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Abstract

We present the contribution of the ONLP
lab at the Open University of Israel to
the CONLL 2018 UD SHARED TASK

on MULTILINGUAL PARSING FROM RAW

TEXT TO UNIVERSAL DEPENDENCIES.
Our contribution is based on a transition-
based parser called yap: yet another
parser which includes a standalone mor-
phological model, a standalone depen-
dency model, and a joint morphosyntactic
model. In the task we used yap’s stan-
dalone dependency parser to parse input
morphologically disambiguated by UD-
Pipe, and obtained the official score of
58.35 LAS. In a follow up investigation we
use yap to show how the incorporation of
morphological and lexical resources may
improve the performance of end-to-end
raw-to-dependencies parsing in the case of
a morphologically-rich and low-resource
language, Modern Hebrew. Our results
on Hebrew underscore the importance of
CoNLL-UL, a UD-compatible standard
for accessing external lexical resources,
for enhancing end-to-end UD parsing, in
particular for morphologically rich and
low-resource languages. We thus encour-
age the community to create, convert, or
make available more such lexica.

1 Introduction

The Universal Dependencies (UD) initiative1 is an
international, cross-linguistic and cross-cultural
initiative aimed at providing morpho-syntactically
annotated data sets for the world’s languages un-
der a unified, harmonized, annotation scheme.

1universaldependencies.org

The UD scheme (Nivre et al., 2016) adheres
to two main principles: (i) there is a single set
of POS tags, morphological properties, and de-
pendency labels for all treebanks, and their an-
notation obeys a single set of annotation princi-
ples, and (ii) the text is represented in a two-level
representation, clearly mapping the written space-
delimited source tokens to the (morpho)syntactic
words which participate in the dependency tree.

The CONLL 2018 UD SHARED TASK is
a multilingual parsing evaluation campaign
wherein, contrary to previous shared tasks such
as CoNLL-06/07 (Buchholz and Marsi, 2006;
Nivre et al., 2007) corpora are provided with
raw text, and the end goal is to provide a com-
plete morpho-syntactic representation, including
automatically resolving all of the token-word
discrepancies. Contrary to the previous SPMRL
shared tasks (Seddah et al., 2013, 2014), the
output of all systems obeys a single annotation
scheme, allowing for reliable cross-system and
cross-language evaluation.

This paper presents the system submitted by
the ONLP lab to the shared task, including the
dependency models trained on the train sets, as-
suming morphologically disambiguated input to-
kens by UDpipe (Straka et al., 2016). We success-
fully parsed 81 test treebanks of UDv2 set (Nivre
et al., 2017) participating in the CONLL 2018
UD SHARED TASK (Zeman et al., 2018), obtain-
ing the official score of LAS 58.35 average on all
treebanks. We then present an analysis of case of
Modern Hebrew, a low-resource morphologically
rich language (MRL), which is known to be noto-
riously hard to parse, due to its high morphological
word ambiguity and the small size of the treebank.
We investigate the contribution of an external lex-
icon and a standalone morphological component,
and show that inclusion of such lexica can lead to
above 10% LAS improvement on this MRL.

universaldependencies.org


209

Our investigation demonstrates the importance
of sharing not only syntactic treebanks but also
lexical resources among the UD community, and
we propose the UD-compatible CoNLL-UL stan-
dard for external lexica(More et al., 2018) for shar-
ing broad-coverage lexical resources in the next
UD shared tasks, and in general.

The remainder of this document is organized as
follows: In Section 2, we present our parser’s for-
mal system and statistical models. In Section 3
we present technical issues relevant to the official
run for the shared task followed by our results on
all languages. In Section 4 we proceed with an
analysis of the performance on Modern Hebrew in
the task, compared against its performance aug-
mented with a lexicon-backed morphological ana-
lyzer. We finally discuss in Section 5 directions
for future work and conclude by embracing the
CoNLL-UL standard (More et al., 2018) for UD-
anchored lexical resource as means to facilitate
and improve raw-to-dependencies UD parsing.

