
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 171–179
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2017

171

NLP-Cube: End-to-end raw text processing with neural networks

Tiberiu Boros
Adobe Systems

Romania
boros@adobe.com

Stefan Daniel Dumitrescu
RACAI

Romania
sdumitrescu@racai.ro

Ruxandra Burtica
Adobe Systems

Romania
burtica@adobe.com

Abstract

We introduce NLP-Cube: an end-to-end
Natural Language Processing framework,
evaluated in CoNLL’s “Multilingual Par-
sing from Raw Text to Universal Depen-
dencies 2018” Shared Task. It performs
sentence splitting, tokenization, compo-
und word expansion, lemmatization, ta-
gging and parsing. Based entirely on re-
current neural networks, written in Py-
thon, this ready-to-use open source system
is freely available on GitHub1. For each
task we describe and discuss its specific
network architecture, closing with an over-
view on the results obtained in the compe-
tition.

1 Introduction and Shared task
description

NLP-Cube is a freely available Natural Language
Processing (NLP) system that performs: sentence
splitting, tokenization, lemmatization, tagging
and parsing. The system takes raw-text as input
and annotates it, generating a CoNLL-U2 format
file. Written in Python, it is based entirely on re-
current neural networks built in DyNET (Neubig
et al., 2017). The paper focuses on each NLP task,
its architecture, motivating our choice and compa-
ring it to the current state-of-the-art3

1https://github.com/adobe/NLP-Cube
2The CoNLL-U format is well described in the official

Universal Dependencies (UD) website and in (Nivre et al.,
2018) and is the standard format of the UD Corpus.

3We must note that in the official runs our system was
affected by a bug which had a negative impact on the quality
of the lexicalized features (See section 2.1 for details). Due
to the fact that were unable to retrain the models to meet the
Shared Task’s deadline (at the time of submitting this article
we are still retraining them), we are reposting all new results
on the GitHub project page.

The “Multilingual Parsing from Raw Text to
Universal Dependencies” 2018 Shared Task (Ze-
man et al., 2018) targets primarily learning to ge-
nerate syntactic dependency trees and secondarily
the end-to-end text preprocessing pipeline (from
raw text segmentation up to parsing), all in a mul-
tilingual setting. The task is open to anybody, and
participants can choose whether to focus on par-
sing or attacking the end-to-end problem. The task
itself is not simple, having to handle typologica-
lly different languages, some of them having little
or even no training data. Based on the Universal
Dependencies (UD) Corpus4 (Nivre et al., 2016,
2018), participants have to target 82 languages,
with datasets annotated in the CoNLL-U format.
Their systems, given raw text as input, have to cor-
rectly: segment a text into sentences (marked as
SS in the results table, or Sentence Splitting), seg-
ment sentences into words (marked as Tok, from
Tokenization), expand single tokens/words into
compound words (marked as Word), and, for each
word, predict its universal part-of-speech (UPOS),
language-dependent part-of-speech (XPOS), mor-
phological attributes (Morpho), and dependency
link to another word and its label, evaluated as
5 different metrics named CLAS, BLEX, MLAS,
UAS, and LAS. Each of these metrics is well des-
cribed in the Shared Task; for brevity, in this paper
we will focus mostly on UAS - Unlabeled Attach-
ment Score measuring only the linking to the cor-
rect word, and LAS - Labeled Attachment Score,
measuring both linking to another word and cor-
rectly predicting the link’s label. Section 4 pre-
sents NLP-Cube’s results for all these metrics for
all languages in the Shared Task.

The paper is organized as follows: in section 2
we first discuss generics, then move to each par-
ticular task. We further present some training as-

4http://universaldependencies.org/

https://github.com/adobe/NLP-Cube
http://universaldependencies.org/
http://universaldependencies.org/

172

pects of our system in section 3, followed by re-
sults in section 4, closing with section 6 on con-
clusions.

2 Processing pipeline

The end-to-end system is a standard processing pi-
peline having the following components: a sen-
tence splitter, tokenizer, compound word expan-
der (specific to the UD format), lemmatizer, tagger
and a parser.

2.1 Input features
Our system is able to work with both lexicali-
zed (word embeddings and character embeddings)
and delexicalized, morphological features (UPOS,
XPOS and ATTRs). However, we observed that
when using morphological features as input (for
example using POS tags as input for parsing), the
performance of the end-to-end system generally
degrades. This is mainly because while training
is done using gold-standard morphological featu-
res (e.g. the parser is trained on gold POS tags),
at runtime these features are predicted at an earlier
step and then used as “gold” input (e.g. the par-
ser would be given tagger-predicted POS tags as
input). There are several ways in which this effect
can be mitigated with varying degrees of success;
in our approach we preferred to use only lexicali-
zed features as input for all our modules, with the
exception of the lemmatizer which is heavily de-
pendent on morphological information.

