation procedure for combining the individual
per-window predictions.
Argument labeling with recurrent neural net-

works was done byWang et al. (2015) in their DCU
parser. In addition to word embeddings, they also
used hand-crafted features, such as POS tags, syn-
tactic relations, and lexical features. In contrast,
our aim is to explore to what extent the problem
can be solved without feature engineering. Thus,
the main inspiration for our approach is the recent
work of Hooda and Kosseim (2017), who use an
LSTM network on spans of text for labeling argu-
ments. The authors examine their approach on pre-
extracted argument spans where the size of spans
is determined by the maximal argument pair dis-
tance. This shows the feasibility of neural networks
to label discourse arguments in a restricted prob-
lem setting. Like in our work, they do not rely
on additional data other than word embeddings. In
contrast to them,we use the embeddings as they are
provided, without further adaption throughout the
training. In our experiments, we could not identify
gains in performance and thus save computation
time by reducing trainable parameters.
3 Method
The main goal of our work is to replace exist-
ing components in the general discourse parser
pipeline framework with our neural model. De-
pending on which component we want to substi-
tute, we need different methods for processing the
discourse.
Our first approach is to replace the argument ex-

traction module, which operates on the basis of
previously identified connectives. After that, we
introduce an extended model that jointly predicts
connectives and their arguments. As demonstrated
in Section 1, themain challenge in this task is that a
text contains multiple, potentially overlapping, re-
lations that have to be predicted.
Our approach is to decompose the text (and

thereby the SDP task) into a series of smaller texts,
viz. into a sequence of overlapping windows. For
each window, the statistical model is trained to rec-
ognize a possibly partial relation. Afterwards, a fi-
nal aggregation process combines the individual
window predictions and thus realizes the argument
extraction for a full text.
We describe the baseline discourse parser in
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Figure 2: Baseline architecture proposed by Lin et al.
(2014) that has been used throughout the experiments.

Section 3.1. The window model for predicting just
arguments is explained in Section 3.2, and its ex-
tension to also handle connectives in Section 3.3.
Thereafter, we turn to more training and evaluation
details in Section 4.
3.1 Baseline: Shallow Discourse Parser
Our baseline discourse parser is inspired by the ar-
chitecture of the (Lin et al., 2014) parser and con-
sists of several components within a pipeline (see
Figure 2). First, explicit relations are identified by
classifying connectives, deciding the relative posi-
tion of the first argument (whether it is contained
in the previous sentence or the same sentence as
the second argument), then delimiting the argu-
ments, and finally recognizing the sense. In a sec-
ond phase, implicit relations are classified between
adjacent sentences where no explicit relations were
found. For the argument extraction component, Lin
et al. use a constituent-level approach by iterating
over possible subtrees within a sentence and select-
ing the most likely Arg1 and Arg2.
3.2 Window-based Argument Prediction
For our first approach, we propose a neural network
as shown in Figure 3 to predict discourse relations
given a sequence of words. Specifically, it oper-
ates on a window of words, which we build around
a connective that we assume to have been identi-
fied by a previous module in the pipeline. Then, for
each token the prediction task is defined as a four-
way classification problem, i.e., the label is one

word window

BiLSTM

Dense (relu)

Dropout (0.2)

Embedding (Glove)

Dense (softmax)

label window

Figure 3: Bidirectional LSTMmodel architecture. First,
tokens in a window are processed sequentially using the
recurrent network. Then, each time step is transformed
independently using one dense layer for transformation
and one dense layer for the final prediction.

of None, Arg1, Arg2, or Conn1, as in the work
by Hooda and Kosseim (2017) and similar to the
window-based approach of Ghosh et al. (2011a).
Each word in the input sequence is embed-

ded into lower-dimensional space. Because of the
small size of the PDTB corpus, we use pretrained
word embeddings, and these are further processed
with a bidirectional Long Short-TermMemory net-
work (BiLSTM). LSTMs have shown better per-
formance compared to simple recurrent neural net-
works due to their higher capacity for storing im-
portant information over longer distances. Further
improvements are gained through the bidirectional
processing of sequential information (Graves and
Schmidhuber, 2005). We keep hidden states for
each time step and propagate them to the next layer.
For our BiLSTM model, the hidden states are pro-
cessed independently by a dense layer and finally
are given to the top output layer (see Figure 3). Be-
tween the two dense layers, an additional dropout
layer is used for better generalization.
3.3 Joint Prediction of Arguments and

Connectives
To apply our model on a text without pre-identified
connectives (i.e., to jointly predict connectives and
their arguments), we need to adapt training and in-

1Notice that while the previously-given connective was
used to define the position of the window, we still predict con-
nectives in this model in order to support argument identifica-
tion (but we will not evaluate the performance on connectives
in this model).
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Figure 4: Overview of the proposed method consisting
of decomposition, prediction, and aggregation.

ference, as the number of discourse relations and
their positions are not known in this scenario. Also,
as shown in the introductory example in Table 1,
assigning classes to tokens is not a global decision,
but has to be decided locally depending on the re-
lation currently predicted. For this reason, we in-
troduce the decomposition of the task into (i) han-
dling multiple overlapping windows and (ii) a sub-
sequent aggregation of the window-level predic-
tions into the final set of predicted relations. The
challenge in this aggregation approach is to iden-
tify valid predictions and further combine multiple
possibly contradictory predictions pointing to the
same relation. While we restrict our work here to
explicit relations, we will show in our last experi-
ment in Section 4.6 that this approach can also be
applied to the case of implicit relations, merely by
changing the data that the model is trained on.
3.3.1 Decomposition
The first part of our joint prediction method is to
decompose the text into multiple overlapping win-
dows that contain token embeddings. This is done
by, first, padding the text at the beginning and at
the end such that each token represents the center
of one created window.
Then, for each window, we predict whether it

contains a (possibly partial) relation or not, and
which tokens belong to a particular part of the re-
lation. Thus, for each token our model predicts one

of four classes, None, Arg1, Arg2, or Conn.
We illustrate the process using the first exam-

ple from Table 1. We cannot simply split the
paragraph into windows and assign classes, be-
cause individual tokens have different labels de-
pending on the context. Therefore, we choose
the centering of the beginning of Arg2 as a
sufficient criterion (for generality to potentially
cover both explicit and implicit relations, we
did not choose the connective position as iden-
tifier). Thus, we extract three windows around
the words “[if][you][think]”, “[.][you][’re]”, and
“[and][you][are]”. Because it is possible that a
window’s center is placed at the beginning or the
end of a text, those have to be padded for having
the same size as other complete windows.
The main challenge in jointly predicting con-

nectives and their arguments is caused by multiple
relations with overlapping arguments. To handle
this, we create a unique identifier for each relation
by using the position where the second argument
of a relation begins. This forces the model to rec-
ognize relations only in the case when their second
argument is centered in the window, and otherwise
ignore them as being not in the focus of the current
window.
For training the model, the data is prepared in

such a way that it satisfies the properties above. For
each relation instance in the PDTB, we use a fixed-
size window that is placed on the text such that
the relation has Arg2 centered in this window. To
further augment the data, we do not only use per-
fectly centered relations but additionally move the
window one and two words to the left and to the
right. Thus, for each relation in a text, we create
five training instances. For each window, we keep
the words and their argument labels, i.e., whether
for a particular relation, a word belongs to one of
the arguments, to the connective, or to neither of
them. These windows, which correspond to a rela-
tion, are collected as positive training samples. Ad-
ditionally, all windows that have not been extracted
so far are gathered as negative training samples.
For these negative training samples, although they
might identify relations partially, all word labels
are set to None. In this way, we want to force the
model to learn to identify only relations for which
Arg2 is centered within a window.
In short, this process tries to include both argu-

ments of the relation within a single window, but
for longer arguments, this is not guaranteed. In this
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approach, relations where an argument’s span is
beyond the window size remain incomplete for the
training procedure.
3.3.2 Aggregation
After training a model for individual windows,
the remaining challenge is to assemble the final
set of relation predictions from all individual win-
dow predictions. We can distinguish the following
cases: A window can contain

• only None labels (and thus no relation is to be
extracted at all), or

• an invalid relation, where one or both argu-
ments are empty, or

• a partial relation, where one or both of the ar-
guments is incomplete, or

• a completely predicted relation.
To explain the aggregation step in detail, we de-
fine relations more formally and then describe the
aggregation of individual relations based on their
distance.

A relation is defined as a tuple R(a1, a2, c) of
three sets, one for the first argument, the second
argument, and the connective. Each of these sets
contains the position indices of the includedwords,
and hence these three sets are, by definition, dis-
joint. Wemaintain this property throughout the ag-
gregation process of two relations.
Given two relations r1, r2, we define the merge

of two relations, r = r1 ∪ r2, as follows:
rc = (rc1 ∪ rc2) (1)
ra2 = ra21 ∪ ra22 ⧵ rc (2)
ra1 = (ra11 ∪ ra12 ) ⧵ (rc ∪ ra2) (3)

The crucial step is to decide whether two rela-
tions that are labeled in two consecutive windows
are to be merged, i.e., to decide whether they de-
note the same relation. To this end, we measure
the distance between two relations andmerge them
if the distance is below a certain threshold. Here
we make use of the Jaccard distance as a distance
metric for sets (but other metrics could be used as
well). The Jaccard distance is based on the Jaccard
index, which measures the similarity between fi-
nite sets by comparing the union and intersection
of those sets:

J (A,B) = 1 − |A ∩ B|
|A ∪ B|

None Arg1 Arg2 Conn
Exp1 70.68 % 14.43 % 13.79 % 1.10 %
Exp2 85.34 % 7.21 % 6.89 % 0.56 %
Exp3 82.78 % 8.60 % 8.37 % 0.25 %

Table 3: Class label ratio calculated on the extracted
training windows.

We define the distance of two relations
Jrel(r1, r2) as the mean of the two Jaccard
distances between the relation’s arguments.

Jrel(r1, r2) =
J (ra11 , ra12 ) + J (ra21 , ra22 )

2

Note that for the calculation of the distances of the
second arguments, we regard the connective as part
of second arguments. This gives some, but not too
much, influence to the connectives on the distance
measure, compared to the influence of the argu-
ments.
4 Experiments and Results
As described above, we experiment with two tasks
of different complexity. The first experiment is
a simplification of the general argument labeling
problem,where a connective has already been clas-
sified. Because the position of the window is thus
already determined, no aggregation is necessary
for this scenario. For the second and third experi-
ment, the exact positions of relations are not given
and thus we follow our sliding-window approach.
In all our evaluations, we use precision, recall, and
F1 score of exact matches, in order to be compara-
ble with the previous work.
All models are trained for 25 epochs on the cor-

responding training set, specific for a certain task.
We use pretrained word embeddings with 300 di-
mensions as described later in Section 4.1. Each
LSTM has a hidden layer of size 512. The out-
put of each LSTM is concatenated per step, thus,
the output of the BiLSTM results in 1024 dimen-
sions per step. The dense layer with ReLU acti-
vation function on top of the BiLSTM has 64 di-
mensions, and the dropout works with a 0.2 prob-
ability. Finally, all models are trained using the
Adam optimizer (Kingma and Ba, 2015). Because
the classes are unbalanced throughout the experi-
ments (compare Table 3) the cross-entropy loss is
weighted (King and Zeng, 2001) according to the
per-class occurrences in the extracted training win-
dows.
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4.1 Word Embedding
After the extraction of a vocabulary from the train-
ing corpus, we identify each token by a unique in-
dex. Every word that is not listed in the vocabu-
lary is substituted by a special index for unknown
words.
Because of the small size of the corpus, it is

common to use pretrained embeddings (Mikolov
et al., 2013) instead of training them solely on
the given training corpus. In our experiments,
we use global vectors for word representations
(GloVe) (Pennington et al., 2014), similar as done
by Hooda and Kosseim (2017). In general, GloVe
embeddings have yielded promising results for a
variety of related tasks. Hence, in the present study,
we use GloVe without comparatively evaluating
different pretrained embeddings.
Since both models, the word embedding model

and ours, are trained on different corpora, the vo-
cabularies also differ. First, we initialize all words
with a random embedding. Then, for each word
that is found in the set of pretrained embeddings,
we replace the random embedding by its pretrained
equivalent.
A minor disadvantage of word embeddings is

that they are learned on a syntactic level. This
means that although two words look similar in
terms of characters, they might have different
meanings depending on the words in their con-
text. As a consequence, we follow the idea of using
LSTMs on top of the word embeddings in order to
account for the context in the individual represen-
tation.
In contrast to Hooda and Kosseim (2017), we

avoid dynamically retraining the word vectors
throughout the training process. Our earlier exper-
iments showed that in our setting, training the em-
beddings has no positive effect on the final result,
and thus, by avoiding this step, we also reduce the
number of parameters that have to be trained.
4.2 Data Preparation
In our experiments, we follow the CoNLL shared
task on shallow discourse parsing and work on
their prepared dataset. This dataset differs slightly
from the original PDTB2 corpus which is caused
by the merge of a few sense labels and the clean-
ing of the PDTB data. For each relation in the
CoNLL corpus, we extract a fixed-size window
where the second argument is centered, i.e., where
Arg2 starts in the middle of the window. To pro-

Explicit Implicit
Perc. Span

Length
Distance Span

Length
Distance

min 2 0 2 0
20 % 14 2 20 2
40 % 21 2 29 2
60 % 29 3 38 2
80 % 44 4 49 3
max 1167 987 437 249

Table 4: Statistics calculated from the CoNLL2016
dataset. Overview of span lengths containing both ar-
guments and distances of arguments for specific per-
centiles.

Precision Recall F1
Explicits

Conn 83.42 79.82 81.58
Arg1 28.75 27.51 28.12
Arg2 45.54 43.57 44.54

Arg1+Arg2 27.70 26.51 27.09
Non-Explicits

Arg1 67.85 36.05 47.08
Arg2 67.65 35.94 46.94

Arg1+Arg2 59.94 31.84 41.59
All

Conn 83.42 79.82 81.58
Arg1 51.32 34.89 41.54
Arg2 58.28 39.62 47.17

Arg1+Arg2 45.38 30.86 36.74

Table 5: Evaluation of our baseline pipeline architec-
ture. 2

duce more training data, we also extract windows
that are shifted by small margins (up to two posi-
tions) to the left and to the right. Each of these win-
dows constitutes a positive example of a discourse
relation the model should learn. Conversely, every
window of the same size where Arg2 is not cen-
tered is added as a negative example. Even though
a negative example may contain parts of some ar-
guments, the words are labeled with None in or-
der to force the model to only recognize relations
where Arg2 starts in the middle of the window.
We keep punctuation as part of the vocabulary, as
it might capture relevant discourse information.
In our evaluations, all models are trained on a

window size of 100 tokens. Based on the span
lengths found in the corpus, shown in Table 4, we
choose this window size, as it captures a solid ma-
jority (over 80%) of the relations.
4.3 Baseline
The baseline model is inspired by Lin et al. (2014)
who proposed a pipeline approach of several com-
ponents. For our comparison, we focus on those
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Label Precision Recall F1
Arg1 46.69 44.59 45.62
Arg2 68.94 65.83 67.35

Arg1+Arg2 48.16 45.99 47.05

Table 6: Exact match of explicit arguments for a given
connective.

components that are responsible for argument ex-
traction: the connective classifier, argument posi-
tion classifier and argument extractor in the explicit
case, as well as the extraction of non-explicit argu-
ments (cf. Figure 2). In contrast to our own model,
which works on token level prediction, Lin et al.’s
argument extraction model works on subtree level.
The performance reported in Table 5 shows

the evaluation scores following the CoNLL shared
task for our reimplementation of the pipeline de-
scribed by Lin et al. Although these numbers are
lower than those reported for the original imple-
mentation (e.g. predicting both explicit arguments
is 10% worse), they may serve as a comparison
and indicate that a re-implemenation of this sys-
tem is not trivial. The values give different per-
spectives on the data, a full evaluation (All), and
more detailed views on both parts (Explicits and
Non-Explicits), which correlate with the structure
of the architecture.
4.4 Connective Arguments
In the first experiment, we train a model to substi-
tute the components for argument position and ar-
gument extraction similar to Ghosh et al. (2011a).
The training data contains only positive explicit
samples, since the model is never applied to other
situations than these. With our procedure de-
scribed above, we extract 73.610 samples from the
corpus. For inference, we use a fixed-size window
centered around the previously identified connec-
tive. The labeled indices for Arg1 and Arg2 are
taken without any further processing.
The results in Table 6 show an increase of the

values for Arg1 and Arg2 compared to our base-
line.
4.5 Explicit Argument Extraction
The second experiment generalizes the window-
based model and predicts arbitrary explicit rela-
tions for a text. This is challenging compared to
the former experiment, because the connective is
missing and therefore the model does not know the
exact position of a relation. For this reason, we in-

Label Precision Recall F1
Conn 69.25 44.56 54.23
Arg1 36.52 23.50 28.59
Arg2 62.96 40.51 49.30

Arg1+Arg2 40.29 25.93 31.55

Table 7: Exact match of explicit arguments for joint pre-
diction of connectives and their arguments.

Precision Recall F1
Explicits

Conn 71.35 62.73 66.76
Arg1 33.16 29.15 31.03
Arg2 52.47 46.13 49.09

Arg1+Arg2 37.25 32.75 34.86
Non-Explicits

Arg1 41.99 29.26 34.49
Arg2 44.32 30.88 36.40

Arg1+Arg2 40.16 27.99 32.99
All

Conn 71.35 62.73 66.76
Arg1 40.95 31.77 35.78
Arg2 51.47 39.94 44.98

Arg1+Arg2 41.83 32.45 36.55

Table 8: Evaluation of the joint extraction of explicit
and non-explicit arguments.

troduced the decomposition of a discourse with the
sliding window approach and further introduce an
aggregation method to get the final set of predicted
relations.
The training data additionally contains negative

explicit samples in contrast to the first experiment.
The same amount of negative instances as posi-
tive instances is sampled from all possible nega-
tive instances. We extract twice as much training
instances as before.
As shown in Table 7, the scores for connec-

tive identification are not as high as achieved with
a specialized model (as in the baseline). Further,
the sores for argument extraction also decrease
for Arg2 slightly and for Arg1 even more. This
is probably caused by the unbalanced data, as
None labels occur much more often than other la-
bels (see Table 3).
4.6 Explicit/Implicit Arguments Extraction
In the final experiment, we examine the full capac-
ity of our model by using it for jointly predicting
both explicit and implicit relation arguments. The
training data consists of explicit and implicit rela-
tion instances, and for each positive sample, one
negative sample is added to the training data. In
sum, the model is trained on 325.350 instances.
As expected, the number for identifying non-
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explicit relations is lower than the baseline (see
Table 8). In contrast to our model, the baseline
always selects two adjacent unlabeled sentences,
which achieves good results despite its simplicity.
Our models seems unable to recognize any sensi-
ble underlying pattern.
5 Discussion
Usually, different specialized models are com-
bined to label arguments, either on a constituent-
level (Lin et al., 2014; Kong et al., 2014) or
on a token-level (Ghosh et al., 2011a,b). As we
explained earlier, though, a crucial difference is
their usage of highly-engineered linguistic features
(e.g., cue words, syntactic classes, word pair re-
lations, production rules), which our system does
not use. Instead, it relies solely on word (token) se-
quences encoded by pretrained embeddings, which
thus represent a certain amount of semantic infor-
mation.
Our comparison with the re-implemented

pipeline architecture is quite weak, as our imple-
mentation does not perform as good as the original
work that relies on manually-engineered rules.
While our approach can obviously not compete

with the knowledge-intensive approaches ofOepen
et al. (2016) and Stepanov and Riccardi (2016), a
fair comparison is that to the similar approach of
Wang et al. (2015); here, our system clearly outper-
forms the earlier result. They report exact match
F-measure of 36.32% for Arg1 and 41.70% for
Arg2. Compared to that system, our first experi-
ment’s approach where the connective was given
(Section 4.4) performs much better. In comparison
with our second experiment, our system’s scores
are lower for Conn and Arg1, but still higher for
Arg2 and both arguments extraction. A big prob-
lem in joint connective–argument extraction is the
limited amount of data and the unbalanced class
labels. We tried to work on the second problem
by using weighted losses based on the class occur-
rences.
6 Conclusions and Future Work
In this work, we integrate a BiLSTM model in
the shallow discourse parsing framework. We de-
scribed tasks of different complexity in argument
labeling and explained different ways of applying
our neural model. For the general task of argument
labeling, we adapt a token-level window-based ap-
proach and introduce a novel aggregation method,

which is needed for combining individual predic-
tions into the final set of relation arguments. We
explored the limits of this approach by studying
the joint prediction of the arguments of explicit and
implicit relations.
The aggregation of partial relations is done us-

ing a distance threshold. For gaining possible im-
provements on the final results, it may well be
worth studying different methods for merging con-
flicting relation predictions as well as defining dif-
ferent ways of computing the distances of individ-
ual predictions.
Because of the simplified nature of our archi-

tecture, we think that there are further interesting
potentials for future work. Formulating the new
window-training problem makes it possible to eas-
ily replace our proposed model by other architec-
tures with more capacity. At the same time, we
see this way of solving argument extraction as one
step toward reducing the complexity and degree
of error propagation in the more traditional SDP
pipeline architecture.
We release the source code of our system3 to

promote future research.
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Abstract

Content of text data are often influenced by
contextual factors which often evolve over
time (e.g., content of social media are often in-
fluenced by topics covered in the major news
streams). Existing language models do not
consider the influence of such related evolv-
ing topics, and thus are not optimal. In this
paper, we propose to incorporate such topical-
influence into a language model to both im-
prove its accuracy and enable cross-stream
analysis of topical influences. Specifically, we
propose a novel language model called Topical
Influence Language Model (TILM), which is a
novel extension of a neural language model to
capture the influences on the contents in one
text stream by the evolving topics in another
related (or possibly same) text stream. Experi-
mental results on six different text stream data
comprised of conference paper titles show that
the incorporation of evolving topical influence
into a language model is beneficial and TILM
outperforms multiple baselines in a challeng-
ing task of text forecasting. In addition to serv-
ing as a language model, TILM further enables
interesting analysis of topical influence among
multiple text streams.

1 Introduction and Motivation

Language modeling plays a central role in many
Natural Language Processing (NLP) tasks and ap-
plications. Neural language models have attracted
much attention recently due to their superior per-
formance (Dieng et al., 2016; Kiros et al., 2014;
Kiddon et al., 2016; Ranzato et al., 2015; Devlin
et al., 2018; Peters et al., 2018). One common lim-
itation of the existing neural language models is
that they cannot model the potential influence of
related contextual factors on text content genera-
tion. However, as text data are produced by hu-
mans based on their observations of the real world,
the content of text data are generally influenced by
many contextual factors, and thus, it is necessary

to model the influence of those contextual factors
on the generation of text content in order to opti-
mize language modeling. For example, the content
of social media may be influenced by the popular
topics in news stream; another example is that the
content of research papers in one research commu-
nity such as Information Retrieval are often influ-
enced by the topics of research papers published in
the same community in the past or research papers
published in another related research community
such as Machine Learning since the general algo-
rithms developed in the latter may be applied to
solve application problems in the former.

In this paper, we propose to incorporate such
topical influence into a language model to both im-
prove its accuracy and enable cross-stream anal-
ysis of topical influences. Specifically, we pro-
pose a novel language model called Topical Influ-
ence Language Model (TILM), which is a novel
extension of a neural language model to capture
the influence on the contents in one text stream
by the evolving topics in another related (or pos-
sibly same) text stream. In other words, TILM
is a recurrent neural network-based deep learning
architecture that incorporates topical influence to
model the generation of a dynamically evolving
text stream. Since most text data have time stamps
associated with them, which generally indicate the
time when a text document was produced, text
data can often be regarded as a sequence / stream
of text objects ordered by their time stamps. TILM
is designed to model the generation of such a text
stream, i.e., the generation of text data conditioned
on a given time stamp. We also assume that the
distributions of words in the text data from two dif-
ferent timestamps are somewhat different, which
allows us to capture the evolution of topics in the
stream data.

TILM is comprised of three basic components.
The first component is the Sequence Generator,
which can be any current neural language model.
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The second component is the Topic Generator
which captures the trend of different topics of in-
terest within the influencing text stream, which can
be based on any topic models, e.g., LDA. Finally,
the third component is a novel Influence Gener-
ator, which ensures that TILM can capture topi-
cal influence corresponding to the input timestamp
and incorporate it into the generation process to
ensure that the generated text is consistent with
that particular timestamp from the perspective of
topical influence. TILM combines these three es-
sential components into a single unified model and
learns all their optimal parameter values from a
training text stream corpus with time stamps.

We conducted comprehensive experiments with
six different sets of publication stream datasets to
evaluate the effectiveness of TILM. These datasets
contain titles of the papers published in differ-
ent machine learning theory and applied machine
learning conferences over 20 years, which were
collected from the Open Academic Graph. Ex-
perimental results show that the incorporation of
topical influence into a language model is benefi-
cial and TILM outperforms multiple baselines by
a clear margin in a challenging task of text fore-
casting. We found that effectively capturing the
evolving topical influence is the key to improv-
ing the accuracy of language modeling. In addi-
tion to serving as a language model, TILM fur-
ther enables interesting analysis of topical influ-
ence among multiple text streams.

2 Related Works

There has been a surge of research interest in the
use of neural network (NN) architectures for lan-
guage modeling and automatic text generation in
recent years (Dieng et al., 2016; Kiros et al., 2014;
Kiddon et al., 2016; Ranzato et al., 2015). The
first NN-based text generator was proposed by
Kukich (Kukich, 1987), although generation was
done only at the phrase level. Recent advances in
recurrent neural network-based language models
(RNN-LM) have demonstrated the value of dis-
tributed representations and its power to model ar-
bitrarily long dependencies (Mikolov et al., 2010,
2011). Sutskever et al. (Sutskever et al., 2011)
introduced a simple variant of the RNN that can
generate meaningful sentences by learning from a
character-level corpus. Mao et.al. have demon-
strated how Recurrent Neural Networks, specially,
Long-Short-Term-Memory (LSTM) is effective in

solving various text generation tasks (Mao et al.,
2014). TopicRNN proposed by Dieng (Dieng
et al., 2016) integrated the merits of RNNs and
latent topic models to capture long-range seman-
tic dependency. Recently, Generative Adversar-
ial Nets (GANs) that use a discriminative model
to guide the training of the generative model has
shown promising results in automated text gen-
eration (Rajeswar et al., 2017; Lin et al., 2017;
Che et al., 2017; Zhang et al., 2017). All these
text generation techniques have also been vastly
studied for generating summary for text corpora
[see (Gambhir and Gupta, 2017) for a comprehen-
sive survey]. Most recently, BERT (Devlin et al.,
2018) and ELMo (Peters et al., 2018) have shown
very promising performance. However, none of
these existing methods can model topical influ-
ences from related contextual factors on genera-
tion of text data. While external topical influences
have been studied in the context of search behav-
ior modeling (Karmaker Santu et al., 2017, 2018),
similar study has not been pursued yet for text gen-
eration modeling. Specifically, current text gen-
eration processes are static processes with no no-
tion of time and thus, can not model dynamically
evolving text stream data corresponding to evolv-
ing influences of related text streams, which the
proposed TILM can do.

3 Topical Influence Language Model

We first briefly discuss some preliminaries and no-
tations. Next, we present the three major com-
ponents that are the building blocks of the pro-
posed Topical Influence Language Model (TILM)
and then present how TILM combines them into a
single unified model.

3.1 Preliminaries and Notations

The goal task involves performing language mod-
eling on each text stream within a set of text
streams, S = {s1, s2, ..., sm}, where, |S|= m.
Each text stream consists of a set of tuples in
the form of (document, timestamp) , e.g., s1 =
{(d1, t1), (d2, t2), ....}. Each document is a se-
quence of words, e.g., d1 = [x1x2...], where, each
xi ∈ V and V is the vocabulary set. For model-
ing purposes, we group the documents within each
stream into different bins based on their corre-
sponding timestamp. The time ranges [tstart, tend]
used to create these bins are defined by the user
and can be in varying granularity like year, month,
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day or seconds. Each bin is then assigned a
discrete timestamp T and all the documents in
that bin share the same timestamp, e.g., all pa-
per published in different machine learning con-
ferences during year 2016 are assigned the times-
tamp T2016 = [Jan2016, Dec2016].

3.2 Sequence Generator
Sequence Generator is the basic component of
TILM which generates the next word xi in the
sentence given i − 1 previous words. Thus, Se-
quence Generator is essentially a language model
which generates a probability distribution over a
sequence of words that can be used to predict the
next word in the sequence. Any sequence model-
ing framework, e.g., Hidden Markov Models, Re-
current Neural Networks etc. can work as a se-
quence generator. For the experiments described
in this paper, we chose recurrent neural network
with LSTM cells as the Sequence Generator due
to its recent promising results obtained for lan-
guage modeling tasks (Kiros et al., 2014; Kim
et al., 2016). Given the previous i words, i.e.,
x1:i, the recurrent neural network based language
models compute the conditional probability for the
next word yi = v for v ∈ V , the vocabulary set, by
computing a hidden state hi and passing it through
a Softmax function:

P (yi = v|x1:i) ≡ P (yi = v|hi) (1)

P (yi|hi) ∝ exp(WΩhi +BΩ) (2)

hi = Ω(hi−1, xi) (3)

Here, Ω can be a standard RNN cell or more
complicated cell like LSTM, GRU etc and W and
B are linear transformation coefficients. Output at
step i, i.e., yi is fed as input for step i + 1, thus,
xi+1 = yi.

3.3 Topic Generator
The next component of TILM is the Topic Gen-
erator. The primary purpose of this component
is to analyze different topics across a related text
stream data (let us call it s) and compute the evolu-
tion of topic distributions within that stream over
time. It takes all past text stream data of s as in-
put and applies a probabilistic topic model to in-
fer n (a user defined parameter) different topics,
each represented with a unique distribution over
the entire vocabulary. Again, many different topic
models can be potentially used, but in our exper-
iments, we chose LDA (Blei et al., 2003) as the

Topic Generator since it has been the most pop-
ular topic modeling technique in the last decade.
Once n topics are identified, the Topic Generator
takes all text content from each discrete timestamp
T (defined in section 3.1) separately and computes
the distribution of n topics over each timestamp,
which we denote by θT .

The Topic Generator also provides a sub-
component, i.e., History Extractor, which, given a
particular timestamp T as input, retrieves the topic
distributions of previous r (a user defined param-
eter) timestamps computed by LDA. We mathe-
matically denote the output of History Extractor
by θT−r:T−1, where, θi:j denotes topic distribu-
tions from timestamp i to j augmented into a sin-
gle vector. This means the cardinality of vector
θT−r:T−1 is r × n. In the case of modeling in-
fluence from multiple related text streams and as-
suming we have m such streams, we can simply
concatenate θT−r:T−1 from each stream to create
a single vector of dimension r × n×m.

3.4 Influence Generator

The Influence Generator is a pivotal component
of TILM, which models the evolving topical in-
fluence during the text generation process. Given
a particular timestamp T , we represent topical in-
fluence by a real valued vector (γT ) of dimension
K (another user defined parameter), which is es-
sentially the output of Influence Generator. The
input to the Influence Generator is the r×n dimen-
sional vector of topic distributions from previous r
timestamps of a related text stream, i.e., θT−r:T−1

(assuming T as the current timestamp). Thus, In-
fluence Generator essentially maps a r×n dimen-
sional topic vector to a K dimensional influence
vector. Although any function that can perform
this mapping can resemble as Influence Generator,
we chose a feed-forward neural network for TILM
due to its capability of approximating a wide fam-
ily of functions. Without loss of generality, we
used ReLU activation units in the hidden layers.
Once the influence vector (γT ) is computed, it is
then injected as a bias into the Sequence Genera-
tor when generating the next word (xi) in the se-
quence (More details in section 3.5).

Here, we assume that the influence vector γT

corresponding to current timestamp T , can be ap-
proximated from the historical topic distribution
θT−r:T−1. This assumption is reasonable, because
most text stream data do not evolve dramatically
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over night, rather their topical shift happens quite
gradually. Take for example some particular re-
search community like SIGKDD. The topic distri-
bution in papers published in a particular year is
unlikely dramatically different from the previous
two years, rather they are somewhat correlated.

Mathematically, let θT denote the topic distri-
bution for the generated text at timestamp T , then
the function of Influence Generator is expressed
as follows (‖ means the concatenation operation):

θT−r:T−1 = θT−r‖θT−r+1‖....‖θT−1 (4)

γT = Γ(θT−r:T−1)

= WΓ
2 ·
[
ReLU(WΓ

1 · θT−r:T−1 +BΓ
1 )
]

+BΓ
2

(5)
3.5 TILM as a Unified Model
Now that we have presented the three building
blocks of TILM, this section presents how these
different components interact with each other and
work as a unified architecture to model stream text
data by capturing the fluctuations of topical in-
fluence over time. The process can be thought
of as generating text corresponding to a particular
timestamp T . Thus, the whole process starts with
a timestamp T as input and the start-of-sentence
marker (let’s call it #) as the sequence generated
so far. The next task is to generate one word at a
time iteratively until the end-of-sentence marker
is generated (let’s call it *). The exact process
of generating the next word yi in the sequence is
demonstrated in Figure 1.

History

Topic
Distribution

n

KT

Topic
Generator

Sequence
Generator

V

Hidden
Layer

LDA

LSTM

History
Extractor

X   
(Sequence)

1:t

Embedding
Mapping

Influence
Generator

X t
c

r x n

( E+K )

X t ( E )

t ( K )θ

r

Figure 1: TILM architecture: Topic Generator (Red),
Influence Generator (Green) and Sequence Generator
(Purple)

The first step of generation process is to infer
n different topics from a related (possibly same)
historical text stream and compute the topic distri-
butions for each unique timestamp observed in the

training data. Next, given a particular timestamp
T as input, the History Extractor Module extracts
the historical topic distributions corresponding to
previous r timestamps and concatenates them to
generate a vector representation of the history, i.e.,
θT−r:T−1 of dimension r × n (see the previous
subsection for details). θT−r:T−1 is then passed
through Influence Generator Γ which outputs the
K dimensional influence vector γT . For a partic-
ular timestamp T , γT is fixed and can be re-used
for any text generation task tied to the timestamp
T . The bottom middle section (Green Color) of
Figure 1 shows the feed-forward neural network
of Influence Generator.

The next trick in TILM is to concatenate the
influence vector (γT ) with the vector representa-
tion of each word in the sequence generated so
far. This means, for each word in {x1, x2, ..., xi},
γT is concatenated to each of their vector repre-
sentations to create an augmented representation
{xC1 , xC2 , ..., xCi }, i.e., while generating the next
word xi+1 = yi in the sequence, all the previ-
ous words in the sequence share the same topi-
cal influence represented by vector γT . This aug-
mented representation essentially allows TILM to
capture the dynamic nature of text stream data as
the influence vector injects evolving topical influ-
ence into the generation process. Finally, the aug-
mented representations {xC1 , xC2 , ..., xCi } are fed
into the recurrent neural network model to com-
pute a hidden state hi . The final output vector Y
is computed by applying a linear transformation
on hi. Note that, vector Y is a real-valued vector.
We apply a Softmax function on Y to convert it
into a valid probability distribution, sampling from
which, the next word in the sequence is generated.
The mathematical formulas behind the entire gen-
eration process is summarized below:

Y = WΩ · hi +BΩ, (6)

hi = Ω(hi−1, x
C
i ), (7)

xCi = xi‖γT . (8)

Thus, Y can be written as follows:

Y = WΩ · Ω(hi−1, xi‖γT ) +BΩ. (9)

Here, γT is obtained as follows:

γT = WΓ
2 ·

[
ReLU(WΓ

1 · θT−r:T−1 +BΓ
1 )

]
+BΓ

2 . (10)

Here, θT−r:T−1 is the concatenation of topic dis-
tribution vector from previous r timestamps.
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Finally, we apply a Softmax function on the out-
put vector Y to convert it into a valid probability
distribution P (yi|hi), as follows:

P (yi = v|hi) =
exp(Yi)∑|V |
j=1 exp(Yj)

. (11)

The next word yi = xi+1 in the sequence is gen-
erated by sampling from this conditional distribu-
tion. TILM repeats this whole process multiple
times to generate new words in the sentence until
a end-of-sentence marker is generated. The whole
process is summarized in Algorithm 1, which de-
scribes the generation of a single sentence by
TILM for a particular timestamp T .

Algorithm 1: Topical Influence Language
Model (TILM)

1 Process TILM (T,Θ,Γ,Ω, r, n,K,E);
Input : T : discrete timestamp

Θ: Topic Generator (n: number of topics)
Γ: Influence Generator (K: cardinality of

influence vector)
Ω: Sequence Generator (E: cardinality of

word vector)
r: History Window

Output: Generated sentence X corresponding to T
2 x← {start of sentence marker}
3 θT−r:T−1 ← Θ(θT−r)‖Θ(θT−r+1)‖...‖Θ(θT−1),

Topic History
4 γT ← Γ(θT−r:T−1), Generate Influence Vector for

timestamp T
5 i← 1
6 repeat
7 for j ← 1 to i do
8 xCj ← xj‖γT , where, ‖ is concatenation

operation
9 end

10 compute hi ← Ω(xC1:i) by applying Ω recursively
11 Draw word yi ∼ P (yi|hi), where

P (yi|hi) ∝ exp(WΩhi +BΩ)
12 x← x ∪ {yi}
13 i← i+ 1
14 until end of sentence marker is generated;
15 return x

3.6 Estimation of TILM parameters
In this section, we present the estimation tech-
niques for the optimal values of TILM model pa-
rameters. Close observation of Equation 6-10 re-
veals that TILM contains the following set of pa-
rameters:

W =
{
WΩ, BΩ,WΓ

1 , B
Γ
1 ,W

Γ
2 , B

Γ
2

}
(12)

We find the optimal values for the parameter set
W by maximizing the log-likelihood of the train-
ing text stream data. The optimization problem
thus can be written as follows:

W∗ = argmax
W

logL(x1x2...xn|W ) (13)

As maximizing the log-likelihood is the same
as minimizing the negative of the log-likelihood
function and as we know the exact word which
comes next in the sequence during the training
process, our optimization problem boils down to
minimizing the softmax cross entropy with logits
between the conditional distribution P (yi|hi) and
the one-hot encoding of the actual word that ap-
pears next in the training data. Softmax Cross En-
tropy with logits essentially measures the proba-
bility error in discrete classification tasks in which
the classes are mutually exclusive. Thus,

W
∗

= argmin
W

{− logL(x1x2...xn|W )} (14)

= argmin
W



−

N∑

i=1

∑

v∈V

I(xi, v) · logP (xi = v|hi(W ))




(15)

Here, N is the total number of words in the
training data. I(p, q) is an indicator function that
returns 1 if p = q and 0 otherwise.

We used back-propagation to learn the weights
of the network connection edges of TILM. Specif-
ically, we used Adaptive Moment Estimation,
which is a popular stochastic gradient descent
technique and commonly known as Adam Opti-
mizer, to compute the gradient for minimizing our
objective function in Equation 15. Adam Opti-
mizer is an update to the RMSProp (Hinton et al.,
2012), which is another popular optimizer. For
more details, refer to (Kingma and Ba, 2014).

4 Experimental Design

4.1 Dataset
We experimented with six different sets of publi-
cation title stream data to evaluate the performance
of TILM. These datasets were collected from the
Open Academic Graph1(Tang et al., 2008; Sinha
et al., 2015). Here, we focused on studying how
the paper titles published by different machine
learning related conferences evolved over time. As
community, we considered both the core machine
learning community, e.g., NIPS, ICML as well as
research communities that apply a fair share of
machine learning, e.g, KDD, SIGIR. Specifically,
we considered all the titles of papers published
during the years 1996-2015 by the following six
conference venues: NIPS, CVPR, ICML, KDD,
SIGIR and WWW. For these datasets, the dis-
crete timestamp corresponds to a particular year.

1https://www.openacademic.ai/oag/
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Conf. # of Ti-
tles

Title/
Year

Total
Words

Words/
Title

KDD 5,499 274.95 49,980 9.08
NIPS 6,229 311.45 49,792 7.99

SIGIR 3,994 199.7 34,892 8.73
ICML 4,106 205.3 34,159 8.32

WWW 5,701 285.05 50,253 8.82
CVPR 10,121 506.05 90,890 8.98

Table 1: Dataset Summary

Each row in these datasets consists of a tuple
<timestamp, paper-title> and altogether they con-
tain 35, 650 paper titles in total. Again, each paper
title can contribute multiple instances for predict-
ing the next word which resulted in 309, 966 total
instances (see Table 1).

4.2 Evaluation Roadmap

For a proper evaluation of TILM, we need a goal
task which is both time-sensitive and requires in-
fluence modeling. To address this challenge, we
evaluate TILM using a text forecasting task, where
we attempt to predict the text content at future
timestamps in a text stream based on the past data
from related (including the same) streams.

As the setup of such a text forecasting task is es-
sentially similar to summarizing future text data,
we use two popular evaluation metrics from the
literature of text summarization, i.e., BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), where
a score is generated by comparing the automat-
ically generated text against some reference text
written by humans. However, neither BLEU nor
ROUGE considers the notion of time, thus we
need a time-sensitive customization of both BLEU
and ROUGE. The simplest way to do this is to
compare a TILM generated text for timestamp T
against the original text corresponding to the same
timestamp T . This means, when TILM is asked to
generate a paper title relevant to timestamp T , the
ground truth paper title against which the gener-
ated title is compared must also correspond to the
timestamp T . Another challenge is to match the
generated title against multiple independent pub-
lication titles corresponding to timestamp T . We
address it by adopting a simple greedy approach
where the TILM-generated title is matched against
each ground truth title corresponding to the times-
tamp T and paired with the most similar one in
terms of BLEU or ROUGE score. The matched
ground truth title is then removed from the cor-
pus so that the next generated title cannot match
with the previously matched title again. This en-
sures that TILM is generating a diverse set of titles

rather than just memorizing one single title from
each timestamp T . This way, we can use TILM
to generate multiple sentences (titles) for a par-
ticular timestamp T and then average the scores
of all generated sentences to get an evaluation
score corresponding to timestamp T . This whole
computation process is presented in Algorithm 2,
where we demonstrate the case for time-sensitive
BLEU score. The case for ROUGE is exactly sim-
ilar. Finally, these average scores across different
timestamps can be further averaged to compute the
overall forecasting score2.

Algorithm 2: Time aware BLEU score com-
putation

1 Time aware BLEU (T,G,R);
Input : T : discrete timestamp

G: Generated Text set
R: Reference Text set

Output: Time sensitive BLEU
2 score← 0
3 |G|← number of sentences in G
4 for each sentence g in G do
5 for each sentence r in R do
6 compute BLEU(g, r)
7 end
8 r∗ = argmax

r
BLEU(g, r)

9 score← score+BLEU(g, r∗)
10 R← R− {r∗}
11 end
12 return score

|G|

4.3 Baseline Methods
The main questions we want to answer in our ex-
periments are whether the incorporation of top-
ical influence (from a related stream) is benefi-
cial for language modeling and whether the spe-
cific configuration of TILM we described earlier
is an effective way to capture evolving topical in-
fluence. To answer the second question, we com-
pare TILM with two baselines which are both vari-
ants of TILM but with different ways to capture
influence. The first one is called RILSTM which is
identical to TILM except that the influence vector
of RILSTM is generated randomly as opposed to
generating it by the Influence Generator of TILM.
The second baseline is called IILSTM where we
do not inject the influence vector as a bias into

2All the codes and evaluation scripts for experimen-
tation can be found at the following link: (https://
bitbucket.org/karmake2/tilm/src/master/

783



Acronym Details Nature
Bigram Bigram Language Model Static
LSTM Long short-term memory Static

RILSTM LSTM with Random Influence Dynamic
IILSTM Sampling from Joint LSTM-

Influence Distribution
Dynamic

TILM Topical Influence LM Dynamic

Table 2: Baselines for Quantitative Comparison.

the vector representation of words, rather, the In-
fluence Generator directly computes a probabil-
ity distribution for sampling the next word and
this probability is multiplied with the probability
computed independently by LSTM. To answer the
first question, i.e., to verify the benefit of mod-
eling the evolution of topical influence, we also
compared TILM against two baselines represent-
ing static models: simple bigram language model
and Long-Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997; Gers et al., 1999). Ta-
ble 2 contains the summary of these baseline algo-
rithms along with TILM.

5 Results
This section presents both quantitative and quali-
tative evaluation results for TILM. For all the re-
sults reported in this section, TILM used the fol-
lowing parameter settings: r was set to 3, for both
Sequence Generator and Influence Generator, the
number of hidden units was empirically set to 256,
K (dimension of influence vector) was set to 15,
batch size was set to 2000 instances and the learn-
ing rate was set to 0.01. For the Topic Generator,
n (number of topics) was set to 15, θT was com-
puted from target text stream itself and LDA was
run using α = 0.1 and β = 0.05.

5.1 Quantitative Evaluation
Figure 2 provides the summary of results for com-
paring TILM against multiple baseline methods.
Close examination of Figure 2 reveals that TILM
outperforms all other baselines by a clear margin
for all six datasets. For example, BLEU-4 score
obtained by TILM on KDD Dataset is 0.57, while
LSTM obtained only a score of 0.22. ROUGE-L
score obtained by TILM is 0.63, while it is 0.31
for LSTM. This clearly indicates that TILM can
indeed capture the temporal evolution of KDD pa-
per titles over time and given a input timestamp
T , can generate text relevant to T . Also note that,
RILSTM performs significantly worse compared
to LSTM for most datasets which implies that
the influence vector plays the key role in helping
TILM capture the evolution of the text stream. It

is also noteworthy that IILSTM is the second best
performing method which confirms that injecting
influence vector as a bias into the word represen-
tation works better than using the Joint LSTM-
Influence distribution obtained by simply multi-
plying influence probabilities with LSTM proba-
bilities.

To get more insights into the performance of
TILM, we plot the timestamp-wise performance
of all compared methods for KDD Dataset (BLEU
4) and WWW Dataset (ROUGE L) in Figure 3
[other plots are similar and omitted due to lack
of space]. A general inspection of Figure 3 also
demonstrates the superiority of TILM for the text
forecasting task, where, for any performance met-
ric, TILM obtains the best score across different
timestamps for most of the cases.

External Influence: So far, we have only con-
sidered the influence of the community for which
the text generation is targeted towards. However,
other related communities also pose indirect in-
fluence on the text content generated within the
target community. For example, a shift in the in-
terest of theoretical machine learning conferences
like ICML often influences the research directions
pursued by more applied conferences like KDD
or WWW. To test this hypothesis, we conducted
a series of experiments where instead of using
the influence of the target community (e.g., KDD,
WWW) itself, we computed the influence vector
from the historical topic distribution of a core ma-
chine learning community (e.g. ICML, NIPS). We
call this approach TILM-EI where EI means ex-
ternal influence. We conducted another set of ex-
periments where we computed influence vectors
from both the target community and a related ex-
ternal community and injected both influence vec-
tors into the TILM process. We call this approach
TILM-CI where CI stands for combined influence.
Two sample results from these experiments are
shown in Figure 4, i.e., influence of ICML on
KDD and WWW, respectively. Experiments re-
sults suggest that, although TILM-EI is not always
better than TILM itself, TILM-CI outperforms ba-
sic TILM as TILM-CI combines both internal and
external influence.

5.2 Qualitative Evaluation
In this section, we present qualitative results to
show the great potentials of TILM. We first ran
LDA on paper titles from SIGIR and KDD over
the year range 2000-2015. Number of topics was
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(a) KDD (b) NIPS (c) SIGIR

(d) ICML (e) WWW (f) CVPR
Figure 2: Comparison of TILM against baselines for text forecasting.

(a) KDD: BLEU 4 (b) WWW: ROUGE L

Figure 3: Year-Wise Performance distribution of TILM
against different baseline text generation techniques

Topic Top Keywords
Optimization matrix, gradient, sparse, convex,

stochastic
Search Relevance information, retrieval, search, in-

dex, document
Rule Mining rule, discovery, association, pattern,

mine
Social Networks social, network, recommender,

community, topic
SVM Classifiers supervised, learning, support, vec-

tor, machine
User Behavior
Modeling

log, behavior, personalization,
click, feedback

Table 3: Sample topics Extracted from KDD and SI-
GIR for year range [1995-2015] Using LDA

set to 15. Table 3 shows six example topics along
with top 5 keywords for each topic. Next, we did
some topic trend analysis for SIGIR conference
in Figure 5. For SIGIR, we considered two top-
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(b) ICML influencing WWW

Figure 4: Results of adding external influence into
TILM for text forecasting task.

ics, i.e., User Behavior Modeling [Figure 5a, 5b]
and Search and Relevance [Figure 5c, 5d]. Beside
plotting the original topic-distribution trend com-
puted from the real conference proceedings (Fig-
ures in red color), we also plot the simulated topic-
distribution trend computed from the text gener-
ated by TILM (Figures in green color). Close ob-
servation of Figure 5 confirms that TILM can in-
deed generate sentences aligned with the evolu-
tion of the text stream corresponding to evolving
topical influence. For example, Figure 5a shows
that research interest towards User Behavior Mod-
eling grew significantly within SIGIR community
in the past ten years, which is also nicely reflected
in the text generated by TILM [Figure 5b]. On
the other hand, research on Search and relevance
almost matured after 2008 within the SIGIR com-
munity [Figure 5c], which has also been captured
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(a) SIGIR(Original):
User Behavior Modeling

(b) SIGIR(Generated):
User Behavior Modeling

(c) SIGIR(Original):
Search & Relevance

(d) SIGIR(Generated):
Search & Relevance

Figure 5: Topic trend analysis to demonstrate how TILM captures evolution of SIGIR research paper titles.

year # Sample Generated Title
2000 1 discovering in hierarchical rules using lexical

knowledge
- 2 data mining criteria for tree based regression

and classification
2002 3 mining frequent class sets in spatial databases
2007
-

1 a framework for community identification in
dynamic social networks

2009 2 learning preferences of new users in recom-
mender systems

3 data mining for intrusion detection from out-
liers

2012
-

1 deep model based transfer and multi task learn-
ing for biological image analysis

2015 2 a bayesian framework for estimating properties
of information network

3 active learning for sparse bayesian classification

Table 4: Sample titles generated by TILM for confer-
ence KDD across different year ranges

effectively by TILM and apparent from the decay-
ing trend of Figure 5d.

Finally, Table 4 presents some sample paper ti-
tles generated by TILM for different time ranges
targeted towards KDD community. A closer look
into Table 4 reveals that TILM can generate syn-
tactically correct, semantically coherent and time-
sensitive evolving text. It is worth mentioning that,
TILM did not store any paper-to-year mapping in-
formation. Table 4 also nicely captures the inter-
est shift within KDD community over the years.
For example, paper titles generated for year range
2000-2002 include topics like rule mining and tree
based classifications, while paper titles generated
for year range 2012-2015 include topics like deep
learning and active learning, which is consistent
with our expectation.

6 Conclusion

We studied how to improve neural language mod-
els by incorporating topical influence from contex-
tual factors and proposed a novel Topical Influ-
ence Language Model (TILM), which includes a
novel extension of a basic neural language model

by incorporating both a topic generator (based on
topic modeling) and a neural network-based in-
fluence modeling component, leading to a gen-
eral architecture with three major components: Se-
quence Generator, Topic Generator and Influence
Generator. We quantitatively evaluated TILM
using a text forecasting task on six publication
stream datasets and demonstrated that it is bene-
ficial to incorporate topical influence in language
modeling and TILM outperforms multiple base-
line methods by a significant margin. As a novel
language model, TILM allows for leveraging re-
lated text streams to improve accuracy of language
modeling of a target stream, thus potentially help-
ing improve many applications where language
models are applied. We also show that TILM is
able to generate well-structured, meaningful text
content corresponding to future time stamps, thus
potentially allowing us to predict topical trends in
the future, which would be useful for optimizing
decision making. Moreover, we also showed the
potential that TILM can be used as a tool to com-
pare influences of different external streams on
a particular target stream, thus facilitating cross-
stream influence analysis. While it is not the fo-
cus of this paper, such analysis clearly opens up
an interesting direction for analyzing multiple text
streams to understand their influences in a topic-
specific way, a highly promising direction for fu-
ture research.
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Abstract

In this paper, we propose a novel pretraining-
based encoder-decoder framework, which can
generate the output sequence based on the in-
put sequence in a two-stage manner. For the
encoder of our model, we encode the input
sequence into context representations using
BERT. For the decoder, there are two stages
in our model, in the first stage, we use a
Transformer-based decoder to generate a draft
output sequence. In the second stage, we
mask each word of the draft sequence and feed
it to BERT, then by combining the input se-
quence and the draft representation generated
by BERT, we use a Transformer-based decoder
to predict the refined word for each masked
position. To the best of our knowledge, our
approach is the first method which applies the
BERT into text generation tasks. As the first
step in this direction, we evaluate our proposed
method on the text summarization task. Exper-
imental results show that our model achieves
new state-of-the-art on both CNN/Daily Mail
and New York Times datasets.

1 Introduction

Text summarization generates summaries from in-
put documents while keeping salient information.
It is an important task and can be applied to sev-
eral real-world applications. Many methods have
been proposed to solve the text summarization
problem (See et al., 2017; Nallapati et al., 2017;
Zhou et al., 2018; Gehrmann et al., 2018). There
are two main text summarization techniques: ex-
tractive and abstractive. Extractive summarization
generates summary by selecting salient sentences
or phrases from the source text, while abstractive
methods paraphrase and restructure sentences to
compose the summary. We focus on abstractive
summarization in this work as it is more flexible
and thus can generate more diverse summaries.

Recently, many abstractive approaches are in-
troduced based on neural sequence-to-sequence
framework (Paulus et al., 2018; See et al., 2017;
Gehrmann et al., 2018; Li et al., 2018). Based on
the sequence-to-sequence model with copy mech-
anism, (See et al., 2017) incorporates a cover-
age vector to track and control attention scores on
source text. (Paulus et al., 2018) introduce intra-
temporal attention processes in the encoder and
decoder to address the repetition and incoherent
problem.

There are two issues in previous abstractive
methods: 1) these methods use left-context-only
decoder, thus do not have complete context when
predicting each word. 2) they do not utilize the
pre-trained contextualized language models on the
decoder side, so it is more difficult for the decoder
to learn summary representations, context interac-
tions and language modeling together.

Recently, BERT has been successfully used in
various natural language processing tasks, such
as textual entailment, name entity recognition and
machine reading comprehensions. In this paper,
we present a novel natural language generation
model based on pre-trained language models (we
use BERT in this work). As far as we know, this
is the first work to extend BERT to the sequence
generation task. To address the above issues of
previous abstractive methods, in our model, we de-
sign a two-stage decoding process to make good
use of BERT’s context modeling ability. On the
first stage, we generate the summary using a left-
context-only-decoder. On the second stage, we
mask each word of the summary and predict the
refined word one-by-one using a refine decoder.
To further improve the naturalness of the gener-
ated sequence, we cooperate reinforcement objec-
tive with the refine decoder.

The main contributions of this work are:
1. We propose a natural language generation

789



model based on BERT, making good use of the
pre-trained language model in the encoder and de-
coder process, and the model can be trained end-
to-end without handcrafted features.

2. We design a two-stage decoder process.
In this architecture, our model can generate each
word of the summary considering both sides’ con-
text information.

3. We conduct experiments on the benchmark
datasets CNN/Daily Mail and New York Times.
Our model achieves a 33.48 average of ROUGE-
1, ROUGE-2 and ROUGE-L on the CNN/Daily
Mail, which is state-of-the-art. On the New York
Times dataset, our model achieves about 5.6% rel-
ative improvement over ROUGE-1.

2 Background

2.1 Text Summarization

In this paper, we focus on single-document multi-
sentence summarization and propose a supervised
abstractive model based on the neural attentive
sequence-to-sequence framework which consists
of two parts: a neural network for the encoder
and another network for the decoder. The encoder
encodes the input sequence to intermediate repre-
sentation and the decoder predicts one word at a
time step given the input sequence representation
vector and previous decoded output. The goal of
the model is to maximize the probability of gen-
erating the correct target sequences. In the encod-
ing and generation process, the attention mecha-
nism is used to concentrate on the most important
positions of text. The learning objective of most
sequence-to-sequence models is to minimize the
negative log likelihood of the generated sequence
as shown in following equation, where y∗t is the
t-th ground-truth summary token.

Loss = − log

|y|∑

t=1

P (y∗t |y∗<t, X) (1)

However, with this objective, traditional se-
quence generation models consider only one di-
rection context in the decoding process, which
could cause performance degradation since com-
plete context of one token contains preceding and
following tokens, thus feeding only preceded de-
coded words to the decoder so that the model may
generate unnatural sequences. For example, at-
tentive sequence-to-sequence models often gener-
ate sequences with repeated phrases which harm

the naturalness. Some previous works mitigate
this problem by improving the attention calcula-
tion process, but in this paper we show that feeding
bi-directional context instead of left-only-context
can better alleviate this problem.

2.2 Bi-Directional Pre-Trained Context
Encoders

Recently, context encoders such as ELMo, GPT,
and BERT have been widely used in many NLP
tasks. These models are pre-trained on a huge un-
labeled corpus and can generate better contextual-
ized token embeddings, thus the approaches built
on top of them can achieve better performance.

Since our method is based on BERT, we illus-
trate the process briefly here. BERT consists of
several layers. In each layer there is first a multi-
head self-attention sub-layer and then a linear
affine sub-layer with the residual connection. In
each self-attention sub-layer the attention scores
eij are first calculated as Eq. (2) (3), in which de
is output dimension, and WQ,WK are parameter
matrices.

aij =
(hiWQ)(hjWK)T√

de
(2)

eij =
exp eij∑N

k=1 exp eik
(3)

Then the output is calculated as Eq. (4), which
is the weighted sum of previous outputs h added
by previous output hi. The last layer outputs is
context encoding of input sequence.

oi = hi +
N∑

j=1

eij(hjWV ) (4)

Despite the wide usage and huge success,
there is also a mismatch problem between these
pre-trained context encoders and sequence-to-
sequence models. The issue is that while us-
ing a pre-trained context encoder like BERT, they
model token-level representations by conditioning
on both direction context. During pre-training,
they are fed with complete sequences. How-
ever, with a left-context-only decoder, these pre-
trained language models will suffer from incom-
plete and inconsistent context and thus cannot gen-
erate good enough context-aware word representa-
tions, especially during the inference process.
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3 Model

In this section, we describe the structure of our
model, which learns to generate an abstractive
multi-sentence summary from a given source doc-
ument.

Based on the sequence-to-sequence framework
built on top of BERT, we first design a refine de-
coder at word-level to tackle the two problems de-
scribed in the above section. We also introduce a
discrete objective for the refine decoders to reduce
the exposure bias problem. The overall structure
of our model is illustrated in Figure 1.

3.1 Problem Formulation

We denote the input document as X =
{x1, . . . , xm}where xi ∈ X represents one source
token. The corresponding summary is denoted
as Y = {y1, . . . , yL}, L represents the summary
length.

Given input document X , we first predict the
summary draft by a left-context-only decoder, and
then using the generated summary draft we can
condition on both context sides and refine the con-
tent of the summary. The draft will guide and con-
strain the refine process of summary.

3.2 Summary Draft Generation

The summary draft is based on the sequence-to-
sequence model. On the encoder side the in-
put document X is encoded into representation
vectors H = {h1, . . . , hm}, and then fed to
the decoder to generate the summary draft A =
{a1, . . . , a|a|}.

3.2.1 Encoder
We simply use BERT as the encoder. It first maps
the input sequence to word embeddings and then
computes document embeddings as the encoder’s
output, denoted by following equation.

H = BERT (x1, . . . , xm) (5)

3.2.2 Summary Draft Decoder
In the draft decoder, we first introduce BERT’s
word embedding matrix to map the previous sum-
mary draft outputs {y1, . . . , yt−1} into embed-
dings vectors {q1, . . . , qt−1} at t-th time step.
Note that as the input sequence of the decoder is
not complete, we do not use the BERT network to
predict the context vectors here.

Then we introduce an N layer Transformer de-
coder to learn the conditional probabilityP (A|H).
Transformer’s encoder-decoder multi-head atten-
tion helps the decoder learn soft alignments be-
tween summary and source document. At the t-th
time step, the draft decoder predicts output prob-
ability conditioned on previous outputs and en-
coder hidden representations as shown in Eq. (6),
in which q<t = {q1, . . . , qt−1}. Each generated
sequence will be truncated in the first position of
a special token ’[PAD]’. The total summary draft
decoder progress is shown in Stage 1 of Figure 1.

P vocab
t (w) = fdec(q<t, H) (6)

Ldec =
∑|a|

t=1− logP (at = y∗t |a<t, H) (7)

As Eq. (7) shows, the decoder’s learning objec-
tive is to minimize negative likelihood of condi-
tional probability, in which y∗t is the t-th ground
truth word of summary.

However a decoder with this structure is not
sufficient enough: if we use the BERT network
in this decoder, then during training and infer-
ence, in-complete context(part of sentence) is fed
into the BERT module, and although we can fine-
tune BERT’s parameters, the input distribution is
quite different from the pre-train process, and thus
harms the quality of generated context representa-
tions.

If we just use the embedding matrix here, it will
be more difficult for the decoder with fresh param-
eters to learn to model representations as well as
vocabulary probabilities, from a relative small cor-
pus compared to BERT’s huge pre-training corpus.
In a word, the decoder cannot utilize BERT’s abil-
ity to generate high quality context vectors, which
will also harm performance.

This issue exists when using any other contextu-
alized word representations, so we design a refine
process to mitigate it in our approach which will
be described in the next sub-section.

3.2.3 Copy Mechanism
As some summary tokens are out-of-vocabulary
words and occurs in input document, we incor-
porate copy mechanism (Gu et al., 2016) based
on the Transformer decoder, we will describe it
briefly.

At decoder time step t, we first calculate the at-
tention probability distribution over source docu-
ment X using the bi-linear dot product of the last
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Figure 1: Model Overview, N represents decoder layer number and L represents summary length.

layer decoder output of Transformer ot and the en-
coder output hj , shown in Eq. (8) (9).

ujt = otWchj (8)

αj
t =

expujt∑N
k=1 expu

k
t

(9)

We then calculate copying gate gt ∈ [0, 1],
which makes a soft choice between selecting
from source and generating from vocabulary,
Wc,Wg, bg are parameters:

gt = sigmoid(Wg · [ot, h] + bg) (10)

Using gt we calculate the weighted sum of copy
probability and generation probability to get the
final predicted probability of extended vocabulary
V + X , where X is the set of out of vocabulary
words from the source document. The final prob-
ability is calculated as follow:

Pt(w) = (1− gt)P vocab
t (w) + gt

∑

i:wi=w

αi
t (11)

3.3 Summary Refine Process
The main reason to introduce the refine process
is to enhance the decoder using BERT’s contex-
tualized representations, so we do not modify the
encoder and reuse it during this process.

On the decoder side, we propose a new word-
level refine decoder. The refine decoder receives
a generated summary draft as input, and outputs
a refined summary. As Figure 1 Stage 2 shows,
it first masks each word in the summary draft one
by one, then feeds the draft to BERT to generate

context vectors. Finally it predicts a refined sum-
mary word using an N layer Transformer decoder
which is the same as the draft decoder. At t-th time
step the t-th word of input summary is masked, and
the decoder predicts the refined word given other
words of the summary.

The learning objective of this process is shown
in Eq. (12), yt is the t-th summary word and y∗t
for the ground-truth summary word, and a6=t =
{a1, . . . , at−1, at+1, . . . , a|y|}.

Lrefine =

|y|∑

t=1

− logP (yt = y∗t |a6=t, H) (12)

From the view of BERT or other contextualized
embeddings, the refine decoding process provides
a more complete input sequence which is consis-
tent with their pre-training processes. Intuitively,
this process works as follows: first the draft de-
coder writes a summary draft based on a docu-
ment, and then the refine decoder edits the draft.
It concentrates on one word at a time, based on the
source document as well as other words.

We design the word-level refine decoder be-
cause this process is similar to the cloze task in
BERT’s pre-train process, therefore by using the
ability of the contextual language model the de-
coder can generate more fluent and natural se-
quences.

The parameters are shared between the draft de-
coder and refine decoder, as we find that using in-
dividual parameters the model’s performance de-
grades a lot. The reason may be that we use teach-
forcing during training, and thus the word-level re-
fine decoder learns to predict words given all the
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other ground-truth words of summary. This ob-
jective is similar to the language model’s pre-train
objective, and is probably not enough for the de-
coder to learn to generate refined summaries. So
in our model all decoders share the same parame-
ters.

3.3.1 Mixed Objective
For summarization, ROUGE is usually used as
the evaluation metric, however during model train-
ing the objective is to maximize the log likeli-
hood of generated sequences. This mis-match
harms the model’s performance. Similar to pre-
vious work (Kryściński et al., 2018), we add a dis-
crete objective to the model, and optimize it by
introducing the policy gradient method. The dis-
crete objective for the summary draft process is as
shown in Eq. (13), where as is the draft summary
sampled from predicted distribution, and R(as) is
the reward score compared with the ground-truth
summary, we use ROUGE-L in our experiment.
To balance between optimizing the discrete objec-
tive and generating readable sequences, we mix
the discrete objective with maximum-likelihood
objective. Eq. (14) shows the final objective for
the draft process, note here Ldec is −logP (a|x).
In the refine process we introduce similar objec-
tives.

Lrl
dec = R(as) · [− log(P (as|x))] (13)

L̂dec = γ ∗ Lrl
dec + (1− γ) ∗ Ldec (14)

3.4 Learning and Inference
During model training, the objective of our model
is sum of the two processes, jointly trained using
”teacher-forcing” algorithm. During training we
feed the ground-truth summary to each decoder
and minimize the following objective.

Lmodel = L̂dec + L̂refine (15)

At test time, each time step we choose the pre-
dicted word by ŷ = argmaxy′P (y

′|x), use beam
search to generate the draft summaries, and use
greedy search to generate the refined summaries.

4 Experiment

4.1 Settings
In this work, all of our models are built on
BERTBASE , although another larger pre-trained
model with better performance (BERTLARGE)

has published but it costs too much time and GPU
memory. We use WordPiece embeddings with a
30,000 vocabulary which is the same as BERT.
We set the layer of transformer decoders to 12(8
on NYT50), and set the attention heads number
to 12(8 on NYT50), set fully-connected sub-layer
hidden size to 3072. We train the model using
an Adam optimizer with learning rate of 3e − 4,
β1 = 0.9, β2 = 0.999 and ε = 10−9 and use
a dynamic learning rate during the training pro-
cess. For regularization, we use dropout (Srivas-
tava et al., 2014) and label smoothing (Szegedy
et al., 2016) in our models and set the dropout rate
to 0.15, and the label smoothing value to 0.1. We
set the RL objective factor γ to 0.99.

During training, we set the batch size to 36, and
train for 4 epochs(8 epochs for NYT50 since it has
many fewer training samples), after training the
best model are selected from last 10 models based
on development set performance. Due to GPU
memory limit, we use gradient accumulation, set
accumulate step to 12 and feed 3 samples at each
step. We use beam size 4 and length penalty of 1.0
to generate logical form sequences.

During inference, we filter repeated tri-grams in
beam-search process by setting word probability
to zero if it will generate an tri-gram which exists
in the existing summary. It is a nice method to
avoid phrase repetition since the two datasets sel-
dom contains repeated tri-grams in one summary.

4.1.1 Datasets
To evaluate the performance of our model, we
conduct experiments on CNN/Daily Mail dataset,
which is a large collection of news articles and
modified for summarization. Following (See et al.,
2017) we choose the non-anonymized version of
the dataset, which consists of more than 280,000
training samples and 11490 test set samples.

We also conduct experiments on the New York
Times(NYT) dataset which also consists of many
news articles. The original dataset can be applied
here.1 In our experiment, we follow the dataset
splits and other pre-process settings of (Durrett
et al., 2016). We first filter all samples without
a full article text or abstract and then remove all
samples with summaries shorter than 50 words.
Then we choose the test set based on the date of
publication(all examples published after January
1, 2007). The final dataset contains 22,000 train-

1http://duc.nist.gov/
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Model ROUGE-1 ROUGE-2 ROUGE-L R-AVG
Extractive
lead-3 (See et al., 2017) 40.34 17.70 36.57 31.54
SummmaRuNNer (Nallapati et al., 2017) 39.60 16.20 35.30 30.37
Refresh (Narayan et al., 2018) 40.00 18.20 36.60 31.60
DeepChannel (Shi et al., 2018) 41.50 17.77 37.62 32.30
rnn-ext + RL (Chen and Bansal, 2018) 41.47 18.72 37.76 32.65
MASK-LMglobal (Chang et al., 2019) 41.60 19.10 37.60 32.77
NeuSUM (Zhou et al., 2018) 41.59 19.01 37.98 32.86
Abstractive
PointerGenerator+Coverage (See et al., 2017) 39.53 17.28 36.38 31.06
ML+RL+intra-attn (Paulus et al., 2018) 39.87 15.82 36.90 30.87
inconsistency loss(Hsu et al., 2018) 40.68 17.97 37.13 31.93
Bottom-Up Summarization
(Gehrmann et al., 2018) 41.22 18.68 38.34 32.75

DCA (Celikyilmaz et al., 2018) 41.69 19.47 37.92 33.11
Ours
One-Stage 39.50 17.87 36.65 31.34
Two-Stage 41.38 19.34 38.37 33.03
Two-Stage + RL 41.84 19.70 38.91 33.48

Table 1: ROUGE F1 results for various models and ablations on the CNN/Daily Mail test set. R-AVG calculates
average score of Rouge-1, Rouge-2 and Rouge-L.

ing samples and 3,452 test samples and is called
NYT50 since all summaries are longer than 50
words.

We tokenize all sequences of the two datasets
using the WordPiece tokenizer. After tokenizing,
the average article length and summary length of
CNN/Daily Mail are 691 and 51, and NYT50’s av-
erage article length and summary length are 1152
and 75. We truncate the article length to 512, and
the summary length to 100 in our experiment(max
summary length is set to 150 on NYT50 as its av-
erage golden summary length is longer).

4.1.2 Evaluation Metrics

On CNN/Daily Mail dataset, we report the full-
length F-1 score of the ROUGE-1, ROUGE-2
and ROUGE-L metrics, calculated using PyRouge
package2 and the Porter stemmer option. On
NYT50, following (Paulus et al., 2018) we eval-
uate limited length ROUGE recall score(limit the
generated summary length to the ground truth
length). We split NYT50 summaries into sen-
tences by semicolons to calculate the ROUGE
scores.

2pypi.python.org/pypi/pyrouge/0.1.3

4.2 Results and Analysis

Table 1 gives the results on CNN/Daily Mail
dataset, we compare the performance of many re-
cent approaches with our model. We classify them
to two groups based on whether they are extractive
or abstractive models. As the last line of the table
lists, the ROUGE-1 and ROUGE-2 score of our
full model is comparable with DCA, and outper-
forms on ROUGE-L. Also, compared to extrac-
tive models NeuSUM and MASK-LMglobal, we
achieve slight higher ROUGE-1. Except the above
four scores, our model outperforms these models
on all the other scores, and since we have 95%
confidence interval of at most ± 0.20, these im-
provements are statistically significant. The test
set outputs of our model are released for further
study.3

4.2.1 Ablation Analysis
As the last four lines of Table 1 show, we conduct
an ablation study on our model variants to analyze
the importance of each component. We use three
ablation models for the experiments. One-Stage:
A sequence-to-sequence model with copy mecha-
nism based on BERT; Two-Stage: Adding the re-
fine decoder to the One-Stage model; Two-Stage

3https://1drv.ms/u/s!AvPUdqbfQJ503Qffg8HZzV98iosq
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+ RL: Full model with refine process cooperated
with RL objective.

First, we compare the Two-Stage+RL model
with Two-Stage ablation, we observe that the full
model outperforms by 0.30 on average ROUGE,
suggesting that the reinforcement objective helps
the model effectively. Then we analyze the effect
of refine process by removing it from the Two-
Stage model, we observe that without the refine
process the average ROUGE score drops by 1.69.
The ablation study proves that each module is nec-
essary for our full model, and the improvements
are statistically significant on all metrics.

Figure 2: Average ROUGE-L improvement on
CNN/Daily mail test set samples with different golden
summary length.

4.2.2 Effects of Summary Length
To evaluate the impact of summary length on
model performance, we compare the average
rouge score improvements of our model with dif-
ferent length of ground-truth summaries. As the
above sub-figure of Figure 2 shows, compared to
Pointer-Generator with Coverage, on length inter-
val 40-80(occupies about 70% of test set) the im-
provements of our model are higher than shorter
samples, confirms that with better context repre-
sentations, in longer documents our model can
achieve higher performance.

As shown in the below sub-figure of Figure 2,
compared to extractive baseline: Lead-3 (See
et al., 2017), the advantage of our model will fall
when golden summary length is greater than 80.
This probably because that we truncate the long
documents and golden summaries and cannot get
full information, it could also because that the
training data in these intervals is too few to train

an abstractive model, so simple extractive method
will not fall too far behind.

4.3 Additional Results on NYT50

Table 2 reports experiment results on the NYT50
corpus. Since the short summary samples are fil-
tered, NYT50 has average longer summaries than
CNN/Daily Mail. So the model needs to catch
long-term dependency of the sequences to gener-
ate good summaries.

The first two lines of Table 2 show results of
the two baselines introduced by (Durrett et al.,
2016): these baselines select first n sentences, or
select the first k words from the original document.
Also we compare performance of our model with
two recent models, we see 2.39 ROUGE-1 im-
provements compared to the ML+RL with intra-
attn approach(previous SOTA) carries over to this
dataset, which is a large margin. On ROUGE-2,
our model also get an improvement of 0.51. The
experiment proves that our approach can outper-
form competitive methods on different data distri-
butions.

5 Related work

5.1 Text Summarization

Text summarization models are usually classi-
fied to abstractive and extractive ones. Recently,
extractive models like DeepChannel (Shi et al.,
2018), rnn-ext+RL (Chen and Bansal, 2018) and
NeuSUM (Zhou et al., 2018) achieve higher per-
formances using well-designed structures. For ex-
ample, DeepChannel propose a salience estima-
tion network and iteratively extract salient sen-
tences. (Zhang et al., 2018) train a sentence com-
pression model to teach another latent variable ex-
tractive model.

Also, several recent works focus on improving
abstractive methods. (Gehrmann et al., 2018) de-
sign a content selector to over-determine phrases
in a source document that should be part of the
summary. (Hsu et al., 2018) introduce incon-
sistency loss to force words in less attended sen-
tences(which determined by extractive model) to
have lower generation probabilities. (Li et al.,
2018) extend seq2seq model with an information
selection network to generate more informative
summaries.
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Model R-1 R-2
First sentences 28.60 17.30
First k words 35.70 21.60
Full (Durrett et al., 2016) 42.20 24.90
ML+RL+intra-attn (Paulus et al., 2018) 42.94 26.02
Two-Stage + RL (Ours) 45.33 26.53

Table 2: Limited length ROUGE recall results on the NYT50 test set.

5.2 Pre-trained language models
Pre-trained word vectors (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017)
have been widely used in many NLP tasks. More
recently, pre-trained language models (ELMo,
GPT and BERT), have also achieved great success
on several NLP problems such as textual entail-
ment, semantic similarity, reading comprehension,
and question answering (Peters et al., 2018; Rad-
ford et al., 2018; Devlin et al., 2018).

Some recent works also focus on leverag-
ing pre-trained language models in summariza-
tion. (Radford et al., 2017) pretrain a language
model and use it as the sentiment analyser when
generating reviews of goods. (Kryściński et al.,
2018) train a language model on golden sum-
maries, and then use it on the decoder side to in-
corporate prior knowledge.

In this work, we use BERT(which is a pre-
trained language model using large scale unla-
beled data) on the encoder and decoder of a
seq2seq model, and by designing a two stage de-
coding structure we build a competitive model for
abstractive text summarization.

6 Conclusion and Future Work

In this work, we propose a two-stage model based
on sequence-to-sequence paradigm. Our model
utilize BERT on both encoder and decoder sides,
and introduce reinforce objective in learning pro-
cess. We evaluate our model on two bench-
mark datasets CNN/Daily Mail and New York
Times, the experimental results show that com-
pared to previous systems our approach effectively
improves performance.

Although our experiments are conducted on
summarization task, our model can be used in
most natural language generation tasks, such as
machine translation, question generation and para-
phrasing. The refine decoder and mixed objective
can also be applied on other sequence generation
tasks, and we will investigate on them in future

work.
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Abstract
Hierarchical neural networks are often used
to model inherent structures within dialogues.
For goal-oriented dialogues, these models
miss a mechanism adhering to the goals and
neglect the distinct conversational patterns be-
tween two interlocutors. In this work, we pro-
pose Goal-Embedded Dual Hierarchical At-
tentional Encoder-Decoder (G-DuHA) able to
center around goals and capture interlocutor-
level disparity while modeling goal-oriented
dialogues. Experiments on dialogue genera-
tion, response generation, and human evalu-
ations demonstrate that the proposed model
successfully generates higher-quality, more di-
verse and goal-centric dialogues. Moreover,
we apply data augmentation via goal-oriented
dialogue generation for task-oriented dialog
systems with better performance achieved.

1 Introduction

Modeling a probability distribution over word se-
quences is a core topic in natural language pro-
cessing, with language modeling being a flagship
problem and mostly tackled via recurrent neu-
ral networks (RNNs) (Mikolov and Zweig, 2012;
Melis et al., 2017; Merity et al., 2018).

Recently, dialogue modeling has drawn much
attention with applications to response generation
(Serban et al., 2016a; Li et al., 2016b; Asghar
et al., 2018) or data augmentation (Yoo et al.,
2019). It’s inherently different from language
modeling as the conversation is conducted in a
turn-by-turn nature. (Serban et al., 2016b) im-
poses a hierarchical structure on encoder-decoder
to model this utterance-level and dialogue-level
structures, followed by (Serban et al., 2016c; Chen
et al., 2018; Le et al., 2018a).

However, when modeling dialogues involving
two interlocutors center around one or more goals,
these systems generate utterances with the great-
est likelihood but without a mechanism sticking to

Hi , I need a train to Boston.

Sure, what day will you 
be traveling ?

I need to leave on tomorrow 
and arrive before 5 pm.

Train 3315 leaves at 10 am, 
would you like to book it?

No, I only need the price.

The price is $100.

I also need a hotel to stay.

Sure. Do you have a price
range in mind?

…

Yes, please book 3 tickets.

The reference number is 
RVUSFG. Is there 

anything else I can help?

I’m also looking for 
information on a museum.

…

Goals:  (1) Domain: Train, Requests: [Price], Book: False
(2) Domain: Hotel, Requests: [Area, Phone],  Book: True

On-Goal Dialogue Off-Goal Dialogue

Figure 1: On-goal dialogues follow the given goals
such as no booking of train tickets and a hotel reserva-
tion. Off-goal dialogues have context switches to other
domains non-relevant to goals.

the goals. This makes them go off the rails and
fail to model context-switching of goals. Most of
the generated conversations become off-goal dia-
logues with utterances being non-relevant or con-
tradicted to goals rather than on-goal dialogues.
The differences are illustrated in Figure 1.

Besides, two interlocutors in a goal-oriented di-
alogue often play distinct roles as one has requests
or goals to achieve and the other provides nec-
essary support. Modeled by a single hierarchical
RNN, this interlocutor-level disparity is neglected
and constant context switching of roles could re-
duce the capacity for tracking conversational flow
and long-term temporal structure.

To resolve the aforementioned issues when
modeling goal-oriented dialogues, we propose
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the Goal-Embedded Dual Hierarchical Attentional
Encoder-Decoder (G-DuHA) to tackle the prob-
lems via three key features. First, the goal em-
bedding module summarizes one or more goals of
the current dialogue as goal contexts for the model
to focus on across a conversation. Second, the
dual hierarchical encoder-decoders can naturally
capture interlocutor-level disparity and represent
interactions of two interlocutors. Finally, atten-
tions are introduced on word and dialogue levels
to learn temporal dependencies more easily.

In this work, our contributions are that we pro-
pose a model called goal-embedded dual hierar-
chical attentional encoder-decoder (G-DuHA) to
be the first model able to focus on goals and cap-
ture interlocutor-level disparity while modeling
goal-oriented dialogues. With experiments on dia-
logue generation, response generation and human
evaluations, we demonstrate that our model can
generate higher-quality, more diverse and goal-
focused dialogues. In addition, we leverage goal-
oriented dialogue generation as data augmenta-
tion for task-oriented dialogue systems, with bet-
ter performance achieved.

2 Related Work

Dialogues are sequences of utterances, which are
sequences of words. For modeling or generating
dialogues, hierarchical architectures are usually
used to capture their conversational nature. Tradi-
tionally, language models are also used for mod-
eling and generating word sequences. As goal-
oriented dialogues are generated, they can be used
in data augmentation for task-oriented dialogue
systems. We review related works in these fields.

Dialogue Modeling. To model conversational
context and turn-by-turn structure of dialogues,
(Serban et al., 2016b) devised hierarchical recur-
rent encoder-decoder (HRED). Reinforcement and
adversarial learning are then adopted to improve
naturalness and diversity (Li et al., 2016b, 2017a).
Integrating HRED with the latent variable models
such as variational autoencoder (VAE) (Kingma
and Welling, 2014) extends another line of ad-
vancements (Serban et al., 2016c; Zhao et al.,
2017; Park et al., 2018; Le et al., 2018b). How-
ever, these systems are not designed for task-
oriented dialogue modeling as goal information
is not considered. Besides, conversations be-
tween two interlocutors are captured with a single
encoder-decoder by these systems.

Language Modeling. A probability distribution
of a word sequence w1:T = (w1, w2, ..., wT )
can be factorized as p(w1)

∏T
t=2 p(wt|w1:t−1).

To approximate the conditional probability
p(wt|w1:t−1), counted statistics and smoothed
N-gram models have been used before (Goodman,
2001; Katz, 1987; Kneser and Ney, 1995). Re-
cently, RNN-based models have achieved a better
performance (Mikolov et al., 2010; Józefowicz
et al., 2016; Grave et al., 2017; Melis et al.,
2018). As conversational nature is not explicitly
modeled, models often have role-switching issues.

Task-Oriented Dialogue Systems. Conventional
task-oriented dialog systems entails a sophisti-
cated pipeline (Raux et al., 2005; Young et al.,
2013) with components including spoken lan-
guage understanding (Chen et al., 2016; Mesnil
et al., 2015; Gupta et al., 2019), dialog state track-
ing (Henderson et al., 2014; Mrksic et al., 2017),
and dialog policy learning (Su et al., 2016; Gašić
and Young, 2014). Building a task-oriented dia-
logue agent via end-to-end approaches has been
explored recently (Li et al., 2017b; Wen et al.,
2017). Although several conversational datasets
are published recently (Gopalakrishnan et al.,
2019; Henderson et al., 2019), the scarcity of an-
notated conversational data remains a key problem
when developing a dialog system. This motivates
us to model task-oriented dialogues with goal in-
formation in order to achieve controlled dialogue
generation for data augmentation.

3 Model Architecture

Given a set of goals and the seed user utterance,
we want to generate a goal-centric or on-goal dia-
logue that follows the domain contexts and corre-
sponding requests specified in goals. In this sec-
tion, we start with the mathematical formulation,
then introduce our proposed model, and describe
our model’s training objective and inference.

At training time, K dialogues {D1, ..., DK} are
given where each Di associates with Ni goals
gi = {gi1, gi2, ..., giNi}. A dialogue Di consists
of M turns of utterances between a user u and a
system agent s (wu1,ws1,wu2,ws2, ...), where
wu1 is a word sequence wu1,1, wu1,2, ..., wu1,Nu1

denoting the user’s first utterance.
The task-oriented dialogue modeling aims to

approximate the conditional probability of user’s
or agent’s next utterance given previous turns and
goals. It can be further decomposed over gener-
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Figure 2: G-DuHA architecture. The goal embedding module embeds goals as priors for context RNNs. Dual
hierarchical RNNs naturally model two interlocutors. An attention over previous contexts captures long-term
dependencies. For encoders, word attentions are used to summarize local importance of words. (Enc: Encoder,
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ated words, e.g.

P (wum|wu1,ws1, ...,ws(m−1),gi) =
Num∏

n=1

P (wum,n|wum,<n,wu1, ...)
(1)

To model goal-oriented dialogues between two
interlocutors, we propose Goal-embedded Dual
Hierarchical Attentional Encoder-Decoder (G-
DuHA) as illustrated in Fig. 2. Our model com-
prises goal embedding module, dual hierarchical
RNNs, and attention mechanisms detailed below.

3.1 Goal Embedding Module

We represent each goal in {gi1, gi2, ...} using a
simple and straightforward binary or multi-one-
hot encoding followed by a feed-forward network
(FFN). A goal could have a specific domain such
as hotel or a request such as price or area, Table
2 shows a few examples. Our goal embedding
module, a FFN, then converts binary encoding of
each goal into a goal embedding, where the FFN is
learned during training. If multiple goals present,
all goal embeddings are then added up element-
wisely to be the final goal embedding:

−→gi =
|gi|∑

j=1

FFN(Encode(gij)) (2)

The output of the goal embedding module has
the same number of dimensions as context RNN’s
hidden state and is used as initial states for all lay-

ers of all context RNNs to inform the model about
a set of goals to focus on.

3.2 Dual Hierarchical Architecture

The hierarchical encoder-decoder structure (Ser-
ban et al., 2016b) is designed for utterance level
and context level modeling. With a single encoder,
context RNN, and decoder, the same module is
used to process input utterances, track contexts,
and generate responses for both interlocutors.

In task-oriented dialogues, however, roles are
distinct as the user aims to request information or
make reservations to achieve goals in mind and
the system agent provides necessary help. To
model this interlocutor-level disparity, we extend
it into a dual architecture involving two hierarchi-
cal RNNs, each serves as a role in a dialogue.

3.3 Attention Mechanisms

At the utterance level, as importance of words can
be context dependent, our model uses first hidden
layer’s states of the context RNN as the query for
attention mechanisms (Bahdanau et al., 2015; Xu
et al., 2015) to build an utterance representation.
A feed-forward network is involved to computed
attention scores, whose input is the concatenation
of the query and an encoder output.

At the dialogue level, for faster training, our
model has a skip connection to add up context
RNN’s raw output with its input as the final output
ct. To model long-term dependencies, an atten-
tion module is applied to summarize all previous

800



contexts into a global context vector. Specifically,
a feed-forward network takes the current context
RNN’s output ct as the query and all previous con-
text outputs from both context RNNs as keys and
values to compute attention scores. The global
context vector is then concatenated with ct to form
our final context vector for decoder to consume.

3.4 Objective

For predicting the end of a dialogue, we exploit a
feed-forward network over the final context vector
for a binary prediction. Thus our training objective
can be written as

L =
K∑

i=1

[
− log pθ(Di) +

Mi∑

t

− log pendθ (eit)
]
,

(3)
where our model pθ has parameters θ, Mi is the
number of turns, eit is 0 as the dialogue Di con-
tinues and 1 if it terminates at turn t.

3.5 Generation

At dialogue generation time, a set of goals
{gi1, gi2, ...} and a user utterance wu1 as a seed
are given. Then our model will generate conver-
sations simulating interactions between a user and
an agent that seek to complete all given goals. The
generation process terminates as the end of dia-
logue prediction outputs a positive or the maxi-
mum number of turns is reached.

4 Experiments

We evaluate our approach on dialogue generation
and response generation as well as by humans.
Ablation studies and an extrinsic evaluation that
leverages dialogue generation as a data augmenta-
tion method are reported in the subsequent section.

4.1 Dataset

Experiments are conducted on a task-oriented
human-human written conversation dataset called
MultiWOZ (Budzianowski et al., 2018), the
largest publicly available dataset in the field. Di-
alogues in the dataset span over diverse topics,
one to more goals, and multiple domains such as
restaurant, hotel, train, etc. It consists
of 8423 train dialogues, 1000 validation and 1000
test dialogues with on average 15 turns per dia-
logue and 14 tokens per turn.

4.2 Baselines

We compare our approach against four baselines:
(i) LM+G: As long-established methods for lan-

guage generation, we adopt an RNN language
model (LM) with 3-layer 200-hidden-unit GRU
(Cho et al., 2014) incorporating our goal embed-
ding module as a baseline, which has goal infor-
mation but no explicit architecture for dialogues.

(ii) LM+G-XL: To show the possible impact of
model size, a larger LM that has a 3-layer 450-
hidden-unit GRU is adopted as another baseline.

(iii) Hierarchical recurrent encoder-decoder
(HRED) (Serban et al., 2016b): As the prominent
model for dialogues, we use HRED as the base-
line that has a dialogue-specific architecture but
no goal information. The encoder, decoder, and
context RNN are 2-layer 200-hidden-unit GRUs.

(iv) HRED-XL: We also use a larger HRED
with 350 hidden units for all GRUs as a baseline
to show the impact of model size.

4.3 Implementation Details

In all experiments, we adopt the delexicalized
form of dialogues as shown in Table 2 with vocab-
ulary size, including slots and special tokens, to
be 4258. The max number of turns and sequence
length are capped to 22 and 36, respectively.

G-DuHA uses 2-layer, 200-hidden-unit GRUs
as all encoders, decoders, and context RNNs. All
feed-forward networks have 2 layers with non-
linearity. FFNs of encoder attention and end of di-
alogue prediction have 50 hidden units. The FFNs
of context attention and goal embedding gets 100
and 200 hidden units. We simply use greedy de-
coding for utterance generation.

All models initialize embeddings with pre-
trained fast-text vectors on wiki-news (2018) and
are trained by the Adam optimizer (2015) with
early-stopping to prevent overfitting. To mitigate
the discrepancy between training and inference,
we pick predicted or ground-truth utterance as the
current input uniformly at random when training.

4.4 Evaluation Metrics

We employ a number of automatic metrics as well
as human evaluations to benchmark competing
models on quality, diversity, and goal focus:

Quality. BLEU (Papineni et al., 2002), as
BLEU-4 by default, is a word-overlap measure
against references and commonly used by dia-
logue generation works to evaluate quality (2015;
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Model Size BLEU B1 B2 B3 D-1 D-2 D-U P R F1 L-D L-U
LM+G 4.2 M 6.34 23.24 12.89 8.76 0.16 0.88 23.75 89.52 82.39 84.89 15.1 13.0
LM+G-XL 8.2 M 6.22 23.10 12.75 8.63 0.16 0.93 26.38 90.03 81.62 84.71 14.7 14.4
HRED 5.1 M 5.40 21.91 11.58 7.66 0.09 0.38 3.94 69.69 66.22 65.35 17.3 14.1
HRED-XL 8.8 M 5.08 20.45 10.90 7.22 0.11 0.50 5.51 68.25 65.93 65.09 15.9 16.9
G-DuHA 7.8 M 7.48 24.38 14.44 10.12 0.17 0.99 25.98 86.21 83.18 83.76 14.3 15.0

Table 1: Dialogue generation performance. All results are averaged over 5 random seeds and reported in percent-
age (%). Size: Total number of model parameters, P: Precision, R: Recall, L-D: Average dialogue length, L-U:
Average utterance length.

Goals LM + Goal HRED G-DuHA
Domain: attraction
User: [name]
Reqt: [entrance fee]
Book: False

Domain: restaurant
User: [area, food]
Reqt: []
Book: True

Domain: taxi
User: [arriveBy]
Reqt: [car type, phone]
Book: False

U: what is the address for [attrac-
tion name] ?
S: sure ! [attraction name] is located at [at-
traction address] and is free .
U: i . i am also looking for a place to eat
. the [value area] .
S: there are [value count] restaurant -s in
the [value area] . what type of food are
you looking for ?
...
U: yes , please book a table for
[value count] people at [value time] on
[value day] .
...
U: i help you with anything else ?
S: i also need a taxi to get me the restau-
rant to the restaurant .
U: i time would you like to leave ?
S: i would like to arrive by the restaurant
by the booked time .
U: booking completed ! booked car type
[taxi type] contact number [taxi phone]
S: thank you that s all i needed .
U: you are welcome . have a great day !

U: what is the address for [attrac-
tion name] ?
S: the address is [hospital address] ,
[value place] . is there anything else i can
help you with ?
U: yes , i would like to book a ta-
ble for [value count] at [value time] on
[value day] .
S: i have booked your table . your refer-
ence number is [restaurant reference] .
U: thank you . i also need a train to
[value place] that leaves after [value time]
.
S: there are [value count] trains that match
your request . what day and time would
you like to travel ?
U: i would like to leave on [value day] and
arrive by [value time] .
S: there are [value count] trains that meet
your criteria . would you like to narrow it
down by departure time or arrival time ?
U: i would like to arrive by [value time] .
...

U: what is the address for [attrac-
tion name] ?
S: the address is [attraction address] and
the postcode is [attraction postcode] .
U: what is the entrance fee ?
S: the entrance fee is free . is there any-
thing else i can help you with ?
U: yes , i am also looking for a restau-
rant that serves [value food] food in the
[value area] .
...
S: i have [value count] restaurant -s that
meet your criteria . would you like me
to book you a table ?
U: yes , please . i need a table for
[value count] people at [value time] on
[value day] .
...
U: i also need a taxi to commute be-
tween the [value count] place -s .
S: i have booked you a taxi to pick you
up at the [attraction name] . it will be
a [taxi type] and the contact number is
[taxi phone] .
U: thank you , that is all i need .
S: you are welcome . have a great day !

Table 2: Dialogue qualitative comparison. Reqt: Requests. U: User, S: Agent. Goal hit or miss. Role confusion.
Extensive qualitative comparisons of dialogues are presented in the appendix.

2016b; 2016a; 2017; 2018). Lower N-gram B1,
B2, B3 are also reported.

Diversity. D-1, D-2, D-U: The distinctiveness
denotes the number of unique unigrams, bigrams,
and utterances normalized by each total count (Li
et al., 2016a; Xu et al., 2018). These metrics are
commonly used to evaluate the dialogue diversity.

Goal Focus. A set of slots such as address
are extracted from reference dialogues as multi-
label targets. Generated slots in model’s output
dialogues are the predictions. We use the multi-
label precision, recall, and F1-score as surrogates
to measure the goal focus and achievement.

Human Evaluation. The side-by-side human
preference study evaluates dialogues on goal fo-
cus, grammar, natural flow, and non-redundancy.

5 Results and Discussion

5.1 Dialogue Generation Results
For dialogue generation (Li et al., 2016b), a model
is given one or more goals and one user utterance

as the seed inputs to generate entire dialogues in
an auto-regressive manner.

Table 1 summarizes the evaluation results. For
quality measures, G-DuHA significantly outper-
forms other baselines, implying that it’s able to
carry out a higher-quality dialogue. Besides,
goal-embedded LMs perform better than HREDs,
showing the benefits of our goal embedding mod-
ule. No significant performance difference is ob-
served with respect to model size variants.

For diversity evaluations, G-DuHA is on par
with goal-embedded LMs and both outperform
HRED significantly. Of 1000 generated dialogues,
HRED delivers highly repetitive outputs with only
4 to 6% distinct utterances, whereas 25% of utter-
ances are unique from G-DuHA.

For recovering slots in reference dialogues, pre-
cision denotes a degree of goal deviation, recall
entails the achievement of goals, and F1 measures
the overall focus. Goal-embedded LM is the best
on precision and F1 with G-DuHA having com-
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Model BLEU B1 B2 B3 D-1 D-2 D-U P R F1 L-R
LM+G 14.88 35.86 24.59 18.81 0.27 1.44 40.84 79.71 68.57 71.73 14.3
LM+G-XL 14.51 35.28 24.07 18.36 0.28 1.47 42.56 79.79 67.31 71.00 14.3
HRED 14.34 36.27 24.31 18.33 0.21 0.94 20.21 75.46 67.08 68.78 17.1
HRED-XL 14.33 36.36 24.37 18.35 0.23 1.12 26.63 72.69 68.24 68.20 17.3
G-DuHA 15.85 37.99 26.14 20.01 0.25 1.27 39.59 78.34 71.55 72.69 16.7

Table 3: Agent’s response generation performance. All results are averaged over 5 random seeds and reported in
percentage (%). P: Precision, R: Recall, L-R: Average response length.

Model BLEU B1 B2 B3 D-1 D-2 D-U P R F1 L-R
LM+G 11.73 31.79 21.26 15.56 0.35 1.82 33.57 89.44 75.78 80.23 10.6
LM+G-XL 11.60 31.49 21.00 15.38 0.36 1.87 34.29 89.57 75.55 80.03 10.7
HRED 10.88 31.69 20.46 14.65 0.24 0.98 16.00 80.00 79.11 77.58 13.1
HRED-XL 10.81 31.84 20.48 14.60 0.26 1.15 19.87 80.11 78.82 77.42 13.2
G-DuHA 13.25 35.20 23.89 17.56 0.30 1.49 35.57 91.12 79.66 83.51 12.8

Table 4: User’s response generation performance. All results are averaged over 5 random seeds and reported in
percentage (%). P: Precision, R: Recall, L-R: Average response length.

Goals Contexts (Reference) Response
Domain: train
User: [destination,
departure, arriveBy,
day]
Reqt:[duration,price]
Book: False

Domain: restau-
rant
User: [area, food,
pricerange]
Reqt: []
Book: True

U: hey i am looking for a train from [value place] to
[value place] . mind helping out ?
S: many trains are leaving on [value day] . mind choosing the
time ?
U: i want to leave on [value day] and arrive by [value time] .
S: i have train [train id] that leaves [value place] at
[value time] and arrives in [value place] at [value time] .
would you like to make reservations ?
U: could you give me the travel time and price of that train
please ?
S: the cost is [value price] pounds . the duration of the trip
is [value count] minutes , leaving [value place] at [value time]
and arriving at [value time] in [value place] .

LM+G: thanks . i am also looking for a
restaurant in the [value area] .
HRED: i am also looking for a place to stay .
i would like a [value count] star hotel .
G-DuHA: thank you . i am also looking for a
restaurant in the [value area] of town .

Domain: train
User: [destination, de-
parture, arriveBy, day]
Reqt: []
Book: False

U: i need a train that leaves on [value day] with an arrival of
[value time] .
S: where will you be travelling to and from ?

LM+G: i will be departing from [value place]
.
HRED: i will be leaving from [value place] .
G-DuHA: i am departing from [value place]
and need to arrive by [value time] .

Table 5: Qualitative comparison of generated responses. Reqt: Requests. U: User, S: Agent.

parable performance. However, even thought LM
can better mention the slots in dialogue genera-
tion, utterances are often associated with a wrong
role. That is, role confusions are commonly seen
such as the user makes reservations for the agent
as in Table 2. The reason could be that LM handles
the task similar to paragraph generation without an
explicit design for the conversational hierarchy.

Overall, G-DuHA is able to generate high-
quality dialogues with sufficient diversity and still
adhere to goals compared to baselines.

Qualitative Comparison. Table 2 compares
generated dialogues from different models given
one to three goals to focus on. It’s clear that mod-
els with the goal embedding module are able to ad-
here to given goals such as “book” or “no book”,
requesting “price” or “entrance fee” while HRED
fails to do so. They can also correctly covering

all required domain contexts without any diversion
such as switching from attraction inquiry to restau-
rant booking, then to taxi-calling. For HRED,
without goals, generated dialogues often detour to
a non-relevant domain context such as shifting to
train booking while only hotel inquiry is required.

For goal-embedded LM, a serious issue re-
vealed is role confusions as LM often wrongly
shifts between the user and agent as shown in
Table 2. The issue results from one wrong
EndofUtterance prediction but affects rest of
dialogue and degrades the overall quality. More
generated dialogues are reported in the appendix.