2 Our Framework

The parsing system presented by the ONLP Lab
for this task is based on yap — yet another parser,
a transition-based parsing system that relies on
the formal framework of Zhang and Clark (2011),
an efficient computational framework designed for
structure prediction and based on the generalized
perceptron for learning and beam search for de-
coding. This section briefly describes the formal
settings and specific models available via yap.2

2.1 Formal Settings

Formally, a transition system is a quadruple
(C, T, cs, Ct) where C is a set of configurations,
T a set of transitions between the elements of C,
cs an initialization function, and Ct ⊂ C a set
of terminal configurations. A transition sequence
y = tn(tn−1(...t1(cs(x)))) for an input x starts
with an initial configuration cs(x) and results in a
terminal configuration cn ∈ Ct. In order to deter-
mine which transition t ∈ T to apply given a con-
figuration c ∈ C, we define a model that learns to
predict the transition that would be chosen by an
oracle function O : C → T , which has access to
the gold output. We employ an objective function

F (x) = argmaxy∈GEN(x)Score(y)

2https://github.com/habeanf/yap

which scores output candidates (transition se-
quence in GEN(x)) such that the most plausible
sequence of transitions is the one that most closely
resembles the one generated by an oracle.

To compute Score(y), y is mapped to a global
feature vector Φ(y) = {φi(y)} where each fea-
ture φi(y) is a count of occurrences of a pattern
defined by a feature function. Given this vector,
Score(y) is calculated as the dot product of Φ(y)
and a weights vector ~ω:

Score(y) = Φ(y) · ~ω =
∑
cj∈y

∑
i

ωiφi(cj)

Following Zhang and Clark (2011), we learn the
weights vector ~ω via the generalized perceptron,
using the early-update averaged variant of Collins
and Roark (2004). For decoding, the framework
uses the beam search algorithm, which helps mit-
igate otherwise irrecoverable errors in the transi-
tion sequence.

2.2 Morphological Analysis
The input to the morphological disambiguation
(MD) component in particular and to the yap pars-
ing system in general is a lattice L representing
all of the morphological analysis alternatives of k
surface tokens of the input stream x = x1, ..., xk,
such that each Li = MA(xi) is generated by a
morphological analysis (MA) component, the lat-
tice concatenate the lattices for the whole input
sentence x. Each lattice-arc in L has a morpho-
syntactic representation (MSR) defined as m =
(b, e, f, t, g), with b and e marking the start and
end nodes of m in L, f a form, t a universal part-
of-speech tag, and g a set of attribute=value uni-
versal features. These lattice-arc correspond to
potential nodes in the intended dependency tree.

2.3 Morphological Disambiguation
The morphological disambiguation (MD) compo-
nent of our parser is based on More and Tsarfaty
(2016), modified to accommodate UD POS tags
and morphological features. We provide here a
brief exposition of the transition system, as shall
be needed for our later analysis, and refer the
reader to the original paper for an in-depth discus-
sion (More and Tsarfaty, 2016).

A configuration for morphological disambigua-
tion CMD = (L, n, i,M) consists of a lattice L,
an index n representing a node in L, an index i
s.t. 0 ≤ i < k representing a specific token’s lat-
tice, and a set of disambiguated morphemes M .

https://github.com/habeanf/yap
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The initial configuration function is defined to
be cs(x) = (L, bottom(L), 0, ∅), where L =
MA(x1) ◦ ... ◦ MA(xk), and n = bottom(L),
the bottom of the lattice. A configuration is termi-
nal when n = top(L) and i = k. To traverse the
lattice and disambiguate the input, we define an
open set of transitions using the MDs transition
template:

MDs : (L, p, i,M)→ (L, q, i,M ∪ {m})

Where p = b, q = e, and s relates the transition to
the disambiguated morpheme m using a parame-
terized delexicalization s = DLEXoc(m):

DLEXOC(m) =

{
( , , , t, g) if t ∈ OC
( , , f, t, g) otherwise

In words, DLEX projects a morpheme either
with or without its form depending on whether or
not the POS tag is an open-class with respect to
the form. For UD, we define:

OC = {ADJ,AUX,ADV,PUNCT,NUM,
INTJ,NOUN,PROPN,V ERB }

We use the parametric model of More and Tsar-
faty (2016) to score the transitions at each step.
Since lattices may have paths of different length
and we use beam search for decoding, the prob-
lem of variable-length transition sequences arises.
We follow More and Tsarfaty (2016), using the
ENDTOKEN transition to mitigate the biases
induced by variable-length sequences.

