
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 423–432
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

423

Resources to Examine the Quality of Word Embedding Models Trained
on n-Gram Data

Ábel Elekes Adrian Englhardt Martin Schäler Klemens Böhm
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{abel.elekes, adrian.englhardt,
martin.schaeler, klemens.boehm}@kit.edu

Abstract

Word embeddings are powerful tools that fa-
cilitate better analysis of natural language.
However, their quality highly depends on the
resource used for training. There are various
approaches relying on n-gram corpora, such
as the Google n-gram corpus. However, n-
gram corpora only offer a small window into
the full text – 5 words for the Google corpus
at best. This gives way to the concern whether
the extracted word semantics are of high qual-
ity. In this paper, we address this concern with
two contributions. First, we provide a resource
containing 120 word-embedding models – one
of the largest collection of embedding mod-
els. Furthermore, the resource contains the n-
gramed versions of all used corpora, as well as
our scripts used for corpus generation, model
generation and evaluation. Second, we de-
fine a set of meaningful experiments allow-
ing to evaluate the aforementioned quality dif-
ferences. We conduct these experiments us-
ing our resource to show its usage and signifi-
cance. The evaluation results confirm that one
generally can expect high quality for n-grams
with n ≥ 3.

1 Introduction

Motivation. Word embedding approaches like
Word2Vec (Mikolov et al., 2013b) or Glove (Pen-
nington et al., 2014) are powerful tools for the
semantic analysis of natural language. One can
train them on arbitrary text corpora. Each word
in the corpus is mapped to a d-dimensional vec-
tor. These vectors feature the semantic similarity
and analogy properties, as follows. Semantic sim-
ilarity means that representations of words used in
a similar context tend to be close to each other in
the vector space. The analogy property can be de-
scribed by the example that ”man” is to ”woman”
like ”king” to ”queen” (Mikolov et al., 2013b,a;
Jansen, 2017).

These properties have been applied in numer-
ous approaches (Mitra and Craswell, 2017) like
sentiment analysis (Tang et al., 2014), irony detec-
tion (Reyes et al., 2012), out-of-vocabulary word
classification (Ma and Zhang, 2015), or semantic
shift detection (Hamilton et al., 2016a; Martinez-
Ortiz et al., 2016). One prerequisite when creating
high-quality embedding models is a good train-
ing corpus. To this end, many approaches use the
Google n-gram corpus (Hellrich and Hahn, 2016;
Pyysalo et al., 2013; Kim et al., 2014; Martinez-
Ortiz et al., 2016; Kulkarni et al., 2016, 2015;
Hamilton et al., 2016b). It also is the largest cur-
rently available corpus with historic data and ex-
ists for several languages. It incorporates over 5
million books from the last centuries split into n-
grams (Michel et al., 2015). n-grams are text seg-
ments separated into pieces consisting of n words
each. The fragmentation of a corpus is the size of
its n-grams. To illustrate, a corpus of 2-grams is
highly fragmented, one of 5-grams is moderately
fragmented.

n-gram counts over time can be published even
if the underlying full text is subject to copyright
protection. Next, this format reduces the data vol-
ume very much. So it is important to know how
good models built on n-gram corpora are.

While the quality of word embedding mod-
els trained on full-text corpora is fairly well
known (Lebret and Collobert, 2015; Baroni et al.,
2014), an assessment of models built on frag-
mented corpora is missing (Hill et al., 2014). The
resource advertised in this paper is a set of such
models, which should help to shed some light on
the issue, together with some experiments.

Difficulties. An obvious benefit of making
these models available is the huge runtime nec-
essary to build them. However, evaluating them
is not straightforward, for various reasons. First,
drawing general conclusions on the quality of em-



