
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 133–142
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2013

133

Turku Neural Parser Pipeline: An End-to-End System for the CoNLL
2018 Shared Task

Jenna Kanerva1,2 Filip Ginter1 Niko Miekka1 Akseli Leino1 Tapio Salakoski1
1Turku NLP Group, Department of Future Technologies, University of Turku, Finland

2University of Turku Graduate School (UTUGS)
firstname.lastname@utu.fi

Abstract

In this paper we describe the TurkuNLP
entry at the CoNLL 2018 Shared Task
on Multilingual Parsing from Raw Text to
Universal Dependencies. Compared to the
last year, this year the shared task includes
two new main metrics to measure the mor-
phological tagging and lemmatization ac-
curacies in addition to syntactic trees. Bas-
ing our motivation into these new met-
rics, we developed an end-to-end parsing
pipeline especially focusing on develop-
ing a novel and state-of-the-art component
for lemmatization. Our system reached the
highest aggregate ranking on three main
metrics out of 26 teams by achieving 1st
place on metric involving lemmatization,
and 2nd on both morphological tagging
and parsing.

1 Introduction

The 2017 and 2018 CoNLL UD Shared tasks aim
at an evaluation of end-to-end parsing systems on
a large set of treebanks and languages. The 2017
task (Zeman et al., 2017) focused primarily on the
evaluation of the syntactic trees produced by the
participating systems, whereas the 2018 task (Ze-
man et al., 2018) adds further two metrics which
also measure the accuracy of morphological tag-
ging and lemmatization. In this paper, we present
the TurkuNLP system submission to the CoNLL
2018 UD Shared Task. The system is an end-to-
end parsing pipeline, with components for seg-
mentation, morphological tagging, parsing, and
lemmatization. The tagger and parser are based on
the 2017 winning system by Dozat et al. (2017),
while the lemmatizer is a novel approach utilizing
the OpenNMT neural machine translation system
for sequence-to-sequence learning. Our pipeline

ranked first on the evaluation metric related to
lemmatization, and second on the metrics related
to tagging and parsing.

2 Task overview

CoNLL 2018 UD Shared Task is a follow-up to
the 2017 shared task of developing systems pre-
dicting syntactic dependencies on raw texts across
a number of typologically different languages. In
addition to the 82 UD treebanks for 57 languages,
which formed the primary training data, the par-
ticipating teams were allowed to use also addi-
tional resources such as Wikipedia dumps1, raw
web crawl data and word embeddings (Ginter
et al., 2017), morphological transducers provided
by Apertium2 and Giellatekno3, and the OPUS
parallel corpus collection (Tiedemann, 2012). In
addition to the 2017 primary metric (LAS), the
systems were additionally evaluated also on met-
rics which include lemmatization and morphology
prediction. In brief, the three primary metrics of
the task are as follows (see Zeman et al. (2018) for
detailed definitions):

LAS The proportion of words which have the cor-
rect head word with the correct dependency
relation.

MLAS Similar to LAS, with the additional re-
quirement that a subset of the morphol-
ogy features is correctly predicted and the
functional dependents of the word are cor-
rectly attached. MLAS is only calculated on
content-bearing words, and strives to level
the field w.r.t. morphological richness of lan-
guages.

1https://dumps.wikimedia.org
2https://svn.code.sf.net/p/apertium/

svn/languages
3https://victorio.uit.no/langtech/

trunk/langs

134

BLEX The proportion of head-dependent content
word pairs whose dependency relation and
both lemmas are correct.

3 System overview and rationale

The design of the pipeline was dictated by the tight
schedule and the limited manpower we were able
to invest into its development. Our overall objec-
tive was to develop an easy-to-use parsing pipeline
which carries out all the four tasks of segmenta-
tion, morphological tagging, parsing, and lemma-
tization, resulting in an end-to-end full parsing
pipeline reusable in downstream applications. We
also strove for the pipeline to perform well on
all four tasks and all groups of treebanks, rang-
ing from the large treebanks to the highly under-
resourced ones. With this in mind, we decided to
rely on openly available components when the ac-
ceptable performance is already met, and create
our own components for those tasks we see clear
room for improvement.

Therefore, for segmentation, tagging and pars-
ing we leaned as much as possible on well-known
components trained in the standard manner, and
deviated from these only when necessary. Our
approach to lemmatization, on the other hand, is
original and previously unpublished. In summary,
we rely for most but not all languages on the
tokenization and sentence splitting provided by
the UDPipe baseline (Straka et al., 2016). Tag-
ging and parsing is carried out using the parser
of Dozat et al. (2017), the winning entry of the
2017 shared task. Using a simple data manipu-
lation technique, we also obtain the morphologi-
cal feature predictions from the same tagger which
was originally used to produce only universal part-
of-speech (UPOS) and language-specific part-of-
speech (XPOS) predictions. Finally, the lemma-
tization is carried out using the OpenNMT neu-
ral machine translation toolkit (Klein et al., 2017),
casting lemmatization as a machine translation
problem. All these components are wrapped into
one parsing pipeline, making it possible to run
all four steps with one simple command and gain
state-of-the-art or very close to state-of-the-art re-
sults for each step. In the following, we describe
each of these four steps in more detail, while more
detailed description of the pipeline itself is given
in Section 6.