2.4 Syntactic Disambiguation
A syntactic configuration is a triplet CDEP =
(σ, β,A) where σ is a stack, β is a buffer, and A
a set of labeled arcs. For dependency parsing, we
use a specific variant of Arc Eager that was first
presented by (Zhang and Nivre, 2011). The differ-
ences between plain arc-eager and the arc-zeager
variant are detailed in Figure 1.

The features defined for the parametric model
also follows the definition of non-local features by
Zhang and Nivre (2011), with one difference: we
created one version of each feature with a morpho-
logical signature (all feature values of the relevant
node) and one without. this allows to capture phe-
nomena like agreement.

2.5 Joint Morpho-Syntactic Processing
Given the standalone morphological and syntactic
disambiguation it is possible to embed the two into

a single joint morpho-syntactic transition system
with a “router” that decides which of the transition
systems to apply in a given configuration, and train
the morphosyntactic model to maximize a sin-
gle objective function. We implement such joint
parser in yap but we have not used it in the task,
and we thus leave its description out of this ex-
position. For further discussion and experiments
with the syntactic and joint morpho-syntactic vari-
ants in yap we refer the reader to (More et al., In
Press).

3 Shared Task Implementation

For sentence segmentation and tokenization up to
and including full morphological disambiguation
for all languages, we rely on the UDPipe (Straka
et al., 2016). Our parsing system implementa-
tion is yap – yet another parser, an open-source
natural language processor written in Go3. Once
compiled, the processor is a self-contained binary,
without any dependencies on external libraries.

For the shared task the processor was compiled
with Go version 1.10.3. During the test phase we
wrapped the processor with a bash script that in-
voked yap serially on all the treebanks. Addition-
ally, in order to train on all treebanks we limited
the size of all training sets to the first 50,000 sen-
tences for the parser.

Finally, our training algorithm iterates until con-
vergence, where performance is measured by F1

for labeled attachment score when evaluated on
languages’ respective development sets. We de-
fine convergence as two consecutive iterations re-
sulting in a monotonic decrease in F1 for LAS,
and used the best performing model up to that
point. For some languages we observed the F1

never monotonically decreased twice, so after 20
iterations we manually stopped training and used
the best performing model.

For some treebanks (cs cac, fr sequoia,
ru syntagrus) the serialization code, which re-
lies on Go’s built-in encoder package, failed
to serialize the in-memory model because it is
larger than 230 bytes. To overcome the limitation
we downloaded the go source code, manually
changed the const field holding this limit and
compiled the go source code.

Our strategy for parsing low resource languages
was to use another treebank in the same language
when such existed for the following:

3https://golang.org

https://golang.org
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Arc Eager:

Conf. c = (σ, β,A) σh = A second, ’head’ stack
Initial cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal Ct = {c ∈ C|c = ([0], [], A)}
Transitions (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ ([σ|i|j], β, A ∪ {(i, l, j)}) (ArcRightl)
if (k, l′, i) /∈ A and i 6= 0 then
([σ|i], [j|β], A)→ ([σ], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)
if (k, l′, i) ∈ A then
([σ|i], β, A)→ (σ, β,A ∪ {(i, l, j)}) (REDUCE)

Arc ZEager:

Conf. c = (σ, σh, β, A) σh = A second, ’head’ stack
Initial cs(x = x1, ..., xn) = ([]σ, []h, [1, ..., n], ∅) Note: no root
Terminal Ct = {c ∈ C|c = ([]σ, σh, [], A)} For any σh, A
Transitions ([i]σ, σh, []β, A)→ ([]σ, σh, []β, A) (POPROOT)