5.2 Response Generation Results

For response generation (Sordoni et al., 2015; Ser-
ban et al., 2016c; Park et al., 2018), a set of goals
as well as the previous context, i.e. all previous
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Wins Losses Ties
Goal Focus 82.33% 6.00% 11.67%
Grammar 6.00% 5.00% 89.00%
Natural Flow 26.00% 15.00% 59.00%
Non-redundancy 35.34% 6.33% 58.33%

Table 6: Human evaluations, G-DuHA vs HRED. 100
pairs of generated dialogues along with goals are given
to three domain experts for side-by-side comparisons.

reference utterances, are given to a model to gen-
erate the next utterance as a response.

Table 3 and 4 summarize the results. G-DuHA
outperforms others on quality and goal focus mea-
sures and rivals LM-goal on diversity on both
agent and user responses. For goal focus, LM-
goal performs good on precision but short on re-
call. This could because it generates much shorter
user and agent responses on average.

Interestingly, as previous contexts are given,
LM-goal performs only slightly better than
HRED. This implies hierarchical structures cap-
turing longer dependencies can make up the dis-
advantages of having no goal information for re-
sponse generation. However, as illustrated in
Table 12, HRED could still fail to predict the
switch of domain contexts, e.g. from train to
restaurant, which explains performance gaps.
Another intriguing observation is that when incor-
porating the goal embedding module, response di-
versity and goal focus can be boosted significantly.

Comparing the performance between agent and
user response generation, we observe that models
can achieve higher quality and diversity but lower
goal focus when modeling agent’s responses.
These might result from the relatively consistent
utterance patterns but diverse slot types used by an
agent. More generated responses across different
models are presented in the appendix.

5.3 Human Evaluation Results
For human evaluation, we conduct side-by-side
comparisons between G-DuHA and HRED, the
widely used baseline in literature, on dialogue
generation task. We consider the following four
criteria: goal focus, grammar, natural flow, and
non-redundancy. Goal focus evaluates whether
the dialogue is closely related to the preset goals;
grammar evaluates whether the utterances are
well-formed and understandable; natural flow
evaluates whether the flow of dialogue is logical
and fluent; and non-redundancy evaluates whether

the dialogue is absent of unnecessary repetition
of mentioned information. 100 pairs of gener-
ated dialogues from G-DuHA and HRED along
with their goals are randomly placed against each
other. For each goal and pair of dialogues, three
domain experts were instructed to set their pref-
erences with respect to each of the four criteria,
marked as win / lose / tie between the dialogues.

Table 6 presents the results. G-DuHA shows
substantial advantages on goal focus, with 82.33%
wins over HRED, confirming the benefits of our
goal embedding module. G-DuHA also outper-
forms HRED significantly on natural flow and
non-redundancy. These might result from G-
DuHA’s ability to generating much more diverse
utterances while concentrating on current goals.
An especially interesting observation is that in
cases where multiple goals are given, G-DuHA
not only stays focused on each individual goal
but also generates intuitive transitions between
goals, so that the flow of a dialogue is natural
and coherent. An example is shown in Table 2,
where the G-DuHA-generated dialogue switches
towards the taxi goal while maintaining refer-
ence to the previously mentioned attraction
and restaurant goals: “. . . i also need a taxi
to commute between the 2 places . . . ”. We also
observe that both G-DuHA and HRED performed
well on grammaticality. The generated samples
across all RNN-based models are almost free from
grammar error as well.

5.4 Ablation Studies

The ablation studies are reported in Table 7 for
dialogue generation and in Table 8 for response
generation to investigate the contribution of each
module. Here we evaluate user and agent response
generation together.
Goal Embedding Module. First, we examine the
impact of goal embedding module. When unplug-
ging the goal embedding module, we observe sig-
nificant and consistent drops on quality, diversity,
and goal focus measures for both dialogue and re-
sponse generation tasks. For dialogue generation
task, the drops are substantially large which res-
onates with our intuition as the model only has the
first user utterance as input context to follow.

With no guideline about what to achieve and
what conversation flow to go around with, dia-
logues generated from HRED often have the sim-
ilar flow and low diversity. These results demon-
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Model BLEU B1 D-1 D-2 D-U P R F1
G-DuHA 7.48 24.38 0.17 0.99 25.98 86.21 83.18 83.76

w/o goal 5.19 20.04 0.13 0.68 13.83 69.18 68.21 66.86
w/o dual 7.34 24.99 0.15 0.79 19.22 85.24 82.62 82.96
w/o context attention 7.34 24.34 0.17 0.99 24.98 86.70 83.40 84.10

Table 7: Ablation studies on dialogue generation over goal embedding module, dual architecture, and dialogue-
level attention. Results are averaged over 5 random seeds and reported in percentage (%). P: Precision, R: Recall.

Model BLEU B1 D-1 D-2 D-U P R F1
G-DuHA 14.84 36.84 0.18 1.10 34.23 89.87 82.00 84.80

w/o goal 13.29 35.23 0.16 0.97 28.04 84.33 80.15 81.10
w/o dual 14.60 36.66 0.17 0.96 27.53 89.43 80.81 83.91
w/o context attention 14.73 36.88 0.18 1.14 34.55 90.28 81.54 84.80

Table 8: Ablation studies on response generation over goal embedding module, dual architecture, and dialogue-
level attention. Results are averaged over 5 random seeds and reported in percentage (%). P: Precision, R: Recall.

Joint Goal Turn Request
GLAD 88.55% 97.11%

GLAD + LM+G 88.07% 96.02%
GLAD + HRED 89.03% 97.11%

GLAD + G-DuHA 89.04% 97.59%∗

Table 9: Test accuracy of GLAD (Zhong et al., 2018)
on the WoZ restaurant reservation dataset with different
data augmentation models. (∗significant against oth-
ers.)

strate that our goal embedding module is critical
in generating higher-quality and goal-centric dia-
logues with much more diversity.

Dual Hierarchical Architecture. We also eval-
uate the impact of dual hierarchical architecture.
Comparisons on both dialogue and response gen-
eration tasks show a consistent trend. We observe
that applying dual architecture for interlocutor-
level modeling leads to a solid increase in utter-
ance diversity as well as moderate improvements
on quality and goal focus.

The results echo our motivation as two in-
terlocutors in a goal-oriented dialogue scenario
exhibit distinct conversational patterns and this
interlocutor-level disparity should be modeled by
separate hierarchical encoder-decoders.

For the dialogue-level attention module, there is
no significant effect on diversity and goal focus on
both tasks but it marginally improves the overall
utterance quality as BLEU scores go up by a bit.

6 Data Augmentation via Dialogue
Generation

As an exemplified extrinsic evaluation, we lever-
age the goal-oriented dialogue generation as data
augmentation for task-oriented dialogue systems.
Dialogue state tracking (DST) is used as our eval-
uation task which is a critical component in task-
oriented dialogue systems (Young et al., 2013) and
has been studied extensively (Henderson et al.,
2014; Mrksic et al., 2017; Zhong et al., 2018).

In DST, given the current utterance and dia-
logue history, a dialogue state tracker determines
the state of the dialogue which comprises a set
of requests and joint goals. For each user turn,
the user informs the system a set of turn goals to
fulfill, e.g. inform(area=south), or turn requests
asking for more information, e.g. request(phone).
The joint goal is the collection of all turn goals up
to the current turn.

We use the state-of-the-art Global-Locally Self-
Attentive Dialogue State Tracker (GLAD) (Zhong
et al., 2018) as our benchmark model and the WoZ
restaurant reservation dataset (Wen et al., 2017;
Zhong et al., 2018) as our benchmark dataset,
which is commonly used for the DST task.

The dataset consists of 600 train, 200 validation
and 400 test dialogues. We use the first utterances
from 300 train dialogues and sample restaurant-
domain goals to generate dialogues, whose states
are annotated by a rule-based method.

Table 9 summarizes the augmentation results.
Augmentation with G-DuHA achieved an im-
provement over the vanilla dataset and outperform
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HRED on turn requests while being comparable
on joint goal. For goal-embedded LM, as it strug-
gles with role confusion, the augmentation actu-
ally hurts the overall performance.

7 Conclusion

We introduced the goal-embedded dual hierar-
chical attentional encoder-decoder (G-DuHA) for
goal-oriented dialogue generation. G-DuHA is
able to generate higher-quality and goal-focused
dialogues as well as responses with decent diver-
sity and non-redundancy. Empirical results show
that the goal embedding module plays a vital role
in the performance improvement and the dual ar-
chitecture can significantly enhance diversity.

We demonstrated one application of the goal-
oriented dialogue generation through a data aug-
mentation experiment, though the proposed model
is applicable to other conversational AI tasks
which remains to be investigated in the future.

As shown in experiments, a language model
coupled with goal embedding suffers from role-
switching or confusion. It’s also interesting to fur-
ther dive deep with visualizations (Kessler, 2017)
and quantify the impact on quality, diversity, and
goal focus metrics.
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A Appendix

A.1 More Generated Dialogues for
Qualitative Comparison

In Table 10 and Table 11, we list and com-
pare more generated dialogues of different models
given a variable number of goals to focus on.

The domains, what slots to request such as
phone or postcode, and when should the user make
a reservation or not are specified in goals. We use
bold style to emphasize whether the assigned goals
are achieved or missed such as requests of a cor-
rect slot or a wrong domain. The underline and
bold style denotes the role confusions.

A.2 More Generated Responses for
Qualitative Comparison

Responses are generated by a model given the
goals and all the previous utterances. In Table 12,
we present more generated responses for qualita-
tive comparison. We observe that HRED is unable
to correctly switch beteen goal contexts illustrated
by the second example.

Goals LM + Goal HRED G-DuHA
Domain: hotel
User: [name]
Reqt: []
Book: True

U: i am looking for a hotel called the [ho-
tel name] .
S: [hotel name] is a [value pricerange] -
ly priced guesthouse in the [value area]
. would you like me to book a room for
you ?
U: yes , please . i need [value count] for
[value count] people and [value count]
nights starting from [value day] .
S: i have booked you at the [ho-
tel name] . your reference number is
[hotel reference] . is there anything else
i can help you with ?
U: no , that s all . thank you .
S: you are welcome . have a great day !

U: i am looking for a hotel called the [ho-
tel name] .
S: [hotel name] is a guesthouse in the
[value area] . it is [value pricerange] -ly
priced and has [value count] stars . would
you like to book a room ?
U: yes , please . i need a room for
[value count] people for [value count]
nights starting on [value day] .
S: i am sorry , but i was unable to book
that for you . would you like to try a dif-
ferent day or a shorter stay ?
U: how about [value count] nights ?
S: i was able to book you at the [ho-
tel name] . your reference number is [ho-
tel reference] . is there anything else i can
help you with ?
U: i am also looking for a train that
leaves after [value time] on [value day] .
... (Cut Off)→ Off the Rails

U: i am looking for a hotel called the [ho-
tel name] .
S: [hotel name] is a guesthouse in the
[value area] area . would you like to
book a room ?
U: yes , i would like to book it for
[value count] people and [value count]
nights starting from [value day] .
S: booking was successful . reference
number is [hotel reference] .
U: that s all i need . thank you .
S: you are welcome . have a great day !

Domain: attraction
User: [name]
Reqt: [phone, type]
Book: False

Domain: train
User: [arriveBy, day,
departure, destination]
Reqt: [price]
Book: False

U: i am looking for information about
[attraction name]
S: [attraction name] is a nightclub in the
[value area] of town . their phone num-
ber is [attraction phone] .
U: i help you with anything else ?
S: yes , i am also looking for a train that
[value place] to [value place] .
U: what day and time would you like to
leave ?
S: i would like to leave on [value day]
and arrive by [value time] .
U: i have [value count] trains that that
day . [value time] . would you like me
to book it for you ?
S: yes , please . i need the price and
train id .
U: the train is [value price] pounds . the
price is [value price] pounds .
S: you like me to book that for you ?
U: no , that s all i need . thank you .
S: thank you for using our service . have
a great day .

U: i am looking for information about
[attraction name]
S: [attraction name] is located in
the [value area] of town at [attrac-
tion address] .
U: what is the entrance fee ?
S: i am sorry , i do not have that informa-
tion .
U: i am also looking for a train that leaves
after [value time] on [value day] .
S: i have [value count] trains that meet
your criteria . would you like to narrow it
down by departure site , destination , or
arrival time ?
U: i would like to leave on [value day]
and arrive by [value time] .
S: i have train [train id] that leaves at
[value time] and arrives at [value time] .
would you like me to book that for you ?
U: yes , please book it for [value count]
people .
S: booking was successful , the total fee
is [value price] gbp payable at the station
. reference number is [train reference] .
U: thank you . that is all i need .
S: you are welcome . have a great day !

U: i am looking for information about
[attraction name]
S: [attraction name] is a museum in the
[value area] area . would you like the
phone number ?
U: yes , i would like the postcode and
phone number .
S: their phone number is [attrac-
tion phone] and the postcode is [attrac-
tion postcode] .
U: i also need a train to [value place] .
S: where will you be departing from ?
U: i will be leaving from [value place]
on [value day] .
S: i have [value count] trains that meet
your criteria . what time would you like
to arrive by ?
U: i need to arrive by [value time] .
S: i have train [train id] that leaves at
[value time] and arrives at [value time] .
would you like me to book that for you
?
U: no , that s all i needed . thank you .
S: you are welcome . have a great day !

Table 10: Dialogue qualitative comparison. Reqt: Requests. U: User, S: System. Goal hit or miss.
Role confusion.
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Goals LM + Goal HRED G-DuHA
Domain: attraction
User: [name]
Reqt: [address, entrance
fee]
Book: False

Domain: hotel
User: [name]
Reqt: [postcode, stars]
Book: False

Domain: taxi
User: [leaveAt]
Reqt: [car type, phone]
Book: False

U: i am looking for [attraction name] in
[value place]
S: it is located in the [value area] area .
it is located on [attraction address] .
U: is free .
S: can i get the phone number ?
U: the , the phone number is [attrac-
tion phone] .
S: i you . i am also looking for a hotel
called [hotel name] .
U: [hotel name] is a [value pricerange]
hotel in the [value area] area . it is a
[value count] star rating . would you like
me to book a room for you ?
S: no , i just need the information .
U: you are welcome . is there anything
else i can help you with today ?
S: i also need a taxi to commute between
the [value count] place -s .
U: what time would you like to leave ?
S: i would like to leave the hotel by
[value time] .
U: i have booked a taxi for you . the con-
tact number is [taxi phone] . is there any-
thing else i can help you with ?
S: no , that s all i need . thank you for
your help !
U: you are welcome . have a great day !

U: i am looking for [attraction name] in
[value place]
S: i have found [attraction name] , it s lo-
cated in the [value area] . it is free to enter
. would you like more information ?
U: yes , can i get the phone number and
postcode ?
S: sure , the phone number is [attrac-
tion phone] and the postcode is [attrac-
tion postcode] .
U: i am also looking for a train
that leaves on [value day] and goes to
[value place] .
S: there are [value count] trains that
match your request . what time would you
like to leave ?
U: i would like to leave after [value time]
.
S: i have train [train id] that leaves at
[value time] and arrives at [value time] .
would you like me to book that for you ?
U: yes , please book it for [value count]
people .
S: booking was successful , the total fee
is [value price] gbp payable at the station
. reference number is [train reference] .
U: thank you so much for your help .
S: you are welcome . have a great day !
U: thank you , you too .
S: thank you for using our service today !
→ Off the Rails

U: i am looking for [attraction name] in
[value place]
S: it is located at [attraction address] .
is there anything else you would like to
know ?
U: what is the postcode ?
S: the postcode is [hotel postcode] . is
there anything else i can help you with ?
U: i am also looking for a hotel called
[hotel name] .
S: [hotel name] is a [value pricerange] -
ly priced guesthouse in the [value area]
area . would you like me to book you a
room ?
U: no , i just need the address please .
S: the postcode is [hotel postcode] . is
there anything else i can help you with ?
U: i also need a taxi to get between the
[value count] place -s .
S: i can help you with that . what time
would you like to leave or arrive by ?
U: i want to leave the hotel by
[value time] .
S: i have booked you a [taxi type] , the
contact number is [taxi phone] .
U: thank you so much for your help .
S: you are welcome . is there anything
else i can help you with today ?
U: no , that s all i need . thank you for
your help !
S: you are welcome . have a great day .

Domain: hotel
User: [name]
Reqt: [address]
Book: False

Domain: attraction
User: [area]
Reqt: [address, phone,
type]
Book: False

U: hello ! i am looking for informa-
tion about [hotel name] . it s a hotel in
[value place] .
S: the is a guesthouse in the [value area]
part of town . it is [value pricerange]
-ly priced and has [value count] stars .
would you like me to book a room ?
U: no , i do not need a reservation . i
you .
S: you are welcome . is there anything
else i can help you with today ?
U: yes , i am looking for a place called
[attraction name] .
S: [attraction name] is a museum in the
[value area] area . it is located at [attrac-
tion address] . their phone number is [at-
traction phone] .
U: i help you with anything else ?
S: no , that s all i need . thank you .
U: you are welcome . have a great day !

U: hello ! i am looking for informa-
tion about [hotel name] . it s a hotel in
[value place] .
S: [hotel name] is a guesthouse in the
[value area] . it is [value pricerange] -ly
priced and has [value count] stars . would
you like to book a room ?
U: yes , please . i need a room for
[value count] people for [value count]
nights starting on [value day] .
S: i am sorry , but i was unable to book
that for you . would you like to try a dif-
ferent day or shorter stay ?
U: how about [value count] nights ?
S: i was able to book you at the [ho-
tel name] . your reference number is [ho-
tel reference] . is there anything else i can
help you with ?
U: i am also looking for a train that
leaves after [value time] on [value day] .
... (Cut Off)→ Off the Rails

U: hello ! i am looking for informa-
tion about [hotel name] . it s a hotel in
[value place] .
S: [hotel name] is a guesthouse in the
[value area] area . it is a [value count]
star hotel in the [value area] area . would
you like me to book a room for you ?
U: no , i just need the address and
phone number .
S: sure , the phone number is [attrac-
tion phone] .
U: i am also looking for a place to go
in town .
S: there are [value count] attractions in
the [value area] area . do you have a par-
ticular type of attraction in mind ?
U: i am not sure . i just need the address
and postcode for [value count] of them .
S: [attraction name] is located at [attrac-
tion address] and the postcode is [attrac-
tion postcode] .
U: no , that s all i need . thank you for
your help !
S: you are welcome . have a great day !

Domain: train
User: [day, departure,
destination, leaveAt]
Reqt: [duration, price]
Book: False

U: i am looking for a train from
[value place] to [value place] .
S: there are [value count] trains that meet
your criteria . what day and time would
you like to travel ?
U: i would like to leave on [value day]
after [value time] .
S: i have [value count] trains that leave
[value place] at [value time] . would you
like me to book it for you ?
U: yes , please . i need the price and
travel time please .
S: the price is [value price] pounds . the
price is [value price] pounds .
U: you like me to book that for you ?
S: no , that s all i need . thank you .
U: you are welcome . have a great day !

U: i am looking for a train from
[value place] to [value place] .
S: there are [value count] trains that meet
your criteria . what day and time would
you like to travel ?
U: i would like to leave on [value day]
and arrive by [value time] .
S: i have train [train id] that leaves at
[value time] and arrives in [value place]
at [value time] . would you like me to
book that for you ?
U: yes , please . i need [value count] tick-
ets .
S: i have booked [value count] tickets
for you . your reference number is
[train reference] .
U: i am also looking for a place to stay . i
would like a [value count] star hotel .
... (Cut Off)→ Off the Rails

U: i am looking for a train from
[value place] to [value place] .
S: what day would you like to travel ?
U: i would like to leave on [value day] .
S: there are [value count] trains that meet
your criteria . do you have a time you
would like to leave or arrive by ?
U: i would like to leave after [value time]
.
S: [train id] leaves at [value time] and
arrives at [value time] . would you like
me to book it for you ?
U: no , i just need the price and the train
id .
S: the price is [value price] pounds .
U: thank you for your help . that is all i
need today .
S: you are welcome . have a great day !

Table 11: Dialogue qualitative comparison (continue). Reqt: Requests. U: User, S: System. Goal hit or miss.
Role confusion.
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Goals Contexts (Reference) Response
Domain: attraction
User: [type]
Reqt: [entrance fee,
address, phone]
Book: False

Domain: restaurant
User: [pricerange,
food]
Reqt: [phone, post-
code]
Book: False

U: can you find me a theatre ?
S: would you like the [attraction name] ?
U: yes and i need to know the entrance fee , address , and phone
number
S: the fee is not listed but the address is [attraction address] and the
phone number is [attraction phone] . can i help you with anything
else ?
U: i am also looking for a [value food] restaurant in the
[value pricerange] range .
S: i have [value count] excellent options . [restaurant name] is in the
[value area] of town , would you like me to reserve you a table ?
U: i am not sure how many people will be coming , so i will do that
later. but can you provide me with their postcode and phone number
?

LM+G: the phone number is [restau-
rant phone] and the postcode is [restau-
rant postcode] .
HRED: the phone number is [restau-
rant phone] and the postcode is [restau-
rant postcode] .
G-DuHA: sure , the phone number is
[restaurant phone] and the postcode is
[restaurant postcode] . is there anything
else i can help you with ?

Domain: train
User: [day, depar-
ture, destination,
leaveAt]
Reqt: []
Book: True

Domain: attraction
User: [area, type]
Reqt: [phone, post-
code]
Book: False

U: i am looking for a train that leaves on [value day] going to
[value place] .
S: there are [value count] trains that meet what you are asking .
where would you like to depart from ?
U: [value place] , it should also leave after [value time] .
S: [train id] departs [value place] at [value time] and arrives in
[value place] at [value time] . will that work ?
U: yes it will . can you book that for just me , and provide the refer-
ence number ?
S: sure thing ! how many tickets do you need ?
U: i need [value count] ticket and can i please have the reference
number ?
S: booking was successful , the total fee is [value price] gbp payable
at the station . reference number is [train reference] . can i provide
any further help today ?

LM+G: i am also looking for a place to go
in the [value area] .
HRED: i am also looking for a place
to stay . i would like a hotel in the
[value area] .
G-DuHA: i am also looking for a place to
go in town .

Domain: hotel
User: [area, inter-
net, parking, stars]
Reqt: [postcode,
pricerange, type]
Book: False

Domain: restaurant
User: [area, food,
pricerange]
Reqt: []
Book: True

U: hi i am looking for a restaurant in the [value area] of town serving
[value food] food .
S: that s great ! there are several [value food] restaurant -s near the
city [value area] . are you looking for a budget @UNK option or are
you comfortable with a more [value pricerange] place ?
U: a [value pricerange] option please .
S: we have [restaurant name] , the ghandi and [restaurant name] , do
you want me to book you for [value count] of those ?
U: yes please for [value count] people at [value time] on [value day].
S: you are all set . they will hold the table for [value count] minutes
and your reference number is [hotel reference]
U: thank you , appreciate your service .
S: no problem . is there anything else i can help you with ?

LM+G: i am also looking for a place to
stay . i would like a [value count] star hotel
in the [value area] .
HRED: no , that s all . thank you .
G-DuHA: i am also looking for a place to
stay .

Domain: taxi
User: [destination,
arriveBy, departure]
Reqt: [car type,
phone]
Book: False

U: i need to book a tax departing from gandhi .
S: what is your destination and when would you like to depart ?

LM+G: i need to arrive by [value time] .
HRED: i am going to [value place] from
[value place] .
G-DuHA: i want to go to [value place] and
get to [restaurant name] by [value time] .

Domain: attraction
User: [area]
Reqt: [address]
Book: False

Domain:hotel
User: [pricerange,
internet, stars]
Reqt: []
Book: True

U: hello , i am looking for place -s to go in the [value area] .
S: there are many attractions in the [value area] like museums , ar-
chitecture , boating , and @UNK . what are you interested in ?
U: how about a boating attraction ?
S: there are [value count] in the [value area] of town . [hotel name]
, and [hotel name] . would either of those interest you ?
U: could you give me the address for [attraction name] , please ? i
also need a place to stay , preferably somewhere [value pricerange] .
S: sure , [attraction name] is @UNK at [attraction address] . the [ho-
tel name] is in the [value pricerange] price range with [value count]
stars . would you like to book a room ?
U: does it offer free wifi internet ?

LM+G: yes , it does . would you like me
to book a room for you ?
HRED: yes , it does have free parking .
G-DuHA: yes , it does .

Table 12: Qualitative comparison of generated responses. Reqt: Requests. U: User, S: System.
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Abstract
Automatic question generation (QG) is a use-
ful yet challenging task in NLP. Recent neural
network-based approaches represent the state-
of-the-art in this task. In this work, we attempt
to strengthen them significantly by adopting a
holistic and novel generator-evaluator frame-
work that directly optimizes objectives that re-
ward semantics and structure. The generator
is a sequence-to-sequence model that incorpo-
rates the structure and semantics of the ques-
tion being generated. The generator predicts
an answer in the passage that the question can
pivot on. Employing the copy and coverage
mechanisms, it also acknowledges other con-
textually important (and possibly rare) key-
words in the passage that the question needs
to conform to, while not redundantly repeat-
ing words. The evaluator model evaluates
and assigns a reward to each predicted ques-
tion based on its conformity to the structure
of ground-truth questions. We propose two
novel QG-specific reward functions for text
conformity and answer conformity of the gen-
erated question. The evaluator also employs
structure-sensitive rewards based on evalua-
tion measures such as BLEU, GLEU, and
ROUGE-L, which are suitable for QG. In con-
trast, most of the previous works only optimize
the cross-entropy loss, which can induce in-
consistencies between training (objective) and
testing (evaluation) measures. Our evaluation
shows that our approach significantly outper-
forms state-of-the-art systems on the widely-
used SQuAD benchmark as per both automatic
and human evaluation.

1 Introduction

Automatic question generation (QG) is a very im-
portant yet challenging problem in NLP. It is de-
fined as the task of generating syntactically cor-
rect, semantically sound and relevant questions
from various input formats such as text, a struc-
tured database or a knowledge base (Mannem

et al., 2010). More recently, neural network
based techniques such as sequence-to-sequence
(Seq2Seq) learning have achieved remarkable suc-
cess on various NLP tasks, including question
generation. A recent deep learning approach
to question generation (Serban et al., 2016) in-
vestigates a simpler task of generating questions
only from a triplet of subject, relation and ob-
ject. Learning to ask (referred to as L2A here-
inafter) (Du et al., 2017) proposes a Seq2Seq
model with attention for question generation from
text. (Song et al., 2018) (in an approach re-
ferred to as NQGLC hereafter) encoded ground-
truth answers and employed bi-directional LSTMs
in a Seq2Seq setting. In addition, they use the
copy mechanism (See et al., 2017) and context
matching to capture interactions between the given
ground-truth answer and its context within the pas-
sage.

In the context of QG from paragraphs, (Zhao
et al., 2018) proposed maxout pointer network to
keep track of word coverage. Our previous work
(Kumar et al., 2018) (referred to as AutoQG here-
inafter) generates candidate answers from text us-
ing Pointer Networks (Vinyals et al., 2015) and en-
codes the answer in the question decoder for im-
proved performance.

We first present a framework in which a gen-
erator mechanism (the horse) that is employed
for generating a question-answer pair invokes or
pulls the evaluator mechanism (the cart) that is
employed for evaluating the generated pair. Our
clearly delineated generator-evaluator framework
lets us (a) easily incorporate several best practices
from the above referred previous models in the
generator while (b) also letting us employ in the
evaluator, other complex non-decomposable re-
wards that are consistent with performance mea-
sures (such as BLEU and ROUGE) on test data.
We also propose some novel reward functions that
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evaluate the syntax of the question and semantics
of the question-answer pair in its entirety. More
specifically, since the generated question is in an-
ticipation of some specific answer, we find it most
natural to incorporate candidate answer genera-
tion (using Pointer Networks) alongside QG right
in our generator module, so that the evaluator
can optionally take into cognizance the conformity
of the generated answer to the ground-truth an-
swer, along with text conformity. Likewise, we
also incorporate copy and coverage mechanisms
for QG into the generator module so that they
can be specifically trained by leveraging a suite
of holistically designed and structure-sensitive re-
ward functions in the evaluator module.

The Generator
In Table 1, in rows 1 through 4, we illustrate
through examples, the incremental benefits of in-
troducing answer prediction and the copy and cov-
erage mechanisms (See et al., 2017) in the genera-
tor. The evaluator associated with the correspond-
ing three generator models employs the conven-
tional and simplistic cross-entropy loss. The moti-
vation for answer prediction in the generator mod-
ule is obvious and will be further discussed in Sec-
tion 2.1. In row 3 we illustrate the influence of our
copy mechanism, where a rare phrase ‘new ams-
terdam’ has been rightly picked up in association
with the name of the city.

We however note that in row 3, the word
‘new’ has been erroneously repeated twice, since
an encoder-decoder based model could generate
questions with meaningless repetitions.

We introduce a mechanism for discouraging
such repetitions in our generator by quantitatively
emphasizing the coverage of sentence words while
decoding. Row 4 shows the improved and relevant
question generated by our model trained by incor-
porating both the copy and coverage mechanisms.

Evaluator
In row 5 of Table 1, we observe the high-quality
question that is generated when the simplistic
cross-entropy loss in the evaluator is replaced with
the more complex and non-decomposable (across
words) BLEU reward that accounts for proximity
of ‘founded’ to ‘new york’.

In Table 2, we further illustrate the effect of em-
ploying other reward functions (described in Sec-
tion 2.2) in the evaluator. As can be seen, the
model that incorporates QG-specific reward func-

tions (QSS and ANSS) generates a significantly
better question when compared to the question
generated without these rewards.

Limitations of simple decomposable losses: A
Seq2Seq model trained using a vanilla cross-
entropy loss function (decomposable over words
in the question) generates the question “what year
was new york named ?” (row 1 in Table 1), which
is not addressed in the sentence. The passage talks
only about the founding of the city and its naming
two years later. The inaccuracy of the question is
possibly caused by the use of a loss that is agnos-
tic to sequence information. In other words, given
its decomposable nature, the cross-entropy loss on
the ground-truth question or any of its (syntacti-
cally invalid) anagrams will be the same. More-
over, use of the cross-entropy loss in the sequence
prediction model could make the process brittle,
since the model trained on a specific distribution
over words is used on a test dataset with a possi-
bly different distribution to predict the next word
given the current predicted word. This creates ex-
posure bias (Ranzato et al., 2015) during training,
since the model is only exposed to the data dis-
tribution and not the model distribution. Thus,
performance suffers due to inadequately evaluat-
ing the structure of the generated question against
the ground-truth question.

The standard metrics for evaluating the per-
formance of question generation models such
as BLEU (Papineni et al., 2002), GLEU, and
ROUGE-L (Lin, 2004) are based on degree of n-
gram overlaps between a generated question and
the ground-truth question. It would be desir-
able to be able to directly optimize these task-
specific metrics. However, these n-gram based
metrics do not decompose over individual words
and are therefore hard to optimize. We explic-
itly employ an evaluator that rewards each gen-
erated question based on its conformance to one
(or more than one using decomposable attention)
questions in the ground-truth set using these pos-
sibly non-decomposable reward functions. We
find such learning to be a natural instance of rein-
forcement learning (RL) (Sutton and Barto, 1998)
that allows us to use policy gradient to directly
optimize task-specific rewards (such as BLEU,
GLEU and ROUGE-L), which are otherwise non-
differentiable and hard to optimize. In Table 2
we illustrate questions generated using different
reward functions. It can be observed that ques-
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Text: “new york city traces its roots to its 1624 founding as a trading post by colonists of the dutch republic and was
named new amsterdam in 1626 .”

Row Model Question generated
1 Seq2Seq model optimized on vanilla (cross entropy) loss without answer prediction in what 1624 did new york city traces its roots ?
2 Seq2Seq model optimized on vanilla (cross entropy) loss with answer prediction what year was new york named ?
3 Copy aware Seq2Seq model what year was new new amsterdam named ?
4 Coverage and copy aware Seq2Seq model in what year was new amsterdam named ?
5 Seq2Seq model optimized on BLEU (using RL) what year was new york founded ?

Table 1: Sample text and questions generated using variants of our model.

Text: “even with the five largest cities in sichuan suffering only minor damage from the quake , some
estimates of the economic loss run higher than us $ 75 billion , making the earthquake one of the costliest
natural disasters in chinese history .”

Expected answer: five
Row Model Question generated
1 GEBLEU how much did it making for the earthquake of the economic ?
2 GEBLEU+QSS+ANSS how many largest cities in sichuan experience only minor damage from the quake ?
3 GEDAS how many cities were in sichuan ?
4 GEDAS+QSS+ANSS how many largest cities in sichuan suffering only minor damage from the quake ?
4 GEROUGE how much did the economic loss run in sichuan ?
5 GEROUGE+QSS+ANSS what is the largest cities in sichuan ?

Table 2: Sample text and questions generated using different reward functions, with and without our new QG-
specific rewards QSS+ANSS.

tions generated using combination of standard re-
ward functions with reward functions specific to
QG quality (QSS+ANSS) exhibit higher quality.

Contributions We summarize our main contri-
butions as follows:

• A comprehensive, end-to-end generator-
evaluator framework naturally suited for
automated question generation. Whereas
earlier approaches employ some mechanism
(the horse) for generating the question, in-
tertwined with an evaluation mechanism (the
cart), we show that these approaches can ben-
efit from a much clearer separation of the
generator of the question from its evaluator.

• A generator founded on the semantics and
structure of the question by (a) identify-
ing target/pivotal answers (Pointer Network),
(b) recognizing contextually important key-
words in the answer (copy mechanism), and
(c) avoiding redundancy (repeated words) in
the question (coverage mechanism).

• An evaluator that (a) directly optimizes for
conformity to the structure of ground-truth
sequences (BLEU, GLEU, etc.), and (b)
matches against appropriate questions from a
set of ground-truth questions (Decomposable
Attention).

• Novel reward functions that ensure that the
generated question is relevant to the text and
conforms to the encoded answer.

When evaluated on the benchmark SQuAD
dataset (Rajpurkar et al., 2016), our system
considerably outperforms state-of-the-art question
generation models (Du et al., 2017; Kumar et al.,
2018; Song et al., 2018) in automatic and human
evaluation.

2 Our Approach

Our framework for question generation consists of
a generator and an evaluator. From the reinforce-
ment learning (RL) point of view, the generator
is the agent and the generation of the next word
is an action. The probability of decoding a word
Pθ(word) gives a stochastic policy. On every to-
ken that is output, an evaluator assigns a reward for
the output sequence predicted so far using the cur-
rent policy of the generator. Based on the reward
assigned by the evaluator, the generator updates
and improves its current policy. Let us denote the
reward (return) at time step t by rt. The cumula-
tive reward, computed at the end of the generated
sequence is represented by R =

∑T
t=0 rt. The

goal of our framework is to determine a generator
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Figure 1: Our generator-evaluator framework for ques-
tion generation. pcg is the probability which determines
whether to copy a word from source text or sample it
from vocabulary distribution.

(policy) that maximizes the expected return:

LossRL(θ) = −EPθ(Y0:T |X)

T∑

t=0

rt(Yt;X, Y0:t−1)

(1)
where X is the current input and Y0:t−1 is the
predicted sequence until time t − 1. This super-
vised learning framework allows us to directly op-
timize task-specific evaluation metrics (rt) such as
BLEU.

The generator is a sequence-to-sequence model,
augmented with (i) an encoding for the potentially
best pivotal answer, (ii) the copy mechanism (Gu
et al., 2016) to help generate contextually impor-
tant words, and (iii) the coverage mechanism (Tu
et al., 2016) to discourage word repetitions. The
evaluator provides rewards to fine-tune the gen-
erator. The reward function can be chosen to
be a combination of one or more metrics. The
high-level architecture of our question generation
framework is presented in Figure 1.

2.1 Generator
Similar to AutoQG (Kumar et al., 2018), we em-
ploy attention and boundary pointer network to
identify pivotal answer spans in the input sentence.
The generator then takes as input the sequence
of words in the sentence, each augmented with
encoding of most probable pivotal answer, along
with a set of linguistic features such as POS tag,
NER tag, etc. At each step, the generator out-
puts a word with the highest probability, to eventu-
ally produce a word sequence. Additionally, as we
will see, the generator employs copy and coverage
mechanisms.

Sentence Encoder: Each word in the input text
is fed sequentially into the encoder along with
its linguistic features as well as with the en-
coded pivotal answer (identified by the bound-
ary pointer network). Our encoder is a two-layer
bidirectional LSTM network, consisting of

−→
ht =−−−−−→

LSTM2(xt,
−−→
ht−1) and

←−
ht =

←−−−−−
LSTM2(xt,

←−−
ht−1),

which generates a sequence of hidden states. Here
xt is the given input word at time step t, and

−→
ht

and
←−
ht are the hidden states at time step t for the

forward and backward passes respectively.

Question Decoder: Our question decoder is a
single-layer LSTM network, initialized with the
state s = [

−→
ht ;
←−
ht ], which is concatenation of hid-

den state from forward and backward passes.
We also model the attention (Bahdanau et al.,

2014) distribution over words in the source text.
We calculate the attention (ati) over the ith source
word as ati = softmax(eti), where

eti = vttanh(Wehhi +Wshst + batt) (2)

Here vt, Weh, Wsh and batt are model param-
eters to be learned, and hi is the concatenation
of forward and backward hidden states of the
encoder. We use this attention ati to generate
the context vector c∗t as a weighted sum of en-
coder hidden states: c∗t =

∑
i a
t
ihi. We further

use the c∗t vector to obtain a probability distribu-
tion over the words in the vocabulary as: P =
sofmax(Wv[st, c

∗
t ] + bv), where Wv and bv are

model parameters. Thus during decoding, the
probability of a word is P (qword). During the
training process for each timestamp, the loss is
calculated as Lt = − logP (qwordt). The loss
associated with the generated question is:

Loss =
1

T

T∑

t=0

Lt = −
1

T

T∑

t=0

logP (qwordt)

(3)

2.1.1 The Copy and Coverage Mechanisms:
The copy mechanism facilitates the copying of im-
portant entities and words from the source sen-
tence to the question. We calculate pcg ∈ [0, 1] as
the decision of a binary classifier that determines
whether to generate (sample) a word from the vo-
cabulary or to copy the word directly from the in-
put text, based on attention distribution ati:

pcg = sigmoid(W T
ehc
∗
t +W T

shst +Wxxt + bcg)
(4)
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Here Weh, Wsh, Wx and bcg are trainable model
parameters. The final probability of decoding a
word is specified by the mixture model:

p∗(qword) = pcg
∑

i:wi=qword

ati+(1−pcg)p(qword)

(5)
Where p∗(qword) is the final distribution over the
union of the vocabulary and the input sentence.

As discussed earlier, Equation (5) addresses the
rare words issue, since a word not in vocabulary
will have probability p(qword) = 0. Therefore,
in such cases, our model will replace the <unk>
token for out-of-vocabulary words with a word in
the input sentence having the highest attention ob-
tained using attention distribution ati.

To discourage meaningless multiple repetitions
of words in the question (as illustrated in row 3
of Table 1), we maintain a word coverage vec-
tor (wcv) for the words already predicted as the
sum of all the attention distributions ranging over
timesteps 0 until t− 1. Specifically, at time step t,
wcv =

∑t−1
t′=0 a

t′ .
No word is generated before timestep 0, and

hence wcv will be a zero vector then. After stor-
ing the word coverage vector until t − 1, while
attending to the next word, we will need to inform
our attention mechanism about words covered un-
til then. Hence, equation (2) is now modified to
be:

eti = vttanh(Wwcvwcv
t
i+Wehhi+Wshst+ batt)

(6)
Here Wwcv are trainable parameters that inform
the attention mechanism about words that have
been previously covered while choosing to attend
over the next word. Following the incorporation
of the copy and coverage mechanism in our gen-
erator, the generator’s final loss function will be:

Losscopy+cov = −
1

T

T∑

t=0

logP ∗(wt) + λcLcov

(7)
where λc is the coverage hyperparameter and the
coverage loss Lcov is defined as:

Lcov =
∑

i

min(ati, wcv
t
i) (8)

We note that this cross-entropy based loss function
still does not include task-specific metrics such as
BLEU that were motivated earlier. We employ an

evaluator to refine the model pre-trained on this
loss function to directly optimize the task specific
reward. We also empirically show that the refine-
ment of maximum likelihood models using task-
specific rewards such as BLEU improves results
considerably. In the next subsection we describe
our evaluator.

2.2 Evaluator
The evaluator fine-tunes the parameters of the gen-
erator network by optimizing task-specific reward
functions through policy gradient. It takes as in-
put the predicted sequence and the gold sequence,
evaluates a policy, and returns a reward (a score
between 0 and 1) that reflects the quality of the
question generated. For question generation, the
choice of reward functions include task-specific
metrics BLEU, GLEU and ROUGE-L (Du et al.,
2017; Kumar et al., 2018), as well as the decom-
posable attention (Parikh et al., 2016) described
below. More importantly, we present two new re-
ward functions that are specifically designed for
question generation, QSS and ANSS, for the con-
formity of questions and answers respectively.

Combining Equation (7) with a reward func-
tion R (BLEU, GLEU, ROUGE, DAS, QSS and
ANSS), we obtain the overall loss function using
the expected reward objective as follows:

Loverall =α ∗ Losscopy+cov

− β ∗
N∑

i=0

∑

y∈Y
Pθ(y|X(i))R(y, y∗(i))

(9)

where R(y, y∗(i)) denotes per sentence score (re-
ward), Y is a set of sequences sampled from the
final distribution, and α and β are tunable hyper-
paramters.

2.2.1 Decomposable attention based
evaluator

The use of a lexical similarity based reward func-
tion such as BLEU or ROUGE does not provide
the flexibility to handle multiple possible versions
of the ground truth. For example, the questions
“who is the widow of ray croc?” and “ray croc
was married to whom?” have almost the same
meaning, but due to word order mismatch with
the gold question, at most one of them can be re-
warded using the BLEU score at the cost of the
other(s). Empirically, we find this restriction lead-
ing to models that often synthesize questions with
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poor quality. We therefore, design a novel reward
function, a decomposable attention (Parikh et al.,
2016) based similarity scorer (DAS). Denoting by
q̂ a generated question and by q the ground-truth
question, we compute a cross attention based sim-
ilarity using the following steps:

Cross Attention: The generated question q̂ and
the ground-truth question q are inter-attended as:

q̂∗i =
Lq∑

j=0

ajie(qj), aji =
exp(e(q̂i)

T e(qj))∑Lq̂
k=0 exp(e(q̂i)

T e(qk))
,

q∗j =
Lq̂∑

i=0

bjie(q̂i), bji =
exp(e(q̂i)

T e(qj))∑Lq
k=0 exp(e(q̂k)

T e(qj))

(10)

where e(.) is the word embedding of dimension
size d, q̂∗ is the cross attention vector for a gener-
ated question q̂, and q∗ is the cross attention vector
for a question q in the ground truth.

Comparison: Each n-gram q̂i in the generated
question (through its embedding e(q̂i)) is com-
pared with its associated cross-attention vector q̂∗

using a feed forward neural network N1. Simi-
larly, each n-gram qj in the ground-truth question
(through its embedding e(qj)) is compared with its
associated attention vector q∗ using another net-
work N2 having the same architecture as N1. The
motivation for this comparison is that we would
like to determine the soft alignment between n-
grams in the generated question and the gold ques-
tion. As an illustration, while comparing the gold
question “why do rockets look white?” with a
generated question “why are rockets and boosters
painted white?”, we find that an n-gram “rockets
and boosters” is softly aligned to “rockets” while
“look” is softly aligned to “painted”.

q̂1,i = N1([e(q̂i), q̂
∗]), q2,j = N2([e(qj), q

∗])
(11)

where q̂1,i and q2,j are vectors containing com-
parison scores of aligned phrases in generated
question and gold question respectively and N1

and N2 are the feed forward neural nets.

Matching Score: The vectors q̂1,i and q2,j are
aggregated over each word or phrase in the pre-
dicted question and gold question respectively be-
fore feeding them to a linear function (L):

DAS = L(

Lq∑

i=1

q̂1,i,

Lq̂∑

j=1

q2,j) (12)

This matching score between the predicted ques-
tion and the gold question is the reward returned
by the decomposable attention based evaluator.

2.2.2 QG quality specific reward functions
We introduce two new reward functions that
specifically designed to evaluate the conformity of
the generated question (QSS) and answer (ANSS)
against the ground truth.

Question sentence overlap score (QSS): This
reward function is specific to QG. We compute
the sentence overlap score as the number of com-
mon n-grams between predicted question and the
source sentence. This reward ensures that gen-
erated question is relevant to the given sentence.
Thus, if precisionn(s, q) computes the n−gram
precision match between sentence and question,

QSS = (
n∏

i=1

precisioni(sentence, question))
1
n

(13)
Predicted and encoded answer overlap score

(ANSS): In order to ensure that the generated
question is about the pivotal answer/ground truth
answer we calculate answer overlap score. An-
swer overlap score is the number of common n-
grams between the encoded answer and the answer
predicted (ansqa) for the generated question us-
ing the best performing question answering model
over SQuAD1

ANSS = (
n∏

i=1

precisioni(ansqa, pivotal answer))
1
n

(14)

3 Experimental Setup

In this section, we present our evaluation frame-
work on the publicly available SQuAD (Rajpurkar
et al., 2016) dataset. We first explain various
reward functions employed in our experiments.
We then describe our baseline and the evaluation
methods.

Reward Functions: We experimented with the
five reward functions discussed in Section 2.2: (1)
BLEU, (2) GLEU, (3) ROUGE-L, (4) DAS, and
(5) the QG-specific reward QSS+ANSS. In our

1https://github.com/huggingface/
pytorch-pretrained-BERT
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experiments we considered BLEU for up to 4-
grams. For the GLEU score, we recorded all sub-
sequences of up to 4-grams.

Baselines and Evaluation Methods: We reim-
plemented two state-of-the-art question generation
models as baselines for comparison: L2A (Du
et al., 2017) and AutoQG (Kumar et al., 2018). A
direct (and fair) comparison with another recent
technique, NQGLC (Song et al., 2018), is not fea-
sible, as unlike us, NQGLC requires ground-truth
answers, whereas both AutoQG and our model
predict pivotal answers. L2A does not consider
answers. Moreover, their context (input is some-
times more than one sentence) is different also the
train/test split is different from ours. Hence, we
only report the original numbers reported in their
paper. We also did not perform human evaluation
on NQGLC as their source code has not been made
available for reimplementation.

We also use an existing implementation of a
recent RL-based abstractive summarization tech-
nique (Paulus et al., 2018) to train baseline mod-
els SUMBLEU (with BLEU as reward function)
and SUMROUGE (with ROUGE as reward func-
tion). This comparison studies the effectiveness
of state-of-the-art abstractive summarization tech-
niques applied to question generation as-is, as the
two are conceptually similar tasks.

We report automatic and human evaluation re-
sults on eight variants of our model, each of which
is equipped with the copy and coverage mecha-
nism, the pointer network, as well as one of the
four reward functions: BLEU, GLEU, ROUGE-
L, DAS or one of the four rewards in combination
with QG quality specific rewards (QSS+ANSS).
Hence, our models are named GEBLEU, etc.

For automatic evaluation, we employ BLEU,
ROUGE-L and METEOR, which are standard
evaluation measures used to evaluate sequence
prediction tasks. We use the evaluation scripts re-
leased by (Chen et al., 2015) that was originally
used to evaluate the image captioning task.

We also performed human evaluation to fur-
ther analyze the quality of questions generated
for their syntactic correctness, semantic correct-
ness and relevance. Syntactic correctness mea-
sures the grammatical correctness of a generated
question, semantic correctness measures meaning-
fulness and naturalness of the question, and rel-
evance measures how relevant the question is to
the text. We perform human evaluation for each

model on a randomly selected subset of 100 sen-
tences. Each of the three judges is presented the
100 sentence-question pairs for each model and
asked for a binary response on each quality param-
eter. The responses from all the judges for each
parameter is then averaged for each model.

3.1 Ablation Analysis

We conducted an ablation analysis to study the ef-
fect of removing the copy and coverage mecha-
nisms. Table 4 summarizes the drop in perfor-
mance for GEROUGE. Without the copy mecha-
nism, there is a drop overall in every evaluation
measure, with BLEU-4 registering the largest drop
of 13.8% as against 13.4%, 6.9% and 4.7% in
BLEU-3, BLEU-2 and BLEU-1 respectively. On
the other hand, without the coverage mechanism,
we see a consistent but sufficiently lower drop (1-
2%) in each evaluation measure for GEROUGE.

4 Results and Discussion

We show and compare results on automatic evalu-
ation in Table 3. Note the numbers in parentheses
for L2A (Du et al., 2017), AutoQG (Kumar et al.,
2018), and NQGLC (Song et al., 2018) are those
reported in their original papers. The slight dif-
ference of up to 1.7% in the original and repro-
duced numbers can be attributed to reimplemen-
tation and different versions of various libraries
used. As can be seen, all our eight models out-
perform L2A and AutoQG on all evaluation met-
rics. Two of our models, GEGLEU and GEROUGE,
also outperform NQGLC . Hence, using evaluation
metrics as the reward function during reinforce-
ment based learning improves performance for all
metrics. We also observe that GEROUGE+QSS+ANSS,
the model reinforced with ROUGE-L (that mea-
sures the longest common sequence between the
ground-truth question and the generated question)
as the reward function in combination with QG
quality specific rewards(QSS+ANSS), is the best
performing model on all metrics, outperforming
existing baselines considerably. For example, it
improves over AutoQG on BLEU-4 by 29.98%,
on METEOR by 13.15%, and on ROUGE-L by
8.67%.

In Table 5 we present human evaluation results
for the models evaluated on three quality parame-
ters (a) syntactic correctness, (b) semantic correct-
ness, and (c) relevance.

Consistent with automatic evaluation results
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
L2A (Du et al., 2017) 43.21 (43.09) 24.77 (25.96) 15.93 (17.50) 10.60 (12.28) 16.39 (16.62) 38.98 (39.75)
AutoQG (Kumar et al., 2018) 44.68 (46.32) 26.96 (28.81) 18.18 (19.67) 12.68 (13.85) 17.86 (18.51) 40.59 (41.75)
NQGLC (Song et al., 2018) - - - - (13.98) - (18.77) - (42.72)
SUMBLEU (Paulus et al., 2018) 11.20- 3.50- 1.21- 0.45- 6.68- 15.25-
SUMROUGE (Paulus et al., 2018) 11.94- 3.95- 1.65- 0.082- 6.61- 16.17-
GEBLEU 46.84 29.38 20.33 14.47 19.08 41.07
GEBLEU+QSS+ANSS 46.59 29.68 20.79 15.04 19.32 41.73
GEDAS 44.64 28.25 19.63 14.07 18.12 42.07
GEDAS+QSS+ANSS 46.07 29.78 21.43 16.22 19.44 42.84
GEGLEU 45.20 29.22 20.79 15.26 18.98 43.47
GEGLEU+QSS+ANSS 47.04 30.03 21.15 15.92 19.05 43.55
GEROUGE 47.01 30.67 21.95 16.17 19.85 43.90
GEROUGE+QSS+ANSS 48.13 31.15 22.01 16.48 20.21 44.11

Table 3: Experimental results on the test set on automatic evaluation metrics. Best results for each metric (column)
are bolded. The numbers in parentheses for L2A, AutoQG and NQGLC are those from the best models reported
in their respective original papers. The slight difference of up to 1.7% from our reproduced numbers can be
attributed to reimplementation and different versions of various libraries used. Models with new QG-specific
reward functions (QSS+ANSS) are highlighted in gray for easy comparison.

Model
(GEROUGE)

∆ BLEU-1
(47.01)

∆ BLEU-2
(30.67)

∆ BLEU-3
(21.95)

∆ BLEU-4
(16.17)

∆ METEOR
(19.85)

∆ ROUGE-L
(43.90)

W/o copy 2.09 (4.7%) 2.13 (6.9%) 2.94 (13.4%) 2.23 (13.8%) 2.21 (11.1%) 2.58 (5.9%)
W/o coverage 0.31 (0.7%) 0.57 (1.9%) 0.94 (4.2%) 0.28 (1.7%) 0.84 (4.2%) 1.01 (2.3%)

Table 4: Ablation analysis results after removing (a) copy mechanism and (b) coverage mechanism from the system
(GEROUGE). Both absolute performance drop and percentage of drop (in parentheses) are reported.

shown in Table 3, seven of our eight models out-
perform the two baselines, with GEDAS+QSS+ANSS
being the best model on syntactic correctness and
semantic correctness quality metrics, outperform-
ing all the other models by a large margin. How-
ever, model GEBLEU+QSS+ANSS generates highly
relevant questions and is the best model on rele-
vance metrics.

It is noteworthy that for each of our models
(e.g. GEBLEU), adding QG-specific rewards (e.g.
GEBLEU+QSS+ANSS) significantly improves ques-
tion quality in human evaluation, even though
there is less noticeable improvements in automatic
evaluation. This clearly demonstrates the effec-
tivess of our new QG-specific reward functions.

We measure inter-rater agreement using Ran-
dolph’s free-marginal multirater kappa (Randolph,
2005). This helps in analyzing level of consistency
among observational responses provided by mul-
tiple judges. It can be observed that our quality
metrics for all our models are rated as moderate
agreement (Viera et al., 2005).

4.1 Analyzing Choice of Reward Function

BLEU(Papineni et al., 2002) measures precision
and ROUGE(Lin, 2004) measures recall, we be-
lieve that cross-entropy loss was already account-

ing for precision to some extent and using it in
conjunction with ROUGE (which improves recall)
therefore gives best performance.

Model
Syntax Semantics Relevance

Score Kappa Score Kappa Score Kappa
L2A 39.2 0.49 39 0.49 29 0.40
AutoQG 51.5 0.49 48 0.78 48 0.50
GEBLEU 47.5 0.52 49 0.45 41.5 0.44
GEBLEU+QSS+ANSS 82 0.63 75.3 0.68 78.33 0.46
GEDAS 68 0.40 63 0.33 41 0.40
GEDAS+QSS+ANSS 84 0.57 81.3 0.60 74 0.47
GEGLEU 60.5 0.50 62 0.52 44 0.41
GEGLEU+QSS+ANSS 78.3 0.68 74.6 0.71 72 0.40
GEROUGE 69.5 0.56 68 0.58 53 0.43
GEROUGE+QSS+ANSS 79.3 0.52 72 0.41 67 0.41

Table 5: Human evaluation results (column “Score”)
as well as inter-rater agreement (column “Kappa”) for
each model on the test set. The scores are between 0-
100, 0 being the worst and 100 being the best. Best
results for each metric (column) are bolded. The three
evaluation criteria are: (1) syntactically correct (Syn-
tax), (2) semantically correct (Semantics), and (3) rel-
evant to the text (Relevance). Models with new QG-
specific reward functions (QSS+ANSS) are highlighted
in gray for easy comparison.

DAS calculates semantic similarity between
generated question and the gound-truth question.
As discussed in section 2.2.1 DAS will give high
reward even though the generated question has
low BLEU score. Thus, the performance of the
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model on automatic evaluation metrics does not
improve with DAS as the reward function, though
the quality of questions certainly improves. Fur-
ther, ROUGE in conjunction with the cross en-
tropy loss improves on recall as well as precision
whereas every other combination overly focuses
only on precision.

Error analysis of our best model reveals that
most errors can be attributed to intra-sentence de-
pendencies such as co-references, concept depen-
dencies etc. In a camera ready version of the pa-
per, we will share link to a detailed report con-
taining extensive experiments that include ablation
tests. Also link to the source code will be provided
then.

5 Related Work

Neural network-based methods represent the state-
of-the-art in automatic question generation (QG)
from text. Motivated by neural machine trans-
lation, Du et al (2017) proposed a sequence-to-
sequence (Seq2Seq) architecture for QG. In our
previous work, we (2018) proposed to augment
each word with linguistic features and encode the
most relevant pivotal answer to the text while gen-
erating questions. Similarly, Song et al (2018)
encode ground-truth answers (given in the train-
ing data), use the copy mechanism and addition-
ally employ context matching to capture interac-
tions between the answer and its context within
the passage. They encode ground truth answer for
generating questions which might not be available
for test set in contrast we train a Pointer Network
based model to predict the pivotal answer to gen-
erate question about. In our work (Kumar et al.,
2019a) we proposed a transformer based archi-
tecture to automatically generate complex multi-
hop questions from knowledge graphs. In (Kumar
et al., 2019b) we proposed a cross lingual train-
ing method for automatically generating questions
from text in low resource languages.

Very recently deep reinforcement learning has
been successfully applied to natural language
generation tasks such as abstractive summariza-
tion (Paulus et al., 2018; Celikyilmaz et al., 2018)
and dialogue generation (Li et al., 2016). In sum-
marization, one generates and paraphrases sen-
tences that capture salient points of the text. On
the other hand, generating questions additionally
involves determining question type such as what,
when, etc., being selective on which keywords to

copy from the input into the question, leaving re-
maining keywords for the answer. This also re-
quires the development of a specific probabilis-
tic generative model. (Yao et al., 2018) proposed
generative adversarial network (GAN) framework
with modified discriminator to predict question
type. Recently Fan et al (2018) proposed a bi-
discriminator framework for visual question gen-
eration. They formulate the task of visual ques-
tion generation as a language generation task with
some linguistic and content specific attributes.

6 Conclusion

We presented a novel, holistic treatment of ques-
tion generation (QG) using a generator-evaluator
framework. Our generator provisions for explic-
itly factoring in question syntax and semantics,
identifies pivotal answers, recognizes contextually
important words and avoids meaningless repeti-
tions. Our evaluator allows us to directly op-
timize for conformity towards the structure of
ground-truth question(s). We propose two novel
reward functions account for conformity with re-
spect to ground-truth questions and predicted an-
swers respectively. In conjunction, the evalua-
tor makes use of task-specific scores, including
BLEU, GLEU, ROUGE-L, and decomposable at-
tention (DAS) that are naturally suited to QG and
other seq2seq problems. Experimental results on
automatic evaluation and human evaluation on the
standard benchmark dataset show that our frame-
work, especially with the incorporation of the new
reward functions, considerably outperforms state-
of-the-art systems.
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Abstract

Various Seq2Seq learning models designed
for machine translation were applied for ab-
stractive summarization task recently. Despite
these models provide high ROUGE scores,
they are limited to generate comprehensive
summaries with a high level of abstraction
due to its degenerated attention distribution.
We introduce Diverse Convolutional Seq2Seq
Model(DivCNN Seq2Seq) using Determinan-
tal Point Processes methods(Micro DPPs and
Macro DPPs) to produce attention distribution
considering both quality and diversity. With-
out breaking the end to end architecture, Di-
vCNN Seq2Seq achieves a higher level of
comprehensiveness compared to vanilla mod-
els and strong baselines. All the reproducible
codes and datasets are available online1.

1 Introduction

Given an article, abstractive summarization aims
at generating one or several short sentences that
cover the main idea of original article, which
is a combination of Natural Language Under-
standing(NLU) and Natural Language Genera-
tion(NLG).

Abstractive summarization uses Seq2Seq mod-
els (Sutskever et al., 2014) which consist of an en-
coder, a decoder and attention mechanism (Mnih
et al., 2014). With attention mechanism the de-
coder can choose a weighted context representa-
tion at each generation step so it can focus on
different parts of encoded information. Seq2Seq
with attention achieved remarkable results on ma-
chine translation (Bahdanau et al., 2014) and other
text generation tasks such as abstractive summa-
rizaiton (Rush et al., 2015).

Unlike machine translation that emphasizes at-
tention mechanism as a method of learning word
level alignments between source text and target

1available at https://github.com/thinkwee/DPP CNN Sum
marization

Article: marseille , france the french prosecutor lead-
ing an investigation into the crash of germanwings flight
9525 insisted wednesday that he was not aware of any
video footage from on board the plane . marseille pros-
ecutor brice robin told cnn that so far no videos were
used in the crash investigation ...... of a cell phone video
showing the harrowing final seconds from on board ger-
manwings flight 9525 as it crashed into the french alps .
......paris match and bild reported that the video was re-
covered from a phone at the wreckage site . ...... cnn ’s
frederik pleitgen , pamela boykoff , antonia mortensen ,
sandrine amiel and anna-maja rappard contributed to this
report .
CNN Seq2Seq: french prosecutor UNK robin says he
was not aware of any video .
DivCNN Seq2Seq with Micro DPPs: new french pros-
ecutor leading an investigation into the crash of UNK
wings flight UNK 25 which crashed into french alps . the
video was recovered from a phone at the wreckage site .
DivCNN Seq2Seq with Macro DPPs: french prosecutor
says he was not aware of any video footage from on board
UNK wings flight UNK 25 as it crashed into french alps .

Table 1: Article-summary sample from CNN-DM
dataset. Colored spans are attentive parts. Micro DPPs
model puts wider attention on article than vanilla does
and Macro DPPs puts the widest attention, including
former two models’ attentive parts.

text, attention in summarization should be soft
and diverse. Many works noticed that attention
may be over concentrated for summarization and
hence cause problems like generating duplicate
words or duplicate sentences. Researchers try to
solve these problems by introducing various at-
tention structures, including local attention (Lu-
ong et al., 2015), hierarchical attention (Nallap-
ati et al., 2016), distraction attention (Chen et al.,
2016) and coverage mechanism (See et al., 2017)
etc. But all these works ignore another repeat
problem, as we call it, ”Original Text Repetition”.
We define and explain this problem in section 3.

In this paper we propose a novel Diverse Convo-
lutional Seq2Seq Model(DivCNN Seq2Seq) based
on Micro Determinantal Point Processes(Micro
DPPs) and Macro Determinantal Point Pro-
cesses(Macro DPPs). Our contributions are as fol-
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lows:

• We define and describe the Original Text
Repetition problem in abstractive summa-
rization and identify the cause behind it,
which are degenerated attention distributions.
We have also introduced three article-related
metrics for the Original Text Repetition esti-
mation and applied them in our experiments.

• We suggest a solution to this problem in
the form of introducing DPPs into deep neu-
ral network (DNN) attention adjustment and
propose DivCNN Seq2Seq. In order to adapt
DPPs to large scale computing, we propose
two kinds of methods: Micro DPPs and
Macro DPPs. To the best of our knowledge,
this is the first attempt to adjust attention dis-
tributions considering both quality and diver-
sity.

• We evaluate our models on six open datasets
and show its superiority on improving the
comprehensiveness of generated summaries
without losing much training and inference
speed.

2 Convolutional Seq2Seq Learning

Usually encoder and decoder in Seq2Seq ar-
chitecture are recurrent neural network(RNN)
or its variants like Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Chung et al., 2014)
network. Recently, a Seq2Seq architecture based
entirely on convolutional neural networks (CNN
Seq2Seq) (Gehring et al., 2017) was proposed.
It has better hierarchical representation of natu-
ral language and can be computed in parallel. In
this paper we choose CNN Seq2Seq as our base-
line system because it performs better on captur-
ing long-term dependency, which is important for
summarization.

Both encoder and decoder in CNN Seq2Seq
consist of convolutional blocks. Each block con-
tains a one dimensional convolution (Conv1d), a
gated linear unit (GLU) (Dauphin et al., 2017) and
several fully connected layers for dimension trans-
formation. Residual connection (He et al., 2016)
and batch normalization (Ioffe and Szegedy, 2015)
are used in each block. Each block receives an in-
put I of size RB∗T∗C , where B, T , and C are re-
spectively batch size, length of text and number of

channels (the same as embedding size). Conv1d
pads the sentence first and then generates a ten-
sor [O1, O2] of size RB∗T∗2C , doubling the chan-
nel. The extra channels are used in a simple non-
linearity gated mechanism:

O1, O2 = Conv1d(I) (1)

GLU([O1, O2]) = O1 ⊗ σ(O2) (2)

Multi-step attention (Gehring et al., 2017) are
used in CNN Seq2Seq. Each convolutional block
in decoder has its own attentive context. Followed
on query-key-value definition of attention, queries
Q ∈ RB∗Tg∗C are different decoder block out-
puts, where Tg stands for summary length; keys
K ∈ RB∗Ts∗C are encoder last block outputs,
where Ts stands for article length; values are sum
of encoder input embeddings E ∈ RB∗Ts∗C and
K. Because of the parallel architecture, atten-
tion for all decoder time steps can be calculated at
once. Such architecture can speed up training and
give convenience for our DPPs calculation. Using
the simplest dot product attention, all the calcula-
tions can be done with an efficient batch matrix
multiplication (BMM).

scoreattn = BMM(Q,K) (3)

weightattn = Softmax(scoreattn) (4)

context = BMM(weightattn,K + E) (5)

3 Original Text Repetition

Original Text Repetition(OTR) problem means
that each sentence in generated summaries are rep-
etitions of article sentences. The abstractive sum-
marization hence degenerates to extractive sum-
marization. The ROUGE metric can not detect this
problem since it only measures the n-grams con-
currence between generated summaries and gold
summaries without taking articles into considera-
tion. The word repeat problem (See et al., 2017) or
the lack of abstraction problem (Kryściński et al.,
2018) can be seen as extreme condition or alterna-
tive description of OTR. Behind this phenomenon
is the degenerated attention distribution learned by
model which we define as:

• Narrow Word Attention for each summary
word, the attention distribution narrows to
one word position in article.

• Adjacent Sentence Attention for all words
in each summary sentence, their positions of
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Figure 1: Degenerated attention distribution behind
OTR problem. The generated summary repeats the first
sentence in article. We select the first 16 words of sum-
mary and show their attention over first 50 words of
article.

attention peaks are adjacent or semantically
adjacent, which means that attended article
parts have similar features.

As shown in the Figure 1, sentence attention
degenerates to several adjacent peaks on the re-
peated article positions. Usually each sentence
in gold summaries considers multiple article sen-
tences and induct to one, not simply copying one
article sentence. The gap between generated sum-
maries(copy) and gold summaries(induce) means
that model just learned to find article sentences
that has the maximum similarity to gold sum-
maries not the relation between article facts and
summaries. Degenerated attention mechanism
misleads the model.

4 Diverse Convolutional Seq2Seq Model

To prevent Seq2Seq model from attention degen-
eration, we introduce DPPs as a method of regu-
larization in CNN Seq2Seq and propose DivCNN
Seq2Seq.

4.1 Quality and Diversity Decomposition of
Determinantal Point Processes

DPPs have been widely used in recommender sys-
tems, information retrieval and extractive summa-
rization systems. It can generate subsets with
both high quality and high diversity (Kulesza and
Taskar, 2011).

Given a discrete, finite point process P and a
ground set D, if for every A ∈ D and a random
subset Y drawn according to P, there is:

P (A ∈ Y ) = det(KA) (6)

where K is a real symmetric matrix that indexed
by the elements of D, then P is a determinan-
tal point process and K is the marginal kernel

of DPPs. Marginal kernel merely gives marginal
probability of one certain item to be selected in
one particular sampling process, hence we use L-
ensemble (Kulesza and Taskar, 2011) to model
atomic probabilities for every possible instantia-
tion of Y:

K = L(L+ I)−1 = I − (L+ I)−1 (7)

PL(Y = Y ) ∝ det(LY ) (8)

PL(Y = Y ) =
det(LY )

det(L+ I)
(9)

L-ensemble is also one kind of DPPs and can
be constructed directly using the quality(q) and
similarity(sim) of point set:

Li,j = q(i) ∗ sim(i, j) ∗ q(j) (10)

Equation 9 is a probability that subset Y being
chosen, which is actually a quantitative indica-
tor for the score of the subset considering both
its quality and diversity(QD-score). Summariza-
tion follows the same principle: a good summary
should consider both information significance and
redundancy. In extractive summarization set of
sentences with high score (quality) and diversity
is chosen to a summary, using DPPs sampling al-
gorithm (Li et al., 2017).

In Figure 2 we show the difference between
quality-only sampling and DPPs sampling. We
first generate a simulated attention distribution for
testing. Then we use word position distance as
similarity measure and attention as quality to con-
struct the L matrix(L-ensemble) for DPPs. Point
subset is sampled based on quality (green) or
DPPs (blue), then a gaussian mixture distribution
was generated around these points to soften and
reweight the attention. Both samplings approxi-
mate the distribution of original attention distribu-
tion (orange), but DPPs approximate it better and
have more scattering peaks. Sampling only con-
sidering attention weight (quality) generates less
peaks, which means many adjacent points with
low diversity are sampled.

In actual experiments we choose attention
weight as quality. The model learns attention dis-
tribution to score different parts of article and ob-
viously higher attention means higher quality. In
original CNN Seq2Seq the sum of encoder out-
put and encoder input embeddings are encoded
feature vectors. We follow this setting and use
the feature vectors to calculate cosine similarity.
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Figure 2: Comparison of different reweighting methods
on a simulated distribution. DPPs sampling reweight-
ing approximates original distribution better since it
catches the high attention area around position 160. It
also samples less adjacent points around position 110.

Article Encoder

Summary
Decoder

Decoder Output

Encoder Input Embeddings

Encoder Output

Decoder Input
Embeddings

Attention 
Matrix

Similarity MatrixQuality Matrix

L Matrix

+

Figure 3: Construction of L matrix

Specifically, the encoder output are tree-like se-
mantic features extracted by CNN encoder while
the encoder input embedding provides point infor-
mation about a specific input element before en-
coding (Gehring et al., 2017). Hence feature vec-
tors contain both highly abstract semantic features
and specific grammatical features when calculat-
ing diversity. Compared to extractive summariza-
tion, DPPs in abstractive summarization use status
of DNN as quality and diversity which can be op-
timized dynamically during training.

The computation of Lmatrix is shown in Figure
3. For each sample in a batch(128 in our experi-
ments), the encoder input embeddings E ∈ RTs∗C
multiply its transpose to produce similarity matrix
S ∈ RTs∗Ts . The weight vectors of Multi-step
Attention average over decoder layers and sum-

mary length, then do the same operation to gen-
erate quality matrix Q ∈ RTs∗Ts . Then we use the
hadamard product of Q and S as L ∈ RTs∗Ts .

4.2 Macro DPPs

L Matrix
Sample submatrix with large 

attention weight 

Sample Submatrix with 
equidistant sampling

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 

Random Choose 
One In Each Batch

Fix Quality
Optimize 
Diversity

Fix Diversity
Optimize 
Quality

Figure 4: Conditional sampling in Macro DPPs

The idea of Macro DPPs is to pick subsets under
some restriction and evaluate QD-score of subset
using equation 9. The ideal attention distribution
should have subsets with high QD-score.

We do not use DPPs sampling since the purpose
of Macro DPPs is to evaluate subsets not to sam-
ple subsets with high QD-score. The attention dis-
tribute over the ground set so we introduce con-
ditional sampling to sample a subset that has high
quality or high diversity, then improve the other
metric as follows:

• Improve Diversity in High Quality Subset
Select points with high attention weight to
construct subset and require no gradient for
quality matrix, just optimize diversity.

• Improve Quality in High Diversity Sub-
set Sampling point subset with high diversity
is hard to realize, so we just make equidis-
tant(equidistant on word positions) sampling
to approximate it. Contrary to the previous
method, we require no gradient for similarity
matrix and just optimize quality.

We randomly choose one condition in each
batch. After the point subset was chosen, the sub-
matrix LY can be built by selecting elements in
L indexed by point subset. Then we calculate the
QD-score of the submatrix and add it into model
loss as a regularization. We calculate the logarith-
mic summation of eigenvalues to prevent numeri-

825



cal underflow.

lossQD =
∑

log λLY
−
∑

log λL+I (11)

∝ det(LY )

det(L+ I)
(12)

lossmodel = γlossMLE + (1− γ)lossQD (13)

4.3 Micro DPPs

The idea of Micro DPPs is to sample a subset
Y with large QD-score from all article positions
and to use these sampled points as adjusted at-
tention focus points. Then a Gaussian Mixture
(GM) distribution around these points is generated
as ideal attention distribution(weightideal). The
whole process can be seen as a selection and soft-
ening on attention. The Kullback-Leibler diver-
gence of the ideal distribution and attention distri-
bution (weight) then is added into the loss func-
tion as regularization.

P = BFGMInference(L, t) (14)

weightideal = GMµ∈P (µ, σ, π) (15)

lossKL = KLdiv(weightideal, weightattn)
(16)

lossmodel = γlossMLE + (1− γ)lossKL (17)

Classic sampling algorithm for DPPs (Kulesza
and Taskar, 2011) runs slow when the size of L
matrix is large and it can not be computed in batch.
In the DivCNN Seq2Seq model we need to con-
struct an L matrix for every sample and every
layer in the decoder, which is ultimately large. To
optimize DPPs runtime for this large-scale com-
putation, we introduce a Batch computation ver-
sion of Fast Greedy Maximum A Posteriori Infer-
ence (Chen et al., 2018)(BFGMInference) to sam-
ple a subset with high QD-score.

BFGMInference uses a greedy method
to approximate the MAP result Ymap =
argmaxY ∈D det(LY ): each time we select
j that has maximum QD-score improvements and
add it to Y .

f(Y ) = log det(LY ) (18)

j = argmax
i∈D\Y

f(Y ∪ {i})− f(Y ) (19)

Algorithm 1 BFGMInference

Input: matrix L ∈ RB∗Ts∗Ts , size of sampled subset
t

Output: Sampled subset Y ∈ RB∗t

1: Initialize Di = Lii; mask = 1B∗Ts ; J =
argmax(log(D ∗mask)); C ∈ 0B∗Ts∗1

2: maskj∈J = 0
3: count = 1
4: while count < t do
5: candidate = {i|maski = 1}
6: ctemp = 0B∗Ts∗1, dtemp = 0B∗Ts

7: for idx = 0; idx < Ts− count; idx++ do
8: i = candidate[:, idx], j = J
9: ei = (Lj,i − 〈cj , ci〉)/dj

10: ctempi = ei, dtempi = ei
2

11: end for
12: C = [C, ctemp], D = D − dtemp
13: J = argmax(log(D ∗mask))
14: maskj∈J = 0
15: count = count+ 1
16: end while
17: Y = {i|maski = 0}
18: return Y

By using Cholesky decomposition we have:

LY = V V T (20)

LY ∪{i} =
[
V 0
ci di

] [
V 0
ci di

]T
(21)

V cTi = LY,i (22)

d2i = Lii − ||ci||22 (23)

Then we can transform equation 19 into:

j = argmax
i∈D\Y

log(d2i ) (24)

The c and d can be updated incrementally accord-
ing to equation 22 and 23. The complete algo-
rithm is described in Algorithm 1. BFGMInfer-
ence algorithm gains significant speed improve-
ments when the size of L matrix is large as shown
in Figure 5.

5 Experimental Setup

Datasets We test DivCNN Seq2Seq model
on the widely used CNN-DM dataset (Her-
mann et al., 2015) and give detailed analy-
sis on diversity and quality. Also we tried
our model on other five abstractive summa-
rization datasets which are NEWSROOM cor-
pus (Grusky et al., 2018), TLDR (Völske et al.,
2017), BIGPATENT (Sharma et al., 2019), WIK-
IHOW (Koupaee and Wang, 2018) and RED-
DIT (Kim et al., 2018). For CNN-DM corpus we
truncate articles to 600 words and summaries to
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Dataset # Docs Type Average Document
Words

Average Summary
Words

CNN-DM 287227/13368/11490 News 789/777/768 55/59/62
NEWSROOM 995041/108862/108837 News 659/654/652 26/26/26

REDDIT 34000/4000/4000 Social Media 418/445/451 20/23/25
BIGPATENT 1207222/67068/67072 Documentation 699/699/699 116/116/116

TLDR 960000/20000/20000 Social Media 197/195/204 19/19/19
WIKIHOW 180000/10000/20000 Knowledge Base 475/488/418 62/60/74

Table 2: Dataset overview(train/valid/test).

Figure 5: Speed comparison of classical DPPs sam-
pling (blue), FGMInference (red) and BFGMInference
(gray) with a batch size of 100.

70 words. For other corpus we only keep articles
and summaries that have length around its aver-
age length. Specially we only use the TIFU-long
version of REDDIT and non-anonymized version
of CNN-DM dataset. If the raw datasets were not
divided into train/dev/test then we divide the shuf-
fled datasets manually. Details of all six datasets
are shown in Table 2.

Hyperparameters and Optimization All the
CNN models use a 50000 words article dictio-
nary and 20000 words summary dictionary with
byte pair encoding (BPE) (Sennrich et al., 2015).
Word embeddings are pretrained on training cor-
pus using Fasttext (Bojanowski et al., 2017; Joulin
et al., 2016). We do not train models with large
parameters to increase ROUGE results since what
we try to improve is the comprehensiveness of
each sentence in summary. The total parameters
of whole CNN seq2seq Model are about 3800w
and the DivCNN Seq2Seq does not change the pa-
rameters amount. All the models set embedding
dimensionality and CNN channels to 256. The en-
coder has 20 blocks with kernel size 5 and the de-
coder has 4 blocks with kernel size 3. Such scale
of model parameters are enough for the model to
generate fluent summaries. The γ is 0.6 for Macro

DPPs and 0.7 for Micro DPPs. In Macro DPPs
we choose top 30 points when optimizing diversity
and a stride of 20 for equidistant. In Micro DPPs
for each summary we sample 20 points to generate
gaussian mixture distributions. We train the model
with Nesterov’s accelerated gradient method us-
ing a momentum of 0.99 and renormalized gradi-
ents when the norm exceeded 0.1 (Sutskever et al.,
2013). The beam search size is 5 and we apply a
dropout of 0.1 to the embeddings and linear trans-
form layers. We did not fix training epoches. The
model was trained until the average epoch loss can
not be lower anymore. The DPPs regularization
only works when training and does not bring ex-
tra parameters into model. During test the model
has learned proper attention so the generation is
the same as vanilla CNN Seq2Seq Model.

Article-Related Metrics It is hard to evaluate
a summary since summarization itself is very sub-
jective. ROUGE compares generated summaries
and gold summaries in checking concurrence of
n-grams that results in a very limited evaluation in
a word level. We set three article-related metrics
to evaluate the comprehensiveness of summaries:

• Jaccard Similarity Upper Bound (JS) For
each summary sentence, we compute its jac-
card similarity with every article sentence.
The largest jaccard similarity for each sum-
mary sentence is selected as JS. It measures
the extent to which summaries copy articles.
The worst situation is 1.

• Sentence Coverage (SC) We define those ar-
ticle sentences that have a jaccard similarity
higher than the gold summaries JS value as
covered sentence. Then the average counts of
covered article sentences for each summary
sentence is a ratio that can be used to measure
the coverage of the article by the summaries.
The worst situation is less than or equal to 1.

• Novel Bigram Proportion (NOVEL) The
percentage of bigrams in summaries that did
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not appear in the article. It reflects the ab-
straction of summaries. The worst situation
is 0.

Strong Baseline We chose four strong base-
lines which reported high ROUGE scores. Bot-
tomUp (Gehrmann et al., 2018), sumGAN (Liu
et al., 2018) and RL Rerank (Chen and Bansal,
2018) are complicate systems that have additional
modules or post-processings and partially relieved
the OTR problem. The Pointer Generator (See
et al., 2017) reaches best ROUGE result in single
end to end model but suffers greatly from repeti-
tion problem.

Various Possible Causes of the OTR problem
We had supposed several other reasons for the rep-
etition problems besides attention degeneration in-
cluding overfitting, bad usage of translation-style
attention mechanism, lack of decoding ability and
high variance attention distribution. Respectively,
we designed comparative experiments as follows:

• Overfitting We set dropout ratio to 0.1
(SMALL) and 0.5 (LARGE) for testing over-
fitting.

• Direct Attention Remove the encoder input
embedding in attention value so the decoder
looks at highly abstract features directly (DI-
RECT).

• Lack of Decoding Ability We double (DOU-
BLE) or half (HALF) the vanilla (VANILLA)
decoder layers to adjust the decoding ability.

• High Variance Attention We scale down the
attention distribution manually when train-
ning (SCALE), lowering the variance of the
distribution.

6 Results

Various Possibilities As shown in Table 4, scaled
attention has the lowest jaccard similarity up-
per bound, which confirms our idea that over-
concentrated attention makes model to copy arti-
cle sentences. As for sentence coverage, small de-
coder with large drop out ratio performs the best,
proving that large and overfitted models may have
degenerated attention. Although the scaled atten-
tion has the best JS score, its SC score is the worst
(SC less than 1.0 means duplicate sentences are
generated). So, we may conclude that directly

scaling down attention breaks the value of atten-
tion. The ideal attention is not about erasing the
peak or the variance of attention but to have mul-
tiple peaks in sentence attention and have high di-
versity at the same time. Neither aggregative nor
scattering attention distributions do good to sum-
mary generation. Direct attention model has the
maximum NOVEL score which means point in-
formation about a specific input element makes
model prefer copying article words instead of gen-
erating new words.

CNN-DM Results With large model parame-
ters and dictionaries, four models in strong base-
lines reach nearly 40 points in ROUGE-1 but they
perform poorly on article-related metrics. Single
end to end systems like Pointer Generator per-
forms poorly on JS value and NOVEL proportion
which means most of its summaries are copied
from articles. As for three models with mul-
tiple modules or post-processing, the BottomUp
model has relatively good jaccard similarity upper
bound and the best ROUGE result but its article-
related metrics are still far away from gold sum-
maries level. RL Rerank model has better score
on JS and sumGAN has better NOVEL score but
none of these model reached a balanced good per-
formance on three article-related metrics. Com-
pared to vanilla CNN Seq2Seq, DivCNN Seq2Seq
improves the JS and NOVEL points and raises
the ROUGE score at the same time, proving
that proper attention distribution can help reach-
ing a better local optima. Compared with strong
baselines, DivCNN Seq2Seq achieves the best in
NOVEL, second and third in JS and SC, respec-
tively. Empirically we suggest that γ for both Mi-
cro and Macro DPPs should be set to make aver-
age loss change less than 10% compared to vanilla
models. We also observed that Micro DPPs is
more sensitive to γ compared to Macro DPPs and
is easier to converge but may degenerate to vanilla
CNN Seq2Seq. Macro DPPs usually can reach
better results but it needs more time to train since
eigenvalue calculation is expensive and can not be
accelerated through fp16 tensor computing.

Novel Bigram NOVEL is a tricky metric which
is used in many researches about abstractive sum-
marization. There are many possibilities on ex-
plaining a high NOVEL score: first, the sum-
mary get a high Novel Bigram ratio because it has
many Novel unigrams, which may be good or bad;
second, the model may be underfitting and can
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Model JS SC NOVEL R1 R2 RL
gold 0.326 – 0.575 – – –

(Liu et al., 2018) sumGAN 0.709 1.136 0.118 39.92 17.65 27.25
(Gehrmann et al., 2018) BottomUp 0.541 1.015 0.098 41.53 18.76 27.92

(Chen and Bansal, 2018) RL Rerank 0.585 1.181 0.105 39.38 16.03 24.95
(See et al., 2017) Pointer Generator 0.774 1.317 0.079 39.53 17.28 26.89

CNN Seq2Seq Vanilla 0.616 1.137 0.167 30.4 11.7 23.09
DivCNN Seq2Seq with Micro DPPs 0.568 1.214 0.183 30.61 11.82 23.19
DivCNN Seq2Seq with Macro DPPs 0.587 1.265 0.177 32.28 12.75 24.32

Extract with Attention – – – 35.48 13.67 22.85
Extract with DPPs Diversified Attention – – – 35.35 13.69 23.07

Table 3: Results on CNN-DM datasets.

Model JS SC NOVEL
SCALE 0.382 0.79 0.199
DIRECT 0.567 1.14 0.207

LARGE
DOUBLE 0.591 1.201 0.192
VANILLA 0.639 1.261 0.162

HALF 0.639 1.281 0.153

SMALL
DOUBLE 0.631 1.259 0.167
VANILLA 0.616 1.137 0.167

HALF 0.625 1.29 0.161

Table 4: Explore various possible causes of OTR.

not generate fluent sentences; third, the generated
summary use novel bigrams to conclude the orig-
inal text and generate readable sentences, which
is the best condition. From the table 3 we can see
that Bottom Up has the best ROUGE and JS results
but worst NOVEL score. Our DivCNN Models
have just the opposite metric scores. These three
metrics shouldn’t be ambivalent since gold sum-
maries can reach high NOVEL and low JS at the
same time. Base on these facts we make the fol-
lowing conjectures:

• Good summaries model learned have styles
differ from human-write summaries. Model
tend to copy bigrams from original article
and reorganize them into short summary sen-
tences. Human tend to use brand new bi-
grams to paraphrase facts contained in origi-
nal article. The model use a rewrite(compress
and extract) way while human-write is over-
write style.

• Though we use human-write summaries as
gold summaries for model to learn and the
MLE loss is steadily descending during train-
ing but it learned summaries with different
style. It implicates that model may not have
a ”NLU+NLG” process like human do but be

restrained in a sentence-level rewrite frame-
work. For Bottom Up and RL Rerank it is
not a problem because these two systems are
designed to rewrite. They only send parts of
article into Seq2Seq. Such design can gain
high ROUGE score but it is not the way in
which human write gold summaries.

Figure 6: Actual attention distribution learned by
vanilla model and DPPs models.

Extractive Summarization based on Learned
Attention We also extract article sentences based
on sentence attention learned by DPPs models to
generate summaries. The attention of a sentence
is the sum of the attention weights of the words
in the sentence. Table 3 shows that extractive
summarization reaches better ROUGE values, im-
plicating that both vanilla and DivCNN models
learned appropriate sentence attention. Extractive
summarization uses accumulated sentence atten-
tion instead of specific distribution, so the results
of vanilla models are almost the same as DivCNN.

Sample Visualization We randomly choose
one sample in the test set of CNN-DM corpus to
visualize and analyze. As shown in Table 1 we
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Datasets Baseline Baseline Micro DPPs Macro DPPs
NEWSROOM LEAD-3 Baseline 30.63/21.41/28.57 38.33/25.01/35.3 40.10/26.71/37.24

TLDR - - 65.94/56.97/64.65 66.93/57.84/65.71
BIGPATENT (Chen and Bansal, 2018) 37.12/11.87/32.45 33.21/10.47/24.86 34.55/11.65/25.96
WIKIHOW (See et al., 2017) 28.53/9.23/26.54 24.52/6.49/20.56 27.58/8.01/22.61

REDDIT (Kim et al., 2018) 19/3.7/15.1 21.39/4.24/17.11 21.57/4.48/17.29

Table 5: ROUGE F1 results(R1/R2/RL) on different datasets

highlighted attentive parts in the article for differ-
ent models. The vanilla model just generates one
sentence which only focuses on one part of article.
The Micro DPPs model generates two sentences
considering three parts of the article. Macro DPPs
considered article spans that both vanilla model
and Micro DPPs model paid attention to. We also
checked the attention distribution of this sample.
As shown in Figure 6, vanilla model (red) learned
only several peaks over article position 70 to 90,
which suggests that it only focuses on one sen-
tence and repeats this sentence in a summary. At-
tention learned by Micro DPPs model (green) still
narrows to several peaks but explores more posi-
tions compared to vanilla. Macro DPPs (blue) has
more natural design of loss function and it opti-
mize quality and diversity directly so it has a more
scattering attention distribution.

More Datasets We test our model on other five
newly-released abstractive summarization datasets
which have various compression ratio, different
professional field and more flexible human-write
summaries. Only ROUGE results are collected
since no baseline generated summaries are pro-
vided for us to calculate article-related metrics.
Table 5 shows that DivCNN performs better than
best baselines on NEWSROOM, REDDIT and
reaches incredible ROUGE scores more than 60
(but no baseline is reported in the dataset paper so
the result is not comparable). The compression ra-
tio and article length have little impact on the per-
formance of DivCNN. The results show that Di-
vCNN prefers short summaries.

Attention & Representation Degeneration In
order to solve attention degeneration we introduce
DPPs to improve the diversity of features where
model paid high attention to. This solution is con-
sistent with the Presentation Degeneration Prob-
lem in NLG (Gao et al., 2018). As shown in Figure
7, Macro DPPs have more diverse embedding pre-
sentation compared to vanilla model. (Gao et al.,
2018) directly add a regularization loss of diver-
sity to increase the representation power of word
embeddings while we aim at generating attention

Figure 7: Presentation Degeneration Problem in NLG.
We use tSNE (Maaten and Hinton, 2008) to reduce the
dimension of word embeddings learned in the model.

distribution considering both quality and diversity,
resulting in learning word embeddings with rich
representation power.

7 Conclusions and Future Works

We have defined the ”OTR” problem that leads to
incomplete summaries and revealed the cause be-
hind it, which is attention degeneration. We also
introduce three article-related metrics to evaluate
this problem. DPPs are applied directly on atten-
tion generation and we propose Macro and Mi-
cro DPPs versions of DivCNN Seq2Seq model to
adjust attention considering both quality and di-
versity. Results on CNN-DM and other five open
datasets show that DivCNN Seq2Seq can improve
the comprehensiveness of summaries.

Due to the hardware limitation we only train
a small-parameters version of DivCNN. Also we
lost some precision when approximating L ma-
trix and accelerating sampling. These drawbacks
lead to limited performance improvements. In
the future we hope to explore further on fol-
lowing directions: Quantifiable and controllable
quality/diversity in DPPs; better approximation in
conditional sampling, such as dynamic sampling
stride adjustment; try to apply DPPs-optimized at-
tention on another student model to improve gen-
eration.
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Abstract

Abstractive text summarization aims at gen-
erating human-like summaries by understand-
ing and paraphrasing the given input content.
Recent efforts based on sequence-to-sequence
networks only allow the generation of a single
summary. However, it is often desirable to ac-
commodate the psycho-linguistic preferences
of the intended audience while generating the
summaries. In this work, we present a rein-
forcement learning based approach to generate
formality-tailored summaries for an input arti-
cle. Our novel input-dependent reward func-
tion aids in training the model with stylistic
feedback on sampled and ground-truth sum-
maries together. Once trained, the same model
can generate formal and informal summary
variants. Our automated and qualitative eval-
uations show the viability of the proposed
framework.

1 Introduction

Efficient content consumption is not only driven
by the contained information but also by the
tone/style of the presentation. The style in text
is its non-informational or non-factual aspect and
usually drives the quality of response from its au-
dience. A persuasive snippet or a teaser might
drive up sales for a marketing message and a piece
of formal text will appeal better to corporate ex-
ecutives as against informal communication. Sim-
ilarly, not all long form content is easy to read.
A succinct representation of the content, i.e. the
summary, plays an important role for its quick and
efficient consumption. While, text summariza-
tion and to some extent style-understanding have
been independently studied, approaches to gener-
ate style-tailored summaries are limited.

∗ Work done when author was a full time employee at
Adobe Research

Models for style predictions (Pavlick and
Tetreault, 2016; Brooke et al., 2010; Danescu-
Niculescu-Mizil et al., 2013) are limited to mea-
suring style in text. There have been multi-
ple attempts towards transfer of style (Artetxe
et al., 2017; Han et al., 2017; Shen et al.,
2017; Tikhonov and Yamshchikov, 2018). Rao
and Tetreault (2018) introduced a parallel corpus
for formality style transfer with neural machine
translation benchmarks. Niu et al. (2017) gener-
ate automatic translations tailored towards formal-
ity. However, none of these approaches account
for the length/succinctness of the created content,
and hence do not address the stylized summariza-
tion task. In this work, we propose an approach
to generate summaries while simultaneously tai-
loring towards formality preferences (Table 1).

Tunable or controlled summary generation has
picked up pace in recent times. Algorithms al-
low for controlling various dimensions of the out-
put summary such as the length or entities (Fan
et al., 2017) and topics (Krishna and Srinivasan,
2018). Since these approaches primarily rely
on the diversity in the given dataset, extending
these approaches for formality tailored summa-
rization would require a diverse summarization
corpus that captures subtleties in various formal
variants. Since such a dataset is difficult to cu-
rate, it is non-trivial to use these methods as is.
Reinforcement learning (RL) based loss functions
have recently shown promise in tuning the output
on rewards such as ROUGE (Paulus et al., 2018).
In such methods, the model receives explicit feed-
back on the sampled sequences while training. If
directly applied for controlling stylistic parameters
like formality, such a method would need two sep-
arately trained models for generating formal and
informal summaries and thus, may miss out on the
common learnings.

In this work, we propose a method to incor-
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porate formality in abstractive text summariza-
tion. To build a formality-rich training dataset,
we merge data from two domains: news and so-
cial media - the first one representing more for-
mal language and the latter, informal. We define
a novel input-dependent reward function which
aids in training the model with stylistic feedback
on sampled and ground-truth summaries together.
Once trained, the same model can generate for-
mal and informal summary variants. We show the
effectiveness of our approach through automated
and crowd-sourced experiments, evaluating both
the quality and formality levels of the generated
summaries. Table 1 shows sample formal and in-
formal summary variants, generated from our ap-
proach on an instance from the testset.

Input Article: katrina had been expressing anxiety for a while now about
how worried she was about the bridal shower and being the center of at-
tention of a bunch of people she did n’t know . that ’s completely normal .
she has been so worried that she determined to send him a short email out-
lining what she would do if she were in his shoes . that absolutely counts
as meddling . that ’s literally the definition of meddling sticking your nose
where it does n’t belong . katrina talked to my mom for about five minutes
and then sat about twenty feet away from her during this tournament while
my mom sat alone . and katrina is n’t obligated to entertain your mother .
your mom could ’ve talked to other people instead ...
Informal: katrina had been so worried that she was abt the bridal shower
& being the center of attention of a bunch of people she did n’t know .
katrina ’s n’t obligated to entertain ur mom .
Formal: katrina had been expressing anxiety for the bridal shower and
being the center of attention of a bunch of people she did not know . she
has been therefore worried that she determined to transmit him a short
email outlining what she were in his shoes .

Table 1: Example formal and informal summary vari-
ants generated on an instance from our testset.

2 Related Work

Early abstractive summarization efforts were ei-
ther template-based (Wang and Cardie, 2013;
Genest and Lapalme, 2011) or employed ILP-
based sentence compression (Filippova, 2010;
Berg-Kirkpatrick et al., 2011; Banerjee et al.,
2015). With the advent of deep sequence-
to-sequence models (Sutskever et al., 2014),
attention-based neural models have been proposed
for long text summarization (Rush et al., 2015;
Chopra et al., 2016). Recent approaches (Nalla-
pati et al., 2017; See et al., 2017) have focused
on larger datasets such as the CNN/DailyMail
corpus (Hermann et al., 2015; Nallapati et al.,
2016). Gulcehre et al. (2016) introduced the abil-
ity to copy out-of-vocabulary words from the ar-
ticle to incorporate rarely seen words like names
in the generated text. Tu et al. (2016) included
the concept of coverage, to prevent the models
from repeating the same phrases while generating

a sentence. See et al. (2017) proposed a pointer-
generator framework which incorporates these im-
provements, and also learns to switch between
generating new words and copying them from
the source article. We use this pointer-generator
framework as the underlying architecture.

2.1 Incorporating additional constraints
Controlled summary generation has only recently
gained popularity. Variational auto-encoders (Hu
et al., 2017) or adversarial training (Shen et al.,
2017) have been explored for non-parallel stylis-
tic text generation. Sennrich et al. (2016) propose
modifications to neural machine translation to tune
the level of politeness in the generated text. Fi-
cler and Goldberg (2017) use a conditional lan-
guage model to control variations like descriptive-
ness and sentiment simultaneously during gener-
ation. Efforts for constrained text summarization
are rather limited with no efforts attempting to in-
corporate psycho-linguistic preferences. Krishna
and Srinivasan (2018) incorporate input topic in-
formation in the output summary using a topic-
vector along with the input word sequence.

Fan et al. (2017) control length and entity in
textual summaries using explicit input indicators
or tokens. Paulus et al. (2018) directly control the
ROUGE evaluation metric using the Self Critical
Sequence Training (SCST) (Rennie et al., 2017)
algorithm. We build on these approaches and show
through our experiments that our approach is able
to generate better formality-tuned summaries in
comparison to these methods.

2.2 Incorporating Formality
Formality is an important style or tone dimension
in written text. Although there are existing works
which model formality in text (Brooke et al., 2010;
Lahiri, 2015; Pavlick and Tetreault, 2016; Chhaya
et al., 2018), there have been limited attempts
to incorporate it in text generation. Sheikha and
Inkpen (2011) used a predefined set of rules based
on formal-informal parallel lists to generate for-
mal and informal sentences. More recently, a par-
allel corpus of formality style transfer (Rao and
Tetreault, 2018) was released with NMT-based
benchmarks. To the best of our knowledge, we
are the first to introduce formality in the space of
abstractive text summarization.

Generating text with varying levels of formality
was studied recently in Machine Translation (Niu
et al., 2017, 2018). A re-ranking mechanism on
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the decoded hypotheses is used to control the for-
mality of the generated translations. We augment
our decoding module with a similar, but simpler
re-ranking method to enhance our approach.

3 Pointer-Generator Framework

Our approach uses the pointer generator net-
work (See et al., 2017) as the underlying architec-
ture. This section explains this framework briefly
for the sake of completion. The model is based
on an encoder-decoder setup. The bi-directional
LSTM encoder takes the article x as an input
and computes a sequence of encoder hidden states
h1, h2, ..hn. The last state hn becomes the initial
state of the LSTM decoder which uses an attention
mechanism to generate the output summary word
by word. Further, at each time step, the decoder
network computes pgen, the probability of gener-
ating a new word from the vocabulary,

pgen = σ(wT
h h
∗
t + wT

s st + wT
x xt + bgen) (1)

where wh, ws, wx, bgen are trainable parameters.
h∗t is the context vector capturing the attention dis-
tribution, st is the decoder internal state and xt is
the decoder input at tth time step. The total prob-
ability of w being the next word generated in the
summary, p(w), is given by,

p(w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (2)

where pgen provides a switch between generating
a new word from Pvocab(w) or copying a word
from the input based on the attention distribution.
The training loss is set to be the average negative
log-likelihood of the ground truth summary:

Lnll = −
1

T

T∑

t=1

log
[
p(y∗t |y∗1, ..., y∗t−1, x)

]
(3)

where y∗ is the ground-truth word sequence. We
propose to modify the above training objective in
order to incorporate psycho-linguistic preferences
of the target audience, with a focus on formality.

4 Generating (In)formal Summaries

A major challenge in incorporating formality
into the summarization system is the lack of a
formality-diverse dataset. To the best of our
knowledge, there exists no data which either has
both formal and informal ground-truth summaries

for the same input article or where the provided
ground-truth summaries are diverse on the formal-
ity scale. This makes the direct use of explicit in-
dicators ineffective (Section 6.2), which have been
shown to capture this diversity in the given dataset
well (Fan et al., 2017; Krishna and Srinivasan,
2018). To address this, we work off a dataset
mixed from two different domains: news and so-
cial, making it more formality-diverse (Section 5).

While diversity in the data helps the model
to learn the (in)formal parts in the text, we fur-
ther employ a modified reinforcement learning
approach which teaches the decoder module to
write (in)formally through explicit feedback. The
model is trained using feedback on the formality
of both sampled and ground-truth summaries to-
gether. The pointer-generator model is trained us-
ing the negative log-likelihood loss Lnll as given
in Equation 3. We make the use of policy gradi-
ents by introducing an additional loss term Lrl in
the training objective:

Lrl = −
[
r(ys)

] T∑

t=1

log
[
p(yst |ys1, .., yst−1, x)

]
,

(4)
where r is the formality-based reward function.
ys is a sampled word sequence generated by sam-
pling from the p(yst |ys1, ys2, .., yst−1, x) distribution
at each time step. In essence, optimizing Lrl im-
proves the expected reward of the generated out-
put. The final loss is a linear combination of neg-
ative log-likelihood loss with the RL loss,

L = (1− α) · Lnll + α · Lrl, (5)

where α governs the strength of the RL-based loss
term.As we will show in Section 4.2, we define
Lrl based on the input tokens and thus the same
trained model can generate formal and informal
summary variants for a given input article.