3.1 Tokenization and sentence splitting

For all but three languages, we rely on the UD-
Pipe baseline runs provided by the shared task or-
ganizers. The three languages where we decided
to deviate from the baseline are Thai, Breton and
Faroese. Especially for Thai we suspected the UD-
Pipe baseline, trained without ever seeing a sin-
gle character of the Thai alphabet, would perform
poorly. For Breton, we were unsure about the
way in which the baseline system tokenizes words
with apostrophes like arc’hant (money), and with-
out deeper knowledge of Breton language decided
that it is better to explicitly keep all words with
apostrophes unsegmented. We therefore devel-
oped a regular-expression based sentence splitter
and tokenizer — admittedly under a very rushed
schedule — which splits sentences and tokens on
a handful of punctuation characters. While, af-
ter the fact, we can see that the UDPipe base-
line performed well at 92.3%, our solution outper-
formed it by two percentage points, validating our
choice. For Thai, we developed our own training
corpus using machine translation (described later
in the paper in Section 4.3), and trained UDPipe
on this corpus, gaining a segmentation model at
the same time. Indeed, the UDPipe baseline only
reached 8.5% accuracy while our tokenizer per-
formed at the much higher 43.2% (still far below
the 70% achieved by the Uppsala team). Simi-
larly, for Faroese we built training data by pool-
ing the Danish-DDT, Swedish-Talbanken, and the
three available Norwegian treebanks (Bokmaal,
Nynorsk, NynorskLIA), and subsequntly trained
the UDPipe tokenizer on this data. After the fact,
we can see that essentially all systems performed
in the 99–100% range on Faroese, and we could
have relied on the UDPipe baseline.

On a side note, we did develop our own method
for tokenization and sentence splitting but in the
end, unsure about its stability and performance
on small treebanks, we decided to “play it safe”
and not include it in the final system. However,
the newly developed tokenizer is part of our open-
source pipeline release and trainable on new data.

3.2 Pre-trained embeddings

Where available, we used the pre-trained embed-
dings from the 2017 shared task (Ginter et al.,
2017). Embeddings for Afrikaans, Breton, Buryat,
Faroese, Gothic, Upper Sorbian, Armenian, Kur-
dish, Northern Sami, Serbian and Thai were ob-

135

tained from the embeddings published by Face-
book4 trained using the fastText method (Bo-
janowski et al., 2016), and finally for Old French
(Old French-SRCMF) we took the embeddings
trained using word2vec (Mikolov et al., 2013) on
the treebank train section by the organizers in their
baseline UDPipe model release. We did not pre-
train any embeddings ourselves.

3.3 UPOS tagging

UPOS tagging for all languages is carried out us-
ing the system of Dozat et al. (2017) trained out-
of-the-box with the default set of parameters from
the CoNLL-17 shared task. The part-of-speech
tagger is a time-distributed affine classifier over
tokens in a sentence, where tokens are first em-
bedded with a word encoder which sums together
a learned token embedding, a pre-trained token
embedding and a token embedding encoded from
the sequence of its characters using unidirectional
LSTM. After that bidirectional LSTM reads the
sequence of embedded tokens in a sentence to cre-
ate a context-aware token representations. These
token representations are then transformed with
ReLU layers separately for each affine tag classi-
fication layers (namely UPOS and XPOS). These
two classification layers are trained jointly by
summing their cross-entropy losses. For more de-
tailed description, see Dozat and Manning (2016)
and Dozat et al. (2017).

3.4 XPOS and FEATS tagging

As the tagger of Dozat et al. predicts the XPOS
field, we used a simple trick of concatenating
the FEATS field into XPOS, therefore manipu-
lating the tagger into predicting the XPOS and
morphological features as one long string. For
example the original XPOS field value N and
FEATS field value Case=Nom|Number=Sing
in Finnish-TDT treebank gets concatenated into
XPOS=N|Case=Nom|Number=Sing and this
full string is predicted as one class by the tagger.
After tagging and parsing, these values are again
splitted into correct columns. This is a (embarras-
ingly) simple approach which leads to surprisingly
good results, as our system ranks 3rd in morpho-
logical features with accuracy of 86.7% over all
treebanks, 0.9pp below the Uppsala team which
ranked 1st on this subtask.