424

bedding models only based on the performance
of specific approaches, i.e., examining the extrin-
sic suitability of models, is error-prone (Gladkova
and Drozd, 2016; Schnabel et al., 2015). Conse-
quently, to come to general conclusions one needs
to investigate general properties of the embedding
models itself, i.e., examine their intrinsic suitabil-
ity. Properties of this kind are semantic similar-
ity and analogy. For both properties, one can use
well-known test sets that serve as comprehensive
baselines. Second, there are various parameters
which influence how the model looks like. Us-
ing n-grams as training corpus gives way to two
new parameters, fragmentation, as just discussed,
and minimum count, i.e., the minimum occurrence
count of an n-gram in order to be considered when
building the model. The latter is often used to filter
error-prone n-grams from a corpus, e.g., spelling
errors. While the effect of the other parameters
on the models is known (Lebret and Collobert,
2015; Baroni et al., 2014), the one of these new
parameters is not. We have to define meaningful
experiments to quantify and compare the effects.
Third, the full text, such as the Google Books cor-
pus, is not openly available as reference in many
cases. Hence, we need to examine how to compare
results from other corpora, where the full text is
available, referring e.g., to well-known baselines
as the Wikipedia corpus.

Contribution. The resource provided here is
a systematic collection of word embedding mod-
els trained on n-gram corpora, accessible at our
project website1. The collection consists of 120
word embedding models trained on the Wikipedia
and 1 Billion words data set. Its training has re-
quired more than two months of computing time
on a modern machine. To our knowledge, it cur-
rently is one of the most comprehensive collection
of its type. In order to make this resource re-usable
and our experiments repeatable, we also provide
the n-grammed versions of the Wikipedia and 1-
Billion word datasets, which we used for training
and the tools to create n-gram corpora from arbi-
trary text as well.

In addition, we describe some experiments to
examine how much model quality changes when
the training corpus is not full-text, but n-grams.
The experiments quantify how much fragmenta-
tion (i.e., values of n) and minimum count reduce
the average quality of the corresponding word em-

1http://dbis.ipd.kit.edu/2568.php

bedding model, on common word similarity and
analogical reasoning test sets.

To show the usefulness and significance of the
experiments and to give general recommendations
on which n-gram corpus to use as well as cre-
ating a baseline for comparison, we conduct the
experiments on the full English Wikipedia dump
and Chelba et al.’s 1-Billion word dataset. How-
ever, we recommend to conduct this examination
for any corpus before using it as training resource,
particularly if the corpus size differs from the ones
of the baseline corpora by much:

1. What is the smallest number n for which an
n-gram corpus is good training data for word
embedding models?

2. How sensitive is the quality of the models
to the fragmentation and the minimum count
parameter?

3. What is the actual reason for any quality loss
of models trained with high fragmentation or
a high minimum count parameter?

Our results for the baseline test sets indicate that
minimum count values exceeding a corpus-size-
dependent threshold drastically reduce the quality
of the models. Fragmentation in turn brings down
the quality only if the fragments are very small.
Based on this, one can conclude that n-gram cor-
pora such as Google Books are valid training data
for word embedding models.

2 Fundamentals and Notation

We first introduce word embedding models. Then
we explain how to build word embedding models
on n-gram corpora.

2.1 Background on Word Embedding Models
In the following, we review specific distributional
models called word embedding models. Experi-
ments have shown that word embedding models
are superior to conventional distributional mod-
els (Baroni et al., 2014; Mikolov et al., 2013b). In
this section, we briefly say how such models work,
and which parameters influence their building pro-
cess.

2.1.1 Building a Word Embedding Model
Word embedding models ’embed’ words into
a high-dimensional space, representing them as
dense vectors of real numbers. Vectors close to



425

each other according to a distance function, of-
ten the cosine distance, represent words that are
semantically related. Formally, a word embed-
ding model is a function F which takes a corpus
C as input, generates a dictionary D and asso-
ciates any word in the dictionary w ∈ D with a
d-dimensional vector v ∈ Rd. The dimension size
parameter d sets the dimensionality of the vectors.
win is the window size parameter. It determines
the context of a word. For example, a window size
of 5 means that the context of a specific word is
any other word in its sentence, and their distance
is at most 5 words. The training is based on word-
context pairs w× c ∈ D×D2×win extracted from
the corpus. The parameter epoch nr states how
many times the training algorithm passes through
the corpus. The model adds only words to the dic-
tionary which are among the dict size most fre-
quent words of the corpus. Additionally, there are
model specific parameters (θ) which change minor
details in their algorithms. Having said this, one
can define word embedding models as a function:

F (C, d, epoch nr, win, dict size, θ) ∈ Rd (1)

There is related work that studies the impact of
these parameters (Baroni et al., 2014; Hill et al.,
2014; Elekes et al., 2017). Consequently, for all
parameters mentioned except for the window size,
we can rely on the results from the literature. This
is because, as we outline shortly, win is highly
relevant for building embedding models using n-
gram corpora. Note that F has been defined to
work on full text corpora so far, but not on n-
grams. We explain how to adapt F in Section 2.3.