While decoding, our framework employs a
beam search algorithm to explore plausible out-
puts (or hypotheses) for generating the final sum-
mary. It finally outputs the hypothesis with the
maximum probability of generation. However,
we observe a reasonable difference in the formal-
ity scores among hypotheses with similar gener-
ation probabilities. As a part of post-processing,
we therefore employ hypotheses re-ranking to fur-
ther strengthen our generation following Niu et al.
(2017). We pick the hypothesis with the maxi-
mum formality score among the k hypotheses with
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highest generation probabilities. We also perform
word-replacement using parallel formal-informal
word lists curated from (Sheikha and Inkpen,
2011). This helps to tackle unwanted formal or
informal words which must have been copied di-
rectly from the input article by the pointer gener-
ator frameworks (See et al., 2017). As we show
later, this helps our model to better capture for-
mality oracle.
4.1 Measuring Formality in Text
The first step towards defining our reward func-
tion is to construct an oracle to measure formality.
We define formality using lexical scores (Brooke
et al., 2010; Brooke and Hirst, 2014) leverag-
ing the implementation by Niu et al. (2017)
who incorporate formality into Machine Trans-
lation1. They report best performance using
a combination of a Support Vector Machine
(SVM) model with Word2Vec representations on
the CTRW (Hayakawa and Ehrlich, 1994) and
BEAN (Lahiri, 2015; Pavlick and Tetreault, 2016)
datasets, obtaining 84.4% accuracy on the former
and a Spearman’s ρ of 0.662 on the latter.

First, two sets of seed words are chosen,
which represent formal and informal language
respectively. We use the lists curated by
Sheikha and Inkpen (2011). They contain vari-
ous abbreviations with their full forms and ‘in-
formal:formal’ semantically similar word pairs
such as ‘about:approximately’, ‘copy:replica’,
‘risk:jeopardy’, and ‘tasty:palatable’. We combine
these word lists to create a total of 667 formal and
informal seeds. Next, an SVM model is trained to
find a separating hyperplane between vector space
representations (coming from Word2Vec model
trained on Google News corpus) of these formal
and informal seeds. Once the model is trained, for
any given word, Euclidean distance to this hyper-
plane is used as a measure of word level formality.
To compute the formality of a word sequence y,
we use the weighted average function from Niu
et al. (2017):

F (y) =

∑
wi∈y |L(wi)|.L(wi)∑

wi∈y |L(wi)|
, (6)

whereL(wi) is the lexical formality score from the
SVM model described above.
F (y) represents the formality of the word se-

quence y, where larger positive values correspond
1https://github.com/xingniu/computational-stylistic-

variations

to higher levels of formality and negative values
represent informality in text. Using this measure
for formality as an oracle, our objective now is
to teach the model the intricacies of high and low
levels of formality and ultimately, taking this into
consideration while summary generation. This is
achieved through the reward function r, which is
described next.

4.2 Defining the reward function r
We propose an indicator-based rewarding setup to
simultaneously benefit from the common learn-
ings of the two models (formal and informal sum-
maries) and incorporate feedback on the ground-
truth summaries in the dataset, as against using the
formality oracle F (y) described in Section 4.1 di-
rectly as separate reward function for formal and
informal models.

We use explicit indicators along with the in-
put sequence and set the reward function accord-
ingly. For training, first the oracle F (y) from
equation 6 is used to classify ground-truth sum-
maries in the dataset into informal, neutral, or for-
mal classes. We then assign two vocabulary ids
(called tokens or indicators) to each class. While
training, these tokens are added to the beginning
and end of the input article, based on the formality
class of the corresponding ground-truth summary.
For instance, for a given (article, summary) pair
(a, s) in the training dataset, if s is classified as
formal, we add the corresponding two tokens at
the beginning and end of the input a. The usage
of tokens in this manner acts as indicators, provid-
ing the model with feedback on the ground-truth
summary in the training stage. The usage of two
tokens keeps the input symmetric, making it eas-
ier for both the forward and backward LSTM en-
coder networks to absorb the formality informa-
tion at the start of generating their half of the en-
coding states. We then determine our reward func-
tion for RL loss Lrl based on the formality class of
the ground-truth summary:

r(ys) =





F (ys) for formal y∗

0.0 for neutral y∗

−F (ys) for informal y∗
(7)

where y∗ is the ground-truth summary sequence
and F (.) is the score from Equation 6. If the
ground-truth summary is formal (as denoted by the
corresponding tokens), our reward works to max-
imize the expected formality of the output sum-
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mary and minimize it in case of informal ground-
truth summaries. Given an unseen input article,
the two tokens can be added to the input sequence
based on the type of output summary required. An
input-dependent reward function allows the same
model to generate both the summary variants, un-
like the vanilla framework, which loses the op-
portunity to learn the commonalities in the two
spaces.

4.3 Similarity to SCST method

Equation 4 employs REINFORCE algo-
rithm (Williams, 1992) and can be seen as a
modification to the Self Critical Sequence Train-
ing (SCST) (Rennie et al., 2017) which was
applied to successfully optimize on ROUGE in
summarization (Paulus et al., 2018). In SCST, the
word with the maximum probability is greedily
chosen from the output distribution at each time
step, forming a greedy sequence yb. The model
uses the reward of yb as a baseline in the loss
function. Instead, our formulation can be seen as
using the baseline reward of 0. This compares the
formality level of the sampled sequence ys with
the perfectly neutral summary (with formality
score 0.0), penalizing any sequences lying on the
opposite side of the desired formality levels.

5 Experimental Setup

We evaluate our approach on its ability to gener-
ate formal and informal summaries for an input
article. We compare it with several baselines us-
ing both automated metrics and crowd-sourcing
experiments.
Dataset: A combined dataset from 2 domains:
news and social media is used. For the former,
we use the CNN/DailyMail news dataset (Her-
mann et al., 2015; Nallapati et al., 2016), widely
used for the task of abstractive text summariza-
tion. For the latter, we use the Webis-TLDR-17
corpus (Völske et al., 2017), automatically created
using TL;DR tags on Reddit2. Figure 1 shows
the distribution of lexical formality scores over
these and the complete dataset (based on Equa-
tion 6). As depicted, the combination allows us to
ensure that the dataset contains formality-diverse
‘article:summary’ pairs. For CNN/DM, the aver-
age formality is−0.097, with minimum as−2.451
and maximum as 2.62. For Reddit dataset, the
average formality is −1.068, minimum −2.653

2https://www.reddit.com/

and maximum is 2.783. While the average val-
ues are negative, through a manual analysis, we
found the summaries with more than −0.5 to be
reasonably formal in general. We refer the readers
to Section A in Supplementary material where we
show some sample ground-truth summaries in the
dataset along with their formality scores.

The news dataset contains 287, 226 training in-
stances, 13, 368 validation and 11, 490 test in-
stances. The articles have an average length of
781 tokens and multi-sentence summaries with av-
erage length of 56 tokens. We use these average
values to extract a similar-sized subset of 4 mil-
lion data points in the Reddit dataset and merge
them with the news dataset. We filtered out poor
summaries in Reddit dataset heuristically. Several
summaries which contain edit: actually refer to ad-
ditional information not in the article. We filter
out summaries containing such keywords. Keep-
ing only the most formal and informal pairs, the
training dataset reduces to 286, 358 input-output
pairs. 10, 000 pairs are held out for validation and
testing, each containing data points from both do-
mains.

Figure 1: Distribution of lexical formality (Equation 6)
in CNN/Daily Mail, Reddit and the complete dataset.
Positive values on the X-axis indicate high formality
and negative values indicate informality.

Hyperparameters: All methods are implemented
using the pointer-generator framework described
in Section 3. Following See et al. (2017), the
network uses 256 hidden dimensions, embedding
size as 128, vocabulary size as 50, 000, 400 max-
imum encoding steps and 100 maximum decod-
ing steps. We use these hyper-parameters for all
the approaches. All our models train for approxi-
mately 50, 000 iterations using a batch of size 16.

6 Automated Evaluation

We report the F1 scores for ROUGE-1, ROUGE-
2, and ROUGE-L metrics, evaluating how close
the generated summaries are to the reference sum-
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Informal Summaries Formal Summaries
Method ROUGE F-score Formality Improvement ROUGE F-score Formality Improvement

1 2 L (%) vs PGen 1 2 L (%) vs PGen
SymVoTo (A) 26.95 8.23 23.28 −0.560± 0.902 +6.66 27.00 8.15 23.23 −0.432± 0.822 +17.71
ZeroRL (B) 24.03 6.90 21.08 −0.581± 0.925 +10.66 24.42 6.93 20.90 −0.358± 0.760 +31.80
A+B 24.75 7.27 21.49 −0.603± 0.923 +14.85 25.72 7.51 22.20 −0.399± 0.801 +24.00
Our Approach 23.02 6.54 20.19 −0.727± 0.846 +38.47 24.8 6.72 21.58 −0.052± 0.738 +90.09

Table 2: Performance of various ablations of the proposed approach on automated evaluation metrics in generating
informal and formal summaries. Formality score is computed from the oracle (Eq. 6), averaged over the testset.
SymVoTo refers to the use of two vocabulary tokens in a symmetrical manner, ZeroRL refers to the use of Zero
baseline reward instead of Greedy baseline (Section 4). A+B combines these two methods and the complete
approach further employs post-processing steps.

Informal Summaries Formal Summaries
Method ROUGE F-score Formality Improvement ROUGE F-score Formality Improvement

1 2 L (%) vs PGen 1 2 L (%) vs PGen
PGen 26.96 8.18 23.18 −0.525± 0.875 - 26.96 8.18 23.18 −0.525± 0.875 -
VoTo 26.61 8.17 22.99 −0.556± 0.883 +5.90 26.76 8.13 23.04 −0.452± 0.821 +13.90
StyleSum 14.84 2.06 13.03 −0.762± 0.815 +45.14 11.18 0.63 9.93 −0.59± 0.800 −12.38
GreedyRL 26.00 7.53 22.39 −0.476± 0.827 −9.33 26.47 7.92 22.72 −0.458± 0.829 +12.76

Our Approach 23.02 6.54 20.19 −0.727± 0.846 +38.47 24.8 6.72 21.58 −0.052± 0.738 +90.09

Table 3: Performance based on Automated Evaluation Metrics for Generating Informal and Formal Summaries.
Formality score is computed from the oracle (Eq. 6), averaged over the testset. All the prior approaches were
adapted for formality, as described in Section 6.2.

maries. To evaluate the efficacy of the methods
in capturing formality, we report the average for-
mality in the output summaries and correspond-
ing percentage improvements in average formal-
ity, relative to PGen (See et al., 2017).

6.1 Ablation study
We performed an ablation study over our approach
to analyze the effect in performance by the use of
two symmetric vocabulary tokens (SymVoTo) and
a zero-reward baseline (ZeroRL) separately.

For training in SymVoTo, three levels of for-
mality are defined based on the scores from the
formality oracle F (y) (Equation 6): informal (less
than −0.2), neutral (between −0.2 and +0.2),
and formal (greater than 0.2). In our training
dataset, 169, 628 summaries were tagged as in-
formal, 31, 129 as neutral and 85, 601 as formal.
While training, the two tokens are added to the
input article based on the formality level of the
ground-truth summary. To generate the formal or
informal summaries for an unseen article, we add
the corresponding two tokens to the input and pass
it through the trained model.

The ZeroRL method is trained using the joint
objective in Equation 5. However, instead of us-
ing the input-dependent reward function in Equa-
tion 7, it directly optimizes on the formality oracle.
Due to the slow training speeds with policy learn-
ing, we first pre-train our network with pointer-
generator method (Section 3). We further train the

model with policy learning for 3000 iterations. We
use a fixed weight of 0.9 for Lrl in Equation 5 and
0.1 for negative log likelihood loss Lnll. To gen-
erate formal and informal summaries in this case,
we train two separate models, one where the re-
ward function is F (y) to maximize the expected
formality, and second, in which the reward func-
tion is−F (y), to minimize the expected formality.

Training for our own approach is similar to
the vanilla RL method described above, but with
three differences. First, in order to use input-
dependent rewards (Equation 7), we first pre-train
the model with SymVoTo model instead of the
pointer-generator method. Secondly, once pre-
trained, we optimize on our input-dependent re-
ward function instead of directly using the formal-
ity oracle. Finally, once completely trained, the
same model can be used to generate formal and
informal summaries by supplying the correspond-
ing tokens at the input. While decoding these re-
spective summaries, we use k=4 for hypothesis re-
ranking.

The results of this study are shown in Table 2.
The models SymVoTo and ZeroRL are indepen-
dently able to beat the baseline from Table 3 in
capturing formality. Our approach which com-
bines these two methods using input-dependent re-
wards and further employs post-processing is able
to better capture the formality oracle.
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6.2 Evaluation against existing baselines

Multiple style transfer and summarization mod-
els are adapted for this task as baselines. Our
first baseline is the vanilla, pointer-generator net-
work described in Section 3. It generates a single,
generic summary, without using any formality in-
formation. We refer to it as PGen.

We next implement the use of single vocabulary
tokens from Fan et al. (2017) in the same manner
as SymVoTo except with the usage of one token
instead of two. We refer to this method as VoTo.

In order to show the benefit of incorporating
formality directly into the generation process, we
also implement a style-transfer pipeline where we
first summarize the input article and then trans-
fer its formality to the desired level. For this pur-
pose, we leverage the sequence to sequence imple-
mentation from Jhamtani et al. (2017) and train
it on GYAFC parallel formality dataset (Rao and
Tetreault, 2018). We build two models, one for
formal to informal style transfer and one for in-
formal to formal. Using the output from PGen
method as an input to these two models, gives
us the corresponding informal and formal sum-
maries. We refer to this approach as StyleSum.

Next, we compare our method against the
vanilla RL baseline, adapted from Paulus et al.
(2018). The implementation here is similar to Ze-
roRL (Section 6.1) but with the usage of greedy
baseline rewards instead of 0. We refer to this ap-
proach as GreedyRL.

Table 3 summarizes the results of our exper-
iment for generating informal and formal sum-
maries. First, we observe that as we generate
more formal and informal variants, they deviate
from the ground-truth summaries at lexical level,
as visible in the decreasing ROUGE scores. As we
later show (Section 7) through our human evalua-
tion, this lexical difference does not affect the per-
formance of our approach in comparison to other
baselines in terms of their correctness, meaning
and suitability. Secondly, we observe the desired
shift in average formality scores. For both the vari-
ants, our approach better captures formality over
the baseline methods. While the average formality
is still on the negative spectrum for formal sum-
maries, our method is better able to capture the
oracle as compared to other baseline approaches.

The StyleSum method, although produces
formality-diverse summaries, it fails to preserve
the content of the input article, as visible by huge

decline in ROUGE. This behaviour can be at-
tributed to only a 40% overlap between the vocab-
ulary on which the summarization and style trans-
fer modules were trained. One of the main disad-
vantages for such an approach is the lack of avail-
ability of parallel corpora with the same vocab-
ulary, for both summarization and style transfer-
indicating the challenges in cascading such mod-
els and curating such corpora for these tasks.

(a) Informal summaries (b) Formal summaries

Figure 2: Distribution of formality scores of the gen-
erated summaries. Y-Axis: Fraction of datapoints, X-
Axis: Intervals of formality scores.

We compare the distributions of above ap-
proaches in Figure 2. For visualization, we divide
the formality score from −2.0 (more informal) to
2.0 (more formal) into 10 buckets and plot the
fraction of test data points falling into these bins.
The desired shifts in the distributions are visible
for generating both formal and informal variants,
being more profound for our approach.

Metric Description
Formality How formal is the given summary

Meaning Similarity

How close or similar is the
meaning of the given summary

with respect to the reference
(ground-truth) summary

Semantic Correctness
How correct is the information
present in the summary with

respect to the given input article

Suitability
How well the summary suits the
input article, how well it captures

the key idea behind it

Table 4: Metrics considered for the qualitative analysis
of the summaries generated by our approach.

7 Qualitative Evaluation

The automated evaluation is limited to comparing
the summaries to a single ground-truth summary
based on ROUGE metric. Hence, we further per-
formed a crowd-sourced experiment to evaluate
the quality of the generated summaries while also
evaluating their formality. We compare the sum-
maries generated by our model with those gener-
ated by VoTo and GreedyRL baseline methods.
We did not consider the Pgen and StyleSum for
this comparison since the former only generates a
single, generic summary and the latter deviates too
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Informal Summaries (in %) Formal Summaries (in %)

Method Formality Meaning
Similarity

Semantic
Correctness Suitability Formality Meaning

Similarity
Semantic

Correctness Suitability

All instances
VoTo 40 62 54 52 52 56 66 54
GreedyRL 52 54 66 62 62 66 66 54

CNN/DM instances
VoTo 37.5 70.8 45.8 54.2 54.1 58.3 66.7 50
GreedyRL 54.2 54.2 79.2 58.3 62.5 66.7 58.3 54.2

TL;DR instances
VoTo 42.3 53.8 61.5 50 50 53.8 65.4 57.7
GreedyRL 50 53.8 53.8 65.4 61.5 65.4 73.1 53.8

Table 5: Percentage improvement of the proposed approach w.r.t. baseline methods for formal and informal
summary generation. Each value indicates the %age of cases where the summary by our approach was rated equal
to or higher in comparison to the baseline summary. For example, in 62% of the cases (All instances), the informal
summary generated by our method was rated as being closer to the reference summary in meaning (Meaning
Similarity) with respect to the summary generated by VoTo method. For Informal summaries, lower score on
formality is desirable and for all other comparisons, a higher score is more desirable. For all the metrics, our
method either performs at par or outperforms the two baselines.

much from the content in the article, as depicted
by the ROUGE scores. Table 4 describes the met-
rics on which we perform the comparison.

The crowd-sourced experiment is conducted via
Amazon Mechanical Turk3. 50 samples were ran-
domly chosen from our test data, with 24 coming
from CNN/DM dataset and 26 coming from Red-
dit dataset. The annotators were asked to rate the
summaries on a discrete scale of 1 to 5 for all our
requested metrics. To avoid any inter-annotator
bias, we get every annotator to rate all variants of
the summary generated for each test case. In total,
the summaries for each sample were rated by 5 an-
notators. Our comparisons between any two sum-
mary variants for the same article are based on the
majority opinion of these 5 annotators. To ensure
the quality of the annotations, we also ask the an-
notators to mark all the summaries which they saw
during the survey. We reject all those assignments
where this question was answered incorrectly and
those with less than 150 seconds work time.
Intra-Model Comparison: The annotators rate
the formality of a given summary, with 1 being
the least and 5, most formal. We perform a com-
parative analysis between the formal and informal
summaries generated by the same model. For our
approach, the formal summary was rated as more
formal in comparison to it’s informal counterpart
in 76% of the cases. For VoTo and GreedyRL
method, this number drops down to 66%. Being
consistent with the average formality scores in Ta-
ble 3, this shows that our approach is able to pro-
duce better formality-diverse summaries.
Inter-Model Comparison: In order to measure

3https://www.mturk.com/

the quality of our generated summaries, we also
compare them with baseline outputs on Meaning
Similarity, Semantic Correctness, and Suitability
(Table 4), all being key requirements in any sum-
marization system. We compare the (in)formal
summaries generated by our system with the cor-
responding (in)formal summaries generated by the
two baseline systems. For all these metrics, higher
values are more desirable for both formal and
informal variants. However, for comparison on
Formality, when comparing informal summaries,
lesser values are desirable and while comparing
formal summaries, higher are more desirable. The
results of our comparative study for these metrics
are presented in Table 5. All the values repre-
sent the percentage of cases where our summary
is rated to be better than the corresponding base-
line summary by the majority of annotators. We
also report the values for each dataset separately.
While our method does show a decline in ROUGE
scores in comparison to these methods (Table 3),
probably due to diversion from the ground-truth
summaries, this decline does not translate to the
quality metrics in our human evaluation. We ob-
serve that our summaries either perform at par
or outperform the baseline summaries on all four
metrics. We conclude that our approach produces
better formality-diverse summaries, while still sur-
passing other methods on summarization quality.

8 Conclusion

We presented a framework to generate formality-
tailored abstractive summaries for a given input ar-
ticle. Our approach employs reinforcement learn-
ing to train the model with formality feedback
on both ground-truth and sampled summaries to-
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gether. Automatic and human evaluations show
that although we observe some deviation from the
ground-truth summaries with respect to baseline
methods, the approach is effective in generating
formality-diverse summaries while still preserving
the meaning, semantic correctness and suitability.
Given a suitable oracle, the proposed methodology
can be easily extended to other psycho-linguistic
preferences such as politeness. We plan to per-
form this incorporation of other such preferences
that can arise in textual content.
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Michael Völske, Martin Potthast, Shahbaz Syed, and
Benno Stein. 2017. Tl; dr: Mining reddit to learn au-
tomatic summarization. In Proceedings of the Work-
shop on New Frontiers in Summarization, pages 59–
63.

Lu Wang and Claire Cardie. 2013. Domain-
independent abstract generation for focused meeting
summarization. In ACL (1), pages 1395–1405.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

842



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 843–861
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

Do Massively Pretrained Language Models Make Better Storytellers?

Abigail See, Aneesh Pappu∗, Rohun Saxena∗, Akhila Yerukola∗, Christopher D. Manning
Stanford University

{abisee,apappu,rohun,akhilay,manning}@cs.stanford.edu

Abstract
Large neural language models trained on mas-
sive amounts of text have emerged as a
formidable strategy for Natural Language Un-
derstanding tasks. However, the strength of
these models as Natural Language Generators
is less clear. Though anecdotal evidence sug-
gests that these models generate better quality
text, there has been no detailed study charac-
terizing their generation abilities. In this work,
we compare the performance of an extensively
pretrained model, OpenAI GPT2-117 (Rad-
ford et al., 2019), to a state-of-the-art neural
story generation model (Fan et al., 2018). By
evaluating the generated text across a wide va-
riety of automatic metrics, we characterize the
ways in which pretrained models do, and do
not, make better storytellers. We find that al-
though GPT2-117 conditions more strongly on
context, is more sensitive to ordering of events,
and uses more unusual words, it is just as
likely to produce repetitive and under-diverse
text when using likelihood-maximizing decod-
ing algorithms.

1 Introduction

In 2018, large-scale neural models such as ELMo
(Peters et al., 2018), BERT (Devlin et al., 2019)
and OpenAI GPT (Radford et al., 2018) emerged
as a dominant approach in NLP. By pretraining
on massive amounts of unlabeled text (often or-
ders of magnitude larger than the the target task’s
labeled dataset), these models achieve state-of-
the-art performance across a variety of Natural
Language Understanding benchmarks. In partic-
ular, the OpenAI GPT2 language model (Rad-
ford et al., 2019) achieves state-of-the-art perfor-
mance on several language modeling benchmarks,
even in a zero-shot setting. While GPT2’s perfor-
mance as a language model is undeniable, its per-
formance as a text generator is much less clear.

∗equal contribution

Though the model has generated certain impres-
sive samples of text – such as a widely-circulated
passage about Ovid’s Unicorn (Radford et al.,
2019) – there has been no detailed study to for-
malize these observations.

In this work, we perform an in-depth study
of the properties of text generated by GPT2-117
(the smallest version of GPT2) in the context of
story generation. By comparing to a state-of-the-
art, specialized-architecture neural story genera-
tion model (Fan et al., 2018), we ask the follow-
ing questions. In what ways does a large amount
of open-domain pretraining data change the char-
acteristics of generated text? In what ways does it
make no difference? And is a task-specific archi-
tecture necessary?

For any probabilistic language model, the gen-
erated text is strongly affected by the choice of de-
coding algorithm – this is especially true for open-
ended text generation tasks such as storytelling
and chitchat dialogue (Kulikov et al., 2018; Holtz-
man et al., 2019). Nevertheless, most natural lan-
guage generation papers evaluate only one decod-
ing algorithm – this is often due to the time and
expense required for human evaluation. For ex-
ample, Fan et al. use top-k sampling (a decoding
algorithm in which k governs the quality-diversity
tradeoff), but only evaluate one value of k. How-
ever, evaluating one k gives an incomplete view of
the generation system – several researchers have
emphasized the importance of evaluating genera-
tion systems over the entire quality-diversity spec-
trum, rather than a single point on it (Caccia et al.,
2018; Hashimoto et al., 2019).

In this study, we prioritize evaluating text across
the whole k spectrum, and measuring many dif-
ferent automatic metrics, rather than a few hu-
man metrics. Though the lack of human evalu-
ation limits our ability to measure overall quality
(Liu et al., 2016; Novikova et al., 2017; Hashimoto
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et al., 2019), we are able to produce an objectively
defined, richly detailed and reproducible evalua-
tion of the generated text. To our knowledge, this
work is the first comprehensive analysis of the
characteristics of GPT2-generated text. Our study
provides insight into the effect of large-scale pre-
training on open-ended natural language genera-
tion, as well as the effect of k on text generated
with top-k sampling. We hope our results will in-
form other researchers’ choice of models, pretrain-
ing schemes, and decoding algorithms – decisions
that can often feel like blind choices. To enable
readers to browse the generated text, conduct their
own evaluations, or run our evaluations on their
own text, we publicly release our generated stories
and evaluation code.1

2 Background

WritingPrompts dataset WritingPrompts (Fan
et al., 2018) is a story generation dataset contain-
ing 303,358 human-written (prompt, story) pairs
collected from the /r/WritingPrompts subreddit –
a forum where Reddit users compose short stories
inspired by other users’ prompts. An example can
be seen at the top of Table 2. The mean prompt
length is 28.4 words and the mean story length is
734.5 words. The dataset is 887MB of text in total,
contains 200 million story words, and is divided
into 90% train, 5% validation and 5% test splits.

The Fusion Model The Fusion Model is a
state-of-the-art neural story generation architec-
ture trained on the WritingPrompts dataset (Fan
et al., 2018). It is based on the Convolutional
Seq2seq model of Gehring et al. (2017) and aims
to improve two aspects of story generation: mod-
eling long-range context and increasing relevance
of the story to the prompt. To achieve the former,
the model uses a multi-scale gated self-attention
mechanism. For the latter, the model uses a fu-
sion mechanism (Sriram et al., 2018) in which one
seq2seq model is trained on the task, then frozen,
and a second seq2seq model is trained on the
task with access to the first model’s hidden states.
Compared to the Convolutional Seq2seq model
and other baselines, the Fusion Model achieves
improved perplexity, story-prompt relevance and
human preference scores. The Fusion Model has
a vocabulary of 104,960 words, a 3-layer encoder
and 8-layer decoder in the first seq2seq model, and

1Code and generated stories available at https://
github.com/abisee/story-generation-eval

a 5-layer encoder and 5-layer decoder in the sec-
ond model – in total, 255.4 million parameters.

GPT2-117 GPT2 (Radford et al., 2019) is a
large Transformer language model trained on
WebText, a diverse corpus of internet text (not
publicly released) containing over 8 million doc-
uments equalling 40GB of text in total. The full-
size GPT2 model, which has 1542 million pa-
rameters, obtains state-of-the-art results on a va-
riety of language modeling and other Natural Lan-
guage Understanding benchmarks. At the time
of our experiments, Radford et al. had only re-
leased the smallest of the models, known as GPT2-
117.2 This model, which we use for our experi-
ments, has 12 layers and 117 million parameters.
Like the full-size GPT2 model, it has a vocabu-
lary of 50,257 byte-pair-encoding (BPE) tokens.
The BPE encoding allows the model to encode
and generate any Unicode string, regardless of pre-
processing, tokenization, or vocabulary size. The
model has a context size of 1024, meaning it can
process text up to 1024 BPE tokens in length.

Decoding algorithms Inspired by Neural Ma-
chine Translation, most early attempts at open-
ended neural text generation (such as conversa-
tional response generation) used the beam search
decoding algorithm (Shang et al., 2015; Serban
et al., 2016). Like greedy decoding, beam search
is a likelihood-maximizing decoding algorithm –
given the input sequence x, the objective is to find
an output sequence y which maximizes P (y|x).
However, researchers have shown that for open-
ended generation tasks (including storytelling),
beam search produces repetitive, generic and de-
generate text (Holtzman et al., 2019).

More recently, top-k sampling has emerged as
a primary decoding algorithm for open-ended text
generation (Fan et al., 2018; Radford et al., 2019).
In top-k sampling, on each step of the decoder
the probability distribution over the vocabulary is
truncated to the top k tokens, then re-normalized.
The next token is sampled from the new distribu-
tion. Top-k sampling can be regarded as some-
where between a likelihood maximizing algorithm
(when k = 1; greedy decoding) and an unbiased
sampling algorithm (when k = vocabulary size).
Fan et al. use top-k sampling (with k = 10) to

2Since conducting our experiments, larger models have
been publicly released. At the time of writing, the full-size
GPT2 model has not been publicly released.
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generate stories, and Radford et al. show impres-
sive samples of generated text (primarily from the
full-size GPT2 model) for k = 40.

3 Experimental Details

Preprocessing Fan et al. truncate Writing-
Prompts stories to 1000 words before training and
testing. Due to the limited context size of GPT2-
117, we additionally exclude (prompt, story) ex-
amples that are longer than 1024 BPE tokens when
concatenated. The resulting dataset, which we
call WritingPrompts-1024, has 192,364 training,
11,115 validation, and 10,686 test examples.

The Fusion Model We use the pretrained ver-
sion of the Fusion Model, which is available in
the Fairseq framework (Ott et al., 2019). For com-
parability with GPT2-117, we evaluate the Fusion
Model on WritingPrompts-1024 (see Table 1), ob-
taining perplexities similar to those reported by
Fan et al. on the full WritingPrompts dataset.

GPT2-117 In order for the model to condition
on prompts and generate stylistically correct sto-
ries, we finetune GPT2-117 on WritingPrompts-
1024.3 We frame WritingPrompts as a language
modeling task, representing the prompt and story
as a single sequence separated by a delimiter to-
ken. We finetune the pretrained model until con-
vergence using the default hyperparameters pro-
vided in the HuggingFace repository (though we
reduce batch size to fit on a single GPU), and use
the finetuned model for all further evaluations.

We compute the word-level perplexity of the
finetuned GPT2-117 on the WritingPrompts-1024
dataset. That is, we normalize the total negative
log probability of the target text by the number
of word-level (i.e. Fusion Model) tokens, not the
number of BPE tokens. This enables us to com-
pare the perplexities of the two models, despite
the tokenization difference (Radford et al., 2019).
The finetuned GPT2-117 obtains a test set word-
perplexity of 31.544 – six points lower than the
Fusion Model.

Generation settings For both models, we gen-
erate stories using top-k sampling, obtaining 1000
stories (from 1000 different test set prompts) for

3We use the PyTorch re-implementation of GPT2-117
available at https://github.com/huggingface/
pytorch-transformers

4This is similar to other GPT2-117 WritingPrompts fine-
tuning experiments (Mao et al., 2019; Ziegler et al., 2019).

Model Valid ppl Test ppl
Fusion Model 37.05 37.54
GPT2-117 31.13 31.54

Table 1: Word-level perplexities on WritingPrompts-
1024 for the Fusion Model and finetuned GPT2-117.

several values of k ranging from 1 to vocabulary
size. We use softmax temperature 1. Like Fan
et al., we generate exactly 150-word stories and
block the Fusion Model from generating <UNK>.

To obtain human-written stories for compari-
son, we truncate WritingPrompts-1024 test set sto-
ries to 150 words (discarding those shorter than
150 words). To reduce variance, measurements
for human stories are computed over this entire set
(rather than just 1000 stories).

4 Story-prompt relatedness

Prior research has observed that seq2seq systems
frequently produce text that is unrelated to the
provided context – particularly under likelihood-
maximizing decoding algorithms such as beam
search. The issue has inspired multiple explana-
tions (Jiang and de Rijke, 2018) and multiple so-
lutions – such as alternative training objectives (Li
et al., 2016), decoding objectives (Baheti et al.,
2018; See et al., 2019), and architectural changes
(Fan et al., 2018). In this section, we measure how
strongly the models condition on the prompt.

Prompt ranking accuracy For both models, we
compute prompt ranking accuracy (Fan et al.,
2018), which measures the language model’s sen-
sitivity to the provided prompt. Following the
methodology of Fan et al., we randomly select
1000 human-written stories from the test set, and
measure the probability (according to the model)
of each story conditioned on 10 different prompts
– the true prompt, plus nine randomly selected
prompts. The prompt ranking accuracy of a model
is the percentage of cases in which the model as-
signs a higher probability to the story under its
true prompt than under all of the other nine. We
find that GPT2-117 scores 80.16% on this task,
while the Fusion Model scores 39.8%.5 Random
chance scores 10%. This striking result indicates

5Fan et al. (2018) report a prompt ranking accuracy of
16.3% for the Fusion Model. We provided the authors with
our prompt ranking accuracy code (which was built on top of
the authors’ code). The authors indicated that the discrepancy
may be due to some code version changes between the time
of their original experiments and their code release.

845



100 101 102 103 104 105

k (Top-k sampling)

0.05

0.10
St

or
y-

pr
om

pt
 se

nt
 si

m
Human
Fusion Model
GPT2-117

Figure 1: Compared to the Fusion Model, GPT2-117
produces stories that are more semantically similar to
the prompt. Similarity decreases as k increases.

that GPT2-117 conditions on the prompt much
more strongly than the Fusion Model. This is no-
table, especially because the fusion technique is
intended to improve story-prompt relevance.

N-gram similarity For n = 1, 2, 3, we measure
the percentage of generated n-grams that also ap-
pear in the prompt. For all n and k, we find that
GPT2-117 has a higher overlap (i.e. copies more
from the prompt) than the Fusion Model – see Fig-
ure 6 in the Appendix. Furthermore, for k < 100,
the GPT2-117 overlap is generally much higher
than human levels. Both these phenomena can be
seen in Table 2, where, for k = 10, GPT2-117
copies words such as queen more often than both
the Fusion Model and the human-written story.

Sentence embedding similarity To capture a
higher-level notion of semantic similarity, we
measure story-prompt sentence similarity – the co-
sine similarity of story-prompt sentence pairs, av-
eraged by taking the mean over all pairs. Sen-
tences are represented by the embedding method
of Arora et al. (2017) – a weighted average of
the GloVe embeddings (Pennington et al., 2014)
of the words, with the first principal component
removed. As shown in Figure 1, we find a similar
pattern as for n-gram similarity: GPT2-117 gener-
ates sentences that are more similar to the prompt
than the Fusion Model for all k, and both models’
prompt similarity decreases as k increases.

Named entity usage Generally, most named en-
tities mentioned in the prompt (such as Queen and
England in Table 2), should also be mentioned in
the story. Using the spaCy named entity recog-
nizer,6 we measure the prompt entity usage rate,
which is the percentage of all prompt named enti-

6https://spacy.io

ties that appear in the story.7 As shown in Figure
7 in the Appendix, we find that GPT2-117 uses
more of the prompt named entities than the Fusion
Model (as well as more named entities overall),
but both models use fewer named entities than hu-
mans when k is less than vocabulary size.

These patterns can be seen in Table 2: GPT2-
117 uses the prompt entities Queen and England
whereas the Fusion Model does not (for either k),
and GPT2-117 uses specific time entities such as
Thursday and 3:26 PM. While the human story
introduces highly-related entities such as Charles
Windsor and Prince of Wales that were not in the
prompt, neither model does this (for either k).

Conclusion In this section, we found that
GPT2-117 conditions on the prompt much more
strongly than the Fusion Model – a result which
holds both in language modeling and generation
settings. The latter result supports Radford et al.’s
informal observation that GPT2 has a ‘chameleon-
like’ ability to ‘adapt to the style and content of the
conditioning text’.8 We speculate that GPT2-117’s
stronger conditioning ability may derive from its
Transformer decoder architecture, whose power-
ful self-attention is used for story-prompt atten-
tion. Though the Fusion Model uses a similar
self-attention mechanism in the decoder (i.e., story
side), the prompt-story attention has a simpler for-
mulation – for example, there are no separate key
and value vectors (Gehring et al., 2017). Lastly,
we note that very strong prompt-conditioning is
not always a good thing – GPT2-117 often gen-
erates stories that copy too much or too literally
from the prompt when k is small (this can be seen
in Figure 6 in the Appendix).

5 Coherence

A good story generation model should produce co-
herent text with a logical ordering of events. Sim-
ilarly, the underlying language model should be a
good coherence scorer – assigning higher proba-
bility to coherent text than incoherent text. Barzi-
lay and Lapata (2008) evaluate a coherence scorer
by measuring its ability to rank shuffled human-
written text as less coherent than the original un-
shuffled text. We use this method to evaluate our
story generation models.

7Given that we limit stories to 150 words, this percentage
is lower than it would be if we generated longer stories.

8https://openai.com/blog/
better-language-models/
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Figure 2: Sensitivity of the models to swapped sen-
tences in different positions. A higher mean rank in-
dicates higher sensitivity (i.e. the model assigns lower
probability) relative to other positions. Both models are
less sensitive to swapped sentences at the beginning of
the text, compared to later. GPT2-117 shows this pat-
tern more strongly, indicating greater use of context.

For each story in the test set, we select the first
15 sentences. We then produce 14 corrupted ver-
sions of the story by switching each pair of ad-
jacent sentences. We use the language model to
compute the probability of each of the 14 cor-
rupted stories, as well as the original story. The
model’s error rate is the percentage of cases in
which it rates any of the 14 corrupted candidates
better than the original candidate. Random guess-
ing yields 93.33% error. Both models perform
well on this task – the Fusion Model has an er-
ror rate of 3.44% and GPT2-117 an error rate of
2.17%. This 36.92% error reduction indicates that
GPT2-117 is more sensitive to ordering of events.

We also investigate how the position of the swap
affects its plausibility (relative to other positions).
Figure 2 shows, for each swap position, the mean
rank assigned to that swap by the model (where
rank 1 is the most probable of the 14 corrupted
candidates, and rank 14 the least probable). GPT2-
117 assigns a much lower rank to the first few
swap positions (i.e., rates them more probable)
than the later positions. The Fusion Model shows
a similar but less pronounced pattern. This shows
that both models are less sensitive to out-of-order
sentences that occur at the beginning of the text,
than those occurring later.9 The stronger pattern
for GPT2-117 may be due to its stronger context
conditioning (as shown in Section 4) – thus be-
coming more sensitive as context increases. How-
ever, even for the first three swaps, GPT2-117 is
more accurate than the Fusion Model at distin-
guishing the swapped text from the original.

9It’s also possible that out-of-order sentences are inher-
ently harder to detect at the beginning of text.
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Figure 3: Repetition (low distinct-1) is primarily
caused by choice of decoding algorithm (here low k),
not insufficient training data. GPT2-117 is trained on
45× more data than the Fusion Model, but is similarly
repetitive for all k.

6 Repetition and rareness

Generic, under-diverse and repetitive text is a
well-documented problem in neural text genera-
tion (Jiang and de Rijke, 2018). While there are
many proposed solutions to the problem (Li and
Jurafsky, 2016; Vijayakumar et al., 2018; Baheti
et al., 2018; Zhang et al., 2018; See et al., 2019), it
has been shown that a primary cause is likelihood-
maximizing decoding algorithms such as greedy
decoding and beam search (Holtzman et al., 2019).
In this section we investigate the role of large-scale
pretraining, and the role of k, in this problem.

N-gram repetition The distinct-n metric of a
piece of text is the number of unique n-grams di-
vided by the total number of generated n-grams
(Li et al., 2016). We measure distinct-n of the
generated stories for n = 1, 2, 3. A high ratio
indicates a high level of within-story lexical di-
versity, while a low ratio indicates a large amount
of within-story repetition. As shown in Figure 3,
both models’ unigram diversity is far below that
of human text when k is small. For example, at
k = 10 (the setting used by Fan et al.), the Fu-
sion Model obtains a distinct-1 of 42.4%; much
less than the human level of 60.0%. This results in
a high level of repetition, as shown in Table 2: for
k = 10, both models repeat many phrases (such as
always, so scared, and finally).

For bigrams and trigrams, the pattern is similar
to unigrams (see Figure 9 in the Appendix). For
both models, distinct-n increases as k increases,
converging to a value close to the human level
as k approaches vocabulary size. Though GPT2-
117 has a slightly higher distinct-n than the Fu-
sion Model for most values of k, the difference
is negligible compared to the influence of k. We
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make three conclusions from these patterns: (1)
Our findings support Holtzman et al.’s observation
that repetition is strongly related to choice of de-
coding algorithm, and that likelihood maximizing
algorithms (such as top-k sampling with low k)
are a primary cause of repetition. (2) The models
have in fact learned the correct rate of repetition in
human text – they are able to match this rate when
they sample from their full (untruncated) distribu-
tion. (3) Repetition is unlikely to be solved by
more pretraining data alone – even though GPT2-
117 is trained on 45 times as much data as the Fu-
sion Model, it produces text that is almost equally
repetitive (for equal k).

Rare word usage We compute the mean log
unigram probability of the words in the gener-
ated story10 – a high value indicates using fewer
rare words while a low value indicates more rare
words. As shown in Figure 12 in the Appendix,
word rareness is primarily governed by k – how-
ever, GPT2-117 has a lower mean log unigram
probability (i.e., uses more rare words) than the
Fusion Model for all equal values of k ≥ 2. This
can be seen for example in Table 2, where GPT2-
117 generates rarer words such as idle and copi-
ous for k = 1000. GPT2-117 also generates fewer
stopwords than the Fusion Model, for all equal k.

GPT2-117’s slightly higher rare word usage
(compared to the Fusion Model) might be ex-
plained by: (1) its BPE encoding, which allows it
to generate new words, not just those in a fixed vo-
cabulary; (2) pretraining on a large amount of di-
verse text, allowing it to learn to produce a greater
variety of words; (3) stronger conditioning on the
prompt as described in Section 4 – which may in-
ject more rareness into the generated text.

Conclusion Choice of decoding algorithm is a
primary factor in diversity and repetition prob-
lems, with likelihood-maximizing algorithms the
main culprit. Although GPT2-117 generates more
rare words and is very slightly less repetitive than
the Fusion Model, the difference is small com-
pared to the effect of k, indicating that training
data alone is unlikely to solve these problems.

7 Syntactic style and complexity

A well-trained story generation model should
match both the syntactic style and complexity of

10The unigram probability distribution was calculated with
respect to the WritingPrompts training set.

its training data. Low complexity can be a sign of
less sophisticated writing, while high complexity
can be a sign of poor readability (Beers and Nagy,
2009; McNamara et al., 2010). In this section,
we measure some features related to the syntactic
style and complexity of the generated stories.

Sentence length Sentence length is a simple but
effective feature to estimate readability and syn-
tactic complexity of text (Kincaid et al., 1975;
Roemmele et al., 2017). We find that both models
generate sentences that are on average shorter than
human sentences when k is small, but converge to
approximately human length as k increases (see
Figure 8 in the Appendix).

Part-of-speech usage It has been shown that the
distribution of parts-of-speech (POS), and more
generally the distribution of POS n-grams11 is a
useful feature to represent the style of a piece
of text (Argamon et al., 1998; Ireland and Pen-
nebaker, 2010; Roemmele et al., 2017).

Firstly, we compare the part-of-speech distri-
butions of the model-generated text and the hu-
man text (see Figure 11 in the Appendix). Both
models (especially GPT2-117) closely fit the hu-
man POS distribution as k approaches vocabulary
size.12 This implies that, as with lexical diver-
sity, the models have no difficulty fitting the sta-
tistical distribution of human syntax. However,
under likelihood-maximizing decoding algorithms
such as low k, a completely different distribution
emerges, in which text contains more verbs and
pronouns than human text, and fewer nouns, ad-
jectives and proper nouns.

Secondly, we measure the syntactic diversity of
the text using the distinct-n metric for POS n-
grams (n = 1, 2, 3) – see Figure 10 in the Ap-
pendix. As with lexical diversity (see Section 6),
we find that syntactic diversity is similar for the
two models, is very low when k is small, and
matches human level as k approaches vocabulary
size. It’s likely that for low k, the syntactic under-
diversity of the text is largely caused by lexical
under-diversity (i.e. repetition). However, we note
that as k increases, lexical diversity reaches human
level sooner than syntactic diversity – for exam-
ple, GPT2-117’s lexical distinct-3 reaches human
level at k = 600 (Figure 9c), but its POS distinct-

11For example, the sentence I like cats has the POS bi-
grams PRONOUN VERB and VERB NOUN.

12One exception is Proper Noun: both models fail to pro-
duce enough of these even as k approaches vocabulary size.
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(a) Fusion Model (k = 2): I had
never seen a man so young before. I
had never seen him before, but he had
always seemed to be a man of a man.
He was young, and he was young. He
was a man of a man, and a man who
was young, and a man who was [...]

0 50 100 150
Token index

0.0

0.5

1.0

To
ke

n 
pr

ob
ab

ilit
y

(b) Human Text: “Looks like the
rain’s stopped.” I peered out the
window. Art was right; time to get to
work. “Alright, let’s move out.” I
could hear the scraping of the stone
armor as the men slowly stood.
Despite the training, [...]
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(c) GPT2-117 (k = 2): I’ve always
been a man of the people. I’ve always
been a strong man. I’ve always been
a strong man. I was born in the city, I
was raised in the country. I was
raised in a family that wasn’t very
good. I ’m not a good man. [...]

Figure 4: Under top-k sampling with small k (k = 2), the two models (left and right) produce text that falls into
increasingly confident repeating loops. By contrast, human text (center) maintains an irregular pattern of surprising
(low probability) tokens. The human text probabilities are measured with respect to the Fusion Model, but similar
patterns hold for GPT2-117. Inspired by Holtzman et al. 2019’s figure showing probabilities under beam search.

3 reaches human level at k = 6000 (Figure 10c).
This implies that, even when the text is no more
repetitive than human text, it may still be syntacti-
cally repetitive (using the same part-of-speech pat-
terns repeatedly).

Conclusion We find when k is small, syntac-
tic complexity of generated text is low, consist-
ing of shorter sentences and a narrower range of
syntactic patterns. However, as k approaches vo-
cabulary size, the syntactic style of generated text
closely matches human syntactic patterns. As with
n-gram diversity in Section 6, our results show
that syntactic under-diversity is primarily caused
by low k, not insufficient training data.

8 The element of surprise

Model confidence over time Several re-
searchers have observed that model over-
confidence (the model placing high probability on
a small range of tokens) can cause poor quality
generation (Jiang and de Rijke, 2018; Holtzman
et al., 2019). In particular, they show that for
likelihood-maximizing decoding algorithms such
as beam search, model confidence can increase in
a snowball-like effect, getting stuck in a loop of
repetitive but increasingly self-confident text. We
observe this problem in both our models when k
is small. For example, in Figure 4, both models
fall into self-reinforcing repetitive loops with
rising confidence. The loop is difficult to break
– the Fusion Model briefly escapes (shown as a
sudden downwards spike), but quickly returns. By
contrast, the human text does not show a strong

rising trend in probability, and intermittently uses
low probability words throughout.13

We formalize these anecdotal observations by
measuring the average probability of each of the
first 150 word-level tokens in the story (Figure
5). We find that even when teacher-forcing on hu-
man text, the token probabilities increase slightly
as the story progresses. This is likely due to the
usefulness of additional context, which increases
the model’s prediction accuracy. By comparison,
we find that when generating with top-k sampling,
the probabilities increase more rapidly, and the in-
crease is even more rapid for smaller k. This con-
firms that likelihood-maximizing decoding algo-
rithms (such as top-k sampling with small k) lead
to more rapidly increasing model over-confidence.
Furthermore, we find this pattern holds for both
models, with probabilities increasing at a similar
rate for equal k. This indicates that, like rep-
etition, model over-confidence is unlikely to be
solved by more training data, and is largely gov-
erned by choice of k.

Overall model confidence We also measure the
models’ overall confidence, as represented by the
total log probability (according to the model) of
the generated story. For both models, we find
that story probability decreases as k increases
– see Figure 13 in the Appendix. This makes
sense, as higher k means sampling tokens with
lower probability. As k approaches the vocab-
ulary size, the Fusion Model’s generated story

13Gehrmann et al. (2019) also identify presence of low
probability words as an indicator of human-generated text.
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Figure 5: Mean probability for each of the first 150
word-level story tokens. When teacher-forcing the
model on human text, probability increases slowly.
When generating with top-k sampling, probability in-
creases faster, especially for smaller k. This plot is for
the Fusion Model; similar patterns hold for GPT2-117.

probability matches the probability it assigns to
human-written WritingPrompts stories. Interest-
ingly however, the same is not true for GPT2-
117, which converges to a story probability that
is lower than the probability it assigns the human
stories. This means that under full (non-truncated)
sampling, the Fusion Model produces text that
is equally surprising (to itself) as the Writing-
Prompts stories, whereas GPT2-117 produces text
that is more surprising to itself. Explaining this
observation is an open question – we speculate that
GPT2-117’s WebText pretraining may cause it to
generate (under high k) text in a style or genre that
is less predictable than WritingPrompts stories.

9 Concreteness

Brysbaert et al. (2014) define the concreteness of
a word as ‘the degree to which the concept de-
noted by a word refers to a perceptible entity’.
Concrete words are generally easier to remem-
ber than abstract words, and psycholinguists have
theorized they may be learned differently (i.e.,
concrete words by direct experience and abstract
words by text and discourse). Brysbaert et al. pro-
vide human concreteness ratings for 40,000 com-
mon English lemmas rated on a scale from 1 to
5.14 We use these ratings to measure the mean
concreteness of the nouns and verbs in the story

14For example, the nouns television, darkness, and idea are
rated 4.83, 3.85 and 1.61 respectively, and the verbs talk, see,
and hope are rated 4.07, 3.21 and 1.25 respectively.

text – see Figure 14 in the Appendix.
We find that, for the same k, GPT2-117 tends

to generate more concrete words than the Fusion
Model, and that for both models, concreteness
converges to approximately human levels as k in-
creases. Interestingly, however, when k is small,
the noun concreteness is much higher than hu-
man levels, whereas the verb concreteness is much
lower. This indicates that for small k, both models
produce stories that, compared to human-written
stories, have too many physical objects (as op-
posed to abstract nouns), and too few physical
actions (as opposed to abstract verbs). This re-
flects the trend demonstrated in Table 2: when k is
small, the models tend to generate descriptive sen-
tences with mostly is verbs (e.g. I was always so
excited), and physical nouns (e.g. mother, father,
queen). Only when k increases do we see more
tangible actions (e.g. The bar patrons snickered)
and abstract nouns (e.g. pain, glances). A detailed
example, with all nouns and verbs annotated with
concreteness, is in the Appendix (Table 3).

10 Conclusions

The effect of massive pretraining In this study,
we find that GPT2-117 is a better story genera-
tion model than the Fusion Model in several spe-
cific ways: it conditions much more strongly on
the provided context, is more sensitive to cor-
rect ordering of events, and generates text that
is more contentful (using more rare words, con-
crete words, and named entities). In particu-
lar, the stronger conditioning result is striking, as
the Fusion Model is a complex task-specific ar-
chitecture designed to increase story-prompt rel-
evance. This demonstrates that sometimes, a
general-purpose model architecture can outper-
form a complex task-specific architecture when
provided with enough pretraining data.

However, we find that in other aspects, GPT2-
117 performs no better than the Fusion Model:
when k is small, the models generate text that
is equally lexically under-diverse, syntactically
under-complex, and repetitive – with a tendency
to fall into a snowball effect of increasing over-
confidence. However, these problems correct
themselves (i.e., the metrics match human levels)
when the models generate from their untruncated
distribution. Our results show that these oft-cited
neural generation problems are not the fault of
the models themselves (which are in fact statisti-
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Prompt: You just discovered England’s biggest secret: every time they say long live the queen it extends the queens life.

Human-Written Story: I am immortal, I have inside me blood of kings. My name in Charles Windsor and I am heir to a
throne. Prince of Wales, they’ve called me that my entire life and now I lay on my death bed and my mother - still going
strong. I’m not sure how it’s possible but she seems ageless, almost timeless. My whole life I’ve waited for that [...]

Fusion Model (k = 10): I have no idea when my father
would come to visit this place, I was always so excited. I
was always so scared. I had to go back to work. I was a
little scared of him, but when I was younger, he had never
come in for a visit. His mother told me, “I’m so scared”, as
he always did. She never talked to me about anything [...]

GPT2-117 (k = 10): * ” So what are we going to do? “ *
It was the first time she asked me this question that I ever
had asked her. It has taken years but finally I am finally able
to do it. It seems that this queen is the queen of England
and she’s finally the one to tell me that this queen is the
reason why she’s not being allowed to die. [...]

Fusion Model (k = 1000): “Where am I? What
happened?” “Having been working on my job for over 6
hours now, I do not know how you worked!” “I have been
working for the last three years. Surely I am an ancient god
now.” The bar patrons snickered. “Hello?” “Those last
three years have been worse than a year ago.” Pain. [...]

GPT2-117 (k = 1000): It was an odd occasion for the
Queen of England to meet with her. The plane sat idle at
3:26 PM on a Thursday night. Yesterday, the Queen had
taken it upon herself to try and get a good look at the plane
which had recently been found abandoned. A copious
amount of curious glances from around the room until [...]

Table 2: A prompt and human story from the dataset, plus the models’ top-k generated stories, for two values of k.

cally well-trained to match human text for these
metrics), nor caused by too little training data (as
these problems are not improved by GPT2-117’s
extensive pretraining). Instead, they are primarily
caused by likelihood-maximizing decoding algo-
rithms – such as greedy decoding, beam search,
and top-k sampling with low k.

The effect of k This study detailed the typical
characteristics of long-form text generated by neu-
ral language models in open-ended settings, under
both high entropy (large k) and low entropy (small
k) decoding algorithms. The negative characteris-
tics of low k output (genericness, repetition, over-
simplicity) are by now familiar to researchers.
However, we also uncovered some less obvious
characteristics of low-k generated text: compared
to human-written text, it tends to copy more from
the provided context (particularly GPT2-117); it
contains more verbs and pronouns but fewer nouns
and adjectives; its nouns are more concrete but its
verbs are less concrete; and it uses a smaller range
of syntactic patterns (a phenomenon that can’t be
entirely attributed to n-gram repetition).

As k increases to vocabulary size, we find that
the model-generated text closely fits the human
text on most of the metrics we measured. How-
ever, it is clear by inspection that the high-k
model-generated text lacks many crucial aspects
such as commonsense reasoning, world knowl-
edge and multi-sentence coherence – an example
of this superficially fluent but nonsensical text can
be seen in Table 4 in the Appendix. We believe
that true progress in open-ended Natural Language
Generation will come from attempting to address

these high k problems – i.e., strategies to imbue
the language model with better reasoning, knowl-
edge and planning abilities – rather than continu-
ing to seek ways to mitigate the diversity and rep-
etition problems of the low k setting.

Limitations of this study This study uses only
the smallest version of GPT2. It is likely that
the larger versions of GPT2 may exhibit stronger
statistical differences for the metrics we examine.
Such a study would illustrate the effect of larger
model capacity, and more fully reveal the possible
benefits of massive pretraining. We release our an-
notation code so that other researchers may repeat
our study on more models and datasets.

This study did not include human evaluation,
which is currently the only reliable way to assess
overall text quality, as well as quantify the defi-
ciencies of high k output described above (coher-
ence, reasoning, and world knowledge). As such,
this study quantifies the diversity side more than
the quality side of the quality-diversity tradeoff.
Consequently, this study demonstrates the impor-
tance of developing better methods to computa-
tionally quantify notions such as text coherence,
logicality and commonsense correctness – an ef-
fort that may ultimately hold the key to generating
text with those desirable attributes.
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(a) Percent of all story unigrams that are in the prompt.
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(b) Percent of all story bigrams that are in the prompt.
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(c) Percent of all story trigrams that are in the prompt.

Figure 6: n-gram similarity between prompt and story, for n = 1, 2, 3, for both models and all k. GPT2-117 copies
many more n-grams from the prompt than the Fusion Model. See Section 4 for discussion.

854



100 101 102 103 104 105

k (Top-k sampling)

0%

5%

10%

15%

Pr
om

pt
 e

nt
ity

 u
sa

ge
 ra

te

Human
Fusion Model
GPT2-117

(a) The proportion of all prompt named entities that are
used in the story.
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(b) The number of unique named entities that appear in
the story.

Figure 7: Prompt entity usage rate (left) and mean number of unique named entities in the story (right), for both
models and all k. GPT2-117 generally uses a larger proportion of the prompt named entities, and more named
entities overall, than the Fusion Model. Both models generally use fewer named entities than human text when k
is less than vocabulary size. See Section 4 for discussion.
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Figure 8: Mean sentence length for both models and all k. For both models, sentence length increases as k
increases. The spike at k = 1 is due to long repeating sequences with no sentence-ending token. See Section 7 for
discussion.
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(a) Distinct-1 (ratio of unique unigrams in the story to
total number of generated unigrams in the story).
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(b) Distinct-2 (ratio of unique bigrams in the story to total
number of generated bigrams in the story).
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(c) Distinct-3 (ratio of unique trigrams in the story to total
number of generated trigrams in the story).

Figure 9: Distinct-n for n = 1, 2, 3, for both models and all k. The ratios, which represent lexical diversity,
increase as k increases, with GPT2-117 reaching human levels at k = 2000 for unigrams, k = 800 for bigrams
and k = 600 for trigrams. Lexical diversity is slightly higher for GPT2-117 than for the Fusion Model for equal k,
but the primary determining factor is k. See Section 6 for discussion.
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(a) POS tag distinct-1 (ratio of unique POS unigrams in
the story to total number of generated POS unigrams in
the story).
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(b) POS tag distinct-2 (ratio of unique POS bigrams in
the story to total number of generated POS bigrams in
the story).
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(c) POS tag distinct-3 (ratio of unique POS trigrams in
the story to total number of generated POS trigrams in
the story).

Figure 10: POS tag distinct-n metric for n = 1, 2, 3, for both models and all k. The ratios, which represent
syntactic diversity, increase as k increases, with GPT2-117 reaching human levels at k = 6000 for unigrams,
k = 9000 for bigrams, and k = 6000 for trigrams. Syntactic diversity is slightly higher for GPT2-117 than for the
Fusion Model for equal k, but the primary determining factor is k. See Section 7 for discussion.
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Figure 11: Usage of different POS tags in the generated stories. GPT2-117 tends to fit the human distribution
more closely than the Fusion Model as k approaches vocabulary size, in particular producing more specific POS
categories such as Numeral and Proper Noun. When k is small, generated text is characterized by more verbs and
pronouns, and fewer nouns, adjectives, numerals and proper nouns, than human text. See Section 7 for discussion.
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(a) The mean log unigram probability of generated words.
Higher values indicate using fewer rare words while
lower values indicate using more rare words.
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(b) The percent of generated words that are stopwords,
for both models, across different k. We use the NLTK
English stopword list.

Figure 12: Rare word usage metrics for both models and all k. GPT2-117 produces slightly more rare words (left)
and slightly fewer stopwords (right) than the Fusion Model, for equal values of k. These rareness metrics do not
reach human levels until k is close to vocabulary size. See Section 6 for discussion.
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Figure 13: The mean total log probability of the story (150 words), as measured by the models on their own gener-
ated output and on human-written stories. Interestingly, the Fusion Model (left) converges to the same probability
it assigns to human-written stories as k approaches vocabulary size, whereas GPT2-117 (right) converges to a
lower probability. See Section 8 for discussion.
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Prompt: A man finally discovers his superpower... well into his 80’s.

Fusion Model (k = 10): GPT2-117 (k = 10):
I be a child . bear into a world of darkness , and in the
world , there be only a few people . My mother and I be
always alone . She have never be like this . But , she have
no idea what we be together to be . We be always alone .
We be always together . And , of course , she have never
exist . But , I never think about it , because she be always
alone . In the world , it was n’t like she have a power . I be
always alone , and there be a time when the light would
turn on . There be a time when I could see the light , and
I could see it in her eyes , and I could see the light , and I
could see it

Mean noun concreteness: 3.892
Mean verb concreteness: 2.173

A man in an old white coat sit in a corner . He wear a
black jacket with a blue tie . His hair be grey. His eyes be
black, but his voice be deep and clear. He look to where
the man be sit , and he see a smile on his lips. It be a
smile he know he would see from his own eyes. But he
be too late. He be on the sidewalk by the river when the
man come. He be wear a black coat with a purple tie . He
have a black tie and a white shirt . But he be still wear a
white suit . And it seem he would look back at him. A
smile on his face . A look his friend do n’t recognize . He
have no

Mean noun concreteness: 4.720
Mean verb concreteness: 2.488

Fusion Model (k = 1000): GPT2-117 (k = 1000):
For a brief moment , the dark green of his eyes flash the
last lines of reality into existence , finally fade slowly into
existence so that he could not feel it. Only the millions
of pixels float in his peripheral vision almost disappear .
His radio respond to the pinging very hard silence of the
outside world . Seven people have visit his main internal
network for what seem like a lifetime but this time, the
only switch to an external supply system that he could
simply take advantage of. Unable to convey feelings
about the last words he would have to endure , but it
have respond to the innumerable messages and countless
sleepless hours. Most of them be always available on
its surface , just to make sure. In his quest for to spend
eternity on death , he send

Mean noun concreteness: 3.201
Mean verb concreteness: 2.435

( First time poster , hope its ok ) The young boy, watch
tv , spot the television onscreen , before glance around to
see the screen start the countdown on the tv , point to the
screen in “ It ’s both the same. ” “... let ’s... let ’s try this
and... we will team up so that... we can ... have the same
power ....like... so we can use this superpower over and
over again. ” A brief silence . Only a familiar conversation ,
interrupt his mad dash movement , follow with his high
pitch slurred and wither voice : “ I ca n’t stand anyone
talk like that son*s*. ” More casual conversation that
interrupt his childish step be rush to the scissors.

Mean noun concreteness: 3.793
Mean verb concreteness: 3.162

Table 3: Generated stories from both models, under k = 10 and k = 1000. Nouns are highlighted in green
and verbs in yellow. The highlighting intensity reflects the word’s concreteness rating. For equal k, GPT2-117
generally generates more concrete words than the Fusion Model. For both models, low k is characterized by high
noun concreteness (e.g. physical objects such as jacket) and low verb concreteness (e.g. non-physical actions such
as be). Conversely, high k is characterized by low noun concreteness (e.g. abstract concepts such as reality) and
high verb concreteness (e.g. physical actions such as talk). See Section 9 for discussion.
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(a) Mean concreteness rating (1-5) of nouns in the story.

100 101 102 103 104 105

k (Top-k sampling)

2.2

2.4

2.6

2.8

3.0

M
ea

n 
ve

rb
 c

on
cr

et
en

es
s Human

Fusion Model
GPT2-117

(b) Mean concreteness rating (1-5) of verbs in the story.

Figure 14: Mean concreteness rating of the nouns and verbs in the story, for both models and all k. GPT2-117
generally produces nouns and verbs that are more concrete than the Fusion Model for the same k. For both models,
as k increases, noun concreteness reduces and verb concreteness increases. See Section 9 for discussion.

Prompt: In an alternative reality where sleep is non-existent among living beings, our protagonist (spontaneously or
after an event) falls asleep in which he/she experiences for the first time in human history what a dream is.

GPT2-117 (k = 1000): I sat in my bed as my girlfriend sat behind me, buzzing into her e-reader, letting the day’s
stories write themselves on her’s monitor. Like a blur, all the usual high-asyllabic drivel and senseless ramblings that
normally attracted the attention of a horrid sleeping creature huddled about me like a faucet. She did not know how I
placed this car with her. But I tried, first tried to ignore that I had hired the services of a dog to help and then quietly
used it in a desperate bid to drive the car through the lawn. Each and every day, I watched her drool down an old dusty
hardwood mattress her beady eyes trying desperately to think of this rotting dream. [...]

Table 4: An example of syntactically natural but nonsensical text, generated with high k. Though the text is fluent
and readable, it is surreal and bizarre. See Section 10 for discussion.
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Abstract

Residual has been widely applied to build deep
neural networks with enhanced feature propa-
gation and improved accuracy. In the litera-
ture, multiple variants of residual structure are
proposed. However, most of them are manu-
ally designed for particular tasks and datasets
and the combination of existing residual struc-
tures has not been well studied. In this work,
we propose the Self-Adaptive Scaling (SAS)
approach that automatically learns the design
of residual structure from data. The proposed
approach makes the best of various residual
structures, resulting in a general architecture
covering several existing ones. In this man-
ner, we construct a learnable residual struc-
ture which can be easily integrated into a wide
range of residual-based models. We evaluate
our approach on various tasks concerning dif-
ferent modalities, including machine transla-
tion (IWSLT-2015 EN-VI and WMT-2014 EN-
DE, EN-FR), image classification (CIFAR-
10 and CIFAR-100), and image captioning
(MSCOCO). Empirical results show that the
proposed approach consistently improves the
residual-based models and exhibits desirable
generalization ability. In particular, by incor-
porating the proposed approach to the Trans-
former model, we establish new state-of-the-
arts on the IWSLT-2015 EN-VI low-resource
machine translation dataset.

1 Introduction

Recently, residual learning attracts considerable at-
tention in training deep neural networks, and many
efforts have been devoted to study the utilization
of residual structure in tasks across a broad span
of fields, including but not limited to computer
vision (He et al., 2016a; Huang et al., 2017; He
et al., 2016b; Szegedy et al., 2017) and natural
language processing (Vaswani et al., 2017; Devlin
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Figure 1: Various types of residual structures: (a)
ResNet (He et al., 2016a); (b) Inception Net (Szegedy
et al., 2017); (c) Highway Net (Srivastava et al., 2015);
(d) Transformer (Vaswani et al., 2017), where LN rep-
resents layer normalization (Ba et al., 2016).

et al., 2019). Residual structure, which alleviates
the so-called gradient exploding or vanishing prob-
lem in optimization (He et al., 2016a), enables the
training of neural networks with great depth by
building skip connections between layers.

Generally, the residual structures (as illustrated
in Figure 1) can be formulated as:

y = G(α · x+ β · F(x,W)) (1)

where x denotes the input (i.e., the skip connec-
tion), F denotes the residual function (i.e., residual
branch) parameterized by W , and y is the output
of the residual block. The balance between x and
F is governed by the weights α and β, followed
by G, which could be either identity mapping or
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normalization.

Previous works on residual structure design-
ing, which differ in the way that the information
flows are regulated, mainly concern two elements,
namely the mapping formulation (weight assign-
ment) and the normalization mechanism. As shown
in Figure 1, ResNet (He et al., 2016a), Inception-v4
(Szegedy et al., 2017) and Highway Net (Srivastava
et al., 2015) explored the question on how should
the residual connection be incorporated into the
existing neural network structures so that the best
improvements can be achieved. Recently, Trans-
former (Vaswani et al., 2017) applied the layer nor-
malization (Ba et al., 2016) to help the optimiza-
tion of the non-linear transformation (i.e., the F)
to some extent. At the same time, He et al. (2016b)
observed considerably worse results when they uti-
lized batch normalization (Ioffe and Szegedy, 2015)
after the residual connection, the reason for which
batch normalization is less employed in the residual
structure.

Despite their respective advantages and success
in certain fields, we argue that the structures are
only particular cases of a more general one, which
necessitates further insights into possible combina-
tions. However, the determination of an effective
combination may require prior knowledge of the
data distribution, which is not always available, or
extensive hyper-parameter exploration, which is
inefficient.

In this paper, we aim at constructing a compre-
hensive and flexible residual structure. To this end,
we propose the Self-Adaptive Scaling approach. In
the residual structure, the proposed approach au-
tomatically computes scaling factors to adjust the
mapping formulation and the normalization mech-
anism, respectively. By assigning different impor-
tance to the skip connection, the residual branch
and a normalized result, the scaling factors adap-
tively controls the topology of the residual building
blocks.

As a result, the structure learned by our pro-
posed approach can be easily generalized to various
kinds of tasks and data, dispensing with the time-
consuming architecture search, to some extent. The
proposed learnable residual structure can be easily
integrated into existing residual-based models. We
evaluate the proposed approach on representative
residual models for various tasks. The experiment
results and analyses attest to our argument and the
effectiveness of the proposal.

Overall, the contributions are summarized as
followed:

• We proposed a novel self-adaptive scaling
(SAS) approach to acquire a learnable residual
structure, which allows deep neural models to
automatically learn the residual structure and
can cover different types of existing ones.

• The proposed approach is simple and can
be easily applied to a wide range of exist-
ing residual-based models. According to our
empirical studies, the SAS can enable exist-
ing models to achieve consistent performance
gains, demonstrating its generalization ability
to a wide range of existing systems.

• The experimental results on the IWSLT-2015
EN-VI show that SAS helps the Transformer-
Base model to perform even better than the
Transformer-Big model and, encouragingly,
we establish a new state-of-the-art on this low-
resource machine translation dataset.

2 Related Work

In recent years, the application of residual struc-
ture to deep neural networks has become an ac-
tive research topic (He et al., 2016a; Srivastava
et al., 2015; He et al., 2016b; Vaswani et al., 2017;
Szegedy et al., 2017). In the studies on residual
architectures, there are two problems of interest.
The first is how should the information from the
skip connection and the residual branch be well
balanced so that the best improvements can be
achieved. The second is how should the neural
network with residual connections be optimized
so that its representation capability could be fully
mined. These two types of problems are mainly ad-
dressed by designing appropriate mapping formu-
lation and normalization mechanism, respectively,
and we refer to them as On the Connection Problem
and On the Optimization Problem.

On the connection problem. There are roughly
three lines of methods to control the balance in
residual connections: identity mapping, constant
scaling ratio and adjusted scaling ratio. He et al.
(2016b) designed five types of shortcut connections
and discussed the possible residual connections in
detail. Based on their theory and experiments, they
argued that “keeping a ‘clean’ information path is
helpful for easing optimization”. The reason is that
with scaling, the gradient of the residual suffers
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from the gradient exploding or vanishing problem,
which hinders the deep neural network from effi-
cient optimization. Szegedy et al. (2017) adopted
constant scaling to govern the residual balance in
deep inception networks, which, despite its decent
performance, is relatively inflexible. Highway net-
work (Srivastava et al., 2015) is among the very
first endeavors to implant residual structures into
deep neural networks. It built a highway connec-
tion from the input to the output, where a transform
gate was proposed to control the balance of the skip
connection x and the residual branch F(x,W), as
opposed to the identity mapping.

On the optimization problem. In the realm of
computer vision, PreAct-ResNet (He et al., 2016b)
demonstrated that it is helpful to apply batch nor-
malization to x, instead of F(x,W). In other
words, the batch normalization acts on the output
of the previous block. For natural language process-
ing, the popular Transformer (Vaswani et al., 2017)
makes use of residual connection in conjunction
with layer normalization to build the model archi-
tecture and achieves record-setting performance.
Layer normalization is widely believed to be help-
ful for stabilizing training and facilitating conver-
gence. According to our experiments and analyses,
the layer normalization can indeed facilitate opti-
mization and therefore improve the overall perfor-
mance of the model.

Different from existing work, we summarize the
combination of normalization and residual con-
nection in existing works with a general form
y = α ∗ x+ β ∗ F + γ ∗ LN(x+ F), where the
mapping formulation and the normalization mech-
anism are both taken into account. By changing
the scaling factors α, β and γ, the topology of the
residual block can be adaptively adjusted, resulting
in a learnable residual structure. The learned archi-
tecture distinguishes itself from the previous ones
with generality and flexibility.

Our work is also related to the line of research
on neural architecture search (Zoph and Le, 2017),
where the network structure is also automatically
learned by algorithm. However, neural architecture
search requires sampling architecture descriptions
based on predicted probability from a controller
network that is optimized via reinforcement learn-
ing, which is time-consuming. But our proposed
approach can be trained directly with the loss func-
tions of different tasks.

No. α β γ Architecture
1 0 0 1 LN(x+ F) (Vaswani et al., 2017)
2 1 1 0 x+ F (He et al., 2016a)
3 1 β 0 x+ β ∗ F (Szegedy et al., 2017)
4 α 1 0 α ∗ x+ F (He et al., 2016b)

Table 1: Four particular cases in formula (3), which
cover four representative residual structures, i.e., Trans-
former (Vaswani et al., 2017), ResNet (He et al.,
2016a), Inception-v4 (Szegedy et al., 2017) and
shortcut-only gating proposed in He et al. (2016b).

3 Architecture

In this section, we first briefly introduce the Scal-
ing Gate in Section 3.1, which is used to predict
the scaling factors for the mapping formulation
and the normalization mechanism. Then, based
on the scaling factors, in Section 3.2, we describe
how to adaptively make the best of different types
of residual structure to build a learnable residual
structure.

3.1 Scaling Gate

The Scaling Gate should be able to predict reason-
able scaling factors. Our motivation stems from the
superior performance of Feed-Forward Network
used in Vaswani et al. (2017). When selecting
the activation function, since we expect the final
predicted value of the scaling factors to cover the
range of 0∼1, we applied the Sigmoid activation
function to the original outputs of the scaling gate.
As a result, the scaling gate takes the x ∈ Rh and
the F(x,W) ∈ Rh as input and computes the out-
put through two linear transformations with a Tanh
activation in between:

S(x,F) = Tanh([x;F ]Wf + bf )Wff + bff (2)

where [;] denotes concatenation operation, Wf ∈
R2h×h and Wff ∈ Rh×1 are the parameters to be
learned, and S(x,F) is followed by a Sigmoid
activation function.

In HighWay Net (Srivastava et al., 2015), the
inputs of the Transform Gate only involve the in-
formation of x and the structure only contains one
layer of linear transformation, i.e., xW + b. In
contrary, we integrate the information from x and
F and build the structure with two layers of lin-
ear transformation, which strengthens the scaling
gate’s expressive power. The difference is illus-
trated in Figure 2, and as illustrated in Table 6, our
scaling gate is experimentally found to perform
better.
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No. α β Architecture Remarks
1 0 0 LN(x+ F) The residual structure of Transformer (Vaswani et al., 2017).
2 0 1 F The well-trained F is sufficient in representation ability.
3 1 0 x F is poor-trained or x is sufficient in representation ability.
4 1 1 x+ F The residual structure of ResNet (He et al., 2016a).
5 1 β x+ β ∗ F The residual structure of Inception-v4 (Szegedy et al., 2017).
6 α 1 α ∗ x+ F The residual structure of shortcut-only gating (He et al., 2016b).

7 1-β β
(1− β) ∗ x+ β ∗ F+
β(1− β) ∗ LN(x+ F) The combination of Highway Net (He et al., 2016b) and Transformer.

Table 2: Seven special cases in formula (4), which include four representative structures, i.e., Transformer (Vaswani
et al., 2017), ResNet (He et al., 2016a), Inception-v4 (Szegedy et al., 2017) and Highway Net (Srivastava et al.,
2015).

S (x,F)

·

F(x,W)

addition

x

(b) Scaling Gate

��

y

T(x)

·

F(x,W)

addition

x

(a) Transform Gate 

��

y

Figure 2: The difference between the Transform Gate
in Highway Net (Srivastava et al., 2015) and the pro-
posed Scaling Gate.

3.2 Self-Adaptive Scaling Approach

It is intuitive to combine different types of residual
structure through adjustable scaling factors. There-
fore, we reformulate the residual block as follows:

y = α ∗ x+ β ∗ F + γ ∗ LN(x+ F) (3)

where α, β and γ can be predicted by scaling gates
with different parameters, and LN stands for layer
normalization (Ba et al., 2016).

By choosing certain values for α, β and γ, we
can get several special cases, as shown in Table
1. However, from the summarized cases, we can
easily find that if we set γ = (1 − α)(1 − β),
the approach can also cover these four baselines.
Especially, it is essential to decrease the parameters
to achieve the same purpose1. Thus, the final self-
adaptive scaling approach can be defined by the
following formula:

y = α ∗ x+ β ∗ F + (1− α)(1− β) ∗ LN(x+ F) (4)

where α and β act as the scaling factors predicted
as aforementioned. From the above formula, we

1The empirical results also show that (1 − α)(1 − β)
performs better than γ (94.05 accuracy vs. 93.95 accuracy in
CIFAR-10).

can obtain seven special cases in Table 2. In all,
our proposed self-adaptive scaling approach is not
only the general form of several existing structures,
which is able to encourage the model to take full
advantage of different types of residual structures,
but also gives rise to a learnable residual structure,
which can be automatically learned by deep neural
models from the data.

4 Experiment

In this section, we evaluate the proposed approach
on three representative tasks in the natural language
processing field, computer vision field, and cross-
modal scenario, that is, image classification, ma-
chine translation and image captioning. We first
briefly introduce the baseline models for compari-
son, the datasets, the metrics and implementation
details, followed by the discussions about the ex-
perimental results. Since our major concern is the
combination of different components in residual
units, we keep the internal structure (i.e., the resid-
ual function F(x,W)) of each component unaf-
fected. The training and inference strategies also
remain the same as the original models. For more
details, please refer to the cited publications.

4.1 Machine Translation

Baselines, Datasets, Metrics and Settings. For
the task of machine translation, we adopt the pop-
ular Transformer (Vaswani et al., 2017), which
is a strong baseline. The model is implemented
with the code from tensor2tensor (Vaswani et al.,
2018). Transformer follows the encoder-decoder
paradigm, but it replaces the self-recursive opera-
tion in RNNs with the self-attention that summa-
rizes all context. In each Transformer block, the
self-attended results are post-processed by residual
connection and layer normalization.

There are 133K, 4.5M, and 36M training
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Method EN-VI EN-DE EN-FR

Transformer-Base (Vaswani et al., 2017)

Baseline 30.9 27.5 38.2
+ Proposal 32.0 27.6 38.4

Transformer-Big (Vaswani et al., 2017)

Baseline 31.6 28.5 41.0
+ Proposal 32.2 28.7 41.3

Table 3: Results (BLEU) on the machine translation task. Higher means better. The proposal brings consistent and
substantial improvements.

Dataset Baseline + Proposal Improvements

PreAct-ResNet (Vaswani et al., 2017)

CIFAR-10 93.66 94.05 +0.39
CIFAR-100 71.29 72.91 +1.62

Table 4: Results (Accuracy (%)) on the image classification task, averaging over 5 runs. Higher is better. The
proposal consistently outperforms the baselines as in machine translation. Especially, better improvements are
achieved for models on CIFAR-100.

pairs in the IWSLT-2015 English-Vietnamese
(EN-VI) (Cettolo et al., 2015), WMT-2014
English-German (EN-DE) and English-French
(EN-FR), respectively. tst2012 and tst2013
are selected as the development and test
sets, respectively, for EN-VI. For EN-DE,
we use newstest2013 and newstest2014;
and for EN-FR, newstest2012+2013 and
newstest2014 are selected. For experiments
on the two WMT datasets, we follow the imple-
mentation settings in Vaswani et al. (2017). For
experiments on the IWSLT EN-VI dataset, we set
the batch size equal to 4096 and train on single
GPU, as it is relatively small. For all datasets, we
use a single model by averaging the last 10 check-
points to produce the results with beam search of 4
and length penalty of 0.6.

Results. The results of machine translation are
presented in Table 3. Under both the Base and
the Big configuration, our proposal consistently
boosts the performance of the Transformer base-
line. When equipped with our proposed approach,
the Transformer-Base model even transcends the
big version, which is three times as large in size, on
the EN-VI translation task. It shows that the scal-
ing factors indeed help adjust the residual structure
to the data distribution, which is very efficient in
exploiting the expressive power of deep residual
networks. Encouragingly, an union of the proposal
and the Transformer-Big model achieves substan-
tial improvement, and it outperforms the state-of-

the-art method (Huang et al., 2018) in the EN-VI
low resource dataset.

4.2 Image Classification

Baselines, Datasets, Metrics and Settings. In
the computer vision field, we benchmark our pro-
posed learnable residual structure with residual-
based image classification systems, i.e., Pre-
Activated ResNet (PreAct-ResNet) (He et al.,
2016b). ResNet-110 consists of 54 double-layer
residual blocks, which makes it non-trivial to op-
timize. To demonstrate that our SAS is applicable
to such deep framework, we select ResNet-110
in the experiments. We retain most of the hyper-
parameters in He et al. (2016b), with the exception
of the weight decay rate, which is set to 0.0002, so
as to guarantee more stable training. Both CIFAR-
10 and CIFAR-100 (Krizhevsky, 2009) are com-
prised of colored images for classification. CIFAR-
100, which contains 100 classes, appears to be more
difficult as compared to CIFAR-10, where there
are only 10 classes. Following common practice
(He et al., 2016b; Srivastava et al., 2015), accuracy
rate of classification over 5 runs are reported as
the evaluation results. In Srivastava et al. (2015)
and He et al. (2016b), they found that it may be
beneficial to attach more importance to the skip
connection x for initialization, i.e., the bias term
in the transform gate should be initialized with a
negative value. Following this practice, in image
classification task, we set the bias bff for α and
β to 3 and -3, respectively, at the start of training.
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

GLIED (Liu et al., 2019c) 80.4 - - 39.6 28.9 58.8 129.3 22.6

Transformer (Vaswani et al., 2017)

Baseline 80.2 64.9 50.7 39.0 28.4 58.6 126.3 21.7
+ Proposal 81.2 65.4 51.2 39.3 28.7 59.0 129.8 22.6

Improvements +1.0 +0.5 +0.5 +0.3 +0.3 +0.4 +3.5 +0.9

Table 5: Performance on the MSCOCO Karpathy test split. Higher is better in all columns. The baseline enjoys
a comfortable improvement with the proposed approach. Additionally, we report the performance of the recently
published state-of-the-art GLIED, as we can see, our approach helps the Transformer captioning model outper-
forms GLIED substantially in terms of CIDEr, which further demonstrates the effectiveness of our approach.

The remaining weights are initialized in the same
way as in (He et al., 2016b).

Results. As can be seen in Table 4, consistent
improvements are also obtained over the baseline
model, which is much deeper than the six-layer
Transformer model. The increase in accuracy is
0.39 and 1.62 on the CIFAR-10 and CIFAR-100
dataset, respectively. This demonstrates that our
proposal also works in deeper cases. It comes to
our notice that the proposal induces better improve-
ments on the more challenging CIFAR-100 dataset.
This is presumably that the learnable structure can
make the best of each component in the residual
building block, which allows more flexible fitting
into the multi-class image distribution, resulting in
a larger space for improvement in the 100 classes
scenario.

4.3 Image Captioning
Baselines, Datasets, Metrics and Settings. To
further demonstrate the generalization ability of
our proposed approach, we conduct experiments
on the task of image captioning. The experiments
are based on the multi-head attention mechanism
(Vaswani et al., 2017), which has recently shown
great potential and is competitive with the most ad-
vanced models (Liu et al., 2019c,b), for the reason
of which we choose it as our baseline to examine
the performance of our approach on the multidisci-
plinary task.

There are several datasets that consist of image-
sentence pairs. Our reported results are evalu-
ated on the popular Microsoft COCO (MSCOCO)
(Chen et al., 2015) dataset, which contains 123,287
images. Each image in the dataset is paired with
5 sentences. The results are reported using the
widely-used publicly-available splits in the work of
Karpathy and Li (2015). The MSCOCO validation
and test set contain 5,000 images each. Following

common practice (Liu et al., 2018, 2019a), we re-
place caption words that occur less than 5 times
in the training set with the generic unknown word
token UNK, resulting in 9,567 words.

We adopt SPICE, CIDEr, BLEU, METEOR and
ROUGE for testing. They are previously used as
evaluation methods for image captioning, we re-
port the results using the MSCOCO captioning
evaluation toolkit (Chen et al., 2015). Among the
metrics, BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005) are originally
designed to evaluate the performance of machine
translation systems. ROUGE is widely used to ex-
amine the quality of machine-produced summaries.
SPICE and CIDEr are bespoke metrics for image
captioning, which measures scene graph and n-
gram matching, respectively, and we refer to them
as primary indicators of model performance.

Results. The results on Karpathy test split
(Karpathy and Li, 2015) are reported in Table 5.
By using our proposed learnable residual structure,
improvements of 3.5 points and 0.9 points in terms
of CIDEr and SPICE respectively can be achieved,
further demonstrating the effectiveness and gen-
eralization capabilities of our approach to a wide
range of tasks. More encouragingly, the proposed
approach helps the baseline model achieves 129.8
CIDEr score, an improvement over GLIED (Liu
et al., 2019c) by 0.5.

5 Analysis

In this section, we conduct several analyses to give
further insights into our proposed approach, which
are based on the image classification task and we
adopt PreAct-ResNet-110 (He et al., 2016b) as the
baseline model.

Analysis on Scaling Gate. Table 6 summarizes
the obtained results when applying the Transform
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Figure 3: Illustrations of the averaged value of α (left) and β (middle), together with the corresponding (1−α)(1−
β) (right), which are predicted by the proposed approach for each residual block in pretrained PreAct-ResNet-110
on CIFAR-10.

Methods CIFAR-10

Baseline (PreAct-ResNet-110) 93.66
+ Transform Gate 92.15
+ Scaling Gate (Single Layer) 92.73

+ Scaling Gate (Full Model) 93.82

Table 6: The effects of applying the Transform Gate
from Highway Net (Srivastava et al., 2015) and the
proposed Scaling Gate to the PreAct-ResNet-110 (He
et al., 2016b), where the performance is evaluated by
Accuracy(%). The single layer Scaling Gate takes the
form S(x,F) = [x;F ]Wf + bf .

Gate in Highway Net and our Scaling Gate to
PreAct-ResNet-110, as well as the results of the
vanilla model. As we can see, when equipped with
Transform Gate, the effect is counter-productive on
CIFAR-10 dataset. This indicates that the informa-
tion fromx along is not robust and effective enough
to predict the scaling factors in the residual struc-
ture. The single layer version of our Scaling Gate
takes into account the residual branch F , thereby
improving over the Transform Gate. It is worth
mentioning that compared with the Transform Gate
(T (x) = xW T

f +bTf ), which has (h×h)+h learn-
able parameters, Scaling Gate (Single Layer) only
introduces (2h×1)+1 learnable parameters, which
is much more efficient. By modeling the scaling
factor with Scaling Gate (Full Model), a 0.16 points
promotion is achieved over the baseline on CIFAR-
10, which further demonstrates the advantages and
effectiveness of the proposed Scaling Gate.

Analysis on Self-Adaptive Scaling. Averaging
over 10,000 experimental examples, we display in
Figure 3 the value of α, β and (1−α)(1−β) in each
residual block of the pretrained PreAct-ResNet-110
on CIFAR-10. The filter sizes for the blocks at the
bottom, middle and top of the model are different.
We only show the representative blocks at the mid-
dle of the model due to space limitation. The first
column shows that in almost all cases, α is greater
than 0.9, which indicates that identity mapping is

Architecture Acc.(%)

x+ F (Baseline) (He et al., 2016b) 93.66
α ∗ x+ β ∗ F + (1− α)(1− β) ∗ BN(x+ F) 93.23
α ∗ x+ β ∗ F + (1− α)(1− β) ∗ LN(x+ F) 94.05

Table 7: Results on CIFAR-10 using the PreAct-
ResNet-110 with the batch/layer normalization. The
batch normalization is less effective than the layer nor-
malization in residual structure.

very helpful to information transfer and eases the
optimization of deep neural networks. This can
be attributed to the facilitated backward propaga-
tion of error signals by identity mappings. It is
shown in the second column that as the number
of network layers increases, the value of β grows
simultaneously, which indicates that the represen-
tation ability of the residual branch F is stronger
when it comes closer to the output of the model.
The main reason is that the error signal passed to
F is more adequate in the upper blocks, which is
beneficial to optimization. As can be seen from
the third column, more importance is assigned to
the normalized result when it comes to the lower
parts of the entire architecture, which means that
the value of (1 − α)(1 − β) is larger. This is be-
cause that in the underlying static blocks of deep
neural networks, the guidance from error signal is
weak and the optimization is unstable, thus making
the introduction of layer normalization necessary.

In all, the proposed approach regulates the in-
formation from individual components with scal-
ing factors to build the learnable residual structure,
which helps make the best of different type of resid-
ual structure, resulting in an effective combination
for better performance.

Analysis on Using Batch Normalization. The
batch normalization is used commonly in the field
of computer vision. Therefore, we replace the layer
normalization with the batch normalization in the
proposed approach to see the difference. As shown
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Figure 4: Gradient norm of the output of residual blocks of two different structures that are based on PreAct-
ResNet-110. The values are calculated as an average of over 10,000 random examples in the training set of
CIFAR-10. We conduct analyses on the blocks from the model’s middle part. The SAS denotes the self-adaptive
scaling approach.

in Table 7, applying batch normalization has a neg-
ative effect on the performance. Most importantly,
it lags behind the baseline by a noticeable mar-
gin, which shows that batch normalization is less
effective than layer normalization in the residual
structure. We speculate that layer normalization is
able to mitigate the training issue in the form of
exploding gradient induced by the adjusted ratio
provided by the layer normalization’s own param-
eters, while batch normalization could not, which
could be intuitively derived by the framework in
Hanin and Rolnick (2018). It is probably the reason
why He et al. (2016b) observed considerably worse
results when they applied batch normalization on
the residual structure.

Analysis on Better Optimization Capability.
To understand how the proposed approach helps
the optimization of deep neural models, we inspect
into the gradient norm of the output of each resid-
ual block in the pre-trained PreAct-ResNet-110 on
CIFAR-10. The gradients are averaged over 10,000
randomly selected training examples. As shown
in the left plot of Figure 4, the gradients of the
“x + F” structure are basically the same, indicat-
ing that all the residual blocks have similar speed
for gradient descent and optimization. In contrast,
the right plot of Figure 4 reflects that more gra-
dients are allocated to the lower blocks with the
help of SAS, and the overall gradient values are
greater. This phenomenon is interesting and finally
gives rise to better results, as shown in Table 4. We
conjecture that the layers distant from the model
output cannot receive adequate guidance from the
error signal, thus requiring more gradient for op-
timization. Moreover, since the layer normaliza-
tion is able to stabilize the information flow and
accelerate convergence, adaptively incorporating
the residual structure with layer normalization can
also facilitate optimization. By allocating more

importance to layer normalization in the residual
blocks via scaling factors, the layers at the bottom
of the network can be better optimized, which is in
line with the foregoing analysis on Self-Adaptive
Scaling approach.

6 Conclusion

In this work, we focus on building a learnable resid-
ual structure, which automatically learns the de-
sign of residual structure from data, instead of the
handy-crafted designs in previous work. We pro-
pose the Self-Adaptive Scaling approach to achieve
this goal, which combines various residual struc-
tures via the predicted scaling factors, resulting in
a general residual structure covering several exist-
ing models. The proposed approach is simple and
can be easily integrated into existing residual-based
models. Experiments on the machine translation,
image classification and image captioning tasks
validate the effectiveness of the proposed method,
which successfully promotes the performance of
all the strong baselines. This also demonstrates the
generalization ability of our method. In particu-
lar, when being applied to the recently proposed
Transformer model, our approach establishes new
state-of-the-arts on the IWSLT EN-VI low resource
machine translation task, which further substanti-
ates its efficiency. Detailed analyses prove that
the proposed approach can also promote the opti-
mization ability of deep neural networks, and is
conducive to exerting the expressive power of ex-
isting models.
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Abstract

The Specialized Information Service Biodiver-
sity Research (BIOfid) has been launched to
mobilize valuable biological data from printed
literature hidden in German libraries for over
the past 250 years. In this project, we anno-
tate German texts converted by OCR from his-
torical scientific literature on the biodiversity
of plants, birds, moths and butterflies. Our
work enables the automatic extraction of bi-
ological information previously buried in the
mass of papers and volumes. For this pur-
pose, we generated training data for the tasks
of Named Entity Recognition (NER) and Taxa
Recognition (TR) in biological documents. We
use this data to train a number of leading ma-
chine learning tools and create a gold standard
for TR in biodiversity literature. More specif-
ically, we perform a practical analysis of our
newly generated BIOfid dataset through vari-
ous downstream-task evaluations and establish
a new state of the art for TR with 80.23% F-
score. In this sense, our paper lays the founda-
tions for future work in the field of information
extraction in biology texts.

1 Introduction

Data is the gold to any machine learning (ML).
Most ML approaches to Natural Language Pro-
cessing (NLP) address modern, high-resource lan-
guages (such as English or Chinese) rather than
historical, low-resource languages. As a conse-
quence, feasible ML-tools for processing histori-
cal documents are still rare. In this paper we con-
sider corpora of historical German texts in order
to extract useful information about biological sys-
tems in the past (e.g. species, biotopes etc.).

As a contribution to closing the gap between
NLP of modern and of historical languages, we
present the newly annotated BIOfid dataset for
Named Entity Recognition (NER) and for Taxa
Recognition (TR) in the domain of biology, the

first of its kind concerning the German language.
Our approach is especially designed to address the
exploration of biodiversity data1 from historical
documents. We perform a large-scale annotation
of scanned texts converted by OCR from histori-
cal scientific books on the biodiversity of plants,
birds, moths and butterflies, thereby creating the
necessary training data to accomplish the task of
biological NER and TR using various ML algo-
rithms. Our work facilitates an automatic extrac-
tion of biological information so far buried in the
bulk of papers and volumes (see Table 1). Over-

Input sentence:

Ahmed observes that Iris grows in Mai in Frankfurt.

TR output:

Ahmed observes that [Iris]TAXON grows in Mai in
Frankfurt.

Biological NER output:

[Ahmed]PER observes that [Iris]TAXON grows in
[Mai]TIME in [Frankfurt]LOC.

Table 1: Example for our selected tasks.

all, our newly generated dataset provides a gold
standard and hereby lays the foundations for future
work, such as relation extraction and classification
based on extracted biological named entities and
taxa.

We perform a practical analysis of our dataset
via various downstream-task evaluations. First,
we generate a baseline for recognizing taxo-
nomic entities by constructing a sequence tagger
based on skip-n-grams and external knowledge re-
sources (i.e. WikiData). Secondly, we apply the
best publicly available word embeddings for Ger-
man and use them alongside our BIOfid dataset as
an input for training high-performing neural mod-

1Biodiversity is the science which measures the variability
and diversity of animals and plants.
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els for NER, namely BiLSTM, ELMo, Flair and
BERT (Ahmed and Mehler, 2018; Peters et al.,
2018; Akbik et al., 2018; Devlin et al., 2018). By
using the optimized BiLSTM model we achieve a
new best F-score of 80.23% regarding the recog-
nition of taxonomic entities.

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work. Section 3
describes the source texts and the preprocessing
pipeline. Section 4 describes the annotation guide-
lines, process and environment for producing the
BIOfid dataset, and methods (n-gram-based se-
quence tagger, neural models) for evaluating the
practical quality of our annotated dataset. Section
5 presents the experimental results. Finally, Sec-
tion 6 draws a conclusion.

2 Related Work

2018 was a vital year for the task of German
NER, following a saturation period from when
the last major progress was made by Lample et
al. (2016). With the grammar-specific morpho-
logical processing and resource-optimization pre-
sented by Ahmed and Mehler (2018), the gap be-
tween English and German NER was closed. In
the same year, with the emergence of multilin-
gual language models such as ELMo, Flair and
BERT (Peters et al., 2018; Akbik et al., 2018;
Devlin et al., 2018), the performance of various
NLP tasks, including NER, was notably improved.
Hence, the task of German NER has benefited
from these developments.

However, with respect to the availability of a
variety of resources, there has not been much
progress made until now. Regarding the standard
task of NER based on four categories (PERSON,
LOCATION, ORGANIZATION, OTHER), the first
choice of resources for German is still the Ger-
mEval dataset (Benikova et al., 2014), followed
by the datasets of CoNLL and TüBa-D/Z (Tjong
Kim Sang and De Meulder, 2003; Telljohann
et al., 2012). However, their potential for pur-
poses outside of theoretical ML is limited. These
datasets do not contain any annotations for taxo-
nomic and temporal entities which are of key in-
terest for biodiversity researchers.

For biological NER in the German language,
there are no predecessor resources available to
the knowledge of the authors; only an English
counterpart exists, namely the Copious dataset
(T.H. Nguyen et al., 2019), which has been re-

Figure 1: Flowchart showing the data cleaning steps
within our preprocessing pipeline.

cently published during our ongoing work. This
confirms our research endeavors and shows the
necessity of more data in this field. We take the
English counterpart as the baseline and compare
its dataset and results with our own. Overall, our
work constitutes the first effort on enabling a state-
of-the-art performance for neural representation
learning to biological NER.

3 Source Texts & Preprocessing Pipeline

BIOfid Corpus The BIOfid Corpus is a collec-
tion of historical scientific books on central Euro-
pean biodiversity. It was assembled by a group of
German domain experts, denoting a potential pool
of relevant print-only journals and publications for
historical biodiversity science. However, mainly
due to license issues, not all publications could be
considered for the corpus.

The available publications were scanned by an
external service and subsequently paginated with
the software Visual Library. Subsequently, every
high-resolution page (400 dpi) was digitized with
ABBYY FineReader 8.0 (2005) to ABBYY-XML,
which includes structural information like para-
graphs, bold/italic text, images, and table blocks.

OCR Parser The raw OCR data contained var-
ious errors, e.g. delivering typical OCR errors
such as confusing letters (ß → b), or delivering
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gibberish due to the wrong recognition of non-
textual elements in scans such as images, figures,
or tables. Furthermore, species names or their ap-
pended author citation were frequently recognized
incorrectly, e.g. ”Lepidium ruderale L.” → ”Lep-
idium rüderale I.”.

We built the following preprocessing pipeline
(see Figure 1) to clean the source data and increase
its overall quality. First, the raw OCR data was
passed to a parser (labeled ”OCR Parser” in Figure
1). This parser read a given ABBYY-XML into
a UIMA CAS, while retaining all structural infor-
mation in a custom UIMA type system, which was
tailored to the ABBYY-XML output.

Using a set of heuristics, the structural infor-
mation was used to detect erroneous parts in the
parsed text, such as page numbers, image and fig-
ure blocks mislabeled as text, text margins and ta-
ble lines parsed as the characters ”I” or ”-”, and ta-
bles containing merely non-word characters such
as counts of observations2.

The parser performed further fundamental text
segmentation using the information given by the
ABBYY-XML, such as tokenization and para-
graph splitting. The ABBYY-XML contains to-
kenization information on the character basis, de-
noting whether a character is marking the begin-
ning of a word. This information was used along-
side plain whitespaces to tokenize the raw text,
while further splitting words from non-word char-
acters. All this information was stored in a UIMA
CAS using the aforementioned type system and
passed down the UIMA pipeline.

Document Structure The BIOfid corpus com-
prises about 15 journal titles including approxi-
mately 410 books. 201 of these books containing
969 articles were selected by domain experts as
a representative sample from the entire corpus to
generate training data for biological NER.

Sentence Boundary Detection In biological lit-
erature, author citations are commonly abbrevi-
ated (e.g. Carl von Linné in ”Fagus sylvatica L.”)
as well as species names (e.g. ”F. sylvatica” af-
ter the first definition). Therefore, standard rule-
based tools often fail to detect the correct sen-
tence boundaries in such unstructured raw text
documents. Hence, for this task we included the
LSTM-based sentence boundary detector Deep-
EOS (Schweter and Ahmed, 2019) in our prepro-

2An example of such pages is given in Appendix C.

cessing pipeline and trained it with 1,361 sen-
tences, which were manually extracted from the
BIOfid corpus. The total amount of training sen-
tences was increased from a preliminary size of
300, since the first experimental results revealed
that the SBD is crucial for the performance of our
downstream-task.