In what follows, when we refer to lexicalized
features, we mean a concatenation of the fol-
lowing:

1. external word embeddings: 300-
dimensional standard word embeddings
using Facebook’s FastText (Bojanow-
ski et al., 2016) vectors5 projected to a
100-dimensional space using a linear trans-
formation); to these we included a trainable
<UNK> token;

2. holistic word embeddings: these repre-
sent all words in the trainset which have
a frequency of at least 2. They are 100-
dimensional trainable embeddings, also in-
cluding a <UNK> token for unseen tokens
in the testset;

3. character word embeddings: 100-
dimensional word representation generated

5Available on github.com/facebookresearch/fastText

by applying a network over the word’s
symbols.

Figure 1: Word Character network for computing
character-level features

The character word embeddings are obtained by
applying a two-layer bidirectional LSTM network
(size 200, using 0.33 dropout only on the recurrent
connections) on a word’s characters/symbols (see
Figure 1). We then concatenate the final outputs
from the second layer (top) forward and backward
LSTM with an attention vector (totaling 400 va-
lues: 100 from last fwd. state, 100 from last bw.
state and 200 from the attention). The attention
is computed over all the network states, using the
final internal states of the top forward and bac-
kward layers for conditioning. Let fk,(1,n) be the
forward states of the top layer (k-th) in the cha-
racter network and bk,(1,n) be its backward coun-
terpart. If fk,n is the forward state corresponding
to the last character of a word and bk,1 is the bac-
kward state of the first letter of that word, then the
character-level embeddings (Ec) are computed as
in Equations 1, 2 and 3.

si =V · tanh(W 1 · (fk,i ⊕ bk,i)+

W 2 · (f∗k,n ⊕ b∗k,1))
(1)

αi =
exp(si)∑n

k=1 exp(sk)
(2)

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

173

Ec =
n∑

i=1

αi · (f∗k,i ⊕ b∗k,i) (3)

Finally, we linearly project Ec to an 100-
dimensional vector. Note, that we use f∗ and b∗

for the internal states of the LSTM cells and that
the missing superscript means the variables refer
to the output of the LSTM cells.

The morphological features are computed by
adding three distinct (trainable) embeddings of
size 100: one for UPOS, one for XPOS and one
for ATTRS.

2.2 Tokenization and sentence splitting
For most languages in the Shared Task our system
uses raw text as input. Exceptions apply to the
low-resourced languages for which we had little
or no training data. In these cases we use the input
provided by the UDPipe baseline system (Straka
et al., 2016) which is already in CoNLL-U format.

For tokenization and sentence splitting we use
the same network architecture (see Figure 2) and
labeling strategy for all languages. The process is
sequential: first we run sentence splitting and then
we perform tokenization on the segmented senten-
ces. In both steps, we use identical networks; ar-
guably we could achieve both tasks in a single pass
over the input data (the same architecture could
perform both sentence splitting and tokenization).
However, the best performing network parameters
for sentence splitting are not identical to the best
performing network parameters for tokenization.
With this in mind, we trained two separate models
for the two tasks.

For every symbol (si) in the input text, the de-
cision for tokenization or sentence splitting (after
si) is generated using a softmax layer that takes as
input 4 distinct vectors (final output states) of:

1. Forward Network: A unidirectional LSTM
that sees the input symbol by symbol in natu-
ral order;

2. Peek Network: A unidirectional LSTM , that
peeks at a limited window of symbols6 in
front of the current symbol - the input is fed
to the network in reverse order;

3. Language Model (LM) Network: A uni-
directional LSTM that takes as input exter-
nal word embeddings for previously genera-

6We set the value to 5 based on empirical observations

ted words; it updates only when a new word
is predicted by the network;

4. Partial Word Embeddings (PWE) Ne-
twork: It is often the case that we are able
to generate valid (known) words made up of
symbols from the previously tokenized word
up to the current symbol. If the joined sym-
bols form a word that exists in the embed-
dings, we use these embeddings. Otherwise
we use the unknown word embedding. We
project the embedding using the same 300-
to-100 linear transformation.

Figure 2: Tokenization and Sentence Splitting

For regularization, we observed that adding two
auxiliary softmax layers (with same labels as final
layer) for the Forward Network and the Peek Ne-
twork slightly reduces overfitting. Intuitively, the
Forward Network should be able to tokenize/sen-
tence split based only on the previous characters
and the Peek Network should also share this trait.

Moreover, the LM Network combined with the
PWE Network should be able to “determine” if it
makes sense (from the Language Modeling point-
of-view) to generate another word, based on the
previous words. This is highly important for lan-
guages that don’t use spaces to delimit words in-
side an utterance (e.g. Chinese, Japanese etc.).