4https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

We, in fact, did at first develop a comparatively
complex morphological feature prediction compo-
nent which outperformed the state-of-the-art on
the 2017 shared task, but later we discovered that
the simple technique described above somewhat
surprisingly gives notably better results. We ex-
pected that the complex morphology of many lan-
guages leads to a large number of very rare mor-
phological feature strings, a setting unsuitable for
casting the problem as a single multi-class pre-
diction task. Consequently, our original attempt
at morphological tagging predicted value for each
morphological category separately from a shared
representation layer, rather than predicting the full
feature string at once. To shed some light on
the complexity of the problem in terms of the
number of classes, and understand why a multi-
class setting works well, we list in Table 1 the
number of unique morphological feature strings
needed to cover 80%, 90%, 95%, and 100% of the
running words in the training data for each lan-
guage. The number of unique feature combina-
tions varies from 15 (Japanese-GSD, Vietnamese-
VTB) to 2629 (Czech-PDT), and for languages
with high number of unique combinations, we can
clearly see that there is a large leap from covering
95% of running words to covering full 100%. For
example in Czech-PDT, only 349 out of the 2629
feature combinations are needed to cover 95% of
running words, and the rest 2280 (of which 588
are singletons) together accounts only 5% of run-
ning words. Based on these numbers our conclu-
sions are that a focus on predicting the rare feature
combinations correctly does not affect the accu-
racy much, and learning a reasonable number of
common feature combinations well seems to be a
good strategy in the end.

Interestingly, on our preliminary experiments
with Finnish, we found that concatenating FEATS
into XPOS improved also LAS by more than
0.5pp, since the parser takes the XPOS field as a
feature and benefits from the additional morpho-
logical information present. To investigate this
more closely and test whether the same improve-
ment can be seen on other languages as well, we
carry out an experiment where we train the tagger
and parser without morphological information for
Finnish and six more arbitrarily chosen treebanks.
This new experiment then follows the original
training setting used by the Stanford team on their
CoNLL-17 submission, and by comparing this to

136

80% 90% 95% 100%
Czech-PDT 96 194 349 2629
Finnish-TDT 79 188 349 2052
Finnish-FTB 72 174 333 1762
Czech-CAC 81 160 285 1745
Czech-FicTree 73 161 287 1464
Slovak-SNK 79 163 283 1199
Ukrainian-IU 91 186 322 1197
Polish-LFG 84 170 281 1171
Slovenian-SSJ 73 141 254 1101
Croatian-SET 63 125 212 1099
Latin-PROIEL 121 214 323 1031
Ancient Greek-PROIEL 114 203 308 1027
Urdu-UDTB 30 61 124 1001
Polish-SZ 80 157 267 991
Latin-ITTB 58 136 226 985
Turkish-IMST 54 139 262 972
Hindi-HDTB 38 76 127 939
Estonian-EDT 43 89 151 918
German-GSD 58 96 141 909
Basque-BDT 51 100 169 884
Old Church Slavonic-PROIEL 78 168 276 859
Latvian-LVTB 57 119 218 828
Ancient Greek-Perseus 59 107 169 774
Russian-SynTagRus 67 124 176 734
Slovenian-SST 73 146 233 645
Gothic-PROIEL 75 138 214 623
Hungarian-Szeged 40 90 166 581
Serbian-SET 48 85 131 539
Hebrew-HTB 19 45 85 521
Romanian-RRT 34 58 97 451
Bulgarian-BTB 33 63 107 432
Latin-Perseus 58 100 144 418
Portuguese-Bosque 20 35 60 396
Russian-Taiga 66 126 182 376
North Sami-Giella 39 78 127 369
Irish-IDT 47 81 125 360
Greek-GDT 57 90 123 348

80% 90% 95% 100%
Arabic-PADT 22 35 53 322
Spanish-AnCora 28 48 71 295
Italian-ISDT 22 35 55 281
Catalan-AnCora 28 47 68 267
French-GSD 19 31 46 225
Italian-PoSTWITA 23 39 56 224
Galician-TreeGal 23 41 66 222
Uyghur-UDT 21 40 63 214
Swedish-Talbanken 26 43 61 203
Norwegian-Bokmaal 26 39 57 203
French-Sequoia 25 43 62 200
Indonesian-GSD 12 20 31 192
Norwegian-Nynorsk 26 41 53 184
Swedish-LinES 25 43 61 173
Persian-Seraji 11 19 31 162
Danish-DDT 24 38 53 157
Armenian-ArmTDP 51 85 117 157
English-EWT 19 32 45 150
Upper Sorbian-UFAL 48 88 111 134
English-LinES 18 29 43 104
English-GUM 16 27 40 104
Kazakh-KTB 29 49 71 98
Norwegian-NynorskLIA 22 34 46 96
Dutch-Alpino 16 24 31 63
Afrikaans-AfriBooms 14 22 28 61
Dutch-LassySmall 13 19 26 59
Kurmanji-MG 24 35 46 58
Old French-SRCMF 11 15 19 57
Buryat-BDT 17 26 34 41
Chinese-GSD 7 10 13 31
Galician-CTG 7 9 11 27
Korean-GSD 4 4 6 19
Korean-Kaist 6 8 10 17
French-Spoken 8 10 12 16
Vietnamese-VTB 6 8 10 15
Japanese-GSD 5 7 9 15