4 BIOfid Dataset & Methods

4.1 Annotation Guidelines

Named Entities NEs are real-world objects in a
given natural language text which denote a unique
individual with a proper name (e.g. Frankfurt,
Africa, Linnaeus, BHL). This stands in contrast to
the class of common names which refer to some
kind of entities (e.g. city, continent, person, cor-
poration) and not a uniquely identifiable object.

The standard task of NER focuses on the former
class of proper names. However, it is often not
easy to differentiate between both classes. Hence,
to support the annotators in making the right de-
cision, we created guidelines which demonstrated
the rules for annotations. We gradually developed
this document in collaboration with the annotators,
until finalizing it as the guidelines for annotating
the BIOfid corpus. The appendix shows the mate-
rial which was provided to the team of annotators.
First, in Appendix A some introductory examples
from the BIOfid corpus are given. Next, in Ap-
pendix B the general guidelines used for produc-
ing the NER dataset are shown.

As we essentially extend the standard task of
NER to our scope of biodiversity, our guidelines
are built upon those used for producing the Ger-
mEval dataset (Benikova et al., 2014). For this, we
take the original German text and extend it with
the important adjustments described in the next
paragraphs for the context of biodiversity. In con-
trast to Benikova et al. (2014), we do not consider
derivative or partial NEs as a separate category. As
the recent work of Ahmed an Mehler (2018) has
shown, discarding subtle details is even beneficial,
whereas fine-graded feature engineering for deep
neural networks usually deteriorates the final per-
formance.

Time In the standard task of NER, temporal in-
formation is not captured by the four base enti-
ties. However, the aspect of time is important for
the research on biodiversity which is constantly
evolving. Therefore, we annotated every text unit
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Dataset Sentence PERSON LOCATION ORGANIZATION OTHER TIME TAXON

CoNLL 018,933 05,369 06,579 04,441 03,968 N/A N/A
GermEval 031,300 10,807 17,275 08,303 04,557 N/A N/A
TüBa-D/Z 104,787 55,746 28,582 32,224 12,865 N/A N/A
Copious 026,277 02,889 09,921 0N/A 0N/A 2,210 12,227

BIOfid 015,833 05,393 06,785 01,085 07,849 5,197 15,085

Table 2: Statistics for German NER datasets together with the English biological NER dataset Copious
(T.H. Nguyen et al., 2019).

which denotes a specific temporal entity with the
tag TIME (e.g. [13.02.1835]TIME, see more in
Appendix B: Table 9). For text units which de-
scribe a time interval, we marked the starting and
ending points as two distinct temporal entities.

Taxonomy Taxonomy is a field in biology that
deals with the systematic classification of organ-
isms by morphological, phenotypic, behavioral
and phylogenetic characteristics. Based on a vari-
ety of common traits, a group of organisms forms
a so-called taxon. A well-known example of this
are the Darwin’s finches, endemic birds in the
Galápagos Islands. The different species (each
species represents a taxon) are distinguished pri-
marily by the size and shape of their beaks and the
associated specialized diets.

Taxa are classified according to international
nomenclature codes3,4,5,6 and are delineated at
different hierarchical levels, also known as tax-
onomic ranks. Most of us are well acquainted
with the distinction between the animal and plant
kingdoms, although there are other kingdoms e.g.
fungi or bacteria. Subordinate to a kingdom are
many more ranks such as phylum, class, order,
family, genus and species. According to this,
the hierarchical classification of the bird species
Struthio camelus, the common ostrich, from the
lowest to the highest taxonomic rank is as fol-
lows: Struthio camelus (species), Struthio (genus),
Struthionidae (family), Struthioniformes (order),
Aves (class), Chordata (phylum), Animalia (king-
dom). Each scientific name mentioned here along
with its taxonomic rank (in parentheses) repre-
sents a taxon, meaning a group of organisms with
a set of common characteristics being indicative
for a common ancestry.

Due to differing and evolving methods of clas-

3
http://iczn.org/code

4
http://www.iapt-taxon.org/nomen/main.php

5
http://www.the-icsp.org/

6
http://talk.ictvonline.org/taxonomy/

sification, taxonomies are subject to constant
change. This also applies to taxonomic nomen-
clature. Therefore, among others, synonymy and
homonymy also play an important role in biol-
ogy (e.g. there is a plant genus with the name
”Paris”). The relevance of taxonomy for biodi-
versity research and conservation is fundamental
(Thomson et al., 2018), consequently, we consid-
ered it justified to introduce the NE-category of
TAXON into the process of NER.

For organisms of all taxonomic ranks, we con-
sidered scientific names (both accepted and syn-
onyms) and vernacular names, if referring to a cer-
tain taxon, as NEs (e.g. [Struthio camelus]TAXON
or [common ostrich]TAXON, [Mirza zaza]TAXON
or [northern giant mouse lemur]TAXON, see more
in Appendix B: Table 7). Author citation and year,
usually appended to the scientific name of a taxon,
were tagged as NEs of the categories PERSON
and TIME, respectively (e.g. [Falco]TAXON [Lin-
naeus]PER [1758]TIME). Both author and tem-
poral information embedded within the scientific
name, were included in the NE TAXON (e.g.
[Carex praecox [Jacq.]PER var. distans]TAXON
[Appel]PER).

4.2 Annotation Process

We performed a single major series of annotations.
Instead of just focusing on some inter-agreement
value, we performed double checks on existing an-
notations on given articles through biological ex-
perts. This strategy removed the time overload
associated to multi-annotations while ensuring a
high quality of data.

For this scheme, a group of annotators consist-
ing of two researchers from the project team were
employed. Both researchers were native speakers
of German, and, additionally had a profound back-
ground in biology. Besides, two further student
assistants with similar profiles were employed to
provide further assistance.
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Figure 2: Working environment for annotating the BIOfid corpus (figure taken from (Abrami et al., 2019)).

4.3 Annotation Environment

We used the TextAnnotator (Abrami et al., 2019),
a browser-based annotation tool specifically ad-
justed for this project. Figure 2 shows the working
environment which was provided to the annota-
tors. On the left-hand side of the QuickAnnotator
view, the raw OCR text from the BIOfid corpus is
displayed, separated from the choice of annotation
tags on the right-hand side. As sentence splitting
was part of the annotation task, we did not provide
a sentence view. Instead, we provided the whole
article, further allowing the annotators to use con-
textual information while making their decisions.

4.4 Quality of Data

4.4.1 Quantitative Characteristics
Table 2 shows the total amount of annotated sen-
tences along their six NE-categories and compares
this with the three major public datasets for Ger-
man NER. For our BIOfid dataset, we can see the
high value of TIME and TAXON entities which, so
far, do not exist for any publicly available dataset.

4.4.2 Data Format
We use the 4-column CoNLL-format which writes
each word of a sentence horizontally along its
lemma, POS tag and gold label, separating each
sentence by an empty new line. For the tag-
ging scheme, we opt for BIO (IOB2). Listing 1
shows an excerpt of the train file in which the en-
tities TIME, PERSON, LOCATION, TAXON
are marked by our team of annotators for a given
sentence from the BIOfid corpus.

Listing 1: Sample sentence from BIOfid dataset
Mein mein PPOSAT O
Sohn Sohn NN O
ko nn te kö nnen VMFIN O
am an APPRART O
3 3 CARD B−TME
. −− $ . I−TME
1 1 CARD I−TME
. −− $ . I−TME
23 23 CARD I−TME
den d e r ART O
F a b r i k a n t e n F a b r i k a n t NN O
W a l t e r W a l t e r NE B−PER
Schmidt Schmidt NE I−PER
aus aus APPR O
G e i t h a i n G e i t h a i n NE B−LOC
b e i b e i APPR O
einem e i n ART O
S p a z i e r g a n g S p a z i e r g a n g NN O
a u f a u f APPR O
dem d e r ART O
R o c h l i t z e r R o c h l i t z e r NN B−LOC
Berge Berg NN I−LOC
a u f a u f APPR O
e i n e e i n ART O
Ringamse l Ringamse l NN B−TAX
, −− $ , O
Turdus Turdus NN B−TAX
t o r q u a t u s t o r q u a t u s ADJD I−TAX
L L NN B−PER
. −− $ . O
, −− $ , O
h i n w e i s e n h i n w e i s e n VVINF O
. $ . −− O

We split the BIOfid dataset into train, dev, test
files by the common ratio of 80:10:10 percentages
after randomizing its order of sentences. These fi-
nal data files are utilized for training and evaluat-
ing our models, which are described in the next
section.
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4.5 Methods

For the evaluation of the BIOfid dataset, we use six
different approaches and compare each others re-
sults: one classic rule-based model and five high-
performing embedding-based models.

4.5.1 N-Gram Tagger for TR
We develop a naive sequence tagger as a base-
line for the recognition of taxonomic entities in
the BIOfid dataset. The baseline is only for a sub-
task of the full task of biological NER, described
in the previous Section 4.1. Our sequence tag-
ger is built on the k-skip-n-grams (with k = 1)
which are constructed from the tokens of taxo-
nomic entries in the comprehensive Latin and Ger-
man gazetteers of biology. Both gazetteers con-
sist of 83,348 taxonomic entries from various bi-
ological systematics such as of aves, lepidoptera
and vascular plant. In addition, we consider Wiki-
Data7 and construct an additional gazetteer by ex-
tracting 2,663,995 German and Latin taxonomic
entries from the online resource by selecting all
entries from a XML-dump that are subjects (?s)
in the following two SPARQL triple patterns8:

• ?s instance-of taxon.

• ?o subclass-of taxon.

?s instance-of ?o.

For each gazetteer entry consisting of at least
three tokens (n ≥ 3), we take all tokens as an
input and create a list of 1-skip-n-grams. For
example, for the taxonomic entry iris kashmiri-
ana b., we create four n-grams (iris kashmiriana),
(iris b.), (kashmiriana b.) and (iris kashmiriana
b.). In this way, we construct 3,023,270 unique n-
grams in total from 2,682,959 merged taxonomic
entries, while dropping 140,432 duplicate n-grams
entirely. Next, we map all these n-grams to the
BIOfid test file by standard string matching and
thus find the taxonomic occurrences in the target
set of text data.

4.5.2 Neural Models for NER
Our neural models consist of two separately
trained components: a) foundational word em-
beddings, modeling the general knowledge from
large unlabeled text corpora, and b) various task-
specific neural architectures, modeling the domain

7
http://www.wikidata.org/

8All results can be acquired with the following WikiData
queries: http://w.wiki/3u3 and http://w.wiki/3ud

knowledge from the labeled training data. In this
section, both components are presented briefly.

Word Embeddings The language model of con-
tinuous space word representations (word2vec)
(Mikolov et al., 2013) and its variations by (Levy
and Goldberg, 2014; Komninos and Manandhar,
2016) are the foundations of most ongoing re-
search in NLP with neural networks. Based on
the context, the model embeds words, phrases
or sentences into high dimensional vector spaces.
We use the model of Wang2vec (Ling et al.,
2015) and its morphological extension (Ahmed
and Mehler, 2018) which explores syntactic data
specific for German and, thus, better suites the
task of NER. We use the recently published Ger-
man language word embeddings from the TTLab9

which are pre-trained with the morphological ex-
tension of the Wang2vec algorithm on the COW
corpus (Schäfer, 2015), the largest collection of
German texts extracted from web documents with
over 617 Mio. sentences. Out of the six published
variants of embeddings, we opt for token-based
embeddings (COW.lower.wang2vec), as they de-
livered the best results for German NER according
to the publishers.

BiLSTM We provide a brief overview of the
configurations for the five neural models which we
use throughout this paper. The model BiLSTM-
CRF is similar to the one used in (Ahmed and
Mehler, 2018), which goes back to the work of
(Lample et al., 2016). The neural network con-
sists of stacked LSTM and CRF layers. The base
layer combines for a given word its (pre-trained)
word embedding with its character-based embed-
ding. These features are forwarded to the predic-
tion layer which produces the final NE tag.

Model Emb. Language Model Train Data

BiLSTM-a COW N/A BIOfid
Flair Wang2v. COW PCE BIOfid
Flair ELMo COW PCE+Leipzig BIOfid
Flair BERT COW PCE+BERT-Base BIOfid
BiLSTM-b COW N/A All

Table 3: Overview of the model inputs. For BiLSTM-
b we consider all merged training data (i.e. BIOfid +
GermEval + CoNLL)

Flair Wang2vec We further train a sequence la-
beling model using Flair10. We build the model in

9
http://www.texttechnologylab.org/resources2018/

10
http://github.com/zalandoresearch/flair
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the same fashion as used by (Akbik et al., 2018)
following the guide given by the authors for the
task ”CoNLL-03 Named Entity Recognition (Ger-
man)”, while keeping the pooled contextualized
embeddings (PCE) and exchanging the GloVe em-
beddings employed by the authors with Wang2vec
embeddings trained on the COW corpus.

Flair ELMo In addition to the previous model,
we train a Flair Sequence Tagging model by stack-
ing an ELMo embedding layer on top of the Flair
Wang2vec model. The ELMo embeddings were
trained on a section of the Leipzig Corpora Col-
lection (Goldhahn et al., 2012) containing 100,000
sentences from Wikipedia using default parame-
ters.

Flair BERT Similarly, we added BERT (Devlin
et al., 2018) to the Flair Wang2vec model. We
used the recently published BERT-Base, Multilin-
gual Cased11 pre-trained model for this purpose.

Hyperparameters We take the original neural
models and keep the hyperparameters as described
in their references. The only adjustments we make
to the models are on the input level, i.e. we per-
form variations for the pre-trained word embed-
dings, the pre-trained language models, and the
training data (see Table 3).

5 Results

We evaluate the performance of all models with
the official script from the shared task of CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003).
All our experiments were run on Nvidia’s GTX
1080 Ti GPUs.

5.1 Baseline for TR

N-Gram Tagger Applying the gazetteer to the
BIOfid test file gives us the respective baseline for
the recognition of taxonomic entities. For evalua-
tion, we use the CoNLL-script and contrast it with
easing the conditions by evaluating only the NE
predictions and ignoring the prefixed BIO-tagging
scheme to every NE. The evaluation does not take
into account the other words and is based only on
the actual words annotated as TAXON.

Table 4 displays the results for the n-gram tag-
ger. We can nicely see that the increase in size
of gazetteers leads to an increase in the final
performance. More specifically, for the eased

11
http://github.com/google-research/bert

Gazetteer CoNLL-Eval Pr. [%] Re. [%] F1 [%]

Lat. standard 61.50 34.71 44.37
Lat.+Ger. standard 65.83 45.42 53.75
WikiData standard 69.05 53.91 60.55
Lat. eased 92.48 46.04 61.06
Lat.+Ger. eased 92.94 54.55 67.70
WikiData eased 95.55 58.87 72.85

All standard 69.20 55.75 61.75
All eased 95.57 60.72 74.26

Table 4: Baseline for TR on the BIOfid test file with
the N-Gram sequence tagger.

condition, every incremental step from Latin to
Latin+German, and the next step to All (i.e.
Latin+German+WikiData) leads to an increase of
+6.64% and +6.56% F-scores, respectively. This
matter of fact demonstrates that for the n-gram tag-
ger the resource-size matters.

Furthermore, for the eased condition, we see
very high scores for precision, however, the recall
values are relatively low. This result demonstrates
a classic problem of rule-based approaches; as
there is no learning process involved, we assume
that the performance of the n-gram tagger is highly
limited on the features extracted from the source
of knowledge (i.e. the amount of information con-
tained in the gazetteer). Besides, no transfer learn-
ing is possible from related resources, demonstrat-
ing the downsides of non-learning methods.

5.2 Biological NER

We report here the results of our comprehen-
sive survey of five current embedding-based high-
performers for biological NER in historical biodi-
versity literature12.

The Gold Standard Table 5 contains a detailed
summary of all results. In that table, we the re-
port the results which are given by T.H. Nguyen
et al. (2019). For the optimized BiLSTM Tagger,
we achieve excellent results and establish a new
state-of-the-art for the first task of TR with 80.23%
F-score (see Table 5: BiLSTM-a). For biological
NER, we outperform the English counterpart Co-

12Our manual inspection of the training data showed that
the annotations are content-wise homogeneous, except for the
category OTHER. The annotators reported its usage as a resid-
ual NE-category for everything which is biologically interest-
ing (e.g. morphology, animal behavior, reproduction, devel-
opment) but does not fall under the definition of the five major
categories. Initial experimental results confirmed its hetero-
geneous quality. Therefore we omitted OTHER (3,143 sen-
tences) from our further experiments which in turn increased
the final performance of NER.
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Model Scores [%] TAXON PERSON LOCATION ORGANIZATION TIME Overall

Precision 77.42 58.92 85.05 N/A 70.67 77.49
Copious Recall 69.67 48.44 85.63 N/A 54.36 71.89
Nguyen (2019) F1 73.34 53.17 85.34 N/A 61.45 74.58

Precision 81.33 63.19 66.20 60.24 91.16 75.62
BiLSTM-a Recall 79.16 77.45 57.35 67.57 88.16 74.98

F1 80.23 69.60 61.46 63.69 89.63 75.30

Precision 75.94 61.25 67.58 61.64 90.59 73.58
Flair Wang2vec Recall 81.37 76.09 62.89 58.11 85.24 75.89

F1 78.08 71.89 62.63 56.95 87.89 74.30

Precision 75.64 67.16 58.31 56.82 90.49 73.05
Flair ELMo Recall 79.92 79.89 65.06 60.81 86.02 76.50

F1 77.88 69.34 66.30 61.22 88.25 75.01

Precision 76.63 65.30 66.96 58.00 92.21 74.98
Flair BERT Recall 77.38 81.02 61.89 58.00 90.33 76.22

F1 77.01 72.31 64.32 58.00 91.26 75.59

Precision 80.45 88.61 72.72 81.21 87.63 79.35
BiLSTM-b Recall 76.65 89.40 84.02 70.74 81.17 75.38

F1 78.50 89.00 77.96 75.61 84.27 77.31

Table 5: Results for the task of German biological NER with various neural networks models along the English
baseline on the Copious dataset (T.H. Nguyen et al., 2019). All models are trained on the BIOfid dataset and
evaluated with the official CoNLL-2003 eval script.

pious for all categories except for LOCATION. For
the latter category, the Copious dataset contains
9,921 training samples whereas ours has 3,136
fewer samples. We assume that this lower amount
results into the lower performance.

With the popular deep language models Flair,
ELMo and BERT, we interestingly stay below the
performance of the BiLSTM model (except for
TIME). Although we utilize the same pre-trained
COW word embeddings for all models, we assume
that the lower performance arises due to the lan-
guage models themselves being trained on only
a relatively small corpus (ELMo: 100,000 sen-
tences). However, for training ELMo on larger
corpora, such as the COW corpus, we would re-
quire many months of training time. For the
pre-trained Flair and BERT, we can only fine-
tune the last tagging layer, not the whole lan-
guage model itself. This stands in contrast to
the BiLSTM model which can be wholly targeted
to our domain-specific training data. Hence, this
demonstrates the downside of such heavy lan-
guage models; although they might deliver the
top performances, it is difficult to adjust them for
lightweight processes, making them impractical
for the context of low-resources scenarios.

Data Merging for BiLSTM Tagger For
BiLSTM-a, it can be noted that the perfor-
mance of the standard categories PERSON,

ORGANIZATION, and, especially LOCATION
is inferior. Therefore, we performed resource-
optimization by merging high quality data with
our BIOfid dataset in order to increase the training
samples for the low performing categories. We
merge the datasets of GermEval and CoNLL
with our annotated sentences, resulting in train,
dev, and test sizes of 46,857, 6,629, and 9,437
sentences, respectively. Table 5: BiLSTM-b
shows the improvements in performance with the
increased dataset. Our results demonstrate the
effectiveness of our approach; we do not need to
modify the model, rather it is sufficient to perform
data-driven optimization. Considering the overall
performance, we outperform the English counter-
part by +2, 73% F-Score and thus establish a new
state-of-the-art for the task of biological NER.

Error Analysis We manually analyze the errors
made by the ensemble of neural models. We ob-
serve three major issues that compose the absolute
majority of errors: a number of missing annota-
tions from our experts, OCR erros in the raw text
and rare words that occur frequently in our test
dataset. An example of an OCR error is the anno-
tated text span [1, Juni 1967]TIME which is mis-
classified by all models as 1, [Juni 1967]TIME
due to the comma in the date format. Another
example is [KLeebend]LOC which is not tagged
due to the capital ”L”. Further, the word [Venn-
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fußfläche]LOC occurs 17 times in the test dataset,
but only twice in the training set. It is a three word
compound of the words Venn, Fuß and Fläche,
that describes a part of the landscape Vennvorland
in Germany. We conclude that the preprocess-
ing pipeline has to be further refined to remove
the OCR errors, while a re-annotation of the data
could solve the missing annotations and a more
thorough shuffle may solve the rare word issue.

6 Conclusion

In this study, we presented a newly annotated
BIOfid dataset for German NER in historical bio-
diversity literature and performed a comprehen-
sive evaluation of the quality of our dataset with
five competing neural models. We come to the
conclusion that the value of our dataset does not
rely solely on the two new entities of TIME and
TAXON. By generating domain-related annotation
data typical for historical biodiversity literature,
we increase the potential performance for biologi-
cal NER, even for the four standard NE categories.
This was demonstrated by the limited scope of the
rule-based approach which could not come close
to the performance delivered by the neural models
and which, in turn, established a new state-of-the-
art for both of our selected tasks of TR and NER.

In the course of the annotation process, we dis-
covered that there are further information entities
in the BIOfid corpus which do not fall into the
definition of standard NE-categories, albeit they
are useful from the perspective of biodiversity re-
searchers. For future work, we plan to increase
the semantic granularity of the BIOfid dataset by
mapping and re-annotating the existing six NE-
categories to the top-level hierarchy of WordNet
(Miller, 1995). This includes 26 categories that
can be either abstract entities or concrete entities
(i.e. NE) and can be assigned to specific biological
entities, such as morphology, habitat, reproduc-
tion, behavioral traits, or species community. By
re-annotating the dataset we additionally plan to
deliver an inter-agreement value for both the cur-
rent NER-dataset and the much smaller WordNet-
dataset (which is planned to contain an up to 9
times higher amount of annotated information per
sentence). Furthermore, we plan to extract all bi-
ological entities with the trained neural models
from the BIOfid corpus and perform on them the
task of relation extraction based on current em-
bedding methods.

Overall, our work mobilizes data from undigi-
tized literature leading to huge potentials for bio-
diversity researchers. It enables cartographic re-
search on the distribution of Central European bio-
diversity ranging from the pre-modern time up to
our current ever increasingly digitizing age.
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Abstract

The prevalence of informal language such as
slang presents challenges for natural language
systems, particularly in the automatic discov-
ery of flexible word usages. Previous work
has explored slang in terms of dictionary con-
struction, sentiment analysis, word formation,
and interpretation, but scarce research has at-
tempted the basic problem of slang detection
and identification. We examine the extent
to which deep learning methods support au-
tomatic detection and identification of slang
from natural sentences using a combination of
bidirectional recurrent neural networks, con-
ditional random field, and multilayer percep-
tron. We test these models based on a compre-
hensive set of linguistic features in sentence-
level detection and token-level identification
of slang. We found that a prominent fea-
ture of slang is the surprising use of words
across syntactic categories or syntactic shift
(e.g., verb→noun). Our best models detect the
presence of slang at the sentence level with an
F1-score of 0.80 and identify its exact position
at the token level with an F1-Score of 0.50.

1 Introduction

Slang, or ‘the language of streets’ (Green, 2015),
is a type of informal language consisting of words
and expressions shared within specific groups. A
hallmark of slang is its expressivity, instantiated
in the flexible use of words. For example, the
word sick with the conventional sense of “ill” can
also denote a positive slang sense of “awesome”,
such as “the band’s album is sick”. The expres-
sive nature of slang exemplifies its social function,
because it provides an effective way of commu-
nicating and knowledge-sharing within groups of
distinct social identities, such as in the cases of
vulgar tongue (Green, 2015) and online language.
On the other hand, the flexible nature of slang use
can be intriguing for language users, learners, and

natural language systems. Here, we ask whether
slang can be automatically detected in natural sen-
tences, and what linguistic features might distin-
guish slang usage from conventional language use.

Our problem statement is simple: Given a natu-
ral sentence such as “the band’s album is sick”, can
machines learn to 1) detect whether slang usage is
present or not (i.e., sentence-level detection), and
2) identify the exact position of the slang term in
the sentence (i.e., token-level identification). For
each of these tasks, our systems should be able to
learn to cope with two main categories of slang
usage (Dhuliawala et al., 2016):

• Newly extended senses: existing words in
the lexicon that develop novel slang senses
distinct from their conventional senses, e.g.,
clutch refers to “an act of grasping” in its con-
ventional usage, but is later extended to the
slang sense of “tense critical situation”.

• Newly created words: words that do not ex-
ist in the standard lexicon, e.g., blending of
friend and enemy forms the slang word fren-
emy that describes a person who is simultane-
ously friend of and in conflict with someone.

Research on slang in the natural language pro-
cessing community falls under several categories,
but to our knowledge the current work is the first
to tackle the basic problem of automatic slang de-
tection and identification.

2 Related computational work

2.1 Slang dictionary construction and
sentiment analysis

Existing approaches such as SlangNet (Dhuli-
awala et al., 2016), SlangSD (Wu et al., 2018),
and SLANGZY (Gupta et al., 2019) have focused
on efficiently maintaining and extending the con-
struction of slang dictionaries to aid computational
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sentiment analysis of slang content. Some popu-
lar systems from this line of research are based on
modular representation (Pal and Saha, 2013) that
treats slang in terms of various linguistic stages,
each of which deals with slang word from differ-
ent aspects, e.g., sound, concept, formation, etc.
These dictionary-based methods rely on static lex-
ical information and structure, which are typically
not sufficient to capture the flexible semantics and
lexical coinage in natural slang usages.

2.2 Slang word formation and interpretation

An independent line of work has explored genera-
tive models (Kulkarni and Wang, 2018) for slang
word formation that captures processes such as
blending, clipping, and reduplication. This work
uses long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) models to generate
slang words in terms of string components ac-
cording to type-sensitive characteristics. Related
work has also explored automatic interpretation
of non-standard English words and phrases using
sequence-to-sequence architecture with dual en-
coders (Ni and Wang, 2017). This method gener-
ates literal interpretations for queried non-standard
expressions from source sentences, but the pri-
mary focus is on explanation as opposed to detec-
tion or identification, both of which are prerequi-
site tasks for slang interpretation.

Differing from these existing research, we
present a methodological framework based on
standard techniques in deep learning for automatic
slang detection and identification that does not
rely heavily on dictionary construction. We ex-
amine a comprehensive set of linguistic features
that might be diagnostic of slang usage in natu-
ral settings, and we explore existing methods that
leverage bidirectional LSTM with multilayer per-
ceptron (MLP) (Rauber and Berns, 2011) and con-
ditional random field (CRF) (Lafferty et al., 2001).
Our framework is related to existing work that ap-
plies sequence-to-sequence models with attention
mechanism (Luong et al., 2015) for the identifica-
tion of dialectal varieties (Jurgens et al., 2017) and
feature-based emotion detection from online me-
dia (Ileri and Karagoz, 2016). However, our em-
phasis here is on learning features that are relevant
to the automatic discovery of slang usage.

To preview the framework, our models for-
mulate slang detection and identification as a
sequence-labelling task. In addition to typical

word embedding inputs, we incorporate relevant
linguistic features in the input via an efficient fea-
ture boosting procedure. Throughout our exper-
iments, we found that the flexibility of Part-of-
Speech (POS) feature is most diagnostic of slang
usage: Slang often entails structured POS trans-
formation of existing syntactic uses of words. We
show how features related to POS confidence and
POS shift in the input provide the improvement
on model performance. We also demonstrate
how novel tokens of slang can be discovered us-
ing a character level convolutional neural network
(Zhang et al., 2015).

3 Computational methodology

We present the models and features we use for ma-
chine detection and identification of slang.

3.1 Specification of predictive tasks

In the slang detection task, our models determine
whether a given sentence contains at least one
slang usage, which can be an existing word with
a novel slang meaning or a newly created word.
We formulate this as a binary classification task.

In the slang identification task, our models iden-
tify each token within the input sentence as ‘non-
slang’ or ‘slang’ by sequence labeling, which de-
termines the exact positions of slang usage. Note
that the models in the identification task encapsu-
late the detection task; an empty prediction that la-
bels all tokens as ‘non-slang’ is equivalent to clas-
sifying the sentence as a non-slang sentence in the
detection task, and vice versa.

3.2 Model architectures

We present a BiLSTM-MLP model that is capa-
ble of identifying slang words in a given sentence.
The basic architecture is shown in Figure 1. Fully
connected MLP layers are placed on top of both
the forward and backward hidden states Hf and
Hb of a biLSTM network encoding the input sen-
tence. The output of the two MLP layers fL and
bL are then concatenated as an input to the final
MLP layer. In total, there are three components
W

(f)
MLP , W (b)

MLP , W (con)
MLP within the MLP block

that are shared across all hidden states:

fL = σ(W
(f)
MLPHf + b(f)) (1)

bL = σ(W
(b)
MLPHb + b(b)) (2)
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Figure 1: BiLSTM-MLP model architecture with feature boosting. The architecture for bidirectional LSTM
with Multilayer Perceptron (MLP) as the output layer. The shared bL layer is the MLP unit for the current backward
hidden state; the shared fL layer is the MLP unit for forward hidden state; the shared CL layer takes as input the
concatenation of the outputs from fL and bL, and output the predictive tagging distribution.

CL = σ(W
(con)
MLP [fL; bL] + b(con)) (3)

Y = softmax(W (Y )CL + b(Y )) (4)

The resulting output vectors are subsequently used
to compute the predictive tag for input tokens.
There are seven tags here: ‘START’, ‘END’, ‘O’,
‘B-U’, ‘I-U’, ‘B-N’, ‘I-N’. These tags apply ’BIO’
convention (Ramshaw and Marcus, 1999) that la-
bels non-target token as ‘O’, initial token of the in-
terested region (e.g., phrase) as ‘B-’, and the sub-
sequent intermediate tokens of interest as ‘I-’, etc.

The MLP block in BiLSTM-MLP model can
be swapped with an alternative conditional ran-
dom field (CRF) (Lafferty et al., 2001) that better
considers explicit sequential restrictions, e.g., the
tag ‘I-U’ has to be placed after a ‘B-U’ tag. This
sequential restriction can be captured via combi-
nation of an LSTM network and a CRF network.
The CRF layer has a state transition matrix A(i,j)

that models the transition score between the i-th
tag and the j-th tag, and an emission matrix f(i,k)
that models the output score for the i-th tag at the
k-th word (Huang et al., 2015). The source sen-
tence X(i) along with a sequence of tags Y(i) is

evaluated via a CRF score:

S(X,Y ) =
T∑

t=1

(AYt−1,Yt + fYt,Xt) (5)

The CRF layer uses output states from BiLSTM
layer to find tags in sequence with optimal CRF
score to make prediction. (i.e. X = [Hf ;Hb])
The CRF probability is easily computed in favor
of the logarithmic predictive score as follows:

log(P (Y |X)) =

S(X,Y )−log(
∑

Y ′∈Yx

exp(S(X,Y
′
))) (6)

Analogous to Huang et al. (2015), we apply dy-
namic programming during training to handle the
intractable summation term. This BiLSTM-CRF
model aims to identify the exact position of each
slang word, in terms of sequential restrictions.

3.3 Linguistic features

We use a comprehensive set of linguistic features
to facilitate interpretable learning from the mod-
els described. Carefully curated linguistic fea-
tures can improve the training efficiency because
linguistic knowledge helps to rectify the learning
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process. Feature-based inputs support mapping
between contextual concepts and domain-specific
clues via distributed representations. The follow-
ing linguistic features are stored with unique en-
tries in the lookup tables, and they are encoded
into embeddings via distributed representation.
Figure 2 illustrates these features for the example
token fire.

Unigram. We take each individual word as
an input to the models. The words are repre-
sented by standard multi-dimensional word vec-
tors obtained via embedding models such as
word2vec (Mikolov et al., 2013).

Bigram. Similar to unigram embedding, a bi-
gram embedding represents the word vector for
a bigram. For instance, given an arbitrary word
Wt at time-step t in its source sentence, the bi-
grams for Wt are Wt−1Wt and WtWt+1, which
correspond to forward bigram and backward bi-
gram respectively. Whereas the unigram embed-
ding Xt is identified as the word vector repre-
sentation for Wt, the bigram embeddings are de-
fined as their concatenations. The forward bigram
embedding fBt represents the vector [Wt−1;Wt],
and the backward bigram embedding bBt repre-
sents the vector [Wt;Wt+1]. Note that both for-
ward and backward bigrams are implemented us-
ing the identical lookup table.

Pointwise Mutual Information. We consider
measurement of discrepancy between two linguis-
tic variables via PMI (Aji and Kaimal, 2012).
Given two source words Wi and Wj , the PMI be-
tween them is computed as follows:

PMI(Wi,Wj) = log
Pr(Wi,Wj)

Pr(Wi)Pr(Wj)
(7)

We estimate the probabilistic distributions from
the Penn Treebank (Marcus et al., 1993), where
the probabilities of the PMI can be computed
based on co-occurrence statistics. In our mod-
els, we compute PMI of the current word with
each of its neighboring words, and encode the re-
sulting maximum and minimum PMIs as the fea-
tures. For example, given PMI(Wi,Wi−1) = 0
and PMI(Wi,Wi+1) = 2, we would have the
PMI features related to the current word Wi as
maxPMI = 2 and minPMI = 0.

Part-of-Speech. We consider Part-of-Speech
(POS) that represents a word’s syntactic category.
Common POSs include noun, verb, adjective, ad-
verb, pronoun, preposition, conjunction, interjec-

tion, and numeral. Multiple POSs can be as-
signed to an identical word due to the possibil-
ity of a word having distinct grammatical proper-
ties in different sentences, e.g., work is a verb in
“these models work”, but it is a noun in “I don’t
like this work”. We use Natural Language Toolkit
(NLTK) (Loper and Bird, 2002) for POS tagging.

POSp. This linguistic feature is an accessory
feature to the POS feature that only represents the
grammatical property for the token in its current
semantic context. Since each word token might
have multiple POS tags, it is possible to count a
word’s POS distribution that represents the proba-
bilities of a word attached with this specific POS
tags as an additional linguistic feature. For exam-
ple, given a well-formed text corpus C:

Pr(POS(like)← verb|C) = 0.8

Pr(POS(like)← noun|C) = 0.1

Pr(POS(like)← numeral|C) = 0.0

POSt. Word class transfer is a common mecha-
nism (e.g., in English) for extending word senses.
We consider a novel feature that represents the
transformation from the root-POS (the most com-
monly used POS for the current token) to the
current-POS for the token, e.g., “IN-VB” is a POSt
feature, where “IN” is the root-POS, “VB” is the
current-POS of the token.

Bigram-Count. The Bigram-Count is similar
to the POSp, except that the Bigram-Count rep-
resents the probability that the current word is col-
located with its neighboring words. Given an arbi-
trary word token Wi in a sequence φ, the forward
and backward Bigram-Counts are evaluated as

fBC = log(
Pr(Wi−1Wi)

Pr(Wi)
) (8)

bBC = log(
Pr(WiWi+1)

Pr(Wi)
) (9)

The Bigram-Counts are also similar to PMI except
that the Bigram-Counts focus more on the current
word. In some cases, the Bigram-Count will lever-
age the zero PMI of low-frequent collocations.

3.4 Feature boosting: Feature-level learning
We present feature boosting for the models with
limited features to learn feature-level knowledge.
The linguistic features are assumed to be related
in terms of the concatenated form of input vec-
tors. For an input token, the related features can
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Figure 2: Concatenation of linguistic features for a given token. For a specific token fire in the source sentence
“she can cook some fire food”, the related linguistic features are represented as token vectors to concatenate the
feature-based input for this token. Each randomly initialized vector is updated during training. The unigram
features are represented as 32-dimensional word vectors, the bigram vectors are 20-dimensional, and all else are
16-dimensional.

be assigned with distinct weights that selectively
focus on specific features. Suppose we have a to-
ken x represented by k distinct linguistic features
[f

(x)
1 ...f

(x)
k ], where f (x)i ∈ R|Vi|×1, and a shared

multi-layer perceptron Wfeat across all the states.
The local feature weights are defined as:

αfeat
(x) =Wfeat[f

(x)
1 ...f

(x)
k ] + bf (10)

Where bf is the MLP bias, and αfeat
(x) is k-

dimensional vector that assigns distinct weights to
each feature. To provide feature-level information
for the vectors fed as inputs to the BiLSTM layer,
the feature vectors are weighted in terms of the
computed αfeat

(x) for concatenation:

Vx = [f
(x)
1 · αfeat1

(x)...f
(x)
k · αfeatk

(x)] (11)

The concatenation of weighted feature embed-
dings contains global feature-level information, al-
lowing the inputs to selectively feed into the model
in terms of the feature distribution. As an alterna-
tive, the last propagated hidden states from both
forward and backward layers of the BiLSTM can
be concatenated with the raw features f (x)i to com-
pute the local feature weights.

We demonstrate later the relative importance
of different features in a feature ablation analysis
where we remove less relevant input features and
keep only the light-weighted but informative lin-
guistic features such as Part-of-Speech and POSp.

3.5 Treatment of novel slang word forms
Our models are able to handle novel tokens by
learning the contextual structure within a sentence.
Although all the out-of-vocabulary tokens are con-
sistently labelled as ‘UKT’ such that they are truly
unseen by the models, the sequential relations can
be captured by the hidden layers of LSTMs. In or-
der to improve model predictability on unknown
tokens, we apply character-based convolutional
neural network to encode the spelling of words.

Figure 3: BiLSTM-CRF model architecture with
feature boosting. The architecture for bidirectional
LSTM with Conditional Random Field as the output
layer. The shared CRF layer takes as input the BiL-
STM’s outputs from hidden states, then finds the opti-
mal path in terms of sum of emission scores and transi-
tion scores. The optimal path results in the prediction.

Each character is represented by a fixed dimen-
sional embedding (Zhang et al., 2015), similar to
word embeddings, and forwarded into a convolu-
tional neural network to obtain a character-level
encoding of the word. The resulting Char-CNN
embeddings are concatenated with the original in-
put embeddings that feed into the models.

4 Experiments and results

4.1 Experimental setup

We consider datasets that are composed of sen-
tences in two distinct categories, standard (slang-
less) and slang-specific:

• Slang-less sentence dataset: 15-thousand
non-slang sentences from Wall Street News
(2011-2016) in Penn Treebank (Marcus et al.,
1993) as the negative examples.
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• Slang-specific sentence dataset: 15-
thousand sentences that contain slang words
from Online Slang Dictionary (http:
//onlineslangdictionary.com/)
as the positive examples.

The sentences from Wall Street News are taken to
be non-slang sentences since the news-based sen-
tences were typically standard English conformed
and reviewed before publication. In order to con-
struct an even more trustworthy negative set for
standard English, we filtered the sentences from
Wall Street News based on the proportion of un-
known tokens within the sentences. A News sen-
tence will be considered as an eligible non-slang
sentence if it has at most 20% words that have
not been covered by the provided frequency-based
vocabulary. The vocabulary (or lexicon) consists
of top 25,000 most frequent English words from
an authoritative text corpus, e.g., Penn Treebank.
On average, each negative example sentence con-
tains 12.11 (mean) tokens with standard deviation
of 2.52.

We collect positive examples from lexical en-
tries in the Online Slang Dictionary (OSD) where
example usage sentences are available. We obtain
the ground-truth slang usage positions from OSD
and apply the BIO tagging scheme, which labels
interested tokens with “B-” at the beginning token,
and with “I-” at the subsequent tokens. All the to-
kens out of interest are labelled as “O”. There are
two kinds of slang types: UKT-slang and Normal
word slang, labelled with “U” and “N”, respec-
tively. The UKT-slang refers to slang usages with
novel word forms, while normal word slang refers
to slang usages with existing words. Out of the
15,000 positive examples, 10,000 of which con-
tain UKT slang words that are not covered by the
lexicon. On average, each positive example sen-
tence contains 13.79 (mean) tokens with standard
deviation of 3.42.

All models are trained using the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
0.001 with β1 = 0.9 and β2 = 0.999.

4.2 Evaluation and results

We evaluate our models in terms of slang detection
and identification. We also perform feature abla-
tion to locate salient features of slang usage and
show example cases of model success and failure.

4.2.1 Detection task

We evaluated our models to determine whether a
given sentence contains at least one slang usage.
The evaluation metrics are precision, recall, and
F1-score. Table 1 summarizes the results from
the models. Overall, all our proposed models
performed substantially better than the baseline,
with the CRF-based models yielding better perfor-
mance than the MLP-based models. For instance,
although all models tend to have high precision
and relatively lower recall, the CRF-based mod-
els generally achieve better recall than the MLP-
based models given the same level of precision.
Importantly, the best overall model makes use of
all linguistic features and yields an F1-score close
to 0.80. This result suggests that the features we
proposed contribute critically to both the precision
and recall of slang detection. It is worth noting that
models with only the POS related features achieve
reasonable performance (although not as well as
the full model), and we will return to this observa-
tion in the ablation analysis.

4.2.2 Identification task

We evaluated our models to identify each word in
a given sentence at the word level. The evaluation
metrics are precision, recall, and F1-score. Table 2
summarizes the results. Similar to the case of de-
tection, our models performed substantially above
the baseline in this task. In particular, both the
MLP and CRF-based models yielded higher F1
scores (close to 0.50) when multiple features are
taken into account. Tables 3 and 4 further summa-
rize the results (i.e., number of correctly predicted
cases) of these models in identifying the two main
different types of slang: novel slang word and
novel slang sense (of an existing word), and how
the models fair with and without the incorporation
of CNN character-based embeddings.

4.2.3 Feature ablation

We evaluated the contributions of the linguistic
features on the test set via model performance
degradation through ablation. We would like to
evaluate the extent that the model performance
would be degraded with respect to a single feature
(e.g., POS), given a trained model with the com-
plete featured set. In this case we would force all
the POS embeddings to be zero-vectors, and we
then compare the ablated model against the full
model. Figure 4 summarizes the degradation of
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Model (features) Precision Recall F1-score
Random Guess (baseline) 0.5000 0.5000 0.5000
BiLSTM-MLP (POS+POSp) 0.9893 0.4806 0.6469
BiLSTM-MLP (POS+POSp+POSt+PMI) 0.9777 0.5651 0.7162
BiLSTM-MLP (POS+POSp+POSt+PMI boosting) 0.9771 0.6053 0.7475
BiLSTM-MLP (full features) 0.9433 0.6842 0.7931
BiLSTM-CRF (POS+POSp) 0.9873 0.5969 0.7440
BiLSTM-CRF (POS+POSp+POSt+PMI) 0.9749 0.6482 0.7787
BiLSTM-CRF (POS+POSp+POSt+PMI boosting) 0.9749 0.6496 0.7797
BiLSTM-CRF (full features) 0.9518 0.6856 0.7971

Table 1: Model comparisons in the slang detection task.

Model (features) Precision Recall F1-score
Random Guess (baseline) 0.0263 0.4834 0.0498
BiLSTM-MLP (POS+POSp) 0.6240 0.3172 0.4206
BiLSTM-MLP (POS+POSp+POSt+PMI) 0.6172 0.3864 0.4753
BiLSTM-MLP (POS+POSp+POSt+PMI boosting) 0.5967 0.3975 0.4771
BiLSTM-MLP (full features) 0.5423 0.4612 0.4985
BiLSTM-CRF (POS+POSp) 0.5666 0.3712 0.4485
BiLSTM-CRF (POS+POSp+POSt+PMI) 0.5763 0.4183 0.4847
BiLSTM-CRF (POS+POSp+POSt+PMI boosting) 0.5954 0.4280 0.4980
BiLSTM-CRF (full features) 0.5499 0.4501 0.4950

Table 2: Model comparisons in the slang identification task.

Model (features) New Word New Sense
BiLSTM-MLP (POS+POSp) 194/523 35/199
BiLSTM-MLP (POS+POSp+POSt+PMI) 228/523 53/199
BiLSTM-MLP (POS+POSp+POSt+PMI boosting) 236/523 53/199
BiLSTM-MLP (full features) 267/523 66/199
BiLSTM-CRF (POS+POSp) 227/523 41/199
BiLSTM-CRF (POS+POSp+POSt+PMI) 251/523 50/199
BiLSTM-CRF (POS+POSp+POSt+PMI boosting) 260/523 50/199
BiLSTM-CRF (full features) 242/523 83/199

Table 3: Model comparisons on identified slang by type (either as new word or existing word with new sense).

Model Identification F1-score Detection F1-score
BiLSTM-MLP 0.5101 0.8649
BiLSTM-CRF 0.5024 0.8679
BiLSTM-MLP with Char-CNN 0.5172 0.8693
BiLSTM-CRF with Char-CNN 0.5146 0.8679

Table 4: Comparisons of model performance with and without character-based embedding.

model performance based on ablation of each in-
dividual feature in question.

Salience of Part-of-Speech transformation.
Based on the feature ablation analysis, Part-of-
Speech features are the most crucial to overall
model performance. Bigram counts come next

which suggests that syntacmatic relations also
play a role in slang usage. We probed the most
prominent features by dividing the POS trans-
formations observed in the data into two kinds:
homogeneous and heterogeneous transformations.
POSt features such as “VV-VV” (i.e. the identified
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Figure 4: Summary of feature ablation analysis. The
contributions of the individual linguistic features are
shown. The degradation in performance is considered
to be equivalent to a feature’s contribution.

POS given the source sentence is identical to the
root POS) are considered homogeneous transfor-
mations; the heterogeneous POSt refer to the case
when the target POS differs from the root POS.
The proportion of heterogeneous POSt over all the
transformations is 25.74% among all the tokens,
while the heterogeneous proportion surprisingly
increases to 53.94% in slang-specific tokens. This
indicates that a slang word is twice as likely to ex-
perience (heterogeneous) POS transformation in
comparison to an arbitrary word, providing evi-
dence that syntactic shift is a salient feature of
slang usage. A comparison between POSt distri-
butions of slang-specific and ordinary use cases is
shown in Figure 5.

4.2.4 Examples of model success and failure
We provide examples of both successful and failed
predictions to demonstrate the model capability in
slang detection and identification:

• Probe sentence: “That money you sent me
was clutch.”

• Model prediction: [“clutch”]

• Ground truth: [“clutch”]

In the probe sentence, the token clutch refers to
tense critical situation (noun) rather than its com-
mon sense “grasping” (verb). Our model success-
fully detected this slang component in the query.

• Probe sentence: “That’s a real blower.”

• Model prediction: [“–”] (no slang detected)

• Ground truth: [“blower”]

Figure 5: Transformation of Part-of-Speech in slang
usage. Heterogeneous POS transformations (POSt)
that have proportions higher than 1% are shown. There
are 11 distinct POSt, 9 of which correspond to cases
where the POSt proportion of slang word usage is
higher than that of common word usage (i.e., control
set). Both the slang tokens and normal tokens with
JJ (adjective) tend to transfer to NN (noun); the slang
words with CC (coordinating conjunction) are more
likely to tranfer to NN (noun).

The token blower normally refers to a device that
produces a current of air in common usage, while
it refers to “surprise” in this probe sentence. Our
model failed to detect this slang-component possi-
bly due to insufficiency of contextual information.

5 Discussion

We take an initial step at automatic detection and
identification of slang from natural sentences us-
ing established deep learning methods. We show
how linguistic features combined with deep learn-
ing algorithms offer interpretability. We find that
the bidirectional LSTM with feature-based inputs
and character-based convolutional embeddings us-
ing multilayer perceptron yield the best perfor-
mance in position identification, and the model
with similar mechanisms except with conditional
random field has better performance in detect-
ing whether a source sentence contains a slang
term. For unknown tokens, character-based con-
volutional embeddings improve the model in han-
dling novel slang terms. We demonstrate that fea-
tures combined with distributed word embeddings
help machine detection of slang in general, and
that Part-of-Speech among others is a prominent
feature of slang usage. Our work provides a basis
for locating slang from its flexible and unconven-
tional syntactic word uses and offers opportunities
for slang processing in downstream tasks in natu-
ral language processing.
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Abstract

In sequence modeling tasks the token order
matters, but this information can be partially
lost due to the discretization of the sequence
into data points. In this paper, we study
the imbalance between the way certain to-
ken pairs are included in data points and oth-
ers are not. We denote this a token order
imbalance (TOI) and we link the partial se-
quence information loss to a diminished per-
formance of the system as a whole, both in
text and speech processing tasks. We then pro-
vide a mechanism to leverage the full token
order information—Alleviated TOI—by iter-
atively overlapping the token composition of
data points. For recurrent networks, we use
prime numbers for the batch size to avoid re-
dundancies when building batches from over-
lapped data points. The proposed method
achieved state of the art performance in both
text and speech related tasks.

1 Introduction

Modeling sequences is a necessity. From time se-
ries (Connor et al., 1994; Lane and Brodley, 1999)
to text (Sutskever et al., 2011) and voice (Robin-
son, 1994; Vinyals et al., 2012), ordered sequences
account for a large part of the data we process and
learn from. The data are discretized and become,
in this paradigm, a list of tokens.

The key to processing these token sequences is
to model the interactions between them. Tradition-
ally (Rosenfeld, 2000) this has been achieved with
statistical methods, like N-grams.

With the advances in computing power and the
rebirth of neural networks, the dominant paradigm
has become the use of recurrent neural networks
(RNNs) (Mikolov et al., 2010).

The dominance of RNNs has been recently
challenged with great success by self-attention
based models (Vaswani et al., 2017). Instead

Contiguous tokens
Data-point
Order knowledge lost

Figure 1: The common way of building data points
given a dataset of contiguous tokens. Here we illus-
trate a dataset with a contiguous list of 13 tokens, from
which we build 3 data points of 4 tokens each. This
process keeps the order of the tokens inside the data
points, but loses the order information from token pairs
that happen to fall between adjacent data points.

of modeling the sequence linearly, Transformer-
based models use learned correlations within the
input to weight each element of the input sequence
based on their relevance for the given task.

Series discretization. Both RNNs and self-
attention models take as input data points—token
sequences of a maximum predefined length—and
then create outputs for each of them. These tend to
be much shorter in size, compared to the size of the
full dataset. While for humans time seems to pass
continuously, this discretization step is important
for the machine understanding of the sequence.

A side effect of this step is a partial loss of the
token order information. As portrayed in Figure 1,
we notice that the token order information within a
data point are kept. On the other hand, the knowl-
edge about the token order at the boundaries of
data points is lost. We name the situation Token
Order Imbalance (TOI).

As the discretization in Figure 1 is the current
standard of sequence processing, we denote this
as standard Token Order Imbalance (TOI). We hy-
pothesize that this loss of information unnecessar-
ily affects the output of the neural network models.

Alleviated Token Order Imbalance. A first
contribution in this work is a mechanism to en-
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sure that all token sequences are taken into ac-
count, i.e. every token pair is included in a data
point and does not always fall between two data
point boundaries. Thus, all sequence information
is available for subsequent processing. The pro-
posed method, denoted Alleviated TOI, employs
a token offset in the data point creation to cre-
ate overlapped data point sequences in order to
achieve this effect.

Batch Creation with Alleviated TOI. A sec-
ond contribution is a strategy for batch creation
when using the proposed Alleviated TOI method.
We have observed an unintended data redundancy
within batches introduced by the overlapped data
point sequences. A strategy for avoiding this data
redundancy is surprisingly simple but effective:
Always use a prime number for the batch size. The
intuition behind the prime batch size is that it en-
sures a good distribution of the batches over the
entire dataset. If used naively, the Alleviated TOI
policy leads to very similar data points being se-
lected in a batch, which hinders learning. By de-
coupling the batch size and the token offset used
in the token creation, this negative effect is effec-
tively removed.

We then compare the Alleviated TOI with the
Standard TOI and show that, on the same dataset
and with the same computation allocated, the Al-
leviated TOI yields better results. The novel TOI
reduction method is applicable to a multitude of
sequence modeling tasks. We show its benefits in
both text and voice processing. We employ several
basic and state of the art RNNs as well as Trans-
formers and the results are consistent—the addi-
tional information provided by the Alleviated TOI
improves the final results in the studied tasks.

For text processing we focus on a well-studied
task—language modeling—where capturing the
sequence information is crucial. Using Alleviated
TOI (P) with the Maximum Over Softmax (MoS)
technique on top of a recurrent cell (Yang et al.,
2017) we get the new state of the art on the Penn-
Tree-Bank dataset without fine-tuning with 54.58
perplexity on the test set. We also obtain results
comparable to the state of the art on speech emo-
tion recognition on the IEMOCAP (Busso et al.,
2008) dataset1.

The paper continues with an overview of the re-
lated work in Section 2, a description of the al-

1To make our results reproducible, all relevant source
codes are publicly available at https://github.com/
nkcr/overlap-ml

leviated TOI mechanism in Section 3 and a de-
tailed description of the batch generation in Sec-
tion 4. The experimental design follows in Sec-
tion 5 and the results are detailed and interpreted
in Section 6.

2 Related work

At the core of our work is the idea that the way that
data samples are provided for training a model can
affect speed or capabilities of the model. This field
is broad and there are several distinct approaches
to achieve it. Notable examples include curricu-
lum learning (Bengio et al., 2009) and self-paced
learning (Kumar et al., 2010), where data points
for training are selected based on a metric of eas-
iness or hardness. In Bayesian approaches (Klein
et al., 2016), the goal is to create sub-samples of
data points, whose traits can be extrapolated as the
full dataset.

Our work thus differs from the aforementioned
methods in the fact that we focus on exploit-
ing valuable but overlooked information from se-
quences of tokens. We change the way data
points are generated from token sequences and
extend the expressivity of a model by providing
an augmented, and well sorted, sequence of data
points. This method has a related effect of a
randomized-length backpropagation through time
(BPTT) (Merity et al., 2017), which yields dif-
ferent data points between epochs. It also re-
sembles classical text data-augmentation methods,
such as data-augmentation using thesaurus (Zhang
and LeCun, 2015).

Our method takes a step forward and proposes
a systematic and deterministic approach on build-
ing data points that provides the needed variety of
data points without the need of randomized-length
backpropagation through time (BPTT). This has
the effect of producing a text-augmentation with-
out the need of using external resources such as
a thesaurus, but only requires the dataset itself.
Our method uses a concept of overlapped data
points, which can be found in many areas such
as data-mining (Dong and Pei, 2007), DNA se-
quencing (Ng, 2017), spectral analysis (Ding et al.,
2000), or temporal data (Lane and Brodley, 1999).
In language modeling however, this approach of
overlapped data points has not yet been fully ex-
ploited. On the other hand, extracting frame-based
acoustic features such as mel-fequency cepstral
coefficients (MFCCs) using overlapping windows
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is a common technique in speech processing and
more specifically in automatic speech recognition
(ASR) (Chiu et al., 2018; Xiong et al., 2016; Kim
and Stern, 2016). We hypothesize that extending
the current overlapping technique to a higher level,
that is using a sliding overlapping window over the
already extracted features, will be proven benefi-
cial. We believe this to have a positive impact on
speech processing tasks such as speech emotion
recognition (SER). This is because the emotional
load in an spoken utterance expands over larger
windows than frame-, phoneme- or syllable-based
ones (Frijda, 1986).

We investigate the proposed method using a
simple LSTM model and a small-size Transformer
model on the IEMOCAP dataset (Busso et al.,
2008), composed of five acted sessions, for a four-
class emotions classification and we compare to
the state of the art (Mirsamadi et al., 2017) model,
a local attention based BiLSTM. Ramet et al.
(2018) showed in their work a new model that is
competitive to the one previously cited, following
a cross-valiadation evaluation schema. For a fair
comparison, in this paper we focus on a non-cross-
valiation schema and thus compare our results to
the work of Mirsamadi et al. (2017), where a sim-
ilar schema is followed using as evaluation set the
fifth session of IEMOCAP database. It is note-
worthy that with a much simpler method than pre-
sented in Ramet et al. (2018), we achieve compa-
rable results, underscoring the importance of the
proposed method for this task as well.

3 Alleviated Token Order Imbalance

Let a token pair denote an ordered pair of tokens—
for instance token A followed by token B, as in
the sequence ”ABCDEFG...”. When splitting
a token sequence into data points ”D1, D2, ..”, if
the split is fixed, as in D1 always being equal to
”ABC”, D2 always being equal to ”DEF”, etc.,
then the information contained in the order of to-
kens C and D for instance is partially lost. This
occurs as there is no data point that contains this
token pair explicitly. We call the ”CD” token pair
a split token pair and its tokens, C and D, are de-
noted as split tokens.

In its most extreme form, split token pair order
information is lost completely. In other cases, it is
partially taken into account implicitly. In recurrent
cells, for instance, the internal state of the cell al-
lows for the order information of split tokens pairs

1 3

N=3

5 7

9 11

2 4

6 8

10

Figure 2: Illustration of an Alleviated TOI (3) made
from a single contiguous list of 13 tokens. With a
Standard TOI and N=3 (ie. 3 tokens per data point),
a contiguous list of 13 tokens would produce 4 data
points, which is illustrated by the first overlapped se-
quence. Here, an Alleviated TOI (3) splits the contigu-
ous list of tokens 3 times with each time a different off-
set (0, 1, 2 respectively). This finally leads to a list of
11 data points coming from the 3 appended overlapped
sequences.

to be used. This is due to the serial processing of
the data points containing the split tokens.

As some token pairs are taken into account
fully, others partially and others not at all, we de-
note this situation as token order imbalance (TOI).

In this paper, we propose to alleviate the TOI
by means of overlapping sequences of data points.
The aim is to avoid the loss of information be-
tween the last token of a data point and the first
token of its subsequent data point. Instead of split-
ting the sequence of tokens only once, we repeat
this process multiple times using different offsets.
Each time we subdivide the sequence of tokens
with a new offset, we include the links that were
missing in the previous step. Finally, the over-
lapping sequences of data points are concatenated
into a single sequence, forming the final dataset.

Figure 2 illustrates an Alleviated TOI (3), which
means the sequence of data points is split three
times instead of only once, producing 3 over-
lapped sequences that will then be concatenated.

Our Alleviated TOI (P) method is detailed in the
pseudo-code below, where olp_sequence holds
an overlapped sequence and P is the number of
times we subdivide the sequence of tokens with a
different offset:

Let N = Number of tokens per data point
P = Number of overlapped sequences
Step = N / P

DataPoints = empty list
FOR i = 0..P-1
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olp_sequence = create data points
from Dataset with
offset (i * Step)

Add olp_sequence to DataPoints
RETURN DataPoints

When we apply an Alleviated TOI (P), this
means that we are going to create P times a se-
quence of data points with different offsets. There-
fore, the final dataset will be the concatenation
of P repetitions of the original dataset, with data
points shifted by a specific and increasing offset at
token level for each repetition.

For example, given a sequence S1 with N = 70
tokens per data point and an Alleviated TOI (P)
with P = 10, the step size will be N

P = 7 tokens.
Therefore, starting from the sequence S1, nine ad-
ditional sequences of data points will be created:
S2 starting from token 7, S3 starting from token
14, S4 starting from token 21 and so on until S10.

When using Alleviated TOI (P), with P smaller
than the data point size, within an epoch, a split
token pair—that is a token pair that is split in the
original data point splitting—becomes part of a
data point P − 1 times. A token pair that is never
split will be part of the data point P times.

We can thus define a token order imbalance ra-
tio that describes the imbalance between the num-
ber of times we include split token pairs and the
number of times we include pairs that are not split:

(P − 1)/P

We notice that the higher P , the closer the ratio
becomes to 1. We hypothesize that the closer the
ratio becomes to 1, the better we leverage the in-
formation in the dataset. We thus expect that for
higher values of P the Alleviated TOI (P) method
will outperform versions with lower values, with
Alleviated TOI (1) being the Standard TOI, which
is now prevalent.

We quantify the additional computational cost
of Alleviated TOI (P). Since our method only re-
sults in P (shifted) repetitions of the dataset, each
epoch using the augmented dataset would take
∼ P times longer than an epoch over the original
dataset. Therefore, we ensure fair comparison by
allowing baseline models to train for P times more
epochs than a model using Alleviated TOI (P).

4 Batch Creation with Alleviated TOI

Series discretization may also occur at higher lev-
els than data points, in particular when build-
ing batches for mini-batch training of neural net-

Dataset

Data-points

Batches

N=2

K=2

Figure 3: Three levels of data representation used to
create distributed batches. The dataset is a sequence of
tokens on which data points are built by splitting the
sequence into subsequences of N tokens. Batches of K
data points are then built by subdividing the sequence
of data points into K equal parts. Here, the first part
contains the first two data points, the second part the
following two, and the last data point is dropped. Each
batch then uses one element of each part.

works. We can distinguish two types of batches,
i.e. sequential and distributed batches. The for-
mer keep the data point sequences intact, thus cre-
ating split token pairs only between two consecu-
tive batches. The latter distribute data points from
different parts of the dataset to approximate the
global distribution, thus creating split token pairs
between all data points in batches.

In principle, our proposed method alleviates the
TOI in both cases, since multiple overlapping se-
quences of data points are generated. However, we
have observed an unintended interference with the
batch creation in the case of distributed batches. In
this section we explain the problem in detail and
propose a simple but effective solution—choosing
a prime batch size.

Figure 3 illustrates the three levels of data rep-
resentation in the case of distributed batches. Data
points are built from N consecutive tokens to cap-
ture the sequential information. Batches are then
built from K parts of the data point sequence to
capture the global distribution. An example of
this approach is the batching procedure used in
Zoph and Le (2016); Merity et al. (2017); Yang
et al. (2017); Zołna et al. (2017) for word language
modeling, where the basic token is a word.

The batching mechanism can be seen as build-
ing a 2-dimensional matrix, where each row con-
tains a batch. Consider a sequence of M data
points and a batch size of K. In order to build
batches, the data points are split into K parts, rep-
resented as M

K × 1 column vectors. They are con-
catenated to form a M

K × K matrix, such that the
rows correspond to batches.

When applying the proposed Alleviated TOI (P)
method (see Section 3), we augment the original
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(a) Matrix of batches with batch size of 20
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(b) Matrix of batches with batch size of 19

Figure 4: Illustrations of the 2D matrix of batches with different P -values of Alleviated TOI (P). On the left we
used a batch size of 20 and on the right we used a prime batch size of 19. Each data point is a pixel and each row
is a batch. The grayscale value models the proximity of the data points with respect to the dataset. Therefore, two
pixels with similar color represents two data points that are close in the dataset. The illustrations demonstrate how
different values of P affect the content of the batches, which can lack a good distribution over the dataset. Ideally,
each row should contain a gradient of different grayscale values. We can observe how using a prime batch size
affects the distribution of data points within the batches, where the matrices on the right offer a better distribution.
This effect is especially well visible for the Alleviated TOI 10.

q

1
2
3
...

1’
2’
3’
...

P*M/K

K

Figure 5: Data point repetition with period q for M
data points, K batches, and Alleviated TOI (P). Data
point 1’ is the same as data point 1 with a token offset.

P Period q Repetitions

2 10 2
5 4 5
7 20 1
10 2 10

Table 1: Data point repetition with period q for batch
size K = 20 and Alleviated TOI (P).

dataset to a total of P · M data points, adding
additional data points with token offsets. There-
fore, the P ·M

K ×K matrix used for batch creation
may contain repeated data points within the same
batch as illustrated in Figure 5. A repeated data
point differs from the previous data point only
marginally due to the token offset. This redun-
dancy can be problematic, as the batches are not
well-distributed over the entire dataset anymore.

With respect to the batch matrix, a repeated data
point occurs iff P ·M

K ·q = n·M with period q < K
and q, n ∈ N. This is equivalent to

P

K
· q = n, q < K, q, n ∈ N

independent of the number of data points M . A
repetition thus occurs iff the greatest common di-
visor (GCD) of P and K is larger than 1. Oth-
erwise, for GCD(P,K) = 1 a data point repeats
only after period q = K, i.e. there is no repetition
within the same batch.

Table 1 lists exemplary periods for a batch size
of K = 20 and different values of P for the Al-
leviated TOI (P). The worst case is P = 10 with
10 repetitions of the same data point within the
same batch and the best case is P = 7, which
avoids any redundancy because the GCD of P and
K is 1. Figure 4 illustrates the repetition with
grayscale values, where similar grayscale values
indicate that two data points are close within the
original data points sequence.

In general, while we aim for large values of P
for reducing the TOI, a simple solution for avoid-
ing redundancy within batches is to choose a prime
number for the batch size K.

5 Experimental Setup

To validate the generalization capability of the
proposed technique, we apply it on both text and
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speech related tasks. We thus run the Allevi-
ated TOI (P) with language modeling (text) and
emotion recognition (speech). The text datasets
used are Penn-Tree-Bank (PTB) (Marcus et al.,
1993) as preprocessed in Mikolov et al. (2011),
Wikitext-2 (WT2), and Wikitext-103 (WT103)
(Merity et al., 2016). The speech dataset is the
IEMOCAP database (Busso et al., 2008), a col-
lection of more than 12 hours of recorded emo-
tional speech of 10 native-English speakers, men
and women. The audio data is filtered down to 5.5
hours containing only angry, happy, neutral and
sad utterances.

5.1 TOI in Language Modelling
For language modeling, we use three different
methods:

• A simple LSTM that does not benefit from
extensive hyper-parameter optimization.

• An Average Stochastic Gradient Descent
Weight-Dropped LSTM (AWD-LSTM) as
described in Merity et al. (2017), with the
same hyper-parameters.

• The latest State-of-the-Art model: Mixture of
Softmaxes (MoS) (Yang et al., 2017).

We compare our results against the original pro-
cess of building data points, i.e. Standard TOI,
and use the same computation load allocated for
each experiment. We use the same set of hyper-
parameters as described in the base papers, except
for the batch size with Alleviated TOI (P), where
we use a prime batch size in order to prevent any
repetitions in batches, as described in Section 4.
That is, on the PTB dataset, we use a sequence
length of 70 for all the models. For the Simple
LSTM and AWD-LSTM, we use a batch size of 20
and a hidden size of 400. AWD-LSTM and MoS
are trained on 1000 epochs, and the Simple LSTM
on 100 epochs. For the MoS model, embedding
size used is 280, batch size 12, and hidden size
980. All the models use SGD as the optimizer.

We set up experiments to compare 4 different
token order imbalance setups: Extreme TOI, Inter-
batch TOI, Standard TOI, and Alleviated TOI (P).

Extreme TOI The Extreme TOI setup builds
batches using a random sequence of data points.
This removes any order inside the batches (i.e.
among data points within a batch), and among
batches.

Inter-batch TOI In the Inter-batch TOI setup,
batches are built using an ordered sequence of data
points, but the sequence of batches is shuffled.
This keeps the order inside batches, but removes
it among batches. Looking at the 2D matrix of
batches, in Figure 4, this results in shuffling the
rows of the matrix.

Standard TOI In the Standard TOI setup, the
process of building batches is untouched, as de-
scribed in section 3. This keeps the order inside,
and among batches.

Alleviated TOI (P) In the Alleviated TOI (P)
setup, we apply our proposed TOI reduction by
creating P overlapped data point sequences (see
Sections 3 and 4). This strategy not only keeps the
order inside and among batches, but it also restores
the full token order information in the dataset.

5.2 TOI in Speech Emotion Recognition

For Speech Emotion Recognition (SER) we use
two different models: the encoder of the Trans-
former (Vaswani et al., 2017) followed by convo-
lutional layers, and the simple LSTM used in text
domain case. Since the Transformer is stateless
and uses self-attention instead, we are able to in-
vestigate the effect of Alleviated TOI (P) indepen-
dently of LSTM cells.

As with language modeling, we set up experi-
ments to compare the 4 different token order im-
balance strategies: Extreme TOI, Inter-batch TOI,
Standard TOI, and Alleviated TOI (P).

We apply the methodology used in text on the
SER task, using the simple LSTM and a window
size of 300 frames. In this case, a data point, in-
stead of being a sequence of words, is a sequence
of frames coming from the same utterance. Each
frame is described by a 384-dimensional features
vector. OpenSMILE (Eyben et al., 2013) is used
for extracting the features. We opt for the IS09
features set (Schuller et al., 2009) as proposed by
Ramet et al. (2018) and commonly used for SER.

Finally, to investigate the effect of the Alle-
viated TOI (P) strategy independently of LSTM
cells, we design a final experiment in the SER
task. We investigate whether or not we have im-
proved results as we increase P , the number of
overlapped data point sequences in a stateless sce-
nario. For this reason, we use the Transformer
model described above.
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Experiment PTB WT2 WT103

Extreme TOI 63.49 73.52 36.19
Inter-batch TOI 64.20 72.61 36.39
Standard TOI 58.94 65.86 32.94
Alleviated TOI 2 57.97 65.14 32.98
Alleviated TOI 5 57.14 65.11 33.07
Alleviated TOI 7 57.16 64.79 32.89
Alleviated TOI 10 56.46 64.73 32.85

Table 2: Perplexity score (PPL) comparison of the
AWD model, on the three datasets, with batch sizes
K = 20 (PTB),K = 80 (WT2) andK = 60 (WT103),
with different levels of Token Order Imbalance (TOI).
With Alleviated TOI (P), we use a prime batch size of
K = 19 (PTB),K = 79 (WT2) andK = 59 (WT103).

6 Experimental Results

6.1 Language Modelling

Table 2 compares the 4 token order imbalance
strategies using the AWD model and three text
datasets. We use the test perplexity after the same
equivalent number of epochs. The different Alle-
viated TOI (P) experiments use a different number
of overlapped sequence: An Alleviated TOI (P)
means building and concatenating P overlapped
sequences. Our results indicate that an Alleviated
TOI (P) is better than the Standard TOI, which is
better than an Extreme or Inter-batch TOI. We note
a tendency that higher values of P lead to better re-
sults, which is in accordance with our hypothesis
that a higher TOI ratio (P − 1)/P improves the
results.

Comparison with State of the Art and Simple
LSTM. With the MoS model and an Alleviated
TOI, we improve the current state of the art with-
out fine tuning for the PTB dataset with 54.58 per-
plexity on the test set. Table 3 demonstrates how
models can be improved by applying our Allevi-
ated TOI method on 2 latest state-of-the-art mod-
els: AWD-LSTM (Merity et al., 2017) and AWD-
LSTM-MoS (Yang et al., 2017), and the Simple
LSTM model. We compare the results with the
same hyper-parameters used on the original pa-
pers with the only exception of the batch size, that
must be prime. To ensure fairness, we allocate the
same computational resources for the base model
as well the model with Alleviated TOI, i.e. we
train with the equivalent number of epochs.

Model test ppl

AWD-LSTM (Merity et al., 2017) 58.8
AWD-LSTM + Alleviated TOI 56.46
AWD-LSTM-MoS (Yang et al., 2017) 55.97
AWD-LSTM-MoS + Alleviated TOI 54.58
Simple-LSTM 75.36
Simple-LSTM + Alleviated TOI 74.44

Table 3: Comparison between state-of-the-art models
(Merity et al., 2017; Yang et al., 2017) and a Simple
LSTM, and the same models with Alleviated TOI. The
comparison highlights how the addition of Alleviated
TOI is able to improve state-of-the-art models, as well
as a simple model that does not benefit from extensive
hyper-parameter optimization.

Experiment K=20 K=19

Alleviated TOI 2 59.37 57.97
Alleviated TOI 5 60.50 57.14
Alleviated TOI 7 56.70 57.16
Alleviated TOI 10 65.88 56.46

Table 4: Perplexity score (PPL) comparison on the
PTB dataset and the AWD model. We use two differ-
ent values for the batch size K — the original one with
K = 20, and a prime one with K = 19. The results
directly corroborate the observation portrayed in Fig-
ure 4, where the obtained score is related to the diver-
sity of grayscale values in each row.

Comparison without prime batch size. In Ta-
ble 4 we demonstrate how using a prime batch
size with Alleviated TOI (P) actually impacts the
scores. We compare the scores of a prime batch
size K = 19 with the scores of the original batch
size K = 20 for the AWD model with Allevi-
ated TOI (P). When using a prime batch size, we
observe consistent and increasing results as P in-
creases. This is due to the good distribution of
data points in the batches regardless of the value
of P , which is visible in Figure 4(b) where each
row contains a high diversity of grayscale values.
With the original batch size K = 20, we observe
a strong performance for P = 7, but a low perfor-
mance for P = 10. Again, this effect is related to
the distribution of data points in the batches, which
is visible in Figure 4(a). The matrix with P = 7
shows a good distribution—corresponding to the
strong performance—and the matrix with P = 10
shows that each row contains a low diversity of
data points.
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Experiment WA UA

Extreme TOI (15k steps) 0.475 0.377
Inter-batch TOI (15k steps) 0.478 0.386
Standard TOI (15k steps) 0.486 0.404
Alleviated TOI (15k steps) 0.553 0.489
Alleviated TOI (60 epochs) 0.591 0.523

Table 5: Token order imbalance (TOI) comparison
for the IEMOCAP dataset on a SER task using angry,
happy, neutral and sad classes with a simple LSTM
model.

6.2 Speech Emotion Recognition Results

The results on the IEMOCAP database are eval-
uated in terms of weighted (WA) and unweighted
accuracy (UA). The first metric is the accuracy on
the entire evaluation dataset, while the second is
the average of the accuracies of each class of the
evaluation set. UA is often used when the database
is unbalanced, which is true in our case, since the
happy class has a total duration that is half of the
second smallest class in speech duration.

Table 5 shows that our proposed method brings
value in the speech related task as well. When
choosing the Extreme TOI instead of the Standard
TOI approach we observe a smaller effect than in
text related task: this is due to the different nature
of the text datasets (large ”continuous” corpuses)
and the IEMOCAP one (composed of shorter ut-
terances). The fact that we can still observe im-
provements on a dataset with short utterances is a
proof of the robustness of the method.

A greater effect is obtained when we increase
the size of the dataset with the proposed Allevi-
ated TOI (P) approach: Due to the increasing off-
set at each overlapped sequence, the data fed into
the model contains utterances where the emotions
are expressed in slightly different ways. For this
reason, the performance notably increases.

Table 6 reports the result of a final experiment
that aims to investigate the effect of Alleviated
TOI (P) independently of LSTM cells. For each
Alleviated TOI (P) setup and Standard TOI de-
scribed in Table 6, we repeat the training and eval-
uation for each of the following window sizes:
100, 200, 300, 400 and 500 frames. The pre-
viously described Transformer model is used in
these experiments. The results reported in Table 6
are the mean ± the standard deviation computed
for different P-values of Alleviated TOI (P).

Experiment WA (60 epochs) UA (60 epochs)

Alleviated TOI 1 0.591±0.012 0.543±0.021
Alleviated TOI 2 0.594±0.007 0.549±0.016
Alleviated TOI 3 0.605±0.018 0.563±0.024
Alleviated TOI 5 0.608±0.015 0.562±0.028
Alleviated TOI 10 0.617±0.015 0.571±0.024

Local attention 0.635 0.588

Table 6: Token order imbalance (TOI) comparison
for the IEMOCAP dataset on a SER task using angry,
happy, neutral and sad classes for 60 epochs using the
Transformer model.

The last line of Table 6 refers to Mirsamadi et al.
(2017) results. We want to highlight the fact that
the goal of these experiments is to show the di-
rect contribution of the Alleviated TOI technique
for a different model. For this reason we use a
smaller version of the Transformer in order to re-
duce the computational cost. We believe that with
a more expressive model and more repetitions, the
proposed method may further improve the results.

The results from Table 6 demonstrate that, as we
increase the value of P , more significant improve-
ments are achieved. This is in accordance with our
hypothesis that a higher TOI ratio (P − 1)/P im-
proves the results.

7 Conclusions

In this work, the importance of overlapping and to-
ken order in sequence modelling tasks were inves-
tigated. Series discretization is an essential step
in machine learning processes which nonetheless
can be responsible for the loss of the continuation
of the tokens, through the token order imbalance
(TOI) phenomenon. The proposed method, Alle-
viated TOI, has managed to overcome this draw-
back and ensures that all token sequences are taken
into account. The proposed method was validated
in sequence modelling tasks both in the text and
speech domain outperforming the state of the art
techniques.
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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Abstract

Standard autoregressive seq2seq models are
easily trained by max-likelihood, but tend to
show poor results under small-data condi-
tions. We introduce a class of seq2seq mod-
els, GAMs (Global Autoregressive Models),
which combine an autoregressive component
with a log-linear component, allowing the use
of global a priori features to compensate for
lack of data. We train these models in two
steps. In the first step, we obtain an unnormal-
ized GAM that maximizes the likelihood of the
data, but is improper for fast inference or eval-
uation. In the second step, we use this GAM
to train (by distillation) a second autoregres-
sive model that approximates the normalized
distribution associated with the GAM, and can
be used for fast inference and evaluation. Our
experiments focus on language modelling un-
der synthetic conditions and show a strong per-
plexity reduction of using the second autore-
gressive model over the standard one.

1 Introduction

Neural sequential text generation models have
become the standard in NLP applications such
as language modelling, NLG, machine transla-
tion. When enough data is available, these mod-
els can be trained end-to-end with impressive re-
sults. Generally, inference and training proceed
in an auto-regressive manner, namely, the next
decoded symbol is predicted by a locally nor-
malized conditional distribution (the “softmax”).
This has several advantages: (i) the probability of
the sequence is already normalized, by the chain-
rule over local decisions, (ii) max-likelihood (ML)
training is easy, because the log-likelihood of the
full sequence is simply the sum of local CE (cross-
entropy) losses, (iii) exact sampling of full se-

⇤ Work conducted during an internship at NAVER Labs
Europe.

quences from the model distribution is directly ob-
tained through a sequence of local sampling deci-
sions.

However, these autoregressive models (AMs)
tend to suffer from a form of myopia. They have
difficulty accounting for global properties of the
predicted sequences, from overlooking certain as-
pects of the semantic input in NLG to duplicating
linguistic material or producing “hallucinations”
in MT, and generally through being unable to ac-
count for long-distance consistency requirements
that would be obvious for a human reader.1

The main contributions of this paper are as fol-
lows.

First, we propose a hybrid seq2seq formaliza-
tion, the Global Autoregressive Model (GAM),
that combines a local autoregressive component
with a global log-linear component, allowing the
use of a priori features to compensate for the lack
of training data. GAMs are related both to the
class of Energy-Based Models (EBM) and to that
of Exponential Families (EF), and inherit some
important properties from those: an intimate re-
lationship between training and sampling (EBM);
the identity of empirical and model expectations at
maximum-likelihood; convexity of log-likelihood
(EF).

Second, we propose a training procedure in two
steps. In the first step, we train through max-
likelihood a GAM, which however is unnormal-
ized and improper for fast inference or evaluation.
In the second step, we use this GAM to train (by
distillation) a second autoregressive model that ap-
proximates the normalized distribution associated
with the GAM, and can be used for fast inference

1To borrow terminology from Reinforcement Learning
(RL) (Sutton and Barto, 2018), such NLP models work by
“imitation learning”, without any representation of “objec-
tives” to be realized. While this defect can be mitigated in the
presence of large training sets, it can become serious when
this condition is not met.
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and evaluation.
Third, we demonstrate the ability of GAMs to

be data-efficient, namely, to exploit the original
data better than a standard autoregressive model.
In order to clarify the core techniques and issues,
we design a simple class of synthetic data, con-
sisting of random binary strings containing “mo-
tifs” (specific substrings) that we can manipulate
in different ways. We show that, in limited data
conditions, GAMs are able to exploit the features
to obtain final autoregressive models that perform
better than the original ones.

The remainder of the paper is structured as fol-
lows. In Section 2, we provide some background
about autoregressive models, energy-based mod-
els, and log-linear models. In Section 3, we intro-
duce GAMs. In section 4, we describe our focus
on synthetic data. In Section 5, we explain our
training procedure. In Section 6, we comment on
related work. In Section 7, we describe our ex-
periments. In Section 8, we provide an analysis
of our results. We conclude with a discussion in
Section 9. Note that some additional explanations
and experiments are provided in the Supplemen-
tary Material, indicated by [SM].

2 Background

2.1 Autoregressive models (AM)

These are currently the standard for neural
seq2seq processing, with such representatives
as RNN/LSTMs (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014), ConvS2S (Gehring
et al., 2017), Transformer (Vaswani et al., 2017)).
Formally, they are defined though a distribution
r⌘(x|C), where C is an input (aka Context, e.g.
a source sentence in Machine Translation (MT)),
and x is a target sequence (e.g. a target sentence
in MT). We have:

r⌘(x|C)
.
=
Y

i

s⌘(xi|x1, . . . , xi�1, C),

where each s⌘(xi|x1, . . . , xi�1, C) is a normal-
ized conditional probability over the next symbol
of the sequence, computed by a neural network
(NN) with parameters ⌘. The local normalization
of the incremental probabilities implies the over-
all normalization of the distribution r⌘(x|C), and
consequently, the possibility of directly sampling
from it and evaluating the likelihood of training
sequences.

2.2 Energy-Based Models (EBM)
EBMs are a generic class of models, characterized
by an energy function U⌘(x|C) computed by a NN
parametrized by ⌘ (LeCun et al., 2006). Equiva-
lently, they can be seen as directly defining a po-
tential (an unnormalized probability distribution)
P⌘(x|C) = e�U⌘(x|C), and indirectly the normal-
ized distribution p⌘(x|C) = 1/Z⌘(C) P⌘(x|C),
with Z⌘(C) =

P
x P⌘(x|C). A fundamen-

tal property of these models is that, for max-
likelihood training, the SGD updates can be com-
puted through the formula:2

r⌘ log p⌘(x|C) = r⌘ log P⌘(x|C) (1)

� Ex⇠p⌘(·|C)r⌘ log P⌘(x|C),

which, in principle, reduces the problem of train-
ing with unnormalized potentials to the problem
of sampling from them.

2.3 Log-Linear Models / Exponential
Families

Log-Linear models (Jebara, 2013) are the con-
ditional version of Exponential Families (Jordan,
2010). The general form of a log-linear model (for
the discrete case) is as follows:

p�(x|C) = 1/Z�(C) µ(x; C) eh�(C), �(x;C)i,

with Z�(C) =
P

x µ(x; C) eh�(C), �(x;C)i. Here
�(x; C) is a vector of predefined real features of
the pair (x, C), which is combined by scalar prod-
uct with a real vector of weights �(C) of the same
dimension; µ(x; C) is an arbitrary “base mea-
sure”, which is fixed. These models, which al-
low to introduce prior knowledge through features
and have nice formal properties (see below), were
mainstream in NLP before the revival of neural ap-
proaches.

3 Proposal: GAMs

We now define Global Autoregressive Models
(GAMs). These are hybrid seq2seq models that
exploit both local autoregressive properties as well
as global properties of the full target sequence.
A GAM is an unnormalized distribution P⌘(x|C)
over sequences x, parametrized by a vector ⌘ =
⌘1 � ⌘2:

P⌘(x|C) = r⌘1(x|C) · eh�⌘2 (C), �(x;C)i. (2)
2See (LeCun et al., 2006, p. 15), and [SM] for a deriva-

tion.
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Here r⌘1(x|C) is an autoregressive seq2seq model
for generating x from input C, parametrized by
⌘2; �(x; C) is a vector of predefined real features
of the pair (x, C), which is combined by a scalar
product with a real vector �⌘2(C) of the same di-
mension, computed over the input C by a network
parametrized by ⌘2. The normalized distribution
associated with the GAM is p⌘(x|C) =

P⌘(x|C)
Z⌘(C) ,

where Z⌘(C) =
P

x P⌘(x|C).
GAMs appear promising for the following rea-

sons:

• Features �(x; C) provide a simple way to draw
attention of the model to potentially useful as-
pects that may be difficult for the AM compo-
nent to discover on its own from limited data.

• GAMs are an instance of EBMs, where the po-
tential P⌘(x|C) is the product of the an AM
potential r⌘1(x|C) with a “log-linear” potential
eh�⌘2 (C),�(x;C)i. Here the gradient relative to the
log-linear part takes the especially simple form:

r⌘2 log p⌘(x|C) = �(x; C) (3)

� Ex⇠p⌘(·|C) �(x; C).

• Log-linear models, on their own, while great at
expressing prior knowledge, are not as good as
AM models at discovering unforeseen regular-
ities in the data. Also, they are typically prob-
lematic to train from a log-likelihood perspec-
tive, because sampling from them is often un-
feasible. GAMs address the first issue through
the r component, and alleviate the second issue
by permitting the use of r as a powerful “pro-
posal” (aka “surrogate”) distribution in impor-
tance sampling and related approaches, as we
will see.

4 Experimental focus

While the motivation for GAMs ultimately lies in
practical NLP applications such as those evoked
earlier, in this paper we aim to understand some of
their capabilities and training techniques in simple
and controllable conditions. We focus on the un-
conditional (i.e. language modelling) case, and on
synthetic data. Our setup is as follows:

• We consider an underlying process ptrue that
generates binary sequences according to a well-
defined and flexible process. In this paper
we use PFSAs (Probabilistic Finite State Au-
tomata) to impose the presence or absence of

sub-strings (“motifs”) anywhere in the gener-
ated data, exploiting the intersection properties
of automata.

• Due to the dynamic programming properties of
PFSAs, it is possible to compute the true en-
tropy H(ptrue) = �Px ptrue(x) log ptrue(x)
of the process (see [SM]), as well as other
quantities (Partition Functions, Mean sequence
length); it is also possible to generate training
(D), validation (V ), and test data (T ) in arbi-
trary quantities.

• We employ an unconditional GAM of the sim-
ple form:

p�(x)
.
=

P�(x)

Z�
, with Z�

.
=
X

x

P�(x) and

P�(x)
.
= r(x) · eh�, �(x)i, (4)

where r is trained on D and then kept fixed, and
where � is then trained on top of r, also on D.

It should be noted that with r fixed in this
way, this formulation exactly corresponds to
the definition of an exponential family (Jordan,
2010), with r as base measure. In such mod-
els, we have two important properties: (i) the
log-likelihood of the data is convex relative to
the parameters �, and thus a local maximum
is also global; (ii) the max-likelihood value
�⇤ has the property that the model expectation
Ex⇠p�⇤ (·) �(x) is equal to the empirical expec-
tation |D|�1

P
x2D �(x) (“Moment Matching”

property of exponential families).

• We are specially interested in the relative data-
efficiency of the GAM compared to the AM r:
namely the ability of the GAM to recover a
lower perplexity approximation of ptrue than r,
especially in small training-set conditions.

5 Training procedure

5.1 Two-stage training

We consider a two-stage training procedure (see
Fig. 1).
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r(x)

⇡✓(x)

P�(x)

Training-1

Training-2

Figure 1: Two-stage training. At the end of the pro-
cess, we compare the perplexities of r and ⇡✓ on test
data: CE(T, r) vs. CE(T,⇡✓).

Training-1 This consists in training the model
P� on D. This is done by first training r on D in
the standard way (by cross-entropy) and then by
training � by SGD with the formula (adapted from
(3)):

r� log p�(x) = �(x)� Ex⇠p�(·) �(x). (5)

The main difficulty then consists in computing an
estimate of the model moments Ex⇠p�(·) �(x). In
our experiments, we compare two Monte-Carlo
approaches (Robert and Casella, 2005) for ad-
dressing this problem: (i) Rejection Sampling (rs),
using r as the proposal distribution and (ii) Self-
Normalized Importance Sampling (snis) (Owen,
2017; Y. Bengio and J. S. Senecal, 2008), also us-
ing r as the proposal.

Rejection sampling is performed as follows.
We use r(x) as the proposal, and P�(x) =
r(x) e�·�(x) as the unnormalized target distribu-
tion; for any specific �, because our features are
bounded between 0 and 1, we can easily upper-
bound the ratio P�(x)

r(x) = e�·�(x) by a number
�; we then sample x from r, compute the ratio
⇢(x) = P�(x)

� r(x)  1, and accept x with probability
⇢(x). The accepted samples are unbiased samples
from p�(x) and can be used to estimate model mo-
ments.

Snis also uses the proposal distribution r, but
does not require an upper-bound, and is directly
oriented towards the computation of expectations.
In this case, we sample a number of points
x1, . . . , xN from r, compute “importance ratios”
w(xi) = P�(xi)

r(xi)
, and estimate Ex⇠p�(·) �(x)

through Ê =
P

i w(xi)�(xi)P
i w(xi)

. The estimate is biased
for a given N , but consistent (that is, it converges
to the true E for N !1).

Training-2 While Training-1 results in a well-
defined model P�(x), which may fit the data
closely in principle, we should not conclude

that P�(x) is convenient to use for inference —
namely, in language modeling, efficiently sam-
pling from its normalized version p�(x); as seri-
ously, because of the partition factor Z�, it is also
not obvious to evaluate the perplexity of P�(x) on
test data. In order to do both, one approach con-
sists in using a distillation technique (Hinton et al.,
2015), where, during training, one expends gener-
ous time towards producing a set of samples from
P�, for instance by Monte-Carlo (e.g. Rejection
Sampling) techniques, and where this set (which
may be arbitrarily larger than the original D) is
in turn used to train a new autoregressive model
⇡✓(x), which can then be used directly for sam-
pling or for computing data likelihood. This is the
approach that we use in our current experiments,
again using the original r(x) as a proposal distri-
bution.

5.2 Cyclical training

In the case of small |D|, the proposal distribution
r is weak and as a result the distillation process,
based on rejection sampling, can be slow. To ad-
dress this issue, we also consider a cyclical train-
ing regime that updates the proposal distribution
after distilling each batch of samples, with the in-
tention of reducing the rejection rate. Once the
process of distillation is finished, we use the aggre-
gated samples to train the final ⇡✓. The two-stage
training procedure is a variant of the cyclical one,
with a fixed proposal (see Algorithm 1 for more
details).

6 Related Work

(Hoang et al., 2018), working in a NMT con-
text, have a similar motivation to ours. They
first train an autoregressive seq2seq model (Trans-
former in their case) on bilingual data, then at-
tempt to control global properties of the generated
sequences through the introduction of a priori fea-
tures. They interpolate the training of the autore-
gressive model with training of a Moment Match-
ing component which tries to equate the features
expectations of the model with those of the data.
Contrarily to our approach, they do not directly try
to maximize likelihood in an integrated model.

(Andor et al., 2016) consider transition-based
neural networks, and contrast local to global nor-
malization of decision sequences, showing how
the global approach avoids the label bias prob-
lem in such tasks as tagging or parsing. They
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Algorithm 1 Training
1: function TRAIN(D, V, T, ft, DsSize, tReg, mode)
2: r  TRAINRNN(D, V, optAdam) . initialize and then train RNN
3: P�  TRAINGAM(r, D, V, tReg, ft) . train � for a given proposal r
4: if mode = ‘two stage’ then . Training-2: distill in one step
5: eD, eV ,  DISTILLBATCH(P�, DsSize)
6: else if mode = ‘cyclic’ then . Cyclic-training: distill in several steps
7: eD  {}; eV  {}; flag�  False
8: while | eD| < DsSize do . proceed to the distillation process
9: eDB , eVB , accptRate DISTILLBATCH(P�, bSize) . accptRate - acceptance rate of rs during distillation
10: eD.insert( eDB ); eV .insert(eVB )
11: if not flag� then
12: r  SINGLEUPDATERNN(r, eDB , optAdam) . improve proposal r
13: P�  TRAINGAM(r, D, V, tReg, ft) . train � for a given proposal r
14: flag�  EARLYSTOPPINGd(acceptRate) . check if acceptance rate has stopped improving
15: eD.insert(D); eV .insert(V ) . add true data to the distilled one
16: ⇡✓  TRAINRNN( eD, eV , optAdam)
17: return ⇡✓

18: function TRAINGAM(P�, D, V, tReg, ft) . Training-1
19: ↵0  10 . initial learning rate
20: target mom GETMOMENTS(D, V, ft) . empirical moments of the given dataset
21: while not EARLYSTOPPING(`1 mom) do . check if `1 mom has stopped improving
22: model mom [0]⇥ |ft| . accumulate the model’s moments
23: ↵t  ↵0

1+#epoch

24: for b 2 range(#updatesPerEpoch) do
25: mean mom GETMOMENTSGAM(P�, D, V, tReg, ft) . use rs or snis to estimate Ex⇠p�(·) �(x)

26: model mom (model mom + mean mom/(b� 1)) · b�1
b . moving average

27: r�  target mom� mean mom . use Eq. 5 to compute gradients
28: � � + ↵t ·r�

29: `1 mom ktarget mom� model momk1
30: return P�

focus on inference as maximization, e.g. finding
the best sequence of tags for a sequence of words,
and consistent with that objective, their training
procedure exploits a beam-search approximation.
By contrast, our focus is on inference as sampling
in a language modelling perspective, on the com-
plementarity between auto-regressive models and
log-linear models, and on the relations between
training and sampling in energy-based models.

7 Experiments

We conduct a series of experiments on synthetic
data to illustrate our approach.

7.1 Synthetic data

To assess the impact of GAMs, we focus on dis-
tributions ptrue(x) that are likely to be well ap-
proximated by the AM r(x) in the presence of
large data. The first class of distributions is ob-
tained through a PFSA that filters binary strings
of fixed length n = 30, 0’s and 1’s being equally
probable (white-noise strings), through the condi-
tion that they contain a specific substring (“mo-
tif”) anywhere; here the relative frequency of se-
quences containing the motif among all sequences
varies from ⇠ 0.01 (shorter motifs |m| = 10) to
⇠ 0.001 (longer motifs |m| = 14).

We also consider mixtures of two PFSAs
(motif/anti-motif): the first (with mixture prob.

0.9) produces white-noise strings containing the
motif and the second (with mixture prob. 0.1)
strings excluding the motif.

From these processes we produce a training set
D, of size |D| varying between 5·102 and 2·104, a
validation set V of size 0.25·|D| (but never smaller
than 5 · 102 or bigger than 2 · 103) and a test set T
of fixed size 5 · 103.

7.2 Features
In a real world scenario, prior knowledge about
the true process will involve, along with predic-
tive features, a number of noisy and useless fea-
tures. By training the � parameters to match the
empirical moments, the GAM will learn to distin-
guish between these types. In order to simulate
this situation we consider feature vectors over our
artificial data that involve both types.

With x the full string and m the fixed motif used
in constructing the training data, we consider vari-
ations among the 7 binary features in the set F :

F = {m, m+0, m/2, d0, d1, d2, d3},

where m = 0 iff the motif m appears in x,
m+0 = 0 iff the motif followed by a zero (“super-
motif”) appears in x, m/2 = 0 iff an initial sec-
tion of the motif (“sub-motif”, roughly half the
size of m) appears in x. These three features are
chosen because they have some correlation with
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(a) (b)

(c) (d)

Figure 2: Cross-entropy in nats per character and frequency of sampling motif, depending on |D|. Two-stage
Training. Features d0, d1, d2, d3 are on for all panels (ft[4:7] = {1111}). Panel (a): pure D, features m+0

(super-motif) and m/2 (sub-motif) on; (b): pure D, m (motif) and m/2 (sub-motif) on; (c) pure D, m on; (d)
mixture D, m on. The plain lines represent cross-entropy, the dashed lines motif frequency.

the process for generating the training data. By
contrast, the four remaining features are “distrac-
tors”: d0 = 0 iff x begins with a 0, d1 = 0 (resp.
d2 = 0, d3 = 0) iff a certain random, but fixed,
string of similar length to m (resp. of larger length,
of smaller length) appears in x. We test different
configurations of these features for training �, and
document the use/non-use of features with a bit-
vector ft of length |F |, for instance ft = 0111111
means that all features are exploited, apart from
m.3

3In the experiments reported here, one of the provided
features, m, is a detector of the motif actually present in the
data generating process, an extreme form of prior knowledge
used to illustrate the technique. In general, milder forms of
useful prior features can be provided. A simple formal exam-
ple is to consider one real-valued (non binary) feature for the
length, and one for the square of the length, an experiment

7.3 Implementation aspects

7.3.1 Autoregressive models
The AMs are implemented in PyTorch4 (Paszke
et al., 2017) using a 2-layered LSTM (Hochreiter
and Schmidhuber, 1997) with hidden-state size
200. The input is presented through one-hot en-
codings over the vocabulary V = {0, 1, hEOSi}.
These LSTMs are optimized with Adam (Kingma
and Ba, 2014), with learning rate ↵ = 0.001, and

that we did recently but do not report here; by matching the
data expectations of these two additional features, the model
is able to represent the mean and variance of length in the
data. Here the prior knowledge provided to the model just
tells it to be attentive to the distribution of length, a much
weaker form of prior knowledge than telling it to be attentive
to a specific motif.

4
https://github.com/parshakova/GAMS-for-Data-

Efficient-Learning
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with early stopping (patience = 20) over a valida-
tion set.

7.3.2 Training: Two-Stage and Cyclical
The implementation is described in (Algorithm 1).
Here we provide some additional details.

Training-1 For training P�(x) we test two
regimes in Eq. 5, namely rs and snis; in both
cases, we first train r(x) on the whatever D is
available, and use it as the proposal distribution.
During rs, we compute the model’s expectation
over 10 accepted samples, update the �’s accord-
ing to (5), and iterate. During snis, we keep a
buffer of the last 5 · 104 samples from r(x) to
compute the weighted average of the feature mo-
ments. For the training of �’s, we use a basic
SGD optimization with learning rate ↵(#epoch) =

↵0
1+#epoch ,↵0 = 10. To assess the quality of P�(x)
for early stopping during training, we use the dis-
tance between the empirical and model moments:

`1 mom =

����
1

|D|
X

d2D

�(d)�Ex⇠p�(·) �(x)

����
1

. (6)

Training-2 and Cyclical Training When dis-
tilling from P� in Training-2, we use a single
proposal r, and systematically produce a distilled
dataset of size DsSize = 2 · 104, which corre-
sponds to the highest value of |D| among those
considered for training r. In Cyclical Training, the
distillation process is performed in several stages,
with an evolving r for improving the rejection rate.

8 Results

8.1 Cross-entropy comparison
We conduct experiments to compare the cross-
entropy (measured in nats) between the initial AM
r(x) relative to the test set T and the final AM
⇡✓(x) also relative to T ; we vary the size of
|D| 2 {0.5, 1, 5, 10, 20} · 103, the regimes (tReg)
for Training-1 (rs or snis), the features employed,
the rarity of the motifs. Figure 2 depicts the re-
sulting curves at the end of the two-stage training
(plain lines).

Here we show only a few experiments (a more
extensive set is provided in the [SM]).

We observe that, for a small dataset size |D|,
there is a big gap between the CE of r(x) and
the CE of ⇡✓(x). As |D| increases, these cross-
entropies become closer to one another, but a large
gap persists for |D| = 5000.

We note that the presence of the “fully-
predictive” feature m results in a ⇡✓(x) that has
CE very close to the theoretical entropy, even in
low |D| regimes, where r on its own is very weak.5

Thus, not only is the distilled AM much better than
the initial AM, but this is an indication that P� it-
self (for which the cross-entropy is more difficult
to compute exactly) is a good approximation of the
true process.

By contrast, if the m feature is absent, then,
while ⇡✓ is still better than r in low |D| regimes,
it cannot reach the theoretical entropy in such
regimes, because features such as m0+ and m/2

can only partially model the data. With large |D|,
on the other hand, r on itself does a good job at
predicting the data, and P� adds little on top of its
r component.

Finally, we note that the two regimes for train-
ing P�(x), rs and snis, result in ⇡✓’s with similar
accuracies.