For the large treebanks in the UD corpus our to-
kenization method placed second, with an overall
token-level score of 99.46%, the highest score be-
ing 99.51%. On the same treebanks, for sentence
splitting we placed 5th, with an overall F-score of
86.83% (highest was 89.52%).

174

2.3 Lemmatization and compound word
expansion

Lemmatization (automatically inferring a word’s
canonical form) and compound word expansion
(automatically expanding collapsed tokens into
their constituents) are similar in the sense that both
start from a sequence of symbols and have the
task of generating another sequence of symbols.
One difference is that lemmatization is also depen-
dent on the input word’s morphological attributes
and part-of-speech, whereas compound word ex-
pansion doesn’t have such data available (at least
not for the UD corpus and consequently not for
our system).

At first glance the two tasks can easily be sol-
ved using sequence to sequence models. It is
important to mention that by analyzing some in-
put examples, one can easily see that input-output
sequences have monotonic alignments. This im-
plies that the standard encoder-decoder with atten-
tion model is too complex and resource consuming
for these two tasks.

We propose a method that uses an attention-
free encoder-decoder model, which is less com-
putationally expensive and, surprisingly, provides
a 3-5% absolute increase in accuracy (at word le-
vel) as opposed to its attention-based counterpart.

The model is composed of a bidirectional
LSTM encoder and an unidirectional LSTM de-
coder. Similarly to a Finite State Transducer
(FST) we train a model to output any symbol from
the alphabet and three additional special symbols:
<COPY>, <INC> and <EOS>. During trai-
ning, we use a dynamic algorithm to monotonica-
lly align the input symbols to the output symbols.
Based on these alignments, we create the “gold-
standard” decoder output, which aims at copying
as many input characters to the output as possible,
while incrementing the input cursor and emitting
new symbols only as a last resort.

Trying to find a comprehensive example for En-
glish proves difficult (most lemmas are obtained
by simply copying a portion of the input word)
and we prefer to address lemmatization for a Ro-
manian example because it allows a better explo-
ration of the output sequence of symbols. A good
example is the lemmatization process for the word
“fetelor” (en.: girls), which has the canonical form
“fată” (en.: girl). The alignment process will ge-
nerate the following source-destination pairs of in-
dexes: 1-1, 3-3. The pairs map only symbols

that are identical in the input and output sequence.
The output symbol list for the decoder to learn is:
<COPY>a<INC><INC><COPY>a<EOS>7.

Let E(1,n) be the output of the encoder for a
sequence of n input symbols and i be an internal
index which takes values from 1 to n. The algori-
thm we use in the decoding process is:

E <− e n c o d e r (word)
o u t <− ’ ’
i <− 1
do {

i n p = f (E [i] , word)
c o u t = d e c o d e r (i n p)
i f c o u t == ’<COPY>’

o u t <− o u t + word [i]
e l s e i f c o u t == ’<INC>’

i <− i + 1
e l s e i f c o u t != ’<EOS>’

o u t <− o u t + c o u t
} w h i l e (c o u t != ’<EOS> ’)

In the code above f(E[i], word) is generica-
lly defined for both lemmatization and compound
word expansion. The function uses the output of
the encoder for position i and, for lemmatization,
it concatenates this vector with morphological fe-
atures (see Section 2.1 for details). The compound
word expander directly uses E[i] as input for the
decoder.

To our knowledge, the attention-free encoder
decoder provides state-of-the-art results8, our re-
sults being up-to-par with the highest ranking sys-
tem in the UD Shared Task. The results are repor-
ted without using any lexicon for known words,
and by employing the heuristic of leaving numbers
and proper nouns unchanged.

2.4 Tagging

Tagging is achieved using a two-layer bidirectio-
nal LSTM (same size for all languages). The in-
put of the network is composed only of lexicali-
zed features (see Section 2.1) and the output con-
tains three softmax layers that independently pre-
dict UPOS, XPOS and ATTRS. Though the AT-
TRS label is composed by multiple key-value pairs
for each morphological attribute of the word (e.g.

7As a reviewer kindly noted, a <COPY> might not
always be followed by an <INC>; We cannot exclude the
possibility that a word in a certain language might have a sin-
gle letter that has to be copied twice in the lemma. We thank
the reviewer for pointing this out.

8The results from the official UD Shared Tasks are affec-
ted by the aforementioned bug in our system, which degraded
our accuracy with 5% on average

175

gender, case, number etc.), we treat the concatena-
ted strings as a single value.

We performed a number of experiments trying
to predict individual morphological attributes, but
the overall accuracy degraded and we preferred
this naive approach to other tagging strategies.