2.1.2 Realizations of Word Embedding
Models

In this paper, we work with a well-known
embedding model, Mikolov et al.’s Word2Vec
model (Mikolov et al., 2013b). Word2Vec mod-
els use a neural-network based learning algorithm.
They learn by maximizing the probability of pre-
dicting the word given the context (Continuous
Bag of Words model, CBOW) (Mikolov et al.,
2013c,b). Note that the results can be transferred
to the skip-gram learning algorithm of Word2Vec
as well as to Glove (Pennington et al., 2014; Levy
and Goldberg, 2014). This is because very recent
work has shown that the distribution of the cosine
distances among the word vectors of all such mod-
els (after normalization) is highly similar (Elekes
et al., 2017).

2.2 Generating Fragmented and Trimmed
Corpora

To create fragmented n-gram corpora from raw
text, we use a simple method described in the fol-
lowing. With a sliding window of size n passing
through the whole raw text, we collect all the n-
grams which appear in the corpus and store them
in a dictionary, together with their match count.
This means that we create datasets similar to the
Google Books dataset, but from other raw text
such as the Wikipedia dump. For every frag-
mented corpus, we create different versions of it,
by trimming n-grams from the corpora with regard
to different minimum count thresholds.

2.3 Building Word Embedding Models on
N-grams

Distributional models conventionally are trained
on full text corpora, by creating word-context
pairs. It does not need to be a coherent text; it
is sufficient if the sentences are meaningful. For
n-gram corpora, this means the following. When
creating the context of a word, we treat each n-
gram as if it was a sentence.2

The word embedding models which we make
available are trained on n-gram training corpora
which are in the Google n-gram format. This for-
mat comprises 4 values: the n-gram, the match
count, the book count and the year. For our pur-
pose, only the first two values are relevant. When
building a model with the n-gram versions, we
deem every n-gram a sentence and use it as many
times as it occurs in the raw text. We explain the
impact of the window size and of the match count
parameter in the following.

2.3.1 Window Size Parameter
The window size parameter win of the embedding
model F depends on the fragmentation. For ex-
ample, win = 4 is not meaningful when we work
with 3-grams , because the maximum distance be-
tween two words in a 3-gram corpus is 2. The
following Examples 1-3 illustrate how exactly the
word-context pairs are generated on n-gram cor-
pora depending on the size of the window.

Example 1. Let us look at the context of a spe-
cific word in a 5-gram corpus with win = 4. Let
A B C D E F G H I be a segment of the raw text
consisting of 9 words. In the raw text, the context

2Of course, if there is a punctuation mark in the n-gram
ending a sentence, it splits the n-gram into several sentences.



426

of word E are words A, B, C, D, F, G, H, I. Now
we create the 5-gram version of this segment and
identify 5-grams which include word E. These are
(A B C D E); (B C D E F); (C D E F G); (D E
F G H) and (E F G H I). For word E on the 5-
gram corpus, the contexts are words A, B, C, D;
...; words F, G, H, I. We can see that we have not
lost any context words. But we also do not have all
raw-text context words in one context, only frag-
mented into several ones.

Example 2. As extreme case, we consider a
window size which is bigger than the size of the
n-grams. In this setting, we naturally lose a lot
of information. This is because distant words will
not be in any n-gram at the same time. For exam-
ple, look at the same text segment as in Example 1
with win = 4, but with a 3-gram variant of it. The
raw-text context is the same as before for word E,
but the fragmented contexts are words C, D; words
D, F and words F, G.

Example 3. Another extreme case is when win
is less than or equal to bn−12 c. In this case at
least one n-gram context will be the same as the
full text context. This means that no information
is lost. However, there also are fragmented con-
texts in the n-gram variant which can influence the
training and, hence, model quality.

We point out that bigger window sizes do not
necessarily induce higher accuracy on various test
sets, as explained by Levy et al.(Levy et al., 2015).