Table 1: The number of unique UPOS+morphlogical feature combinations needed to cover 80%, 90%,
95% and 100% of the running words in each treebank.

our main runs we can directly evaluate the effect
of predicting additional morphological informa-
tion. Three of the treebanks used in this exper-
iment (Arabic-PADT, Czech-PDT and Swedish-
Talbanken) seem to originally encode the full (or
at least almost full) morphological information
in the XPOS field in a language-specific manner
(e.g. AAFS1----2A---- in Czech), whereas
four treebanks seem to include only part-of-speech
like information or nothing at all in the XPOS
field (Estonian-EDT, Finnish-TDT, Irish-IDT and
Russian-SynTagRus).

The results of this experiment are shown in Ta-
ble 2. Four treebanks above the dashed line, those
originally including only part-of-speech like infor-
mation in the XPOS field, shows clear positive im-

provement in terms of LAS when the parser is able
to see also morphological tags predicted together
with the language-specific XPOS. The parser see-
ing the morphological tags (LASm column) shows
improvements approx. from +0.3 to +0.9 for these
four treebanks compared to the parser without
morphological tags (LAS column). Three tree-
banks below the dashed line, those already includ-
ing language-specific morphological information
in the XPOS field, quite naturally does not bene-
fit from additional morphology and shows mildly
negative results in terms of LAS. However the
difference in treebanks showing negative results
is substantially smaller compared to those having
positive effect (negative differences stay between
-0.0 to -0.2), therefore based on these seven tree-

137

Treebank LAS LASm UPOS UPOSm XPOS XPOSm

Estonian-EDT 83.40 84.15 (+0.75) 96.32 96.45 (+0.13) 97.81 97.87 (+0.06)
Finnish-TDT 85.74 86.60 (+0.86) 96.45 96.66 (+0.21) 97.48 97.63 (+0.15)
Irish-IDT 70.01 70.88 (+0.87) 91.87 92.36 (+0.49) 91.01 91.05 (+0.04)
Russian-SynT. 91.40 91.72 (+0.32) 98.11 98.03 (-0.08) — —
Arabic-PADT 72.67 72.45 (-0.22) 90.39 90.48 (+0.19) 87.36 87.39 (+0.03)
Czech-PDT 90.62 90.57 (-0.05) 98.76 98.74 (-0.02) 95.66 95.44 (-0.22)
Swedish-Talb. 85.87 85.83 (-0.04) 97.40 97.47 (+0.07) 96.36 96.41 (+0.05)

Table 2: LAS, UPOS and XPOS scores for seven parsers trained with and without tagger predicting the
additional morphological information. m after the score name stands for including the morphological
information during training, i.e. the official result for our system. Note that when evaluating XPOS, the
morphological information is already extracted from that field so the evaluation only includes prediction
of original XPOS-tags, not morphological features.

banks the overall impact stays on positive side.
Note that during parsing the parser only sees pre-
dicted morphological features, so this experiment
confirms that predicting more complex informa-
tion on lower-level can improve the parser.

Because of the fact that many treebanks include
more than plain part-of-speech information in the
language-specific XPOS field, likely more natural
place for the morphological features would be the
universal part-of-speech field UPOSwhich is guar-
anteed to include only universal part-of-speech in-
formation. However, with the limited time we had
during the shared task period, we had no time to
test whether adding morphological features harms
the prediction of original part-of-speech tag, and
we decided to use XPOS field as we thought it’s
least important of these two. Based on the re-
sults in the XPOS column of Table 2, we how-
ever see that additional information does not gen-
erally seem to harm the prediction of the original
language-specific part-of-speech tags and hints to-
wards the conclusion that likely the UPOS field
could have been used with comparable perfor-
mance.

3.5 Syntactic parsing

Syntactic parsing for all languages is carried out
using the system of Dozat et al. trained out-of-
the-box with the default set of parameters from
the CoNLL-17 shared task. The parser architec-
ture is quite similar as used in the tagger. Tokens
are first embedded with a word encoder which
sums together a learned token embedding, a pre-
trained token embedding and a token embedding
encoded from the sequence of its characters us-
ing unidirectional LSTM. These embedded tokens

are yet concatenated together with corresponding
part-of-speech embeddings. After that bidirec-
tional LSTM reads the sequence of embedded to-
kens in a sentence to create a context-aware token
representations. These token representations are
then transformed with four different ReLU layers
separately for two different biaffine classifiers to
score possible relations (HEAD) and their depen-
dency types (DEPREL), and best predictions are
later decoded to form a tree. These relation and
type classifiers are again trained jointly by sum-
ming their cross-entropy losses. For more detailed
description, see Dozat and Manning (2016) and
Dozat et al. (2017).