We also observe that with a good performance
of ⇡✓(x), the moments of motif feature on the dis-
tilled dataset are close to the true ones (see [SM]
Figure 4, 5, 7).

These trends are consistent across the experi-
ments with different motifs, as can be checked in
Table 3 and with the additional plots in the [SM].

8.2 Motif frequencies

In order to assess the predictive properties of
obtained AMs, we also compare the frequency
of motifs in strings sampled from r and from
⇡✓ (2 · 103 samples in total). From Figure 2
we see that when vary |D|, the frequency of
motifs (dashed lines) is aligned with the CE
performance. Namely, ⇡✓ produces a higher
fraction of strings with motif than r when |D| is
small (|D| 2 {0.5, 1, 5} · 103).

Detailed illustration To provide more intuition,
we provide an illustration from one experiment in
Table 1.

8.3 Mixture Dmam vs pure Dm

In our experiments, the strings in Dmam (motif-
anti-motif) contain a motif with p = 0.9. How-
ever, if not all of the samples in Dmam contain the

5The CE of a model relative to the true underlying pro-
cess (approximated by the test set T ) can never be below the
entropy of this process, due to the KL-divergence being non-
negative.
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1 true 101100010111110001000001001001
2 r 011111000010111110001110001011
3 ⇡✓ 111010100010111110000111111100
4 ft [m, , , d0, d1, d2, d3]
5 �’s [� 10.1, , ,�0.15,�0.06, 0.0,�0.14]
6 mom true [0.0, , , 0.47, 0.99, 1.0, 0.91]
7 mom r [0.95, , , 0.53, 0.99, 1.0, 0.91]
8 mom ⇡✓ [0.0006, , , 0.43, 0.99, 0.99, 0.91]
9 CEs true: 0.45, r: 0.56, ⇡✓: 0.47
10 motif freqs true: 1.0, r: 0.045, ⇡✓: 0.959

Table 1: Illustration. Setting is from Fig. 2, panel (c): n =30, motif = 10001011111000 (always present in D),
ft = 1001111, |D| = 5000, rs used for Training-1. Lines 1,2,3 show one example from true, r,⇡✓ respectively;
with training set of size 5000, r is only able to generate the motif a fraction of the time (0.045, see line 10), but
is better able to generate some submotifs (underlined); ⇡✓ generates the motif frequently (0.959), as illustrated on
line 3. With the features from ft (line 4), Training-1 produces a P� with first feature �m strongly negative (line 5),
meaning that P� strongly penalizes the absence of the motif; the “distractor” features d0, d1, d2, d3 get a weight
close to 0, meaning that they have little predictive power in combination with feature m. It is visible from lines
6,7,8 that ⇡✓ is much better able to approximate the true feature expectations than r [features expectations (aka
moments) under r (resp. ⇡✓) : Ex⇠r(·) �(x) (resp. Ex⇠⇡✓(·) �(x)) ] Finally (line 9), the CE of ⇡✓ relative to the
test set is close to the true entropy of the process, while that of r is much further away.

|D| m; mtf frqrs
mtf frqsnis

m; CE(rs)
CE(snis) m; time(rs)

time(snis) mam; mtf frqrs
mtf frqsnis

mam; CE(rs)
CE(snis) mam; time(rs)

time(snis)

500 0.998 0.967 2.92 0.997 1.003 4.7

1000 1.009 0.973 2.038 0.77 1.07 3.638

5000 0.995 0.967 0.756 1.12 0.99 1.365

10000 1.134 0.956 1.514 1.011 1.002 1.005

20000 1.497 0.961 0.938 0.965 1.005 0.975

Table 2: Comparison of the time for Training-1 in rs and snis; for motif 10001011111000; ft = 1011111;
H(ptrue) = 0.449 with pure D (m) and ft = 1001111; H(ptrue) = 0.482 with mixture of motif-anti-motif D
(mam).

tReg |D| m: CE(T,r)
CE(T,⇡✓)

m: CE(T,⇡✓)
H(ptrue)

m: mtf frq(⇡✓)
mtf frq(r)

mam: CE(T,r)
CE(T,⇡✓)

mam: CE(T,⇡✓)
H(ptrue)

mam: mtf frq(⇡✓)
mtf frq(r)

rs 500 1.24 ± 0.07 1.19 ± 0.07 [32.0, 392.0] 1.23 ± 0.03 1.16 ± 0.03 [59.26, 433.33]

rs 1000 1.24 ± 0.07 1.16 ± 0.07 [23.87, 653.33] 1.21 ± 0.03 1.14 ± 0.03 [26.29, 233.33]

rs 5000 1.18 ± 0.08 1.09 ± 0.05 [3.59, 206.67] 1.16 ± 0.05 1.08 ± 0.04 [7.32, 130.0]

rs 10000 1.08 ± 0.1 1.04 ± 0.02 [0.89, 196.0] 1.02 ± 0.03 1.04 ± 0.03 [1.0, 4.97]

rs 20000 0.99 ± 0.01 1.02 ± 0.01 [0.81, 1.76] 0.99 ± 0.0 1.02 ± 0.0 [0.85, 1.04]

Table 3: Overall statistics: for Dm, motif 2 {10001010001, 01011101101, 001001100111, 1011100111001,
10001011111000}, ft 2 {1001111, 1011111, 0111111} and Dmam, motif 2
{01011101101, 001001100111, 1011100111001, 100010100011, 10001011111000}, ft 2 {1001111} .

motif, then the motif feature itself is not fully pre-
dictive. It can be seen in panel (d) of Figure 2 that
the ⇡✓ achieved with P� trained on mixture Dmam

has consistent behaviour with the results obtained
on the pure Dm of panels (a,b,c).
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8.4 Regimes in Training-1

For training GAM we consider two methods, snis
and rs. As described in the previous sections, their
impact on P� leads to ⇡✓’s that have similar CE’s
and motif frequencies. Despite such resemblance
in terms of accuracy, these two methods differ in
terms of speed (see Table 2). Namely, when r is
close to white noise due to small |D|, then for the
rare events rs rejects most samples not containing
the motif due to the effect of the log linear term
and negative value of the component �m corre-
sponding to the m feature, while snis is able to
exploit all samples. Despite being faster than rs,
snis remains competitive in terms of CE.

8.5 Cyclical vs two-stage training

We conducted a small experiment to compare the
performance of cyclical training with two-stage
training in terms of speed and accuracy for a fixed
motif m and features ft (see [SM] Table 4, Fig-
ure 3). We observed that CEs of the obtained ⇡✓’s
were about the same for different values of |D| and
Training-1 regimes. On the other hand, there was
no systematic improvement in the training speed
of one method over the other.

9 Discussion

The basic idea behind GAMs is very simple. First,
we extend the representational power of the au-
toregressive model r by multiplying by a log-
linear potential, obtaining an unnormalized model
P� (Training-1). Then we try to “project” this ex-
tended representation again to an autoregressive
model ⇡✓ (Training-2). Our results showed that,
under favorable prior knowledge conditions, the fi-
nal ⇡✓ was able to perform as well, when trained
on small data, as the standard r, trained on large
data. During our experiments, we noticed that
training P� was actually easier than training ⇡✓
from it. Intuitively, the small number of param-
eters to be fitted in the log-linear model requires
less work and fewer data than the training of an
autoregressive component.6

6At a deeper level, there are extreme situations where the
P� obtained at the end of Training-1 can perfectly represent
the true process, but where no autoregressive model can ac-
tually fit P�: one way to obtain such situations consists in
generating binary strings that satisfy a certain cryptographic
predicate, associated with a specific feature; the importance
of this feature can be easily detected through Training-1, but
an autoregressive model has no chance of generalizing from
distilled or true data, even in large quantities.

It is interesting to relate our study to certain as-
pects of Reinforcement Learning (RL).

First, consider Training-2. There, we have
a “score” P� that we are trying to approximate
through an autoregressive model ⇡✓, which is ba-
sically a sequential “policy”. The main difference
with RL is that we are not trying to find a policy
that maximizes the score (which would be a bad
idea for language modelling, as it would tend to
concentrate the mass on a few sequences), but one
that approximates P� in a distributional sense; our
current distillation technique is only one way to
approach this problem, but other techniques more
in the spirit of RL are possible, a direction that we
leave for future work.

Second, consider Training-1. Our approach,
consisting in suggesting to the model a number of
prior features, might look too easy and suspicious.
But notice that in RL, one would typically directly
provide to the model an externally defined reward,
a very strong form of prior knowledge. Here, in-
stead, we “only” indicate to the models which fea-
tures it might attend to, and Training-1 then deter-
mines the “reward” P� through max-likelihood, a
milder form of prior knowledge, more respectful
for what the data has to say.7
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7We could say that while Training-2 addresses a question
directly related to Reinforcement Learning, Training-1 ad-
dresses one related to Inverse Reinforcement Learning (Rus-
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Abstract

Answer selection aims at identifying the cor-
rect answer for a given question from a set of
potentially correct answers. Contrary to pre-
vious works, which typically focus on the se-
mantic similarity between a question and its
answer, our hypothesis is that question-answer
pairs are often in analogical relation to each
other. Using analogical inference as our use
case, we propose a framework and a neu-
ral network architecture for learning dedicated
sentence embeddings that preserve analogical
properties in the semantic space. We evaluate
the proposed method on benchmark datasets
for answer selection and demonstrate that our
sentence embeddings indeed capture analog-
ical properties better than conventional em-
beddings, and that analogy-based question an-
swering outperforms a comparable similarity-
based technique.

1 Introduction

Answer selection is the task of identifying the
correct answer to a question from a pool of can-
didate answers. The standard methodology is to
prefer answers that are semantically similar to the
question. Often, this similarity is strengthened
by bridging the lexical gap between the text pairs
via learned semantic embeddings for words and
sentences. The main drawback of this method
is that question-answer (QA) pairs are modeled
independently, and that the correspondence be-
tween different pairs is not considered in these
embeddings. In fact, these methods only focus on
the relationship that may exist between the entities
that constitutes the QA pair at hand and are thus,
limited to pairwise semantic structures.

Instead, we argue in this paper that questions
and their correct answers often form analogical
relations. For example, the question ”Who is the
president of the United States?” and its answer are

Figure 1: Illustration of analogy-based answer selec-
tion. Given a question and its candidate answers, each
pair is compared to a QA prototype pair. The candidate
answer with the highest score is assumed to be the
correct answer.

in the same relation to each other as the question
”Who is the current chancellor of Germany?”
and ”Angela Merkel”. Thus, for modelling these
relations, we need to look at quadruples of textual
items in the form of two question-answer pairs,
and want to reinforce that they are in the same
relation to each other.

We expect that using analogies to identify and
transfer positive relationships between QA pairs
will be a better approach for tackling the task
of answer selection than simply looking at the
similarity between individual questions and their
answers.

We use sentence embeddings as the mechanism
to assess the relationship between two sentences,
and aim to learn a latent representation in which
their analogical relation is explicitly enforced in
the latent space. Analogies are defined as rela-
tional similarities between two pairs of entities,
such that the relation that holds between the enti-
ties of the first pair, also holds for the second pair.
Loosely speaking, the quadruple of sentences is
in analogical proportion if the difference between
the first question and its answer is approximately
the same as the difference between the second
question and its answer.

This formulation is especially valuable because
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analogies allow to put on relation pairs that are not
directly or explicitly linked. Consequently, in the
vector space, analogous QA pairs will be oriented
in the same direction, whereas dissimilar pairs will
not correspond.

The remainder of the paper is organized as
follows: the next section will present related work
on answer selection, metric learning, as well as
laying down the foundations of analogical rea-
soning. In Section 3, we formally define analo-
gies, and introduce our approach for learning such
analogical embeddings. Finally, in Section 4, we
evaluate the learnt representations to demonstrate
that the found embeddings indeed respect the
sought analogies, and to illustrate the benefits of
analogies for the task of answer selection.

2 Related Work

Answer Selection. Answer selection is an im-
portant problem in natural language processing
that has drawn a lot of attention in the research
community (Lai et al., 2018). Given a ques-
tion and a set of candidate answers, the task
is to identify the correct answer(s) in this set.
This task can be formulated as a classification
or a ranking problem. Early works relied on
computing a matching score between a question
and its correct answer, and were characterized
by the heavy reliance on feature engineering for
representing the QA pairs. Representative works
include (Filice et al., 2016), which studies the
effects of various similarity, heuristic, and thread-
based features, or (Tymoshenko and Moschitti,
2015), which analyzes the effect of syntactic and
semantic features extracted by syntactic parser
for answer re-ranking. Recently, deep learning
methods have achieved excellent results in miti-
gating the difficulty of feature engineering. These
methods are used to learn latent representations
for questions and answers independently, and a
matching function is applied to give the score of
the two texts. The most representative works in
this line of work include (Wang and Nyberg, 2015;
Yin et al., 2016; Severyn and Moschitti, 2015; Tay
et al., 2017).

Embeddings and Metric Learning. Our work
is also related to representation learning usig deep
neural networks. In fact, learning the embeddings
of entities can be seen as a knowledge induction
process, as those induced latent representations
can be used to infer properties of unseen samples.

Although many studies confirmed that embed-
dings obtained from distributional similarity can
be useful in a variety of different tasks, (Levy
et al., 2015) showed that the semantic knowl-
edge encoded by general-purpose similarity em-
beddings is limited, and that enforcing the learnt
representations to distinguish functional similarity
from relatedness is beneficial. For this purpose,
many task-specific embeddings have been pro-
posed for a variety of tasks including (Riedel
et al., 2013) for binary relation extraction and
(FitzGerald et al., 2015) for semantic role labeling.
This work aims to preserve more far reaching
structures, namely analogies between pairs of en-
tities.

Analogical Reasoning. Analogical reasoning
has been an active research topic in classic arti-
ficial intelligence. It has been successfully used in
different domains such as classification (Bounhas
et al., 2014), clustering (Marx et al., 2002), dimen-
sionality reduction (Memisevic and Hinton, 2004),
or learning to rank (Fahandar and Hüllermeier,
2018). Gentner (1983) studies analogies with
respect to human cognition, defines an analogy as
a relational similarity over two pairs of entities,
and differentiates it from the more superficial
similarity defined by attributes. Since this general
definition of analogy requires high-level reasoning
which is not scalable to large-scale automated
prediction systems, Miclet et al. (2008) define the
concept of analogical dissimilarity between enti-
ties in the same semantic universe. The analogical
dissimilarity allows to perform direct inference for
unseen entities. Contrary to their direct inference
setting, we enforce the analogical constraints in
the learned embedding in the form of geometrical
constraints, by imposing the co-linearity of the
vector that maps the entities of each pair in the
analogical proportion. It is worth mentioning that
analogies have been found as the result of sev-
eral word embedding models—inter alia (Mikolov
et al., 2013; Pennington et al., 2014)—but those
are allegedly only empirical observations, which
we found to not carry over to our task.

3 Analogical Embeddings

In this section, we explain our approach towards
generating semantic embeddings that preserve
analogical proportions.
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3.1 Analogical Reasoning
In this section, we briefly introduce key concepts
in analogical reasoning, starting with analogical
proportions.

Definition 1 (Analogical Proportion) Let a, b, c,
d be four values from a domain X. The quadruple
(a, b, c, d) is said to be in analogical proportion
a : b :: c : d if a is related to b as c is related to d,
i.e.,R(a, b) ∼ R(c, d).
This comparative relation between two pairs of
entities can be expressed in many ways (Dubois
et al., 2016), but the most noteworthy are:

– Arithmetic proportion: (a− b) = (c− d)
– Geometric proportion:

min(ad, bc)

max(ad, bc)
In this work, we focus solely on the arithmetic
interpretation of analogy.

An intuitive way of viewing analogies is
through geometrical constraints in an Euclidean
space. Enforcing the relational similarity between
pairs of elements is equivalent to constraining the
four elements to form a parallelogram.

The left graph of Figure 2 illustrates such an
analogical parallelogram. As we can see, in
an analogical parallelogram, there is not only
a relation R holding between (a, b) and (c, d)
respectively, but there must also hold a similar
relationR′ between (a, c) and (b, d).

We can now make a first step towards our
problem, which is learning to identify correct an-
swers according using analogical inference. Given
the aforesaid quadruple, when one of the four
elements is unknown, an analogical proportion
becomes an analogical equation.

Definition 2 (Analogical Equation) An analogi-
cal equation has the form

a : b :: c : x (1)

(a) (b)

Figure 2: Analogical parallelograms in Rn. (a) shows
the case where (a − b) = (c − d). The geometrical
structure is a parallelogram. If (a − b) ∼ (c − d), the
resulting structure is a general quadrangle with almost
parallel sides (b).

where x represents an unknown element that is in
analogical proportion to a, b, c.

In our setting, an exact solution to an analogical
equation can often not be expected. Instead, we
aim at finding the element di, among n candidates,
where the analogical proportion is as closely satis-
fied as possible. For example, in the right graph of
Figure 2, neither d1 nor d2 are perfect solutions to
the analogical equation a : b :: c : x, but d1 seems
to be a better solution than d2.

In order to relax the equality constraint be-
tween the pairs of entities, and to generalize the
formulation of analogical proportions beyond the
Boolean case, Miclet et al. (2008) proposed to
measure the degree of an analogical proportion
using analogical dissimilarity.

Definition 3 (Analogical Dissimilarity) In a Eu-
clidean space, the degree of analogical dissimilar-
ity of a quadruple (a, b, c, d) is defined as

v(a, b, c, d) = ‖(a− b)− (c− d)‖ (2)

This equation represents the relation R as the
difference between the entities of the pair and ∼
as the difference between the previously the so
expressed relation pairs. Obviously, v(a, b, c, d) =
0 if (a, b, c, d) are in analogical proportion, and the
value increases the less similar (a− b) and (c−d)
are to each other.

This allows us to re-frame the original problem
of answer selection as a ranking problem, in which
the goal is to select the candidate answer d which
minimizes the degree of analogical dissimilarity:

d = argmin
i
v(a, b, c, di)i=1,...,N (3)

In the following sections, we will describe the
details of the model by motivating the architectural
choices.

3.2 Generating Quadruples
In this work, we consider QA pairs as relational
data. We aim to transfer knowledge from pairs
whose relation is well known, which we call pro-
totypes, to unseen pairs. For this, we train a model
to encode analogies in the latent representations
of the sentences. For creating a instances of
quadruples to train the model, we adapt state-of-
the-art datasets.

An analogy quadruple has the following form:

[qp : ap :: qi : aij ]
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”Where” questions
Sentence A ”Where was Abraham Lincoln born?”
Sentence B ”On February 12, 1809, Abraham Lincoln was born Hardin County, Kentucky”
Sentence C ”Where was Franz Kafka born?”
Sentence D ”Franz Kafka was born on July 3, 1883 in Prague, Bohemia, now the Czech Republic.”

”Who” questions
Sentence A ”Who made the rotary engine automobile?”
Sentence B ”Mazda continued work on developing the Wankel rotary engine.”
Sentence C ”Who discovered prions?”
Sentence D ”Prusiner won Nobel prize last year for discovering prions”

”When” questions
Sentence A ”When was Leonardo da Vinci born?”
Sentence B ”Leonardo da Vinci was actually born on 15 April 1452 [...] ”
Sentence C ”When did Mt St Helen last have significant eruption?”
Sentence D ”Pinatubo’s last eruption [...] as Mt St Helen’s did when it erupted in 1980.”

Table 1: Example of analogy between sentences. Sentence A and Sentence B constitutes the prototype QA
pair in the analogical quadruples Sentence C and Sentence D are the QA pair at hand.

where the qp and ap, respectively stand for the
question and the answer of the prototype pair,
whereas qi is the i-th question and aij is the j-th
candidate answer to qi.

Figure 3: Procedure to generate analogical quadruples.
The cells in red represent positive analogical quadru-
ples, composed of a prototype QA pair, a question and
its correct answer. In reverse, a negative quadruple
contains a QA prototype, a question and one of its
incorrect answer.

Given a set of questions and their relative candi-
dates answers, we construct the analogical quadru-
ples in two steps. First, we divide all the questions
into three different subsets of wh-word questions:
”Who”, ”When” and ”Where”. We focus on
these three types because their answer type fall in
distinct and easily identifiable categories:

• ”Where” corresponds to an answer of type
”Location”

• ”Who” corresponds to an answer of type
”Person”

• ”When” corresponds to an answer of type

”Date” or ”Time”

Table 1 illustrates examples of quadruples for
the three described categories. From these cate-
gories, we extract a variable number of QA pairs
in order to form the prototype set. To generate
positive quadruples, we select a prototype from
one of the above-mentioned subsets and we asso-
ciate a question from the same set and the correct
answer among its candidates. This procedure
provides a large number of analogical quadru-
ples. On the other hand, to generate negative
training samples we use the following approach:
in the same subset, we associate a prototype, a
question and a randomly selected wrong answer
among its candidates. This is done in order to
purposely break the analogical relation between a
prototype QA pair and the QA pair at hand. This
approach will generate a set of hard examples to
help improve the training. Figure 3 illustrates the
procedure.

To summarise, ranking by analogical dissimi-
larity is performed in three steps:

1. Given a prototype QA pair, a question and N
candidate answers, N quadruples are gener-
ated.

2. The analogical dissimilarity score is com-
puted for each quadruple.

3. The N candidates are consequently ranked
by the analogical dissimilarity score.

The next section closely describe the architectural
choices of the model.
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3.3 Quadruple Siamese Network

Figure 4: BiGRU with max pooling.

We recall that our focus is on learning an em-
bedding function that pushes analogous QA pairs
with similar mappings to be mutually close by
enforcing a geometrical constraint in the vector
space. This constraint states that the vector shift
that maps the entities of the first pair should be
similar to the vector shift of the second pair,
according to the degree of analogical dissimilarity
that holds between the two pairs (a, b), (c, d).

To tackle this problem, we propose a Siamese
network architecture as shown in Figure 5. In the
next paragraphs, we describe the notation used and
the details of each component of the model.

Notation. Let Q and A be the space of all
questions and candidate answers. We denote a
quadruple of sentences as (a, b, c, d), where a, c ∈
Q and b, d ∈ A. Quadruples are assigned a
label y = 1 if the analogical proportion holds,
and 0 otherwise. θ denotes the parameters to
be learnt that map the relation from a to b, and
c to d respectively. Let x· refer to the latent
representation of one sentence in the quadruple.

Architecture. The Siamese network takes as
input four sentences. The sub-networks in the
Siamese model share the parameters and learn the
vector representations for every sentence received
as input. A sentence Si = wi1, ...wik where
wij represents the jth word in the sentence Si,
∀i ∈ 1 ≤ i ≤ n and ∀j ∈ 1 ≤ j ≤ k. Words
are mapped into word embeddings xij = Ewij ,
where Ed,|V | is a matrix of vectors of size d, and
V is the vocabulary. Out-of-vocabulary words are
initialized by a random vector. We use bidirec-
tional gated recurrent units (GRUs) (Cho et al.,
2014) over the input sentence. For a sentence of

T words, the network encodes T hidden states
h1, ..., hT such that:

−→
ht =

−−−→
GRU t(w1, ..., wT )

←−
ht =

←−−−
GRU t(w1, ..., wT )

ht = [
−→
ht ,
←−
ht ]

In order to obtain a fixed-size vector, we select
the maximum value over each dimension of ht
using max pooling. After this step, we obtain
four vectors of dimension d, one for each input
sentence of the quadruple.

Training Strategy. The next step is to get the
semantic relation between the pairs of input sen-
tences. Given a pair a vectors, (xi, xj), the
arithmetic proportion expects the difference of the
vectors to encode the relational similarity between
the entities that constitutes the pair. We let the
network predict four d-dimensional embedding
vectors, which we merge through a pairwise sub-
traction. Let fW (·) be the projection of an input
sentence in the embedding space computed by the
network function fW . Furthermore, let

fab = fW (a)− fW (b) (4)

fcd = fW (c)− fW (d) (5)

be the pairwise differences between the em-
bedding vectors. In order to separate instances
of analogical proportion, similar pairs need to be
mapped mutually close to each other, whereas
dissimilar instances should be pushed apart.

For the energy of the model, we use the cosine
similarity between the vector shifts of each pair of
the quadruple:

EW (fab, fcd) =
fab · fcd
‖fab‖‖fcd‖

(6)

We argue that this is an appropriate energy func-
tion since the goal is for the pairs of parallel vec-
tors to be parallel which maximises the analogical
parallelogram likelihood.

We propose to use the contrastive loss (Hadsell
et al., 2006) to perform the metric learning. This
loss function has two terms, one for the similar
and and another dissimilar samples. The similar
instances are denoted by a label y = 1 whereas the
dissimilar pairs are represented by y = 0. Thus,
the loss function has the following form:

LW = y L+(fab, fcd)+ (1−y)L−(fab, fcd) (7)
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Figure 5: Siamese architecture.

Each term is expressed by:

L+(fab, fcd) = (1− EW )2 (8)

L−(fab, fcd) = max((EW −m)2, 0) (9)

This loss function measures how well the model
learns to encode similar transformations such that
analogous pairs are mutually close and form an
analogical parallelogram in the embedding space,
while pushing dissimilar transformations apart.
Given a question and a pool of candidate answers,
the goal is to rank the correct answer in the first
position, based on how well each sentence com-
pletes the analogical equation according to (6).

This architecture is summarized in Figure 5.
We learn all the parameters of the model through
a gradient based method that minimizes the L2-
regularized loss. Further details about the imple-
mentation are given in section 4.1.

4 Experiment

In this section, we present an evaluation of our
approach in two experiments: first, in Section 4.2,
we confirm that the found analogical embeddings
do indeed improve the analogical parallelogram
structure illustrated in Figure 2 over commonly
used word- and sentence-based embeddings. In
Section 4.3 we then show that this also results
in improved performance for question answering.
Before that, we start with a brief description of our
experimental setup.

4.1 Experimental Setup
We begin the assessment of our model with a
direct evaluation, which is ranking candidate an-
swers in the same setting as during the training of
the embedding. We generate quadruples with the
same prototypes used for the training and we look

for the correct answers by iteratively solving the
analogical equations. We compare our model to
commonly used sentence representations methods
to evaluate the proposed approach results with re-
spect to general purpose sentence embedding and
word embedding methods. In the next paragraphs
we present the experimental setup and the results
obtained.

Datasets. We validate the proposed method on
two datasets: WikiQA (Yang et al., 2015), an
open domain QA dataset with answers collected
over Wikipedia and TrecQA, which was created
from the TREC Question Answer Track. Both
resources are well established for benchmarking
answer selection. We split each dataset into three
subsets, which contain only ”who”, ”where” and
”when” questions. Table 2 reports the statistics of
the two datasets.

WikiQA TrecQA
type train dev test train dev test

”Who” 119 15 34 190 11 8
”When” 86 11 16 116 13 19
”Where” 71 17 22 96 9 11
Comb. 276 43 72 402 33 38

Table 2: Dataset by question type.

Evaluation metrics. We assess the performance
of our method by measuring the Mean Average
Precision (MAP) and the Mean Reciprocal Rank
(MRR) for the generated quadruples in the test set.
Given a set of questions Q, MRR is computed as
follows:

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
(10)
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where ranki represents the rank position of the
first correct candidate answer for the ith question.
In other words, MRR is the average of the recipro-
cal ranks of results for the questions in set Q.

MAP is calculated as follows:

MAP =
1

|Q|

|Q|∑

j=1

1

mj

|mj |∑

k=1

Precision(πjk) (11)

where qj ∈ Q is a question whose candidate
answers are a1, ..., amj and πjk is the rank as-
sociated with those candidate answers. While
MRR measures the rank of any correct answer,
MAP computes the rank of all correct answers.
Generally, MRR is higher than MAP on the same
set of ranked objects.

Implementation details. We initiate the embed-
ding layer with FastText vectors. These weights
are not updated during training. The dimension
of the output of the sentence encoder is 300. For
alleviating overfitting we apply a dropout rate of
0.5. The model is trained with Adam optimizer
with a learning rate of 0.001 and a weight decay
rate of 0.01.

4.2 Quality of Analogical Embedding

Baselines. To support our claim that the learnt
representations of our model encode the semantic
of question answer pairs better than pre-trained
sentence representation models, we choose four
baselines commonly used to encode sentences:

1. Word2Vec and Glove (Mikolov et al., 2013;
Pennington et al., 2014): We use the simple
approach of averaging the word vectors for
all words in a sentence. This method has the
drawback of ignoring the order of the words
of the sentence, but has shown to perform
reasonably well.

2. InferSent (Conneau et al., 2017): Sentence
embeddings obtained from training on Nat-
ural Language Inference dataset.

3. Sent2Vec (Pagliardini et al., 2017): A method
to learn sentence embeddings such that the
average of all words and n-grams can serve
as sentence vector.

For each document in test set, we generate
analogical quadruples as explained in section 3.2.
Given a question qi in the test set with k candidate

answers, we obtain p × k possible quadruples,
where p is the cardinality of the prototype set. The
network encodes each sentence in the quadruple
and computes the cosine similarity (6) between the
obtained vector shifts.

Not every prototype QA pair will fit to the QA
pair at hand, so we compute p × m scores, and
choose only the prototype that leads to the highest
analogical score for each document and discard
the other comparisons. One might think about
using the average of the scores and sorting the
candidate answers accordingly, but this strategy
introduces noise in the analogical inference pro-
cedure.

Results. We applied the described procedure to
vectors obtained from our network as well as from
the baseline representation methods. The results
are shown in Table 3.

In order to better perceive the analogical prop-
erties of the baselines and the proposed approach,
we also include a random baseline in the com-
parison. We observe that averaging word em-
beddings such as Glove or Word2Vec performs
better than the dedicated sentence representations
in the WikiQA dataset. This might be due to the
fact that word embeddings have shown to encode
some analogical properties. On the other hand,
sentence embeddings have been trained with a par-
ticular learning objective, for example, InferSent
has been train for the task of claim entailment
with a classification objective and might not be
suitable for representing relations between pairs
of sentences. Nevertheless, ranking by the cosine
similarity of the difference vectors do not lead to
acceptable performances. This confirms our hy-
pothesis that pre-trained sentence representation
do not preserve analogical properties.

Similarly, we measure the influence of the
number of prototypes on the performances.

Model
WikiQA

MAP MRR

W.E
Glove 0.464 0.475

Word2Vec 0.4329 0.453

S.E
InferSent 0.399 0.404
Sent2Vec 0.481 0.486

This work 0.6771 0.6841

Table 3: Evaluation on quadruples. W.E. indicates av-
eraging over word embeddings approach. S.E indicates
dedicated sentence embeddings.
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Figure 6: MAP for different number of prototypes.

Figure 7: MRR for different number of prototypes.

We vary the number of prototypes pair p ∈
{10, 20, 30, 40, 50} and measure the MAP and the
MRR for both datasets. The results are shown in
Figures 6 and 7. We can observe that the best
performances are obtained for p = 30 and that
after both MAP and MRR decrease. The reason
might be that a high number of prototypes brings
more comparisons and increases the probability of
spurious interactions between QA prototypes and
QA pairs.

4.3 Question-Answering Performance

A natural benchmark model for our work is the
approach of Tam et al. (2017), which is similar
to ours in that it proposed to replace wh-word in
questions with appropriate named entities. This
approach leverages typological information from
a named entity recognizer and the word vector
space.

It showed that simply replacing the wh-word,
with a named entity that has the highest cosine
similarity with all the candidate answers for a
given question. This substitution is operated for
”where”, ”when” and ”who” types of questions.
Finally, the transformed QA pair is fed to a net-
work suited for the task of answer selection. This
study demonstrated that this simple pre-processing

step improves the state of the art results for the task
of answer selection.

Alike our experimental setup, they divide the
dataset in three categories, namely ”when”, ”who”
and ”where”, which is the same division we used
for our experimental setup, and evaluate their
method on the split dataset and the full dataset. We
will consider their work as our baseline in order
to evaluate the capabilities of the analogy based
embeddings. Moreover, we compare our approach
to a setup which doesn’t exploit analogical proper-
ties. This is to say, a Siamese network that takes as
input a question and a candidate answer, generate
the respective representations and compute the
cosine similarity of the obtained sentence embed-
dings. The described baseline corresponds to the
model proposed by (Tan et al., 2015) except for
the fact that we use BiGRU for fair comparison.

WikiQA
Baseline Tam et al. Analogy

”Who” 0.663 0.702 0.763
”When” 0.582 0.664 0.701
”Where” 0.568 0.616 0.602
Comb. 0.609 0.678 0.684

Table 4: MRR on WikiQA.

TrecQA
Baseline Tam et al. Analogy

”Who” 0.787 0.781 0.981
”When” 0.797 0.921 0.863
”Where” 0.894 0.864 0.929
Comb. 0.837 0.875 0.909

Table 5: MRR on TrecQA.

The results are shown in Tables 4 and 5.
We observe that simply computing the cosine

similarity between the difference vector of the
prototype QA pair and the QA pair at hand with
the learnt embedding from the proposed approach
lead to significant improvements for some particu-
lar type of questions. The bold numbers in Tables
4 and 5 indicate the best results for each dataset.
We can see that our method improves the MRR
of at least two of questions types by a relevant
margin. The last row of the same tables confirms
that enforcing analogical properties in the embed-
ding space generally improves the overall MRR
for these three subsets.
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5 Conclusion

This work introduced a new approach to learn sen-
tence representations for answer selection, which
preserve structural similarities in the form of
analogies. Analogies can be seen as a way of
injecting reasoning ability, and we express this
by requiring common dissimilarities implied by
analogies to be reflected in the learned feature
space. We showed that explicitly constraining
structural analogies in the learnt embeddings leads
to better results over the distance-only embed-
dings. We believe that it is worth-while to further
explore the potential of analogical reasoning be-
yond their common use in word embeddings, as
it is a natural mean of learning and generalizing
about relations between entities. The focus of this
work has been on answer selection, but analogical
reasoning can be useful in many other machine
learning tasks such as machine translation or vi-
sual question answering. As a next step, we plan
to explore other forms of analogies that involve
modelling across domains.
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Abstract
We propose a simple and effective method to
inject word-level information into character-
aware neural language models. Unlike pre-
vious approaches which usually inject word-
level information at the input of a long short-
term memory (LSTM) network, we inject it
into the softmax function. The resultant model
can be seen as a combination of character-
aware language model and simple word-level
language model. Our injection method can
also be used together with previous methods.
Through the experiments on 14 typologically
diverse languages, we empirically show that
our injection method, when used together with
the previous methods, works better than the
previous methods, including a gating mecha-
nism, averaging, and concatenation of word
vectors. We also provide a comprehensive
comparison of these injection methods.

1 Introduction

Language modeling (LM) is an important task in
the natural language processing field, with various
applications such as speech recognition (Mikolov
et al., 2010a), machine translation (Koehn, 2009)
and summarization (Filippova et al., 2015). Re-
cently, neural language models (NLMs) have
shown a great success and are better than tradi-
tional count-based methods (Bengio et al., 2003;
Mikolov et al., 2010b). Standard NLMs usually
maintain a fixed vocabulary and map each word
to a continuous representation. These word rep-
resentations obtained through NLMs are usually
close to each other in the induced vector space
if they are semantically similar. However, there
are two main problems of standard NLMs. One is
that they cannot handle out-of-vocabulary words.
These words are usually replaced with a spe-
cial unknown symbol. Another problem is that
these models are not effective for learning the re-
lationships between words for infrequent words.

For example, although words “husbandman” and
“salesman” share the suffix “man” in their surface
forms, standard NLMs cannot capture such infor-
mation in obtaining the relationship between the
two words. A common way to deal with these is-
sues is to use character information of each word
to calculate the word representation, and it is of-
ten referred to as character-aware NLMs (Ling
et al., 2015; Kim et al., 2016; Vania and Lopez,
2017; Gerz et al., 2018). Our research focuses on
utilizing advantages of both character-level infor-
mation and word-level information in character-
aware NLMs.

Previous work usually combines word-level in-
formation and character-level information at the
input of LSTM layers through a gating mecha-
nism, or averaging or concatenation of word vec-
tors. Because these approaches generally target at
the input vectors, the word-level information can-
not be explicitly taken into account at the output
layer for predicting the next word.

To deal with this problem, we propose an im-
proved character-aware neural language model
that takes into account the injected word-level
information at the output layer. This model is
strongly inspired by the success of n-gram lan-
guage models. Our model can predict the next
word using the embeddings of the words in the
current n-gram window, in addition to the hidden
state of the LSTM layer. Specifically, we also use
a gate to control how much word-level information
should be taken before injecting it into the softmax
function. After that, we combine the gated word-
level information with the output of LSTM. Lastly,
we feed these mixed information to the softmax
function for word prediction. In our method, we
can also take into account the information of previ-
ous words when injecting word-level information
into the softmax function.

Our injection method is simple and easy to im-
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plement 1. We found our method effective com-
pared with several common previous methods on
14 datasets with typologically diverse languages.
In addition, the improvements can be further ob-
tained when our injection method is used together
with the previous methods. We also conducted
a comprehensive comparison of these injection
methods. Finally, we set up several experiments
to check the effects of infrequent words on our
model, and we also compared our model with sev-
eral previous work on 6 common language model-
ing datasets. Our results show that:

- Compared with the previous injection meth-
ods (i.e., the gating mechanism, averaging,
addition, and concatenation of word vectors),
our injection method performs best on the
majority of languages.

- Our injection method works effectively even
when used alone, and the combination of our
injection method and the previous injection
methods performs better than the previous in-
jection methods.

- When injecting word-level information into
character-aware NLMs, discarding rare
words in the training data can help improve
the performance.

2 Related Work

Many work have attempted to improve character-
aware NLMs in recent years. For example,
Assylbekov and Takhanov (2018) proposed sev-
eral ways of reusing weights in character-aware
NLMs. Gerz et al. (2018) achieved an improved
result on 50 typologically diverse languages by in-
jecting subword-level information into word vec-
tors at the softmax. For a thorough review of past
researches, readers are recommended to read the
work by Vania and Lopez (2017), who performed
a systematic comparison across different models
based on different subword units (characters, char-
acter trigrams, BPE, etc.).

One direction related to our research is to in-
ject word-level information into character-aware
neural models. Aside from language modeling,
Santos and Zadrozny (2014) and dos Santos and
Guimarães (2015) first used a convolutional neural

1https://github.com/yukunfeng/char_
word_lm

network (CNN) to encode characters and then con-
catenated these encoded character-level represen-
tations and word-level representations for part-of-
speech tagging and named entity recognition. Lu-
ong and Manning (2016) introduced a character-
word neural machine translation model that only
consults character-level representations for rare
words encoded with a deep LSTM.

As research efforts for language models, Kang
et al. (2011) used a simple character-word NLM
designed for Chinese. Miyamoto and Cho (2016)
introduced a gate mechanism between word em-
beddings and character embeddings obtained from
a bidirectional LSTM (BiLSTM) for English. Ver-
wimp et al. (2017) directly concatenated word and
character embeddings without other subnetworks
to encode the characters for English and Dutch.

Although there are a number of research efforts
for using both character-level and word-level in-
formation, they feed the two types of information
only to LSTM, while our model also injects the
word-level information into the softmax function.
Previous work on this topic has usually been tested
in a limited number of languages and lacks a com-
prehensive comparison of different injection meth-
ods. We will compare our method with the previ-
ous methods mentioned in this section on 14 typo-
logically diverse languages.

3 Model Description

For language modeling, we basically use a LSTM
network (Hochreiter and Schmidhuber, 1997). We
denote the hidden state of LSTM for the t-th word
wt as ht ∈ Rd, where d is the embedding size.
We incorporate word-level information using the
neural network shown in Figure 1. We describe
the details in the following subsections.

Figure 1: Our character-aware LSTM language model
with injection of word-level information with an exam-
ple word “cats”. Symbols ˆ and $ respectively represent
the start and the end of a word.
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3.1 Input Word Representations
We use BiLSTM to encode character n-grams to
obtain character-level representation. We set n to
3 for all the languages except Japanese and Chi-
nese, for which we set n to 1. This is because
BiLSTM over character 3-grams obtained best re-
sults on most LM datasets in the work of Vania and
Lopez (2017), but Japanese and Chinese are more
ideographic than the others, and it is expected that
a smaller n works better.

Given a wordwt, we denote its embedding from
a lookup table Win ∈ Rd×|V | as wt ∈ Rd,
where |V | is the vocabulary size. We compute the
character-level representation of wt as follows:

ct = Wfh
fw
l +Wbh

bw
0 + b, (1)

where hfw
l , hbw

0 ∈ Rd are the last states of the
forward and backward LSTMs respectively. Wf ,
Wb ∈ Rd×d and b ∈ Rd are trainable parame-
ters. We define the following methods to obtain
the combination w′t from wt and ct:

- gate: we use the same gating mechanism
as Miyamoto and Cho (2016), which is de-
scribed later to combine wt and ct.

- avg, add, cat: we obtain w′t through averag-
ing, addition and concatenation of wt and ct,
respectively.

In the gating mechanism, we compute w′t as fol-
lows:

ginwt
= σ

(
v>g wt + bg

)
, (2)

w′t = (1− ginwt
)wt + ginwt

ct, (3)

where vg ∈ Rd and bg ∈ R are trainable parame-
ters and σ(·) is a sigmoid function.

3.2 Representation of Input to Softmax
Our proposal is to combine ht with wt to better
inform the softmax function of word-level infor-
mation. Combination h′t is computed as follows:

h′t = ht + goutwt
wt, (4)

where goutwt
is a gate value. In our experiments,

we set up two types of gate. One is a fixed value,
goutwt

= 0.5. The other is similar to the definition
in Eq. (2), which adaptively outputs a gate value
depending on wt:

goutwt
= σ

(
v>k wt + bk

)
, (5)

where v>k ∈ Rd and bk ∈ R are trainable param-
eters. In Eq. (4), the gate is used only on word-
level information to decide how much information
wt should be taken 2.

In Eq. (4), if we remove the term ht, the resul-
tant model is a simple word-level language model
P (wt+1|wt). Based on this observation, we can
simply extend our method to contain the word-
level information for previous words without extra
parameters:

hword
t =

n∑

i=1

1

i
wt+1−i, (6)

where n is the number of the current and pre-
vious words used to calculate hword

t . We sim-
ply give smaller weights inversely proportional
to distance i to the embeddings of the previous
words. For example, when n = 2, hword

t is com-
puted as wt +

1
2wt−1, which is used to calculate

P (wt+1|wt, wt−1). The hidden state h′t now can
be calculated as follows:

h′t = ht + goutwt
hword
t . (7)

3.3 Language Modeling
The language modeling task is to compute the
probability of a given sentence w1, . . . , wT :

P (w1, . . . , wT ) =
T∏

t=1

P (wt|w1, . . . , wt−1).

(8)
We use a softmax function based on h′t to generate
a probability distribution over the vocabulary:

P (wt+1|w1, . . . , wt) = softmax(WT
outht

′), (9)

where Wout ∈ Rd×|V | is output word embed-
dings.

4 Model Variants

The hyper-parameters of our models are shown in
Table 1. The learning rate is decreased if no im-
provement is observed in the validation dataset.
Several baseline models and our models are listed
as follows:

- Char-BiLSTM-LSTM: We use BiLSTM to
encode characters without injecting word-
level information.

2We have tested the above other methods, such as avg,
add and cat, for combining ht and wt, in place of gate, and
found these methods did not work well.
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Embedding size d 650
LSTM layers 2
Dropout 0.5
Optimizer SGD
Learning rate 20
Learning rate decay 4
Parameter init: rand uniform [-0.1,0.1]
Batch size 20
LSTM sequence length 35
Gradient clipping 0.25
Epochs 40

Table 1: Hyper-parameters of our model. We use d for
the sizes of the character/word embeddings and for the
number of hidden units of LSTM and BiLSTM.

- Word-LSTM: Standard word-level LSTM
model.

- Char-BiLSTM-gate/avg/add/cat-Word-
LSTM: We combine character-level and
word-level information at the input of
LSTM through gate/avg/add/cat methods,
mentioned in Sec. 3.1.

- Char-BiLSTM-LSTM-Word: We inject
word-level information only into the softmax
function. This is our injection method.

- Char-BiLSTM-gate/avg/add/cat-Word-
LSTM-Word: We combine our injection
method and previous injection methods,
which means we inject word-level informa-
tion both at the input of LSTM and into the
softmax function.

For both Char-BiLSTM-LSTM-Word and Char-
BiLSTM-gate/avg/add/cat-Word-LSTM-Word,
we use g = 0.5/adaptive and n = 1/2/3 to repre-
sent our specific injection method. For example,
Char-BiLSTM-LSTM-Word (g = 0.5, n = 2)
represents that we use a fixed gate value on word-
level information in Eq. (4) and we inject the
information of the current word and the preceding
word into the softmax function.

5 Experiments on 14 Languages

5.1 Datasets

Common language modeling datasets for evaluat-
ing character-aware NLMs are from the work of
Botha and Blunsom (2014). While these datasets
contain languages with rich morphology, they
have only 5 different languages. Perhaps, the
most large-scale language modeling datasets are
from the work of Gerz et al. (2018), who released

50 language modeling datasets covering typolog-
ically diverse languages. The difference between
the newly released datasets and the previous com-
mon datasets is that unseen words are kept in test
set. Thus, on the datasets, we can test our methods
in a real LM setup. The languages from the work
of Gerz et al. (2018) were selected to represent a
wide spectrum of different morphological systems
and contain many low-frequency or unseen words.
Thus, these datasets should be desirable for check-
ing the performance of character-aware NLMs 3.

To simplify the experiments without losing the
wide coverage, we only chose datasets of 14 lan-
guages from these datasets and tried to cover dif-
ferent language typologies as well as different
type/token ratios (TTRs). The statistics of our cho-
sen datasets are shown in Table 2. We used all the
words observed in training data and one special
unknown token for out-of-vocabulary words as the
output vocabulary to make the setting the same as
Gerz et al. (2018).

5.2 Comparison of Baseline Models

The results of Word-LSTM and Char-BiLSTM-
LSTM are shown in Table 3. We also showed
the results of Word-LSTM and Char-CNN-LSTM
from the work of Gerz et al. (2018). The em-
bedding size and the number of LSTM layers
are the same as those for the models in Gerz
et al. (2018). As shown in the table, both the
Word-LSTM and Char-BiLSTM-LSTM baselines
are better than the Word-LSTM and Char-CNN-
LSTM from the work of Gerz et al. (2018) on
all the datasets 4. Both Char-BiLSTM-LSTM
and Char-CNN-LSTM from Gerz et al. (2018)
are better than their respective Word-LSTM on all
the datasets. One possible reason is that all the
unseen words in the test set in the 14 datasets
cannot be handled by Word-LSTM in the test-
ing phase. However, character-aware models can
encode the characters from these unseen words,
making them possible to process these words.
It is also shown that as TTR increases, Char-
BiLSTM-LSTM achieves the better result than
Word-LSTM. This may be because high-TTR lan-
guages have more low-frequency words and un-
seen tokens, as shown in Table 2. Since frequent

3To test our models against previous work, we also in-
clude experiments on common datasets, as described later.

4We have made the experimental setting the same as that
of the work of Gerz et al. (2018), and the perplexity scores
are comparable.
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Language Typology TTR
Train
vocab

#Train
tokens

#Test
tokens

#Unseen
tokens

Freq<=15
(Train)

vi (Vietnamese) Isolating 0.04 32055 754K 61.9K 1678 8.50%
zh (Chinese) Isolating 0.06 43672 746K 56.8K 2132 16.00%
ja (Japanese) Agglutinative 0.06 44863 729K 54.6K 2558 15.20%
pt (Portuguese) Fusional 0.07 56167 780K 59.3K 2947 17.20%
en (English) Fusional 0.07 55521 783K 59.5K 3618 16.60%
ms (Malay) Isolating 0.07 49385 702K 54.1K 3918 16.00%
es (Spanish) Fusional 0.08 60196 781K 57.2K 3486 17.90%
he (Hebrew) Introflexive 0.12 83217 717K 54.6K 4855 27.20%
ar (Arabic) Introflexive 0.12 89089 722K 54.7K 6076 26.40%
de (German) Fusional 0.12 80741 682K 51.3K 5451 24.30%
cs (Czech) Fusional 0.14 86783 641K 49.6K 5436 30.00%
ru (Russian) Fusional 0.15 98097 666K 48.4K 4881 32.10%
et (Estonian) Agglutinative 0.17 94184 556K 38.6K 4960 33.70%
fi (Finnish) Agglutinative 0.20 115579 585K 44.8K 7899 38.10%

Table 2: The statistics of our language modeling datasets. TTR represents type/token ratio.

vi zh ja pt en ms he ar de cs es et ru fi
Word-LSTM (Gerz et al., 2018) 190 826 156 272 494 725 2189 2587 903 2200 366 2564 1309 4263
Char-CNN-LSTM (Gerz et al., 2018) 158 797 136 214 371 525 1519 1659 602 1252 275 1478 812 2236
Our Word-LSTM 137 582 113 201 348 476 1480 1610 609 1278 271 1295 839 2128
Char-BiLSTM-LSTM 134 578 107 178 302 463 1170 1337 483 973 230 967 620 1648
Char-BiLSTM-gate-Word-LSTM 136 582 112 195 328 483 1340 1619 551 1149 264 1189 704 1987
Char-BiLSTM-cat-Word-LSTM 133 565 105 183 314 432 1239 1360 504 1052 245 993 614 1602
Char-BiLSTM-avg-Word-LSTM 133 609 110 177 307 461 1181 1340 478 963 225 996 611 1574
Char-BiLSTM-add-Word-LSTM 127 551 103 171 298 423 1091 1302 481 938 218 967 606 1578
Char-BiLSTM-LSTM-Word
(g =adaptive,n = 1) 126 567 104 175 314 424 1133 1279 491 920 235 949 605 1592

Char-BiLSTM-LSTM-Word
(g = 0.5, n = 1) 123 523 101 171 292 415 1068 1247 479 934 217 906 601 1590

Table 3: Perplexity of several baseline models and Char-CNN-LSTM on 14 language modeling datasets. The best
results among all models are in bold.

words still occupy the majority of both training
and test data, injecting word-level information is
still helpful for improving these character-aware
models, as shown below.

5.3 Comparison of Different Injection
Methods

The results of all the other different injection
methods on 14 language modeling datasets are
also shown in Table 3. In our experiments, Char-
BiLSTM-gate-Word-LSTM underperforms Char-
BiLSTM-LSTM on all the datasets. This in-
dicates the gate method is not effective in
our experiments. Char-BiLSTM-cat-Word-LSTM
achieves better results than Char-BiLSTM-gate-
Word-LSTM on all the datasets, but still under-
performs Char-BiLSTM-LSTM on 8 out of 14
datasets. Char-BiLSTM-avg-Word-LSTM outper-
forms Char-BiLSTM-cat-Word-LSTM on 9 out
of 14 datasets, which indicates the simple aver-
age method is better than the gating mechanism

and the concatenation method in our tasks. How-
ever, Char-BiLSTM-avg-Word-LSTM still has
no obvious improvements, compared with Char-
BiLSTM-LSTM on most datasets.

We found some previous work also has similar
results in the language modeling task. Kim et al.
(2016) used a Char-CNN-LSTM model without
injecting word-level information. They reported
that some basic methods (e.g., concatenation, av-
eraging and adaptive weighting schemes) for in-
jecting word-level information degraded the per-
formance of their Char-CNN-LSTM. Miyamoto
and Cho (2016) showed the concatenation method
for injecting word-level information into their
Char-BiLSTM-LSTM also degraded their Word-
LSTM model.

Char-BiLSTM-add-Word-LSTM achieves
more improved results than Char-BiLSTM-LSTM
on 13 out of 14 datasets and also performs best in
general among Char-BiLSTM-avg/add/gate/cat-
Word-LSTM. The addition method works better
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than other previous injection methods in general
in our tasks, while this simple method is less
mentioned in the previous work. In conclusion,
the performance of the previous injection methods
in our experiments was in the descending order of
add, avg, cat and gate.

Our Char-BiLSTM-LSTM-Word (g =
0.5, n = 1) and Char-BiLSTM-LSTM-Word
(g = adaptive, n = 1) work effectively, and
both of them achieve better results than Char-
BiLSTM-LSTM. A simple fixed gate value in
our injection method may be effective enough.
Char-BiLSTM-LSTM-Word (g = 0.5, n = 1)
works better than Char-BiLSTM-LSTM-Word
(g = adaptive, n = 1) on most datasets. When
compared with other injection methods, Char-
BiLSTM-LSTM-Word (g = 0.5, n = 1) achieves
the best results on most datasets (bold scores in
Table 3). This suggests that our injection method,
aiming at the different position from the input of
LSTM, the softmax function, makes good use of
word-level information.

5.4 Combination of Injection Methods
To avoid too many combinations of our injec-
tion method and other previous methods, we only
chose to combine our Char-BiLSTM-LSTM-Word
(g = 0.5, n = 1) with the other previous in-
jection methods, because Char-BiLSTM-LSTM-
Word (g = 0.5, n = 1) performs better than Char-
BiLSTM-LSTM-Word (g = adaptive, n = 1), as
mentioned above. The results of the combination
of our Char-BiLSTM-LSTM-Word (g = 0.5, n =
1) and the previous injection methods are shown
in Table 4.

When our injection method is used together
with gate/avg/cat/add methods, obvious im-
provements can be observed on most datasets.
Among them, Char-BiLSTM-add-Word-LSTM-
Word (g = 0.5, n = 1) obtained the best results
on most datasets (bold scores in Table 4). The re-
sult indicates that the previous injection methods
do not make full use of word-level information,
while our method, which injects the word-level in-
formation into the different position, specifically,
the softmax, can help the previous models make
better use of the word-level information.

5.5 Including Word-level Information for
Previous Words

As mentioned in Sec. 3.1, we can include word-
level information for previous words when inject-

ing it into the softmax function. The number of
words used in our injection method is denoted by
n. In our experiments, we only set n to 1, 2 and
3, as we observed no obvious improvements when
using a larger n. Since Char-BiLSTM-add-Word-
LSTM-Word (g = 0.5, n = 1) performs best in
general on most datasets, as mentioned above, we
only changed n for this model. Note that our Char-
BiLSTM-add-Word-LSTM-Word (g = 0.5, n =
2/3) does not need extra parameters as we just
reuse the word embeddings from the lookup ta-
ble Win to compute word-level information. In
addition, the computational time of our injection
method should be low, since the involved compu-
tation is simple. The result is shown in Table 5.

In general, Char-BiLSTM-add-Word-LSTM-
Word (g = 0.5, n = 2) achieves the best re-
sult on most datasets. Char-BiLSTM-add-Word-
LSTM-Word (g = 0.5, n = 3) does not obtain
further improvements on most datasets. Since our
current method for including word-level informa-
tion for previous words is simple, a more advanced
method can be further exploited in future work.

5.6 Effects of Infrequent Words

In order to check whether infrequent words help
our character-aware NLMs, we set up several ex-
periments by discarding some infrequent words
based on their word frequency. Note that we main-
tain two independent vocabularies. One is the in-
put vocabulary and is used to inject word-level in-
formation. We obtain the word embeddings in our
and previous injection methods through the lookup
table Win, as described in Sec. 3.1. The other is
the output vocabulary and is used for word predic-
tion, as described in Sec. 3.3. When we discard the
infrequent words, we only narrow down the input
vocabulary and do not change the output vocabu-
lary. Thus, the perplexity scores are still compara-
ble with the scores in the above experiments. For
example, when our model processes the sentence
“the salesman brought some samples” in training
phase, where ‘salesman’ is an infrequent word in
training data, our model can still try to predict the
word ‘salesman’ given the previous word ‘the’,
because ‘salesman’ is in our output vocabulary.
When inputting the word ‘salesman’ to predict the
word ‘brought’, we do not inject word-level in-
formation for the word ‘salesman’. We only use
its character-level representation obtained through
our BiLSTM over characters to perform the lan-
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vi zh ja pt en ms he ar de cs es et ru fi
Char-BiLSTM-gate-Word-LSTM 136 582 112 195 328 483 1340 1619 551 1149 264 1189 704 1987
Char-BiLSTM-gate-Word-LSTM-Word
(g = 0.5, n = 1) 125 538 105 182 316 430 1339 1474 536 1116 260 1103 659 1728

Char-BiLSTM-cat-Word-LSTM 133 565 105 183 314 432 1239 1360 504 1052 245 993 614 1602
Char-BiLSTM-cat-Word-LSTM-Word
(g = 0.5, n = 1) 122 541 103 180 305 426 1158 1316 530 1031 241 1012 607 1561

Char-BiLSTM-avg-Word-LSTM 133 609 110 177 307 461 1181 1340 478 963 225 996 611 1574
Char-BiLSTM-avg-Word-LSTM-Word
(g = 0.5, n = 1) 121 495 99 165 293 398 1044 1224 488 890 218 898 569 1510

Char-BiLSTM-add-Word-LSTM 127 551 103 171 298 423 1091 1302 481 938 218 967 606 1578
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1) 116 481 98 160 291 387 1038 1172 462 874 215 870 568 1494

Table 4: Perplexity of the combination of our injection method with the previous methods on 14 language modeling
datasets.

vi zh ja pt en ms he ar de cs es et ru fi
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1) 116 481 98 160 291 387 1038 1172 462 874 215 870 568 1494

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 2) 117 489 95 163 277 376 998 1179 452 867 213 884 548 1456

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 3) 118 475 96 162 285 391 1041 1162 463 877 215 913 563 1471

Table 5: Perplexity of our Char-BiLSTM-add-Word-LSTM-Word including word-level information for previous
words on 14 language modeling datasets.

guage modeling task.

We denote the frequency threshold as θ and set
its value among 5, 15 and 25. If the frequency
of a word seen in the training data is less than
or equal to θ, we discard it. We refer the model
that discards infrequent words as Char-BiLSTM-
add-Word-LSTM-Word (g = 0.5, n = 1, θ =
5/15/25). The result is shown in Table 7.

When discarding the words whose frequency is
less than or equal to 15, the model obtains bet-
ter results only on 2 out of 14 datasets than Char-
BiLSTM-add-Word-LSTM-Word (g = 0.5, n =
1). This indicates some infrequent words are still
helpful. When we increase the frequency thresh-
old further to 25, the performance of the model
has dropped compared with Char-BiLSTM-add-
Word-LSTM-Word (g = 0.5, n = 1, θ = 15)
as more frequent words are discarded. However,
we found a relatively small frequency threshold
θ = 5 works quite effectively. Char-BiLSTM-
add-Word-LSTM-Word (g = 0.5, n = 1, θ = 5)
achieves better results than Char-BiLSTM-add-
Word-LSTM-Word (g = 0.5, n = 1) on 7 out
of 14 datasets. It seems to be the trend that dis-
carding infrequent words with θ = 5 is useful
for high TTR languages. Note that we arranged
our datasets from low TTR to high TTR in Table
7. Since many of the words in natural languages
are rare as described in Zipf’s law, we can reduce
the size of the input vocabulary significantly even
with a small θ. The size for the full input vocabu-
lary and the reduced vocabulary with different fre-

quency threshold value is shown in Table 8. As
we can see, when θ is set to 5, our model achieves
better results with fewer parameters.

6 Experiments on 6 Common Datasets

In addition to the above datasets, we also set up
6 common language modeling datasets: English
Penn Treebank (PTB) (Marcus et al., 1993) and 5
non-English datasets with rich morphology from
the 2013 ACL Workshop on Machine Transla-
tion5, which have been commonly used for eval-
uating character-aware NLMs (Botha and Blun-
som, 2014; Kim et al., 2016; Bojanowski et al.,
2017; Assylbekov and Takhanov, 2018). Since
some of previous work has tested their model on
PTB, we also included PTB in our experiment.
We used the preprocessed small version of non-
English datasets by Botha and Blunsom (2014)
and followed the same split as the previous work.
The data statistics is provided in Table 9.

The results of our proposed models and previ-
ous work are shown in Table 6. We used Char-
BiLSTM-LSTM and Char-BiLSTM-add-Word-
LSTM as baseline models. For our models, we set
the frequency threshold θ to 5 and also set n to 2
as these settings help improve our character-aware
NLMs, as discussed in Sec. 5.6 and Sec. 5.5. The
language models used in the previous work are im-
proved at different aspects, and most of them are
also based on standard LSTM, like ours. Botha

5http://www.statmt.org/wmt13/translation-task.html
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PTB CS DE ES FR RU
MLBL (Botha and Blunsom, 2014) - 465 296 200 225 304
MorphSum (Kim et al., 2016) - 398 263 177 196 271
CharCNN (Kim et al., 2016) 78.9 371 239 165 184 261
SkipGram initialization (Bojanowski et al., 2017) - 312 206 145 159 206
MorphSum+RE+RW(Assylbekov and Takhanov, 2018) 72.2 338 222 157 172 210
Char-BiLSTM-LSTM 85.5 311 198 144 164 223
Char-BiLSTM-add-Word-LSTM 79.1 300 199 138 155 213
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 5)

75.9 287 192 135 152 201

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 2, θ = 5)

76.1 284 193 137 150 202

Table 6: Perplexity of our models and previous work on 6 language modeling datasets.

vi zh ja pt en ms he ar de cs es et ru fi
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1) 116 481 98 160 291 387 1038 1172 462 874 215 870 568 1494

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 5) 116 495 98 166 285 397 1016 1153 463 863 214 877 547 1492

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 15) 117 502 99 164 286 397 1046 1185 467 883 215 924 570 1492

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 25) 118 502 101 167 292 405 1053 1202 471 896 215 929 573 1526

Table 7: Perplexity of Char-BiLSTM-add-Word-LSTM-Word (g = 0.5, n = 1) with different frequency thresholds
on 14 language modeling datasets.

Full θ = 5 θ = 15 θ = 25
vi 32055 5979 3383 2547
zh 43672 12200 5847 3940
ja 44863 9793 4355 2806
pt 56167 11207 4975 3203
en 55521 11142 5060 3282
ms 49385 9849 4728 3187
he 83217 14867 5961 3589
ar 89089 13459 5607 3482
de 80741 10290 4020 2511
cs 86783 12581 4680 2762
es 60196 11043 4722 2959
et 94184 10392 3815 2299
ru 98097 13337 4677 2734
fi 115579 11520 3930 2303

Table 8: The size of input vocabulary seen in the train-
ing data on 14 datasets with different frequency thresh-
old.

and Blunsom (2014) used the morphological log-
bilinear (MLBL) model, which takes into account
morpheme information. Kim et al. (2016) used
CNN as their character encoder, and also trained
an LSTM language model, where the input repre-
sentation of a word is the sum of the morpheme
embeddings of the word. Bojanowski et al. (2017)
trained the word embeddings through skip-gram
models with subword-level information, and used
these word embeddings to initialize the lookup ta-
ble of word embeddings of a word-level language

Vocab size #Train token
PTB 10K 1M

Czech (CS) 46K 1M
German (DE) 37K 1M
Spanish (ES) 27K 1M
French (FR) 25K 1M

Russian (RU) 86K 1M

Table 9: The data statistics of our 6 language modeling
datasets.

model. Assylbekov and Takhanov (2018) focused
on reusing embeddings and weights in a character-
aware language model. The input of their model
is also the sum of the morpheme embeddings of
the word. As shown in the table, Char-BiLSTM-
LSTM underperforms the previous work on PTB.
One reason may be that we did not tune the hyper-
parameters of our models on PTB. The hyper-
parameters were simply kept the same in all the
experiments on 20 datasets. As we can see, Char-
BiLSTM-LSTM achieves better results than most
previous work on non-English datasets. Our mod-
els also achieve the best results on non-English
datasets.

7 Conclusion

In addition to combining character-level and
word-level information at the input of LSTM,
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which is a widely used combination manner, we
proposed to also inject word-level information into
the softmax function in a character-aware neural
language model. We gave a detailed compari-
son with previous methods, and the result showed
our proposal works effectively on typologically di-
verse languages. For future work, it would be in-
teresting to see how our model works for other
tasks such as text generation.
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Abstract

In this paper, we focus on quantifying model
stability as a function of random seed by in-
vestigating the effects of the induced random-
ness on model performance and the robustness
of the model in general. We specifically per-
form a controlled study on the effect of random
seeds on the behaviour of attention, gradient-
based and surrogate model based (LIME) in-
terpretations. Our analysis suggests that ran-
dom seeds can adversely affect the consistency
of models resulting in counterfactual interpre-
tations. We propose a technique called Aggres-
sive Stochastic Weight Averaging (ASWA) and
an extension called Norm-filtered Aggressive
Stochastic Weight Averaging (NASWA) which
improves the stability of models over random
seeds. With our ASWA and NASWA based
optimization, we are able to improve the ro-
bustness of the original model, on average re-
ducing the standard deviation of the model’s
performance by 72%.

1 Introduction

There has been a tremendous growth in deep neu-
ral network based models that achieve state-of-
the-art performance. In fact, most recent end-
to-end deep learning models have surpassed the
performance of careful human feature-engineering
based models in a variety of NLP tasks. However,
deep neural network based models are often brit-
tle to various sources of randomness in the training
of the models. This could be attributed to several
sources including, but not limited to, random pa-
rameter initialization, random sampling of exam-
ples during training and random dropping of neu-
rons. It has been observed that these models have,
more often, a set of random seeds that yield better
results than others. This has also lead to research

∗This work was conducted when the author was a student
at Imperial College London.

suggesting random seeds as an additional hyper-
parameter for tuning (Bengio, 2012)1. One possi-
ble explanation for this behavior could be the exis-
tence of multiple local minima in the loss surface.
This is especially problematic as the loss surfaces
are generally non-convex and may have multiple
saddle points making it difficult to achieve model
stability.

if high crimes were any more generic it would
have a universal product code instead of a title

(Pr (Ynegative) = 0.99)

if high crimes were any more generic it would
have a universal product code instead of a title

(Pr (Ynegative) = 0.98)

Figure 1: Importance based on attention probabil-
ities for two runs of the same model with same
parameters and same hyperparameters, but with
two different random seeds (color magnitudes:
pink<magenta<red)

Recently the NLP community has witnessed
a resurgence in interpreting and explaining deep
neural network based models (Jain et al., 2019;
Jain and Wallace, 2019; Alvarez-Melis and
Jaakkola, 2017). Most of the interpretation based
methods involve one of the following ways of in-
terpreting models: a) sample oriented interpreta-
tions: where the interpretation is based on changes
in the prediction score with either upweighting
or perturbing samples (Jain et al., 2019; Jain and
Wallace, 2019; Koh and Liang, 2017); b) interpre-
tations based on feature attributions using atten-
tion or input perturbation or gradient-based mea-
sures; (Ghaeini et al., 2018; Feng et al., 2018;
Bach et al., 2015); c) interpretations using surro-

1http://www.argmin.net/2018/02/26/
nominal/
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gate linear models (Ribeiro et al., 2016) – these
methods can provide local interpretations based on
input samples or features. However, the presence
of inherent randomness makes it difficult to accu-
rately interpret deep neural models among other
forms of pathologies (Feng et al., 2018).

In this paper, we focus on the stability of deep
neural models as a function of random-seed based
effects. We are especially interested in investigat-
ing the hypothesis focusing on model stability: do
neural network based models under different ran-
dom seeds allow for similar interpretations of their
decisions? We claim that for a given model which
achieves a substantial performance for a task, the
factors responsible for any decisions over a sam-
ple should be approximately consistent irrespec-
tive of the random seed. In Figure 1, we show
an illustration of this question where we visual-
ize the attention distributions of two CNN based
binary classification models for sentiment anal-
ysis, trained with the same settings and hyper-
parameters, but with different seeds. We observe
that both models obtain the correct prediction with
significantly high confidence. However, we note
that both the models attend to completely differ-
ent sets of words. This is problematic, especially
when interpreting these models under the influ-
ence of such randomness. We observe that on av-
erage 40−60% of the most important interpretable
units are different across different random seeds
for the same model. This phenomenon also leads
us to the question on the exact nature of inter-
pretability – are the interpretations specific to an
instantiation of the model or are they general to a
class of models?

We also provide a simple method that can, to
a large extent, ameliorate this inherent random
behaviour. In Section 3.1, we propose an ag-
gressive stochastic weight averaging approach that
helps in improving the stability of the models at
almost zero performance loss while still making
the model robust to random-seed based instability.
We also propose an improvement to this model in
Section 3.2 which further improves the stability of
the neural models. Our proposals significantly im-
prove the robustness of the model, on average by
72% relative to the original model and on Diabetes
(MIMIC), a binary classification dataset, by 89%
(relative improvement). All code for reproducing
and replicating our experiments is released in our

repository2.

2 Measuring Model Stability

In this section, we describe methods that we use to
measure model stability, specifically — prediction
and interpretation stability.

2.1 Prediction Stability

We measure prediction stability using standard
measures of the mean and the standard deviations
corresponding to the accuracy of the classification
based models on different datasets. We ensure that
the models are run with exactly the same config-
urations and hyper-parameters but with different
random seeds. This is a standard procedure that is
used in the community to report the performance
of the model.

2.2 Interpretation Stability

For a given task, we train a set of models only
differing with random-seeds. For every given test
sample, we obtain interpretations using different
instantiations of the models. We define a model
to be stable if we obtain similar interpretations re-
gardless of different random-seed based instanti-
ations. We use the following metrics to quantify
stability:

a) Relative Entropy quantification (H):
Given two distributions over interpretations, for
the same test case, from two different models,
it measures the relative entropy between the two
probability distributions. Note that, the higher the
relative entropy the greater the dissimilarity be-
tween the two distributions.

H =
∑

i∈d
Pr1 · log

Pr1
Pr2

where, Pr1 and Pr2 are two attention distributions
of the same sample from two different runs of the
model and d is the number of tokens in the sam-
ple. Given n differently seeded models, for each
test instance, we calculate the relative entropy ob-
tained from the corresponding averaged pairwise
interpretation distributions.

b) Jaccard Distance (J ): It measures the dis-
similarity between two sets. Here higher values
of J indicate larger variances. We consider top-n
tokens which have the highest attention for com-
parison. Note that, Jaccard distance is over sets of

2https://github.com/rishj97/ModelStability
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word indices and do not take into account the at-
tention probabilities explicitly. Jaccard distance is
defined as:

J = (1− A∩B
A∪B ) ∗ 100%

where, A and B are the sets of most relevant
items. We specifically decided to use ‘most’ rel-
evant (top-n items) as the tail of the distribution
mostly consists of values close to 0.

Interpretation methods under study: In this
paper we study interpretation stability using the
following three interpretation methods:

1. Attention based interpretation: We focus on
attention probabilities as the mode of inter-
pretation and consider the model to be stable
if different instantiations of the model leads
to similar attention distributions. Our major
focus in this paper is attention based inter-
pretation. As we use Jain et al. (2019) as a
testbed for our investigation, we focus heav-
ily on attention. Also, as the attention layer
has a linear relationship with the prediction,
we consider attention to be more indicative of
the model stability.

2. Gradient-based feature importance: Given
a sample, we use the input gradients of the
model corresponding to each of the word rep-
resentations and compute the magnitude of
the change as a local explanation. We re-
fer the reader to Baehrens et al. (2010) for
a good introduction to gradient-based inter-
pretations. As all of our models are differen-
tiable, we use this as an alternative method
for interpretation. We follow the standard
procedure as followed in Feng et al. (2018)
and note that we do not follow Jain and Wal-
lace (2019) and do not disconnect the com-
putational graph at the attention module. We
obtain probabilistic gradient scores by nor-
malizing over the absolute values of gradient
values.

3. LIME based interpretation: We use lo-
cally interpretable model-agnostic interpreta-
tions (Ribeiro et al., 2016) that learns a sur-
rogate interpretable model locally around the
predictions of the deep neural based model.
We obtain LIME based interpretations for ev-
ery instantiation of the models. We then use
Jaccard Distance to measure the divergence.

We note that, we observe similar patterns across
the three interpretation methods and the interpre-
tations consistently differ with random seeds.

3 Reducing Model Instability with an
Optimization Lens

We observe that different instantiations of the
model can cause the model have different starts
on the optimization surface. Further, stochastic
sampling might result in different paths. Both of
these factors can lead to different local minimas
potentially leading to different solutions. With
this observation as our background we propose
two, closely related, methods to ameliorate di-
vergence: Agressive Stochastic Weight Averaging
and Norm-filtered Agressive Stochastic Weight
Averaging. We describe these two in the follow-
ing subsections.

3.1 Aggressive Stochastic Weight Averaging
(ASWA)

Stochastic weight averaging (SWA) (Izmailov
et al., 2018) works by averaging the weights of
multiple points in the trajectory of gradient de-
scent based optimizers. The algorithm typically
uses modified learning rate schedules. SWA is
itself based on the idea of maintaining a run-
ning average of weights in stochastic gradient
descent based optimization techniques (Ruppert,
1988; Polyak and Juditsky, 1992). The principle
idea in SWA is averaging the weights that are max-
imally distant helps stabilize the gradient descent
based optimizer trajectory and improves general-
ization. Izmailov et al. (2018) use the analysis
of Mandt et al. (2017) to illustrate the stability ar-
guments where they show that, under certain con-
vexity assumptions, SGD iterations can be visual-
ized as sampling from a Gaussian distribution cen-
tred at the minima of the loss function. Samples
from high-dimensional Gaussians are expected to
be concentrated on the surface of the ellipse and
not close to the mean. Averaging iterations is
shown to stabilize the trajectory and further im-
prove the width of the solutions to be closer to the
mean.

In this paper, we focus on the stability of deep
neural models as a function of random-seeds. Our
proposal is based on SWA, but we extend it to the
extremes and call it Aggressive Stochastic Weight
Averaging. We assume that, for small batch size,
the loss surface is locally convex. We further relax
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the conditions for the optimizer and assume that
the optimizer is based on some version of gradi-
ent descent — this means that our modification is
valid even for other pseudo-first-order optimiza-
tion algorithms including Adam (Kingma and Ba,
2014) and Adagrad (Duchi et al., 2011).

We note that, Izmailov et al. (2018) suggest
using SWA usually after ’pre-’training the model
(at least until 75% convergence) and followed by
sampling weights at different steps either using
large constant or cyclical learning rates. While,
SWA is well defined for convex losses (Polyak
and Juditsky, 1992), Izmailov et al. (2018) con-
nect SWA to non-convex losses by suggesting that
the loss surface is approximately convex after con-
vergence. In our setup, we investigate the utility
of averaging weights over every iteration (an it-
eration consists of one batch of the gradient de-
scent). Algorithm 1 shows the implementation
pseudo-code for SWA. We note that, unlike Iz-
mailov et al. (2018), we average our weights at
each batch update and assign the ASWA parame-
ters to the model at the end of each epoch. That is,
we replace the model’s weights for the next epoch
with the averaged weights.

Algorithm 1: Aggressive SWA algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
e← 0;
while e < m do

i← 1
while i ≤ n do

Wswa ←Wswa +
(W−Wswa)
(e∗n+i+1) ;

W ←W −O(α,W );
i← i+ 1

W ←Wswa;
e← e+ 1

In Figure 2, we show an SGD optimizer (with
momentum) and the same optimizer with SWA
over a 3-dimensional loss surface with a saddle
point. We observe that the original SGD reaches
the desired minima, however, it almost reaches
the saddle point and does a course correction and
reaches minima. On the other hand, we observe

that SGD with ASWA is very conservative, it re-
peatedly restarts and reaches the minima without
reaching the saddle point. We empirically ob-
serve that this is a desired property for the sta-
bility of models over runs of the same model
that differ only over random instantiations. The
grey circles in Figure 2 highlight this conservative
behaviour of SGD with ASWA optimizer, espe-
cially when compared to the standard SGD. Fur-
ther, Polyak and Juditsky (1992) show that for
convex losses, averaging SGD proposals achieves
the highest possible rate of convergence for a vari-
ety of first-order SGD based algorithms.

(a) Trajectory for Stochastic Gradient Descent

(b) Trajectory for Stochastic Gradient Descent with
ASWA

Figure 2: Trajectory for gradient descent algorithms
with red and black arrows on (b) indicating movements
from consecutive epochs with restarts. Conservative
behaviour of ASWA algorithm helps avoid the saddle
point without ever reaching it.

3.2 Norm-filtered Aggressive Stochastic
Weight Averaging (NASWA)

We observe that the ASWA algorithm is especially
beneficial when the norm difference of the param-
eters of the model are high. We hypothesise that
in general, the norm difference indicates the diver-
gence between optimizers’ steps and we observe
that the larger the norm difference, the greater the
change in the trajectory. Therefore, we propose to
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Algorithm 2: Norm-filtered Aggressive SWA
algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
7: Ns = List of previous iterations’ norm

differences
e← 0;
while e < m do

i← 1
while i ≤ n do

Ncur ← ‖W −Wswa‖1;

Nmean ←
∑|Ns|

i=1
Ns[i]

|Ns| ;
if Ncur > Nmean then

Wswa ←Wswa +
(W−Wswa)
(e∗n+i+1) ;

Ns ← [Ncur];
else

Ns ← Ns + [Ncur];

W ←W −O(α,W );
i← i+ 1

W ←Wswa;
e← e+ 1

maintain a list that stores the norm differences of
the previous iterations. If the norm difference of
the current iteration is greater than the average of
the list, we update the ASWA weights and reini-
tialize the list with the current norm difference.
When the norm difference, however, is less than
the average of the list, we just append the current
norm difference to the list. After the completion
of the epoch, we assign the ASWA parameters to
the model. This is shown in Algorithm 2. We call
this approach Norm-filtered Aggressive Stochastic
Weight Averaging.

4 Experiments

We base our investigation on similar sets of mod-
els as Jain and Wallace (2019). We also use the
code provided by the authors for our empirical in-
vestigations for consistency and empirical valida-
tion. We describe our models and datasets used for
the experiments below.

4.1 Models
We consider two sets of commonly used neural
models for the tasks of binary classification and
multi-class natural language inference. We use
CNN and bi-directional LSTM based models with
attention. We follow (Jain and Wallace, 2019) and
use similar attention mechanisms using a) additive
attention (Bahdanau et al., 2014); and b) scaled dot
product based attention (Vaswani et al., 2017). We
jointly optimize all the parameters for the model,
unlike Jain and Wallace (2019) where the encod-
ing layer, attention layer and the output prediction
layer are all optimized separately. We experiment
with several optimizers including Adam (Kingma
and Ba, 2014), SGD and Adagrad (Duchi et al.,
2011) but most results below are with Adam.

For our ASWA and NASWA based experi-
ments, we use a constant learning rate for our op-
timizer. Other model-specific settings are kept the
same as Jain and Wallace (2019) for consistency.

Dataset Avg. Length Train Size Test size

IMDB 179 12500 / 12500 2184 / 2172
Diabetes(MIMIC) 1858 6381 / 1353 1295 / 319

SST 19 3034 / 3321 652/653
Anemia(MIMIC) 2188 1847 / 3251 460 / 802

AgNews 36 30000 / 30000 1900 / 1900
ADR Tweets 20 14446 / 1939 3636 / 487

SNLI 14 182764 / 183187 / 183416 3219 / 3237 / 3368

Table 1: Dataset characteristics. Train size and test size
show the cardinality for each class. SNLI is a three-
class dataset while the rest are binary classification

4.2 Datasets
The datasets used in our experiments are listed
in Table 1 with summary statistics. We fur-
ther pre-process and tokenize the datasets us-
ing the standard procedure and follow Jain and
Wallace (2019). We note that IMDB (Maas
et al., 2011), Diabetes(MIMIC) (Johnson et al.,
2016), Anemia(MIMIC) (Johnson et al., 2016),
AgNews (Zhang et al., 2015), ADR Tweets (Nik-
farjam et al., 2015) and SST (Socher et al., 2013)
are datasets for the binary classification setup.
SNLI (Bowman et al., 2015) is a dataset for the
multiclass classification setup. All of the datasets
are in English, however we expect the behavior to
persist regardless of the language.

4.3 Settings and Hyperparameters
We use a 300-dimenstional embedding layer
which is initialized with FastText (Joulin et al.,
2016) based free-trained embeddings for both
CNN and the bi-directional LSTM based models.
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We use a 128-dimensional hidden layer for the bi-
directional LSTM and a 32-dimensional filter with
kernels of size {1, 3, 5, 7} for CNN. For others, we
maintain the model settings to resemble the mod-
els in Jain and Wallace (2019). We train all of our
models for 20 Epochs with a constant batch size
of 32. We use early stopping based on the valida-
tion set using task-specific metrics (Binary Classi-
fication: using roc-auc, Multiclass and question
answering based dataset: using accuracy).

Dataset CNN(%) CNN+ASWA(%) CNN+NASWA(%)

IMDB 89.8 (±0.79) 90.2 (±0.25) 90.1 (±0.29)
Diabetes 87.4 (±2.26) 85.9 (±0.25) 85.9 (±0.38)

SST 82.0 (±1.01) 82.5 (±0.39) 82.5 (±0.39)
Anemia 90.6 (±0.98) 91.9 (±0.20) 91.9 (±0.19)
AgNews 95.5 (±0.23) 96.0 (±0.11) 96.0 (±0.07)

Tweet 84.6 (±2.65) 84.4 (±0.54) 84.4 (±0.54)

Table 2: Performance statistics obtained from 10 dif-
ferently seeded CNN based models. Table compares
accuracy and its standard deviation for the normally
trained CNN model against the ASWA and NASWA
trained models, whose deviation drops significantly,
thus, indicating increased robustness.

5 Results

In this section, we summarize our findings for 10
runs of the model with 10 different random seeds
but with identical model settings.

5.1 Model Performance and Stability
We first report model performance and prediction
stability. The results are reported in Table 2.

Dataset LSTM(%) LSTM+ASWA(%) LSTM+NASWA(%)

IMDB 89.1 (±1.34) 90.2 (±0.32) 90.3 (±0.17)
Diabetes 87.7 (±1.44) 87.7 (±0.60) 87.8 (±0.55)

SST 81.9 (±1.11) 82.0 (±0.60) 82.1 (±0.57)
Anemia 91.6 (±0.49) 91.8 (±0.34) 91.9 (±0.36)
AgNews 95.5 (±0.32) 96.1(±0.17) 96.1 (±0.10)

Tweet 84.7 (±1.79) 83.8 (±0.45) 83.9 (±0.45)

Table 3: Performance statistics obtained from 10 dif-
ferently seeded LSTM based models.

We note that the original CNN based mod-
els, on an average, have a standard deviation of
±1.5%. Which seems standard, however, we note
that ADR Tweets dataset has a very high standard
deviation of±2.65%. We observe that ASWA and
NASWA are almost always able to achieve higher
performance with a very low standard deviation.
This suggests that both ASWA and NASWA are
extremely stable when compared to the standard
model. They significantly improve the robustness,
on an average, by 72% relative to the original

model and on Diabetes (MIMIC), a binary clas-
sification dataset, by 89% (relative improvement).
We observe similar results for the LSTM based
models in Table 3.

(a) CNN models (b) LSTM models

Figure 3: Prediction’s standard deviation for CNN
and LSTM based models for all binary classification
datasets under consideration. Predictions are bucketed
in intervals of size 0.1, starting from 0 (containing pre-
dictions from 0 to 0.1), until 0.9

We further analyze the prediction score stabil-
ity by computing the mean standard deviation over
the binned confidence intervals of the models in
Figure 3a. We note that on an average, the stan-
dard deviations are on the lower side. However,
we observe that the mean standard deviation of the
bins close to 0.5 is on the higher side as is expected
given the high uncertainty. On the other hand
both, ASWA and NASWA based models are rel-
atively more stable than the standard CNN based
model. We observe similar behaviours for the
LSTM based models in Figure 3b. This suggests
that our proposed methods, ASWA and NASWA,
are able to obtain relatively better stability without
any loss in performance. We also note that both
ASWA and NASWA had relatively similar perfor-
mance over more than 10 random seeds.

5.2 Attention Stability

(a) CNN models (b) LSTM models

Figure 4: Average attention entropy against the buck-
eted predictions for CNN and LSTM based models.
Figure highlights the high entropy between attention
based distributions from differently seeded models (es-
pecially for the Diabetes-MIMIC datatset), indicating
towards model instability.
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We now consider the stability of attention dis-
tributions as a function of random seeds. We first
plot the results of the experiments for standard
CNN based binary classification models over uni-
formly binned prediction scores for positive labels
in Figure 4a. We observe that, depending on the
datasets, the attention distributions can become
extremely unstable (high entropy). We specifi-
cally highlight the Diabetes(MIMIC) dataset’s en-
tropy distribution. We observe similar, but rela-
tively worse results for the LSTM based models
in Figure 4b. In general, we would expect the en-
tropy distribution to be close to zero however, this
doesn’t seem to be the case. This means that using
attention distributions to interpret models may not
be reliable and can lead to misinterpretations.

(a) CNN models (b) LSTM models

Figure 5: Jaccard distance highlighting instability in at-
tention distributions of CNN and LSTM based models.

(a) CNN+ASWA (b) CNN+NASWA

(c) LSTM+ASWA (d) LSTM+NASWA

Figure 6: Improved prediction stability from ASWA
and NASWA for CNN and LSTM based models

We use the top 20% of the most important
items (indices) in the attention distribution for
each dataset over 10 runs and plot the Jaccard dis-
tances for CNN and LSTM based models in Fig-
ure 5a and Figure 5b. We again notice a similar

(a) Diabetes (b) SST

Figure 7: Gradient based interpretations’ stability im-
provement from NASWA on CNN based models. The
Jaccard distance is calculated using the top 20% atten-
tive items.

trend of unstable attention distributions over both
CNN and LSTM based attention distribution.

In the following sections for space constraints,
we focus on CNN based models with additive at-
tention. Our results on LSTM based models are
provided in the attached supplementary material.
We note that the observations for LSTM mod-
els are, in most cases, similar to the behaviour
of the CNN based models. Scaled dot-product
based models are also provided in the supplemen-
tary material and we notice a similar trend as the
additive attention.

We now focus on the effect of ASWA and
NASWA on binary and multi-class CNN based
neural models separately.

Binary Classification In Figure 8, we plot the
results of the models with ASWA and NASWA.
We observe that both these algorithms signifi-
cantly improve the model stability and decrease
the entropy between attention distributions. For
example, in Figure 8b, both ASWA and NASWA
decrease the average entropy by about 60%. We
further notice that NASWA is slightly better per-
forming in most of the runs. This empirically val-
idates the hypothesis that averaging the weights
from divergent weights (when the norm difference
is higher than the average norm difference) helps
in stabilizing the model’s parameters, resulting in
a more robust model.

Multi-class Classification In Figure 9, we plot
the entropy between the attentions distributions
of the models for the SNLI dataset (CNN based
model), separately for each label (neutral, contra-
diction, and entailment). We notice, similar ob-
servations as the binary classification models, the
ASWA and NASWA algorithms are able to signif-
icantly improve the entropy of the attention distri-
butions and increases the robustness of the model
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(a) IMDB (b) Diabetes (c) SST

(d) Anemia (e) AgNews (f) ADR Tweets

Figure 8: Attention stability improvement from ASWA and NASWA on CNN based models.

(a) Label 0 prediction vs entropy (b) Label 1 prediction vs entropy (c) Label 2 prediction vs entropy

Figure 9: Attention stability improvement from ASWA and NASWA on CNN based model for the SNLI dataset.

with random seeds.

5.3 Gradient-based Interpretations

We now look at an alternative method of interpret-
ing deep neural models and look into the consis-
tency of the gradient-based interpretations to fur-
ther analyze the model’s instability. For this setup,
we focus on binary classifier and plot the results
on the SST and the Diabetes dataset in partic-
ular since they cover the low and the high end
of the entropy spectrum (respectively). We no-
tice similar trends of instability in the gradient-
based interpretations from model inputs as we did
for the attention distributions. Figure 7 shows
that the entropy between the gradient-based inter-
pretations from differently seeded models closely
follows the same trend as the attention distribu-
tions. This result further strengthens our claim on
the importance of model stability and shows that
over different runs of the same model with differ-

ent seeds, we may get different interpretations us-
ing gradient-based feature importance. Moreover,
Figure 7 shows the impact of ASWA towards mak-
ing the gradient-based interpretations more consis-
tent, thus, significantly increasing the stability.

5.4 LIME based Interpretations

We further evaluated the surrogate model based in-
terpretability using LIME (Ribeiro et al., 2016).
LIME obtains a locally linear approximation of the
model’s behaviour for a given sample by perturb-
ing it and learning a sparse linear model around
it. We focus on AgNews and SST based datasets
and obtain interpretability estimates using LIME.
Once again, we notice a similar pattern of insta-
bility as the other two interpretability methods. In
Figure 10 we present our results from the LIME
based interpretations with Jaccard distance as the
measure. Note that we measure the Jaccard dis-
tance over the top 20% most influential items. We
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(a) AgNews (b) SST

Figure 10: LIME based interpretations’ stability im-
provement from NASWA on CNN based models. The
Jaccard distance is calculated using the top 20% atten-
tive items.

observe once again that NASWA helps in reduc-
ing the instability and results in more consistent
interpretations.

In all our experiments, we find that a significant
proportion of interpretations are dependent on the
instantiation of the model. We also note that we
perform experiments over 100 random seeds for
greater statistical power and see similar patterns3.

6 Discussion

Recent advances in adversarial machine learn-
ing (Neelakantan et al., 2015; Zahavy et al., 2016)
have investigated robustness to random initializa-
tion based perturbations, however, to our knowl-
edge, no previous study investigates the effect of
random-seeds and its connection on model inter-
pretation. Our study analyzed the inherent lack of
robustness in deep neural models for NLP. Recent
studies cast doubt on the consistency and corre-
lations of several types of interpretations (Doshi-
Velez and Kim, 2017; Jain and Wallace, 2019;
Feng et al., 2018). We hypothesise that some of
these issues are due to the inherent instability of
the deep neural models to random-seed base per-
turbations. Our analysis (in Section 4) leads to
the hypothesis that models with different instanti-
ations may use completely different optimization
paths. The issue of variance in all black-box in-
terpretation methods over different seeds will con-
tinue to persist until the models are fully robust to
random-seed based perturbations. Our work how-
ever, doesn’t provide insights into instabilities of
different layers of the models. We hypothesise that
it might further uncover the reasons for the rela-
tively lower correlation between different black-
box interpretation methods as these are effectively
based off on different layers and granularity.

3These results are provided in the appendix.

There has been some work on using noisy gradi-
ents (Neelakantan et al., 2015) and learning from
adversarial and counter-factual examples (Feng
et al., 2018) to increase the robustness of deep
learning models. Feng et al. (2018) show that neu-
ral models may use redundant features for predic-
tion and also show that most of the black-box in-
terpretation methods may not be able to capture
these second-order effects. Our proposals show
that aggressively averaging weights leads to bet-
ter optimization and the resultant models are more
robust to random-seed based perturbation. How-
ever, our research is limited to increasing consis-
tency in neural models. Our approach further uses
first order based signals to boost stability. We
posit that second-order based signals can further
enhance consistency and increase the robustness.

7 Conclusions

In this paper, we study the inherent instability of
deep neural models in NLP as a function of ran-
dom seed. We analyze model performance and
robustness of the model in the form of attention
based interpretations, gradient-based feature im-
portance and LIME based interpretations across
multiple runs of the models with different random
seeds. Our analysis strongly highlights the prob-
lems with stability of models and its effects on
black-box interpretation methods leading to differ-
ent interpretations for different random seeds. We
also propose a solution that makes use of weight
averaging based optimization technique and fur-
ther extend it with norm-filtering. We show that
our proposed methods largely stabilize the model
to random-seed based perturbations and, on aver-
age, significantly reduce the standard deviations of
the model performance by 72%. We further show
that our methods significantly reduce the entropy
in the attention distribution, the gradient-based
feature importance measures and LIME based in-
terpretations across runs.
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Abstract

Work on Abusive Language Detection has
tackled a wide range of subtasks and do-
mains. As a result of this, there exists a great
deal of redundancy and non-generalisability
between datasets. Through experiments on
cross-dataset training and testing, the paper re-
veals that the preconceived notion of including
more non-abusive samples in a dataset (to em-
ulate reality) may have a detrimental effect on
the generalisability of a model trained on that
data. Hence a hierarchical annotation model
is utilised here to reveal redundancies in exist-
ing datasets and to help reduce redundancy in
future efforts.

1 Introduction

With the growth of the internet and the increas-
ingly smaller barrier to entry, social media have
become viable platforms for people to make their
views known. These easily accessible fora for
discourse have given a voice to many minori-
ties and individuals to share their stories. The
caveat, however, is that these platforms can be
misused to spread hate and harass other individ-
uals, which has given birth to terms such as cyber-
bullying and trolling. Online harassment has been
a point of criticism levied against social media gi-
ants such as Facebook and Twitter, who have come
under increased pressure to address this misuse.
To this end, they have ensured that their commu-
nity guidelines explicitly ban the usage of profan-
ity/hate speech to harass and bully individuals.

The detection of Online Abuse has proven to be
a layered and complex issue. For example, pro-
fanity is often treated as a sign of hate speech or
offensive language, but profanity can also be used
in a wide variety of expressive ways to convey in-
formality, humour, and emphasis. This usage of

∗Also at: RISE SICS, Kista, Sweden.

profanity outside of abuse/insults, coupled with
implicit insults that may not contain any profan-
ity, makes the task of classifying abuse online a
balancing act of sorts, forming the crux of what
makes this task hard to tackle: stricter guidelines
may hamper a well-meaning individual’s freedom
of speech, while more lenient guidelines may em-
power those who exploit them.

As it stands, the intricacies of free speech do
not translate well to machine understanding. This
has led to the continued use of human modera-
tors in the abusive language detection space. Con-
tent is flagged by users, reviewed by a human and
removed if it violates the platform’s community
guidelines. The main problem with this system is
the sheer volume of content to be reviewed, giv-
ing human moderators very little time to arrive at
a decision. Another issue that was highlighted by
Roberts (2019) is the impact that reviewing online
abuse can have on a worker’s mental well-being.
These issues have led to many social media giants,
such as Facebook, to seek machine learning-based
solutions — to replace or supplement the current
human moderator system.

Automatic detection of abusive language on-
line can be seen as a union of the plethora of
subtasks that have been tackled: Cyberbullying,
Hate Speech (also further constrained as racism,
sexism, and harassment of particular minorities),
Trolling, etc. Research in the field tends to fo-
cus on one of the particular subtasks. It has been
argued by some (Schmidt and Wiegland, 2017;
Waseem et al., 2017b) that due to this phenomenon
where works tackle restricted subsets of abusive
language, it has become difficult to make judge-
ments about whether the features being used can
perform well in other subtasks of abusive language
detection — as they are often only evaluated on a
single dataset, specific to one domain and subtask,
and annotated in a specific way.
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Waseem et al. (2017b) proposed that there ex-
ists an overlap between these subtasks and subse-
quently proposed a typology that emphasises iden-
tifying the target of abuse and whether the abuse
is implicit or explicit. Their typology could poten-
tially be applied to all stages of system develop-
ment, from data collection to the final model build-
ing. This, they hoped, would help to synthesise the
different subtasks. This idea was expanded upon
in the Offensive Language Identification Dataset
(OLID; Zampieri et al. 2019a) to a hierarchical,
three-level annotation model.

After further discussing related research in the
next section, this work looks at various publicly
available datasets in the field (Section 3), and
performs both in-domain (Section 4) and cross-
dataset training and testing to observe whether
models trained on one dataset generalise well
when tested against other datasets (Section 5). It
also makes some qualitative assessments on why
models trained on specific datasets generalise bet-
ter than others. Additionally, the OLID dataset
based on the typology by Waseem et al. (2017b)
is used to observe whether the hierarchical anno-
tation model is sufficient to synthesise the various
subtasks of abusive language detection. To this
end, experiments were run using BERT, Bidirec-
tional Encoder Representations from Transform-
ers (Devlin et al., 2018), to compare its perfor-
mance to other popular models that have been used
for abusive language detection (Section 6).

2 Previous Work

Abusive language detection has served as an um-
brella term for a wide variety of subtasks. Re-
search in the field has typically focused on a par-
ticular subtask: Hate Speech (Davidson et al.,
2017; Founta et al., 2018; Gao and Huang, 2017;
Golbeck et al., 2017), Sexism/Racism (Waseem
and Hovy, 2016), Cyberbullying (Xu et al., 2012;
Dadvar et al., 2013), Trolling and Aggression (Ku-
mar et al., 2018a), and so on. Datasets for these
tasks have been collected from various social me-
dia platforms, such as Twitter (Waseem and Hovy,
2016; Davidson et al., 2017; Founta et al., 2018;
Burnap and Williams, 2015; Golbeck et al., 2017),
Facebook (Kumar et al., 2018a), Instagram (Hos-
seinmardi et al., 2015; Zhong et al., 2016), Yahoo!
(Nobata et al., 2016; Djuric et al., 2015; Warner
and Hirschberg, 2012), YouTube (Dinakar et al.,
2011), and Wikipedia (Wulczyn et al., 2017), with

annotation typically carried out on crowdsourcing
platforms such as CrowdFlower (Figure Eight)1

and Amazon Mechanical Turk.2

All these datasets represent multi-class classifi-
cation problems, with the exception of the Kag-
gle’s Toxic Comment Classification challenge,3

which entails multi-label classification, and OLID
(Zampieri et al., 2019a) used in the SemEval-2019
‘OffensEval’ shared task (Zampieri et al., 2019b),
which builds on a hierarchical annotation model
(Hierarchy of Multi-Class Classifiers).

Choice of features has been the crucial differ-
ence between the various approaches to abusive
language detection. For the most part, word-level
n-grams have been highly predictive, with other
linguistic features such as part-of-speech tags (Xu
et al., 2012; Davidson et al., 2017) and sentiment
score (Van Hee et al., 2015; Davidson et al., 2017)
providing slight improvements. Due to their abil-
ity to perform better in an online setting where
spelling errors and adversarial behaviour are com-
monplace, character-level features have been en-
dorsed (Mehdad and Tetreault, 2016), and also
shown to often be superior to word-level infor-
mation for this task (Meyer and Gambäck, 2019).
Metadata about users have also been used as fea-
tures: Waseem and Hovy (2016) claim gender in-
formation leads to improved performance, while
Unsvåg and Gambäck (2018) report user-network
data to be more important. Schmidt and Wieg-
land (2017) provides a comprehensive overview of
many of the features used and their efficacy.

In terms of models, popular classical classifica-
tion approaches include Logistic Regression and
LSVM (Linear Support Vector Machines). Deep
Neural networks such as Convolutional Neural
Networks, CNN (Zhang et al., 2018; Gambäck and
Sikdar, 2017) and variations of Recurrent Neu-
ral Networks, RNN (Pitsilis et al., 2018; Gao and
Huang, 2017) have seen widespread success, reg-
ularly obtaining state-of-the-art results on various
datasets. Lee et al. (2018) used the Founta et al.
(2018) dataset to conduct a comparative study of
the performance of many popular models. In the
‘OffensEval’ shared task (Zampieri et al., 2019b),
the use of contextual embeddings such as BERT
(Devlin et al., 2018) and ELMo (Peters et al.,
2018) exhibited the best results.

1figure-eight.com
2mturk.com
3bit.ly/2HNfLaB
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Generalisability of a model has also come un-
der considerable scrutiny. Works such as Karan
and Šnajder (2018) and Gröndahl et al. (2018)
have shown that models trained on one dataset
tend to perform well only when tested on the
same dataset. Additionally, Gröndahl et al. (2018)
showed how adversarial methods such as typos
and word changes could bypass existing state-of-
the-art abusive language detection systems. They
also observed unimpressive results when using
ULMFiT (Howard and Ruder, 2018) for abusive
language detection, but argued that model archi-
tecture is less important than the type of data and
the annotation scheme.