([σ|i], σh, []β, A)→ (σ, σh, []β, A) (REDUCE2)
if TL! =REDUCE then TL = Last Transition
(σ, σh, [i|β], A)→ ([σ|i], [σh|i], β, A) (SHIFT)
if |β| > 0 and (|σ| > 1 and (|β| > 1 or |σh| = 1)) then
([σ|i], σh, [j|β], A)→ ([σ|i|j], σh, β, A ∪ {(i, l, j)}) (ArcRightl)
if |β| > 0 and |σ| > 0 then
([σ|i], σh, β, A)→ ([σ], σh, β, A ∪ {(i, l, j)}) (REDUCE1)
if |β| > 0 and |σ| > 0 and (k, l′, i) /∈ A and i = k then
([σ|i], [σh|k], [j|β], A)→ ([σ], [σh], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)

Figure 1: Arc-Eager (Kübler et al., 2009, Chapter 3) and Arc-ZEager (Zhang and Nivre, 2011) Systems.

• cs pud: cs pdt

• en pud:en lines

• fi pud: fi ftb

• sv pud: sv lines

• ja modern: ja gsd

For treebanks where no resource in the same lan-
guage is available we used the parsing model
trained for English:

• br keb: en ewt

• fo oft: en ewt

• pcm nsc: en ewt

• th pud: en ewt

Tables 2 and 3 present our official results for all
languages. Our system is ranked 22 with an av-
erage LAS score of 58.35. Our highest perform-
ing languages are Italian and Hindi — interest-
ingly, both of which are considered morpholog-
ically rich, and both with LAS around 82. Our
lowest performing languages (with up to 20 LAS)
are the low-resource languages listed above, with
Thai (0 LAS) as an outlier.

4 The Case of MRLs: A Detailed
Analysis for Modern Hebrew

As is well known, and as observed in this particu-
lar task, morphologically rich languages are most
challenging to parse in the raw-to-dependencies
parsing scenarios. This is because the initial au-
tomatic segmentation and morphological disam-
biguation may contain irrecoverable errors which
will undermine parsing performance.

In order to investigate the errors of our parser
we took a particular MRL that is known to be hard
to parse (Modern Hebrew, ranked 58 in the LAS
ranking, with basline 58.73 accuracy) and con-
trasted the Baseline UDPipe results with the re-
sults of our parser, with and without the use of ex-
ternal lexical and morphological resources. Table
1 lists the results of the different parsing models on
our dev set. In all of the parsing scenarios, we used
UDPipe’s built in sentence segmentation, to make
sure we parse the exact same sentences.We then
contrasted UDPipe’s full pipeline with the yap out-
put for different morphological settings. We used
the Hebrew UD train set for training and the He-
brew UD for analyzing the empirical results.

Initially, we parsed the dev set with the same
system we used for the shared task, namely, yap
dependency parser which parses the morphologi-
cally diambiguated output by UDPipe (yap DEP).
Here we see that yap DEP results (59.19) are lower
than the full UDPipe pipeline (61.95).
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Model Lexicon Sentence Morphological Parser Results on dev
Segmentation Disambiguation LAS / MLAS / BLEX

UDPipe full – UDPipe UDPipe UDPipe 61.95 / 49.28 / 51.45
yap DEP – UDPipe UDPipe yap 59.19 / 49.19 / 33.75
yap full Basline UDPipe yap yap 52.25 / 37.85 / 29.59

HebLex 60.94 / 39.49 / 33.85
HebLex-Infused 71.39 / 61.42 / 41.86

yap GOLD – Gold Gold yap 79.33 / 72.56 / 47.62

Table 1: The Contribution of Lexical Resources: Analysis of the Case for Modern Hebrew

We then moved on to experiment with yap’s
complete pipeline, including a data-driven mor-
phological analyzer (MA) to produce input lat-
tices, transition-based morphological disambigua-
tion and transition-based parsing. The results now
dropped relative to the UDPipe baseline and rel-
ative to our own yap DEP system, from 59.19 to
52.25 LAS. Now, interestingly, when we replace
the baseline data-driven MA learned from the tree-
bank alone with an MA backed with an external
broad-coverage lexicon called HebLex (adapted
from (Adler and Elhadad, 2006)), the LAS results
arrive at 60.94 LAS, outperforming the results ob-
tained by yap DEP (UDPipe morphology with yap
dependencies) and close much of the gap with the
UDPipe full model. This suggests that much of the
parser error stems from missing lexical knowledge
concerning the morphologically rich and ambigu-
ous word forms, rather than parser errors.

Finally, we simulated an ideal morphological
lattices, by artificially infusing the path that indi-
cates the correct disambiguation into the HebLex
lattices in case it has been missing. Note that
we still provide an ambiguous input signal, with
many possible morphological analyses, only now
we guarantee that the correct analysis exists in the
lattice. For this setting, we see a significant im-
provement in LAS, obtaining 71.39 (much beyond
the baseline) without changing any of the parsing
algorithms involved. So, for morphologically rich
and ambiguous languages it appears that lexical
coverage is a major factor affecting task perfor-
mance, especially in the resource scarce case.

Note that the upper-bound of our parser, when
given a completely disambiguated morphological
input stream, provides LAS of 79.33, which is a
few points above the best system (Stanford) in the
raw-to-dependencies scenario.

5 Discussion and Conclusion

This paper presents our submission to the CONLL
2018 UD SHARED TASK. Our submitted system
assumed UDpipe up to and including morpholog-
ical disambiguation, and employed a state-of-the-
art transition-based parsing model to successfully
parse 81 languages in the UDv2 set, with the av-
erage LAS of 58.35, ranked 22 among the shared
task participants.

A detailed post-task investigation of the perfor-
mance that we conducted on Modern Hebrew, in-
cluding the shared task and a number of variants,
has shown that for the MRL case much of the
parser errors may be attributed to incomplete mor-
phological analyses or a complete lack thereof for
the source tokens in the input stream.

In the future we intend to investigate sophisti-
cated ways for incorporating additional external
lexical and morphological knowledge, explicitely
by means of broad-coverage lexica obeying the
CoNLL-UL format (More et al., 2018), or implic-
itly by means of pre-trained word embeddings on
large volumes of data. Note, however, that the
utility of word-embedding themselves present an
open questions in the case of morphologically rich
and ambigous source token, where each token may
be equivalent to multiple syntactic words in a lan-
guage like English.

We additionally intend to replace the hand-
crafted feature model with neural-network based
feature extraction mechanisms, and we aim to ex-
plore universal morphosyntactic parsing via joint
morphosyntactic modeling, as previously advo-
cated in different settings (Tsarfaty and Goldberg,
2008; Bohnet and Nivre, 2012; Andor et al., 2016;
Bohnet et al., 2013; Li et al., 2011; Bohnet and
Nivre, 2012; Li et al., 2014; Zhang et al., 2014)..
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Treebank UAS LAS MLAS CLAS BLEX
af afribooms 79.83 73.01 60.73 64.99 41.46
ar padt 71.62 64.87 53.54 60.69 5.13
bg btb 87.94 77.81 69.16 73.11 25.18
br keb 26.46 7.01 0.42 3.06 1.98
bxr bdt 30.52 11.14 1.65 4.71 2.52
ca ancora 86.94 80.49 70.37 72.92 53.34
cs cac 85.41 76.25 64.77 73.22 24.89
cs fictree 84.33 72.63 59.28 68.01 29.12
cs pdt 83.09 74.6 65.51 72.12 29.79
cs pud 74.26 49.25 31.59 35.74 15.69
cu proiel 69.22 55.34 46.96 54.08 16.22
da ddt 77.18 69.43 60.7 65.25 39.45
de gsd 74.93 65.44 30.98 59.06 37.04
el gdt 83.9 77.37 60.25 70.09 25.2
en ewt 79.69 71 63.06 66.87 51.34
en gum 78.24 69.91 58.8 62.85 46.55
en lines 77.58 68.11 60.28 64.23 44.05
en pud 72.12 63.73 53.73 58.79 43.33
es ancora 87.61 81.55 73.01 75.48 52.31
et edt 76.5 64.52 56.69 61.37 21.73
eu bdt 69.27 55.21 43.35 50.71 21.14
fa seraji 83.41 76.32 70.75 72.56 57.72
fi ftb 75.5 59.82 48.98 52.84 16.82
fi pud 56.32 38.3 40.59 44.04 15.81
fi tdt 75.29 63.58 56.5 60.84 19.59
fo oft 41.41 18.92 0.36 11.98 5.07
fr gsd 84.89 78.15 69.18 72.91 50.51
fr sequoia 83.7 77.93 69.18 72.92 49.55
fr spoken 69.94 61.29 51.17 52.69 41.01
fro srcmf 84.56 68.55 62.02 64.67 64.67
ga idt 72.64 59.62 34.63 47.71 25.64
gl ctg 80.39 75.59 63.47 68.3 40.79
gl treegal 71.88 64.13 47.71 54.36 34.4
got proiel 66.12 53.17 42.68 50.49 16.86
grc perseus 46.75 35.21 17.91 28.08 5.24
grc proiel 64.75 55.52 38.44 46.53 7.58
he htb 63.19 55.94 43.12 46.99 31.79
hi hdtb 91.1 82.35 65.28 77.12 59.25
hr set 83.32 73.71 54.4 70.23 22.76
hsb ufal 38.15 26.84 4.73 19.27 3.98
hu szeged 68.53 54.32 41 48.46 30.73