3.6 Lemmatization

While in many real word industry applications es-
pecially for inflective languages the lemmatizer is
actually the most needed component of the parsing
pipeline, yet it’s performance has been undesirable
weak in previous state-of-the-art parsing pipelines
for many inflectionally complex languages. For
this reason we develop a novel and previously un-
published component for lemmatization.

We represent lemmatization as a sequence-to-
sequence translation problem, where the input is
a word represented as a sequence of characters
concatenated with a sequence of its part-of-speech
and morphological tags, while the desired output
is the corresponding lemma represented as a se-
quence of characters. Therefore we are training
the system to translate the word form characters
+ morphological tags into the lemma characters,
where each word is processed independently from
it’s sentence context. For example, input and out-
put sequences for the English word circles as a

138

noun are:

INPUT: c i r c l e s UPOS=NOUN
XPOS=NNS Number=Plur

OUTPUT: c i r c l e

As our approach can be seen similar to general
machine translation problem, we are able to use
any openly available machine translation toolkit
and translation model implementations. Our cur-
rent implementation is based on the Python ver-
sion of the OpenNMT: Open-Source Toolkit for
Neural Machine Translation (Klein et al., 2017).
We use a deep attentional encoder-decoder net-
work with 2 layered bidirectional LSTM encoder
for reading the sequence of input characters + mor-
phological tags and producing a sequence of en-
coded vectors. Our decoder is a 2 layered unidi-
rectional LSTM with input feeding attention for
generating the sequence of output characters based
on the encoded representations. In input feeding
attention (Luong et al., 2015) the previous atten-
tion weights are given as input in the next time
step to inform the model about past alignment de-
cisions and prevent the model to repeat the same
output multiple times. We use beam search with
beam size 5 during decoding.

As the lemmatizer does not see the actual sen-
tence where a word appears, morphological tags
are used in the input sequence to inform the sys-
tem about the word’s morpho-syntactic context.
The tagger is naturally able to see the full sen-
tence context and in most cases it should produce
enough information for the lemmatizer to give it
a possibility to lemmatize ambiguous words cor-
rectly based on the current context. During test
time we run the lemmatizer as a final step in the
parsing pipeline, i.e. after tagger and parser, so the
lemmatizer runs on top of the predicted part-of-
speech and morphological features. Adding the
lemmatizer only after the tagger and parser (and
not before like done in many pipelines) does not
cause any degradation for the current pipeline as
the tagger and parser by Dozat et al. (2017) do not
use lemmas as features.

This method is inspired by the top systems from
the CoNLL-SIGMORPHON 2017 Shared Task of
Universal Morphological Reinflection (Cotterell
et al., 2017), where the participants used encoder-
decoder networks to generate inflected words from
the lemma and given morphological tags (Kann
and Schütze, 2017; Bergmanis et al., 2017). While

the SIGMORPHON 2017 Shared Task was based
on gold standard input features, to our knowledge
we are the first ones to use similar techniques on
reversed problem settings and to incorporate such
lemmatizer into the full parsing pipeline to run on
top of predicted morphological features.

4 Near-zero resource languages

There are nine very low resource languages: Bre-
ton, Faroese, Naija and Thai with no training data,
and Armenian, Buryat, Kazakh, Kurmanji and Up-
per Sorbian with only a tiny training dataset. For
the latter five treebanks with tiny training sam-
ple, we trained the tagger and parser in the stan-
dard manner, despite the tiny training set size.
However, for four of these five languages (Ar-
menian, Buryat, Kazakh and Kurmanji) we used
Apertium morphological transducers (Tyers et al.,
2010) to artificially extend the lemmatizer training
data by including new words from the transducer
not present in the original training data (methods
are similar to those used with Breton and Faroese,
for details see Section 4.1). Naija is parsed using
the English-EWT models without any extra pro-
cessing as it strongly resembles English language
and at the same time lacks all resources. Breton,
Faroese and Thai were each treated in a different
manner described below.

4.1 Breton

Our approach to Breton was to first build a Breton
POS and morphological tagger, and subsequently
apply a delexicalized parser. To build the tag-
ger, we selected 5000 random sentences from the
Breton Wikipedia text dump and for each word
looked up all applicable morphological analyzes
in the Breton Apertium transducer converted into
UD using a simple language-agnostic mapping
from Apertium tags to UD tags. For words un-
known to the transducer (59% of unique words),
we assign all possible UPOS+FEATS strings pro-
duced by the transducer on the words it recog-
nizes in the data. Then we decode the most
likely sequence of morphological readings using
a delexicalized 3-gram language model trained
on the UPOS+FEATS sequences of English-EWT
and French-GSD training data. Here we used
the lazy decoder program5 which is based on
the KenLM language model estimation and query-
ing system (Heafield, 2011). This procedure re-

5https://github.com/kpu/lazy

139

sults in 5000 sentences (96,304 tokens) of mor-
phologically tagged Breton, which can be used to
train the tagger in the usual manner. The syn-
tactic parser was trained as delexicalized (FORM
field replaced with underscore) on the English-
EWT and French-GSD treebanks. The accu-
racy of UPOS and FEATS was 72% (3rd rank)
and 56.6% (2nd rank) and LAS ranked 3rd with
31.8%. These ranks show our approach as com-
petitive in the shared task, nevertheless the Upp-
sala team achieved some 14pp higher accuracies
of UPOS and FEATS, clearly using a considerably
better approach.

The Breton lemmatizer was trained using the
same training data as used for the tagger, where
for words recognized by the transducer the part-
of-speech tag and morphological features are con-
verted into UD with the language-agnostic map-
ping, and lemmas are used directly. Unknown
words for transducer (i.e. those for which we are
not able to get any lemma analysis) are simply
skipped from the lemmatizer training. As the lem-
matizer sees each word separately, skipping words
and breaking the sentence context does not cause
any problems. With this approach we achieved
the 1st rank and accuracy of 77.6%, which is over
20pp better that the second best team.

To estimate the quality of our automatically pro-
duced training data for Breton tagging and lemma-
tization, we repeat the same procedure with the
Breton test data6, i.e. we use the combination of
morphological transducer and language model as
a direct tagger leaving out the part of training
an actual tagger with the produced data as done
in our original method. When evaluating these
produced analyses against the gold standard, we
get a direct measure of quality for this method.
We measure three different scores: 1) Oracle full
match of transducer readings converted to UD,
where we measure how many tokens can receive
a correct combination of UPOS and all morpho-
logical tags when taking into account all possi-
ble readings given by the transducer. For un-
known words we include all combinations known
from the transducer. This setting measures the
best full match number achievable by the language
model if it would predict everything perfectly. 2)
Language model full match, i.e. how many to-
kens received a fully correct analysis when lan-

6Using development data in these experiments would be
more desirable, but unfortunately we don’t have any Breton
development data available.

guage model was used to pick one of the possi-
ble analyses. 3) Random choice full match, i.e.
how many tokens received a fully correct analy-
sis when one of the possible analyses was picked
randomly. On Breton test set our oracle full match
is 55.5%, language model full match 51.0% and
random full match 46.2%. We can see that us-
ing a language model to pick analyses shifts the
performance more closer to oracle full match than
random full match, showing somewhat positive re-
sults for the language model decoding. Unfortu-
nately when we tried to replicate the same experi-
ment for other low-resource languages, we did not
see the same positive signal. However, the biggest
weakness of this method seems to be in the ora-
cle full match which is only 55.5%. This means
that the correct analysis cannot be found from the
converted transducer output for almost half of the
tokens. A probable reason for this is the simple
language-agnostic mapping from Apertium tags
to UD tags which is originally developed for the
lemmatizer training and strove for high precision
rather than high recall. Our development hypoth-
esis was that missing a tag in lemmatizer’s input
likely does not tremendously harm the lemmatizer,
so when developing the mapping we rather left
some tags out than caused a potential erroneous
conversion. However, when the same mapping is
used here, missing one common tag (for example
VerbForm=Fin) can cause great losses in full
match evaluation.

4.2 Faroese

For Faroese the starting situation was similar to
Breton but as the coverage of the Faroese Aper-
tium tranducer was weak, we decided to take an
another approach. This is because we feared that
the decoder input would have too many gaps to
fill in and therefore the quality of produced data
would decrease. For that reason the Faroese tag-
ger and parser was trained in the usual manner
using pooled training sets of related Nordic lan-
guages: Danish-DDT, Swedish-Talbanken, and
the three available Norwegian treebanks (Bok-
maal, Nynorsk, NynorskLIA). The pre-trained
embeddings were Faroese from the Facebook’s
embeddings dataset, filtered to only contain words
which Faroese has in common with one of the lan-
guages used in training. However, the Faroese
lemmatizer is trained directly from the transducer
output by analyzing vocabulary extracted from the

140

Faroese Wikipedia and turning Apertium analyses
into UD using the same tag mapping table as in
the Breton. On UPOS tagging our system ranks
only 10th, whereas on both morphological feature
prediction and lemmatization, we rank 1st.

4.3 Thai

As there is no training data and no Apertium mor-
phological transducer for Thai, we machine trans-
lated the English-EWT treebank word-for-word
into Thai, and used the result as training data
for the Thai segmenter, tagger and parser. Here
we utilized the Marian neural machine transla-
tion framework (Junczys-Dowmunt et al., 2018)
trained on the 6.1 million parallel Thai-English
sentences in OPUS (Tiedemann, 2012). Since we
did not have access to a Thai tokenizer and Thai
language does not separate words with spaces, we
forced the NMT system into character-level mode
by inserting a space between all characters in a
sentence (both on the source and the target side)
and again removing those after translation. After
training the translation system, the English-EWT
treebank is translated one word at a time, creat-
ing a token and sentence segmented Thai version
of the treebank. Later all occurrences of English
dots and commas were replaced with whitespaces
in the raw input text (and accordingly absence of
SpaceAfter=No tags in CoNNL-U) as Thai uses
whitespace rather than punctuation as pause char-
acter, and rest of the words were merged together
in raw text by including SpaceAfter=No feature
for each word not followed by dot or comma. This
word-by-word translation and Thai word merging
technique gives us the possibility to train a some-
what decent sentence and word segmenter with-
out any training data for a language which does
not use whitespaces to separate words or even sen-
tences. Furthermore, all the words were removed
as they have no Thai counterpart, lemmas were
dropped, all matching morphological features be-
tween English and Thai were copied, HEAD in-
dices were updated because of removing before
mentioned tokens, non-existent dependency re-
lations in Thai were mapped to similar existent
ones, and finally enhanced dependency graphs
were dropped. The tagger and parser were then
trained normally using this training data. Training
a lemmatizer is not needed as the Thai treebank
does not include lemma annotation.

Our Thai segmentation achieves 1st rank and

accuracy of 12.4% on sentence segmentation and
5th rank and accuracy of 43.2% on tokenization.
On UPOS prediction we have accuracy of 27.6%
and 4th rank, and our LAS is 6.9% and we rank
2nd, while the best team on Thai LAS, CUNI x-
ling, achieves 13.7%. English is not a particu-
larly natural choice for the source language of a
Thai parser, with Chinese likely being a better can-
didate. We still chose English because we were
unable to train a good Chinese-Thai MT system
on the data provided in OPUS and the time pres-
sure of the shared task prevented us from explor-
ing other possibilities. Clearly, bad segmentation
scores significantly affect other scores as well, and
when the parser and tagger are evaluated on top of
gold segmentation, our UPOS accuracy is 49.8%
and LAS 20.4%. These numbers are clearly better
than with predicted segmentation but still far off
from typical supervised numbers.

5 Results

The overall results of our system are summarized
in Table 3, showing the absolute performance,
rank, and difference to the best system / next
best system for all metrics on several treebank
groups — big, small, low-resource and parallel
UD (PUD). With respect to the three main met-
rics of the task, we ranked 2nd on LAS, 2nd on
MLAS and 1st on BLEX, and received the high-
est aggregate ranking out of 26 teams, of which
21 submitted non-zero runs for all treebanks. For
LAS, our high rank is clearly due to balanced per-
formance across all treebank groups, as our ranks
in the individual groups are 3rd, 6th, 4th and 6th,
still giving a 2nd overall rank. A similar pattern
can also be observed for MLAS. Our 1st overall
rank on the BLEX metric is undoubtedly due to
the good performance in lemmatization, on which
our system achieves the 1st rank overall as well as
in all corpus groups except the low-resourced lan-
guages. Altogether, it can be seen in the results ta-
ble that the two main strengths of the system is 1)
lemmatization and 2) tagging of small treebanks,
and on any metric, the system ranks between 1st
and 5th place across all corpora (all column in Ta-
ble 3).

6 Software release

The full parsing pipeline is available at
https://turkunlp.github.com/
Turku-neural-parser-pipeline,

141

All Big PUD Small Low
LAS 73.28 (-2.56 / 2) 81.85 (-2.52 / 3) 71.78 (-2.42 / 6) 64.48 (-5.05 / 4) 22.91 (-4.98 / 6)
MLAS 60.99 (-0.26 / 2) 71.27 (-1.40 / 3) 57.54 (-1.21 / 5) 47.63 (-1.61 / 2) 3.59 (-2.54 / 5)
BLEX 66.09 (+0.76 / 1) 75.83 (+0.37 / 1) 63.25 (+0.91 / 1) 53.54 (-1.35 / 2) 11.40 (-2.58 / 2)
UAS 77.97 (-2.54 / 4) 85.32 (-2.29 / 5) 75.58 (-2.84 / 6) 71.50 (-4.44 / 5) 34.51 (-4.72 / 6)
CLAS 69.40 (-2.96 / 2) 78.26 (-3.03 / 4) 67.65 (-2.21 / 5) 59.28 (-5.57 / 4) 18.15 (-4.03 / 6)
UPOS tagging 89.81 (-1.10 / 4) 95.41 (-0.82 / 6) 85.59 (-1.92 / 9) 91.93 (-0.91 / 3) 52.53 (-8.54 / 4)
XPOS tagging 86.17 (-0.50 / 3) 94.47 (-0.69 / 4) 55.68 (-0.30 / 2) 90.51 (+0.50 / 1) 43.43 (-11.3 / 17)
Morph. features 86.70 (-0.89 / 3) 93.82 (-0.32 / 3) 85.24 (-1.81 / 5) 85.63 (+0.58 / 1) 40.04 (-8.91 / 4)
All morph. tags 79.83(-0.47 / 2) 91.08 (-0.42 / 3) 51.60 (-0.30 / 2) 82.02 (+1.17 / 1) 17.58 (-8.33 / 19)
Lemmatization 91.24 (+1.92 / 1) 96.08 (+0.83 / 1) 85.76 (+0.07 / 1) 91.02 (+1.02 / 1) 61.61 (-2.81 / 3)
Sentence segmt. 83.03 (-0.84 / 5) 86.09 (-3.43 / 7–21) 75.53 (-0.51 / 3–17) 83.33 (-0.12 / 2–20) 66.23 (-1.27 / 2)
Word segmt. 97.42 (-0.76 / 5) 98.81 (-0.40 / 8–21) 92.61 (-1.96 / 7–19) 99.43 (+0.20 / 1–19) 89.10 (-4.28 / 5)
Tokenization 97.83 (-0.59 / 4) 99.24 (-0.27 / 6–21) 92.61 (-1.96 / 7–19) 99.57 (+0.01 / 1–18) 89.85 (-3.49 / 5)