For regularization, we use an auxiliary layer of
softmax functions (Szegedy et al., 2015), located
after the first bidirectional LSTM layer. The ob-
jective function is also designed to maximize the
prediction probabilities for the same labels as the
main softmax functions.

Note: The tagger is completely independent
from the parser and we don’t use any morpholo-
gical information for parsing.

2.5 Parsing

Our parser is inspired by Kiperwasser and Gold-
berg (2016) and Dozat et al. (2017), in the sense
that we use multiple stacked bidirectional LSTM
layers and project 4 specialized representations for
each word in a sentence, which are later aggrega-
ted in a multilayer perceptron in order to produce
arc and label probabilities.

We observed that training the parser on both
morphological and lexical features biases the mo-
del into relying on correct previously-predicted
tags. This does not hold for end-to-end parsing,
which implies that we use predicted (thus imper-
fect) morphology. Also, in this Shared Task we
can only train a tagger using the provided corpora,
which means that it has access to the same features
and training examples as the parser itself.

Taking all this into account, an interesting ques-
tion arises: “Why would tagging followed by par-
sing (learned on an identical training dataset) be
better than multi-task learning and joint predic-
tion of arcs, labels and POS tags?”. The answer
that we came to is .. that it is not. Actually, we
observed that jointly training a parser to also ou-
tput morphological features increases the absolute
UAS and LAS scores by up to 1.5% (at least for
our own models).

Our parser architecture (Figure 3) is composed
of 5 layers of bidirectional LSTMs (sized 300,
300, 200, 200, 200). After the first two layers we
introduce an auxiliary loss using three softmax la-
yers for the three independent morphological la-
bels: UPOS, XPOS and ATTRS. After the final
stacked layer we project 4 specialized represen-
tation which are used in a bi-affine attention for

predicting arcs between words and a softmax la-
yer for predicting the label itself (after we decode
the graph into a parsing tree).

There are several interesting observations which
apply to this approach (but they could be generally
true):

Observation 1: If we compute the accuracy of
the auxiliary predicted tags and compare it to that
of the independent tagger, we get an slight increa-
sed accuracy for the UPOS labels and decreased
figures for XPOS and ATTRS. This could mean
that the contribution to parsing of the UPOS labels
is higher than that of XPOS labels and morpholo-
gical attributes. Of course, we are also using lexi-
calized features, so this conclusion might be false.
Note: In the end-to-end system we use the tagger
to predict POS tags for UPOS, XPOS and ATTRS;
the slight gain in accuracy of using UPOS tags pre-
dicted by the parser are offset by the complexity
of picking labels from separate modules and more
parameter logic for the end-user of our system (for
example, if a user requests only POS tags he wo-
uld then need to run the parser just for UPOSes).

Observation 2: In theory, the parsing tree sho-
uld be computed as the minimum or maximum
spanning tree (MST) from the complete graph that
we create using the network. A standard way to
do this is to use Chu–Liu/Edmonds’ algorithm.
However, in our initial experiments we used a gre-
edy method, which almost never generated MSTs.
The algorithm worked by sorting all possible arcs,
based on the probabilities from highest to lowest.
Then we would start from the most probable arc
and iteratively add arcs if they would not intro-
duce cycles. While this is similar to Kruskal’s al-
gorithm, it never holds for directed graphs. When
we switched to the MST algorithm we obtained
lower UAS and LAS scores for the parser. We
checked the validity of the results and, indeed, the
score of MST trees is higher than that of greedy
trees. Also, we tried multiple MST implementa-
tion including our own, which reduces any chance
of coding errors. The conclusion is that in order to
obtain good UAS/LAS scores, one should always
favor strong arc scores over lower-confidence re-
lations between words. The MST algorithm remo-
ves high confidence relations and replaces them
with subsets of lower scoring relationships that
provide a “global-optimum”. Our intuition is that
if one wants to use a MST tree algorithm to pro-
duce a parsing tree, this algorithm should be inte-

176

Figure 3: Parser architecture

grated at training time and not just employed over
an already trained network. However, the high
computational complexity of this algorithm has a
strong negative impact on the training time making
it very hard to validate this theory.

3 Training details

Regarding drop-out, for all tasks we use a consis-
tent strategy: similar to the methodology of Do-
zat et al. (2017) we randomly drop each repre-
sentation9 independently and we scale the others
to cope with the missing input. The default para-
meters used in our process are also close to those
proposed in the aforementioned paper, with the ex-
ception that we found a batch-size of 1000 to pro-
vide better results. The batch size refers to the nu-
mber of tokens included in one training iteration.
Our models are implemented using DyNET (Neu-
big et al., 2017), which is a framework for neural
networks with dynamic computation graph. This
implies that we don’t require bucketing and pad-
ding in our approach. Instead, when we compute
a batch we add sentences until the total number of
tokens reaches the batch threshold (1000). Often,
we overflow the input size, because rarely the nu-
mber of tokens sum up to exactly 1000.