Table 2: Official Shared-Task Results
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Treebank UAS LAS MLAS CLAS BLEX
hy armtdp 40.83 25.04 8.42 17.09 6.96
id gsd 82.19 72.23 61.93 70.05 41.53
it isdt 89.25 82.22 72.45 75.06 52.7
it postwita 73.97 66.35 53.96 56.95 41.03
ja gsd 74.21 68.45 52.96 54.81 50.63
ja modern 29.3 22.68 8.29 10.6 9.42
kk ktb 37.92 17.34 4.33 9.25 2.89
kmr mg 35.77 25.1 7.77 19.95 6.53
ko gsd 69.4 55.13 49.99 51.85 17.26
ko kaist 74.3 59.36 52.62 54.96 12.26
la ittb 72.77 63.19 54.81 60.29 21.93
la perseus 43.97 28.12 16.31 23.67 7.46
la proiel 59.01 48.13 36.96 43.96 14.95
lv lvtb 73.29 59.67 46.27 54.42 20.58
nl alpino 79.22 70.95 56.57 62.7 42.48
nl lassysmall 80.03 70.54 58.26 62.3 43.05
no bokmaal 86.01 77.43 69.77 74.18 43.89
no nynorsk 84.25 75.89 67.57 71.83 40.5
no nynorsklia 58.15 42.21 32.58 36.57 30.99
pcm nsc 26.11 12.4 4.57 14.68 14.68
pl lfg 90.22 73.65 60.48 70.55 29.06
pl sz 85.38 71.87 54.81 68.9 22.67
pt bosque 84.35 77.46 62.64 69.99 52.06
ro rrt 82.35 73.01 63.78 66.46 29.07
ru syntagrus 82.93 74.39 66.49 71.54 23.83
ru taiga 61.97 48.86 31.77 42.96 18.03
sk snk 77.99 66.71 48.45 63.6 18.27
sl ssj 78.61 71.24 57.51 67.57 23.79
sl sst 51.43 40.88 28.96 35.62 22.96
sme giella 64.09 48.62 37.23 44.08 17.25
sr set 85.41 76.78 64.7 73.57 24.1
sv lines 78.84 68.77 54.28 66.28 37.24
sv pud 70.7 42.7 16.79 30.36 16.14
sv talbanken 82.12 73.24 65.84 70.02 36
th pud 0 0 0 0 0
tr imst 60.24 43.95 34.37 39.01 15.95
ug udt 67.47 45.67 28.89 35.67 24.12
uk iu 78.45 69.36 51.42 64.69 21.97
ur udtb 84.45 74.5 48.8 66.66 53.69
vi vtb 45.43 37.05 32.18 33.78 33.78
zh gsd 62.77 55.97 46.88 51.02 50.74

Table 3: Official Shared-Task Results
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Richárd Farkas, Filip Ginter, and Jan Hajic.
2013. Joint morphological and syntactic analysis
for richly inflected languages. TACL 1:415–428.
http://dblp.uni-trier.de/db/journals/tacl/tacl1.html.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X. pages 149–164.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42Nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, ACL
’04. https://doi.org/10.3115/1218955.1218970.
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Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
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Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. pages
915–932.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.
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