Table 3: Results in every treebank group, shown as “absolute score (difference / rank)”. For first rank,
the difference to the next best system is shown, for other ranks we show the difference to the best ranking
system, shared ranks are shown as a range.

together with all the trained models. We have
ported the parser of Dozat et al. into Python3,
and included other modifications such as the
ability to parse a stream of input data without
reloading the model. The pipeline has a modular
structure, which allowed us to easily reconfigure
the components for languages which needed a
non-standard treatment. The pipeline software is
documented, and we expect it to be comparatively
easy to extend it with own components.

7 Conclusions

In this paper we presented the TurkuNLP entry
at the CoNLL 2018 UD Shared Task. This year
we focused on building an end-to-end pipeline
system for segmentation, morphological tagging,
syntactic parsing and lemmatization based on
well-known components, and including our novel
lemmatization approach. On BLEX evaluation, a
metric including lemmatization and syntactic tree,
we rank 1st, reflecting the state-of-the-art perfor-
mance on lemmatization. On MLAS and LAS,
metrics including morphological tagging and syn-
tactic tree, and plain syntactic tree, we rank 2nd
on both. All these components are wrapped into
one simple parsing pipeline that carries out all four
tasks with one command, and the pipeline is avail-
able for everyone together with all trained models.

Acknowledgments

We would like to thank Tim Dozat and rest of
the Stanford team for making their parser open-
source, as well as Milan Straka and rest of the
Prague team for making UDPipe software and

models open-source. This work was supported
by Academy of Finland, Nokia Foundation and
Google Digital News Innovation Fund. Computa-
tional resources were provided by CSC – IT Cen-
ter for Science, Finland.

References
Toms Bergmanis, Katharina Kann, Hinrich Schütze,

and Sharon Goldwater. 2017. Training data
augmentation for low-resource morphological in-
flection. In Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Compu-
tational Linguistics, Vancouver, pages 31–39.
http://www.aclweb.org/anthology/K17-2002.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
Conll-sigmorphon 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection. Asso-
ciation for Computational Linguistics, Vancouver,
pages 1–30. http://www.aclweb.org/anthology/K17-
2001.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734 .

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings

142

of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies pages
20–30.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts and
word embeddings. LINDAT/CLARIN digital li-
brary at the Institute of Formal and Applied Linguis-
tics (
’UFAL), Faculty of Mathematics and Physics,
Charles University. http://hdl.handle.net/11234/1-
1989.

Kenneth Heafield. 2011. KenLM: faster and
smaller language model queries. In Proceed-
ings of the EMNLP 2011 Sixth Workshop on
Statistical Machine Translation. Edinburgh,
Scotland, United Kingdom, pages 187–197.
https://kheafield.com/papers/avenue/kenlm.pdf.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations. Melbourne,
Australia. https://arxiv.org/abs/1804.00344.

Katharina Kann and Hinrich Schütze. 2017. The
lmu system for the conll-sigmorphon 2017 shared
task on universal morphological reinflection.
In Proceedings of the CoNLL SIGMORPHON
2017 Shared Task: Universal Morphologi-
cal Reinflection. Association for Computa-
tional Linguistics, Vancouver, pages 40–48.
http://www.aclweb.org/anthology/K17-2003.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proceedings of the 55th annual meet-
ing of the Association for Computational Linguistics
(ACL’17).

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States.. pages
3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in opus. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation (ELRA), Istanbul, Turkey.

Francis Tyers, Felipe Sánchez-Martı́nez, Sergio Ortiz-
Rojas, and Mikel Forcada. 2010. Free/open-source
resources in the apertium platform for machine
translation research and development. The Prague
Bulletin of Mathematical Linguistics 93:67–76.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Associa-
tion for Computational Linguistics, pages 1–20.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics, Brussels, Belgium, pages 1–20.