The global early-stopping condition is that the
task-specific metric over the development set do-
esn’t improve over 20 consecutive training epochs.

All models that use auxiliary softmax functions,
weight the auxiliary loss by an empirically selec-
ted value of 0.2. Whenever more than one aux

9For the tokenizer we even drop entire LSTM-outputs that
represent the input of the final Softmax layer - but we still
infer loss via the auxiliary softmaxes

softmax layers are used, the weighed value is equ-
ally divided between the losses (i.e. if we use two
auxiliary loss layers, each will infer a loss that is
scaled with the value 0.1, not 0.2).

At runtime the end-to-end system performs the
following operations sequentially: (a) it segments
the input raw text using the best accuracy sentence
splitter model, it then (b) tokenizes the sentences
using the best accuracy tokenizer network model,
(c) it generates compound words with the best ac-
curacy compound word expander model over the
tokens, (d) it predicts POS tags using each of the
best performing network model for UPOS, XPOS
and ATTRS respectively, (e) generates parse links
and labels using the best UAS model (and not the
LAS one, though we save this one as well), fina-
lly (f) filling in the lemma with the best accuracy
lemmatizer model.

We used the same hyperparameters for all lan-
guages. They were chosen based on a few langu-
ages that we initially tested on, and used these va-
lues for all other languages. However, each task
has its own set of hyperparameters that can be
tuned individually. Except the input sizes (like
the 300-to-100 linear transform in the tokenizer),
all other LSTM sizes are configurable through the
automatically generated config file for each task.

4 Results

We summarized our results in table 1 showing
NLP-Cube’s individual task scores for each lan-
guage, and two tables comparing our ranking by
task: table 2 with the score average over all tree-
banks and table 3 concerning only the large tree-
banks. Complete scores are available on the offi-

177

Language Tok SS Word Lemma UPOS XPOS Morpho CLAS BLEX MLAS UAS LAS
af afribooms 99.97 99.65 99.97 94.35 97.54 93.40 96.46 78.02 70.30 71.47 87.89 84.33

ar padt 99.98 77.35 91.10 48.65 87.71 84.37 84.58 64.96 33.12 58.13 71.53 67.61
bg btb 99.93 92.95 99.93 88.60 98.53 95.75 96.36 85.09 69.37 79.67 92.47 88.93
br keb 92.26 91.97 91.71 44.26 30.74 0.00 29.57 7.26 1.93 0.34 26.95 9.90

bxr bdt 83.26 31.52 83.26 16.05 34.99 83.26 37.95 1.01 0.03 0.06 6.32 2.42
ca ancora 99.98 99.27 99.94 97.49 98.45 98.51 97.94 86.24 83.57 82.54 92.91 90.49

cs cac 99.99 99.76 99.91 95.03 98.96 94.37 93.69 88.80 82.64 80.71 92.90 90.72
cs fictree 99.99 98.60 99.90 94.92 98.00 93.43 94.49 86.89 80.13 78.23 93.01 89.68

cs pdt 99.99 91.01 99.85 94.75 98.76 95.65 95.22 87.81 81.69 81.73 91.63 89.45
cs pud 99.55 91.70 99.40 92.22 97.17 92.93 92.04 81.96 75.30 72.76 89.60 84.82

cu proiel 100.00 37.28 100.00 80.96 93.23 93.52 85.27 65.68 54.38 53.66 74.60 67.70
da ddt 99.85 91.79 99.85 93.15 96.93 99.85 96.15 79.90 71.67 72.62 85.91 83.03
de gsd 99.70 81.19 99.62 76.71 93.83 96.78 88.54 72.96 42.49 54.79 82.09 77.24
el gdt 99.88 89.61 99.24 88.86 96.95 96.65 92.52 81.62 66.38 71.28 89.12 86.19

en ewt 99.26 76.32 99.26 94.51 95.25 94.83 96.03 79.31 73.77 73.75 85.49 82.79
en gum 99.65 82.13 99.65 91.70 94.71 94.42 95.64 75.01 65.38 67.42 84.10 80.59
en lines 99.91 87.80 99.91 93.89 96.38 95.01 96.46 75.40 67.82 69.28 82.58 78.03
en pud 99.74 95.70 99.74 94.32 95.14 93.88 94.99 82.36 76.12 72.76 88.27 85.31

es ancora 99.98 98.32 99.75 97.73 98.33 98.34 97.90 84.66 82.02 81.05 91.36 89.06
et edt 99.90 91.86 99.90 87.67 96.13 97.28 93.47 80.04 67.33 71.94 86.09 82.30