Karan and Šnajder (2018) experimented with
cross-domain training and testing, and opted to use
the same model (LSVM) with minimal features
and to preprocess in favour of interpretability.
They also reported positive improvements using
Frustratingly Easy Domain Adaptation (FEDA;
Daumé III, 2007) to augment smaller datasets with
larger ones. Fortuna et al. (2018) concurred, stat-
ing that although models perform better on the
data they are trained on, slightly improved perfor-
mance can be obtained when adding more training
data from other social media. Similarly, Waseem
et al. (2018) attempted to address the problem of
differences between datasets by building a robust
multi-task learning model, which improves upon
single-task performance by using auxiliary sam-
ples from select datasets. Their work revealed that
such models could be competitive with the state-
of-the-art single-task models with the additional
benefit of allowing prediction on other datasets as
well. This helps in negating hidden biases within
datasets and promoting generalisability.

3 Datasets

The experiments in the next section will be based
on four different datasets, annotated for hate
speech and/or offensive language, as described be-
low. The social media platform of choice, Twitter,
was selected due to the availability of a multitude
of easy to access datasets. The datasets are all
in English and from Twitter, and largely chosen
based on popularity and availability.

The first two datasets, from Waseem and Hovy
(2016) and from Davidson et al. (2017) were cho-
sen due to their widespread use as benchmarks for
models. The third, from Founta et al. (2018) was
selected because of its large size, while the fourth

(Zampieri et al., 2019a) was included since it is
using the contemporary hierarchical model. Some
other large datasets were discarded since they are
either not from Twitter (such as the Kaggle Tox-
icity classification of Wikipedia comments, Wul-
czyn et al., 2017) or not easily or openly available
(e.g., Silva et al., 2016; Golbeck et al., 2017).

3.1 The Waseem and Hovy Dataset

In their work on the disambiguation of types
of hate speech, Waseem and Hovy (2016) re-
leased a dataset of 16, 914 tweets. They so-
licited their tweets using a lexicon of hate speech
terms, and manually annotated them with three
tags: racism, sexism, and none. Waseem and
Hovy used an expert outside annotator for review-
ing their annotations to mitigate any bias. The
database is provided as a set of tweet IDs with
tags, but many of the actual tweets have been re-
moved over time, in particular those belonging to
the racist class.4 The first set of rows in Table 1 de-
scribes the dataset, including a comparison of the
original Waseem and Hovy (2016) dataset to the
one available for download using the Twitter API
when the present experiments were initiated.

3.2 The Davidson et al. Dataset

Davidson et al. (2017) made publicly available a
Twitter dataset with three labels: hate speech,
offensive language, and neither. Sim-
ilar to Waseem and Hovy (2016), they used
a lexicon of hate speech terms derived from
Hatebase.org and queried Twitter using these
terms to collect potentially hateful tweets. Each
tweet was annotated by at least three CrowdFlower
workers and the tags were assigned based on the
majority decisions. The final dataset available on-
line contains 24, 783 tweets. Table 1 provides
some statistics of the dataset, which henceforth
will be referred to as the Davidson et al. dataset.

Note the very large fraction of abusive tweets in
the dataset. A possible explanation for this was
given by Waseem et al. (2018), who noted that
2, 161 tweets in Davidson et al.’s dataset written
in African American Vernacular English had been
annotated as offensive or hateful when including
the n-word, although the actual usage was to mark
group inclusion and informality. While Waseem
et al. discuss that these errors were due to the

4Note that this discrepancy means that comparisons to
work by others on this dataset are not straight-forward.

942



Dataset Total Normal Hatespeech Offensive / Abusive Spam

Waseem and Hovy racism sexism

original 16,914 11,559 5,355 1,972 3,383 N/A N/A
available 11,112 8,185 2,927 17 2,910 N/A N/A

Davidson et al. 24,783 4,163 1,430 19,190 N/A

Founta et al. 99,996 53,851 4,965 27,150 14,030

UNT TIN (targeted)

IND GRP OTH

Zampieri et al. 14,100 9,460 N/A 4,640 551 2,507 1,152 430 N/A

Table 1: Overview of the datasets by Davidson et al., Founta et al., Waseem and Hovy, and Zampieri et al.

scarcity of African Americans among the annota-
tors, they could also be attributed to lack of meta-
information about the tweet authors: had the an-
notators known that those tweets were written by
African Americans, they would probably have in-
duced that the n-word was not used offensively.

3.3 The Founta et al. Dataset

Founta et al. (2018) released a large Twitter dataset
with four labels: hateful, abusive, normal,
and spam. The main part of their work re-
volved around a methodology to collect and an-
notate data over crowdsourcing platforms. They
collected tweets from the Live Twitter stream and
filtered them using sentiment score (searching for
tweets with strong negative polarity) and a lex-
icon of offensive words from Hatebase.org
and noswearing.com/dictionary.

Table 1 also introduces the Founta et al. dataset,
which with a total of 99, 996 tweets is by far the
largest in the present study, but also contains a siz-
able fraction of spam tweets (a category which is
not included in the other datasets).

3.4 OLID

The Offensive Language Identification Dataset,
OLID (Zampieri et al., 2019a) was used in
SemEval-2019 Task 6: ‘OffensEval’ (Zampieri
et al., 2019b). It consists of 14, 100 tweets anno-
tated through a unique hierarchical model whose
basic idea was proposed by Waseem et al. (2017b).
For the shared task, the data was split into (non-
stratified) training and test sets containing 13, 240
and 860 tweets, respectively.

As can be seen in last rows of Table 1, there
are three annotation levels in OLID, each of which
was directly reflected as a subtask in OffensEval:

A. Whether the tweet can be classified as being

offensive (OFF) or non-offensive (NOT).
B. Tweets labelled as OFF are further classi-

fied as either UNT (untargeted insult/abuse)
or TIN (targeted insult/abuse).

C. Tweets labelled as TIN are sub-divided as
IND (insults targeted at an individual), GRP
(insults targeted at a minority group) or OTH
(insults targeted at an issue or organisation).

4 Preliminary Feature and Model Study

The first set of experiments aimed to test the effi-
cacy of BERT (Devlin et al., 2018) when tackling
the Abusive Language Detection task. For this,
BERT’s performance was compared to three other
popular classifiers: Linear SVM, an LSTM (Long
Short-Term Memory) Recurrent Neural Network
(Hochreiter and Schmidhuber, 1997), and ELMo
(Peters et al., 2018). The methodology and mod-
els are briefly explained here.

To shed some light on the models themselves
rather than the features, no extra surface-level fea-
tures or linguistic features were utilised in the clas-
sification. Also preprocessing was minimal, with
lower-casing of tweets being the only standard.
However, fine-tuning was carried out on the mod-
els’ hyper-parameters, such as sequence length,
drop out, and class weights. Test and training
sets were created for each dataset by performing
a stratified split of 20% vs 80%, with the larger
part used for training the models. The training
sets were further subdivided, keeping 1/8 shares
of them as separate validation sets during devel-
opment and fine-tuning of the hyper-parameters.
However, the validation sets were conflated with
the training sets for the final results as some of the
datasets were already quite small and the models
benefited from the extra data. Information on the
models themselves are provided below.
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Dataset LSVM LSTM ELMo BERT

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Waseem and Hovy .8911 .5696 .8498 .5312 .8614 .5394 .9023 .5837
Davidson et al. .9014 .7278 .9143 .7419 .8909 .6802 .9172 .7727
Founta et al. .8034 .6591 .8161 .6788 .8094 .6732 .8187 .6960
OLID (Subtask A) .7610 .7068 .7894 .7479 .7663 .7198 .8004 .7738

Table 2: Model test tesults (macro-F1 and accuracy) for all datasets; the best performer is in bold.

4.1 Linear SVM

The Linear SVM (LSVM) was modelled and
trained in the Scikit-learn5 library (Pe-
dregosa et al., 2011), utilising a TF-IDF vector
representation for the tweets. The classes were ar-
tificially balanced and overfitting penalised using
L2 regularisation. Interesting hyperparameters in-
cluded the n-gram range and whether to use char-
acter or token n-grams. For example, the David-
son et al. dataset tended to perform better with to-
ken n-grams, while the Waseem and Hovy dataset
worked better with character n-grams. The inclu-
sion of unigrams was also pivotal to good classifier
performance when using token n-grams.

4.2 LSTM Network

The tested Deep Learning Model was built on
a fairly simple LSTM architecture using Keras6

with a TensorFlow7 back end. The ‘Adam’ op-
timiser (Kingma and Ba, 2014) was paired with
categorical cross-entropy loss function for model
training. Again no statistical or linguistic features
were used and the only preprocessing involved
lower-casing the tweets. The first layer used a 200
dimensional GloVe embedding,8 pre-trained
on 2 billion tweets (Pennington et al., 2014), with
embedding weights fixed throughout the training.
The Embedding Layer was followed by an LSTM
layer of 200 units. The final layer was a dense
layer with softmax activation and layer size depen-
dent on the number of classes in the dataset being
tested. The most significant hyperparameters were
found to be dropout and class weights.

4.3 ELMo

The third model tested used ELMo for feature
extraction and was implemented in the Tensor-
Flow hub module9 with 1024 dimensional ELMo

5scikit-learn.org/stable/
6github.com/fchollet/keras
7tensorflow.org/
8nlp.stanford.edu/projects/glove/
9tfhub.dev/google/elmo/2

embeddings. This input was passed through an
LSTM layer of dimension 256 and then a dense
layer with a softmax activation function. The size
of the last dense layer was again equal to the num-
ber of labels that should be classified. The ‘Adam’
optimiser and categorical cross-entropy loss func-
tion were used during training. ELMo’s stand-
alone performance was found to not be as impres-
sive as hoped, with the batch size and usage of
dropout significantly affecting classification rates.

4.4 BERT

BERTbase, uncased was used as the underlying
pre-trained model, in a fine-tuning only approach
with no statistical or linguistic features. The
model built on the run classifier API pro-
vided on the BERT GitHub page10 and the BERT
tokeniser, which simply lower-cases sentences and
removes illegal characters. BERTbase,uncased
trains a total of 110 million parameters, and con-
tains 12 transformer blocks and 12 self-attention
heads with hidden layer dimension 768. The most
successful parameter settings utilised larger max-
imum sequence lengths, but smaller batch sizes
and lower learning rates. The best models used a
learning rate of e−5 and batch size 32 with varying
maximum sequence lengths between 60 and 70.
Other parameters worth mentioning are the num-
ber of epochs and the Linear Warm-up Proportion.

4.5 Results

The experimental results are recorded in Table 2,
with most improvements and decrements in per-
formance across models being minimal. BERT
exhibits the best results for all datasets used in
the experiments (with a significance level of 0.05).
Surprisingly, ELMo was neither competitive with
BERT nor with the GLoVE-embedding LSTM re-
current neural network (when tested with the same
statistical significance level).

10github.com/google-research/bert
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Dataset Positive labels Negative labels Positive label fraction

Waseem and Hovy racism, sexism neither 26.34%
Davidson et al. hate speech, offensive language neither 77.43%
Founta et al. hateful, abusive spam, none 32.12%
OLID OFF NOT 32.91%

Table 3: Cross-dataset experiment, positive and negative label split.

Dataset
Waseem and Hovy Davidson et al. Founta et al. OLID

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Waseem and Hovy .9037 .8755 .5626 .5296 .7205 .5824 .6716 .5982
Davidson et al. .7719 .6928 .9639 .9351 .9261 .9157 .7514 .6847
Founta et al. .7278 .6049 .8324 .7559 .9421 .9340 .7862 .7447
OLID .7108 .6269 .8247 .7308 .9251 .9162 .8004 .7738

Table 4: Cross-dataset test results (accuracy and macro-F1) for all dataset combinations, using the BERT models.
Rows show the dataset used to train the model and columns the dataset used for testing.

5 Cross-Dataset Training and Testing

In the second round of experiments, the best mod-
els built for individual dataset were used to test
generalisability across the other datasets. For all
datasets, these were BERT models, but with vary-
ing hyper-parameter settings. Karan and Šnajder
(2018) used a simpler Linear SVM model for all
the datasets for the sake of interpretability, while
the aim here, in contrast, was to see how well the
best models (that may have learnt some dataset-
specific biases) performed on other datasets. This
was done to investigate how well state-of-the-art
systems perform in a real-life scenario, i.e., when
exposed to data from other domains, with the hy-
pothesis that a model trained on one dataset that
exhibits comparatively reasonable results on other
datasets can be expected to generalise well.

For these experiments, the models were tested
on the test set which had been generated for the
preliminary model study described in Section 4.
As there exists a large number of heterogeneous
annotation schemes between datasets, the same
approach as Karan and Šnajder (2018) was taken,
separating the tags in each dataset according to
positive (abusive) and negative (benign) labels.
This separation is represented in Table 3, which
also gives the percentage of positive samples in
each dataset. As can be seen, three of the datasets
contain slightly less than 1/3 abusive instances.
The Davidson et al. dataset stands out, by con-
taining 3/4 offensive instances. As discussed in
Section 3.2, this can probably be attributed to how
those tweets were selected and annotated.

The results of cross-dataset testing are pre-

sented in Table 4. Considerable performance
drops can be observed when going from a large
training dataset to a small test set (i.e., Founta
et al.’s results when tested on the Waseem and
Hovy dataset) and vice versa. This is in line with
a similar conclusion by Karan and Šnajder (2018).

It is surprising to see how well a model trained
on Founta et al.’s dataset performs when tested
on OLID (Zampieri et al., 2019a) and vice versa.
However, this can be expected to be the case where
there is a good agreement between the datasets,
i.e., there is a large amount of similar data shared
between them. To this effect, the Founta et al.
dataset was searched with terms used by Zampieri
et al. when collecting data for OLID, giving
around 6, 600 hits. For comparison, OLID gets
around 12, 200 hits with the same set of terms.

The most interesting observation is that datasets
with larger percentages of positive samples tend to
generalise better than datasets with fewer positive
samples, in particular when tested against dissim-
ilar datasets. For example, we see that the mod-
els trained on the Davidson et al. dataset, which
contains a majority of offensive tags, perform well
when tested on the Founta et al. dataset, which
contains a majority of non-offensive tags. (The
differences are all statistically significant when the
test set is Waseem and Hovy.) Similar trends were
observed by Karan and Šnajder (2018) when em-
ploying the Kolhatkar et al. (2018) and TRAC-1
(Kumar et al., 2018a) datasets, that have 62.7%
and 56.6% positive samples, respectively, and ex-
hibited better results in cross-dataset testing than
datasets with lower positive sample ratios.
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Subtask A Subtask B Subtask C
BERT Top BERT Top BERT Top

F1 .8168 .8286 .6997 .7545 .6162 .6597
Acc. .8546 .8628 .9000 .9250 .7136 .7277

Rank 2 1 9 1 6 1

Table 5: BERT test set results (macro-F1 and accuracy) compared to top OffensEval shared task performers.

6 Synthesising Subtasks Using the
Hierarchical Model

The OLID dataset was used to perform cross-
dataset training and testing similar to the exper-
iments of the previous section. However, since
OLID uses a hierarchical annotation model (dif-
fering from the annotation schemes of the other
datasets), this task was approached from a differ-
ent angle. A model trained on the three subtasks
of the OLID dataset (described at the end of Sec-
tion 3.4) was tested for the task of tagging the in-
domain Twitter datasets. This makes it possible to
not only see how well OLID-trained models gen-
eralise to other data, but to identify the overlap be-
tween the different subtasks that the other datasets
tackle by observing what percentage of documents
under each subtask share common OLID tags.

For the OLID classifiers, a BERT model was
used without any extra statistical features and
with minimal preprocessing (only lower-casing of
tweets). The classifiers were then fine-tuned to
the different subtasks, again showing a positive
correlation between sequence length and classifier
performance. For the results to be comparable to
those obtained in the OffensEval 2019 shared task,
the same test set was used as in that task. Model
performances are reported in Table 5, along with
what rank the model would have obtained if it had
been submitted to OffensEval 2019, showing that
the models are competitive when compared to the
top shared task submissions.

The tested model was trained for a total of
3 epochs with a batch size of 16 and learning
rate e−5. The maximum sequence length was set
to 70 for subtasks A and C, but to 60 for sub-
task B, where over-fitting was observed on se-
quence length 70. Also in subtask C the model
showed significant signs of over-fitting, with the
BERT approach only achieving an F1 score of
0.52. In this case, a technique was borrowed from
the top subtask C submission to OffensEval (Radi-
vchev and Nikolov, 2019), namely to use lower
decision boundaries for the OTH (0.2) and GRP

(0.3) tags, instead of the typical decision boundary
probability of 0.5. As can be seen in the table, this
addition led to huge improvements (F1 = 0.62),
compared to the models using the typical deci-
sion boundary (F1 = 0.52), although the achieved
scores still were not close to the top submission.

Returning to the tagging/synthesis experiments,
the entire datasets were used. The results are pre-
sented in Table 6. Here we see quite a bit of over-
lap between the offensive and hate speech tags
with the majority tag being (OFF, TIN, IND)
by a landslide. Clearly, these results can become
trivial if the differences boil down to whether
the model generalises well to the other datasets
used here. This is why only in-domain (Twitter
datasets) are considered here and the results also
are discussed while taking this into account.

In the Davidson et al. dataset, the non-abusive
tag, neither had a much lower percentage of
its tweets annotated under NOT (69.37%) by the
OLID classifier when compared to other datasets.
This observation may be attributed to the data col-
lection techniques used by Davidson et al., who
filtered tweets based on a hate speech lexicon be-
fore annotating them, as well as to profanities oc-
curring within the neither tag, causing a dip in
the amount of explicitly non-offensive tweets.

A similar issue is seen, but to a lesser extent,
in the neither tag of the Waseem and Hovy
dataset, which also was extended by using a sam-
ple of hateful tweets. Another interesting obser-
vation with that dataset is that the majority class
for the sexism tag in Subtask A was NOT. This
complies with observations by both Waseem and
Hovy and Davidson et al. (2017) that the human
coders considered sexist terms as offensive rather
than hateful. However, in terms of our classifier,
this may only be due to the implicit nature of most
sexist insults and a lack of sexist samples within
the OLID dataset. Founta et al.’s dataset shows
a high number of hateful tweets classified as
NOT, which may be due to the implicit nature of
sexism or sarcasm in the tweets involved.
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Dataset Tag Subtask A Subtask B Subtask C
OFF NOT UNT TIN IND GRP OTH

Waseem and Hovy
racism 52.94 47.06 0.00 100 64.70 23.52 11.76
sexism 42.96 57.04 8.28 91.72 54.06 30.27 15.67
neither 20.22 79.78 28.27 71.73 67.11 25.95 6.94

Davidson et al.
hate speech 84.13 15.87 3.35 96.65 63.22 24.61 12.17
offensive language 86.89 13.11 7.45 92.55 71.89 20.39 7.72
neither 30.63 69.37 20.44 79.56 63.29 5.48 31.23

Founta et al.

hateful 78.11 21.89 5.92 94.08 52.35 27.37 20.28
abusive 97.34 2.66 26.04 73.96 75.56 10.42 14.02
normal 9.23 90.77 24.82 75.18 60.24 35.84 3.92
spam 8.72 91.28 43.59 56.41 50.98 1.71 47.31

Zampieri et al. (actual annotation fraction) 32.91 67.09 11.88 88.12 61.31 28.17 10.52

Table 6: Results of using a BERT model trained on OLID to tag other the datasets, for each OffensEval subtask.
The values are percentages of tweets in each class (rows) annotated with the corresponding OLID tag (columns).
Note that in the version of the Waseem and Hovy dataset used here, the racism tag only had 17 samples.

Some blanket statements that can be made given
these results are that hate speech is highly targeted,
mainly at individuals, but with a significant share
targeted at groups and other institutions/issues.
Offensive language, on the other hand, tends to be
highly targeted only at individuals. Furthermore,
the dearth of data belonging to the UNT, GRP and
OTH tags may have had a detrimental effect on
the model leading to the lob-sided (OFF, TIN,
IND) classification.

7 Discussion and Conclusion

The paper makes two major contributions: First,
an evaluation of the general effectiveness of BERT
in Abusive Language Classification tasks and its
ability to obtain results comparable to — or better
than — the state-of-the-art by only fine-tuning.

Second, experiments showing that datasets with
larger percentages of positive samples generalise
better than datasets with fewer positive samples
when tested against a dissimilar dataset (at least
within the same platform, e.g., Twitter), which in-
dicates that a more balanced dataset is healthier
for generalisation. This observation should be ac-
counted for when attempting to build new datasets
to tackle Abusive Language Detection, but this is
far from the only problem faced when attempting
to create such datasets.

Looking at the various available datasets in this
field, it is obvious that it cannot be expected
for a single dataset to encompass all facets of
abuse online. For example, on scanning the OLID
(Zampieri et al., 2019a) using a lexicon of sex-
ist and racist terms from Hatebase.org only

a measly 55 and 567 hits, respectively, were ob-
tained. Armed with this information we can-
not possibly expect a model trained on the OLID
dataset to effectively detect racism and sexism on-
line. In fact, most of the data in OLID seem to be
political, indicating that it in contrast has a high
potential to detect such phenomena.

The point made here is that datasets used in the
Abusive Language Detection space must be more
representative of all facets of abusive language,
if we expect them to generalise to any subset of
abuse. Also, there are very few datasets that pro-
vide a large number of samples that can be taken
advantage of by huge neural networks (Lee et al.,
2018). However, we do acknowledge the diffi-
culty in collecting abusive samples as most dis-
course online is benign. To address these issues,
all datasets must advertise the subset of the abu-
sive language they represent. In addition, more
work must be done to identify similarities and
holes in the representation of datasets. Merging
of datasets may also prove to be a promising solu-
tion to the non-generalisability problem. Waseem
et al. (2018)’s multi-task learning model can be a
solid starting point for such endeavours.

A more ambitious solution could be the devel-
opment of pre-trained embeddings (at the word
and/or character level) for Abusive Language De-
tection, although the procurement of enough broad
spanning data to produce a high-quality embed-
ding could again be quite a challenging task.

In terms of whether the hierarchical annotation
model helps in reducing redundancy and overlap
in Abusive Language Detection subtasks, the an-
swer is both yes and no:
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• yes, the hierarchical annotation model does
reveal the overlap in the subtasks of abusive
language detection; but,

• no, it could hardly be a replacement for the
existing multi-class annotation schema.

This is because there is still value in identifying
whether a sample is racist / sexist / cyberbullying
over just recognising whether the abuse is explicit
or not, and in identifying the target of abuse.

However, the hierarchical model in its cur-
rent form still cannot differentiate between vari-
ous subsets of abusive language. Future hierar-
chical models could address this either by adding
more levels to further differentiate the subsets or
by creating additional levels to identify subsets
more explicitly. For example, after the first level
of the OLID (Zampieri et al., 2019a) annotation
schema, it could branch out into a layer that clas-
sifies samples as hate speech, bullying / trolling
or as non-abusive use of offensive language. The
hate speech tag could then be expanded into an-
other level classifying hate speech as being, e.g.,
racism, sexism, or other. This way of moving from
coarse-grained tags to increasingly finer-grained
ones might be a workable approach to tackling hi-
erarchical annotation.

Other issues such as the adversarial methods
used to bypass detection methods (Gröndahl et al.,
2018) also plague this problem space. Character-
based features alleviate this complication to some
degree, but more work needs to be done to solve
this. Research in this domain has also largely con-
strained itself to text, while real-world scenarios
are quite different — there is a huge section of
abuse online that rely on other forms of commu-
nication such as images, videos and gifs.

An overall conclusion is that the data is more
important than the model when tackling Abu-
sive Language Detection. Schmidt and Wiegland
(2017) expressed the need for a benchmark dataset
for abusive language tasks, but it would be unwise
to say any current dataset fills this role. Future
work must focus more on how models generalise
to the real world by modifying the testing pro-
cedure. A model’s performance on the dataset it
was trained on cannot be indicative of how well
it would perform in a real-life application, and a
dataset’s quality must be measured on how broad
spanning and how representative it is of abusive
language as a whole.
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2018), pages 132–137.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Varada Kolhatkar, Hanhan Wu, Luca Cavasso, Em-
ilie Francis, Kavan Shukla, and Maite Taboada.

2018. The SFU opinion and comments corpus: A
corpus for the analysis of online news comments.
Manuscript, Simon Fraser University, Vancouver,
Canada.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018a. Benchmarking aggres-
sion identification in social media. In (Kumar et al.,
2018b), pages 1–11.

Ritesh Kumar, Atul Kr. Ojha, Marcos Zampieri, and
Shervin Malmasi, editors. 2018b. Proceedings of
the First Workshop on Trolling, Aggression and
Cyberbullying. ACL, Santa Fe, New Mexico, USA.

Younghun Lee, Seunghyun Yoon, and Kyomin Jung.
2018. Comparative studies of detecting abusive lan-
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Abstract
Authorship attribution is an active research
area which has been actively studied for many
decades. Nevertheless, the majority of ap-
proaches consider problem sizes of a few can-
didate authors only, making them difficult to
apply to recent scenarios incorporating thou-
sands of authors emerging due to the manifold
means to digitally share text. In this study, we
focus on such large scale problems and pro-
pose to effectively reduce the number of can-
didate authors before applying common attri-
bution techniques. By utilizing document em-
beddings, we show on a novel, comprehen-
sive dataset collection that the set of candi-
date authors can be reduced with high accu-
racy. Moreover, we show that common author-
ship attribution methods substantially benefit
from a preliminary reduction if thousands of
authors are involved.

1 Introduction

Correctly determining the author of an anonymous
text has been researched for several decades. Un-
doubtedly the most groundbreaking work in this
area has been conducted in 1964 by Mosteller
and Wallace, who attempted to automatically as-
sign the authors of the Federalist Papers by utiliz-
ing a simple, but yet efficient statistical approach
operating on function words (Mosteller and Wal-
lace, 1964). By showing that writers can indeed
be distinguished by their writing style, many ap-
proaches have been published in the following
years, proposing enhancements by incorporating a
variety of so-called stylometric features, methods
and learning techniques (Stamatatos, 2009). By
categorizing the problem of authorship attribution
as a special form of text categorization (Sebas-
tiani, 2002), also the respective methods in terms
of different machine learning algorithms are ef-
fectively in use. With the advent of deep learn-
ing, also several approaches have been proposed

recently which utilize comprehensive neural net-
works. Nevertheless, a recent comparison of all
submitted approaches to the cross-domain author-
ship attribution task at PAN1 indicates that deep
learning is currently not able to surpass traditional
methods (Kestemont et al., 2018).

Regardless of the features and methods used,
the efficacy of an approach can only be measured
by using appropriate datasets. Thereby, the ma-
jority of existing approaches focus only on a small
number of candidate authors (up to 20, most of the
times ten or less, e.g., (Stamatatos, 2009; Juola,
2012)). Only a few studies have examined the
performance of authorship attribution approaches
on larger amounts of possible authors, e.g., 114
(Madigan et al., 2005), 145 (Luyckx and Daele-
mans, 2008), 808 (Hitschler et al., 2017) or 1,000
(Shrestha et al., 2017) candidates. To the best of
our knowledge, only three studies dive into the
multiple thousands of authors: 10,000 (Koppel
et al., 2006, 2011) and even 100,000 (Narayanan
et al., 2012). While both studies agree that au-
thorship attribution at large scale is substantially
more difficult, they still show the potential of per-
forming identification with acceptable accuracy.
To be precise, both approaches report good perfor-
mances only in scenarios where either an “I don’t
know” answer is also accepted (Koppel et al.,
2011) or the attribution is not precise, i.e., the
statement that the correct author is among the top
k ones is sufficient (Narayanan et al., 2012).

Motivated by previous findings, which showed
that direct authorship attribution is not feasible in
a large scale scenario, we contribute to this field
by proposing a two-step approach in this study.
Specifically, we propose at first to reduce the num-
ber of candidate authors while keeping the correct

1PAN is an internationally renowned initiave in the field
of digital text forensics and stylometry, https://pan.
webis.de
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author in the reduced set with reasonable accuracy.
Incorporating the promising results reported by
using embedding representations ((Posadas-Durán
et al., 2017)), we also find that a vector space
based on document embeddings (Le and Mikolov,
2014) in combination with cosine similarity yields
the best results for reducing candidate authors in
the large scale. As authorship attribution gener-
ally heavily depends on the datasets used (e.g.,
the text type or the number of training and test
documents (Luyckx and Daelemans, 2011; Pot-
thast et al., 2016)) and the datasets used in the
mentioned studies are not available,2 we created a
collection of 179 individual, novel datasets using
a large question-and-answer (Q&A) network on
which we extensively test our models. Using these
datasets, we finally also show that a preliminary
reduction of candidates substantially improves the
overall accuracy of finding the correct author in
large settings.

At a glance, our contributions are as follows: (1)
We evaluate document embeddings in combina-
tion with cosine similarity and show that they out-
perform n-grams (which have proven to be among
the most discriminating features, e.g., Stamatatos,
2013; Kestemont et al., 2018) with respect to the
task of reducing the number of candidate authors
in large scenarios. Thereby we show that neither
n-grams used with similarity measures nor sup-
port vector machines are able to keep up with doc-
ument embeddings. (2) We show that eliminat-
ing candidate authors using our approach in large
settings—prior to performing direct attribution—
substantially improves the accuracy of commonly
used attribution methods. (3) We created a novel
dataset collection based on a large Q&A network,
consisting of 179 sub-datasets, each of which fea-
tures six up to nearly 20,000 authors. To ensure
reproducibility and to encourage further research,
we make the dataset publicly available to the re-
search community.

The remainder of this paper is organized as fol-
lows: At first, Section 2 summarizes related work
and subsequently Section 3 presents the dataset.
The proposed approach to reduce candidates using
document embeddings and its evaluation is pre-
sented in Section 4, while Section 5 shows its im-
pact on direct authorship attribution. Finally, Sec-
tion 6 concludes and discusses future work.

2The dataset used by (Koppel et al., 2011) is partly avail-
able (see Section 4.2)

2 Related Work

Features and Methods
In the last decades many different features have
been proposed for stylometry problems, which
can basically be categorized into lexical, syntac-
tic, structural and other specialized features (Sta-
matatos, 2009; Stein et al., 2011). For the spe-
cific task of authorship attribution, lexical metrics
are predominant. Thereby, features are utilized on
the character- and word-level, including charac-
ter/word frequencies (Zheng et al., 2006), average
word- and sentence lengths (Grieve, 2007), func-
tion word frequencies (Argamon et al., 2003; Zhao
and Zobel, 2005), bag-of-words (BOW, Agun and
Yilmazel, 2017) or especially character/word n-
grams (Sapkota et al., 2015; Stamatatos, 2013;
Schwartz et al., 2013 and variants thereof (Sta-
matatos, 2017). Moreover, derived features such
as different readability measures (Tweedie and
Baayen, 1998) or compression ratios (Marton
et al., 2005) have also been investigated.

Syntactic features include the analysis of (n-
grams of) Part-of-Speech (POS) tags (Zhao and
Zobel, 2007) or the analysis of the parse tree of
sentences (Luyckx and Daelemans, 2008; Tschug-
gnall and Specht, 2014), whereas structural fea-
tures analyze indicators like the average paragraph
length or the use of indentation (Zheng et al.,
2006). In addition, various additional metrics have
been proposed, e.g., the analysis of spelling and
grammatical errors present in a text (Koppel and
Schler, 2003).

From a methodical view, a wide range of ma-
chine learning techniques is in use, including
Bayesian models, logistic regression, support vec-
tor machines (SVM) or decision trees. In most
cases, the studies apply multiple classifiers and
compare their results (e.g., see the surveys of
Stamatatos, 2009; Juola and Stamatatos, 2013;
Potthast et al., 2016; Kestemont et al., 2018).
Recently, deep learning techniques have also
been applied to authorship attribution problems.
Thereby, various approaches have been proposed
which use convolutional neural networks (CNN,
Rhodes, 2015; Shrestha et al., 2017). With respect
to input features, embeddings on different levels
are heavily utilized, e.g., on words (word2vec,
Mikolov et al., 2013), documents (doc2vec, Le
and Mikolov, 2014), or n-grams of characters
(Shrestha et al., 2017) or POS-tags (Hitschler
et al., 2017). In addition, studies have reported that
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embeddings are also highly efficient when fed into
common machine learning techniques like SVMs
or logistic regression (Agun and Yilmazel, 2017;
Posadas-Durán et al., 2017).

In general, it has been shown that especially
character n-grams and variants thereof are among
the most discriminating features, which perform
very well with common machine learning tech-
niques such as out-of-the-box SVMs (e.g., Sta-
matatos, 2013; Kestemont et al., 2018), ensembles
(e.g., Custódio and Paraboni, 2018) as well as with
recent deep learning methods (e.g., Shrestha et al.,
2017; Rhodes, 2015). Due to this success of n-
grams, we chose to rely on them as a reference as
is shown in Sections 4 and 5.

Large-Scale Authorship Attribution
As mentioned earlier, the majority of authorship
attribution approaches target a relatively small
number of candidate authors (up to at most 20).
The few studies considering more than a hun-
dred authors utilize various lexical features such
as character n-grams together with syntactic fea-
tures, and achieve accuracies ranging from 50-
80% (Madigan et al., 2005; Luyckx and Daele-
mans, 2008). For about 800 authors, Hitschler
et al. (2017) achieve 13% accuracy with a CNN,
and Shrestha et al. (2017) also utilize a CNN to at-
tribute the correct author out of 1,000 candidates
with an accuracy of 36%.

Koppel et al. (2006, 2011) conducted two exper-
iments on blogs with 10,000 authors. First, they
achieve about 35% by using inverse-document-
frequencies of stylistic features, represented in a
vector space and compared using cosine similar-
ity. In a second study, aiming for precision rather
than recall (i.e., to rather output don’t know than
to guess), they use space-free character 4-grams
with cosine similarity, and enhance their approach
by iteratively evaluating randomized subsets of
features. By doing so, they report a precision of
93% for the cases an answer is given.

Finally, the most comprehensive study with re-
spect to number of candidate authors has been
conducted by Narayanan et al. (2012), who eval-
uate different features with several machine learn-
ing techniques on a dataset consisting of 100,000
authors of blogs. In their study, the main focus
is laid on security concerns, i.e., that the correct
author can be identified in an attack. The authors
show that a combination of a simple nearest neigh-
bor approach with a regularized least squares clas-

sifier is able to detect the correct author of a blog
in 20% of the cases and that the correct author
is in the top-20 ranked candidates in 35% of the
cases. Moreover and along the lines of Luyckx
and Daelemans (2011) or Eder (2010), it is shown
that the size of available training/test texts substan-
tially influences the performance.

As the studies of (Koppel et al., 2011) and
(Narayanan et al., 2012) are the only ones target-
ing authors in the large scale, we will also use
these studies as references throughout this paper
(in terms of their methodology and reported re-
sults). Nevertheless, a direct comparison is diffi-
cult as they either target different aims and/or the
underlying datasets are not or only partly avail-
able. In contrast to these studies, we propose
a novel two-step method in this paper and pro-
vide comprehensive large scale studies alongside,
which can easily be reproduced in both methods
as well as data used.

3 The SE-179 Dataset Collection

For the task of authorship attribution, a suitable
dataset has to consist of realistic documents where
the authorship of each document can undoubtedly
be attributed to a single author. In the case of
single-domain or single-topic analyses, it has to
additionally be assured that all candidate authors
write about the same topics—such that they can-
not be exposed by simply looking at specific topic-
related content words. Along the lines of Keste-
mont et al. (2018), who showed that data from
Q&A forums can successfully be employed to an-
alyze the writing style, we also used the same
Q&A platform, namely StackExchange3, to create
our dataset.

The StackExchange network consists of several
sites where people answer questions related to spe-
cific topics (Stackoverflow being the most popu-
lar site). In contrast to Kestemont et al. (2018)
where only selected posts of selected StackEx-
change sites were crawled, we use the provided
data dump4 containing all questions and answers
of all sites. Because the posts for each site are re-
lated to a single topic (e.g., photography), it al-
lows us to create individual datasets from each
site. Thereby the procedure for creating a dataset
from a site was as follows:

3https://stackexchange.com
4provided directly by StackExchange at https://

archive.org/details/stackexchange
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(1.) We collected all questions and answers by
all users participating in the site. (2.) We re-
moved all posts that were edited by a person dif-
ferent from the original author (in the StackEx-
change network, basically everyone can edit any-
one’s posts). (3.) We cleaned each post, i.e., we
removed code snippets, block quotes, bullet lists,
embedded images and replaced links with $URL$.
We then dismissed all posts containing less than
ten tokens after cleaning. (4.) We combined all
remaining posts of each user into a single doc-
ument and removed all users with less than 500
tokens. Subsequently, we divided each document
into a training and a test document. Thereby we
assured that each training and test document con-
tains at least 500 tokens, and in case this was not
possible (because there were less than 1,000 to-
kens available), we only kept the training docu-
ment to increase the number of candidates. I.e.,
there exist several training documents where there
exists no corresponding test document. Note that
it is a common procedure to fix training and test
documents in order to ensure reproducibility (Sta-
matatos et al., 2018).

Consequently, we created a balanced, single-
topic dataset from each site, containing different
numbers of authors depending on the size of the
community of the respective site. Table 1a shows
the statistics of the resulting 179 datasets5, includ-
ing the average tokens per document (avg t/d) as
well as the ratio between number of training to test
documents (ttr). We consequently call the over-
all dataset collection SE-179. With respect to lan-
guages throughout the collection, the predominant
one is English, but also individual problems in dif-
ferent languages are present6.

For our study, the datasets containing many au-
thors as listed in Table 1b are of high interest, nev-
ertheless we conducted our experiments also on all
other datasets as is detailed in Section 4.2. By do-
ing so we can avoid potential biases towards spe-
cific datasets. As we are concerned about repro-
ducibility, we make the SE-179 collection publicly
available and encourage other researchers to uti-
lize it according to their needs.7

5We didn’t process the Stackoverflow site due to compu-
tational limitations with respect to its size.

6I.e., one for each Chinese, Esperanto, French, German,
Italian, Japanese, Korean, Polish, Portuguese, Russian, Span-
ish and Ukrainian.

7The dataset is available at https://doi.org/10.
5281/zenodo.3441861.

train test
authors datasets avg t/d avg t/d ttr
≤ 10 3 757 1143 45%
11–100 31 740 569 47%
101–250 34 698 569 46%
251–500 31 703 577 46%
501–1,000 33 684 574 45%
1,001–5,000 38 669 566 45%
5,001–10,000 7 677 572 44%
> 10,000 2 613 552 40%

(a) General statistics

site origin authors site origin authors

Superuser.com 19,272 Softwareengineering 6,351
Serverfault.com 16,450 Electronics 6,119
Askubuntu.com 9,830 Unix 5,507
Physics 7,418 Stats 5,307
Mathoverflow.net 6,361 Wordpress 3,898

(b) Top 10 large scale datasets.

Table 1: Statistics of the SE-179 dataset collection in-
cluding average tokens per document (avg t/d) and the
ratio between number of training and test documents
(ttr).

4 Reducing Candidate Authors

In this section, we outline our approach of effec-
tively reducing the number of candidate authors
by utilizing document embeddings. After describ-
ing the applied technique in Section 4.1 as well as
the reference implementations used, we show the
results in Section 4.2.

4.1 Methods

Document Embeddings
Based on the promising results reported by
Posadas-Durán et al. (2017), we also uti-
lize document embeddings with doc2vec (Le
and Mikolov, 2014). Considering the two
possible representation techniques provided by
doc2vec, i.e., distributed memory (DM) and
distributed bag of words (DBOW), we evalu-
ated the three basic models (i) DM using con-
catenation (DM/concat), (ii) DM using aver-
age (DM/avg), (iii) DBOW as well as the two
combinations (iv) DBOW+DM/concat and (v)
DBOW+DM/avg. For each model, we evaluated
vector sizes (dimensions) of d = {100, 200, 300}
(or the double in case of the combined models)
and relied on the default/optimal settings found by
Posadas-Durán et al. (2017) for the specific model
parameters. With respect to the textual input, we
at first tokenize the text and then experiment with
the following settings to compute the embeddings:
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– type: we either provide the text as is (unigram)
or we compute bigrams of the words

– stem: decides whether stemming should be
applied or not

– windowing: if a window length (wl) is set,
we traverse the document using a sliding window
containingwl tokens and thereby create new “doc-
uments” for each author. The window step ws de-
fines the number of tokens the window is shifted
after each iteration. Additionally, we compute
models from the original documents without win-
dowing.

For the final reduction of candidate authors ac-
cording to a given test document, the procedure is
as follows: (1.) According to the previously de-
scribed settings, we learn models from all avail-
able training documents of all authors. During this
step, all documents are assigned a vector of dimen-
sion d (the model dimension), which form an ac-
cording vector space. In case windowing is used,
each author is represented by several vectors (one
per window). (2.) For the given test document,
we apply the same preprocessing steps (i.e., input
type, stemming and windowing) and make use of
the functionality provided by doc2vec to estimate
a vector for a document that was not seen during
learning. (3.) Similar to Koppel et al. (2011) we
then compare the test document’s vector with all
document vectors in the vector space by comput-
ing the cosine similarity. Ordering by this sim-
ilarity and using the top-k authors finally allows
reducing the set of candidates to an arbitrary ex-
tent. In case windowing is used, i.e., when there
are multiple documents by each author, we use the
average of the similarities of all the author’s docu-
ment vectors.

Reference Implementations

To compare the proposed approach, we re-
implemented the approach described by Koppel
et al. (2011). Specifically, in this approach so-
called space-free character 4-grams are computed
for each document and their normalized frequen-
cies form the basis for a vector space. By re-
peatedly (k1 times) selecting k2% of the feature
set randomly, cosine similarity is used to compare
the documents. In our reimplementation we used
the optimal values as reported, i.e., k1 = 100 and
k2 = 40%. As an additional reference, we used
regular n-grams instead of the space-free variants.

authors model d stem wl ws type
≤ 10 DM/avg 200 yes – – unigram
11–100 DM/avg 100 yes – – unigram
101–250 DM/concat 100 yes 300 50 unigram
251–500 DM/concat 100 yes 300 50 unigram
501–1,000 DM/concat 100 yes 300 50 unigram
1,001–5,000 DM/concat 200 yes 300 50 unigram
5,001–10,000 DM/concat 100 yes – – unigram
> 10,000 DM/concat 100 yes – – unigram

Table 2: Best doc2vec models with respect to number
of authors.

4.2 Estimating Best Reduction Models

Contrary to Narayanan et al. (2012) we find it
more suitable to not test whether the correct au-
thor is in the top-k results, but to evaluate how of-
ten s/he is in the result set after reducing by per-
centage (e.g., eliminating 90% of the candidates).
This makes especially sense as we are dealing with
179 different datasets of different sizes, where a
comparison of the top-k results with a fixed k is
not meaningful (e.g., it makes a huge difference if
the correct author is in the top-5 in a dataset con-
taining 20 authors or in one containing 16,000 au-
thors). Thus, we experimented with the reduction
rates 10-90%, 95%, and 99%, and measured the
hit rate, i.e., the percentage of how often the cor-
rect author is still in the reduced candidate set.

In a first preliminary step, we aimed to find
the best models with respect to reduction rate and
candidate author size8. We evaluated on all 179
datasets using the respective training documents
for learning and the test documents for testing. For
the larger datasets, we tested on 1,000 randomly
selected test documents (as has been done by Kop-
pel et al. (2011)).

After conducting the experiment, we found that
the reduction rate doesn’t make any difference
with respect to the model type and that the best
performing models only depend on the number of
authors. Table 2 shows the best settings for differ-
ent number of authors, computed by using the av-
erage of all corresponding datasets and regardless
of the reduction rate.9 It can be seen that stemmed
unigrams work best in all cases and that window-
ing is not the preferred option when looking at
large (and small) candidate sizes.

Using the best models found (depending on the
number of candidate authors) we evaluated their

8E.g., what is the best doc2vec-model for reducing an
8,000 author dataset by 70%?

9Note that we cannot provide single hit rates for each con-
figuration, as they significantly depend on the reduction rate.
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Figure 1: Hit rates for the doc2vec reduction models averaged over all datasets with respect to reduction rate and
candidate author size.
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Figure 2: Comparison of the doc2vec reduction (d2v-red) with the method proposed by Koppel et al. (2011)
using space-free (sf) and regular (r) n-grams. The y-axis shows the average hit rates over all datasets for different
reduction rates, grouped by number of candidate authors.

performance with respect to the reduction rate.
That is, we reduced the number of candidates by
the respective percentage and measured—in terms
of hit rate—if the correct author is still in the re-
maining set. As expected and can be seen in Fig-
ure 1, the performance decreases as the reduction
rate increases. In general, the more candidate au-
thors, the better the model is able to filter out ir-
relevant ones: E.g., the datasets having more than
5,000 authors could be reduced by 50% with a hit
rate of 0.97, and by 80% with a hit rate of 0.88.
When reducing these datasets by 99%, a hit rate
of approximately 0.5 remains.

In a further experiment, we compared the re-
duction results to the reference systems described
in Section 4.1, i.e., with regular and space-free n-
grams as proposed by Koppel et al. (2011), Fig-
ure 2 exemplarily shows the average results over
all datasets, grouped by the number of candidate
authors for the reduction rates 99%, 90% and 80%,
respectively. Regardless of the individual reduc-
tion rate, the doc2vec model is inferior to the other
models for datasets having less than 5,000 authors,

but can significantly10 exceed them when more
authors are involved. For example, when reduc-
ing candidates by 90% in a 5,000+ candidate au-
thor setting, it is able to keep the correct author
with a hit rate of 0.69 in average, whereas the best
other model (regular 3-grams) achieves a hit rate
of 0.60. Although the superiority of our doc2vec
model decreases with lower reduction rates, it is
still better than the other models for all reduction
rates in scenarios having more than 5,000 candi-
date authors, as is shown in Table 3.

5 Attribution on Reduced Candidates

In the previous section, we have shown that the
number of candidate authors in large authorship
attribution problems can effectively be reduced by
compiling a document embedding model based on
word unigrams. As a follow-up, we wanted to
assess the influence of this reduction technique
for state-of-the-art authorship attribution methods.
The basic idea is to apply a two-step attribution by

10We computed a McNemar’s test (Dietterich, 1998) and
interpreted p < 0.05 as significant.
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red. d2v-red sf (n=4) sf (n=3) r (n=4) r (n=3)
10% 0.998 0.994 0.993 0.994 0.993
20% 0.995 0.988 0.986 0.988 0.986
30% 0.991 0.982 0.978 0.981 0.979
40% 0.984 0.973 0.969 0.973 0.971
50% 0.972 0.958 0.954 0.958 0.959
60% 0.954 0.931 0.932 0.937 0.938
70% 0.928 0.890 0.896 0.895 0.904
80% 0.881 0.812 0.827 0.811 0.834
90% 0.792 0.659 0.695 0.653 0.700
95% 0.697 0.551 0.585 0.538 0.593
99% 0.501 0.377 0.412 0.376 0.431

Table 3: Comparison of the proposed doc2vec reduc-
tion (d2v-red) with the method proposed by Koppel
et al. (2011) using space-free (sf) and regular (r) n-
grams. The table shows the average hit rates for the
respective reduction rates (red.) over all 9 datasets con-
taining more than 5,000 authors.

transforming large scale problems to normal-scale
problems: (1.) reduce the number of candidate au-
thors, (2.) apply regular authorship attribution ap-
proaches for the remaining candidates.

5.1 Direct Attribution Baseline
In a first step, we created a baseline by computing
the accuracies achieved for direct authorship at-
tribution, i.e., for finding the correct author with-
out any reduction. For this, we utilized the pro-
posed reduction technique, but reduced to exactly
one author instead of a set of authors. Similar
to Section 4.1, we again utilized the approach of
Koppel et al. (2011) with space-free and regular
character 3-/4-grams in combination with a vec-
tor space and cosine similarity. As an additional
reference for comparison, we made use of the
reference implementation provided for the author
identification task at the PAN 2018 event (Keste-
mont et al., 2018). It computes character 3-grams
and makes classifications using a standard SVM,
yet achieving competitive results by applying grid
search (Murauer et al., 2018). The results aver-
aged over candidate author sizes are presented in
Figure 3, revealing that doc2vec is very imprecise
for direct authorship attribution in non-large cases.
The other approaches generally perform similarly,
except for the largest datasets where the SVM
achieved the best results (0.21 for the datasets with
more than 10,000 authors).

5.2 Two-Step Attribution
To measure the influence of the reduction pro-
posed in Section 4, we conducted an experiment
on the largest datasets by at first reducing the
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Figure 3: Accuracies for direct authorship attribution
averaged over different candidate author sizes. sf-VS
and r-VS represent space-free and regular n-grams, re-
spectively, represented in a vector space as proposed by
Koppel et al. (2011), and SVM refers to the reference
implementation provided by PAN-2018.

number of candidates, and subsequently perform-
ing regular authorship attribution. Considering the
best results of direct attribution as presented pre-
viously, we evaluated the regular 3-gram vector
space approach and the SVM implementation of
PAN11. For each approach, we at first reduced the
authors by the respective reduction rate, applied
the two approaches and compared it to the best re-
sult achieved by direct attribution.

Figure 4 depicts the results for the 5,000-10,000
author datasets and for those having more than
10,000 authors, respectively. It can be seen that in
general the accuracy–especially that of the SVM–
can be improved, nevertheless, the best first-step
reduction rate depends on the problem size: For
datasets up to 10,000 candidates, the best option
is to reduce the number of authors by 99% before
performing attribution. On the contrary, the best
accuracy for problems with more than 10,000 can-
didates could be achieved by using a reduction rate
of 60%.

As stated initially in the paper, the evaluation re-
sults of authorship attribution techniques is highly
dependent on the dataset (Luyckx and Daelemans,
2011; Potthast et al., 2016), and while our datasets
within the SE-179 collection are highly hetero-
geneous with respect to topics and author sizes
and also languages, they still belong to the genre
of question-answering platforms. We therefore
aimed to evaluate the dataset used by Koppel et al.
(2011) to gain additional insight into the perfor-

11Note that for each test document a corresponding SVM
has to be trained on the remaining candidate authors after re-
duction.
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Figure 4: Two-step attribution with preliminary candidate reduction using doc2vec and cosine similarity.

mance on a different genre, i.e., blogs. Unfortu-
nately, the data is only available in a raw form,
i.e., we had to reconstruct the dataset as to the best
of our knowledge incorporating the facts given by
the authors. Consequently, we ended up with blog
entries from 10,000 authors, each containing about
2,000 words, whereby the first 1,500 words were
used for training and the last 500 for testing.

Considering the superiority of the SVM with
character 3-grams in the previous experiment, we
compared the performance of the SVM on all
datasets of the SE-179 collection with more than
5,000 authors with the performance on the recre-
ated blog dataset. Figure 5 shows the relative
improvements of our proposed two-step attribu-
tion compared to the best direct attribution re-
sults, which are very similar for both the SE-179
datasets and the blog dataset, i.e., 0.202 and 0.204,
respectively. As can be seen, a preliminary re-
duction of candidates substantially improves the
performance, especially for the blog dataset for
which the accuracy could be increased by more
than 10%.

6 Conclusion and Future Work

In this paper, we tackled the problem of large scale
authorship attribution incorporating thousands of
authors by first filtering candidate authors before
the actual classification step. Extensive evalua-
tions on a novel, publicly available dataset collec-
tion reveal that document embeddings in combina-
tion with cosine similarity are able to effectively
reduce the number of candidate authors for large
scale problems. We also outlined that a prelimi-
nary reduction increases the overall attribution ac-
curacy in such cases.

As for future work, several open issues should
be addressed. In this study, we relied on related
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Figure 5: Relative performance improvements of the
PAN-2018-SVM baseline implementation on SE-179
datasets with more than 5,000 authors and the repro-
duced blogs dataset (Koppel et al., 2011). The chart
shows the improvements in accuracy that could be
gained by applying preliminary candidate reduction.

work that suggests document embeddings, never-
theless other embedding techniques like word2vec
(Mikolov et al., 2013), fastText (Joulin et al., 2016)
or GloVe (Pennington et al., 2014) could be eval-
uated. Moreover, for the computation of simi-
larities between document vectors, we relied on
cosine similarity, whereas several other metrics
should be evaluated. In the case of authorship at-
tribution, we similarly utilized a common, estab-
lished technique (SVM). As the reduction of prob-
lem sizes additionally enables the utilization of
resource-intensive algorithms, more experiments
are needed in that direction, especially using deep
learning techniques. Finally, it would be worth in-
vestigating how this approach performs on cross-
domain/-topic scenarios and other text genres like
short messages or other social media contents.
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Abstract

Aspect-term sentiment analysis (ATSA) is a
long-standing challenge in natural language
processing. It requires fine-grained semanti-
cal reasoning about a target entity appeared
in the text. As manual annotation over the
aspects is laborious and time-consuming, the
amount of labeled data is limited for super-
vised learning. This paper proposes a semi-
supervised method for the ATSA problem by
using the Variational Autoencoder based on
Transformer. The model learns the latent dis-
tribution via variational inference. By dis-
entangling the latent representation into the
aspect-specific sentiment and the lexical con-
text, our method induces the underlying senti-
ment prediction for the unlabeled data, which
then benefits the ATSA classifier. Our method
is classifier-agnostic, i.e., the classifier is an
independent module and various supervised
models can be integrated. Experimental re-
sults are obtained on the SemEval 2014 task 4
and show that our method is effective with dif-
ferent five specific classifiers and outperforms
these models by a significant margin.

1 Introduction

Aspect based sentiment analysis (ABSA) has two
sub-tasks, namely aspect-term sentiment analy-
sis (ATSA) and aspect-category sentiment analy-
sis (ACSA). ACSA is to infer the sentiment polar-
ity with regard to the predefined categories, e.g.,
the aspect food, price, ambience. On the other
hand, ATSA aims at classifying the sentiment po-
larity of a given aspect word or phrase in the
text. For example, given a review about a restau-
rant “the [pizza]aspect is the best if you like thin
crusted pizza, however, the [service]aspect is aw-
ful.”, the sentiment implications with regard to
“pizza” and “service” are contrary. For the aspect

∗∗: Equal Contribution

“pizza”, the sentiment polarity is “positive” while
“negative” for the aspect “service”. In contrast
to document-level sentiment analysis, ATSA re-
quires more fine-grained reasoning about the tex-
tual context. The task is worthy of investigation
as it can obtain the attitude with regard to a spe-
cific entity which we are interested in. The task
is widely applicated in analyzing the comments,
such as opinion generation. Recently, many at-
tempts (Tang et al., 2016b; Pan and Wang, 2018;
Liu et al., 2018; Xue and Li, 2018; Li et al., 2018a)
focus on supervised learning and pay much atten-
tion to the interaction between the aspect and the
context. However, the amount of labeled data is
quite limited as the annotation about the aspects is
laborious. Currently available data sets, e.g. Se-
mEval, only has around 2K unique sentences and
3K sentence-aspect pairs, which is insufficient to
fully exploit the power of the deep models. Fortu-
nately, a large amount of unlabeled data is avail-
able for free and can be accessed easily from the
websites. It will be of great significance if numer-
ous unlabeled samples can be utilized to further fa-
cilitate the supervised ATSA classifier. Therefore,
the semi-supervised ATSA is a promising research
topic.

In ATSA, achieving the sentiment of the aspect-
term is semantically complicated and it is non-
trivial for a model to capture sentimental simi-
larity of the aspects, which causes the difficulties
for semi-supervised learning. In this paper, we
proposed a classifier-agnostic framework which
named Aspect-term Semi-supervised Variational
Autoencoder (Kingma and Welling, 2014) based
on Transformer (ASVAET). The variational au-
toencoder offers the flexibility to customize the
model structure. In other words, the proposed
framework is compatible with other supervised
neural networks to boost their performance. Our
proposed model learns the latent representation
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of the input data and disentangles the representa-
tions into two independent parts, i.e., the aspect-
term sentiment and the representation of the lexi-
cal context. By regarding the aspect sentiment po-
larity of the unlabeled data as the discrete latent
variable, the model implicitly induces the senti-
ment polarity via the variational inference. Specif-
ically, the representation of the lexical context is
extracted by the encoder and the aspect-term sen-
timent polarity is inferred from the specific ATSA
classifier. The decoder takes these two represen-
tations as inputs and reconstructs the original sen-
tence by two unidirectional language models. In
contrast to the conventional auto-regressive mod-
els, the latent representations have their specific
meanings and are obtained from the encoder and
the classifier to the input examples. Therefore, it
is also possible to condition the sentence genera-
tion on the sentiment and lexical information w.r.t.
a certain target entity. In addition, by separating
the representation of the input sentence, the classi-
fier becomes an independent module in our frame-
work, which endows the method with the ability to
integrate different classifiers. The method is pre-
sented in detail in Sec. 3.

Experimental results are obtained on the two
classical datasets from SemEval 2014 task 4 (Pon-
tiki et al., 2014). Five recent available models
are implemented as the classifier in ASVAET. Our
method is able to utilize the unlabeled data and
consistently improve the performance against the
supervised models. Compared with other semi-
supervised methods, i.e., in-domain word embed-
ding pre-training and self-training, the proposed
method also demonstrates better performance. We
also evaluate the effectiveness of labeled data and
sharing embeddings, and show that the structure
can provide the separation between lexical context
and sentiment polarity in the latent space.

2 Related Work

Sentiment analysis is a traditional research hotspot
in the NLP field (Wang and Manning, 2012).
Rather than obtaining the sentimental inclination
of the entire text, ATSA instead aims to extract
the sentimental expression w.r.t. a target entity.
With the release of online completions, abundant
methods were proposed to explore the limits of
current models. Tang et al. (Tang et al., 2016a)
proposed to make use of bidirectional Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-

huber, 1997) to encode the sentence from the left
and right to the aspect-term. This model primar-
ily verifies the effectiveness of deep models for
ABSA Tang et al. (Tang et al., 2016b) then put
forward a neural reasoning model in analogy to
the memory network to perform the reasoning in
many steps. There are also many other works ded-
icating to solve this task (Pan and Wang, 2018; Liu
et al., 2018; Zhang and Liu, 2017).

Another related topic is semi-supervised learn-
ing for the text classification. Recently, Data
augmentation methods (Xie et al., 2019; Berth-
elot et al., 2019) achieve a greate success on low-
resource datasets. Moreover, A simple but effi-
cient method is to use pre-trained modules, e.g.,
initializing the word embedding or bottom layers
with pre-training. Word embedding technique has
been wildly used in NLP models, e.g., Glove (Pen-
nington et al., 2014) and ELMo (Peters et al.,
2018). Recently, Bidirectional Encoder Represen-
tations from Transformer (BERT) (Devlin et al.,
2018) replaces the embedding layer to context-
dependent layer with the pre-trained bidirectional
language model to capture the contextual repre-
sentation. BERT is complementary to the encoder
of the proposed method. To keep our framework
neat, these pre-training investigations are not con-
ducted in this paper.

VAE-based semi-supervised methods, on the
other hand, are able to cooperate with various
kinds of classifiers. VAE has been applied in
many semi-supervised NLP tasks, ranging from
text classification (Xu et al., 2017), relation extrac-
tion (Marcheggiani and Titov, 2016) to sequence
tagging (Chen et al., 2018). Different from text
classification where sentiment polarity is related to
an entire sentence, ATSA just interested in related
information of a given aspect-term. To circumvent
this problem, a novel structure is proposed.

3 Method Description

In this section, the problem definition is provided
and then the model framework is presented in de-
tail.

The ATSA task aims to classify a data sam-
ple with input sentence x = {x1, ..., xn} and
corresponding aspect 1 a = {a1, ..., am}, where
a is a subsequence of x, into a sentiment polar-
ity y, where y ∈ {P,O,N}. P,O,N denotes

1If an input sentence has n aspect-terms, then n data sam-
ples are generated.
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“positive”, “neutral”, “negative”. For the semi-
supervised ATSA, we consider the following sce-
nario. Given a dataset consisting of labeled sam-
ples Sl and unlabeled samples Su, where the Sl =

{(x(i)
l ,a

(i)
l , y

(i)
l )}Nli=1 and Su = {(x(i)

u ,a
(i)
u }Nli=1,

the goal is to utilize Su to improve the classifica-
tion performance over the supervised model using
Sl only.

The architecture is depicted in Fig. 1. The
method consists of three main components, i.e.,
the classifier, the encoder, and the decoder. The
classifier can be any differentiable supervised
ATSA model, which takes x and a as input, and
outputs the prediction about y. The encoder trans-
form the data into a latent space that is indepen-
dent of the label y. And the decoder combines the
outputs from the classifier and the encoder to re-
construct the input sentence. For the labeled data,
the classifier and the autoencoder are trained with
the given label y. For the unlabeled data, the y
is regarded as the latent discrete variable and it
is induced by maximizing the generative probabil-
ity. As the classifier can be implemented by var-
ious models, the description of the classifier will
be omitted. We present a autoencoder structure
based on Transformer (Vaswani et al., 2017). In
the following, the objective functions are clarified,
followed by the model description.

3.1 Variational Inference
Using generative models is a common approach
for semi-supervised learning, which tries to extract
the information from the unlabeled data by model-
ing the data distribution. In VAE, the data distribu-
tion is modeled by optimizing the evidence lower
bound (ELBO) of data log-likelihood, which leads
to two objectives for labeled data and unlabeled
data respectively. For the labeled data, VAE max-
imizes the ELBO of p(x, y|a). For the unlabeled
data, it optimizes the ELBO of p(x|a), where the
y is latent and integrated. Specifically, the depen-
dency between variables is illustrated in Fig. 2.
The ELBO of log p(x, y|a) can be given as fol-
lows:

log pθ(x, y|a) ≥ Eqφ(z|x,a,y)[log pθ(x|y,a, z)]
−DKL(qφ(z|x,a, y)||pθ(z))
+ log pθ(y)

= L(x,a, y) ,

(1)

where z is the latent variable which represents lex-
ical information over the sentence and DKL is the

KullbackLeibler divergence.
In terms of the unlabeled data, the ELBO of

log p(x|a) can be extended from Eq. 1.

log pθ(x|a) ≥
∑

y

qφ(y|x,a)(L(x,a, y))

+H(qφ(y|x,a))
= U(x,a) ,

(2)

where H is the entropy function and qφ(y|x,a) is
the classification function.

And qφ(y|x,a) can also be trained in the super-
vised manner using the labeled data. Combining
the above objectives, the overall objective for the
entire data set is:

J =
∑

(x,a,y)∈Sl
−L(x,a, y) +

∑

x∈Su
−U(x,a)

+ γ
∑

(x,a,y)∈Sl
− log qφ(y|x,a) ,

(3)

where γ is a hyper-parameter which controls the
weight of the additional classification loss.

To implement this objective, three components
are required to model the qφ(y|x,a), qφ(z|x,a, y)
and pθ(x|y,a, z) respectively.

3.2 Classifier
Various currently available models can be used as
the classifier. For the unlabeled data, the classi-
fier is used to predict the distribution of label y for
the decoder, i.e., y ∼ qφ(y|x,a). The distribution
qφ(y|x,a) will be tuned during maximizing the
objective in Eq. 2. In this work, five classifiers are
implemented in ASVAET and they are also used
as the supervised baselines for the comparison.

3.3 Transformer Encoder
The encoder plays the role of qφ(z|x,a, y). This
module attempts to extract the lexical feature that
is independent of the label y when given data sam-
ple (x,a). In this way, the z and y jointly form the
representative vector for the input data.

In our implementation, we use a bidirectional
encoder to construct sentences embeddings. It is
referred as the Transformer encoder that is ac-
tually a sub-graph of the Transformer architech-
ture (Vaswani et al., 2017), the architecture is
shown in the left part of the Fig. 2. The en-
coder employs residual connections around each
of the multi-head attention sub-layers, followed by
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Figure 1: This is the sketch of our model with bidirectional encoder and decoder. Assuming the aspect-term starts
at the k-th position in x. Bottom: When using unlabeled data, the distribution of y ∼ qφ(y|x,a) is provided
by the classifier. Left: The sequence is encoded by a Transformer block, which receives the summation of three
embeddings, i.e., segment (used to distinguish aspect words) sxn , position pxn and word exn . The encoding and
the label y are used to parameterize the posterior qφ(z|x,a, y). Right: A sample z from the posterior qφ(z|x,a, y)
and label y are passed to the generative network which estimates the probability pθ(x|y,a, z) by two unidirectional
Transformer decoders. The number of aspect tokens is la.

Figure 2: Illustration of ASVAET as a directed graph.
Left: Dashed lines are used to denote variational
approximation qφ(y|x,a)qφ(z|x,a, y). Right: Solid
lines are used to denote generative model pθ(x|y,a, z).

layer normalization. To capture the aspect-term,
we treat the aspect-term and its context differently
by segment embeddings. To further emphasize the
position of the conditional aspect, the position tag
is also included for each token. The position tag
indicates the distance from the token to the as-
pect. And then the position tag is transformed
into a vector as defined in (Vaswani et al., 2017),
which is added with the word embedding and seg-
ment embedding as the input of the Transformer
encoder. Let g denote the output of the Trans-
former encoder after pooling which simply aver-
aging the hidden states of the aspect-terms (the
number of tokens is equal or greater than one) of
the last layer, y is the indicator vector of the polar-

ity. Then the distribution of z can be given as:

z ∼ N (µ(x, y), diag(σ2(x, y))) ,

µ(x, y) = tanh(Wµ[g : y] + bµ) ,

σ(x, y) = tanh(Wσ[g : y] + bσ) .

The sequences are divided into two parts by us-
ing segment embedding, the encoder can be aware
of the position and the content of the aspect-term
a by multi-head attention operation in the Trans-
former encoder. The information from two sides
are aggregated into the aspect-term a, and there-
fore the resulting z can gather the information re-
lated to the aspect.

3.4 Transformer Decoders
The decoder is also a sub-graph of Transformer ar-
chitechture (Vaswani et al., 2017) which focus on
reconstructing original text. The main difference
from the Transformer encoder is that the Trans-
former decoder is unidirectional by modifying the
self-attention sub-layer to prevent positions from
paying attention to subsequent positions. The tex-
tual sequence is well-known to be semantically
complex and it is non-trivial for a Transformer de-
coder to capture the high-level semantics. Here
we investigate two questions. How to implement
pθ(x|y,a, z) without losing the information of a
and how to capture the semantic polarity by a se-
quential model. For the first question, denoting
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that x is composed of three parts (xl,a,xr), we
use two Transformer decoders to model the left
and right content. For the second question, we let
each token is generated conditioned on the sum-
mation of the variables z and embedding y.

One way to achieve pθ(x|y,a, z) is to separate
the sequence into two parts, reversing the process
in the two unidirectional decoder. For each de-
coder, the input state is represented by the sum-
mation of the four input i.e., the polarity indicator
vector y from the classifier or the labeled dataset,
the context vector z from the encoder, the input
token embedding ext and the position embedding
pxt :

←−
h trm
t =

←−−
ftrm(e[xt:a],pxt ,y, z), xt ∈ [xl : a]

p(xt−1|·) = softmax(Wp
←−
h trm
t + bp) ,

log pθ(xl|a, y, z) =
∑

xt

log p(xt|·), xt ∈ xl ,

−→
h trm
t =

−−→
ftrm(e[a:xt],pxt ,y, z), xt ∈ [a : xr]

p(xt+1|·) = softmax(Wp
−→
h trm
t + bp) ,

log pθ(xr|a, y, z) =
∑

xt

log p(xt|·), xt ∈ xr .

It is equivalent to generate two sequences using
two decoders. When decoding left part (or right
part), the aspect will first get processed by the
decoder and hence the decoder is aware of the
aspect-terms. The position tag is also used in the
decoder.

4 Experiments

4.1 Datasets and Preparation
The models are evaluated on two benchmarks:
Restaurant (REST) and Laptop (LAPTOP) datasets
from the SemEval ATSA challenge (Pontiki et al.,
2014). The REST dataset contains the reviews in
the restaurant domain, while the LAPTOP dataset
contains the reviews of Laptop products. The
statistics of these two datasets are listed in Table
1. When processing these two datasets, we fol-
low the same procedures as in another work (Lam
et al., 2018). The dataset has a few samples that
are labeled as “conflict” and these samples are re-
moved. All tokens in the samples are lowercased
without other preprocess, e.g., removing the stop
words, symbols or digits.

In terms of the unlabeled data, we obtained
samples in the same domain for the REST and
LAPTOP datasets. For the REST, the unlabeled

# Positive # Negative # Neutral

REST
Train 2159 800 632
Test 730 195 196

LAPTOP
Train 980 858 454
Test 340 128 171

Table 1: The statistics of the datasets.

Avg. Length Std. Length

REST
Labeled 20.06 10.38

Unlabeled 22.70 12.38

LAPTOP
Labeled 21.95 11.80

Unlabeled 29.89 17.33

Table 2: The statistics of the reviews.

samples are obtained from a sentiment analysis
competition in Kaggle 2. The competition consists
of 82K training samples and 34K test samples. For
the LAPTOP, the unlabeled samples are obtained
from the “Six Categories of Amazon Product Re-
views” 3, which has 412K samples. The reviews
about the laptops are used among six product cat-
egories.

The NLTK sentence tokenizer is utilized to ex-
tract the sentences from the raw comments. And
each sentence is regarded as a sample in our model
for both REST and LAPTOP. To obtain the aspects
in the unlabeled samples, an open-sourced aspect
extractor 4 is pre-trained using labeled data. The
resulting test F1 score is 88.42 for the REST and
80.12 for the LAPTOP. Then the unlabeled data
is processed by the pre-trained aspect extractor to
obtain the aspects. The sentences that have no as-
pect are removed. And the sentences are filtered
with maximal sentence length 80. The statistic of
the resulting sentences is given in Table. 2.

4.2 Model Configuration & Classifiers

In the experiments, the model is fixed with a set of
universal hyper-parameters. The number of units
in the encoder and the decoder is 100 and the latent
variable is of size 50 and the number of layers of
both Transformer blocks is 2, the number of self-
attention heads is 8. The KL weight klw should be
carefully tuned to prevent the model from trapping
in a local optimum, where z carries no useful in-
formation. In this work, the KL weight is set to be
1e-4. In term of word embedding, the pre-trained
GloVe (Pennington et al., 2014) is used as the in-

2https://inclass.kaggle.com/c/restaurant-reviews
3http://times.cs.uiuc.edu/ wang296/Data/
4https://github.com/guillaumegenthial/sequence tagging
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Classifier Models REST LAPTOP
Accuracy Macro-F1 Accuracy Macro-F1

- CNN-ASP 77.82 \ - 72.46 \ -
- AE-LSTM 76.60 \ - 68.90 \ -
- ATAE-LSTM 77.20 \ - 68.70 \ -
- GCAE 77.28 (0.32) \ - 69.14 (0.32) \ -

TC-LSTM
TC-LSTM 77.97 (0.16) 67.55 (0.32) 68.42 (0.56) 62.42 (1.10)
TC-LSTM (EMB) 77.18 (0.38) 65.97 (0.44) 67.51 (0.72) 60.31 (1.28)
TC-LSTM (ST) 78.19 (0.36) 67.65 (0.43) 68.47 (0.47) 62.54 (0.74)
TC-LSTM (ASVAET) 78.34 (0.18) 68.41 (0.92) 70.04 (0.53) 64.23 (0.71)

MemNet
MemNet 78.68 (0.23) 68.18 (0.58) 70.28 (0.32) 64.38 (0.86)
MemNet (EMB) 79.47 (0.38) 69.06 (0.21) 72.17 (0.44) 65.06 (0.73)
MemNet (ST) 78.83 (0.20) 68.92 (0.20) 69.52 (0.36) 64.39 (0.67)
MemNet (ASVAET) 80.58 (0.23) 70.06 (0.53) 73.21 (0.55) 65.88 (0.45)

IAN
IAN 79.20 (0.19) 68.71 (0.59) 69.48 (0.52) 62.90 (0.99)
IAN (EMB) 79.46 (0.38) 69.45 (0.38) 70.89 (0.48) 65.27 (0.34)
IAN (ST) 79.45 (0.11) 69.36 (0.71) 73.25 (0.81) 68.25 (0.76)
IAN (ASVAET) 80.23 (0.17) 70.32 (1.00) 74.02 (0.42) 69.39 (0.75)

BILSTM-ATT-G
BILSTM-ATT-G 79.74 (0.22) 69.16 (0.53) 74.26 (0.35) 69.54 (0.53)
BILSTM-ATT-G (EMB) 80.27 (0.44) 70.33 (0.51) 73.61 (0.30) 68.25 (0.63)
BILSTM-ATT-G (ST) 80.54 (0.23) 71.88 (0.19) 74.70 (0.41) 70.31 (0.60)
BILSTM-ATT-G (ASVAET) 81.11 (0.34) 72.19 (0.27) 75.44 (0.32) 70.52 (0.33)

TNet-AS
TNet-AS 80.56 (0.23) 71.17 (0.43) 76.75 (0.35) 71.88 (0.35)
TNet-AS (EMB) 80.96 (0.49) 69.99 (0.87) 76.45 (0.40) 71.52 (0.73)
TNet-AS (ST) 80.76 (0.23) 71.32 (0.56) 76.88 (0.41) 71.74 (0.63)
TNet-AS (ASVAET) 81.77 (0.20) 72.57 (0.32) 77.57 (0.31) 72.31 (0.69)

Table 3: Experimental results (%). For each classifier, we performed five experiments, i.e., the supervised classifier,
the supervised classifier with pre-trained embedding using unlabeled data and our model with the classifier. The
results are obtained after 5 runs, and we report the mean and the standard deviation of the test accuracy, and the
Macro-averaged F1 score. Better results are in bold. \ denotes that the results are extracted from the original paper.

put of the encoder and the decoder 5 and the out-
of-vocabulary words are excluded. And it is fixed
during the training. The γ is set to be 10 across the
experiments.

We implemented and verified four kinds of
mainstream ATSA classifiers integrated into our
model, i.e., TC-LSTM (Tang et al., 2016a), Mem-
Net (Tang et al., 2016b), BILSTM-ATT-G (Zhang
and Liu, 2017), IAN (Ma et al., 2017) and
TNet (Li et al., 2018b).

• TC-LSTM: Two LSTMs are used to model
the left and right context of the target sepa-
rately, then the concatenation of two repre-
sentations is used to predict the label.

• MemNet: It uses the attention mechanism
over the word embedding over multiple
rounds to aggregate the information in the
sentence, the vector of the final round is used
for the prediction.

• IAN: IAN adopts two LSTMs to derive the
representations of the context and the target
phrase interactively and the concatenation is
fed to the softmax layer.

• BILSTM-ATT-G: It models left and right
contexts using two attention-based LSTMs

5http://nlp.stanford.edu/data/glove.8B.300d.zip

and makes use of a special gate layer to com-
bine these two representations. The resulting
vector is used for the prediction.

• TNet-AS: Without using an attention mod-
ule, TNet adopts a convolutional layer to
get salient features from the transformed
word representations originated from a bi-
directional LSTM layer. Among current su-
pervised models, TNet is currently one of the
in-domain state-of-the-art methods and the
TNet-AS is one of the two variants of TNet.

The configuration of hyper-parameters and the
training settings are the same as in the original pa-
pers. Various classifiers are tested here to demon-
strate the robustness of our method and show that
the performance can be consistently improved for
different classifiers.

4.3 Main Results

Table 3 shows the experimental results on the
REST and LAPTOP datasets. Two evaluation met-
rics are used here, i.e., classification accuracy and
Macro-averaged F1 score. The latter is more sen-
sitive when the dataset is class-imbalance. In
this table, the semi-supervised results are obtained
with 10K unlabeled data. We didn’t observe fur-
ther improvement with more unlabeled data. The
mean and the standard deviation are reported over
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5 runs. For each classifier clf, we conducted the
following experiments:

• clf : The classifier is trained using labeled
data only.

• clf (EMB): We use CBOW (Mikolov et al.,
2013) to train the word embedding vectors
using both labeled and unlabeled data. And
the resulting vectors, instead of pre-trained
GloVe vectors, are used to initialize the em-
bedding matrix of the classifier. This is
the embedding-level semi-supervised learn-
ing as the embedding layer is trained using
in-domain data.

• clf (ST): The self-training (ST) method is
a typical semi-supervised learning method.
We performed the self-training method over
each classifier. At each epoch, we select
the 1K samples with the best confidence and
give them pseudo labels using the prediction.
Then the classifier is re-trained with the new
labeled data. The procedure loops until all
the unlabeled samples are labeled.

• clf (ASVAET): The proposed method that
uses clf as the classifier. Note again that
the classifier is an independent module in the
proposed model, and the same configuration
is used as in the supervised learning.

Besides, we also include the results of sev-
eral supervised models in the first block, i.e.,
CNN-ASP (Lam et al., 2018), AE-LSTM, ATAE-
LSTM (Wang et al., 2016), GCAE (Li and Xue,
2018), from the original paper.

From the Table 3, the ASVAET is able to im-
prove supervised performance consistently for all
classifiers. For the MemNet, the test accuracy can
be improved by about 2% by the TSSVAE, and so
as the Macro-averaged F1. The TNet-AS outper-
forms the other three models.

Compared with the other two semi-supervised
methods, the ASVAET also shows better results.
The ASVAET outperforms the compared semi-
supervised methods evidently. The adoption of in-
domain pre-trained word vectors is beneficial for
the performance compared with the Glove vectors.

4.4 Ablation Studies
4.4.1 Effect of Labeled Data
Here we investigated whether the ASVAET works
with less labeled data. Without loss of general-

Accuracy w/o sharing w/ sharing
TC-LSTM (ASVAET) 78.34 77.65
MemNet (ASVAET) 80.58 78.82

IAN (ASVAET) 80.23 79.22
BILSTM-ATT-G (ASVAET) 81.11 78.36

TNet-AS (ASVAET) 81.77 79.53

Table 4: Comparison between with or without sharing
embedding on the REST dataset.

Figure 3: The test accuracy w.r.t. the number of labeled
samples on the REST dataset with MemNet classifier.

Figure 4: The distribution of the REST dataset in latent
space z using t-SNE.

ity, the MemNet is used as the basic classifier. We
sampled different amount of labeled data to verify
the improvement by using ASVAET. The test ac-
curacy curve w.r.t. the amount of labeled data used
is shown in Fig. 3. With fewer labeled samples,
the test accuracy decreases, however, the improve-
ment becomes more evident. When using 500 la-
beled samples, the improvement is about 3.2%.
With full 3591 labeled samples, 1.5% gain can be
obtained. This illustrates that our method can im-
prove the accuracy with limited data.

4.4.2 Effect of Sharing Embeddings
In previous works, the word embedding is shared
among all the components. In other words, the
word embedding is also tuned in learning to re-
construct the data. It is questionable whether the
improvement is obtained by using VAE or multi-
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Positive
... the best food i ’ve ever had !!! ...

... the lox is very tasty ...
... the rice is a great value ...

Negative
... the worst food i ’ve ever had !!! ...

... the lox is a bit of boring ...
... the rice is awful ...

Neutral
... had the food in the restaurant ...
... lox with a glass of chilli sauce ...

... the rice with a couple of olives salad ...

Table 5: Nice sentences that are generated by control-
ling the sentiment polarity y using the decoder.

task learning (text generation and classification).
In the aforementioned experiments, the embed-
ding layer is not shared between the classifier and
autoencoder. This implementation guarantees that
the improvement does not come from learning to
generate. To verify if sharing embedding will ben-
efit, we also conducted experiments with sharing
embedding, as illustrated in Table. 4. The results
indicate that the joint training for the embedding
layer is negative for improving the performance in
this task. The gradient from the autoencoder may
collide with the gradients from the classifier and
therefore, interferes with the optimization direc-
tion.

4.5 Analysis of the Latent Space
Transformer encodes the data into two represen-
tations, i.e., y and z. These two latent variable
represented sentiment polarity and lexical context
individually from the input text. We expect the y
and z are fully disentangled and represent differ-
ent meanings. The scatters of latent variable z (cf.
Fig. 4) helps us have a better understanding. As
shown in the figure, the distributions of three dif-
ferent polarities are very similar, which indicates
that the lexical context reprensetation z is indepen-
dent of the polarity y.

The generation ability of the decoder is also in-
vestigated. Several sentences are generated and
selected in the Table 5. By controlling the senti-
ment polarity y with the same z, the decoder can
generate sentences with different sentiment in a
similar format. This indicates that the decoder is
trained successfully to perceive the y and model
the relationship between the y and x.

5 Conclusion

A VAE-based framework has been proposed for
the ATSA task. In this work, the encoder and de-
coder are constructed from the Transformers. Both
analytical and experimental work has been carried
out to show the effectiveness of the ASVAET. The
method is verified with various kinds of classi-
fiers. For all tested classifiers, the improvement
is obtained when equipped with ASVAET, which
demonstrates its universality.

In this paper, the aspect-term is assumed to be
known and there is an error accumulation problem
when using the pre-trained aspect extractor. Ac-
cording to this, in future work, it is also interest-
ing to show if it is possible to learn the aspect and
sentiment polarity jointly for the unlabeled data. It
will be of great importance if detailed knowledge
can be extracted from the unlabeled data, which
will shed light on other related tasks.

References
David Berthelot, Nicholas Carlini, Ian Goodfellow,

Nicolas Papernot, Avital Oliver, and Colin Raf-
fel. 2019. Mixmatch: A holistic approach
to semi-supervised learning. arXiv preprint
arXiv:1905.02249.

Mingda Chen, Qingming Tang, Karen Livescu, and
Kevin Gimpel. 2018. Variational sequential labelers
for semi-supervised learning. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 215–226.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In The International
Conference on Learning Representations (ICLR),
Banff, Canada.

Wai Lam, Xin Li, Bei Shi, and Lidong Bing. 2018.
Transformation networks for target-oriented senti-
ment classification. pages 946–956.

Lishuang Li, Yang Liu, and AnQiao Zhou. 2018a. Hi-
erarchical attention based position-aware network
for aspect-level sentiment analysis. In Proceedings
of the 22nd Conference on Computational Natural
Language Learning, pages 181–189.

968



Tao Li and Wei Xue. 2018. Aspect based sentiment
analysis with gated convolutional networks. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 2514–2523.

Xin Li, Lidong Bing, Wai Lam, and Bei Shi.
2018b. Transformation networks for target-
oriented sentiment classification. arXiv preprint
arXiv:1805.01086.

Fei Liu, Trevor Cohn, and Timothy Baldwin. 2018. Re-
current entity networks with delayed memory update
for targeted aspect-based sentiment analysis. pages
278–283.

Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng
Wang. 2017. Interactive attention networks for
aspect-level sentiment classification. In Proceed-
ings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 4068–
4074.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-
state variational autoencoders for joint discovery and
factorization of relations. TACL, 4:231–244.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Sinno Jialin Pan and Wenya Wang. 2018. Recursive
neural structural correspondence network for cross-
domain aspect and opinion co-extraction. pages
2171–2181.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 2227–2237.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of the
8th International Workshop on Semantic Evaluation,
SemEval@COLING 2014, Dublin, Ireland, August
23-24, 2014., pages 27–35.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.
2016a. Effective lstms for target-dependent senti-
ment classification. In COLING 2016, 26th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
December 11-16, 2016, Osaka, Japan, pages 3298–
3307.

Duyu Tang, Bing Qin, and Ting Liu. 2016b. Aspect
level sentiment classification with deep memory net-
work. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November
1-4, 2016, pages 214–224.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 6000–6010.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based LSTM for aspect-
level sentiment classification. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 606–615.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation. arXiv preprint arXiv:1904.12848.

Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan.
2017. Variational autoencoder for semi-supervised
text classification. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, Febru-
ary 4-9, 2017, San Francisco, California, USA.,
pages 3358–3364.

Wei Xue and Tao Li. 2018. Aspect based sentiment
analysis with gated convolutional networks. arXiv
preprint arXiv:1805.07043.

Yue Zhang and Jiangming Liu. 2017. Attention mod-
eling for targeted sentiment. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 2:
Short Papers, pages 572–577.

969



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 970–979
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

Learning to Detect Opinion Snippet for Aspect-Based Sentiment Analysis

Mengting Hu1∗ Shiwan Zhao2† Honglei Guo2 Renhong Cheng1 Zhong Su2

1 Nankai University 2 IBM Research - China
mthu@mail.nankai.edu.cn, {zhaosw, guohl}@cn.ibm.com

chengrh@nankai.edu.cn, suzhong@cn.ibm.com

Abstract

Aspect-based sentiment analysis (ABSA) is to
predict the sentiment polarity towards a partic-
ular aspect in a sentence. Recently, this task
has been widely addressed by the neural at-
tention mechanism, which computes attention
weights to softly select words for generating
aspect-specific sentence representations. The
attention is expected to concentrate on opin-
ion words for accurate sentiment prediction.
However, attention is prone to be distracted by
noisy or misleading words, or opinion words
from other aspects. In this paper, we pro-
pose an alternative hard-selection approach,
which determines the start and end positions
of the opinion snippet, and selects the words
between these two positions for sentiment pre-
diction. Specifically, we learn deep associa-
tions between the sentence and aspect, and the
long-term dependencies within the sentence
by leveraging the pre-trained BERT model.
We further detect the opinion snippet by self-
critical reinforcement learning. Especially, ex-
perimental results demonstrate the effective-
ness of our method and prove that our hard-
selection approach outperforms soft-selection
approaches when handling multi-aspect sen-
tences.

1 Introduction

Aspect-based sentiment analysis (Pang and Lee,
2008; Liu, 2012) is a fine-grained sentiment anal-
ysis task which has gained much attention from
research and industries. It aims at predicting the
sentiment polarity of a particular aspect of the
text. With the rapid development of deep learning,
this task has been widely addressed by attention-
based neural networks (Wang et al., 2016; Ma
et al., 2017; Cheng et al., 2017; Tay et al., 2018;

∗ Work performed while interning at IBM Research -
China.

†Corresponding author.

0.20 0.12 0.09 0.1 0.04 0.05 0.04

Aspect: place Label: Negative Prediction: Positive

the food is usually good but it certainly is not a relaxing place to go

Figure 1: Example of attention visualization. The at-
tention weights of the aspect place are from the model
ATAE-LSTM (Wang et al., 2016), a typical attention
mechanism used for soft-selection.

Wang et al., 2018a). To name a few, Wang et al.
(2016) learn to attend on different parts of the
sentence given different aspects, then generates
aspect-specific sentence representations for sen-
timent prediction. Tay et al. (2018) learn to at-
tend on correct words based on associative rela-
tionships between sentence words and a given as-
pect. These attention-based methods have brought
the ABSA task remarkable performance improve-
ment.

Previous attention-based methods can be cate-
gorized as soft-selection approaches since the at-
tention weights scatter across the whole sentence
and every word is taken into consideration with
different weights. This usually results in atten-
tion distraction (Li et al., 2018b), i.e., attending on
noisy or misleading words, or opinion words from
other aspects. Take Figure 1 as an example, for the
aspect place in the sentence “the food is usually
good but it certainly is not a relaxing place to go”,
we visualize the attention weights from the model
ATAE-LSTM (Wang et al., 2016). As we can see,
the words “good” and “but” are dominant in at-
tention weights. However, “good” is used to de-
scribe the aspect food rather than place, “but”
is not so related to place either. The true opin-
ion snippet “certainly is not a relaxing place” re-
ceives low attention weights, leading to the wrong
prediction towards the aspect place.

Therefore, we propose an alternative hard-
selection approach by determining two positions
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in the sentence and selecting words between these
two positions as the opinion expression of a given
aspect. This is also based on the observation that
opinion words of a given aspect are usually dis-
tributed consecutively as a snippet (Wang and Lu,
2018). As a consecutive whole, the opinion snip-
pet may gain enough attention weights, avoid be-
ing distracted by other noisy or misleading words,
or distant opinion words from other aspects. We
then predict the sentiment polarity of the given as-
pect based on the average of the extracted opin-
ion snippet. The explicit selection of the opinion
snippet also brings us another advantage that it can
serve as justifications of our sentiment predictions,
making our model more interpretable.

To accurately determine the two positions of
the opinion snippet of a particular aspect, we
first model the deep associations between the sen-
tence and aspect, and the long-term dependen-
cies within the sentence by BERT (Devlin et al.,
2018), which is a pre-trained language model and
achieves exciting results in many natural language
tasks. Second, with the contextual representations
from BERT, the two positions are sequentially de-
termined by self-critical reinforcement learning.
The reason for using reinforcement learning is that
we do not have the ground-truth positions of the
opinion snippet, but only the polarity of the corre-
sponding aspect. Then the extracted opinion snip-
pet is used for sentiment classification. The details
are described in the model section.

The main contributions of our paper are as fol-
lows:

• We propose a hard-selection approach to
address the ABSA task. Specifically, our
method determines two positions in the sen-
tence to detect the opinion snippet towards
a particular aspect, and then uses the framed
content for sentiment classification. Our ap-
proach can alleviate the attention distrac-
tion problem in previous soft-selection ap-
proaches.

• We model deep associations between the sen-
tence and aspect, and the long-term depen-
dencies within the sentence by BERT. We
then learn to detect the opinion snippet by
self-critical reinforcement learning.

• The experimental results demonstrate the
effectiveness of our method and also our

approach significantly outperforms soft-
selection approaches on handling multi-
aspect sentences.

2 Related Work

Traditional machine learning methods for aspect-
based sentiment analysis focus on extracting a
set of features to train sentiment classifiers (Ding
et al., 2009; Boiy and Moens, 2009; Jiang et al.,
2011), which usually are labor intensive. With the
development of deep learning technologies, neu-
ral attention mechanism (Bahdanau et al., 2014)
has been widely adopted to address this task (Tang
et al., 2015; Wang et al., 2016; Tang et al., 2016;
Ma et al., 2017; Chen et al., 2017; Cheng et al.,
2017; Li et al., 2018a; Wang et al., 2018a; Tay
et al., 2018; Hazarika et al., 2018; Majumder et al.,
2018; Fan et al., 2018; Wang et al., 2018b). Wang
et al. (2016) propose attention-based LSTM net-
works which attend on different parts of the sen-
tence for different aspects. Ma et al. (2017) utilize
the interactive attention to capture the deep asso-
ciations between the sentence and the aspect. Hi-
erarchical models (Cheng et al., 2017; Li et al.,
2018a; Wang et al., 2018a) are also employed to
capture multiple levels of emotional expression
for more accurate prediction, as the complexity
of sentence structure and semantic diversity. Tay
et al. (2018) learn to attend based on associative
relationships between sentence words and aspect.

All these methods use normalized attention
weights to softly select words for generating
aspect-specific sentence representations, while the
attention weights scatter across the whole sentence
and can easily result in attention distraction. Wang
and Lu (2018) propose a hard-selection method to
learn segmentation attention which can effectively
capture the structural dependencies between the
target and the sentiment expressions with a linear-
chain conditional random field (CRF) layer. How-
ever, it can only address aspect-term level senti-
ment prediction which requires annotations for as-
pect terms. Compared with it, our method can
handle both aspect-term level and aspect-category
level sentiment prediction by detecting the opinion
snippet.

3 Model

We first formulate the problem. Given a sen-
tence S = {w1, w2, ..., wN} and an aspect A =
{a1, a2, ..., aM}, the ABSA task is to predict the
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b

Cross Entropy RewardR Rb

L(Θ) = −(R − Rb) ⋅(log( p(l))+ log( p(r)))

w1 wN a1 aM

Figure 2: Network Architecture. We leverage BERT to
model the relationships between sentence words and a
particular aspect. The sentence and aspect are packed
together into a single sequence and fed into BERT, in
which E represents the input embedding, and Ti rep-
resents the contextual representation of token i. With
the contextual representations from BERT, the start and
end positions are sequentially sampled and then the
framed content is used for sentiment prediction. Re-
inforcement learning is adopted for solving the non-
differentiable problem of sampling.

sentiment of A. In our setting, the aspect can be
either aspect terms or an aspect category. As as-
pect terms, A is a snippet of words in S, i.e., a
sub-sequence of the sentence, while as an aspect
category, A represents a semantic category with
M = 1, containing just an abstract token.

In this paper, we propose a hard-selection ap-
proach to solve the ABSA task. Specifically,
we first learn to detect the corresponding opinion
snippet O = {wl, wl+1..., wr}, where 1 ≤ l ≤
r ≤ N , and then use O to predict the sentiment
of the given aspect. The network architecture is
shown in Figure 2.

3.1 Word-Aspect Fusion

Accurately modeling the relationships between
sentence words and an aspect is the key to the
success of the ABSA task. Many methods have
been developed to model word-aspect relation-
ships. Wang et al. (2016) simply concatenate
the aspect embedding with the input word em-
beddings and sentence hidden representations for
computing aspect-specific attention weights. Ma
et al. (2017) learn the aspect and sentence interac-
tively by using two attention networks. Tay et al.

(2018) adopt circular convolution of vectors for
performing the word-aspect fusion.

In this paper, we employ BERT (Devlin et al.,
2018) to model the deep associations between the
sentence words and the aspect. BERT is a power-
ful pre-trained model which has achieved remark-
able results in many NLP tasks. The architec-
ture of BERT is a multi-layer bidirectional Trans-
former Encoder (Vaswani et al., 2017), which uses
the self-attention mechanism to capture complex
interaction and dependency between terms within
a sequence. To leverage BERT to model the rela-
tionships between the sentence and the aspect, we
pack the sentence and aspect together into a sin-
gle sequence and then feed it into BERT, as shown
in Figure 2. With this sentence-aspect concatena-
tion, both the word-aspect associations and word-
word dependencies are modeled interactively and
simultaneously. With the contextual token repre-
sentations TS = T[1:N ] ∈ RN×H of the sentence,
where N is the sentence length and H is the hid-
den size, we can then determine the start and end
positions of the opinion snippet in the sentence.

3.2 Soft-Selection Approach
To fairly compare the performance of soft-
selection approaches with hard-selection ap-
proaches, we use the same word-aspect fusion re-
sults TS from BERT. We implement the attention
mechanism by adopting the approach similar to
the work (Lin et al., 2017).

α = softmax(v1tanh(W1TS
T))

g = αTS
(1)

where v1 ∈ RH andW1 ∈ RH×H are the parame-
ters. The normalized attention weights α are used
to softly select words from the whole sentence and
generate the final aspect-specific sentence repre-
sentation g. Then we make sentiment prediction
as follows:

ŷ = softmax(W2g + b) (2)

where W2 ∈ RC×H and b ∈ RC are the weight
matrix and bias vector respectively. ŷ is the prob-
ability distribution on C polarities. The polarity
with highest probability is selected as the predic-
tion.

3.3 Hard-Selection Approach
Our proposed hard-selection approach determines
the start and end positions of the opinion snippet
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and selects the words between these two positions
for sentiment prediction. Since we do not have the
ground-truth opinion snippet, but only the polarity
of the corresponding aspect, we adopt reinforce-
ment learning (Williams, 1992) to train our model.
To make sure that the end position comes after the
start position, we determine the start and end se-
quentially as a sequence training problem (Rennie
et al., 2017). The parameters of the network, Θ,
define a policy pθ and output an action that is the
prediction of the position. For simplicity, we only
generate two actions for determining the start and
end positions respectively. After determining the
start position, the “state” is updated and then the
end is conditioned on the start.

Specifically, we define a start vector s ∈ RH
and an end vector e ∈ RH . Similar to the prior
work (Devlin et al., 2018), the probability of a
word being the start of the opinion snippet is com-
puted as a dot product between its contextual token
representation and s followed by a softmax over
all of the words of the sentence.

βl = softmax(TSs) (3)

We then sample the start position l based on the
multinomial distribution βl. To guarantee the end
comes after the start, the end is sampled only in the
right part of the sentence after the start. Therefore,
the state is updated by slicing operation TS

r =
TS [l :]. Same as the start position, the end position
r is also sampled based on the distribution βr:

βr = softmax(T rSe) (4)

Then we have the opinion snippet TO = TS [l : r]
to predict the sentiment polarity of the given as-
pect in the sentence. The probabilities of the start
position at l and the end position at r are p(l) =
βl[l] and p(r) = βr[r] respectively.

3.3.1 Reward
After we get the opinion snippet TO by the sam-
pling of the start and end positions, we compute
the final representation go by the average of the
opinion snippet, go = avg(TO). Then, equation 2
with different weights is applied for computing the
sentiment prediction ŷo. The cross-entropy loss
function is employed for computing the reward.

R = −
∑

c

yc log ŷoc (5)

where c is the index of the polarity class and y is
the ground truth.

3.3.2 Self-Critical Training
In this paper, we use reinforcement learning to
learn the start and end positions. The goal of train-
ing is to minimize the negative expected reward as
shown below.

L(Θ) = −R · p(l) · p(r) (6)

where Θ is all the parameters in our architecture,
which includes the base method BERT, the posi-
tion selection parameters {s, e}, and the parame-
ters for sentiment prediction and then for reward
calculation. Therefore, the state in our method is
the combination of the sentence and the aspect.
For each state, the action space is every position
of the sentence.

To reduce the variance of the gradient estima-
tion, the reward is associated with a reference re-
ward or baselineRb (Rennie et al., 2017). With the
likelihood ratio trick, the objective function can be
transformed as.

L(Θ) = −(R−Rb) ·(log(p(l))+ log(p(r))) (7)

The baseline Rb is computed based on the snippet
determined by the baseline policy, which selects
the start and end positions greedily by the argmax
operation on the softmax results. As shown in
Figure 2, the reward R is calculated by sampling
the snippet, while the baseline Rb is computed by
greedily selecting the snippet. Note that in the test
stage, the snippet is determined by argmax for
inference.

4 Experiments

In this section, we compare our hard-selection
model with various baselines. To assess the ability
of alleviating the attention distraction, we further
conduct experiments on a simulated multi-aspect
dataset in which each sentence contains multiple
aspects.

4.1 Datasets

We use the same datasets as the work by Tay et al.
(2018), which are already processed to token lists
and released in Github1. The datasets are from Se-
mEval 2014 task 4 (Pontiki et al., 2014), and Se-
mEval 2015 task 12 (Pontiki et al., 2015), respec-
tively. For aspect term level sentiment classifica-
tion task (denoted by T), we apply the Laptops and

1https://github.com/vanzytay/ABSA DevSplits
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Task Dataset All P N Nu
T Laptops Train 1813 767 673 373
T Laptops Dev 500 220 193 87
T Laptops Test 638 341 128 169
T Restaurants Train 3102 685 1886 531
T Restaurants Dev 500 278 120 102
T Restaurants Test 1120 728 196 196
C Restaurants Train 3018 1873 712 433
C Restaurants Dev 500 306 127 67
C Restaurants Test 973 657 222 94
C SE 14+15 Train 3587 1069 2310 208
C SE 14+15 Dev 427 274 134 19
C SE 14+15 Test 1011 455 496 60

Table 1: Dataset statistics. T and C denote the aspect-
term and aspect-category tasks, respectively. P, N, and
Nu represent the numbers of instances with positive,
negative and neutral polarities, and All is the total num-
ber of instances.

Restaurants datasets from SemEval 2014. For as-
pect category level sentiment prediction (denoted
by C), we utilize the Restaurants dataset from Se-
mEval 2014 and a composed dataset from both Se-
mEval 2014 and SemEval 2015. The statistics of
the datasets are shown in Table 1.

4.2 Implementation Details

Our proposed models are implemented in Py-
Torch2. We utilize the bert-base-uncased model,
which contains 12 layers and the number of all pa-
rameters is 100M. The dimension H is 768. The
BERT model is initialized from the pre-trained
model, other parameters are initialized by sam-
pling from normal distribution N (0, 0.02). In our
experiments, the batch size is 32. The reported
results are the testing scores that fine-tuning 7
epochs with learning rate 5e-5.

4.3 Compared Models

• LSTM: it uses the average of all hidden states
as the sentence representation for sentiment
prediction. In this model, aspect information
is not used.

• TD-LSTM (Tang et al., 2015): it employs
two LSTMs and both of their outputs are ap-
plied to predict the sentiment polarity.

2https://github.com/huggingface/pytorch-pretrained-
BERT

• AT-LSTM (Wang et al., 2016): it uti-
lizes the attention mechanism to produce an
aspect-specific sentence representation. This
method is a kind of soft-selection approach.

• ATAE-LSTM (Wang et al., 2016): it also
uses the attention mechanism. The difference
with AT-LSTM is that it concatenates the as-
pect embedding to each word embedding as
the input to LSTM.

• AF-LSTM(CORR) (Tay et al., 2018): it
adopts circular correlation to capture the deep
fusion between sentence words and the as-
pect, which can learn rich, higher-order re-
lationships between words and the aspect.

• AF-LSTM(CONV) (Tay et al., 2018): com-
pared with AF-LSTM(CORR), this method
applies circular convolution of vectors for
performing word-aspect fusion to learn rela-
tionships between sentence words and the as-
pect.

• BERT-Original: it makes sentiment predic-
tion by directly using the final hidden vector
C from BERT with the sentence-aspect pair
as input.

4.4 Our Models
• BERT-Soft: as described in Section 3.2, the

contextual token representations from BERT
are processed by self attention mechanism
(Lin et al., 2017) and the attention-weighted
sentence representation is utilized for senti-
ment classification.

• BERT-Hard: as described in Section 3.3,
it takes the same input as BERT-Soft. It is
called a hard-selection approach since it em-
ploys reinforcement learning techniques to
explicitly select the opinion snippet corre-
sponding to a particular aspect for sentiment
prediction.

4.5 Experimental Results
In this section, we evaluate the performance of our
models by comparing them with various baseline
models. Experimental results are illustrated in Ta-
ble 2, in which 3-way represents 3-class sentiment
classification (positive, negative and neutral) and
Binary denotes binary sentiment prediction (posi-
tive and negative). The best score of each column
is marked in bold.
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Term-Level Category-Level
Laptops Restaurants Restaurants SemEval 14+15

Model Aspect 3-way Binary 3-way Binary 3-way Binary 3-way Binary Avg
LSTM No 61.75 78.25 67.94 82.03 73.38 79.97 75.96 79.92 74.90

TD-LSTM Yes 62.38 79.31 69.73 84.41 79.97 75.96 79.92 74.90 75.63
AT-LSTM Yes 65.83 78.25 74.37 84.74 77.90 84.87 76.16 81.28 77.93

ATAE-LSTM Yes 60.34 74.20 70.71 84.52 77.80 83.85 74.08 78.96 75.56
AF-LSTM(CORR) Yes 64.89 79.96 74.76 86.91 80.47 86.58 74.68 81.60 78.73
AF-LSTM(CONV) Yes 68.81 83.58 75.44 87.78 81.29 87.26 78.44 81.49 80.51

BERT-Original Yes 74.57 88.25 82.66 92.31 88.17 92.37 80.50 86.84 85.71
BERT-Soft Yes 74.92 90.41 82.68 91.98 87.05 91.92 80.02 86.75 85.72
BERT-Hard Yes 74.10 89.55 83.91 92.31 88.17 93.39 81.09 87.89 86.30

Table 2: Experimental results (accuracy %) on all the datasets. Models in the first part are baseline methods. The
results in the first part (except BERT-Original) are obtained from the prior work (Tay et al., 2018). Avg column
presents macro-averaged results across all the datasets.

Firstly, we observe that BERT-Original,
BERT-Soft, and BERT-Hard outperform all
soft attention baselines (in the first part of
Table 2), which demonstrates the effective-
ness of fine-tuning the pre-trained model
on the aspect-based sentiment classification
task. Particularly, BERT-Original outper-
forms AF-LSTM(CONV) by 2.63%∼9.57%,
BERT-Soft outperforms AF-LSTM(CONV)
by 2.01%∼9.60% and BERT-Hard improves
AF-LSTM(CONV) by 3.38%∼11.23% in terms
of accuracy. Considering the average score
across eight settings, BERT-Original outper-
forms AF-LSTM(CONV) by 6.46%, BERT-Soft
outperforms AF-LSTM(CONV) by 6.47% and
BERT-Hard outperforms AF-LSTM(CONV) by
7.19% respectively.

Secondly, we compare the performance of
three BERT-related methods. The performance
of BERT-Original and BERT-Soft are similar by
comparing their average scores. The reason may
be that the original BERT has already modeled
the deep relationships between the sentence and
the aspect. BERT-Original can be thought of as
a kind of soft-selection approach as BERT-Soft.
We also observe that the snippet selection by re-
inforcement learning improves the performance
over soft-selection approaches in almost all set-
tings. However, the improvement of BERT-Hard
over BERT-Soft is marginal. The average score of
BERT-Hard is better than BERT-Soft by 0.68%.
The improvement percentages are between 0.36%
and 1.49%, while on the Laptop dataset, the per-
formance of BERT-Hard is slightly weaker than

BERT-Soft. The main reason is that the datasets
only contain a small portion of multi-aspect sen-
tences with different polarities. The distraction of
attention will not impact the sentiment prediction
much in single-aspect sentences or multi-aspect
sentences with the same polarities.

4.6 Experimental Results on Multi-Aspect
Sentences

On the one hand, the attention distraction issue be-
comes worse in multi-aspect sentences. In addi-
tion to noisy and misleading words, the attention is
also prone to be distracted by opinion words from
other aspects of the sentence. On the other hand,
the attention distraction impacts the performance
of sentiment prediction more in multi-aspect sen-
tences than in single-aspect sentences. Hence, we
evaluate the performance of our models on a test
dataset with only multi-aspect sentences.

A multi-aspect sentence can be categorized by
two dimensions: the Number of aspects and the
Polarity dimension which indicates whether the
sentiment polarities of all aspects are the same or
not. In the dimension of Number, we categorize
the multi-aspect sentences as 2-3 and More. 2-3
refers to the sentences with two or three aspects
while More refers to the sentences with more than
three aspects. The statistics in the original dataset
shows that there are much more sentences with 2-
3 aspects than those with More aspects. In the di-
mension Polarity, the multi-aspect sentences can
be categorized into Same and Diff. Same indicates
that all aspects in the sentence have the same senti-
ment polarity. Diff indicates that the aspects have
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Type
Same Diff

Total
2-3 More Total 2-3 More Total

Number 1665 352 2017 655 327 982 2999

Table 3: Distribution of the multi-aspect test set.
Around 67% of the multi-aspect sentences belong to
the Same category.

Constructed Multi-Aspect Training Set Total

Single
P N Nu

891
297 297 297

Same Diff

Multi
2-asp

2P 2N 2Nu PN PNu NNu

3600
300 300 300 300 300 300

3-asp
3P 3N 3Nu 2P1N 1P2N PNNu
300 300 300 300 300 300

Table 4: Distribution of the multi-aspect training set.
2-asp and 3-asp indicate that the sentence contains two
or three aspects respectively. Each multi-aspect sen-
tence is categorized as Same or Diff.

different polarities.
Multi-aspect test set. To evaluate the perfor-

mance of our models on multi-aspect sentences,
we construct a new multi-aspect test set by se-
lecting all multi-aspect sentences from the original
training, development, and test sets of the Restau-
rants term-level task. The details are shown in Ta-
ble 3.

Multi-aspect training set. Since we use all
multi-aspect sentences for testing, we need to
generate some “virtual” multi-aspect sentences
for training. The simulated multi-aspect training
set includes the original single-aspect sentences
and the newly constructed multi-aspect sentences,
which are generated by concatenating multiple
single-aspect sentences with different aspects. We
keep the balance of each subtype in the new train-
ing set (see Table 4). The number of Neutral sen-
tences is the least among three sentiment polarities
in all single-aspect sentences. We randomly se-
lect the same number of Positive and Negative sen-
tences. Then we construct multi-aspect sentences
by combining single-aspect sentences in different
combinations of polarities. The naming for dif-
ferent combinations is simple. For example, 2P-
1N indicates that the sentence has two positive as-
pects and one negative aspect, and P-N-Nu means
that the three aspects in the sentence are positive,
negative, and neutral respectively. For simplicity,

Type Same
Diff

Total
2-3 More Total

BERT-Original 73.33 57.10 60.86 58.35 68.42
BERT-Soft 75.31 57.25 57.19 57.23 69.39
BERT-Hard 76.90 60.15 64.53 61.61 71.89

Table 5: Experimental results (accuracy %) on multi-
aspect sentences. The performance of the 3-way clas-
sification on the multi-aspect test set is reported.

we only construct 2-asp and 3-asp sentences which
are also the majority in the original dataset.

Results and Discussions. The results on dif-
ferent types of multi-aspect sentences are shown
in Table 5. The performance of BERT-Hard is
better than BERT-Original and BERT-Soft over all
types of multi-aspect sentences. BERT-Hard out-
performs BERT-Soft by 2.11% when the aspects
have the same sentiment polarities. For multi-
aspect sentences with different polarities, the im-
provements are more significant. BERT-Hard out-
performs BERT-Soft by 7.65% in total of Diff. The
improvements are 5.07% and 12.83% for the types
2-3 and More respectively, which demonstrates the
ability of our model on handling sentences with
More aspects. Particularly, BERT-Soft has the
poorest performance on the subset Diff among the
three methods, which proves that soft attention is
more likely to cause attention distraction.

Intuitively, when multiple aspects in the sen-
tence have the same sentiment polarities, even the
attention is distracted to other opinion words of
other aspects, it can still predict correctly to some
extent. In such sentences, the impact of the at-
tention distraction is not obvious and difficult to
detect. However, when the aspects have differ-
ent sentiment polarities, the attention distraction
will lead to catastrophic error prediction, which
will obviously decrease the classification accu-
racy. As shown in Table 5, the accuracy of Diff
is much worse than Same for all three methods.
It means that the type of Diff is difficult to han-
dle. Even though, the significant improvement
proves that our hard-selection method can alle-
viate the attention distraction to a certain extent.
For soft-selection methods, the attention distrac-
tion is inevitable due to their way in calculating
the attention weights for every single word. The
noisy or irrelevant words could seize more atten-
tion weights than the ground truth opinion words.
Our method considers the opinion snippet as a
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1

Multi-Aspect SentenceAspect Label

appetizers Neutral

service Negative

Prediction
Negative

Neutral

Method

BERT-Soft

BERT-Hard

BERT-Soft

BERT-Hard

0.24 0.18

1

0.12 0.150.12 0.12 0.12

0.06

Negative

Negativethe appetizers are ok, but the service is slow

the appetizers are ok, but the service is slow

the appetizers are ok, but the service is slow

the appetizers are ok, but the service is slow

Figure 3: Visualization. The attention weights are visualized for BERT-Soft, and the selected opinion snippets are
marked for BERT-Hard. The correctness of the predicted results is also marked.

consecutive whole, which is more resistant to at-
tention distraction.

4.7 Visualization

In this section, we visualize the attention weights
for BERT-Soft and opinion snippets for BERT-
Hard. As demonstrated in Figure 3, the multi-
aspect sentence “the appetizers are OK, but the
service is slow” belongs to the category Diff.
Firstly, the attention weights of BERT-Soft scat-
ter among the whole sentence and could attend to
irrelevant words. For the aspect service, BERT-
Soft attends to the word “ok” with relatively high
score though it does not describe the aspect ser-
vice. This problem also exists for the aspect appe-
tizers. Furthermore, the attention distraction could
cause error prediction. For the aspect appetizers,
“but” and “slow” gain high attention scores and
cause the wrong sentiment prediction Negative.

Secondly, our proposed method BERT-Hard can
detect the opinion snippet for a given aspect. As
illustrated in Figure 3, the opinion snippets are se-
lected by BERT-Hard accurately. In the sentence
“the appetizers are ok, but the service is slow”,
BERT-Hard can exactly locate the opinion snip-
pets “ok” and “slow” for the aspect appetizers
and service respectively.

At last, we enumerate some opinion snippets
detected by BERT-Hard in Table 6. Our method
can precisely detect snippets even for latent opin-
ion expression and alleviate the influence of noisy
words. For instance, “cannot be beat for the qual-
ity” is hard to predict using soft attention because
the sentiment polarity is transformed by the neg-
ative word “cannot”. Our method can select the
whole snippet without bias to any word and in this
way the attention distraction can be alleviated. We
also list some inaccurate snippets in Table 7. Some
meaningless words around the true snippet are in-
cluded, such as “are”, “and” and “at”. These

Positive Snippets Negative Snippets
very good prompt attentive not great bland

beautifully presented can not eat this well
extremely tasty unbearable conversation

as interesting as possible no idea how to use
cool and soothing would never go there

impressed by not above ordinary
cannot be beat for the quality not good

Table 6: Examples of accurate opinion snippets de-
tected by BERT-Hard.

Inaccurate Snippets
are very large and and even greater food

are not terrible tasty treat at
everyone who works the money and said

Table 7: Examples of inaccurate opinion snippets de-
tected by BERT-Hard.

words do not affect the final prediction. A possi-
ble explanation to these inaccurate words is that
the true snippets are unlabeled and our method
predicts them only by the supervisory signal from
sentiment labels.

5 Conclusion

In this paper, we propose a hard-selection ap-
proach for aspect-based sentiment analysis, which
determines the start and end positions of the opin-
ion snippet for a given input aspect. The deep as-
sociations between the sentence and aspect, and
the long-term dependencies within the sentence
are taken into consideration by leveraging the pre-
trained BERT model. With the hard selection
of the opinion snippet, our approach can alle-
viate the attention distraction problem of tradi-
tional attention-based soft-selection methods. Ex-
perimental results demonstrate the effectiveness of
our method. Especially, our hard-selection ap-
proach outperforms soft-selection approaches sig-
nificantly when handling multi-aspect sentences
with different sentiment polarities.
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University of Wrocław

Institute of Polish Studies
Wrocław, Poland

monika.zasko-zielinska
@uwr.edu.pl

Abstract

In this article we present an extended version
of PolEmo – a corpus of consumer reviews
from 4 domains: medicine, hotels, products
and school. Current version (PolEmo 2.0) con-
tains 8,216 reviews having 57,466 sentences.
Each text and sentence was manually anno-
tated with sentiment in 2+1 scheme, which
gives a total of 197,046 annotations. We ob-
tained a high value of Positive Specific Agree-
ment, which is 0.91 for texts and 0.88 for
sentences. PolEmo 2.0 is publicly available
under a Creative Commons copyright license.
We explored recent deep learning approaches
for the recognition of sentiment, such as Bi-
directional Long Short-Term Memory (BiL-
STM) and Bidirectional Encoder Representa-
tions from Transformers (BERT).

1 Introduction

In recent years, we have observed a growing in-
terest in methods of effective sentiment analysis,
especially in subjective, opinion-forming online
texts. This trend is perfectly illustrated by Fig-
ure 1, which compares the popularity of two terms:
customer feedback and sentiment analysis. A very
dynamic growth has been observed since 2010,
which correlates with the increase in the number
of scientific research in this area. Many stud-
ies focus on the perception of emotion and sen-
timent in text messages and, for example, their
impact on election results (Ramteke et al., 2016),
prediction of future events (Zhang and Skiena,
2010) and security issues around the world (Sub-
ramaniyaswamy et al., 2017; Al-Rowaily et al.,
2015). Automatic sentiment analysis systems have
proven to be effective in analyzing many differ-
ent types of text data such as emails, blogs, news,
tweets and books (Medhat et al., 2014). The in-
troduction of advanced computational techniques
(machine learning, deep learning) in natural lan-
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Figure 1: Google Trends (https://trends.google.
com) data showing interest in time for search terms "cus-
tomer feedback" and "sentiment analysis". On the vertical
axis 100 means biggest search term popularity.

guage processing has resulted in a significant in-
crease in sentiment analysis techniques (Zhang
et al., 2018). This increase for some languages
is effectively limited by the lack of good quality
resources for this task, especially in the form of
manually annotated corpora (Balahur and Turchi,
2012; Dashtipour et al., 2016).

Analysis of the existing language resources in
the area of sentiment analysis shows that they
largely concern the English language (Dashtipour
et al., 2016). However, there is a clear grow-
ing interest in other languages, often much more
complex than English (e.g. Slavic languages in
the area of loose syntax and rich inflection) and
new resources become available for them, e.g.,
Slovene (Bučar et al., 2018), Czech (Habernal and
Brychcín, 2013) or Russian (Rogers et al., 2018).
Due to a small number of available corpora manu-
ally annotated with sentiment for the Polish lan-
guage, we decided that the construction of the
PolEmo resource will be a valuable contribution
to the collection of publicly available resources for
sentiment analysis and may in the future provide a
basis for the creation of shared tasks, in which the
recognition of sentiment for the Polish language
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will also be included. Both for the construction of
the corpus and for further research, we used the ex-
perience from the work on the manual annotation
of the Polish WordNet – plWordNet 4.0 Emo (Janz
et al., 2017; Kocoń et al., 2018a,b) – as a result of
which the sentiment metadata of more than 55,000
lexical units were described.

The main objectives of the article are to present:

• The current state of resources related to the
analysis of sentiment for the Polish language;

• The method of selecting data for the
PolEmo 2.0 corpus, the annotation method,
the annotation results and the analysis of an-
notation errors;

• The results of research related to the auto-
matic analysis of sentiment, with particular
emphasis on the importance of the text do-
main in this topic.

The key contribution of these studies includes:

• Detailed description of the procedure of
building PolEmo 2.0: manually annotated
corpus of consumer reviews from 4 domains
(medicine, school, hotels, products) at 2 lev-
els of sentiment granularity (document, sen-
tence);

• Detailed analysis of manual annotation with
regard to frequently occurring errors;

• Development of methods based on deep
learning (BiLSTM, BERT), adapted to
PolEmo 2.0 corpus, also using sentiment lex-
icon generated from plWordNet 4.0 Emo;

• Performing tests on sets prepared for the
analysis of the quality of methods (1) eval-
uated on texts within a given domain, (2)
evaluated on texts from various domains (3)
trained on texts that do not include a given
domain and tested on a given domain;

• Comparison of deep learning methods with
classic methods (Logistic Regression), espe-
cially in the context of the ability to general-
ize the problem of recognizing sentiment and
providing semantic representation, which is
as independent of the domain as possible;

• Making PolEmo 2.0 corpus available under
an open license.

2 Related Work

There are several well-known resources anno-
tated with sentiment for English, e.g.: MPQA
3.0 (Deng and Wiebe, 2015), the Stanford Sen-
timent Treebank (Socher et al., 2013), Amazon
Product Data (He and McAuley, 2016), Pros And
Cons Dataset (Ganapathibhotla and Liu, 2008),
corpora developed within the Semantic Evalua-
tion workshops (Nakov et al., 2016; Pontiki et al.,
2016), SentiWordNet (Baccianella et al., 2010) or
Opinion Lexicon (Hu and Liu, 2004). There are
also different approches and tools used for multi-
lingual sentiment analysis (Lo et al., 2017) which
are based on transformations on the existing re-
sources. In this section we are focusing on the re-
sources prepared directly for Polish.

2.1 Polish Sentiment Corpora

There are corpora for the Polish language that
can be used for automatic sentiment analysis.
One of them is a corpus prepared for the senti-
ment recognition shared task within PolEval20171

workshop (Wawer and Ogrodniczuk, 2017). The
corpus contains 1550 sentences annotated at the
level of phrases determined by the dependency
parser. The sentences came from consumer re-
views and covered 3 domains: perfume, clothing
and other. Each node of the dependency tree re-
ceived one of the three sentiment annotations: -1
(negative), 0 (neutral), 1 (positive). Most of the
systems participating in the PolEval2017 competi-
tion used Tree LSTM adapted to dependency trees,
including the best system, which reached an accu-
racy of 79% on this data.

Another resource is HateSpeech2 corpus con-
taining 2,000 posts crawled from public Polish
web. These texts were annotated for hate speech.
The annotator team reached an agreement score
of Krippendorff’s α = 0.6 (Krippendorff, 2018).
The SVM model trained on a subset of 1500
texts (containing equal amounts of hate speech
and non-hate speech) obtained the precision of
0.8 (Troszyński and Wawer, 2017).

Other interesting resource is the Polish Corpus
of Suicide Notes (PCSN) (Zaśko-Zielińska, 2013).
The PCSN is one of very few such resources in
the world. It includes 1,244 genuine SNs that have
been scanned and manually transcribed. Each SN

1http://2017.poleval.pl/index.php/
tasks/

2http://zil.ipipan.waw.pl/HateSpeech
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was linguistically annotated on several levels, in-
cluding selected semantic and pragmatic phenom-
ena (Zaśko-Zielińska, 2013). The annotation is
stored in a TEI-based format (Marcińczuk et al.,
2011) with corrected version in a separate layer.
PCSN includes also a subcorpus of 334 counter-
feited SNs (elicited). They were created by vol-
unteers who were asked to imitate a real SN for
imaginary person whose characteristic had been
provided at the beginning of the experiment. Most
volunteers were told that the notes written by them
would be used to deceive the computer program.
Due to the sensitive nature of the texts and legal
obligations of the author, the corpus is not pub-
licly available. In the experiment described in arti-
cle (Piasecki et al., 2017) we have collected 3,200
texts from the Internet as examples of non-letters.
Using SVM with a rich set of features we obtained
90,06% (F1-score) in the task of distinguishing be-
tween genuine SNs, counterfeited SNs and non-
letters.

2.2 Polish Sentiment Lexicons

One of the largest Polish sentiment lexical re-
sources in terms of number of annotations is
plWordNet 4.0 Emo3 (Janz et al., 2017; Kocoń
et al., 2018a). This dataset is available under
the WordNet 3.0 license. It was built within
CLARIN-PL4 project (Piasecki, 2014). The man-
ual annotation is done at the level of lexical
units (Zaśko-Zielińska et al., 2015). Available val-
ues for polarity are: strong negative, weak nega-
tive, neutral, weak positive, strong positive, am-
biguous. One annotator could assign only one of
these values for a single lexical unit. There are
more than 83,000 annotations covering more than
54,000 lexical units and 41,000 synsets (Kocoń
et al., 2018b). About 22,000 of the polarity anno-
tations are different than neutral and these annota-
tions cover 13,000 lexical units and 9,000 synsets
(22% of all synsets containing annotated units).
plWordNet 4.0 Emo is used in the research pre-
sented in this article as a knowledge base for the
sentiment recognition task.

Another lexicon is the Nencki Affective Word
List (NAWL)5 (Wierzba et al., 2015; Riegel et al.,
2015). It is a database of Polish words suitable
for studying various aspects of language and emo-

3http://plwordnet.pwr.edu.pl
4https://clarin-pl.eu
5https://exp.lobi.nencki.gov.pl/

nawl-analysis

tions. 2902 Polish words from the NAWL were
presented to 265 subjects, who were instructed to
rate them according to the intensity of each of the
five basic emotions: happiness, anger, sadness,
fear and disgust. The total number of ratings was
385,575.

The next resource is called the Polish Sentiment
Dictionary6 (Wawer, 2012; Wawer and Rogozin-
ska, 2012). It contains 3,704 words with senti-
ment scores computed using supervised methods
presented in (Wawer and Rogozinska, 2012).

Recently, a new resource has appeared in the
Sentimenti project, containing a large database of
annotated lexical units and annotated texts. De-
tails are described in Section 2.3.

2.3 Sentimenti Project
This year, the first results of the Sentimenti7

project (Kocoń et al., 2019a) were published,
which were aimed at creating methods of ana-
lyzing texts written on the Internet in terms of
emotions aroused by the recipients of the anal-
ysed content. A large database has been cre-
ated, in which 30,000 lexical units from plWord-
Net database (Piasecki et al., 2014) and 7,000 texts
were annotated. Most of the texts were consumer
reviews from the domain of hotels and medicine.
The elements were annotated by 20,000 unique
Polish respondents in the Computer Assisted Web
Interview survey and more than 50 marks were
obtained for each element. Within each mark,
polarisation of the element, stimulation and ba-
sic emotions aroused by the recipients are deter-
mined. The total number of manual annotations
is 3,742,611 for texts and 19,141,041 for lexical
units The first results concerning the automatic
recognition of polarity and emotions for this set
are presented in (Kocoń et al., 2019a) and propa-
gation of this annotation with the use of Heteroge-
neous Structured Synset Embeddings is presented
in (Kocoń et al., 2019b). Due to the commer-
cial nature of the Sentimenti project, it is planned
to publish only 20% of the project data available
soon. The data will be published at the main
project’s site7.

The Sentimenti project has interested both the
scientific community and business. Within the
CLARIN-PL project, we decided that in addi-
tion to a large annotated plWordNet lexicon, there

6http://zil.ipipan.waw.pl/
SlownikWydzwieku

7https://sentimenti.com/
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should also be a large corpus annotated with senti-
ment, available under an open license. In the next
part we present the works related to the prepara-
tion of PolEmo.

3 PolEmo Sentiment Corpus

3.1 Motivation

Linguistic research on sentiment recognition in-
volves two approaches: (1) bottom-up from the
perspective of analysing the occurrence of emo-
tional words and (2) top-down from the perspec-
tive of the entire document. The first attempt is
usually a consequence of the creation of the senti-
ment lexicon, e.g. manual annotation of the Word-
Net (Baccianella et al., 2010). The second re-
sults from the analysis of the specific text con-
tent in which we see that the sentiment of a word
or phrase changes under the influence of the sur-
rounding context (Taboada et al., 2008). This
change may vary depending on the domain of the
text.

A discourse perspective in sentiment analysis
is an attempt to address limitations of bottom-
up methods (e.g. problems with negation, focus-
ing on adjectives). It used findings of Rhetorical
Structure Theory (Mann and Thompson, 1988).
The attempt bears in mind local and global ori-
entation in the text, discourse structure or topical-
ity (Taboada et al., 2008). It allows the researcher
to extract the most important sentences from the
text in the perspective of the entire discourse con-
text: nucleus satellite method (Wang et al., 2012).
The relevance of the sentences is evaluated in rela-
tion to the main topic and the analysis omits some
less important parts of the text.

There are interesting articles focused at domain-
oriented sentiment analysis (Kanayama and Na-
sukawa, 2006), where a system is trained on la-
beled reviews from one source domain but is
meant to be deployed on another (Glorot et al.,
2011). The latter article describes the research
carried out on the Amazon Product Data (He and
McAuley, 2016). The ratings were assigned to re-
views by authors of the reviews. Moreover, the
ratings were applied to the entire text. Our idea
was to obtain such a set of reviews that would be
rated by the recipients and not by the authors of
the content. The annotation should take into ac-
count not only the level of the entire review, but
also the level of the individual sentences of the re-
view. Additionally, this dataset was supposed to be

ID Name Source Author Subject
H hotels tripadvisor.com visitor hotel
M medicine znanylekarz.pl patient doctor
S school polwro.pl student teacher
P products ceneo.pl buyer product

Table 1: Each review is described in its domain ID and do-
main Name with the given Source of the review, Author’s
type and the general Subject of the review.

a multi-domain one, to evaluate potential knowl-
edge transfer across domains.

3.2 Dataset

In the initial part of the work, presented in arti-
cle (Kocoń et al., 2019), we have chosen online
customer reviews from four domains, presented in
Table 1. At the beginning of our work we had
only 1000 texts for each of the following domains:
school, products, medicine. In the case of product
reviews, we also had metadata from the reviewer,
how many stars he assigned to a specific review
(from 1 to 5, where 5 means the most positive re-
view). We used this information to select the re-
views for the corpus, where 200 reviews from each
star category were added.

On the basis of a preliminary analysis of several
dozen examples of opinions, we have come to the
conclusion that neutral examples are very difficult
to find in the case of reviews. In the meantime, the
corpus was extended by 8000 texts from the cate-
gory Medicine and 17000 texts from the category
Hotels, also with a uniform distribution in relation
to the star categories available in the source data
(also 1 to 5). In order to capture the phenomenon
of neutral text, we decided to add 2000 new texts
to each of the last two fields (medicine, hotels).
These texts were fragments of articles from infor-
mation portals on hotel industry8 and health9.

In Section 3.3 we present how the genre struc-
ture of a customer review affects the text sentiment
polarity. It is an enhancement of the discourse per-
spective in sentiment analysis.

3.3 Pilot Annotation

Our CLARIN-PL pilot study on sentiment analy-
sis of customer reviews was conducted in 2018.
The initial part of the analysis included 3,000
reviews. Each text was manually annotated by
two annotators: a psychologist and a linguist,

8http://ehotelarstwo.com
9http://naukawpolsce.pap.pl/zdrowie
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who worked according to the general guidelines.
The annotation tool used for this task was In-
forex10 (Marcińczuk et al., 2012; Marcińczuk and
Oleksy, 2019) – a web-based system for text cor-
pora management, annotation and analysis, avail-
able as an open source project. In the pilot project,
we decided to deal with the sentiment annotation
of the entire text. There was also an attempt to
manually extract descriptions of particular aspects
of the review. In both annotation cases we used
the same tag system that is used in plWordNet
Emo for lexical units: [+m] (strong positive), [+s]
(weak positive), [-m] (strong negative), [-s] (weak
negative), [amb] (ambiguous). We assumed that
reviews are always characterised by a certain po-
larity, which is why we did not use the [0] (neutral)
tag in the pilot annotation.

In the process of annotation we focused mainly
on the strategic places of the text. In the consumer
review these are opening and closing sentences,
i.e. a text frame. The opening sentences consist
of the general opinion of the author about the sub-
ject of the review, and the closing sentences con-
tain the author’s recommendation for the review
recipients. The annotators have developed their
first overall rating based on these two segments.
In the text, review authors changed their opinions
only subtly. Regardless of the modification of the
main opinion in the text, we did not use the [amb]
tag when the frame of the text was clearly positive
or negative. Polarity of the text frame was influ-
enced not only by the lexical content, but also by
non-verbal elements: emoticons or multiplication
of punctuation marks, e.g. exclamation marks.

The annotators were also recommended to dis-
tinguish those parts of the text that are placed
in one sentence, but relate to different aspects
(e.g. the teacher’s appearance or teaching skills).
This task turned out to be very difficult, specially
in specifying, even with the help of guidelines,
how to mark precisely in the text the boundaries
of a given aspect. The Positive Specific Agree-
ment (Hripcsak and Rothschild, 2005) between the
annotators in the task of annotating the boundaries
of aspects was below 0.15. The concept of an-
notation was radically changed and presented in
Section 3.4.

10https://github.com/CLARIN-PL/Inforex

3.4 PolEmo Annotation Guidelines
In the main stage of the project we decided to an-
notate the sentiment for the whole text (a meta
level) and the sentence level. We assumed that
this strategy allows to establish the acceptable
value of PSA, because the division of the text
into sentences was determined by the MACA11

tool (Radziszewski and Śniatowski, 2011), so the
task was limited only to annotating the sentiment
of the sentence. We followed the rule that the meta
annotation results partially from sentence annota-
tions, however the frame polarity is the main fac-
tor for the final meta annotation. We have pre-
pared the following annotation tags, regardless of
whether the entire text or sentence is annotated:

• SP – entirely positive;

• WP – generally positive, but there are some
negative aspects within the review;

• 0 – neutral;

• WN – generally negative, but there are some
positive aspects within the review;

• SN – entirely negative;

• AMB – there are both positive and negative
aspects in the text that are balanced in terms
of relevance.

This time we used [0] tag (neutral) because in the
main stage of the project we extended the corpus
with neutral texts presented in Section 3.2. Also
reviews that are not neutral often contain neutral
sentences.

We tested the new guidelines on a subset of 50
documents, achieving a PSA of 80% for the meta
level and 78% for the sentence level. In the sec-
ond iteration of the annotation guidelines improve-
ment, the values were 87% (meta) and 85% (sen-
tence). In the last iteration of the improvement of
the guidelines, the annotators reached a PSA of
90% (meta) and 87% (sentence).

3.5 PolEmo 2.0 Annotation Analysis
We decided to publish the first results of the re-
search on the PolEmo 1.0 corpus when the number
of annotated reviews reached 8462 and the number
of annotated sentences was 35724 (Kocoń et al.,

11Morphological Analysis Converter and Aggregator:
http://nlp.pwr.edu.pl/redmine/projects/
libpltagger/wiki
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2019). Due to the fact that in PolEmo 2.0 there
are only those annotated elements that received
2 annotations from linguists and were agreed by
the super-annotator, this time we provide 8216
reviews and 57466 sentences. In Section 5 we
present Table 7 with the final distribution of anno-
tations and Table 6 with the number of elements in
each domain (evaluation data splits). In this sec-
tion we focus on annotation agreement and anno-
tation errors.

L D SN WN 0 WP SP AMB A

T

H 91.91 36.29 99.41 39.38 91.61 40.11 79.73
M 94.09 26.42 99.05 22.37 96.28 42.46 89.52
P 94.06 23.33 100.0 47.62 85.95 33.68 78.76
S 87.50 20.00 00.00 36.07 92.52 54.19 77.03
A 92.87 32.20 99.18 37.10 93.48 41.86 83.41

S

H 93.78 00.00 88.40 00.20 93.05 33.94 85.39
M 90.43 28.75 91.84 26.58 93.43 39.04 88.83
P 91.27 01.20 48.42 06.90 90.84 30.50 76.82
S 79.21 00.00 26.56 02.76 81.39 33.73 60.78
A 91.93 11.94 87.21 07.24 92.12 33.86 84.56

Table 2: Positive Specific Agreement for annotations ob-
tained at the level (L) of text (T) and sentence (S) for each
domain (D): hotels (H), medicine (M), products (P), school
(S) and all (A).

Table 2 presents PSA values obtained at the
level of text and sentence for all domains. The
overall PSA value for texts is 83.41% and for sen-
tences is 84.56%. It is worth noting that for the
domains to which we have not added neutral texts
(products, school), there are practically no neutral
annotations at the text level (see Table 7). The
highest values are obtained for the most obvious
categories (SP, SN and 0), regardless of the level
of text description. For the remaining categories
PSA value is lower than 40.00% in most cases.

D A/ SN/ SP/ A/ A/ A/ R A/WP/
WP WN WP WN SN SP R WN

H 28.55 22.07 18.33 17.08 07.86 03.12 02.99 47.63
M 18.66 26.24 14.29 17.49 12.24 04.37 06.71 37.32
P 28.16 24.27 13.59 19.42 10.68 02.91 00.97 48.54
S 36.21 07.76 28.45 10.34 06.03 08.62 02.59 49.14
A 26.69 22.07 17.82 16.79 09.02 03.89 03.74 45.23

Table 3: Distribution (%) of disagreements between annota-
tors at the text level. A – AMB tag, A/WP – one annotator
assigned [AMB], other – [WP]. R is the rest of rare occurring
combinations. A/WP/WN is the sum of A/WP, A/WN and
WN/WP.

Table 3 presents the distribution of disagree-
ments between annotators at the text level. The
most common disagreement is within the pair of
tags [AMB/WP]. Nearly half of the disagreements
are related to any pair of AMB, WP and WN tags.

This suggests that annotators, despite the guide-
lines, have difficulty in judging the relevance of
aspects regardless of the domain, or it is a very
subjective task.

D SN/ A/ A/ A/ SP/ A/ SP/ R A/WP/
0 SN 0 WP 0 SP WP R WN

H 10.52 14.29 05.65 19.80 09.42 07.88 09.31 04.30 30.40
M 34.66 08.10 05.02 04.98 15.93 03.32 06.68 04.35 11.62
P 07.84 21.08 33.57 06.21 05.57 09.00 05.17 02.15 09.93
S 04.63 13.90 26.59 08.66 06.45 20.44 12.19 02.01 12.49
A 16.22 13.80 13.23 11.69 10.20 08.20 08.08 18.58 19.07

Table 4: Distribution (%) of disagreements between annota-
tors at the sentence level. A – AMB tag, A/WP – one annota-
tor assigned [AMB], other – [WP]. R is the rest of rare occur-
ring combinations. A/WP/WN is the sum of A/WP, A/WN
and WN/WP.

Table 4 presents the distribution of disagree-
ments between annotators at the sentence level.
The most common disagreement is within the pair
of tags [SN/0]. This time the cases of disagree-
ments between A/WP/WN tags are less than 20%.
Most of the errors are related to the neutral sen-
tence marking. The analysis of specific cases and
a discussion with linguists showed that in the task
of annotating sentences it is difficult to isolate a
sentence from the context and sometimes the an-
notation of the next sentence was a consequence
of the sentiment of the previous sentence.

We have found that it is difficult to decide on
the relevance of the aspects and without creating
a hierarchy of relevance of aspects for a given do-
main it will be hard to achieve better agreement for
WP/WN/AMB tags. Due to the fact that mistakes
are often within these tags, we have combined
them into one AMB tag. PolEmo 2.0 will also be
available for the original tags, but research (Ko-
coń et al., 2019) has shown that machine learn-
ing methods achieve F-score for WP/WN/AMB
classes no higher than PSA. The evaluation data in
this research has WP/WN/AMB tags merged into
one AMB tag. Table 5 presents PSA values after
the merging step. The total PSA increased from
83% to 91% for texts and from 85% to 88% for
sentences.

4 Multi-Level Sentiment Recognition

Recently deep neural networks show relatively
good performance among all available methods
of processing such information (Glorot et al.,
2011). Possibility of retrieving data from different
sources like social networks (Pak and Paroubek,
2010), publicly available discussion boards or
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L D SN 0 AMB SP A

T

H 91.92 99.42 78.50 91.62 89.39
M 94.09 99.05 70.25 96.28 93.43
P 94.06 100.0 77.82 85.95 89.07
S 87.50 00.00 80.78 92.52 88.32
A 92.87 99.18 76.87 93.48 90.91

S

H 93.78 88.40 65.64 93.05 89.83
M 90.43 91.84 59.40 93.43 90.13
P 91.27 48.42 41.22 90.84 79.12
S 79.21 26.56 45.48 81.39 65.68
A 91.92 87.21 56.82 92.12 87.50

Table 5: Positive Specific Agreement for annotations with
WP/WN/AMB merged into one AMB tag, obtained at the
level (L) of text (T) and sentence (S) for each domain (D):
hotels (H), medicine (M), products (P), school (S) and all (A).

marketing platforms connected with proper anno-
tations on training data set can provide not only
simple positive, negative or neutral classification
but lead to accurate fine-grained sentiment predic-
tion (Guzman and Maalej, 2014).

We selected the same classifiers for the recogni-
tion tasks as in (Kocoń et al., 2019): (1) Logistic
Regression as a fastText recognition model (Joulin
et al., 2017) with KGR10 word embeddings (Ko-
coń and Gawor, 2018) providing a baseline for text
classification; (2) BiLSTM (Zhou et al., 2016) in
two variants: KGR10 embeddings as features only
and KGR10 embeddings extended with general
polarity information from sentiment dictionary de-
scribed in (Kocoń et al., 2019); (3) BERT (Devlin
et al., 2018) with additional sequence classifica-
tion layer.

We changed the architecture of BiLSTM and
BERT architecture. In case of BiLSTM, instead of
fixed input length we changed the model to work
with text of any length. The input tensor shape
is (None, 300) for embedding-only variant (BiL-
STM) and (None, 306) for embedding+dictionary
variant (BiLSTMd). We changed the shape of the
second gaussian noise layer to (None, 300)/(None,
306), respectively. Next layers remain the same,
i.e. (1) BiLSTM layer with 1024 hidden units, (2)
dropout layer (ratio 0.2). Last dense layer changed
due to the reduction of sentiment labels from 6
to 4 by label merging process described in Sec-
tion 3.5. For BERT we used the same architec-
ture as in (Kocoń et al., 2019) for the whole texts,
but we changed it for sentences. We reduced the
maximum sequence length from 512 to 64 (cov-

ers more than 99% of sentences) and we increased
batch size from 32 to 128.

5 Evaluation

As in article (Kocoń et al., 2019a; Kocoń et al.,
2019), we prepared three variants of evaluation of
the sentiment classification methods:

• SD – Single Domain – evaluation sets created
using elements from the same domain;

• DO – Domain Out – train/dev sets created us-
ing elements from 3 domains, test set from
the remaining domain. This variant allows
to evaluate the ability of the classification
method to capture the domain-intependent
sentiment features;

• MD – Mixed Domains – SD train/dev/test sets
joined respectively. This variant allows to ex-
amine the ability of the classifier to generalise
the task of sentiment analysis in all available
domains.

We use SDT, DOT, and MDT abbreviations for
text evaluation types and SDS, DOS, and MDS for
sentence evaluation types. We use also prefixes
of domains (Hotels, Medicine, School, Products)
as suffixes for SD* and DO* variants, e.g. SDS-H
is a Single Domain evaluation type performed on
Sentences within Hotels domain, whereas DOT-
M is a Domain-Out evaluation type performed on
Texts trained on texts outside Medicine domain
and tested on texts from that domain.

Table 6 shows the number of texts and sen-
tences annotated by linguists for all evaluation
types, with division into the number of elements
within training, validation and test sets. The dis-
tribution of labels for each domain (both texts and
sentences) is presented in Table 7.

6 Results

Table 8 presents the values of F1-score for each la-
bel, global F1-score, micro-AUC and macro-AUC
for all evaluation types related to the texts. In
case of evaluation for a single domain for each la-
bel, fastText (using Logistic Regression) outper-
formed other classifiers in 16 out of 28 distin-
guishable cases. The worst results are obtained for
ambiguous cases, but in 9 out of 13 cases F1-score
is higher than 0.5 and this result is much better,
than obtained for intermediate labels (weak posi-
tive and weak negative) presented in work (Kocoń
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Type Domain Train Dev Test SUM

SDT

Hotels 3165 396 395 3956
Medicine 2618 327 327 3272
Products 387 49 48 484
School 403 50 51 504

DOT

!Hotels 3408 427 - 3835
!Medicine 3955 496 - 4451
!Products 6186 774 - 6960
!School 6170 772 - 6942

MDT All 6573 823 820 8216

SDS

Hotels 19881 2485 2485 24851
Medicine 18126 2265 2266 22657
Products 5942 743 742 7427
School 2025 253 253 2531

DOS

!Hotels 26093 3262 - 29355
!Medicine 27848 3481 - 31329
!Products 40032 5004 - 45036
!School 43949 5494 - 49443

MDS All 45974 5745 5747 57466

Table 6: The number of texts/sentences for each evaluation
type in train/dev/test sets.

et al., 2019). BERT classifier performs much bet-
ter (14 out of 28 cases) in domain-out knowledge
transfer evaluation (DOT). For this evaluation type
only 4 times fastText was better. These observa-
tions are consistent with the results of article (Ko-
coń et al., 2019a) for valence dimensions.

7 Conclusions

BERT’s performance is below the expectations of
this advanced method in case of the classification
of the whole texts. Looking at both tables (8 and
9), BERT’s results are the best in 64 out of 182
label-specific cases. BiLSTM outperformed other
methods in 48 cases. Adding an external senti-
ment dictionary helped in 40 label-specific cases.
Overall BiLSTM performance is better in 88 out of
182 cases. BERT dominance (when distinguish-
ing between BiLSTM and BiLSTMd) is observed
in DOT and all sentence cases. MDT case is the
most promising in terms of the further use of the
recognition method in applications such as brand
monitoring or early crisis detection. The values of
the general F1, micro AUC and macro AUC are
the highest for BiLSTM variants (see Table 6).

We published PolEmo 2.0 in CLARIN-PL
DSpace repository12 under the Creative Commons
4.0 License. We also intend to test the contex-
tualized embedding that we are currently build-

12http://hdl.handle.net/11321/710

Type Domain SP AMB 0 SN

SDT

Hotels 25.61 24.29 10.77 39.33
Medicine 29.37 09.57 24.11 36.95
Products 11.16 27.48 00.41 60.95
School 51.39 38.29 00.00 10.32
All 27.84 19.47 14.81 37.88

SDS

Hotels 29.55 12.26 17.05 41.15
Medicine 23.18 06.26 39.48 31.08
Products 24.61 19.86 09.36 46.17
School 35.56 37.38 08.89 18.17
All 26.67 11.98 24.54 36.81

Table 7: The distribution (%) of annotations in a
given domain for the following sets: SDT – single do-
main texts (100%=8216), SDS – single domain sentences
(100%=57466).

ing using the ELMo deep word representations
method (Peters et al., 2018), with the use of the
large KGR10 corpus presented in work (Kocoń
et al., 2019a). We also want to train the basic
BERT model with the use of KGR10 to investi-
gate whether it will improve the quality of senti-
ment recognition. It is also very interesting to use
the propagation of sentiment annotation in Word-
Net (Kocoń et al., 2018a,b), to increase the cover-
age of the sentiment dictionary and to potentially
improve the recognition quality as well. This ob-
jective can be achieved by other complex methods
such as OpenAI GPT-2 (Radford et al., 2019) and
domain dictionaries construction methods utilis-
ing WordNet (Kocoń and Marcińczuk, 2016).
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T C SP AMB 0 SN F1 micro macro

SD
T-

H

1 83.58 55.56 98.80 85.47 80.25 94.28 73.96
2 87.31 64.24 97.56 88.44 84.05 95.44 75.87
3 84.69 67.39 96.30 89.97 84.05 96.71 76.77
4 83.50 59.88 93.83 86.90 81.01 95.62 74.94

SD
T-

M

1 82.83 36.84 98.65 81.48 83.18 95.62 73.35
2 78.35 18.18 96.60 78.29 77.37 92.99 70.83
3 75.13 15.87 94.67 76.19 74.31 91.92 70.13
4 80.75 00.00 97.30 85.61 83.79 96.37 74.29

SD
T-

P

1 40.00 54.55 00.00 85.29 75.00 93.09 63.65
2 00.00 00.00 00.00 82.93 70.83 87.49 35.50
3 00.00 08.70 00.00 67.65 50.00 77.82 44.43
4 00.00 00.00 00.00 84.34 72.92 89.21 39.81

SD
T-

S

1 81.36 66.67 00.00 50.00 74.00 84.27 59.85
2 65.31 60.47 00.00 25.00 60.00 76.92 56.23
3 72.73 57.89 00.00 28.57 64.00 76.12 53.97
4 71.79 00.00 00.00 00.00 56.00 79.48 51.02

D
O

T-
H

1 77.63 41.77 90.48 80.85 73.16 90.39 71.30
2 74.37 25.00 85.71 73.28 66.08 85.96 67.75
3 82.52 52.69 86.42 82.14 76.46 92.77 73.17
4 83.84 47.27 85.71 83.43 76.20 94.15 73.46

D
O

T-
M

1 76.40 20.00 81.89 78.26 74.01 89.54 66.99
2 73.81 20.62 88.89 76.38 70.03 88.34 68.92
3 73.14 23.08 88.41 78.33 72.48 91.71 70.94
4 78.11 23.30 92.20 78.84 72.78 90.81 71.01

D
O

T-
P 1 50.00 57.14 00.00 78.69 68.75 90.27 72.90

2 66.67 55.17 00.00 75.86 66.67 88.90 74.73
3 50.00 64.29 00.00 85.25 75.00 93.76 72.04
4 40.00 52.17 40.00 82.54 70.83 90.65 72.06

D
O

T-
S 1 72.73 59.26 00.00 33.33 60.00 76.97 60.24

2 73.47 56.25 00.00 26.67 58.00 82.03 59.79
3 78.43 23.08 00.00 26.67 50.00 76.92 58.62
4 80.00 52.94 00.00 28.57 62.00 83.71 58.89

M
D

T-
A 1 82.20 53.64 95.73 84.06 80.37 93.69 73.61

2 87.22 61.92 95.20 88.17 84.39 96.41 76.44
3 84.33 55.63 94.37 86.61 81.71 95.19 75.36
4 85.40 56.75 96.07 85.97 82.07 96.72 76.43

M
D

T-
H 1 84.42 54.44 98.80 84.37 79.49 93.46 73.62

2 86.73 65.14 95.00 89.09 83.80 96.06 76.33
3 85.00 58.33 96.30 86.80 81.27 95.24 75.44
4 85.86 63.58 95.00 87.91 82.78 96.82 76.52

M
D

T-
M

1 81.82 30.00 96.60 83.27 82.57 95.21 73.30
2 88.32 36.36 95.95 87.55 86.24 97.16 75.92
3 84.38 32.14 96.55 88.12 84.10 95.77 74.95
4 86.01 32.65 97.96 86.79 85.02 97.37 76.12

M
D

T-
P 1 50.00 72.73 00.00 91.18 83.33 93.54 74.56

2 66.67 66.67 00.00 92.31 83.33 94.86 76.25
3 33.33 53.85 00.00 87.10 72.92 92.23 73.35
4 50.00 42.86 00.00 77.42 64.58 93.26 68.60

M
D

T-
S 1 77.78 66.67 00.00 57.14 70.00 85.85 62.86

2 87.27 73.68 00.00 28.57 78.00 94.63 66.48
3 87.27 82.35 00.00 25.00 78.00 93.53 66.70
4 84.21 66.67 00.00 00.00 74.00 93.55 66.52

Table 8: F1-scores for text-oriented evaluation. Training sets
for evaluation types (T) are the same as in Table 6 rows 1-9.
Classifiers: (1) logistic regression (fastText), (2) BiLSTM on
word embeddings only (3) BiLSTMd – word embeddings ex-
tended using polarity dictionary (4) BERT. Evaluation types
are explained in Section 5.

T C SP AMB 0 SN F1 micro macro

SD
S-

H

1 71.98 40.00 64.49 75.90 68.21 83.48 64.44
2 82.51 53.93 72.23 84.29 78.31 93.78 73.40
3 81.69 51.41 71.21 84.21 77.99 93.43 73.03
4 82.46 56.65 75.33 84.21 78.99 92.97 72.98

SD
S-

M

1 67.58 25.90 73.33 64.06 66.18 82.41 61.67
2 72.36 31.75 78.20 71.17 71.96 90.67 70.09
3 74.49 29.13 79.62 72.58 73.33 91.18 70.39
4 75.69 27.24 81.33 73.77 74.53 90.76 69.72

SD
S-

P

1 62.22 35.34 33.93 73.19 60.78 80.13 59.96
2 62.21 28.34 40.65 74.48 60.78 81.82 61.34
3 66.67 31.46 36.36 73.94 61.32 83.05 62.51
4 66.67 16.77 36.04 74.07 62.80 82.63 60.82

SD
S-

S

1 59.34 58.37 34.29 42.50 54.55 77.34 59.64
2 47.06 47.85 34.29 28.26 43.08 68.40 53.11
3 45.16 51.61 35.56 26.97 43.87 73.38 56.71
4 51.31 63.24 18.18 00.00 51.78 76.17 52.96

D
O

S-
H

1 61.49 26.94 46.98 62.32 54.53 74.29 57.88
2 72.57 34.60 58.97 74.56 66.56 87.02 67.76
3 72.76 42.29 60.50 74.80 67.81 87.89 68.21
4 70.42 42.12 60.89 74.81 66.96 85.71 68.07

D
O

S-
M

1 48.58 21.18 56.83 55.56 50.33 71.50 55.83
2 61.87 26.37 62.44 64.55 59.47 80.72 63.67
3 58.68 24.77 63.00 63.00 58.41 80.83 63.51
4 61.87 27.21 66.58 64.25 60.75 81.80 65.08

D
O

S-
P 1 54.21 23.77 28.92 58.81 47.04 69.03 53.20

2 66.28 33.33 35.34 72.20 59.30 81.78 63.82
3 66.47 30.61 31.50 72.05 58.36 81.15 62.98
4 64.26 35.82 30.95 72.78 58.76 78.58 62.11

D
O

S-
S 1 38.52 42.05 34.92 30.30 37.15 59.92 52.56

2 53.25 43.90 19.35 46.03 44.27 71.52 58.91
3 58.82 47.50 23.73 41.79 46.64 71.10 61.07
4 55.13 51.89 29.79 44.07 49.01 73.09 59.20

M
D

S-
A 1 66.17 32.36 63.05 66.73 61.27 79.33 61.45

2 77.43 47.21 74.09 79.40 74.13 91.48 71.70
3 77.10 45.88 74.30 78.73 73.70 91.52 71.83
4 76.65 47.76 76.70 79.27 74.36 91.19 71.80

M
D

S-
H 1 72.09 33.13 61.42 72.88 65.43 81.43 62.66

2 82.82 51.63 73.18 84.23 78.51 93.64 73.19
3 81.73 54.51 72.68 84.77 78.59 93.80 73.53
4 82.82 55.41 74.76 84.52 78.91 93.04 73.12

M
D

S-
M

1 63.02 23.12 68.42 61.87 61.37 79.79 60.19
2 76.10 34.88 79.19 75.27 74.44 91.55 70.72
3 75.27 35.29 79.60 72.51 73.42 91.21 70.72
4 75.12 40.00 81.83 75.50 75.67 91.71 71.52

M
D

S-
P 1 56.89 31.85 31.75 63.39 52.16 73.92 56.03

2 67.75 36.44 35.93 76.90 63.88 86.03 65.86
3 70.65 35.34 40.00 77.89 65.23 87.23 67.14
4 65.19 33.33 42.60 75.53 62.26 84.60 65.06

M
D

S-
S 1 52.17 48.68 26.67 41.44 46.25 69.03 54.72

2 59.17 64.42 34.15 54.55 58.50 79.16 62.17
3 61.71 50.81 30.43 52.00 52.96 78.05 62.10
4 58.62 53.47 34.29 50.53 53.36 81.38 61.85

Table 9: F1-scores for sentence-oriented evaluation. Train-
ing sets for evaluation types (T) are the same as in Table 6
rows 1-9. Classifiers: (1) logistic regression (fastText), (2)
BiLSTM on word embeddings only (3) BiLSTMd – word
embeddings extended using polarity dictionary (4) BERT.
Evaluation types are explained in Section 5.
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Jan Kocoń and Michał Gawor. 2018. Evaluating
KGR10 Polish word embeddings in the recogni-
tion of temporal expressions using BiLSTM-CRF.
Schedae Informaticae, 27.
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Abstract

In this paper, we look beyond the traditional
population-level sentiment modeling and con-
sider the individuality in a person’s expres-
sions by discovering both textual and contex-
tual information. In particular, we construct
a hierarchical neural network that leverages
valuable information from a person’s past ex-
pressions, and offer a better understanding of
the sentiment from the expresser’s perspective.
Additionally, we investigate how a person’s
sentiment changes over time so that recent in-
cidents or opinions may have more effect on
the person’s current sentiment than the old
ones. Psychological studies have also shown
that individual variation exists in how easily
people change their sentiments. In order to
model such traits, we develop a modified at-
tention mechanism with Hawkes process ap-
plied on top of a recurrent network for a user-
specific design. Implemented with automati-
cally labeled Twitter data, the proposed model
has shown positive results employing different
input formulations for representing the con-
cerned information.

1 Introduction

Sentiment is one of the key factors affecting hu-
man behavior. Studying the way in which sen-
timent is perceived, evolved and expressed is an
essential part in artificial intelligence. To an-
alyze sentiment in text, researchers have made
different assumptions on linguistic behaviors that
are leveraged with approaches developed based
on the nature of the text, the representation of
the related information and the objectives. How-
ever, majority of the studies are conducted at the
population-level which assumes that people fol-
low a common understanding with regard to the
use of language. Such approaches can be inaccu-
rate in the cases where people use the same lexical
choices to convey different messages or vice versa.

Harris (2006) stated that ‘no two alike’ showing
the inherent difference in human that motivates
the research of personalized sentiment analysis.
Grounded in the psychological works, we argue
that it is significant to study the effect of individu-
ality in the expressions and to investigate the pos-
sibility of providing a deeper understanding of the
expressions from the writers’ own perspectives. In
this work, we concern the use of preferred lexi-
cal choices when expressing sentiment (Reiter and
Sripada, 2002) and the level of consistency in re-
taining a sentiment (Janis and Field, 1956).

Besides the targeted text message itself, we ex-
ploit two types of contextual information for the
purpose of realizing the psychological aspects: a
person’s expressions in the past and the time when
the expressions were made. With the goal of dis-
covering the effect of the contextual information,
distinct formulation methods are proposed to in-
tegrate the information in the personalized senti-
ment model. The backboned model is a hierarchi-
cal neural network which follows a conventional
embedding – recurrent – attention structure with
each part rectified for the task. The embedding
block is used to generate representations for the
used information; the recurrent network fulfills the
task of relating to the information from the past;
the attention model is shaped with Hawkes pro-
cess (Laub et al., 2015) in order to model the infor-
mation decay for each expresser. Generally, recur-
rent networks consider the order of the elements
in a sequence but omit the different gaps between
them. Hawkes process is utilized to compensate
this issue. Furthermore, a novel approach with a
user – factor transformation is employed to merge
the Hawkes process within the attention model and
to construct user-specific processes. For evalua-
tion, we take the data from a number of frequent
users on social platforms where Twitter is used as
an example. The data is domain-independent, and
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it is possible to obtain self-labeled texts that aligns
with our goal of understanding the expressers’ per-
spectives. Significant improvements are seen with
certain input formulations, and different Hawkes
processes applied for the users are visualized. In
the end, we conclude that it is effective to intro-
duce the contextual information to the model.

2 Related Work

Individualities are mostly considered in senti-
ment analysis when analyzing product-review
texts (Gong et al., 2016; Chen et al., 2016b; Wu
et al., 2018). A common issue that challenges the
research of this area is data sparsity. It is infea-
sible to build or train an effective model for each
user. Gong et al. (2016) address this issue by relat-
ing to a global model that captures ‘social norms’,
and individualities are included by adapting from
the global model via a series of linear transfor-
mations. While in the works that apply neural
networks, the user information is embedded sep-
arately (Chen et al., 2016b) or added at the atten-
tion layer (Chen et al., 2016a; Wu et al., 2018)
in order to make user-specific predictions at the
output. In other works, the aspect of personal-
ization is relaxed to provide user-group based pre-
dictions (Gong et al., 2017). The aforementioned
approaches are modeled with domain-dependent
text, while our concentration on the text associated
with various topics makes the task more challeng-
ing. Wu and Huang (2016) focus on microblog
posts as well and apply the same concept of us-
ing a global model and an individual model via
multi-task learning as in Gong et al. (2016). In ad-
dition, users’ social relations are leveraged to en-
hance the individual models. Similarly, followers’
and followees’ information is also used in Song
et al. (2015) while a variant of latent factor model
is utilized. Most of the studies leverage earlier
posts from users in order to better understand the
individuality; however the evolvement of the sen-
timent is largely neglected — the preferences of
users are considered constant. In this work, we
take the user dynamics into consideration, and in-
corporate user information both in the input and in
the Hawkes process to deal with the data sparsity
and to offer personalized analysis.

Technically, there are very few works that inves-
tigate the different gaps between the input nodes in
a recurrent neural network. Neil et al. (2016) have
proposed a phased LSTM that utilizes an addi-

tional time gate to control the passing of the infor-
mation. However, the time gate is triggered by pe-
riodic oscillations while modeling sensory events,
which makes such a design less flexible when the
time gaps are highly various. As an alternative, we
explicitly add the time gaps in the Hawkes process
to offer a time-sensitive modeling.

In our previous works, we have evaluated the
effectiveness of considering individual differences
in sentiment analysis by employing a concept-
based representation and the static or universal
Hawkes process (Guo et al., 2018, 2019a). In
this paper, we advance the development by adopt-
ing five input formulations with different combi-
nations of granular levels, and propose a refined
model with user-specific Hawkes process to con-
stitute a step forward in capturing the nuances of
user dynamics and providing insights in the per-
sonalized modeling.

3 Personalized Sentiment Model

Motivated by the diversity in individuality, we in-
troduce a model that considers both textual and
contextual information and applies hierarchical
neural networks to facilitate the aspect of person-
alization in sentiment analysis. Particularly, we fo-
cus on analyzing the effect of contextual informa-
tion and discover ways to embed such information
in the prediction process.

3.1 Model Structure
The personalized sentiment model follows a con-
ventional embedding – recurrent – attention struc-
ture as shown in Figure 1 with modifications ap-
plied at each block. First, a formulation method
is applied in order to represent the current and a
number of earlier posts of a user. The embedding

Figure 1: The structure of the sentiment model.
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layer takes the formulated inputs and produces a
vector for each time step at the recurrent layer.
After that, the outputs of the recurrent layer to-
gether with the auxiliary time differences are fed
to the attention block. Encoded user index is used
in the Hawkes-attention layer when different set-
tings of Hawkes process are considered for differ-
ent users. A fully connected layer is applied af-
terwards to regularize the output of the Hawkes-
attention layer. Finally, the output of the model yt

is generated which is the predicted sentiment label
of the target text.

3.2 Textual and Contextual Information

In linguistic studies, the notion of ‘context’ varies
from theory to theory that some in monologism
see it as ‘secondary complications’, whereas in di-
alogist theory, it considers the reflexive relation
between an expression and its setting or occasion
essential (Linell, 2009). In this work, we target
social text and regard context as an important fac-
tor in the setting of social platforms. Based on the
characteristics of such text and the applicability in
modeling, we categorize the information used in
the sentiment model into two genres: Textual In-
formation — the information that can be extracted
directly from the target text, and Contextual In-
formation — the information that is not present
in the target text but is associated with the text ac-
cording to the user index.

Textual Information
Text is the central part in sentiment analysis. Re-
searchers in this area have proposed various ap-
proaches aiming to provide a deep text under-
standing given the complex nature of how peo-
ple express their sentiments in text. Moreover,
methods designed at the population-level for many
other natural language processing tasks can also
be used for sentiment analysis. Generally, such
methods start at a pre-defined granular level and
generate a representation for the text by capturing
related information in each granule and the ones
surrounding it. In the end, the text is represented
explicitly (e.g., concepts as in Poria et al., 2014)
and / or implicitly (e.g., embeddings as in Pen-
nington et al., 2014 and Peters et al., 2018).

Contextual Information
Besides the target text itself, other types of infor-
mation have been used to support the understand-
ing of the sentiment as well.

Earlier Posts correspond to the texts produced
by the same user in the past. The use of earlier
posts leverages the assumption that a person may
have similar lexical choices when expressing opin-
ions about related topics while different individu-
als share different preferences in this regard. By
analyzing the lexical choices and the topics or en-
tities associated with them, the tendency of repeat-
ing such patterns in a user’s text in the future can
be beneficial to the prediction.

Timestamp corresponds to the creation time of
the text. It has been shown that there exists a cer-
tain level of consistency in an individual’s opin-
ions and such consistency varies from one individ-
ual to another (Janis and Field, 1956). We study
such a trait by taking the timestamp of each earlier
post and applying Hawkes process to observe how
the effect of the information on a user’s behaviors
or opinions decays over time. Note that here, we
do not distinguish the inconsistency between the
time when the expression was made and the time
when the sentiment was felt.

3.3 Input Formulations

We employ different formulations for the input se-
quence based on the representation method. For
all the formulations, timestamps are apart from
other information and are used as an auxiliary in-
put directly at the attention layer with Hawkes pro-
cess. Additionally, user index is used as a feature
in the input in order to handle the issue of data
sparsity, and by doing that, the model is able to
analyze textual and contextual relations targeting
a specific user. The encoded user index is also
used at the Hawkes-attention layer when consid-
ering individual differences in information decay.

Atomic Representation (AR)
In this formulation, four types of components are
extracted: concepts, entities, negations and user
index. Concepts are extracted based on Cambria
et al. (2018) which contain conceptual and affec-
tive information, and can be seen as the ‘signal
terms’ regarding lexical choices. Entities are ex-
tracted based on grammatical rules as the ‘targets’
of a user’s lexical choice. Negations are extracted
based on the lexicon by Reitan et al. (2015) for
their ability to invert the orientation of a sentiment.
User index is extracted for its role in personaliza-
tion. After extracting the components, an embed-
ding layer is applied to generate a representation
vector for the text.
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Representation with Pre-trained Word
Embeddings (WE)

Pre-trained word vectors such as GloVe (Penning-
ton et al., 2014) and Word2Vec (Mikolov et al.,
2013), generate embeddings according to the co-
occurrences of the words. The word embeddings
are aggregated dimension-wise to produce a vector
for each post. The user index is encoded by itself
and then combined with the representation of the
post at each time point of an input sequence.

Representation with Concepts and Words
(CW)

Since the pre-trained word vectors do not consider
the contexts of the target words, we combine the
representations of both words and concepts in this
formulation. The word embeddings are taken as
the same as the one in the WE formulation. The
concepts appeared in the text are encoded together
with the associated user index so that the relation
between the user and the use of concepts can be
learned. Afterwards, the two types of representa-
tion of the same post are concatenated to generate
an input sequence for the recurrent layer.

Representation with Deep Contextualization
(DC)

Peters et al. (2018) proposed a deep contextualized
representation (ELMo) that takes a finer granular
level (characters) to generate embeddings for the
text by leveraging a deep bidirectional language
model. Prominent results are shown across a num-
ber of linguistic tasks using this representation.
We apply ELMo for each post, and then combine
the representation of the post and the encoded user
index at each time point.

Representation with Combined Granular
Levels (Combi)

This formulation combines three granular lev-
els, namely character-level (DC), word-level and
concept-level (CW). The representations are em-
bedded separately and are concatenated afterwards
as mentioned in Peters et al. (2018).

3.4 Recurrent Neural Network with Input
Selection from Post History

We apply a deep recurrent neural network with
long short-term memory (LSTM, Hochreiter and
Schmidhuber, 1997) on the input sequences con-
structed with one of the input formulations. Each

input sequence Xi consists of an entry of the cur-
rent post at the end of the sequence (which con-
tains textual information and the encoded user in-
dex) and a number of earlier posts by the same user
(contextual information), i.e.,

Xi = [Hi�n, ..., Hi�2, Hi�1, Fa(xi)] (1)

where

Hj =

(
Fa(xj) if u(xj) = u(xi) ,

0 else

n is the number of earlier posts considered, Fa is
the formulation chosen beforehand, and u is the
user index of the post.

Additionally, a selection procedure fol-
lowed Guo et al. (2019b), is performed for
choosing the earlier post xj of a target text xi

from user u. The use of this procedure is moti-
vated by the large difference in user frequency
(the number of posts of a user in a given corpus),
as well as the observation of the case where the
recent posts are unrelated to the current one while
the related posts have appeared long before. The
selection is done by calculating the similarity
between the topics of each earlier post and the
target text. Given a fixed number of time steps T
in a recurrent network and a similarity threshold
�, the recent T earlier posts that have a similarity
score larger or equal to � are chosen. For the case
where the number of chosen posts is smaller than
T , other earlier posts are added in the sequence
as complements prioritizing on the recent ones.
After the selection, the posts in each sequence are
ordered by time.

3.5 Hawkes-Attention Layer
A modified attention mechanism is applied on top
of the recurrent neural network. Attention model
has the ability to provide more flexibilities at the
output layer (Bahdanau et al., 2015). The network
can ‘attend’ to different histories based on the im-
mediate situation. As in Yang et al. (2016), the
model is defined as follows:

ui = tanh (Wthi + bt) (2)

↵i =
exp(u>

i ut)P
i exp(u>

i ut)
(3)

�i = ↵ihi (4)

v =
X

i

�i (5)
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where hi is the i-th output of the recurrent net-
work, ui is the hidden representation of hi, and ut

is the ‘context vector’. Here, we randomly initial-
ize the context vector which is later jointly learned
with other weights during the training phase. �i

is the representation of the information learned at
time step i. Lastly, v summarizes all the informa-
tion of the posts from the corresponding sequence.
However, conventional recurrent networks and at-
tention models do not differentiate the relations
between time steps regarding various time inter-
vals. To model this difference, we shape the rep-
resentation of the post �i with Hawkes process
before summarizing them at the last step (Equa-
tion 5) in the attention mechanism.

Universal Hawkes Process
Hawkes process is known for modeling the exci-
tation and decay of information over time. When
using exponential decay as the excitation function,
the Hawkes conditional intensity is (Laub et al.,
2015):

�⇤(t) = �+
X

ti<t

↵e��(t�ti) (6)

where � describes the positive background inten-
sity, t is the current time and ti is the time when the
past event happened. ↵ and � are the most impor-
tant factors in the Hawkes process that the former
corresponds to the amount of excitement the past
event brought to the system while the latter corre-
sponds to the decay rate of the excitement. Taking
the same concept as in Guo et al. (2019a), we see a
post in the past as an ‘event’ that can influence the
decision in the future and such influence decays
over time. Instead of treating all the past events
equally, we use �i in Equation 4 as the background
intensity and ↵ = ✏�0i as the amount of excitement
the post at time step i contributes to the current
decision. Note that �0i = max(�i, 0) for we do
not consider negative effect from the past. With
this modification, the information decay of a past
event can also depend on the relativeness between
the past and the current events, and ✏ can be seen
as a scaler to balance the importance of adding the
process. As a result, Equation 5 is replaced with
the following:

v0 =
X

i:�ti>0

(�i + ✏�0ie
���ti) (7)

where �ti indicates the time gap between the
earlier post at time step i and the current post.

The current post is included in the summariza-
tion when �ti = 0. ✏ and � are learned jointly
with other learnable parameters during the train-
ing phase.

User-specific Hawkes Process
In order to build user-specific Hawkes process, we
compute the values of ✏ and � in Equation 7 for
each user by applying learned transformation vec-
tors on the encoded user index. In this way, dif-
ferent behaviors concerning the information decay
can be analyzed. That is, ✏ and � are calculated as

✏ = a>✏ E(u) (8)

� = a>� E(u) (9)

where E is the user-index encoder. The trans-
formation vectors a✏ and a� are learned during
the training process, and other settings remain the
same with the universal Hawkes process.

Similarly, Cao et al. (2017) also integrate a
Hawkes process in a neural-based system. To
avoid pre-defining a time decay function, the time
range in an observation is split into a number of
disjoint intervals, whereas user information is em-
bedded in the input. Although this non-parametric
method can be applied in our model, the selection
of the number of intervals undermines the flexibil-
ity of the process. However, as in their work, a
fully connected layer is applied afterwards which
takes the exited (decayed) information representa-
tion v0 as input and outputs the final prediction of
the sentiment yt.

4 Experiments

We investigate the effect of textual and contex-
tual information in personalization and evaluate
the performance of the model employing different
input formulations.

4.1 Dataset

The Sentiment1401 corpus is chosen in the exper-
iments for complying the requirements that

1. there are sufficient frequent users,

2. the text is domain-independent,

3. the desired textual and contextual informa-
tion is present,

1http://help.sentiment140.com/
for-students, last seen on September 24, 2019
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4. the corpus is annotated from the writers’ per-
spectives.

The corpus is labeled automatically by emoticons
as described in Go et al. (2009) and reflects a user-
specific view in contrast to the corpus labeled by
others such as the SemEval2 corpus. However,
the automatic labeling may also contain a certain
level of noise caused by the variation in emoti-
con usage and the unreliability at the user end.
The experimented dataset is created by taking the
messages from the users who have posted at least
20 times before a pre-set timestamp. This results
in 2369 users with overall 122,000 messages in
which 79,009 are positive and 42,991 are nega-
tive. Furthermore, the dataset is split into a train-
ing set, a development set and a test set according
to two pre-set time points to ensure that the pre-
diction is only made based on the messages in the
past. Other details of the dataset can be found in
the appendix.

4.2 Experimental Settings

The experiments are conducted using Keras3 with
TensorFlow4 backend. The concepts used in the
AR and CW formulations are based on SenticNet
55. In WE and CW, 100 dimensional Twitter word
vectors are taken from GloVe6. The ELMo word
representations in the DC input formulation are
supported by TensorFlow Hub7, which are later
re-trained with other weights in the model. The
inputs with AR, WE and DC are encoded into dif-
ferent lengths based on the number of elements
in each formulation, however they are suppressed
at the embedding layer that generates a vector of
length 100 at each time step in order to make fair
comparisons. In CW and Combi, the input vec-
tors fed to the recurrent layer are longer (164 and
264 respectively) because of the concatenation of
representations. The dimension of user embed-
dings is set to 32. There are three recurrent layers
at the recurrent block that each contains 100 units,

2http://alt.qcri.org/semeval2017/
task4/, last seen on September 24, 2019

3https://keras.io/, last seen on September 24,
2019

4https://www.tensorflow.org/, last seen on
September 24, 2019

5https://sentic.net/downloads/, last seen on
September 24, 2019

6https://nlp.stanford.edu/projects/
glove/, last seen on September 24, 2019

7https://tfhub.dev/google/elmo/2, last seen
on September 24, 2019

and the number of time steps T is set to 20. For
the selection procedure, the same setting is used as
in Guo et al. (2019b), where Manhattan distance
is used as the ground measurement for calculating
topic similarities and the similarity threshold � is
set empirically at 0.8. At the attention block, the
time unit is hour, and the values of ✏ and � are ini-
tialized at 0.01 and 0.001 respectively when using
the universal Hawkes process; the initial values
for the vectors a✏ and a� when using user-specific
processes are also vectors of 0.01 and 0.001 re-
spectively, and the length of the vectors has to be
the same with the dimension of user embeddings,
which is 32. The dimension of the fully connected
layer applied before the output is set to the same
as the number of units in the recurrent layer. We
report the overall accuracy of the model as well as
the F1 scores for the positive and negative classes.
Detailed settings of the model, sample codes for
the Hawkes process, and trained models with the
Combi formulation can be found in the supple-
mentary material.

4.3 Results

Table 1 shows the performance of the model in
different settings. The best result is given by
the Combi formulation with user-specific Hawkes
process. Comparing to the result we have reported
previously in Guo et al. (2019a) with an accuracy
of 76.13, the best performance with this model has
reached 80.38 using the same test set.

Results with Different Input Formulations
Across different input formulations, improve-
ments can be seen comparing the models using
the universal - and the user-specific Hawkes pro-
cess. Although the increase when applying the AR
formulation is not significant, the improvement
of other formulations are significant (t test with
p < 0.05). The lack of improvements with the AR
formulation when learning user-specific behaviors
can be caused by the sparser representation com-
pared to the other formulations. A matching from
each post to a list of concepts and negations is per-
formed which omits information that is not present
in the given list. The list of concepts provided
by SenticNet 5 is more restricted than the word
vectors by GloVe, and is far less flexible than the
character-based representation. In addition, due to
the highly unstructured nature of social texts, the
preprocessing of the posts plays a significant role
in the AR formulation, which also affects the per-
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Input Universal Hawkes Process User-specific Hawkes Process
Formulation Pos. F1 Neg. F1 Accuracy Pos. F1 Neg. F1 Accuracy

AR 75.12 76.87 76.04 74.94 77.48 76.28
WE 76.06 77.06 76.58 76.61 78.41 77.55
CW 76.43 77.71 77.10 76.90 79.10 78.06
DC 76.60 79.71 78.27 77.10 80.36 78.86

Combi 77.78 80.67 79.34 78.06 82.25 80.38

Table 1: Performance of the sentiment model when applying the universal - and the user-specific Hawkes process
with different input formulations.

formance substantially.
We can also observe improvements when us-

ing finer granular levels which are more sensi-
tive and representative towards user variations.
Note that using the character-based DC formula-
tion alone offers better performance than using the
combination of word - and concept-level represen-
tations; however the ELMo representation has a
more complex structure, a higher dimensional out-
put, and it takes longer time to re-train the weights
in the network. In conclusion, the best solution
for constructing representation for the inputs is to
leverage the combined granular levels from char-
acter to word, and to concept (Combi). With
such a representation, the system is able to ana-
lyze user-specific behaviors regarding the lexical
usage and the consistency of sentiment.

Results for Various Lengths of History
Figure 2 shows the performance of the models
while using the CW formulation. The models are
tested for T from 1 where no earlier posts are con-
sidered, to 20 after which no significant improve-
ment can be observed due to the number of related
posts a user normally publishes.

Figure 2: Comparison of the universal - and the user-
specific Hawkes process-based models while using dif-
ferent time steps.

For the case when the user history is not incor-
porated in the model (T = 1,�t = 0), we can
deduce that v0 = �+ ✏�0, which leads to an accu-
racy of 73.87 with the universal ✏ and 74.46 with
the user-specific ✏ (Equation 8).

We can observe an increase in both models
when rising the number of time steps T . The in-
crease indicates that the personalization is effec-
tive and earlier posts are valid contextual informa-
tion. By using the selection procedure, the mod-
els with a smaller number of T (except for when
T = 1) take into account more related posts in the
past. The increase grows slightly faster towards
smaller numbers of T , which is also caused by the
limitation of user frequencies in the experimented
corpus. We believe that given a sufficient number
of frequent users, the performance of the proposed
models can be further improved.

Results for Various User Frequencies

The performance of the models when applying for
users with different frequencies can be seen in Fig-
ure 3. The x-axis corresponds to the lower bound
of the user frequency. We take the lower bound for
the illustration because there are different numbers
of users for each frequency, and many frequencies
have no users to assign to. With both models, sig-
nificant growths for each input formulation can be
observed while increasing the lower bound of the
frequency. Note that although the Combi formu-
lation gives the overall best performance, we can
see from the figure that it does not give the best
results in all the cases. For instance, when the user
frequency is around 80, the WE formulation has
the best accuracy in both models. However, such
an observation is also restricted by the number of
frequent users in general — with only 372 posts
in the test set when the user frequency is at least
100, the performance is highly dependent on the
remaining 3 users. Another observation is that the

998



Figure 3: Performance of the universal - and the user-specific Hawkes process-based models for users with different
frequencies when applying different formulations.

WE formulation performs better than the CW for-
mulation in higher user frequencies, but it has a
lower overall performance because there are more
users who have published less than 30 posts than
the ones who have more.

4.4 Visualization of User-specific
Hawkes-Attention

In order to examine the user-specific Hawkes pro-
cess, we visualize the intermediate calculations for
the values of ✏ and � for 10 random users (Fig-
ure 4). Each cell in the figure corresponds to the
value of a✏i ⇤ Ei(u) in Equation 8 (top figure) or
a� i ⇤ Ei(u) in Equation 9 (bottom figure) at di-
mension i for the respective user.

Figure 4: The vectors of ✏ and � in the user-specific
Hawkes process of the random 10 users.

The effect of the learned transformation vectors
on the 10 users is illustrated. It can be seen that

the last user in the figure (the one at the bottom
line) has the greatest values for ✏ and �, which
means that the decay factor has a great impact on
the prediction for this user than the others but the
influence from the past decays comparably fast —
the user is affected a lot by recent events. In con-
trast, among the 10 users, the second last user is
the least influenced by the past which is visual-
ized in darker colors. From this figure, we can see
that the different decaying processes are indeed
learned for different users with the vector trans-
formation. One may argue that the behavior of the
Hawkes process also depends on the time period
of the experimented dataset; however, if an earlier
post (outside of the training period) is highly rel-
evant to the current one, the large value of �i can
still prevail regardless the value of ✏.

5 Conclusion

This paper presents a personalized sentiment
model that captures the individualities in express-
ing sentiment and analyzes the evolvement of sen-
timent over time. Particularly, we categorize the
information used for the modeling into textual and
contextual information, and evaluate the effective-
ness of using the contextual information to boost
the performance of the model. A novel attention
mechanism with user-specific Hawkes process is
employed for this purpose. Technically, it also
provides an alternative for studying various time
gaps in temporal sequences with neural networks.
Different input formulations are applied in which
the combined granular representation performs the
best. Based on our findings, we can conclude that
the individual variation indeed affects the analy-
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sis, and the contextual information, as an essential
part in human interactions, positively contributes
to the performance.

Because the informal text we have used devi-
ates from the language standard, the representa-
tion of input text plays a significant role in improv-
ing the performance. In the future work, we will
exploit phonetic representation which can provide
another source of information for such text. The
posts can be transcribed into phonetic sequences,
for instance, by using the International Phonetic
Alphabet, in order to handle certain misspellings
and to study the trend of using letters with sim-
ilar pronunciations as substitutions. Moreover,
other types of contextual information should be
explored as well to enhance the understanding of
individual behaviors on social platforms. As an
example, social relations can be used to identify
abnormalities in the change of sentiment, espe-
cially in the case that a user is exceptionally stimu-
lated by other users or special events which causes
untypical behaviors. The personalized model can
also be helpful in other scenarios, such as to offer
deep understanding for user-tailored conversations
or companionship.
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Abstract 

Text classification plays a crucial role for 
understanding natural language in a wide 
range of applications. Most existing 
approaches mainly focus on long text 
classification (e.g., blogs, documents, 
paragraphs). However, they cannot easily 
be applied to short text because of its 
sparsity and lack of context. In this paper, 
we propose a new model called cluster-
gated convolutional neural network 
(CGCNN), which jointly explores word-
level clustering and text classification in an 
end-to-end manner. Specifically, the 
proposed model firstly uses a bi-directional 
long short-term memory to learn word 
representations. Then, it leverages a soft 
clustering method to explore their semantic 
relation with the cluster centers, and takes 
linear transformation on text 
representations. It develops a cluster-
dependent gated convolutional layer to 
further control the cluster-dependent 
feature flows. Experimental results on five 
commonly used datasets show that our 
model outperforms state-of-the-art models. 

1 Introduction 

With the rapid development of social media, e-
commerce and on-line communication, the 
Internet has been generating an increasing amount 
of short texts, including texts, search snippets, user 
reviews for products, etc., which poses an urgent 
demand for understanding them. Short text 
classification, assigning predefined categories to 
texts, is a fundamental technique in natural 
language processing, and plays an important role 
in a wide range of applications, such as sentiment 
analysis, web searching, and ads matching.  

In prior research, much progress has been made 
on text classification, including traditional 

approaches based on human-designed features 
(Lazaridou et al., 2013; Zhang et al., 2015a) and 
neural networks based on deep architectures (Lai 
et al., 2015; Yang et al., 2016). However, such 
methods prefer to deal with documents and 
paragraphs, and still have limitations for short texts. 
Each short text does not have enough words, which 
may result in data sparsity and lack of contexts 
(Wang et al., 2017). 

Some researchers incorporated knowledge 
bases into traditional approaches (Feng et al., 2013; 
Wang et al., 2014) or neural networks (Wang et al., 
2017) to overcome these challenges. Extra 
resources can provide abundant semantic 
information for short text classification, but the 
performance of such methods is strongly 
dependent on the quality of knowledge bases and 
constructing a large-scale knowledge base is time-
consuming and labor-intensive. Another strategy is 
to explore latent topics (Chen et al., 2011; Ren et 
al., 2016) or clustering features (Ma et al., 2015; 
Revanasiddappa and Harish, 2018) for texts and 
input them into some classifiers as features. Such 
methods can reduce high dimensionality and terms’ 
sparse distribution problems. Their shortness is to 
use pre-trained topics or clusters as features, which 
might be hard to explore the potential association 
between clustering and classification.  

To address the limitations, we construct a joint 
architecture to embed a soft clustering method into 
the classification task, because joint architectures 
can leverage mutual information for each other and 
have been useful in many studies for understanding 
natural language (Luo et al., 2015; Shao et al., 2017; 
Schmitt et al., 2018). In addition, convolutional 
neural network and the gated mechanisms have 
been proven effectiveness in sentence-level 
language modeling (Dauphin et al., 2016; Gehring 
et al., 2017), and cluster centers of words contain 
semantic closeness of similar ones, which motivate 

Cluster-gated Convolutional Neural Network  
for Short Text Classification 

 
Haidong Zhang, Wancheng Ni, Meijing Zhao, Ziqi Lin 

Institute of Automation, Chinese Academy of Sciences, China 
haidong_zhang14@yahoo.com 

{wancheng.ni, meijing.zhao,  linziqi2013}@ia.ac.cn 
 
 
 
 

1002



us to utilize them to auto-extract and highlight the 
cluster-related features for classification.  

Based on the above analysis, we propose a joint 
model called cluster-gated convolutional neural 
network (CGCNN), coupling clustering and 
classification methods, to construct an end-to-end 
deep architecture. It integrates a soft clustering 
method into a gated convolutional neural network, 
which can explore the semantic relation of word-
level context and the global corpus. And it can also 
guide the gating mechanism unit to control cluster-
dependent feature flows. Specifically, it firstly uses 
a bi-directional long short-term memory model 
(BiLSTM) to learn word representations and 
capture local context in text. Then, it performs a 
soft clustering method on word representations for 
the probability of each word assigning to each 
cluster, which can build a bridge between word and 
the global corpus. And we develop a linear 
transformation to calculate cluster-dependent text 
representations. Based on the gating mechanism, 
we uses the cluster centers  to further highlight the 
cluster-dependent convolutional features for the 
corresponding cluster. At last, we perform max-
over-time pooling and concatenation operations to 
combine the selected features for classification.  

The main contributions of this study are 
summarized as follows:  
  We develop a joint model that combines 

clustering and classification methods in an 
end-to-end manner. The model leverages the 
semantic relation of words and the global 
corpus by learning from a soft clustering 
method to assist the classification task. 

 To the best of our knowledge, our model is 
the first to incorporate a clustering method 
into the gating mechanism for convolutional 
neural network, which can help to control 
related features with clusters. 

 We conduct extensive experiments on five 
real-world datasets to verify the 
effectiveness of our model. The experiment 
results show that the proposed method 
outperforms state-of-the-art methods. 

2 Related Work 

In this section, we review the related work from the 
following two aspects: text classification and short 
text classification.  

2.1 Text Classification 

Traditional text classification methods generally 
rely on manual features, such as bag-of-words, 
short n-grams, POS tagging. Most recent studies 
design more complex features for specific 
applications. For example, Lazaridou et al. (2013) 
considered discourse connectives (such as “but”, 
“and”) in the Bayesian model for sentiment 
classification. Post and Bergsma (2013) used 
multiple explicit and implicit syntactic features 
(e.g., unigrams, bigrams, and grammar tree 
patterns) for text classification. Zhang et al. (2015a) 
integrated word embeddings learned by word2vec 
into support vector machine model. 

Recently, deep learning methods have been 
proven to be effective in text classification. Kim 
(2014) proposed a convolutional neural network 
(CNN) architecture that utilized multiple parallel 
convolutional layers with varying filter window 
sizes and concatenated the selected important 
features into a dense softmax layer for sentence 
classification. Lai et al. (2015) applied a recurrent 
structure to learn contextual information of each 
word and employed a max-pooling layer to capture 
the important features in texts. Another state-of-
the-art method is hierarchical attention networks 
for document classification (Yang et al., 2016). 
Based on documents’ hierarchical structure, it 
performed attention mechanisms on word-level 
and sentence-level representations extracted by 
BiLSTMs. 

Such methods have good performance for long 
texts, especially for documents or paragraphs, but 
they are inferior when directly applied for short 
text classification task. Short texts tend to span 
over a wide range of words, resulting in data 
sparsity and lack of enough contexts (Chen et al., 
2011; Wang et al., 2017).  

2.2 Short Text Classification 

According to our review, there generally exist two 
strategies for short text classification.  

The first strategy is to leverage an external 
knowledge base to expand the context of short 
texts. For example,  Feng et al. (2013) calculated 
the correlation between each short text and domain 
knowledge for classification. Wang et al. (2014) 
leveraged a large-scale taxonomy knowledge base 
to learn the concepts of words and ranked the 
similarities between short texts and concepts. 
Wang et al. (2017) associated each short text with 
its relevant concepts in the knowledge base. They 
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combined the words and relevant concepts of the 
short text to generate its embedding. A high-quality 
knowledge base is vital for their performance, but 
its construction is time-consuming and labor-
intensive, or even worse, it may be unavailable for 
some domains (Li et al., 2016). 

The second strategy is to explore latent topics or 
clustering features for classification. For example, 
Chen et al. (2011) derived multi-granularity topics 
through latent Dirichlet allocation (LDA) as 
features for traditional classifiers. Ren et al. (2016) 
used LDA to extract topics and extended existing 
recursive autoencoder to effectively incorporate 
topic information. Ma et al. (2015) used Gaussian 
models to describe the distribution of words 
embeddings and classified new short texts using 
the Bayesian rule to get the posterior probability. 
Revanasiddappa and Harish (2018) developed a 
fuzzy c-means clustering method and built the 
match degree between cluster and categories. Such 
methods can reduce high dimensionality and terms’ 
sparse distribution problems. But their pipeline 
architecture (i.e., using clustering or topic models 
to derive clusters or topics, and then integrating 
them into classifiers as features), might be hard to 
leverage the mutual dependency of clustering and 
classification methods. 

3 Method  

In this paper, we propose a joint model called 
cluster-gated convolutional neural network 
(CGCNN), coupling a soft clustering method and 
a gated CNN for classification. In this section, we 
mainly introduce the overall architecture of our 
model, and define the objective function for 
training.  

3.1 Overall Architecture of the Model 

Figure 1 presents the CGCNN structure, 
composing of five major components: (1) a word 
encoder layer based on BiLSTM to learn word 
representations in each short text, (2) a clustering 
layer that calculates words’ distributions and 
performs a linear transformation to get cluster-
dependent text representations, (3) a cluster-gated 
convolutional layer that integrates cluster centers 
into a gated CNN for further controlling cluster-
related feature flows, (4) a max-pooling layer to 
select most important features and concatenate 
them as the final text features, and (5) a fully 
connected layer with softmax function for 
classification. We update all the parameters in 
these five components simultaneously, which is 
introduced in the next subsection.  

Word Encoder. Suppose each short text has a 
maximum of T words, and the t-th word can be 

 

Figure 1: Cluster-gated convolutional neural network. 
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denoted as 𝑤௧, 𝑡 ∈ [1, 𝑇]. We can embed the short 
text to vectors through an embedding matrix 𝑊. 
To capture the local context in text, we employ a 
BiLSTM to derive the forward representation 𝑓௧ 
and backward representation 𝑏௧ . We concatenate 
them as word representation, i.e., ℎ௧ = [𝑓௧, 𝑏௧] . 
Specifically, the input text is represented as a 
matrix 𝑋 = [ℎଵ, ℎଶ, … , ℎ்] . In some cases with 
weak sequential text, we will directly use word 
embedding as the corresponding word 
representation ℎ௧ , i.e., ℎ௧ = 𝑊𝑤௧ . This will be 
further discussed in the experiment section. 

Clustering Layer. Cluster centers contain 
semantic closeness of similar words, which is used 
to selectively control related word flows in the next 
layer. Here we employ a soft clustering method 
(Maaten and Hinton, 2008; Xie et al., 2016) to 
explore words’ cluster centers. And then we build 
a projection function 𝑓ఏ: (ℎ௧ , 𝜇) → ℎ௧  to get 
cluster-dependent text representations, where 𝜇 
refers to the k-th cluster center, and ℎ௧  refers to 
the t-th representation dependent on the k-th cluster 
center. We set the number of clusters as K, i.e., 
k∈[1,K]. The soft clustering method uses the 
student’s t-distribution as a kernel to calculate the 
similarity between word representation ℎ௧  and 
cluster center 𝜇, as formula (1). 

2 -1

, 2 -1
''

(1 || - || )

(1 || - || )
t k

t k
t kk

h
q

h







  

(1) 

where 𝑞௧, is the probability of t-th word belonging 
to k-th cluster. A higher value of 𝑞௧, indicates the 
word is more closed to the cluster.  
    With the help of the probability, we build a linear 
function to get the cluster-dependent text 
representations, as formula (2). It can reduce the 
role of words unrelated with the cluster, and 
ensures the sum of all cluster-dependent word 
representations at position t to the corresponding 
word representation ℎ௧, as formula (3).  

, ,: k t t t kf h h q 
 

(2) 

, , ,= =k t t t k t t k tk k k
h h q h q h    (3) 

    In this way, we can transfer the matrix of a short 
text to K cluster-dependent matrices, as formula (4). 

,1 ,2 ,[ , ,..., ], [1, ]k k k k TX h h h k K 
 

(4) 

    Cluster-Gated Convolutional Layer. The 
gating mechanism can control information flows in 

the network, which have been proven effective in 
LSTM and CNN (Dauphin et al., 2016). With the 
help of cluster centers, we would further explore 
related features with clusters in this layer. We 
employ a convolutional filter  𝑊 ∈ 𝑅×  for 
mapping n words into a phrase-level feature, where 
D and 𝑛 refer to the dimention of ℎ,௧ and the filter 
window size respectively. As shifting the filter 
across the k-th cluster-dependent text 
representation 𝑋, as formula (5), we can obtain a 
sequence of new features 𝐶 = [𝑐,ଵ, 𝑐,ଶ, … , 𝑐,]. 
Here we use no-padding mode, i.e., L=T-n+1. 

, , :( * )k i k i i n k kc relu h W b 
 

(5) 

where 𝑏 is the term bias.  
Based on gated linear units (GLU) (Dauphin et 

al., 2016), we use word representations and cluster 
center to together decide the information passed on, 
as formulas (6) and (7). 

, , :( * )k i k i i n k k k kg h U V d   
 

(6) 

, , ,k i k i k is c g 
 

(7) 

where 𝑈 ∈ 𝑅× , 𝑉 ∈ 𝑅 , 𝑑 ∈ 𝑅  are learned 
parameters. 𝜎  is the sigmoid function, and    is 
the element-wise product between vectors. 𝑔, 
refers to the cluster-gated value, which is used to 
control the convolutional feature 𝑐, . And 𝑠,  is 
the final gated convolutional feature at position t 
for k-th cluster-dependent text representation. 

Pooling Layer. In this layer, we apply a max-
over-time pooling operation over each cluster-
gated convolutional features to capture the 
maximum value as the feature for the 
corresponding cluster-dependent text 
representation, as formula (8). And then we 
concatenate all of them for the next classification 
layer, as formula (9). 

,max{ , [1, ]}, [1, ]k k is s i T k K  
 

(8) 

1 2 ... Ks s s s     (9) 

Classifier Layer. For each short text instance, 
we generate the high-level representations of the 
combination of multiple clusters’ related 
information. To make full use of them, we use a 
fully connection with softmax function for 
prediction. The probability assigning a category 
label to this instance, can be calculated as formula 
(10). 
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( ) max( )p y j soft Ws b    
(10) 

where j is the category label. To avoid over-fitting, 
we can also employ dropout in this layer. 

3.2 Training 

The entire CGCNN model integrates a clustering 
method into the gated-CNN for classification, 
which can be updated simultaneously in one 
framework. Hence, we combine their loss effects 
into one objective function as formula (11). 

CLF CLUL L L 
 (11) 

where 𝐿ி  is the cross-entropy loss of the 
classifier, and 𝐿  is the clustering loss with 
Kullback-Leibler divergence (KL divergence) 
minimization. λ > 0  is a tradeoff parameter 
controlling the degree of clustering loss. The 
classifier loss can be defined as formula (12). 

1{ }log ( )CLF i ii j
L y j P y j    

 
(12) 

where 𝑖 is the i-th sample instance, 𝑦 is the ground 
truth label, and 1{∗} is the indicator function. 

For the clustering loss, we use KL divergence 
between the distribution of soft labels 𝑞௧, and the 
auxiliary distribution 𝑝௧, as (Maaten and Hinton, 
2008; Xie et al., 2016), as formula (13). 
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where 𝑝௧,  is the target distribution, as formula 
(14). 
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As (Xie et al., 2016), this target distribution is 
computed by first raising the second power of 𝑞௧, 
to its corresponding soft cluster frequencies 
∑ 𝑞௧ᇲ,୲ᇲ   and then performing normalization to 
prevent large clusters from distorting the hidden 
feature space. It can not only improve cluster purity, 
but also emphasize the data points assigned to 
clusters with high confidence.  

4 Experiments 

4.1 Datasets and Preprocessing 

To illustrate the effectiveness of our model, we 
conduct experiments on five public datasets: AG 

News, Sogou News, Amazon Reviews, Yahoo! 
Answers, and Search Snippets. The first three 
datasets are adopted from  (Zhang et al., 2015b). 
The last two datasets are from the Yahoo! 
Webscope program and (Phan et al., 2008) 
respectively. For each dataset, we use 80% of the 
data for training, 10% for validation, and the 
remaining 10% for test. To construct short texts, 
we only use titles or some partial information of 
the datasets. 

AG News and Sogou News. These two original 
datasets include 127,600 samples from 4 
categories and 510,000 samples from 5 categories 
respectively. Sogou News is a dataset in Chinese, 
and Zhang et al. (2015b) combined pypinyin 
package and a Chinese segmentation tool to 
produce Pinyin – Roman spelling in Chinese. For 
both of them, each sample contains both title and 
content of news. To test for short texts, we remove 
contents and only use the titles in our experiment.  

Amazon Reviews. The full dataset contains 
3.65 million samples from one-to-five rating labels. 
In order to test for short texts, we remove the 
review contents and only use the review titles in 
our experiment.  

Yahoo! Answers. This corpus includes 
4,483,032 question titles, question contexts and 
their answers. We use 10 largest classes to 
construct a topic classification task. We randomly 
choose 50,000 samples for each class. Here we 
only use the question titles for classification.  

Search Snippets. This dataset, released by 
Google search engine, includes 12,340 samples 
with predefined 8 categories by (Phan et al., 2008).  

Note that we filter out punctuation and use 
Natural Language Toolkit (NLTK) for stemming. 
We do not remove stopwords since some of them 
may carry classification information, especially for 
users’ reviews. The details of each dataset are listed 
in Table 1.  

Datasets Size  Classes 
Avg. 
Len 

AG News 127,600 4 7.0 
Sogou News 510,000 5 15.4 

Amazon 
Review 

3,650,000 5 4.6 

Yahoo! 
Answers 

500,000 10 11.2 

Search 
Snippets 

12,340 8 17.9 

Table 1: A summary of datasets. 
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4.2 Implementation Detail 

The model hyper-parameters are tuned based on 
the AG News dataset. We also conduct 
experiments with the model directly using word 
embeddings instead of BiLSTM, representing as 
CGCNN*. We firstly set the dimension of word 
embeddings to 300, and pre-train word 
embeddings on each dataset with word2vec. The 
dimensions of all hidden vectors are set to 200. For 
the clustering method, we set the number of 
clusters to the number of ground-truth categories, 
and randomly initialize cluster center vectors. We 
set λ=0.5 and λ=0.6 for CGCNN* and CGCNN 
respectively to control the effects of clustering 
method. To avoid model over-fitting, we use 
dropout with rate of 0.2. We train the parameters 
by using Adam method with a learning rate of 
0.001, and set the batch size to 64. The filter sizes 
of all convolution layers are set to 3 in these two 
methods.  

4.3 Baselines and Experimental Settings  

In this paper, we choose the following baseline 
algorithms for comparison: 

CNN (Kim, 2014). It builds a multi-channel 
convolutional architecture with varying filter 
window sizes, and concatenates the important 
features extracted by a max-over-time pooling 
operation. 

CNNM. To further illustrate the effectiveness of 
our model, we develop the multi-channel 
convolutional architecture (Kim, 2014) with 
multiple fixed size filters. As our model 
hyperparameters, the number of filters is equal to 
the number of ground-truth categories, and all their 
sizes are set to 3. 

RCNN (Lai et al., 2015). It develops a recurrent 
convolutional structure. It employs a bi-directional 
recurrent structure to capture word context 

embeddings and uses a max-pooling layer to select 
the important features. 

CNN-LSTM (Zhou et al., 2015). This method 
uses a multi-channel convolutional layer to extract 
higher-level phrase features, and employs a 
BiLSTM to capture their sequences for 
classification. 

AttBiLSTM (Lin et al., 2017). It uses a 
BiLSTM to explore the sequences of texts, and 
develops a self-attention mechanism to get 
sentence-level representations. 

For the multiple-channel convolutional 
architecture of CNN and CNN-LSTM, the filter 
sizes are 3, 4 and 5, as Kim (2014)’s default 
settings. For the hidden vectors of BiLSTM in 
these methods, we also set their dimensions to 200. 

4.4 Results 

We use accuracy as the evaluation metric, and 
Table 2 reports the different algorithms’ 
performance on the five real-world datasets. We 
highlight the highest value in each column. As we 
can see, either CGCNN or CGCNN* has the best 
performance on the datasets. The CNN-LSTM 
outperforms the other baseline methods on AG 
News, Amazon Review and Yahoo! Answers 
datasets, while CNN and CNNM have the best 
performance on Sogou News and Search Snippets 
respectively. As compared with CNN-LSTM, 
CGCNN has about 1.5% performance 
improvements on Amazon Review and Yahoo! 
Answers, and 0.49% on AG News dataset. 
CGCNN* can achieve 0.6%~0.8% performance 
improvements over the second best baseline 
method on Sogou News and Search Snippets 
datasets. The AttBiLSTM method has poor 
performance. We suspect that lack of enough 
context might cause the failure of the self-attention 
mechanism. 

 AG News Sogou News 
Amazon 
Review 

Yahoo! 
Answers 

Search Snippets 

CNN 87.62% 90.47% 46.71% 61.64% 93.60% 
CNNM 87.89% 90.17% 46.65% 61.59% 93.84% 

CNN-LSTM 88.12% 89.67% 47.80% 62.61% 93.11% 
RCNN 87.69% 88.43% 46.95% 61.90% 93.68% 

AttBiLSTM 87.63% 87.63% 46.96% 61.92% 91.09% 
CGCNN* 88.24% 91.02% 47.17% 63.01% 94.57% 
CGCNN 88.55% 90.95% 48.65% 63.55% 92.30% 

Note: CGCNN* represents that our model directly inputs word embeddings into the clustering layer. 

Table 2: Accuracy comparison on different datasets. 
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The CNNM method using category number of 
convolutional filters, has similar performance with 
the CNN method using three convolutional filters, 
which illustrates increasing number of 
convolutional filters might have no active impact 
on performance. Differently, our CGCNN* 
method using category number of clusters for 
gated CNN, achieves better accuracies than both of 
them. It shows that our proposed architecture, 
integrating a clustering-gated mechanism into 
CNN, can significantly improve the performance 
in short text classification.  

The CNN-LSTM method uses CNN and 
BiLSTM to capture phrase features and their 
sequences, outperforms CNN and CNNM on AG 
News, Amazon Reviews and Yahoo! Answers 
datasets, while it has poorer performance on Sogou 
News and Search Snippets datasets. Such cases 
also exist in the comparison between CGCNN and 
CGCNN* methods. We analyze the datasets, and 
suspect that weak sequential relationship in texts 
may result in the decreasing performances on 
Sogou News and Search Snippets. The original 
Sogou News was transferred from Chinese 
characters to Pinyin format (Zhang et al., 2015b). 
It might cause a homophone problem. For example, 
word “与(and)” and word “雨(rain)” have the 
same pronunciation but different meanings in 
Chinese. It breaks sequential patterns in texts. For 
Search Snippets, each sample is consisted of 
multiple keywords, and there are no obvious 
sequences among them. For example, a sample 
likes “… calorie count calories item ...”, containing 
weak sequential semantics. 

4.5 Clustering Analysis  

To further study the impact of clustering method, 
we conduct additional experiments on AG News 

dataset by varying the tradeoff parameter 𝜆 and the 
cluster number 𝐾, and assess the sensitivity of our 
model.  

Figure 2 reports the change of performance with 
increasing values of tradeoff parameter 𝜆 from 0.1 
to 0.9 while keeping the cluster number 𝐾 constant 
(as the category number). We can observe that 
CGCNN* and CGCNN reach the best 
performances when 𝜆 = 0.5  and λ = 0.6 
respectively. When tradeoff parameter 𝜆  varies 
from 0.1 to the values of their best performances, 
their performances generally show an increasing 
trend, which implies the clustering effect can 
benefit for understanding short texts. When 
tradeoff parameter 𝜆  increases from the optimal 
values to 0.9, the performances of these two 
methods generally have a slight decrease, which 
shows excessive clustering might have a bad 
influence on short text classification. 

Figure 3 reports the results of adjusting the 
number of clusters (K) in CGCNN* and CGCNN 
when we set 𝜆 to the optimal values (i.e., 𝜆 = 0.5 
and λ = 0.6  respectively). For CGCNN method, 
we can observe that it reaches the best performance 
when the cluster number equals to the category 
number (i.e., 𝐾 = 4). No matter the cluster number 
increases or decreases, its performance would have 
a decrease tendency. While the CGCNN* method’s 
performance generally show an increasing trend, 
which relatively stabilizes when K reaches 
category number (although its performance has a 
slight decrease at 𝐾 = 5). That is the reason that 
we set the cluster number to the category number. 

4.6 Case Study 

In this section, we take several concrete samples 
from AG News dataset to illustrate how the 

  

Figure 2: Performance with tradeoff parameter 𝜆  

on AG News. 

Figure 3: Performance with cluster number K  

on AG News. 
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proposed method works. Here we use CGCNN 
method, because of strong sequential relationship 
in this dataset.  

In the clustering layer, we leverage a soft 
clustering method to explore words’ cluster centers, 
and build a linear function to project the 
representation of a short text to K cluster-
dependent representations. Here we calculate the 
similarity between words and cluster centers, and 
normalize the values of each word belonging to 
clusters. Figure 4 (a) and (b) show two different 
instances from categories “Sci/Tech” and “World” 
respectively. We can observe the linear projection 
can strengthen the words’ representations 
dependent on some cluster, and weaken them on 
others. These two figures have different 
distributions on the same word “for”, which is due 
to different contexts explored by BiLSTM. 

There might exist some instances closely related 
with two or more clusters, as figure 5 (a). To further 
control the information flows, we leverage cluster 
centers and phrase-level features for the gated 
mechanism. We use Xue and Li (2018)’s method 
to visualize the gated mechanism: summing the 
representation of each phrase-level feature and 
normalizing them according to clusters. Figure 5 (a) 
shows the similarities between words and clusters 
in an instance with category “World”, while figure 
5 (b) shows the corresponding cluster-gated 

convolutional features. We can observe that 
cluster-gated layer can further strengthen the 
corresponding cluster-dependent representation, 
and weaken others. 

5 Conclusion 

In this paper, we propose a joint model that couples 
clustering and classification methods. It employs a 
BiLSTM to learn word representations for local 
contexts in short texts. We take a soft clustering 
method to calculate the probability of each word 
assigning to each cluster, which can derive the se-
mantic relation of word representations and the 
global corpus. We also perform a linear 
transformation to explore cluster-dependent text 
representations. Moreover, we develop a cluster-
gated CNN by integrating cluster centers into GLU, 
which can select cluster-related features for 
classification. Experiments on five real-world 
datasets show that our model does better than the 
state-of-the-art methods for short text classification 
task. 

In the future work, we will further analyze the 
mutual effects of document-level clustering and 
classification methods for long text, and attempt to 
develop more effective joint model for text 
classification. Moreover, we will study some other 

 
(a) An instance with category “Sci/Tech” (b) An instance with category “World” 

Figure 4: The similarities between words and clusters in a short text. 
 

  
(a) The similarities between words and clusters in an 

instance with category “World” 
(b) The outputs of the corresponding cluster-gated 

convolutional features  

Figure 5: The role of the cluster-gated layer. 
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mechanisms (e.g., highway units, attention 
mechanism) to further improve the performance.  
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Abstract

In hospitals, critical care patients are often
susceptible to various complications that ad-
versely affect their morbidity and mortality.
Digitized patient data from Electronic Health
Records (EHRs) can be utilized to facilitate
risk stratification accurately and provide prior-
itized care. Existing clinical decision support
systems are heavily reliant on the structured
nature of the EHRs. However, the valuable
patient-specific data contained in unstructured
clinical notes are often manually transcribed
into EHRs. The prolific use of extensive med-
ical jargon, heterogeneity, sparsity, rawness,
inconsistent abbreviations, and complex struc-
ture of the clinical notes poses significant chal-
lenges, and also results in a loss of information
during the manual conversion process. In this
work, we employ two coherence-based topic
modeling approaches to model the free-text
in the unstructured clinical nursing notes and
capture its semantic textual features with the
emphasis on human interpretability. Further-
more, we present FarSight, a long-term aggre-
gation mechanism intended to detect the onset
of disease with the earliest recorded symptoms
and infections. We utilize the predictive capa-
bilities of deep neural models for the clinical
task of risk stratification through ICD-9 code
group prediction. Our experimental valida-
tion on MIMIC-III (v1.4) database underlined
the efficacy of FarSight with coherence-based
topic modeling, in extracting discriminative
clinical features from the unstructured nurs-
ing notes. The proposed approach achieved a
superior predictive performance when bench-
marked against the structured EHR data based
state-of-the-art model, with an improvement
of 11.50% in AUPRC and 1.16% in AUROC.

∗Corresponding author.

1 Introduction

Until recently, the healthcare industry had an
inclination towards conservative approaches for
the treatment and diagnosis of patients, result-
ing in less patient-centric and imprecise assess-
ments (Mathew and Pillai, 2015). Intensive Care
Units (ICUs) utilize the most advanced medical
resources to treat and monitor critically ill pa-
tients. However, such advanced medical interven-
tions in ICUs often make patients vulnerable to
several complications (To and Napolitano, 2012).
Various infections, including barotrauma, short-
and long-term intubation, catheter-associated uri-
nary tract infection, weaning errors, ventilator-
associated pneumonia, gastrointestinal tract bleed-
ing, and infections from unrecognized drug inter-
actions, are associated with invasive ICU devices
(Wollschlager and Conrad, 1988). The lack of ac-
curate knowledge of the etiology of such compli-
cations leads to the inability to accurately strat-
ify risk, due to which, in most cases, adequate
care is provided to patients only after the devel-
opment of a complication (Huddar et al., 2016).
With the advent of digitization, advancement in
technology, need for evidence-based medicine, in-
creased population, and rising rates of chronic
diseases, the utilization of ever-increasing hetero-
geneous medical data to improve the quality of
life has become imperative. Specifically, ICUs
are data-rich environments where several param-
eters of patients are monitored continuously. Such
data can be vital to improve the existing Clinical
Decision Support Systems (CDSSs), develop new
treatments, and predict prominent clinical events
and outcomes. Furthermore, such CDSSs could
promote evidence-based and patient-centric treat-
ments, resulting in reduced hospital mortality and
morbidity rates, and improved risk assessment.
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Pat is 83 yo F w/PMHx for CLL and hypotens,
who was admited for an elective total hip
arthroplasty for persistent hip pain. NGT
to low cont suct. Family here to visit.

Pat initially sustained a right hip
fracture after a fall in [**2137**], and
had an ORIF performed at the time. Gave med
for pain. Has had right hip pain ever since,
and also has AVN of the right femoral head.

She came in today for elective tot hip repl.
In the OR today, patient had an estimated
1600cc EBL, and received 6u pRBC.
I/Os were 7200cc in (3.7L LR, 1.5L pRBCs).

Figure 1: Sample de-identified nursing note from criti-
cal care. Observe the absence of grammatical structure,
informal word usage, and extensive medical jargon.

Structured medical data in the form of Elec-
tronic Health Records (EHRs) contain numerical
assessments (e.g., lab results) and are amenable to
standard statistical analysis (Huddar et al., 2016).
However, unstructured clinical text and images
also contain valuable information concerning the
state of a patient. In particular, clinical nurs-
ing notes maintain objective and subjective assess-
ments of a patient’s condition. Such raw notes
contain the intuitions and observations of nurses
and caregivers who regularly monitor the patient.
This valuable patient-specific information present
in the clinical nursing notes has the potential to
uncover hidden clues about the mental state (e.g.,
family support and mental fitness) and the health
of a patient (Jo et al., 2015). Such information
is not found in EHRs or elsewhere (Dubois et al.,
2017). However, these notes are informally writ-
ten, and modeling such notes is challenging due to
their high-dimensionality, rawness, sparsity, com-

plex linguistic and temporal nature, inconsistent
abbreviations, and occurrence of rich medical jar-
gon (a sample note is shown in Figure 1).

The voluminosity of nursing notes can be ob-
served from the heavy-tailed distribution of the
MIMIC-III nursing notes across various patients
(see Figure 2), with an average of 176.49 nurs-
ing notes per patient. The presentation, analysis,
and interpretation of the data present in such notes
in a medically appropriate and usable format de-
termine the competence of the underlying CDSS
(Wang et al., 2018). Furthermore, there is often
a need to assign multiple labels to a patient entry,
owing to the diverse and manifold nature of the
disease symptoms of the patients (Baumel et al.,
2018). Risk stratification as ICD-91 code group
prediction can help in predicting disease onset and
its severity, thus facilitating preventive and priori-
tized care, and reduction of hospital mortality and
morbidity rates.

With the availability of large de-identified
healthcare databases such as MIMIC-III2 (John-
son et al., 2016), modeling patient data using ma-
chine and deep learning to predict prominent clin-
ical events and outcomes has sparked widespread
interest. Early works (Tu and Guerriere, 1993;
Doig et al., 1993; Grigsby et al., 1994; Clermont
et al., 2001; Hanson and Marshall, 2001) have re-
ported on the superior performance of machine
learning models in forecasting the length-of-stay
and mortality, for ICU patients. More recently,
Pirracchio (2016) used an ensemble of several ma-
chine learning models that offered improved per-
formance in ICU mortality prediction over various

1International Classification of Diseases, ninth revision.
2Medical Information Mart for Intensive Care.
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Figure 2: Distribution of the nursing notes across various MIMIC-III subjects.
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severity scoring systems. Feldman et al. (2016)
mined the clinical nursing, radiology, physician,
and ECG narratives to study the linguistic, struc-
tural, and topical differences among them. The au-
thors only provided a foundation for mining clin-
ical notes effectively, and in our work, we ex-
tend their efforts by effectively modeling the un-
derlying patient representations of the nursing text
through effective topic modeling and deep neu-
ral learning. Johnson et al. (2017) extracted a set
of features from the MIMIC-III database for ICU
mortality prediction and compared several state-
of-the-art models against gradient boosting and lo-
gistic regression. The authors stressed the need for
improvement in the way of reporting performance
to ensure a fairer comparison. Most of these mod-
els utilize machine learning models built on struc-
tured EHR data for the prediction of clinical tasks.

Recent works show promising results in mod-
eling patient data using deep learning approaches.
Harutyunyan et al. (2017) benchmarked their per-
formance on four clinical prediction tasks on
the MIMIC-III database using multitask recurrent
neural networks. Zalewski et al. (2017) presented
a viable framework to combine several modali-
ties of a patient’s health states for risk stratifica-
tion. Their approach was built on the hierarchi-
cal Dirichlet method, aimed at tackling the spar-
sity and high-dimensionality of the nursing notes
extracted from the MIMIC-II database. How-
ever, the authors used a logistic regression model
to predict the mortality rate of the patients and
did not evaluate their performance with the recent
works and deep neural architectures. Purushotham
et al. (2018) reported a suite of five clinical pre-
diction tasks, including the length-of-stay, mor-
tality, and ICD-9 code group prediction on the
MIMIC-III database using deep learning models
and benchmarked their performance against the
existing state-of-the-art methods and severity scor-
ing systems. However, mining and modeling the
valuable patient-specific information in unstruc-
tured clinical nursing notes for the development of
CDSSs remains mostly uncommon.

In this paper, we discuss an approach to model
the rich patient-specific information in the un-
structured clinical nursing notes, to aid in the
risk stratification as an ICD-9 code group predic-
tion task. ICD-9 codes are a taxonomy of di-
agnostic codes used for cost-effectiveness analy-
sis, epidemiology studies, and designing health-

care policies. Accurate ICD-9 code group pre-
diction not only promotes better ICD-9 code de-
termination, but also facilitates more reliable risk
stratification by reporting on the severity, symp-
toms, and the use of resources across code groups,
thus aiding disease-specific staging systems. In
our work, two coherence-based topic modeling ap-
proaches, Coherence-based Latent Dirichlet Allo-
cation (C-LDA) and Coherence-based Nonnega-
tive Matrix Factorization (C-NMF) are employed
to capture the semantic relationships between the
textual features of the clinical notes and derive op-
timal data representations with a higher guaran-
tee on human interpretability. We employ Far-
Sight to aggregate the documented patient data
in a way intended to detect the onset of the dis-
ease with the earliest recorded symptoms. Fur-
thermore, we benchmark the performance of our
proposed topic models using two neural archi-
tectures, including Multi-Layer Perceptron (MLP)
and Attention-based Long Short Term Memory
(A-LSTM). Additionally, we perform a sensitiv-
ity analysis to assess the statistical significance of
the obtained results.

The remainder of this paper is structured as fol-
lows: Section 2 describes the MIMIC-III database,
the preprocessing steps, and the topic model-
ing approaches employed to obtain the optimal
data representations from the raw clinical nursing
notes. The deep neural architectures employed in
the clinical task of ICD-9 code group prediction
along with the discussion of the experimental re-
sults of our benchmarking are presented in Sec-
tion 3. Finally, Section 4 summarizes this paper
with highlights on future research possibilities.

2 Materials and Methods

In this section, we discuss in detail, the Natural
Language Processing (NLP) pipeline designed to
facilitate multi-label ICD-9 code group prediction,
and the same is depicted in Figure 3.

2.1 Dataset and Cohort Selection

MIMIC-III (v1.4) is a publicly available large
healthcare database with comprehensive medical
data of over 40, 000 ICU patients. The health-
care database contains 223, 556 nursing notes ex-
tracted from 2, 083, 180 note events (noteevents
table), corresponding to 7, 704 distinct patients
(diagnoses icd table). Two selection criteria were
employed in the cohort selection. Firstly, only
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those records corresponding to the patients older
than 15 (adults) were retained using the patient’s
age at the time of admission to the ICU (extracted
from admissions and patients tables). Secondly,
only the first admission of a patient to the hospital
was considered. Both these steps were followed
in accordance with the existing literature (Johnson
et al., 2017; Purushotham et al., 2018). The re-
sultant dataset comprises nursing notes of 7, 638
patients with a median age of 66 years (Quartile
Q1 −Q3: 52− 78 years).

2.2 Data Cleaning
The data extracted from the MIMIC-III database
contained erroneous patient entries due to several
factors, including missing values, duplicate or in-
correct records, outliers, and noise. The erroneous
entries were filtered out using the iserror attribute
of the noteevents table. Then, duplicate patient
records were identified and deduplicated. The re-
sultant dataset comprised of nursing notes corre-
sponding to 6, 532 patients, and the data in these
records were aggregated using the proposed Far-
Sight technique.

2.3 FarSight: Long-Term Aggregation
It is crucial to detect the onset of the disease with
the earliest detected symptoms, to provide pre-
ventive care and reduce the mortality and mor-
bidity of complications. We propose FarSight,
which is designed to aggregate the patient data us-
ing a future lookup on all the detected diseases
in the later medical records concerning that pa-
tient. Let P be the set of all patients, and let
a patient p have a sequence of N clinical notes,
S(p) = {(η(p)i , I(p)i )}Ni=1, with each clinical note
η
(p)
i mapped to an ICD-9 code I(p)i indexed in the

order from the oldest to the most recent. Now, Far-
Sight aggregates the ICD-9 codes across the nurs-
ing notes of a patient using a future lookup, re-
sulting in S(p) = {(η(p)i , I(p))}Ni=1, where I(p) =

{I(p)i }Ni=1. Ultimately, we aim at learning a func-
tion F to estimate the probability of classifying
a given nursing note η(p)j into a set of diagnostic
code groups: F(S(p)) ≈ Pr(I(p) | ηpj ). Instead of
aggregating several patient records, FarSight only
aggregates the ICD-9 codes across a particular pa-
tient’s nursing notes to facilitate risk stratification
at the initial stages of the disease with the earliest
recorded symptoms and infections.

2.4 Data Preprocessing

Data (text) normalization is performed to facilitate
the transformation of inconsistent and informally
written medical text into a consistent canonical
form. Preprocessing includes tokenization, stop-
word removal, and stemming/lemmatization. To-
kenization splits the nursing text into words (to-
kens). Using the NLTK English stopword cor-
pus, we removed the stopwords from the gener-
ated set of tokens. Next, references to images
(e.g., PET Scan.jpg) were removed, and character
case folding was performed. Word length based
token removal was not performed to retain med-
ical abbreviations such as CT, MRI, DEXA, and
PET. Lastly, stemming was employed to facili-
tate suffix stripping, followed by lemmatization to
convert the stripped tokens into their base forms.
The tokens appearing in less than ten clinical notes
were eliminated to mitigate overfitting and lower
the computational complexity of training.

2.5 Topic Modeling of Clinical Notes

Let the set of all nursing notes be S = {S(p)}Pp=1.
Each nursing note ηj constitutes a variable length
of words from a large vocabulary V, making S
very complex. Thus, a transformation (T ) of the
unstructured clinical text to a machine-processable
form (T : S → Rk (k � |V|)) is vital to the effi-
cacy and performance of the underlying deep neu-
ral architectures.

Topic modeling aims at finding a set of topics

MIMIC-III
database

Cohort selection
of nursing notes

FarSight data
aggregation Preprocessing

Coherence-
based LDA

Coherence-
based NMF

Deep neural
architectures

ICD-9 group
prediction

Topic modeling

Figure 3: NLP pipeline used in the prediction of the ICD-9 code group.
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from a set of clinical notes that best represents the
corpus. Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) is a cluster analysis approach based
on the three-layer Bayesian framework including
documents, topics, and tokens. LDA draws a mix-
ture of topics from the Dirichlet distribution and
facilitates a flat and soft probabilistic clustering
of tokens into topics and documents into topics.
LDA posits that each term and clinical note be-
long to a set of clinical topics with a certain prob-
ability. Nonnegative Matrix Factorization (NMF)
(Lee and Seung, 2000) is a matrix factorization
approach that decomposes multivariate data into
topics. In NMF, each topic is a nonnegative linear
combination of the tokens in the vocabulary. NMF
iteratively decomposes the data matrix (N × |V|)
into two lower rank matrices with T topics (N×T
and T ×|V|). These topic models capture the con-
text of occurrence and co-occurrence, which is es-
sential for accurate predictability of the underlying
deep neural models.

Determining the optimal number of LDA or
NMF clusters is a challenging task. To address
this issue, we utilize the Topic Coherence (TC) or
semantic coherence (Röder et al., 2015) between
the topics to derive the optimal number of clus-
ters. Furthermore, when topics are learned from
a multinomial distribution over words from noisy
and sparse text data, they are less coherent and
hard to interpret. TC evaluates topic models with
a greater guarantee of human interpretability. This
study adopts LDA and NMF with TC (C-LDA and
C-NMF) as TC accounts for the semantic simi-

larity between the higher scoring tokens and fa-
cilitates the generation of human-understandable
topics. We employ the Cv variant of coherence
measurement with a Normalized Pointwise Mu-
tual Information (NPMI) score (Bouma, 2009) as
the confirmation measure, due to its high correla-
tion with the available human-judged data (Röder
et al., 2015). Let T = {t1, t2, . . . , tk} be a topic
generated from a topic model which is represented
using its top-k most probable tokens (tis). Note
that higher values of the average pairwise similar-
ity among the tokens in T imply greater coherence
of the topic. For a predetermined similarity mea-
sure S(ti, tj) (here NPMI), the coherence score is
computed as:

CoherenceS(T ) =

∑
1≤i≤k−1
i+1≤j≤k

S(ti, tj)

(
k
2

) (1)

where ti, tj ∈ T . The coherence score comes
from external data, i.e., the data not used dur-
ing training (we employed the full set of English
Wikipedia articles), and is intended to regularize
the topic models. The NPMI similarity score is
an extension of the pointwise mutual information
score, and is used in finding associations and col-
locations between the words (Aletras and Steven-
son, 2013). The NPMI score is computed as:

NPMI(ti, tj) =
PMI(ti, tj)

−log2(Pr(ti, tj))
(2)

PMI(ti, tj) = log2

(
Pr(ti, tj)

Pr(ti)Pr(tj)

)
(3)

(a) Coherence-based LDA. (b) Coherence-based NMF.

Figure 4: Correlations between top terms’ membership in top five topic modeling clusters.
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Figure 5: Coherence score comparison to determine the
optimal number of topics.

The individual confirmation measures obtained for
all topics (Tis) are averaged to obtain the final co-
herence score.

The number of topics for both LDA and NMF
models was determined to be 100, by computing
the coherence score of several topic models ob-
tained by varying the number of topics. The LDA
and NMF matrices were built on a bag-of-words
representation of the clinical notes. For the ease
of interpretation, a heat map presenting the cor-
relations between top terms’ membership in top
five C-LDA clusters is presented in Figure 4a, and
top five C-NMF clusters is depicted in Figure 4b.
From Figure 4, it can be observed that both the C-
LDA and C-NMF models effectively capture spe-
cific clinical terms, including penicillin, cataract,
coumadin, insulin, heparin, and pleural from the
raw nursing text. Figure 5 shows the coherence
score comparison of LDA and NMF models with
the number of topics varying from 2 to 500.

3 ICD-9 Code Group Prediction

ICD-9 codes are a taxonomy of diagnostic codes
typically used by healthcare professionals and in-
surers when discussing medical conditions. This
study only focuses on category-level (group) pre-
dictions, owing to the high granularity of the di-
agnostic codes. Each code group comprises a set
of similar diseases, and most of the health con-
ditions can be categorized into a unique group.
This study focuses on the risk stratification as a
multi-label problem, where each nursing note is
mapped to multiple ICD-9 code groups. The ICD-
9 codes for a given admission are mapped into 19
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Figure 6: Comparison of ICD-9 code group statis-
tics with the state-of-the-art model (Purushotham et al.,
2018).

distinct code groups3. Note that the ICD-9 code
range of 760 − 779 was left out since it corre-
sponds to the conditions originating in the peri-
natal period, which is usually assigned to new-
borns, who are excluded from this study as per the
defined cohort selection criteria (see Section 2.1).
Additionally, to lower the computational cost of
training, we merged all the reference and supple-
mental V-codes into a single code group. Figure 6
presents a spider plot depicting the statistics of the
ratio of the number of patients in a particular code
group to the total number of patients in the co-
hort. Although our work and the state-of-the-art
(Purushotham et al., 2018) differ in data and co-
hort selection, it can be observed from Figure 6
that both the works share similar statistics con-
cerning the ICD-9 code groups, thus facilitating
a fair comparison of performance.

3.1 Deep Neural Architectures

We used two deep neural architectures, Multi-
layer Perceptron (MLP) and Attention-based
LSTM (A-LSTM), for the multi-label ICD-9 code
group prediction task. The deep models were
trained to minimize a binary cross-entropy loss
function using an Adam optimizer, with a batch
size of 128, for eight epochs.

3.1.1 Multi-Layer Perceptron
The MLP is a feed-forward artificial neural net-
work consisting of multiple layers of neurons
(nodes) interacting using weighted connections.

3http://tdrdata.com/ipd/ipd_
SearchForICD9CodesAndDescriptions.aspx.
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MLP offers several advantages including adap-
tive learning, fault tolerance, parallelism, and gen-
eralizability. The output of a neuron in every
layer serves as an input to the subsequent layer.
A neuron in the current layer (l) with the input
I(l) is activated in the following layer (l + 1) as
g(l)(W (l) · I(l) + b(l)), where g(l) is a non-linear
activation such as Rectified Linear Unit (ReLU),
tanh, or logistic sigmoid, and b(l) and W (l) are the
bias and weight matrix at layer l. MLP uses back-
propagation to determine the gradient of the loss
function needed to learn an optimal set of weights
and biases needed to minimize a loss function.
This study employs an MLP network with one hid-
den layer of 75 nodes, activated using a ReLU
function, and one output layer of 19 nodes, acti-
vated using a sigmoid function.

3.1.2 Attention-based LSTM
The LSTM effectively captures the long-term de-
pendencies and overcomes the gradient vanishing
problem which is crucial in the accurate risk strat-
ification using unstructured nursing notes. LSTMs
introduce an adaptive gating mechanism to deter-
mine the extent to which the LSTM memory units
must retain the previous state (ct−1) and memo-
rize the features in the current state (ct). Typically,
four gates composite an LSTM network including
the input gate i, the forget gate f , the output gate
o, and the candidate value g for the cell state. The
precise form of an LSTM update at a layer l and
time step t is computed as:



i
f
o
g


 =




sigm
sigm
sigm
tanh


W (l)

(
h
(l)
t−1

h
(l−1)
t

)
(4)

c
(l)
t = f � c(l)t−1 + i� g (5)

h
(l)
t = o� tanh(c(l)t ) (6)

where � denotes element-wise multiplication, ht
is the output at a time step t, andW (l) is a [4n×2n]
weight matrix at layer l.

Attentive neural models have been successfully
applied to several NLP tasks including sentence
summarization, text entailment, and reading com-
prehension (Bahdanau et al., 2014). This study
utilizes the attention mechanism for the clinical
task of risk stratification as ICD-9 code group pre-
diction. Let H be the matrix of output vectors
[h1, h2, . . . , hT ] produced from LSTM. The rep-
resentation rj of a nursing note ηj after T time

steps is computed asH ·(softmax(vT ·tanh(H)))T ,
where v is a trainable parameter. This study uti-
lizes an attention-based LSTM with dimension
size of 289 for the embedding (17 time steps) and
300 for the LSTM hidden state. The multi-label
classification is facilitated using a sigmoid activa-
tion of the final A-LSTM output.

3.2 Experimental Results and Discussion

To experimentally validate the proposed approach,
we performed an exhaustive benchmarking on the
clinical nursing notes obtained from the MIMIC-
III database. The experiments were performed us-
ing a server running Ubuntu OS with 56 cores of
Intel Xeon processors, 128 GB RAM, 3 TB hard
drive, and two NVIDIA Tesla M40 GPUs. A sig-
nificant challenge arose due to the manifold nature
of diseases, as each patient record was assigned a
set of ICD-9 code groups. This study employs a
pair-wise comparison of the actual and predicted
code group sets. Five standard evaluation met-
rics including Accuracy (ACC), F1 score, MCC
score, Area Under the Precision-Recall Curve
(AUPRC), and Area Under the ROC Curve (AU-
ROC) were employed to evaluate the performance
of the proposed coherence-based modeling ap-
proaches, classified using MLP and A-LSTM.
Ten-fold cross-validation was performed to assess
the predictability of the proposed models. Table 1
tabulates the performance of the proposed mod-
eling approaches using the proposed FarSight ap-
proach for data aggregation along with two stan-
dard baselines. We observe that the proposed C-
LDA model outperforms the C-NMF model in
accurately classifying the diagnostic ICD-9 code
groups. Additionally, from Table 1, we observe
that the proposed C-LDA model outperforms the
other standard baselines including LDA and NMF
without coherence scores.

AUPRC varies with the change in the ratio of
the target classes in the data and hence is more
informative than AUROC while evaluating imbal-
anced data (Saito and Rehmsmeier, 2015). F1
score captures both precision and recall of the pre-
diction, and MCC score takes into account, the
true positives, false positives, and false negatives,
thus serving as a balanced measure even with class
imbalance. Due to the significant class imbalance
in the underlying corpus (see Figure 6), AUROC
and MCC scores serve as accurate evaluation met-
rics. The existing works, including the state-of-
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the-art model (Purushotham et al., 2018), are built
on the structured nature of the EHRs, modeled us-
ing numerical feature sets (e.g., lab results) to aid
in the prediction of clinical events. From Figure 7,
we remark that the proposed approach built on the
unstructured medical text and preprocessed using
the FarSight approach outperformed the state-of-
the-art model by 11.50% in AUPRC and 1.16%
in AUROC. Furthermore, the existing works do
not benchmark their performance on metrics other
than AUPRC and AUROC. We urge that the other
metrics presented in this study aid in the accu-
rate assessment of the proposed models, essen-
tial in determining the reliability of the underlying
CDSS. It can also be noted that the FarSight ap-
proach effectively models the unstructured data to
facilitate the detection of the onset of the disease
with the earliest recorded symptoms, and such
modeling results in an improvement in the clin-
ical decision-making process. We observe that
utilizing the proposed approach leads to accurate
health risk appraisal well in advance, with an over-
all accuracy of 80%. Thus, CDSSs built on the
predictive capabilities of FarSight-aggregated and
C-LDA classified modeling could demonstrate ef-
fective patient-centric and evidence-based risk as-
sessment, thus ensuring proper channeling of pre-
ventive and prioritized care.

3.3 Sensitivity Analysis

The experimental results in Table 1 highlight the
efficacy of the proposed models over the state-of-
the-art model (see Figure 7) and standard base-
lines, including LDA and NMF without coherence
scores, in modeling the raw patient-specific clini-
cal nursing notes. To analyze the significance of
the observed performance further, we performed a
statistical sensitivity analysis. Sensitivity analysis
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Figure 7: Comparison of the proposed approach with
the state-of-the-art model (Purushotham et al., 2018).

(Simar and Wilson, 1998) is a potential approach
that facilitates decision-making by measuring the
extent to which the optimal solution is sensitive to
the change in the input of one or more parameters.

To understand the distribution of the underlying
data, we employed the Kolmogorov-Smirnov test
for normality (J and Jr, 1951), which revealed that
the data was not normally distributed. The perfor-
mance of an algorithm measured as a result of ten-
fold cross-validation forms the treatment popula-
tion of that approach. Additionally, note that each
sample (performance score) in the corresponding
treatments of the algorithms under comparison uti-
lize the same kth fold data, and thus the samples
are generated as a function of the same input popu-
lation. Therefore, to perform the sensitivity analy-
sis, we employed a nonparametric paired samples
Wilcoxon signed-rank test (Wilcoxon, 1992) at a
significance level (α) of 5%. The null hypothe-
sis in Wilcoxon signed-rank test is that the two
treatments are drawn from the same distribution,

Data Model Classifier
Performance score

ACC F1 MCC AUPRC AUROC

C-LDA
(140, 792× 100)

MLP 0.7954± 0.0003 0.7175± 0.0008 0.5743± 0.0006 0.6692± 0.0006 0.7857± 0.0004

A-LSTM 0.7932± 0.0002 0.7186± 0.0002 0.5712± 0.0007 0.6660± 0.0007 0.7854± 0.0013

C-NMF
(140, 792× 100)

MLP 0.7826± 0.0004 0.7011± 0.0008 0.5480± 0.0007 0.6530± 0.0013 0.7735± 0.0006

A-LSTM 0.7811± 0.0005 0.6990± 0.0040 0.5449± 0.0007 0.6510± 0.0009 0.7715± 0.0026

LDA
(140, 792× 100)

MLP 0.7950± 0.0003 0.7168± 0.0020 0.5735± 0.0012 0.6685± 0.0013 0.7848± 0.0011

A-LSTM 0.7930± 0.0007 0.7153± 0.0034 0.5701± 0.0022 0.6655± 0.0013 0.7833± 0.0020

NMF
(140, 792× 100)

MLP 0.7829± 0.0006 0.7029± 0.0016 0.5498± 0.0009 0.6530± 0.0017 0.7744± 0.0007

A-LSTM 0.7815± 0.0008 0.6935± 0.0052 0.5451± 0.0024 0.6535± 0.0014 0.7689± 0.0031

Table 1: Experimental results for ICD-9 code group prediction using MLP and A-LSTM.
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Data Model Classifier
ACC F1 MCC AUPRC AUROC

p z p z p z p z p z

C-LDA
(140, 792× 100)

MLP − 0.005 −2.803 − − −
A-LSTM 0.005 −2.803 − 0.005 −2.803 0.005 −2.803 0.009 −2.599

C-NMF
(140, 792× 100)

MLP 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803
A-LSTM 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803

LDA
(140, 792× 100)

MLP 0.005 −2.803 0.009 −2.599 0.007 −2.701 0.016 −2.395 0.009 −2.599
A-LSTM 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803

NMF
(140, 792× 100)

MLP 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803
A-LSTM 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803

Table 2: A paired samples Wilcoxon signed-rank test (two-tailed, p < 0.05) for the proposed model with the best
performance against other modeling strategies.

which is rejected in favor of the alternate hypoth-
esis when the significance level (p-value) result-
ing from the test is higher than the preset α. Ta-
ble 2 presents the results of our sensitivity analysis
for the proposed model with the best performance
against other modeling strategies. From Table 2, it
can be observed that the value of p is always lower
than the preset α of 0.05. Thus, we conclude that
the proposed model with the best performance is
statistically significant than the other approaches
and baseline methods with respect to all the em-
ployed performance evaluation metrics.

4 Concluding Remarks

In this paper, we presented FarSight, a tech-
nique for detecting the onset of the disease with
the earliest recorded symptoms and infections, to
provide preventive and prioritized care, in turn
aiding in the reduction of the morbidity rate.
Two coherence-based topic modeling approaches
were employed to capture the semantic informa-
tion in the nursing notes and derive the optimal
data representations with emphasis on the human
interpretability of the derived clinical concepts.
The obtained data representations were effectively
leveraged for diagnostic ICD-9 code group predic-
tion using deep neural architectures. Unlike in the
previous works, we benchmarked the performance
of our proposed models using several evaluation
metrics which are essential in the accurate assess-
ment of the reliability of the models. The pro-
posed model captured the valuable patient-specific
information present in the informally written nurs-
ing notes and outperformed the structured EHR
data based state-of-the-art model with an improve-
ment of 11.50% in terms of AUPRC and 1.16% in

terms of AUROC. Furthermore, we also observed
that the proposed FarSight-aggregated and C-LDA
classified model captured the discriminative fea-
tures of the nursing notes and consistently outper-
formed several other standard models, including
C-NMF, LDA, and NMF. Moreover, our model
eliminates the dependency on structured EHRs for
the development of CDSSs and is extremely vital
in countries with low EHR adoption rates.

Although the proposed approach effectively
stratifies the patients’ risk and the associated com-
plications, it can be enhanced further, which calls
for further research on this topic. First, the
proposed approach only models the unstructured
nursing text and neglects the structured EHR infor-
mation (e.g., lab results), which can potentially be
utilized to facilitate robust patient profiling. Sec-
ond, the modeling presented in this study does
not account for real-time clinical data. In the fu-
ture, we intend on exploring the techniques for
modeling structured EHR data along with the data
modeled from the unstructured clinical nursing
notes. We also aim at validating our model on real-
time clinical data to enhance its predictability and
adaptability, thus focusing on the need for time-
aware, dependable architectures in real-world hos-
pital scenarios.
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Abstract

We investigate the political roles of “Inter-
net trolls” in social media. Political trolls,
such as the ones linked to the Russian In-
ternet Research Agency (IRA), have recently
gained enormous attention for their ability
to sway public opinion and even influence
elections. Analysis of the online traces of
trolls has shown different behavioral patterns,
which target different slices of the population.
However, this analysis is manual and labor-
intensive, thus making it impractical as a first-
response tool for newly-discovered troll farms.
In this paper, we show how to automate this
analysis by using machine learning in a real-
istic setting. In particular, we show how to
classify trolls according to their political role
—left, news feed, right— by using features
extracted from social media, i.e., Twitter, in
two scenarios: (i) in a traditional supervised
learning scenario, where labels for trolls are
available, and (ii) in a distant supervision sce-
nario, where labels for trolls are not available,
and we rely on more-commonly-available la-
bels for news outlets mentioned by the trolls.
Technically, we leverage the community struc-
ture and the text of the messages in the on-
line social network of trolls represented as a
graph, from which we extract several types of
learned representations, i.e., embeddings, for
the trolls. Experiments on the “IRA Russian
Troll” dataset show that our methodology im-
proves over the state-of-the-art in the first sce-
nario, while providing a compelling case for
the second scenario, which has not been ex-
plored in the literature thus far.

1 Introduction

Internet “trolls” are users of an online community
who quarrel and upset people, seeking to sow dis-
cord by posting inflammatory content. More re-
cently, organized “troll farms” of political opinion
manipulation trolls have also emerged.

Such farms usually consist of state-sponsored
agents who control a set of pseudonymous user
accounts and personas, the so-called “sockpup-
pets”, which disseminate misinformation and pro-
paganda in order to sway opinions, destabilize the
society, and even influence elections (Linvill and
Warren, 2018).

The behavior of political trolls has been ana-
lyzed in different recent circumstances, such as
the 2016 US Presidential Elections and the Brexit
referendum in UK (Linvill and Warren, 2018;
Llewellyn et al., 2018). However, this kind of
analysis requires painstaking and time-consuming
manual labor to sift through the data and to catego-
rize the trolls according to their actions. Our goal
in the current paper is to automate this process
with the help of machine learning (ML). In par-
ticular, we focus on the case of the 2016 US Pres-
idential Elections, for which a public dataset from
Twitter is available. For this case, we consider
only accounts that post content in English, and we
wish to divide the trolls into some of the functional
categories identified by Linvill and Warren (2018):
left troll, right troll, and news feed.

We consider two possible scenarios. The first,
prototypical ML scenario is supervised learning,
where we want to learn a function from users to
categories {left, right, news feed}, and the ground
truth labels for the troll users are available. This
scenario has been considered previously in the lit-
erature by Kim et al. (2019). Unfortunately, a so-
lution for such a scenario is not directly applicable
to a real-world use case. Suppose a new troll farm
trying to sway the upcoming European or US elec-
tions has just been discovered. While the identities
of the accounts might be available, the labels to
learn from would not be present. Thus, any super-
vised machine learning approach would fall short
of being a fully automated solution to our initial
problem.
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A more realistic scenario assumes that labels for
troll accounts are not available. In this case, we
need to use some external information in order
to learn a labeling function. Indeed, we leverage
more persistent entities and their labels: news me-
dia. We assume a learning scenario with distant
supervision where labels for news media are avail-
able. By combining these labels with a citation
graph from the troll accounts to news media, we
can infer the final labeling on the accounts them-
selves without any need for manual labeling.

One advantage of using distant supervision is
that we can get insights about the behavior of
a newly-discovered troll farm quickly and effort-
lessly. Differently from troll accounts in social
media, which usually have a high churn rate, news
media accounts in social media are quite stable.
Therefore, the latter can be used as an anchor point
to understand the behavior of trolls, for which data
may not be available.

We rely on embeddings extracted from social
media. In particular, we use a combination of em-
beddings built on the user-to-user mention graph,
the user-to-hashtag mention graph, and the text of
the tweets of the troll accounts. We further explore
several possible approaches using label propaga-
tion for the distant supervision scenario.

As a result of our approach, we improve the
classification accuracy by more than 5 percent-
age points for the supervised learning scenario.
The distant supervision scenario has not previ-
ously been considered in the literature, and is one
of the main contributions of the paper. We show
that even by hiding the labels from the ML algo-
rithm, we can recover 78.5% of the correct labels.

The contributions of this paper can be summa-
rized as follows:

• We predict the political role of Internet trolls
(left, news feed, right) in a realistic, unsuper-
vised scenario, where labels for the trolls are
not available, and which has not been explored
in the literature before.

• We propose a novel distant supervision ap-
proach for this scenario, based on graph em-
beddings, BERT, and label propagation, which
projects the more-commonly-available labels
for news media onto the trolls who cited these
media.

• We improve over the state of the art in the tra-
ditional, fully supervised setting, where train-
ing labels are available.

2 Related Work

2.1 Trolls and Opinion Manipulation
The promise of social media to democratize con-
tent creation (Kaplan and Haenlein, 2010) has
been accompanied by many malicious attempts
to spread misleading information over this new
medium, which quickly got populated by sock-
puppets (Kumar et al., 2017), Internet water army
(Chen et al., 2013), astroturfers (Ratkiewicz et al.,
2011), and seminar users (Darwish et al., 2017).
Several studies have shown that trust is an impor-
tant factor in online relationships (Ho et al., 2012;
Ku, 2012; Hsu et al., 2014; Elbeltagi and Agag,
2016; Ha et al., 2016), but building trust is a long-
term process and our understanding of it is still
in its infancy (Salo and Karjaluoto, 2007). This
makes it easy for politicians and companies to ma-
nipulate user opinions in community forums (Del-
larocas, 2006; Li et al., 2016; Zhuang et al., 2018).

Trolls. Social media have seen the proliferation
of fake news and clickbait (Hardalov et al., 2016;
Karadzhov et al., 2017a), aggressiveness (Moore
et al., 2012), and trolling (Cole, 2015). The lat-
ter often is understood to concern malicious online
behavior that is intended to disrupt interactions,
to aggravate interacting partners, and to lure them
into fruitless argumentation in order to disrupt on-
line interactions and communication (Chen et al.,
2013). Here we are interested in studying not just
any trolls, but those that engage in opinion manip-
ulation (Mihaylov et al., 2015a,b, 2018). This lat-
ter definition of troll has also become prominent in
the general public discourse recently. Del Vicario
et al. (2016) have also suggested that the spreading
of misinformation online is fostered by the pres-
ence of polarization and echo chambers in social
media (Garimella et al., 2016, 2017, 2018).

Trolling behavior is present and has been stud-
ied in all kinds of online media: online maga-
zines (Binns, 2012), social networking sites (Cole,
2015), online computer games (Thacker and Grif-
fiths, 2012), online encyclopedia (Shachaf and
Hara, 2010), and online newspapers (Ruiz et al.,
2011), among others.

Troll detection has been addressed by using
domain-adapted sentiment analysis (Seah et al.,
2015), various lexico-syntactic features about user
writing style and structure (Chen et al., 2012;
Mihaylov and Nakov, 2016), and graph-based
approaches over signed social networks (Kumar
et al., 2014).
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Sockpuppet is a related notion, and refers to
a person who assumes a false identity in an In-
ternet community and then speaks to or about
themselves while pretending to be another person.
The term has also been used to refer to opinion
manipulation, e.g., in Wikipedia (Solorio et al.,
2014). Sockpuppets have been identified by us-
ing authorship-identification techniques and link
analysis (Bu et al., 2013). It has been also shown
that sockpuppets differ from ordinary users in their
posting behavior, linguistic traits, and social net-
work structure (Kumar et al., 2017).

Internet Water Army is a literal translation of
the Chinese term wangluo shuijun, which is a
metaphor for a large number of people who are
well organized to flood the Internet with purpose-
ful comments and articles. Internet water army
has been allegedly used in China by the govern-
ment (also known as 50 Cent Party) as well as by
a number of private organizations.

Astroturfing is an effort to simulate a political
grass-roots movement. It has attracted strong in-
terest from political science, and research on it has
focused on massive streams of microblogging data
(Ratkiewicz et al., 2011).

Identification of malicious accounts in social
media includes detecting spam accounts (Almaa-
touq et al., 2016; McCord and Chuah, 2011), fake
accounts (Fire et al., 2014; Cresci et al., 2015),
compromised and phishing accounts (Adewole
et al., 2017). Fake profile detection has also been
studied in the context of cyber-bullying (Galán-
Garcı́a et al., 2016). A related problem is that
of Web spam detection, which has been addressed
as a text classification problem (Sebastiani, 2002),
e.g., using spam keyword spotting (Dave et al.,
2003), lexical affinity of arbitrary words to spam
content (Hu and Liu, 2004), frequency of punctu-
ation and word co-occurrence (Li et al., 2006).

Trustworthiness and veracity analytics of online
statements is an emerging research direction, espe-
cially given the recent interest in fake news (Lazer
et al., 2018). It is related to trolls, as they often en-
gage in opinion manipulation and rumor spread-
ing (Vosoughi et al., 2018). Research topics in-
clude predicting the credibility of information in
social media (Ma et al., 2016; Mitra et al., 2017;
Karadzhov et al., 2017b; Popat et al., 2017) and
political debates (Hassan et al., 2015; Gencheva
et al., 2017; Jaradat et al., 2018), as well as stance
classification (Mohtarami et al., 2018).

For example, Castillo et al. (2011) leverage user
reputation, author writing style, and various time-
based features, Canini et al. (2011) analyze the
interaction of content and social network struc-
ture, and Morris et al. (2012) studied how Twit-
ter users judge truthfulness. Zubiaga et al. (2016)
study how people handle rumors in social media,
and found that users with higher reputation are
more trusted, and thus can spread rumors easily.
Lukasik et al. (2015) use temporal patterns to de-
tect rumors and to predict their frequency, and Zu-
biaga et al. (2016) focus on conversational threads.
More recent work has focused on the credibility
and the factuality in community forums (Nakov
et al., 2017; Mihaylova et al., 2018, 2019; Mi-
haylov et al., 2018).

2.2 Understanding the Role of Political Trolls

None of the above work has focused on under-
standing the role of political trolls. The only
closely relevant work is that of Kim et al. (2019),
who predict the roles of the Russian trolls on Twit-
ter by leveraging social theory and Actor-Network
Theory approaches. They characterize trolls using
the digital traces they leave behind, which is mod-
eled using a time-sensitive semantic edit distance.
For this purpose, they use the “IRA Russian Troll”
dataset (Linvill and Warren, 2018), which we also
use in our experiments. However, we have a very
different approach based on graph embeddings,
which we show to be superior to their method in
the supervised setup. We further experiment with
a new, and arguably more realistic, setup based on
distant supervision, where labels are not available.
To the best of our knowledge, this setup has not
been explored in previous work.

2.3 Graph Embeddings

Graph embeddings are machine learning tech-
niques to model and capture key features from a
graph automatically. They can be trained either
in a supervised or in an unsupervised manner (Cai
et al., 2018). The produced embeddings are la-
tent vector representations that map each vertex V
in a graph G to a d-dimensional vector. The vec-
tors capture the underlying structure of the graph
by putting “similar” vertices close together in the
vector space. By expressing our data as a graph
structure, we can leverage and extract critical in-
sights about the topology and the contextual rela-
tionships between the vertices in the graph.

1025



In mathematical terms, graph embeddings can be
expressed as a function f : V → Rd from the set
of vertices V to a set of embeddings, where d is the
dimensionality of the embeddings. The function f
can be represented as a matrix of dimensions |V |×
d. In our experiments, we train Graph Embeddings
in an unsupervised manner by using node2vec
(Grover and Leskovec, 2016), which is based on
random walks over the graph. Essentially, this is
an application of the well-known skip-gram model
(Mikolov et al., 2013) from word2vec to random
walks on graphs.

Besides node2vec, there have been a number
of competing proposals for building graph em-
beddings; see (Cai et al., 2018) for an exten-
sive overview of the topic. For example, SNE
(Liao et al., 2018) model both the graph structure
and some node attributes. Similarly, Line (Tang
et al., 2015) represent each node as the concate-
nation of two embedded vectors that model first-
and second-order proximity. TriDNR (Pan et al.,
2016) represents nodes by coupling several neu-
ral network models. For our experiments, we use
node2vec, as we do not have access to user at-
tributes: the users have been banned from Twitter,
their accounts were suspended, and we only have
access to their tweets thanks to the “IRA Russian
Trolls” dataset.

3 Method

Given a set of known political troll users (each
user being represented as a collection of their
tweets), we aim to detect their role: left, right,
or news feed. Linvill and Warren (2018) describe
these roles as follows:

Right Trolls spread nativist and right-leaning
populist messages. Such trolls support the candi-
dacy and Presidency of Donald Trump and den-
igrate the Democratic Party; moreover, they of-
ten send divisive messages about mainstream and
moderate Republicans.

Left Trolls send socially liberal messages and
discuss gender, sexual, religious, and -especially-
racial identity. Many tweets are seemed intention-
ally divisive, attacking mainstream Democratic
politicians, particularly Hillary Clinton, while
supporting Bernie Sanders prior to the elections.

News Feed Trolls overwhelmingly present
themselves as US local news aggregators, linking
to legitimate regional news sources and tweeting
about issues of local interest.

Technically, we leverage the community structure
and the text of the messages in the social network
of political trolls represented as a graph, from
which we learn and extract several types of vector
representations, i.e., troll user embeddings. Then,
armed with these representations, we tackle the
following tasks:

T1 A fully supervised learning task, where we
have labeled training data with example troll
and their roles;

T2 A distant supervision learning task, in which
labels for the troll roles are not available at
training time, and thus we use labels for news
media as a proxy, from which we infer labels
for the troll users.

3.1 Embeddings

We use two graph-based (user-to-hashtag and
user-to-mentioned-user) and one text-based
(BERT) embedding representations.

3.1.1 U2H

We build a bipartite, undirected User-to-Hashtag
(U2H) graph, where nodes are users and hashtags,
and there is an edge (u, h) between a user node u
and a hashtag node h if user u uses hashtag h in
their tweets. This graph is bipartite as there are no
edges connecting two user nodes or two hashtag
nodes. We run node2vec (Grover and Leskovec,
2016) on this graph, and we extract the embed-
dings for the users (we ignore the hashtag embed-
dings). We use 128 dimensions for the output em-
beddings. These embeddings capture how similar
troll users are based on their usage of hashtags.

3.1.2 U2M

We build an undirected User-to-Mentioned-User
(U2M) graph, where the nodes are users, and there
is an edge (u, v) between two nodes if user umen-
tions user v in their tweets (i.e., u has authored a
tweet that contains “@v” ). We run node2vec on
this graph and we extract the embeddings for the
users. As we are interested only in the troll users,
we ignore the embeddings of users who are only
mentioned by other trolls. We use 128 dimensions
for the output embeddings. The embeddings ex-
tracted from this graph capture how similar troll
users are according to the targets of their discus-
sions on the social network.
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3.1.3 BERT
BERT offers state-of-the-art text embeddings
based on the Transformer architecture (Devlin
et al., 2019). We use the pre-trained BERT-large,
uncased model, which has 24-layers, 1024-hidden,
16-heads, and 340M parameters, which yields out-
put embeddings with 768 dimensions. Given a
tweet, we generate an embedding for it by averag-
ing the representations of the BERT tokens from
the penultimate layer of the neural network. To
obtain a representation for a user, we average the
embeddings of all their tweets. The embeddings
extracted from the text capture how similar users
are according to their use of language.

3.2 Fully Supervised Learning (T1)

Given a set of troll users for which we have labels,
we use the above embeddings as a representation
to train a classifier. We use an L2-regularized lo-
gistic regression (LR) classifier. Each troll user
is an example, and the label for the user is avail-
able for training thanks to manual labeling. We
can therefore use cross-validation to evaluate the
predictive performance of the model, and thus the
predictive power of the features.

We experiment with two ways of combining
features: embedding concatenation and model en-
sembling. Embedding concatenation concatenates
the feature vectors from different embeddings into
a longer feature vector, which we then use to train
the LR model. Model ensembling instead trains a
separate model with each kind of embedding, and
then merges the prediction of the different mod-
els by averaging the posterior probabilities for the
different classes. Henceforth, we denote embed-
ding concatenation with the symbol ‖ and model
ensembling with ⊕. For example, U2H ‖ U2M is
a model trained on the concatenation of U2H and
U2M embeddings, while U2H⊕ BERT represents
the average predictions of two models, one trained
on U2H embeddings and one on BERT.

3.3 Distant Supervision (T2)

In the distant supervision scenario, we assume not
to have access to user labels. Given a set of troll
users without labels, we use the embeddings de-
scribed in Section 3.1 together with mentions of
news media by the troll users to create proxy mod-
els. We assume that labels for news media are
readily available, as they are stable sources of in-
formation that have a low churn rate.

We propagate labels from the given media to the
troll user that mentions them according to the fol-
lowing media-to-user mapping:

LEFT→ left
RIGHT→ right

CENTER→ news feed
(1)

This propagation can be done in different ways:
(a) by training a proxy model for media and then
applying it to users, (b) by additionally using label
propagation (LP) for semi-supervised learning.

Let us describe the proxy model propagation for
(a) first. Let M be the set of media, and U be the
set of users. We say a user u ∈ U mentions a
medium m ∈ M if u posts a tweet that contains
a link to the website of m. We denote the set of
users that mention the medium m as Cm ⊆ U .

We can therefore create a representation for a
medium by aggregating the embeddings of the
users that mention the target medium. Such a
representation is convenient as it lies in the same
space as the user representation. In particular,
given a medium m ∈ M , we compute its repre-
sentation R(m) as

R(m) =
1

|Cm|
∑

u∈Cm

R(u), (2)

where R(u) is the representation of user u,
i.e., one (or a concatenation) of the embeddings
described in Section 3.1.

Finally, we can train a LR model that usesR(m)
as features and the label for the medium l(m).
This model can be applied to predict the label of
a user u by using the same type of representation
R(u), and the label mapping in Equation 1.

Label Propagation (b) is a transductive, graph-
based, semi-supervised machine learning algo-
rithm that, given a small set of labeled examples,
assigns labels to previously unlabeled examples.
The labels of each example change in relationship
to the labels of neighboring ones in a properly-
defined graph.

More formally, given a partially-labeled dataset
of examples X = Xu ∪ Xl, of which Xl are la-
beled examples with labels Yl, and Xu are unla-
beled examples, and a similarity graph G(X,E),
the label propagation algorithm finds the set of un-
known labels Yu such that the number of discor-
dant pairs (u, v) ∈ E : yu 6= yv is minimized,
where yz is the label assigned to example z.
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Role Users Tweets User Example Tweet Example

Left 233 427 141 @samirgooden @MichaelSkolnik @KatrinaPierson @samesfandiari Trump folks
need to stop going on CNN.

Right 630 711 668 @chirrmorre BREAKING: Trump ERASES Obama’s Islamic Refugee Policy!
https://t.co/uPTneTMNM5

News Feed 54 598 226 @dailysandiego Exit poll: Wisconsin GOP voters excited, scared about Trump #pol-
itics

Table 1: Statistics and examples from the IRA Russian Trolls Tweets dataset.

The algorithm works as follows: At every iter-
ation of propagation, each unlabeled node updates
its label to the most frequent one among its neigh-
bors. LP reaches convergence when each node has
the same label as the majority of its neighbors. We
define two different versions of LP by creating two
different versions of the similarity graph G.

LP1 Label Propagation using direct mention.
In the first case, the set of edges among users U
in the similarity graph G consists of the logical
OR between the 2-hop closure of the U2H and the
U2M graph. That is, for each two users u, v ∈ U ,
there is an edge in the similarity graph (u, v) ∈ E
if u and v share a common hashtag or a common
user mention

(u, h) ∈ U2H ∧ (v, h) ∈ U2H ∨
(u,w) ∈ U2M ∧ (v, w) ∈ U2M

The graph therefore uses the same information
that is available to the embeddings.

To this graph, which currently encompasses
only the set of users U , we add connections to the
set of media M . We add an edge between each
pair (u,m) if u ∈ Cm. Then, we run the label
propagation algorithm, which propagates the la-
bels from the labeled nodes M to the unlabeled
nodes U , thanks to the mapping from Equation 1.

LP2 Label Propagation based on a similarity
graph.
In this case, we use the same representation for
the media as in the proxy model case above, as de-
scribed by Equation 2. Then, we build a similarity
graph among media and users based on their em-
beddings. For each pair x, y ∈ U ∪M there is an
edge in the similarity graph (x, y) ∈ E iff

sim(R(x), R(y)) > τ,

where sim is a similarity function between vectors,
e.g., cosine similarity, and τ is a user-specified pa-
rameter that regulates the sparseness of the simi-
larity graph.

Finally, we perform label propagation on the
similarity graph defined by the embedding simi-
larity, with the set of nodes corresponding to M
starting with labels, and with the set of nodes cor-
responding to U starting without labels.

4 Data

4.1 IRA Russian Troll Tweets
Our main dataset contains 2 973 371 tweets by
2848 Twitter users, which the US House In-
telligence Committee has linked to the Russian
Internet Research Agency (IRA). The data was
collected and published by Linvill and Warren
(2018), and then made available online.1 The time
span covers the period from February 2012 to May
2018.

The trolls belong to the following manually as-
signed roles: Left Troll, Right Troll, News Feed,
Commercial, Fearmonger, Hashtag Gamer, Non
English, Unknown. Kim et al. (2019) have ar-
gued that the first three categories are not only the
most frequent, but also the most interesting ones.
Moreover, focusing on these troll types allows us
to establish a connection between troll types and
the political bias of the news media they mention.
Table 1 shows a summary of the troll role distribu-
tion, the total number of tweets per role, as well as
examples of troll usernames and tweets.

4.2 Media Bias/Fact Check
We use data from Media Bias/Fact Check
(MBFC)2 to label news media sites. MBFC di-
vides news media into the following bias cate-
gories: Extreme-Left, Left, Center-Left, Center,
Center-Right, Right, and Extreme-Right. We re-
duce the granularity to three categories by group-
ing Extreme-Left and Left as LEFT, Extreme-
Right and Right as RIGHT, and Center-Left,
Center-Right, and Center as CENTER.

1http://github.com/fivethirtyeight/
russian-troll-tweets

2http://mediabiasfactcheck.com
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Bias Count Example

LEFT 341 www.cnn.com
RIGHT 619 www.foxnews.com
CENTER 372 www.apnews.com

Table 2: Summary statistics about the Media
Bias/Fact Check (MBFC) dataset.

Table 2 shows some basic statistics about the
resulting media dataset. Similarly to the IRA
dataset, the distribution is right-heavy.

5 Experiments and Evaluation

5.1 Experimental Setup
For each user in the IRA dataset, we extracted all
the links in their tweets, we expanded them recur-
sively if they were shortened, we extracted the do-
main of the link, and we checked whether it could
be found in the MBFC dataset. By grouping these
relationships by media, we constructed the sets of
users Cm that mention a given medium m ∈M .

The U2H graph consists of 108 410 nodes and
443 121 edges, while the U2M graph has 591 793
nodes and 832 844 edges. We ran node2vec on
each graph to extract 128-dimensional vectors
for each node. We used these vectors as fea-
tures for the fully supervised and for the distant-
supervision scenarios. For Label Propagation, we
used an empirical threshold for edge materializa-
tion τ = 0.55, to obtain a reasonably sparse simi-
larity graph.

We used two evaluation measures: accuracy,
and macro-averaged F1 (the harmonic average
of precision and recall). In the supervised sce-
nario, we performed 5-fold cross-validation. In the
distant-supervision scenario, we propagated labels
from the media to the users. Therefore, in the latter
case the user labels were only used for evaluation.

5.2 Evaluation Results
Table 3 shows the evaluation results. Each line
of the table represents a different combination of
features, models, or techniques. As mentioned in
Section 3, the symbol ‘‖ ’ denotes a single model
trained on the concatenation of the features, while
the symbol ‘⊕’ denotes an averaging of individ-
ual models trained on each feature separately. The
tags ‘LP1’ and ‘LP2’ denote the two label propa-
gation versions, by mention and by similarity, re-
spectively.

We can see that accuracy and macro-averaged F1
are strongly correlated and yield very consistent
rankings for the different models. Thus, hence-
forth we will focus our discussion on accuracy.

We can see in Table 3 that it is possible to pre-
dict the roles of the troll users by using distant su-
pervision with relatively high accuracy. Indeed,
the results for T2 are lower compared to their T1
counterparts by only 10 and 20 points absolute in
terms of accuracy and F1, respectively. This is im-
pressive considering that the models for T2 have
no access to labels for troll users.

Looking at individual features, for both T1 and
T2, the embeddings from U2M outperform those
from U2H and from BERT. One possible reason
is that the U2M graph is larger, and thus contains
more information. It is also possible that the so-
cial circle of a troll user is more indicative than
the hashtags they used. Finally, the textual content
on Twitter is quite noisy, and thus the BERT em-
beddings perform slightly worse when used alone.

All our models with a single type of embedding
easily outperform the model of Kim et al. (2019).
The difference is even larger when combining the
embeddings, be it by concatenating the embedding
vectors or by training separate models and then
combining the posteriors of their predictions.

By concatenating the U2M and the U2H em-
beddings (U2H ‖ U2M), we fully leverage the
hashtags and the mention representations in the la-
tent space, thus achieving accuracy of 88.7 for T1
and 78.0 for T2, which is slightly better than when
training separate models and then averaging their
posteriors (U2H ⊕ U2M): 88.3 for T1 and 77.9
for T2. Adding BERT embeddings to the combi-
nation yields further improvements, and follows a
similar trend, where feature concatenation works
better, yielding 89.2 accuracy for T1 and 78.2 for
T2 (compared to 89.0 accuracy for T1 and 78.0 for
T2 for U2H ⊕ U2M ⊕ BERT).

Adding label propagation yields further im-
provements, both for LP1 and for LP2, with the
latter being slightly superior: 89.6 vs. 89.3 accu-
racy for T1, and 78.5 vs. 78.3 for T2.

Overall, our methodology achieves sizable im-
provements over previous work, reaching an ac-
curacy of 89.6 vs. 84.0 of Kim et al. (2019) in
the fully supervised case. Moreover, it achieves
78.5 accuracy in the distant supervised case, which
is only 11 points behind the result for T1, and is
about 10 points above the majority class baseline.
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Method Full Supervision (T1) Distant Supervision (T2)

Accuracy Macro F1 Accuracy Macro F1

Baseline (majority class) 68.7 27.1 68.7 27.1
Kim et al. (2019) 84.0 75.0 N/A N/A
BERT 86.9 83.1 75.1 60.5
U2H 87.1 83.2 76.3 60.9
U2M 88.1 83.9 77.3 62.4
U2H ⊕ U2M 88.3 84.1 77.9 64.1
U2H ‖ U2M 88.7 84.4 78.0 64.6
U2H ⊕ U2M ⊕ BERT 89.0 84.4 78.0 65.0
U2H ‖ U2M ‖ BERT 89.2 84.7 78.2 65.1
U2H ‖ U2M ‖ BERT + LP1 89.3 84.7 78.3 65.1
U2H ‖ U2M ‖ BERT + LP2 89.6 84.9 78.5 65.7

Table 3: Predicting the role of the troll users using full vs. distant supervision.

6 Discussion

6.1 Ablation Study

We performed different experiments with the
hyper-parameters of the graph embeddings. With
smaller dimensionality (i.e., using 16 dimensions
instead of 128), we noticed 2–3 points of absolute
decrease in accuracy across the board.

Moreover, we found that using all of the data for
learning the embeddings was better than focusing
only on users that we target in this study, namely
left, right, and news feed, i.e., using the rest of
the data adds additional context to the embedding
space, and makes the target labels more contex-
tually distinguishable. Similarly, we observe 5–6
points of absolute drop in accuracy when training
our embeddings on tweets by trolls labeled as left,
right, and news feed.

6.2 Comparison to Full Supervision

Next, we compared to the work of Kim et al.
(2019), who had a fully supervised learning sce-
nario, based on Tarde’s Actor-Network Theory.
They paid more attention to the content of the
tweet by applying a text-distance metric in order
to capture the semantic distance between two se-
quences. In contrast, we focus on critical elements
of information that are salient in Twitter: hashtags
and user mentions. By building a connection be-
tween users, hashtags, and user mentions, we ef-
fectively filtered out the noise and we focused only
on the most sensitive type of context, thus auto-
matically capturing features from this network via
graph embeddings.

Method Accuracy Macro F1
Baseline (majority) 46.5 21.1
BERT 61.8 60.4
U2H 61.6 60.0
U2M 62.7 61.4
U2H ⊕ U2M 63.5 61.8
U2H ‖ U2M 63.8 61.9
U2H ⊕ U2M ⊕ BERT 63.7 61.8
U2H ‖ U2M ‖ BERT 64.0 62.2

Table 4: Leveraging user embeddings to predict
the bias of the media cited by troll users.

6.3 Reverse Classification: Media from Trolls

Table 4 shows an experiment in distant supervi-
sion for reverse classification, where we trained a
model on the IRA dataset with the troll labels, and
then we applied that model to the representation
of the media in the MBFC dataset, where each
medium is represented as the average of the em-
beddings of the users who cited that medium. We
can see that we could improve over the baseline by
20 points absolute in terms of accuracy and by 41
in terms absolute in terms of macro-averaged F1.

We can see in Table 4 that the relative ordering
in terms or performance for the different models is
consistent with that for the experiments in the pre-
vious section. This suggests that the relationship
between trolls and media goes both ways, and thus
we can use labels for media as a way to label users,
and we can also use labels for troll users as a way
to label media.

1030



7 Conclusion and Future Work

We have proposed a novel approach to analyze the
behavior patterns of political trolls according to
their political leaning (left vs. news feed vs. right)
using features from social media, i.e., from Twit-
ter. We experimented with two scenarios: (i) su-
pervised learning, where labels for trolls are pro-
vided, and (ii) distant supervision, where such la-
bels are not available, and we rely on more com-
mon labels for news outlets cited by the trolls.
Technically, we leveraged the community struc-
ture and the text of the messages in the online so-
cial network of trolls represented as a graph, from
which we extracted several types of representa-
tions, i.e., embeddings, for the trolls. Our exper-
iments on the “IRA Russian Troll” dataset have
shown improvements over the state-of-the-art in
the supervised scenario, while providing a com-
pelling case for the distant-supervision scenario,
which has not been explored before.3

In future work, we plan to apply our methodol-
ogy to other political events such as Brexit as well
as to other election campaigns around the world,
in connection to which large-scale troll campaigns
have been revealed. We further plan experiments
with other graph embedding methods, and with
other social media. Finally, the relationship be-
tween media bias and troll’s political role that we
have highlighted in this paper is extremely inter-
esting. We have shown how to use it to go from
the media-space to the user-space and vice-versa,
but so far we have just scratched the surface in
terms of understanding of the process that gener-
ated these data and its possible applications.
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Nakov, Lluı́s Màrquez, and Alessandro Moschitti.
2018. Automatic stance detection using end-to-
end memory networks. In Proceedings of the 16th
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT ’18,
pages 767–776, New Orleans, LA, USA.

Michael J Moore, Tadashi Nakano, Akihiro Enomoto,
and Tatsuya Suda. 2012. Anonymity and roles as-
sociated with aggressive posts in an online forum.
Computers in Human Behavior, 28(3):861–867.

Meredith Ringel Morris, Scott Counts, Asta Roseway,
Aaron Hoff, and Julia Schwarz. 2012. Tweeting
is believing?: Understanding microblog credibility
perceptions. In Proceedings of the ACM 2012 Con-
ference on Computer Supported Cooperative Work,
CSCW ’12, pages 441–450, Seattle, WA, USA.

Preslav Nakov, Tsvetomila Mihaylova, Lluı́s Màrquez,
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Dı́az-Noci, Koldo Meso, and Pere Masip. 2011.
Public sphere 2.0? The democratic qualities of citi-
zen debates in online newspapers. The International
Journal of Press/Politics, 16(4):463–487.

Jari Salo and Heikki Karjaluoto. 2007. A conceptual
model of trust in the online environment. Online
Information Review, 31(5):604–621.

Chun-Wei Seah, Hai Leong Chieu, Kian Ming Adam
Chai, Loo-Nin Teow, and Lee Wei Yeong. 2015.
Troll detection by domain-adapting sentiment anal-
ysis. In Proceedings of the 18th International Con-
ference on Information Fusion, FUSION ’15, pages
792–799, Washington, DC, USA.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR), 34(1):1–47.

Pnina Shachaf and Noriko Hara. 2010. Beyond vandal-
ism: Wikipedia trolls. Journal of Information Sci-
ence, 36(3):357–370.

Thamar Solorio, Ragib Hasan, and Mainul Mizan.
2014. Sockpuppet detection in Wikipedia: A cor-
pus of real-world deceptive writing for linking iden-
tities. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation,
LREC ’14, pages 1355–1358, Reykjavik, Iceland.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. LINE: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web, WWW ’15, pages 1067–1077, Florence, Italy.

Scott Thacker and Mark D Griffiths. 2012. An ex-
ploratory study of trolling in online video gaming.
International Journal of Cyber Behavior, Psychol-
ogy and Learning (IJCBPL), 2(4):17–33.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

Mengzhou Zhuang, Geng Cui, and Ling Peng. 2018.
Manufactured opinions: The effect of manipulating
online product reviews. Journal of Business Re-
search, 87:24 – 35.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PLoS ONE, 11(3):1–29.

1034



Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 1035–1044
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

Towards a Unified End-to-End Approach for Fully
Unsupervised Cross-lingual Sentiment Analysis

Yanlin Feng and Xiaojun Wan
Wangxuan Institute of Computer Science and Technology, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University

{fengyanlin,wanxiaojun}@pku.edu.cn

Abstract

Sentiment analysis in low-resource languages
suffers from the lack of training data. Cross-
lingual sentiment analysis (CLSA) aims to
improve the performance on these languages
by leveraging annotated data from other lan-
guages. Recent studies have shown that CLSA
can be performed in a fully unsupervised
manner, without exploiting either target lan-
guage supervision or cross-lingual supervi-
sion. However, these methods rely heavily on
unsupervised cross-lingual word embeddings
(CLWE), which has been shown to have seri-
ous drawbacks on distant language pairs (e.g.
English - Japanese). In this paper, we propose
an end-to-end CLSA model by leveraging un-
labeled data in multiple languages and mul-
tiple domains and eliminate the need for un-
supervised CLWE. Our model applies to two
CLSA settings: the traditional cross-lingual
in-domain setting and the more challenging
cross-lingual cross-domain setting. We em-
pirically evaluate our approach on the multi-
lingual multi-domain Amazon review dataset.
Experimental results show that our model out-
performs the baselines by a large margin de-
spite its minimal resource requirement. 1

1 Introduction

While English sentiment analysis has achieved
great success with the help of large-scale anno-
tated corpus, this is not the case for most of
languages where only limited data is available.
Cross-lingual sentiment analysis (CLSA) tackles
this problem by adapting the sentiment resource
in a source language to a poor-resource language
(the target language).

Current state-of-the-art CLSA methods rely
heavily on cross-lingual word embeddings
(CLWE) to transfer sentiment information from

1The source code is available at https://github.
com/Evan-Feng/UXSenti

the source language to the target language. CLWE
encodes words from multiple languages in a
common space, thus making it possible to share
a classifier across languages. Recent studies
have shown that CLWE can be obtained in an
unsupervised way, i.e., without any cross-lingual
resources (Zhang et al., 2017; Conneau et al.,
2017; Artetxe et al., 2018). This motivates fully
unsupervised CLSA approaches (Chen et al.,
2018a) that do not rely on either target language
supervision or cross-lingual supervision. These
methods generally involve the following steps:

1. Train monolingual embeddings separately on
multiple languages using monolingual unla-
beled data.

2. Map the monolingual embeddings to a shared
space using unsupervised CLWE methods,
either adversarial training methods (Con-
neau et al., 2017) or non-adversarial methods
(Artetxe et al., 2018; Xu et al., 2018).

3. Train a sentiment classifier using the anno-
tated corpus in the source language.

However, it has been shown that the quality
of unsupervised CLWE is highly sensitive to the
choice of language pairs and the comparability
of the monolingual data (Søgaard et al., 2018).
Therefore, these methods fail when the source lan-
guage and the target language have very different
linguistic structures (e.g. English and Japanese)
and require additional cross-lingual supervision
(e.g. a small seed dictionary or shared identical
strings) in such cases (Chen et al., 2018a).

In this paper, we propose a unified end-to-end
framework to perform unsupervised CLSA, by-
passing the complex multi-step process and the
drawbacks of unsupervised CLWE methods. In-
stead of mapping monolingual embeddings to a
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shared continuous space, we propose to bridge
the language gap by multilingual multi-domain
language modeling (i.e., we model the probabili-
ties of sentences from multiple language-domain
pairs). The language modeling objective is jointly
trained with a classification objective in an end-
to-end fashion using the unlabeled data in multi-
ple language-domain pairs and labeled data in a
source language-domain pair. Our model applies
to two CLSA settings: the traditional cross-lingual
in-domain setting and the more challenging cross-
lingual cross-domain setting.

The rationale for using unlabeled data in mul-
tiple domains is that there may not be a domain
shared by all languages in low-resource scenarios.
If we want to perform CLSA on two languages
that only have resources in two different domains,
it is natural to bridge the language gap with an-
other language that have resources on both do-
mains. Even in the case where resources in a spe-
cific domain are available for all languages, which
is a common assumption made by most CLSA ap-
proaches, we show that exploiting unlabeled data
in other domains significantly improves perfor-
mance.

Our contributions are as follows:

1. We propose a unified end-to-end framework
to perform CLSA. Our approach is fully un-
supervised and does not rely on any form of
cross-lingual supervision (even shared iden-
tical strings) or target language supervision.

2. We show that cross-lingual language mod-
eling based methods are able to outperform
CLWE based methods in the unsupervised
setting.

3. Our model can be easily generalized to dif-
ferent CLSA settings. Experiments on the
multilingual multi-domain Amazon review
dataset show that our method achieves state
of the art in both the cross-lingual in-domain
setting and the cross-lingual cross-domain
setting despite its minimal resource require-
ment.

2 Related Work

Cross-lingual Sentiment Analysis The most
related topic to our work is cross-lingual senti-
ment analysis. Some CLSA methods rely on ma-
chine translation systems (Wan, 2009; Demirtas

and Pechenizkiy, 2013; Xiao and Guo, 2012; Zhou
et al., 2016a) to provide cross-lingual supervision,
making themselves implicitly dependant on large-
scale parallel corpus which may not be available
for low-resource languages. Wan (2009) apply
the co-training algorithm to translated data while
other researchers have proposed multi-view learn-
ing (Xiao and Guo, 2012).

Another line of CLSA research bridges the lan-
guage gap using CLWE, which saves the efforts
of training a machine translation system thus re-
quires less cross-lingual resources. Some work
has proposed to map pretrained monolingual em-
beddings to a shared space (Barnes et al., 2018) to
obtain CLWE while others proposed jointly learn-
ing CLWE and a sentiment classifier, allowing
the embeddings to encode sentiment information
(Zhou et al., 2016b; Xu and Wan, 2017).

Very recently, unsupervised CLSA methods that
do not require either cross-lingual supervision or
target language supervision have been proposed
(Chen et al., 2018b,a). Chen et al. (2018a) trans-
fer sentiment information from multiple source
languages by jointly learning language invariant
and language specific features. Yet, these un-
supervised CLSA methods rely on unsupervised
CLWE which builds on the assumption that pre-
trained monolingual embeddings can be properly
aligned. This assumption, however, is not true in
low-resource scenarios (Søgaard et al., 2018).

It is worth pointing out that the language-
adversarial training model of (Chen et al., 2018b)
is able to perform unsupervised CLSA without
CLWE. The proposed model consists of a feature
extractor, a sentiment classifier and a language dis-
criminator. The feature extractor is trained to fool
the discriminator so that the extracted features are
language invariant. However, its performance is
significantly lower than the variant that uses pre-
trained CLWE.

While traditional CLSA methods assume that
data in both languages is within the same domain
(e.g. English hotel reviews for training and Chi-
nese hotel review for testing, we refer to this set-
ting as “cross-lingual in-domain sentiment anal-
ysis”), the more challenging cross-lingual cross-
domain setting has also been explored. Ziser and
Reichart (2018) extend pivot-based monolingual
domain adaption methods to the cross-lingual set-
ting. However, their method is not unsupervised
and requires expensive cross-lingual resources.
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Cross-lingual Language Modeling Our work
is also related to cross-lingual language model-
ing, which is a topic that has been explored by
researchers very recently. Lample and Conneau
(2019), pretrain a language model with a joint vo-
cabulary on the concatenation of multiple large-
scale monolingual corpora and finetune it on la-
beled data. However, this approach exploits cross-
lingual supervision provided by shared sub-word
units, which has been shown to improve perfor-
mance (Lample et al., 2018), and it remains a chal-
lenge to efficiently perform cross-lingual transfer
without exploiting shared identical strings. In this
work, we treat identical words from different lan-
guages as different words and thus eliminate any
form of cross-lingual supervision.

Wada and Iwata (2018) proposed a similar
cross-lingual language modeling architecture for
unsupervised word translation. They show that it
outperforms mapping based approaches (Artetxe
et al., 2018; Lample et al., 2017), but only when a
small amount of monolingual data is used. The
difference between their model and ours is that
we adopt different parameter sharing strategies
and consider the correlation between multiple do-
mains.

3 Cross-lingual In-Domain Sentiment
Analysis

3.1 Overview

In this section we describe our cross-lingual in-
domain sentiment analysis model (CLIDSA). It
assumes the training data and test data come from
different languages but are within the same do-
main (e.g. English hotel reviews as training data
and Chinese hotel reviews as test data), which is
the most common setting of previous CLSA ap-
proaches.

Although we use the same set of labeled data as
previous CLSA approaches, we adopt a different
strategy for utilizing the unlabeled data. Suppose
there is a set of languages L and a set of domains
D. Let P ⊆ L × D denote a set of language-
domain pairs. For each language-domain pair
(l, d) ∈ P , we have a set of unlabeled reviews
Cl,dmono. We also have a annotated sentiment corpus
Cls,dssenti in a source language-domain pair (ls, ds).
Our goal is to predict the sentiment polarity of the
examples in a target language-domain pair (lt, dt)
(note that ds = dt in the cross-lingual in-domain
setting).

In Section 5 we compare two CLIDSA vari-
ants. CLIDSAfull exploits unlabeled data from
all possible language-domain pairs, i.e., we set
P = L×D. However, since most previous CLSA
methods do not use multi-domain or multilingual
unlabeled data, we create a variant CLIDSAmin

that requires minimal resources by setting P =
{(ls, ds), (lt, dt)}.

A natural way to utilize unlabeled data is to per-
form the language modeling task. Our CLIDSA
model consists of multiple language models for
mutiple language-domain pairs, with some of their
parameters shared across languages or across do-
mains. It also includes a classifier component
which takes the hidden states (produced by the
LSTM language model) as input features and pre-
dicts the sentiment polarity. We also adopt a lan-
guage discriminator to force the features to be lan-
guage invariant. The overall architecture of our
model is illustrated in Figure 1. We detail each
component of our CLIDSA model in the follow-
ing subsections.

3.2 Multilingual Multi-Domain Language
Modeling

Language modeling is the most critical part in our
model since it acts as a language invariant feature
extractor. Intuitively, if we share the LSTM layers
of language models across languages, these lay-
ers are likely to process sentences from different
languages in the same space, thus inducing lan-
guage invariant features. In this subsection we de-
tail our parameter sharing strategies for modeling
sentences from multiple language-domain pairs.

Following previous work, we compute the prob-
ability of a sentence x by modeling the probability
of a word wk given the previous words:

p(x) =

|x|∏

k=1

p(wk | w1, . . . , wk − 1) (1)

For sentences in a certain language-domain pair
(l, d), the probabilities are computed using a two-
layer LSTM language model, which includes an
embedding layer, two LSTM layers and a linear
decoding layer. We first pass the input words
through the embedding layer of language l which
is parameterized by θlemb. Then we forward the
word embeddings to a LSTM layer parameterized
by θlstm1, which is shared across all languages and
all domains, generating a sequence of intermediate
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Figure 1: Illustration of the CLIDSA model. In this example, L = {EN,FR}, D = {Books,DVD}, P = L × D,
ls = EN, lt = FR and ds = dt = Books. We visualize the forward pass of input sentences from different
language-domain pairs. The path shown in red only occurs at test time.

hidden states:

hk = LSTM(hk−1, ~wk; θlstm1) (2)

where ~wk denotes the embedding of word wk.
These hidden states are then passed through the
second LSTM layer which is domain specific but
language invariant, generating a sequence of final
hidden states:

zk = LSTM(zk−1, hk; θ
d
lstm2) (3)

where the second LSTM layer of domain d is pa-
rameterized by θdlstm2. The final hidden states
(z1, z2, . . . , z|x|) thus can be considered as lan-
guage invariant features for cross-lingual classifi-
cation.

For the purpose of language modeling, we adopt
a language-specific linear decoding layer to trans-
form the final hidden states into probability dis-
tributions for next word prediction. The decoding
layer of language l is parameterized by θldec and is
shared across domains.

The intuition of adopting a domain-specific
LSTM layer is that the distribution of sentences
varies across domains. For example, given the first
three words “I love this”, the next word is most
likely to be “book” in a book review dataset or
“movie” in a movie review dataset. While it is pos-
sible to address this issue by using domain-specific
linear decoding layers, we find that sharing the
decoders across domains substantially reduces the

total number of parameters thus provides regular-
ization when only limited resources are available
(see Section 5.5 for the ablation study). Sharing
the decoders further enables the weight tying tech-
nique (Inan et al., 2016) to tie the decoder weight
with the embedding layer.

For language-domain pair (l, d), the language
modeling objective is written as follows:

J l,dlm (θlemb, θlstm1, θ
d
lstm2, θ

l
dec) =

E
x∼Cl,dmono

[
− 1

|x|

|x|∑

k=1

log p(wk | w1, . . . , wk−1)

]

(4)

where the sentence likelihood is normalized by the
sentence length and x ∼ Cl,dmono indicates that x is
sampled from the unlabeled text in Cl,dmono.

3.3 Sentiment Classifier
We adopt a simple linear classifier that takes the
averaged final hidden states 1

|x|
∑|x|

k=1 zk as input
features and outputs the probabilities of different
labels. The classification objective can be written
as:

Jsenti(θlsemb, θlstm1, θ
ds
lstm2, θclf ) =

E
(x,y)∼Cls,dssenti

[
− log p(y | x)

]
(5)

where (x, y) ∼ Cls,dssenti indicates that the sentence
x and its label y are sampled from the source sen-
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timent corpus and θclf denotes the parameters of
the linear classifier.

The classification objective is jointly minimized
with the language modeling objective, allowing
sentiment-specific supervision signals to back-
propagate through the model so that it can learn
to extract useful features for sentiment prediction.

3.4 Language Adversarial Training

To further force the features used for sentiment
classification to be language invariant, we adopt
the language adversarial training technique (Chen
et al., 2018b). A language discriminator is trained
to predict the language ID given the features
by minimizing the cross entropy loss, while the
LSTM network is trained to fool the discriminator
by maximizing the loss:

Jadv(θemb, θlstm1, θ
ds
lstm2, θdis) =

E(x,l)[− log p(l | x)] (6)

where θemb = θ1emb ⊕ · · · ⊕ θ
|L|
emb denotes the

parameters of all the embedding layers and θdis
denotes the parameters of the language discrimi-
nator. The sentence x and the language id l are
sampled from all the unlabeled data in domain
ds = dt. We do not employ language adversar-
ial training on the features of other domain since
we only perform classification in a single domain.

3.5 The Full Objective Function

Putting all the components together, the final ob-
jective function is thus:

Jfull(θemb, θlstm, θdec, θclf , θdis) =∑

(l,d)∈P
J l,dlm + αJsenti − βJadv (7)

where θlstm = θlstm1 ⊕ θ1lstm2 ⊕ · · · ⊕ θ
|D|
lstm2

denotes the parameters of all the LSTM layers,
θdec = θ1dec ⊕ · · · ⊕ θ

|L|
dec denotes the parameters

of all the decoding layers, α and β are the hyper-
parameters controlling the importance of the clas-
sification objective and the language adversarial
training objective. Parameters θdis are trained to
maximize this objective function while the others
are trained to minimize it:

θ̂dis = argmax
θdis

Jfull (8)

(θ̂emb, θ̂lstm, θ̂dec, θ̂clf ) =

argmin
θemb,θlstm,θdec,θclf

Jfull (9)

4 Cross-lingual Cross-Domain Sentiment
Analysis

In this section we focus on a more challenging
CLSA setting, where the training data and test data
are from different languages and different domain
(e.g. English hotel reviews as training data, Chi-
nese book reviews as test data). We show that the
CLIDSA model can be applied to this setting with
only slight modification.

Following previous notations, we denote the
source language-domain pair as (ls, ds) and the
target language pair as (lt, dt) with ls 6= lt and
ds 6= dt. Ziser and Reichart (2018) rely on ex-
pensive resources to perform cross-lingual cross-
domain transfer, including unlabeled data from
(ls, ds) and (lt, dt), CLWE and machine trans-
lation. In this work, we also use the unlabeled
data from (ls, ds) and (lt, dt). However, instead
of relying on CLWE and machine translation,
we propose to leverage the unlabeled data in a
“pivot” pair (ls, dt) to bridge the language-domain
gap. This is reasonable since source languages are
those with rich resources and we do not use addi-
tional annotation. Formally, we have a set of un-
labeled reviews for each language-domain pair in
P = {(ls, ds), (ls, dt), (lt, dt)} and a set of labeled
reviews from (ls, ds).

In the CLIDSA model, inputs from (lt, dt) do
not go through the source-domain LSTM layer
(parameterized by θlslstm2), thus can not be for-
warded to the sentiment classifier for sentiment
prediction. Nevertheless, we now show that we
can directly apply the CLIDSA model to this set-
ting by slightly altering the forward pass of (lt, dt).
Figure 2 illustrates our CLCDSA model for cross-
lingual cross-domain sentiment analysis. The ar-
chitecture of CLCDSA is identical to CLIDSA
(i.e. parameterized by the same set of parame-
ters), but the data forwarding process is slightly
different. The key idea is simple: instead of
viewing the sentiment classifier as a linear clas-
sifier that takes the domain-specific final hidden
states z1, z2, . . . , z|x| as input features, we con-
sider the source-domain LSTM layer and the lin-
ear classifier together as a “LSTM+Linear” clas-
sifier (parameterized by θdslstm2 ⊕ θclf ) that takes
the domain invariant and language invariant hid-
den states h1, h2, . . . , h|x| as input features. From
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Figure 2: Illustration of the CLCDSA model. In
this example, (ls, ds) = (EN,Books) and (lt, dt) =
(FR,DVD). The architecture of CLCDSA is identical
to CLIDSA, but the data forwarding process is differ-
ent. We visualize the forward pass of input sentences
from different language-domain pairs. The path shown
in red only occurs at test time.

this point of view, we can pass the first-layer hid-
den states to the source-domain LSTM layer and
the sentiment classifier to obtain the sentiment pre-
diction at test time.

At training time, the first-layer hidden states
generated from a target sentence are forwarded to
the source-domain LSTM layer (θdslstm2) and the
language discriminator (θdis) to compute the ad-
versarial loss. The LSTM layers are trained to
fool the language discriminator so that it cannot
distinguish the examples in (ls, ds) from those in
(lt, dt). We jointly optimize three language mod-
eling objectives for each language-domain pair,
the adversarial objective, and a sentiment classi-
fication objective for (ls, ds).

EN DE FR JA
Books 50000 165470 32870 169780
DVD 30000 91516 9358 68326
Music 25220 60392 15940 55892

Table 1: Number of unlabeled examples in the Amazon
dataset.

5 Experiments

5.1 Datasets

We evaluate our model on the multilingual multi-
domain Amazon review dataset (Prettenhofer and
Stein, 2010) which contains product reviews
in four languages (English, French, German,
Japanese) and three domains (Books, DVD, Mu-
sic). For each language-domain pair, there are
2000 examples for training and 2000 examples for
testing. The statistics of unlabeled data is sum-
marized in Table 1. For cross-lingual in-domain
sentiment analysis, we use English as the source
language and the others as target languages, result-
ing in nine tasks in total. For cross-lingual cross-
domain sentiment analysis, we follow the setting
in (Ziser and Reichart, 2018) and use English as
the source language, French and German as target
languages, and consider all the domain combina-
tions, resulting in twelve tasks in total. Note that
we would also want to evaluate our model on some
low resource languages. However, since there isn’t
an public benchmark for such languages, we leave
it to future work.

5.2 Implementation Details

Most of the hyperparamters are set empirically
without tuning. For language modeling, we
adopt the AWD-LSTM language model (Merity
et al., 2017) with 1150 hidden units and a weight
dropout rate of 0.5. We refer readers to (Mer-
ity et al., 2017) for a more detailed description.
The sentiment classifier is a linear classifier with a
dropout rate of 0.6. The language discriminator is
a three-layer MLP with 400 hidden units.

As the only exceptions, hyperparameters α and
β are tuned on the target development set fol-
lowing standard CLSA practice. We set (α, β)
to (0.01, 0.1) for CLIDSAfull and CLCDSA,
(0.01, 0.03) for CLIDSAmin in all tasks and do
not perform any task-specific tuning.

The Adam optimizer (Kingma and Ba, 2014)
with a base learning rate of 0.003 and β1 = 0.7
is used for training. In each iteration, we sam-
ple a batch from every language-domain pairs in
P to compute the language modeling loss and dis-
criminator loss. Then we sample a batch from the
source annotated corpus to compute the sentiment
classification loss. All the parameters are jointly
updated using the Gradient Reversal Layer (Ganin
et al., 2016) and standard backpropagation. We
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EN-DE EN-FR EN-JA
Books DVD Music Books DVD Music Books DVD Music

Methods with cross-lingual supervsion
CL-SCL†‡ 79.50 76.92 77.79 78.49 78.80 77.92 73.09 71.07 75.11
BiDRL†‡ 84.14 84.05 84.67 84.39 83.60 82.52 73.15 76.78 78.77
UMM† 81.65 81.27 81.32 80.27 80.27 79.41 71.23 72.55 75.38
CLDFA†‡ 83.95 83.14 79.02 83.37 82.56 83.31 77.36 80.52 76.46

Methods without cross-lingual supervision
MAN-MoE 82.40 78.80 77.15 81.10 84.25 80.90 62.78 69.10 72.60
MWE 76.10 76.80 74.70 76.35 78.70 71.60 - - -
CLIDSAmin 86.55 80.35 83.50 86.65 85.40 84.30 75.90 71.45 71.40
CLIDSAfull 86.65 84.60 85.05 87.20 87.95 87.15 79.35 81.90 84.05

Table 2: Test accuracy of different CLSA methods on the Amazon review dataset in the cross-lingual in-domain
setting. The highest score on each task is shown in bold. The second highest score is underlined. ‘-’indicates
that MUSE fails to align the EN and JA embeddings so MWE’s predictions are random. Methods that require
cross-lingual resources are marked as †. Methods that require machine translation are marked as ‡.

run 50000 iterations for CLIDSA and 30000 itera-
tions for CLCDSA without early stopping.

5.3 Baselines

We compare our model to the following CLSA
baselines, including methods that require cross-
lingual resources (either in the form of machine
translation or parallel data), methods that rely on
unsupervised CLWE, and a few variants of our
proposed model. PBLM-BE is a cross-lingual
cross-domain model, MWE applies to both set-
tings, while others are cross-lingual in-domain
methods.

CL-SCL Prettenhofer and Stein (2010) map
the bag-of-word representations to a cross-lingual
space via structural correspondence learning.

BiDRL Zhou et al. (2016b) learn bilingual docu-
ment representation for CLSA. The authors trans-
late each document into both languages and en-
force a bilingual constraint between the original
document and the translated version.

UMM Xu and Wan (2017) jointly learn multilin-
gual word embeddings and a sentiment classifier
using parallel corpora of multiple language pairs.
Languages that do not have direct parallel corpus
are bridged via a third pivot language.

CLDFA Xu and Yang (2017) propose cross-
lingual distillation using translated reviews.

MAN-MoE Chen et al. (2018a) propose the
state-of-the-art unsupervised CLSA model that
learns language invariant features and language

specific features. It relies on unsupervised CLWE
for cross-lingual transfer. Unlike other CLSA ap-
proaches, it transfers the sentiment information
from multiple source languages.

MWE This is a variant of our proposed model
that relies on unsupervised CLWE instead of lan-
guage modeling. We map all target language em-
beddings to the English space using the MUSE li-
brary (Conneau et al., 2017) and use them to ini-
tialize the embedding layers. We train the senti-
ment classifier using the labeled data in the source
language-domain pair and directly apply it to the
test data. The same architecture is used but we
only optimize the classification objective.

PBLM-BE Ziser and Reichart (2018) extend ex-
isting pivot-based domain adaption approaches to
the cross-lingual settings using CLWE and ma-
chine translation.

5.4 Results and Analysis
Cross-lingual In-Domain Results Table 2
presents the performance of different CLSA
methods on various cross-lingual in-domain tasks.
Our proposed model achieves new state of the art
on all nine tasks. Even in the restricted setting
where only minimal resources are used (no cross-
lingual resources, no pretrained embeddings,
no multilingual multi-domain unlabeled data),
CLIDSAmin outperforms the strongest baseline
on four out of nine tasks, validating the efficacy
of our proposed model. Exploiting multilingual
multi-domain unlabeled data leads to an average
improvement of +4.27% across all tasks. We
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EN-DE EN-FR
D-B M-B B-D M-D B-M D-M D-B M-B B-D M-D B-M D-M

PMLM-BE† 78.7 78.6 80.6 79.2 81.7 78.5 81.1 74.7 76.3 75.0 75.1 76.8
MWE 76.3 72.8 74.7 72.5 74.2 76.0 74.8 72.4 76.0 74.2 72.5 74.3
CLCDSA 85.4 81.7 79.3 81.0 83.4 81.7 86.2 81.8 84.3 82.8 83.7 85.0

Table 3: Test accuracy of different CLSA methods on the Amazon review dataset in the cross-lingual cross-domain
setting. The highest score on each task is shown in bold. Methods that require cross-lingual resources are marked
as †. The abbreviations {B, D, M} stand for {Books, DVD, Music}.

EN-DE EN-FR EN-JA
CLIDSAfull 84.6 88.0 81.9
- decoder sharing 83.0 87.0 78.9
- LSTM-1 sharing 82.4 87.1 81.4
- discriminator 82.6 87.4 81.6
- joint training 81.2 86.7 79.9

Table 4: Ablation results in the cross-lingual in-domain
setting. English is used as the source language and
DVD is used as the source/target domain. The high-
est score for each language pair is shown in bold.

also find that it is most beneficial to sentiment
analysis on distant language pairs, with an average
improvement of +8.85% on EN-JA.

Among methods that do not require cross-
lingual resources, CLWE based methods are lower
than the proposed cross-lingual language model-
ing based methods. This is interesting because
it has been shown in previous work (Wada and
Iwata, 2018) that cross-lingual language model-
ing does not perform well on the word translation
task when sufficient monolingual data is available.
Nevertheless, we demonstrate that this is not the
case for cross-lingual sentiment analysis.

Cross-lingual Cross-Domain Results Table 3
shows the results of various cross-lingual cross-
domain tasks. MWE suffers greatly from domain
discrepancy compared to the in-domain results.
Nevertheless, our model outperforms all baselines
on all tasks, with an average improvement of +5%
across all tasks.

5.5 Ablation Study

We perform an ablation study to investigate the
contribution of individual components. The re-
sults are summarized in Table 4. We first create
a variant that does not share the decoding layers
across domain, and another one that does not share
the first LSTM layer across domain. Disabling
parameter sharing hurts the performance most on

EN-JA (−1.75%). We also observed that the per-
formance gap is much more significant when less
training data is used (not shown here).

Surprisingly, removing the language discrim-
inator does not lead to significant performance
drop, which indicates that the language modeling
alone is able to produce language invariant fea-
tures. Intuitively, parameter sharing would force
the LSTM layers to process sentences from dif-
ferent languages in the same space, thus inducing
cross-lingual feature representation. Note that we
also try removing the language modeling objec-
tive and rely on language adversarial training to
provide cross-lingual features, but find that the re-
sulting performance is rather poor.

Finally, we explore a different training strat-
egy where the sentiment classifier is not jointly
trained with the other components. Instead, we
use the labeled data to train the classifier only af-
ter we have trained the other components on the
unlabeled data. We observe that the resulting per-
formance drop is due to underfitting, i.e., the ex-
tracted features do not encode enough information
for sentiment prediction. This highlights the im-
portance of end-to-end training.

6 Conclusion and Future Work

In this work we present an end-to-end approach for
cross-lingual sentiment analysis. Our method is
fully unsupervised thus does not rely on any cross-
lingual supervision and target language supervi-
sion. We rely on language modeling to provide
language invariant feature representations. We
propose two model variants, one for cross-lingual
in-domain transfer and the other for cross-lingual
cross-domain transfer. Both models achieve state
of the art on the Amazon review dataset. Experi-
mental results also show that exploiting multilin-
gual multi-domain unlabeled data greatly benefits
CLSA on distant language pairs.

There are several straight-forward extensions
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of our model: cross-lingual in-domain sentiment
analysis with multiple source languages, cross-
lingual cross-domain sentiment analysis with mul-
tiple target languages, etc. We leave the explo-
ration of these extensions to future work.
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