2.3.2 Match Count Parameter
Another parameter to consider when building the
models on the n-gram corpora is the match count
of the n-grams. The intuition behind including
only higher match-count n-grams in the training
data is that they may be more valid segments of
the raw text, as they appear several times in the
same order. However, we naturally lose informa-
tion by pruning low match-count n-grams. When
we create the n-gram versions of our raw text cor-
pora, we create different versions, by pruning the
n-grams which do not appear in the corpus at least
2, 5, 10 times, respectively. These numbers are
much smaller than the minimum count of 40 in
the Google dataset. This is because the raw texts
we use are much smaller than the Google Books
dataset as well.

3 Experimental Setup

The experiments allow to to give general recom-
mendations on which n-gram corpus to use to train

word embedding models. In order to do this, we
justify the selection of our text corpora and of the
parameter values used. Finally, we explain the ac-
tual baseline test sets and say why this choice will
yield general insights.

3.1 Raw Text Corpus Selection

In this study we work with two raw-text cor-
pora. One is Chelba et al.’s 1-Billion word
dataset (Chelba et al., 2013), the other one is
a recent (November 1, 2016) Wikipedia dump,
with the articles shuffled and sampled to con-
tain approximately 1 billion words. Both corpora
are good benchmark datasets for language mod-
eling, with their huge size, large vocabulary and
topical diversity (Chelba et al., 2013; Zesch and
Gurevych, 2007). For both corpora we create their
respective n-gram versions in the Google Books
format, with n=2,3,5,8, cf. Section 2.3.

3.2 Baseline Test Sets

We see two properties of embedding models that
makes them a worthwhile resource. First, word
similarities, second, analogical reasoning. To il-
lustrate, an analogical reasoning task is as follows:
’A is to B as C is to D’, and the model has to guess
Word D knowing the other three words. We have
selected widely used word similarity and analogi-
cal reasoning baseline test sets for our evaluation.

3.2.1 Word Similarity
We use six test sets to evaluate word similarity.
They contain word pairs with similarity scores,
assigned by human annotators. The test sets are
Finkelstein et al.’s WordSim353 (Finkelstein et al.,
2001) partitioned into two test sets, WordSim Sim-
ilarity and WordSim Relatedness (Zesch et al.,
2008; Bruni et al., 2012); Bruni et al.’s MEN test
set (Bruni et al., 2012); Hill et al.’s SimLex-999
test set (Hill et al., 2015); Rubenstein and Good-
enough’s RG-65 test set (Rubenstein and Goode-
nough, 1965); Radinsky et al.’s Mechanical Turk
test set (Radinsky et al., 2011) and Luong et al.’s
Rare Words test set (Luong et al., 2013). We
evaluate the models with the conventional base-
line evaluation method (Levy et al., 2015) (Baroni
et al., 2014): We rank the word pairs of an eval-
uation test set by their similarity scores, based on
cosine distance of the word vectors. Then we mea-
sure Spearman’s correlation between this ranking
and the one based on human annotators. This
number is the score of the model on the test set.



427

3.2.2 Analogical Reasoning
We use two analogical reasoning test sets. The
first one is MSR’s analogy test set (Mikolov et al.,
2013c), which contains 8000 syntactic analogy
questions, such as ”big is to biggest as good is to
best”. The other test set is Google’s analogy test
set (Mikolov et al., 2013b), which contains 19544
questions The models answer the questions with
the following formula:

argmaxd∈D\{a,b,c}cos(d, b− a+ c) (2)

Here a, b, c, d ∈ D are the vectors of the corre-
sponding word. The score of a model is the per-
centage of questions for which the result of the for-
mula is the correct answer (d).

4 Experiment Questions

In order to make our experimental results more in-
tuitive we attempt to explicitly answer the three
following questions.

Question 1. What is the smallest number n for
which an n-gram corpus is good for the training of
embedding models?

Rationale behind Question 1. The size of any n-
gram corpus highly increases with large n. Hence,
it is important to know the smallest value that is
expected to still yield good results.

Question 2. How does the minimum count pa-
rameter affect the quality of the models? How
does this result compare to the effect caused by
the fragmentation?