eu bdt 99.97 99.83 99.97 85.34 95.09 99.97 89.97 79.57 63.94 67.31 85.63 81.53
fa seraji 100.00 99.50 99.08 87.51 96.43 96.18 96.35 81.75 69.77 78.42 88.45 85.21

fi ftb 100.00 86.01 99.95 83.35 94.21 91.97 93.54 79.83 63.16 71.89 87.56 83.74
fi pud 99.67 93.29 99.67 76.66 96.59 0.03 94.56 85.14 58.90 78.41 90.05 87.28
fi tdt 99.70 88.73 99.70 77.92 95.52 96.52 92.41 81.74 58.42 73.04 87.06 83.74

fo oft 99.51 93.04 97.41 46.83 44.66 0.00 24.06 18.93 5.87 0.33 39.92 24.72
fr gsd 99.68 94.20 97.82 94.53 95.16 97.82 94.78 82.01 78.11 73.86 87.89 84.66

fr sequoia 99.86 89.86 97.77 93.35 96.08 97.77 95.19 81.91 76.06 75.50 87.83 85.27
fr spoken 100.00 21.63 100.00 90.62 95.22 97.45 100.00 57.63 52.78 53.41 72.76 65.81
fro srcmf 100.00 74.19 100.00 100.00 94.54 94.42 96.50 72.36 72.36 66.90 84.88 77.39

ga idt 99.56 95.38 99.56 84.98 91.01 90.40 79.78 53.98 41.89 35.54 76.80 65.37
gl ctg 99.84 96.59 99.17 94.93 96.86 96.30 99.04 75.10 69.73 68.20 83.90 81.07

gl treegal 99.50 84.99 95.06 84.67 90.25 86.75 88.27 57.80 46.62 47.68 71.13 64.90
got proiel 100.00 28.03 100.00 80.85 93.45 94.17 84.42 59.23 46.76 46.32 70.22 62.83

grc perseus 99.97 98.81 99.97 71.09 87.82 76.11 83.81 58.83 35.14 39.00 73.11 66.17
grc proiel 100.00 44.57 100.00 83.17 95.52 95.68 88.23 67.08 54.13 53.38 77.76 73.04

he htb 99.98 100.00 85.16 81.33 82.48 82.45 80.71 55.64 51.70 49.77 67.53 63.32
hi hdtb 99.98 98.84 99.98 96.71 97.16 96.49 93.25 87.30 84.70 76.01 94.65 91.27

hr set 99.92 95.56 99.92 89.95 97.72 99.92 90.52 82.77 71.56 69.81 90.64 85.81
hsb ufal 98.60 74.51 98.60 63.76 65.75 98.60 49.80 24.85 17.36 8.13 42.58 31.02

hu szeged 99.80 94.18 99.80 83.14 94.97 99.80 89.37 74.17 56.22 59.93 81.52 75.85
hy armtdp 97.21 92.41 96.47 70.79 65.40 96.47 57.07 23.40 17.36 10.44 44.53 29.63

id gsd 99.95 93.59 99.95 80.99 93.09 94.24 95.44 75.86 53.26 66.00 85.00 78.14
it isdt 99.75 96.81 99.68 96.88 97.79 97.63 97.54 85.53 81.42 81.57 92.49 90.21

it postwita 99.73 21.80 99.45 85.10 95.47 95.35 95.74 60.47 49.49 55.41 73.34 69.18
ja gsd 93.14 94.92 93.14 91.97 90.57 93.14 93.13 68.05 67.33 64.81 81.29 78.79

ja modern 65.98 0.00 65.98 54.14 47.71 0.00 64.15 4.42 4.07 2.76 16.67 13.60
kk ktb 92.26 75.57 92.89 23.49 57.84 56.04 38.32 13.15 0.76 2.69 39.48 19.64

kmr mg 94.33 69.14 94.01 64.64 59.31 58.77 48.39 17.91 11.69 5.87 34.86 24.18
ko gsd 99.87 93.90 99.87 38.39 95.27 88.24 99.70 79.75 21.93 76.44 86.10 82.09

ko kaist 100.00 100.00 100.00 30.05 95.12 84.14 100.00 83.63 15.26 79.50 88.13 86.00
la ittb 99.97 92.50 99.97 96.17 97.93 93.75 95.31 83.99 79.82 76.98 89.20 86.34

la perseus 100.00 98.67 100.00 67.55 85.69 68.29 72.63 45.39 28.48 29.01 63.46 51.92
la proiel 99.99 35.16 99.99 87.92 94.62 94.76 86.50 64.23 56.27 52.18 72.74 67.36

lv lvtb 99.68 98.05 99.68 86.24 93.73 83.09 88.44 74.87 61.18 61.31 83.41 78.18
nl alpino 99.89 90.75 99.89 92.76 95.68 93.80 96.07 80.42 71.95 72.73 89.32 85.95

nl lassysmall 99.84 77.48 99.84 92.47 95.83 94.12 95.45 75.26 66.41 69.25 85.37 81.75
no bokmaal 99.87 96.64 99.87 84.13 97.70 99.87 95.83 85.90 80.26 79.28 90.83 88.55
no nynorsk 99.96 94.28 99.96 82.42 97.42 99.96 95.41 85.90 76.43 78.33 90.83 88.53

no nynorsklia 99.99 99.86 99.99 75.80 85.36 99.99 81.19 48.26 40.44 35.31 64.43 52.94
pcm nsc 91.20 0.00 87.97 75.25 44.44 87.97 42.47 9.89 8.16 2.67 22.39 9.62

pl lfg 99.94 99.91 99.94 92.20 98.31 92.47 93.53 91.76 81.68 82.67 95.77 93.73
pl sz 99.98 99.14 99.33 88.71 97.13 89.58 89.88 85.90 72.76 74.06 91.00 88.01

pt bosque 99.69 87.88 97.59 94.65 94.46 97.59 93.71 81.23 77.56 70.62 86.80 84.36
ro rrt 99.74 95.62 99.74 94.79 97.46 96.73 96.83 80.68 74.65 76.26 90.44 85.25

ru syntagrus 99.71 98.79 99.71 92.28 98.41 99.71 96.20 89.14 79.49 84.09 92.69 90.94
ru taiga 97.36 70.37 97.36 76.11 90.31 97.34 80.62 53.82 37.50 39.17 66.39 58.18
sk snk 99.97 86.00 99.97 84.26 95.92 82.53 87.01 83.20 65.14 66.99 88.87 85.77

sl ssj 99.91 97.51 99.91 91.93 97.85 92.52 92.79 86.56 75.56 76.83 91.49 89.39
sl sst 100.00 24.43 100.00 86.50 91.92 83.70 83.79 41.82 35.69 33.27 54.04 46.77

sme giella 99.75 98.79 99.75 74.28 87.36 88.68 80.64 53.20 37.51 39.90 66.82 57.40
sr set 99.97 92.61 99.97 89.36 97.62 99.97 92.58 83.87 71.08 73.71 90.84 86.96

sv lines 99.96 87.44 99.96 91.40 95.99 93.65 88.92 79.24 69.08 64.33 85.04 80.80
sv pud 98.57 91.23 98.57 80.71 93.20 90.80 77.28 75.40 56.38 48.35 82.40 78.16

sv talbanken 99.95 93.60 99.95 92.92 97.25 95.41 95.63 82.33 73.42 75.03 88.32 85.00
th pud 8.56 0.39 8.56 8.56 5.86 0.02 5.67 0.31 0.31 0.00 0.58 0.53
tr imst 99.86 97.09 97.92 82.94 92.52 91.87 87.81 58.14 47.63 48.76 68.78 61.53
ug udt 99.91 83.83 99.91 87.60 88.42 91.47 84.23 53.52 45.02 38.48 74.56 60.98
uk iu 99.65 95.43 99.65 86.06 96.50 88.46 88.60 79.61 64.21 66.86 86.44 83.24

ur udtb 100.00 98.60 100.00 96.57 93.60 91.82 83.10 76.08 72.90 55.29 87.92 81.97
vi vtb 87.20 92.88 87.20 81.37 78.28 76.55 86.95 41.95 37.93 37.10 51.83 45.64

zh gsd 93.14 98.80 93.14 92.38 88.58 88.41 92.21 65.39 64.52 59.22 73.44 69.60

Table 1: End-to-end parsing results obtained in the CoNLL official evaluation campaign

178

Score Rank Range Average Median
SS 82.55 21 83.87 - 13.33 79.35 83.01
Token 97.36 19 98.42 - 78.45 95.90 97.39
Word 96.8 21 98.18 - 78.11 95.55 96.97
Lemma 81.21 20 91.24 - 57.1 82.85 87.77
UPOS 88.5 10 90.91 - 71.38 86.96 87.9
XPOS 86.46 2 86.67 - 4.88 75.53 84.83
Morpho 85.08 7 87.59 - 59.1 82.25 83.74
UAS 76.16 10 80.51 - 50.86 72.83 74.72
LAS 70.82 10 75.84 - 47.02 67.26 69.11

Table 2: Overall Results

Score Rank Range Average Median
SS 86.83 5 89.52 - 15.44 83.01 86.09
Tok 99.46 2 99.51 - 84.57 98.32 99.24
Word 98.87 5 99.21 - 84.14 97.94 98.81
Lemma 86.85 21 96.08 - 58.14 88.18 93.34
UPOS 95.02 10 96.23 - 79.83 93.56 94.06
XPOS 93.71 5 95.16 - 6.46 82.31 91.81
Morpho 92.68 7 94.14 - 65.42 89.76 90.85
UAS 84.55 8 87.61 - 62.07 80.59 82.27
LAS 80.48 8 84.37 - 58.14 76.220 77.98