Rationale behind Question 2. Having answered
the first question, we will be able to quantify the
effect of the fragmentation. However, it is neces-
sary to study the effect of the second parameter
as well, in order to quantify the applicability of n-
grams for embedding comprehensively. In other
words, we want to compare the effects of both pa-
rameters; we will be able to give recommendations
for both parameters.

Question 3. How does the quality loss of mod-
els trained on fragmented corpora of size n or with
high minimum count parameter manifest itself in
the embedding models?

Rationale behind Question 3. By answering
Questions 1 and 2, we are able to quantify the ef-
fect of both parameters. We hypothesize that the
parameters affect the quality of the models dif-
ferently, and that we are able to observe this in
the word vectors themselves. The rationale be-
hind our hypothesis is that large minimum count

values might eliminate various meaningful words
from the vector space. Fragmentation in isolation
however does not have the effect that a word is
lost. Hence, a quality loss must manifest itself dif-
ferently, which might be observable.

5 Experiment Results

We now turn to the questions just asked. We dedi-
cate a subsection to each question. In the first two
sections, we give an overview of the results using
the Wikipedia corpus. The results for the 1-Billion
word corpus are almost identical. For brevity, we
do not show all results for this corpus.

5.1 Answering Question 1: Minimal
Meaningful N-gram Size

We quantify the influence of the training-corpus
fragmentation on the quality of the word-
embedding models. We do not use a minimum
count parameter in this section.

5.1.1 Results for the Wikipedia Corpus
Figure 1 shows the result for the models trained on
the Wikipedia corpus.3 The interpretation of the
plots is as follows: We evaluate a specific model
on every test set introduced in Section 3.2. We cal-
culate the average scores for this model for both
the similarity and analogy test sets. We do this for
every trained model. We group the results by the
window-size parameter of the models and plot the
average values. So every plot shows the calculated
average scores of such models which only differ in
the fragmentation of their training corpus. As ex-
plained in Section 2.3.1, it is meaningless to train
models on n-grammed corpora with window-size
parameter win < n.

Figure 1 reveals that fragmentation does influ-
ence the quality of the models significantly. For
the similarity test sets, fragmentation reduces the
quality of the models for any value of the window-
size parameter win almost linearly.

For the analogy test sets, the results are not as
straightforward. Generally, the same observation
holds as for the similarity test sets, namely that
fragmentation reduces the quality of the models,
however there are a few exceptions. It is true that
the best models are trained on the 5 and 8-gram
variants and the full text corpora for any window
size. For models with smaller win however, the

3Note that we use different scales for the first and the sec-
ond two subplots.



428

Figure 1: The average score of models trained on differently fragmented Wikipedia corpora on the analogy and
similarity tasks

results do not always get better when the corpus is
less fragmented. For example, the very best model
for the MSR test set is trained on 8-grams, not the
full text.

5.1.2 Generalization of Results
To generalize the results, we measure the overall
average quality of the models trained on the dif-
ferently fragmented corpora. Then we compare
the results to ones computed on the full text. To
this end, we calculate the averages of the previous
results, grouped by training corpus fragmentation.
To make the resulting numbers more intuitive, we
do this in relative terms, compared to the results
with the full text corpus. For example, on analogi-
cal reasoning tasks, the models trained on 3-grams
are 7.5% worse than the models trained on full text
with the same window size. Table 1 shows the re-
sults. The total column is the average of the simi-
larity and analogy columns

Table 1: Average quality loss due to fragmentation
compared to the full text on the Wikipedia corpus.

Wikipedia total similarity analogy

2-gram -20.2% -14.4% -26.0%
3-gram -6.9% -6.4% -7.5%
5-gram -2.8% -3.6% -1.9%
8-gram -2.5% -3.4% -1.6%

5.1.3 Result Interpretation.
We conclude that embedding models built on frag-
mented corpora are worse than models based on
full text, but the difference is not much. Embed-
ding models trained on 2-gram corpora are 20.2%
worse overall than models trained on full text, a
significant drop. However, the 3-gram version is

only 6.9% worse. The 5-gram version and the 8-
gram version are almost tha same, they are only
2.8% and 2.5% worse, respectively. This answers
Question 1, i.e., a 5-gram corpus is the most frag-
mented corpus which is almost as good as models
trained on full text, and the 3-gram version is also
not much worse. A general takeaway for other re-
searchers when training embedding models on n-
grams is that using at least 3-grams for training
leads to good models and using at least 5-grams
leads to almost identical models as training on full
text.

5.1.4 Insight Confirmation Using a Different
Text Corpus

So far, our results only rely on one corpus. To
generalize, we verify our insights using another
large corpus. We only list aggregated results to
save space. We have calculated the numbers for
all models trained on the 1-Billion word dataset
and its fragmented versions. Table 2 shows that
the numbers are generally very similar to the pre-
vious ones with Wikipedia. So the decline in qual-
ity most likely does not depend on the underlying
text corpus, but on the fragmentation.

5.2 Answering Question 2: Effect of the
Minimum Count Parameter

In the following, we aim at quantifying the influ-
ence of the minimum count parameter and investi-
gate whether there is an interaction with the frag-
mentation. Our procedure is the same as in the
prior section. First, we aggregate the raw results
obtained from the Wikipedia corpus and all mod-
els built on it. Then we draw first conclusions and
finally verify the insights using the second corpus.



429

Table 2: Average quality loss due to fragmentation
compared to the full text on the 1-Billion word corpus.

1-Billion total similarity analogy

2-gram -19.3% -15.0% -23.6%
3-gram -5.4% -6.5% -4.3%
5-gram -1.8% -2.9% -0.8%
8-gram -1.3% -2.2% -0.4%

5.2.1 Results for the Wikipedia Corpus
Figure 2 shows the average quality of models
trained on the same n-gram corpus with different
minimum count parameter. The results indicate
that an increase of this parameter usually leads
to significantly worse models. However, there is
one exception, where the minimum count param-
eter is 2 and the corpus is the 2-grammed version
of Wikipedia. For this case the models actually
gets slightly better on the analogy task using the
minimum count threshold. The reason is that we
do not lose too many 2-grams with the threshold-
ing in this case, and those which we do lose may
bias the model on the analogy tasks. However, on
the similarity tasks the models get slightly worse,
which means we lose meaningful training data as
well. The reduction in quality is even more severe
with n-gram corpora with a big value of n, such as
5 or 8-grams. This is because these corpora have
fewer high match count n-grams than the more
fragmented 2 or 3-gram corpora. Summing up,
for corpora of a size such as the Wikipedia dump,
any threshold for the minimum count of the n-
grams significantly reduces the quality of the em-
bedding models. One exception is when the cor-
pus is highly fragmented with the smallest mini-
mum count parameter.

5.2.2 Generalization of the Results
We generalize the aforementioned observations by
computing the average quality loss for the models,
just as in Section 5.1.2. The numbers in Table 3
are for the Wikipedia dataset. With the small-
est minimum count threshold already, the mod-
els get significantly worse. For the 1-Billion word
dataset, the results again differ only slightly. This
again confirms our hypothesis that the quality dif-
ferences are not corpus-dependent.

5.2.3 Implications for the Google N-gram
Corpus

So far, the question how to transfer the results
from the Wikipedia and the 1-Billion corpus to the

Table 3: Average quality loss caused by the minimum
count parameter parameter on Wikipedia.

Min. count total similarity analogy

2 -23.6% -19.2% -28.0%
5 -56.5% -47.9% -65.1%

10 -72.3% -64.0% -78.6%

Google n-gram corpus remains open. We aim to
answer whether we lose any meaningful informa-
tion in the Google 5-gram corpus, because of the,
at first sight, large threshold value of 40. We as-
sume that even for such comprehensive text cor-
pora, including the Wikipedia or the 1-Billion cor-
pus, all the extracted n-grams are contained in
the Google n-gram data as well, despite its large
threshold value. We verify this hypothesis by
comparing the number of existing 5-grams in the
Google n-gram corpus (1.4 Billion) with those in
the full Wikipedia (1.25 Billion). A systematic
analysis of the data reveals that more than 99%
of the 5-grams included in the Wikipedia corpus is
included in the Google corpus as well. The ones
which are not usually are typos or contain words
which have not been present in the language un-
til 2008 (the last year in the Google dataset). This
holds for all n-gram corpora. This means that we
do not lose any relevant information if we train
our models on the Google n-gram dataset, despite
its high minimum count threshold value. So it is a
suitable training corpus for word-embedding mod-
els.

5.2.4 Result Interpretation
To conclude, we can now answer Question 2. We
see that the minimum count parameter reduces
model quality. This conclusion depends on the
size of the corpus . For smaller corpora, the effect
will be even more pronounced. For such sizes of
the training data we do not recommend to use any
minimum count threshold when training embed-
ding models. In combination with the results from
Section 5.1, we conclude that the Google Books
dataset is valid training data for embedding mod-
els. In general, one can expect good results using
the 5-grams as training data, but anything above
2-grams could be used.

5.3 Answering Question 3: the Reason for
the Quality Loss

Regarding Question 3, we start with an explana-
tion why the increase of the minimum count pa-



430

Figure 2: The average scores of models trained with different minimum count parameter on differently fragmented
Wikipedia corpora on the Analogy and Similarity tasks

rameter decreases the quality of the embedding
models. We have observed that in almost every
case this has been a consequence of certain in-
frequent words of the evaluation test sets not oc-
curring in sufficiently many n-grams. When ana-
lyzing the task specific results, we have seen that
result quality on the rare words test set drops in-
stantly even with the smallest threshold value. For
other test sets on the other hand (WordSim353,
RG-65 for instance) which include highly frequent
words almost exclusively, results are not much
worse. In summary, the reduced model quality
generally is a consequence of the less frequent
words not being trained sufficiently or even not at
all. Therefore, they do not appear in the dictionar-
ies of the model.

Table 4: Average movement in cosine distance of the
word vectors with one extra iteration.

Corpus 2-gram 3-gram 5-gram 8-gram Full text

Avg. movement 0.018 0.016 0.011 0.010 0.006

The fragmentation of the corpora causes a qual-
ity loss for a different reason. Every word of the
evaluation test sets is included in the dictionary of
every model, but fragmentation causes a mix-up
of the word vectors, cf. Section 2.2. As explained
in Example 1, each word is trained several times
when fragmented corpora are used, and most of
the time the context of the word, as considered by
the algorithm during training, is not the full con-
text. To quantify this effect, we have measured
the average movement of a word vector when we
iterate through the training data one extra time, af-
ter training the models. See Table 4; the numbers
are average cosine distances. The lower the cor-
pus quality is, the more the vectors move in the

additional iteration. The results seem to confirm
our intuition that, with bad corpora, vectors move
in suboptimal directions to a higher extent, ulti-
mately resulting in worse models.

6 Conclusions

In this paper we present a resource and cor-
responding experiments which allow to answer
which differences in quality one can expect when
training word embedding models on fragmented
corpora, such as the Google n-gram corpus, com-
pared to full-text. The resource contains all mod-
els, corpora and scripts we have used. The re-
source contains one of the largest collection of
systematically pre-trained embedding models cur-
rently openly available. It also contains the frag-
mented versions of both corpora used in this paper
and our scripts used to conduct the experiments.
We present experiments to give recommendations
on which n-gram versions to use for word em-
bedding model training. An in-depth evaluation
using our presented comprehensive resource con-
firms that one generally can expect good quality
for n-grams with n ≥ 3. In addition, we show that
the minimum count parameter is highly corpus
size dependent and should not be used for corpora
with size similar to or smaller than the Wikipedia
dump. Finally, our results show that the fragmen-
tation (i.e., small values for n) and the minimum
count parameter introduce different kinds of error.

In summary, our results indicate that one can
train high-quality embedding models with n-
grams if some (mild) prerequisites hold. This is
particularly true for the Google n-gram corpus,
which is a good corpus to this end.



431

References
M. Baroni et al. 2014. Don’t count, predict! A sys-

tematic comparison of context-counting vs. context-
predicting semantic vectors. In ACL. ACL.

E. Bruni et al. 2012. Distributional semantics in tech-
nicolor. In Proc. Annual Meeting of the Association
for Computational Linguistics (ACL), pages 136–
145. ACL.

C. Chelba et al. 2013. One billion word benchmark for
measuring progress in statistical language modeling.
CoRR, abs/1312.3005.

A. Elekes, M. Schäler, and K. Böhm. 2017. On the
various semantics of similarity in word embedding
models. In JCDL. IEEE.

L. Finkelstein et al. 2001. Placing search in context:
The concept revisited. In Proc. Int’l Conf. on World
Wide Web (WWW), pages 406–414. ACM.

A. Gladkova and A. Drozd. 2016. Intrinsic evaluations
of word embeddings: What can we do better? In
RepEval. ACL.

W. Hamilton et al. 2016a. Cultural shift or linguistic
drift? comparing two computational measures of se-
mantic change. In EMNLP. ACL.

William L Hamilton, Jure Leskovec, and Dan Juraf-
sky. 2016b. Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint
arXiv:1605.09096.

J. Hellrich and U. Hahn. 2016. An assessment of ex-
perimental protocols for tracing changes in word se-
mantics relative to accuracy and reliability. In LaT-
eCH.

F. Hill, R. Reichart, and A. Korhonen. 2015. Simlex-
999: Evaluating semantic models with genuine simi-
larity estimation. Computer Linguistics, 41(4):665–
695.

F. Hill et al. 2014. Not all neural embeddings are born
equal. CoRR, abs/1410.0718.

S. Jansen. 2017. Word and phrase translation with
word2vec. CoRR, abs/1705.03127.

Y. Kim et al. 2014. Temporal analysis of lan-
guage through neural language models. CoRR,
abs/1405.3515.

Vivek Kulkarni, Bryan Perozzi, and Steven Skiena.
2016. Freshman or fresher? quantifying the geo-
graphic variation of language in online social media.
In ICWSM, pages 615–618.

Vivek Kulkarni et al. 2015. Statistically significant de-
tection of linguistic change. In 24th International
Conference on World Wide Web, pages 625–635.

R. Lebret and R. Collobert. 2015. Rehabilitation of
Count-Based Models for Word Vector Representa-
tions. Springer.

O. Levy and Y. Goldberg. 2014. Neural word embed-
ding as implicit matrix factorization. In NIPS. MIT
Press.

O. Levy, Y. Goldberg, and I. Dagan. 2015. Improving
distributional similarity with lessons learned from
word embeddings. TACL, 3.

T. Luong, R. Socher, and C. Manning. 2013. Better
word representations with recursive neural networks
for morphology. In CoNLL. ACL.

L. Ma and Y. Zhang. 2015. Using word2vec to process
big text data. In Proc. Int’l. Conf. on Big Data (Big
Data), pages 2895–2897. IEEE.

C. Martinez-Ortiz et al. 2016. Design and implemen-
tation of shico: Visualising shifting concepts over
time. In HistoInformatics, DH.

J.-B. Michel et al. 2015. Quantitative analysis of cul-
ture using millions of digitized books. Science,
331(6014):176–182.

T. Mikolov, Q. Le, and I. Sutskever. 2013a. Exploit-
ing similarities among languages for machine trans-
lation. CoRR, abs/1309.4168.

T. Mikolov et al. 2013b. Distributed representations
of words and phrases and their compositionality. In
NIPS. Curran Associates Inc.

T. Mikolov et al. 2013c. Efficient estimation of
word representations in vector space. CoRR,
abs/1301.3781.

B. Mitra and N. Craswell. 2017. Neural text embed-
dings for information retrieval. In WSDM, pages
813–814. ACM.

J. Pennington et al. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.
ACL.

S. Pyysalo et al. 2013. Distributional semantics re-
sources for biomedical text processing. In LBM.

K. Radinsky et al. 2011. A word at a time: Computing
word relatedness using temporal semantic analysis.
In WWW, pages 337–346. ACM.

A. Reyes et al. 2012. From humor recognition to irony
detection: The figurative language of social media.
DKE.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

T. Schnabel et al. 2015. Evaluation methods for unsu-
pervised word embeddings. In EMNLP.

Duyu Tang et al. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In ACL, volume 1, pages 1555–1565.



432

T. Zesch and I. Gurevych. 2007. Analysis of the
wikipedia category graph for nlp applications. In
NAACL-HLT, pages 1–8. ACL.

T. Zesch et al. 2008. Using wiktionary for comput-
ing semantic relatedness. In AAAI, pages 861–866.
AAAI Press.