Table 3: Results for Big Treebanks

cial website10 and due to space restrictions the
description of each individual score is available
online11 as well. For example, for sentence split-
ting (SS) and tokenization (Token), the figures re-
ported are F1 scores. For tables 2 and 3 we did not
include in the max-min/average/median calcula-
tion the lowest performing system as it had a very
low score and would skew the overall ranking.
For the Rank value in the tables please note that
there were 25 systems participating (excluding the
lowest competitor), so rank 10 means 10th posi-
tion out of 25.

Overall, NLP-Cube performed above average
for most tasks and treebanks, and, even better if
we consider only the large treebanks. Due to the
hidden bug we discovered very late in the TIRA
testing period (mentioned in the introduction) we
can see consistently bad performance for the tasks
of compound word expansion and lemmatization
where the character network has a large influence.
Considering that for most languages we performed
end-to-end processing, a low performance in the
early processing chain compounded the error and
led to lower scores.

5 Use-cases

We’ve built NLP-Cube with the vision that it wo-
uld help in higher-level NLP tasks like Machine

10http://universaldependencies.org/conll18/results.html
11http://universaldependencies.org/conll18/evaluation.html

Translation, Named Entity Recognition or Ques-
tion Answering, to name a few.

Part of NLP-Cube, we have a Named Entity
Recognition (NER) system12 that employs Graph-
Based-Decoding (GBD) over a hybrid network ar-
chitecture composed of bidirectional LSTMs for
word-level encoding, which had great results13.

We’re currently working on integrating Univer-
sal Morphological Reinflection and also Machine
Translation tasks in NLP-cube. We welcome fee-
dback and contributions to the project, as well as
new ideas and areas we could cover.

6 Conclusions

This paper introduces NLP-Cube: an end-to-end
system that performs text segmentation, lemmati-
zation, part-of-speech tagging and parsing. It al-
lows training of any model given datasets in the
CoNLL-U format. Written in Python, it is open-
source, easily usable (“pip install nlpcube”) and
provides models for the large treebanks in the Uni-
versal Dependency Corpus.

We presented and discussed each NLP task.
Results place NLP-Cube in the upper half of
the best performing end-to-end text preprocessing
systems. As we retrain our models, new scores
will be continuously updated online14.

Finally, we highlight a few ideas:
1. We presented a lemmatizer / compound word

expander that uses a Finite State Transducer-style
algorithm that is faster and has better results than
the classic attention-based encoder-decoder model
(with the mention that it requires monotonic alig-
nments between symbols) (see section 2.3);

2. We obtained better results for Morphologi-
cal Attributes when using each example as a sin-
gle class instead of splitting and predicting their
presence or not at every instance (see section 2.4);

3. Parsing based on lexicalized features only,
and at the same time, performing UPOS, XPOS
and ATTRS prediction jointly with arc index and
labeling led to a higher performance than parsing
based on previously predicted morphological fea-
tures generated by a tagger (see section 2.5).

12https://github.com/adobe/NLP-Cube/tree/dev.gbd-ner
13http://opensource.adobe.com/NLP-Cube/blog/posts/1-

gbd/results.html
14https://github.com/adobe/NLP-Cube

http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/evaluation.html
https://github.com/adobe/NLP-Cube/tree/dev.gbd-ner
http://opensource.adobe.com/NLP-Cube/blog/posts/1-gbd/results.html
http://opensource.adobe.com/NLP-Cube/blog/posts/1-gbd/results.html
https://github.com/adobe/NLP-Cube

179

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint ar-
Xiv:1607.04606 .

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies pages 20–
30.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. arXiv preprint
arXiv:1603.04351 .

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Clo-
thiaux, Trevor Cohn, et al. 2017. Dynet: The dy-
namic neural network toolkit. arXiv preprint ar-
Xiv:1701.03980 .

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Reso-

urces Association, Portorož, Slovenia, pages 1659–
1666.

Joakim Nivre et al. 2018. Universal Dependen-
cies 2.2. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Lin-
guistics, Charles University, Prague, http:
//hdl.handle.net/11234/1-1983xxx.
http://hdl.handle.net/11234/1-1983xxx.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological analy-
sis, POS tagging and parsing. In Proceedings of the
10th International Conference on Language Resour-
ces and Evaluation (LREC 2016). European Langu-
age Resources Association, Portorož, Slovenia.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabino-
vich. 2015. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. pages 1–9.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. Association for Computatio-

nal Linguistics, Brussels, Belgium, pages 1–20.

http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx

