
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 380–391
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

380

Evolutionary Data Measures: Understanding the Difficulty of Text
Classification Tasks

Edward Collins
Wluper Ltd.

London, United Kingdom
ed@wluper.com

Nikolai Rozanov
Wluper Ltd.

London, United Kingdom
nikolai@wluper.com

Bingbing Zhang
Wluper Ltd.

London, United Kingdom
bingbing@wluper.com

Abstract

Classification tasks are usually analysed and
improved through new model architectures or
hyperparameter optimisation but the underly-
ing properties of datasets are discovered on an
ad-hoc basis as errors occur. However, under-
standing the properties of the data is crucial
in perfecting models. In this paper we anal-
yse exactly which characteristics of a dataset
best determine how difficult that dataset is for
the task of text classification. We then propose
an intuitive measure of difficulty for text clas-
sification datasets which is simple and fast to
calculate. We show that this measure gener-
alises to unseen data by comparing it to state-
of-the-art datasets and results. This measure
can be used to analyse the precise source of
errors in a dataset and allows fast estimation
of how difficult a dataset is to learn. We
searched for this measure by training 12 clas-
sical and neural network based models on 78
real-world datasets, then use a genetic algo-
rithm to discover the best measure of difficulty.
Our difficulty-calculating code1 and datasets2

are publicly available.

1 Introduction

If a machine learning (ML) model is trained on a
dataset then the same machine learning model on
the same dataset but with more granular labels will
frequently have lower performance scores than the
original model (see results in Zhang et al. (2015);
Socher et al. (2013a); Yogatama et al. (2017);
Joulin et al. (2016); Xiao and Cho (2016); Con-
neau et al. (2017)). Adding more granularity to
labels makes the dataset harder to learn - it in-
creases the dataset’s difficulty. It is obvious that
some datasets are more difficult for learning mod-
els than others, but is it possible to quantify this

1https://github.com/Wluper/edm
2http://data.wluper.com

difficulty? In order to do so, it would be neces-
sary to understand exactly what characteristics of
a dataset are good indicators of how well models
will perform on it so that these could be combined
into a single measure of difficulty.

Such a difficulty measure would be useful as an
analysis tool and as a performance estimator. As
an analysis tool, it would highlight precisely what
is causing difficulty in a dataset, reducing the time
practitioners need spend analysing their data. As
a performance estimator, when practitioners ap-
proach new datasets they would be able to use this
measure to predict how well models are likely to
perform on the dataset.

The complexity of datasets for ML has been
previously examined (Ho and Basu, 2002; Man-
silla and Ho, 2004; Bernadó-Mansilla and Ho,
2005; Maci et al., 2008), but these works focused
on analysing feature space data ∈ IRn. These
methods do not easily apply to natural language,
because they would require the language be em-
bedded into feature space in some way, for exam-
ple with a word embedding model which intro-
duces a dependency on the model used. We ex-
tend previous notions of difficulty to English lan-
guage text classification, an important component
of natural language processing (NLP) applicable
to tasks such as sentiment analysis, news cate-
gorisation and automatic summarisation (Socher
et al., 2013a; Antonellis et al., 2006; Collins et al.,
2017). All of our recommended calculations de-
pend only on counting the words in a dataset.

1.1 Related Work

One source of difficulty in a dataset is mislabelled
items of data (noise). Brodley and Friedl (1999)
showed that filtering noise could produce large
gains in model performance, potentially yielding
larger improvements than hyperparameter optimi-
sation (Smith et al., 2014). We ignored noise in

https://github.com/Wluper/edm
http://data.wluper.com
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this work because it can be reduced with proper
data cleaning and is not a part of the true signal
of the dataset. We identified four other areas of
potential difficulty which we attempt to measure:

Class Interference. Text classification tasks to
predict the 1 - 5 star rating of a review are more
difficult than predicting whether a review is posi-
tive or negative (Zhang et al., 2015; Socher et al.,
2013a; Yogatama et al., 2017; Joulin et al., 2016;
Xiao and Cho, 2016; Conneau et al., 2017), as re-
views given four stars share many features with
those given five stars. Gupta et al. (2014) de-
scribe how as the number of classes in a dataset
increases, so does the potential for ”confusabil-
ity” where it becomes difficult to tell classes apart,
therefore making a dataset more difficult. Previous
work has mostly focused on this confusability - or
class interference - as a source of difficulty in ma-
chine learning tasks (Bernadó-Mansilla and Ho,
2005; Ho and Basu, 2000, 2002; Elizondo et al.,
2009; Mansilla and Ho, 2004), a common tech-
nique being to compute a minimum spanning tree
on the data and count the number of edges which
link different classes.

Class Diversity. Class diversity provides infor-
mation about the composition of a dataset by mea-
suring the relative abundances of different classes
(Shannon, 2001). Intuitively, it gives a measure of
how well a model could do on a dataset without
examining any data items and always predicting
the most abundant class. Datasets with a single
overwhelming class are easy to achieve high accu-
racies on by always predicting the most abundant
class. A measure of diversity is one feature used
by Bingel and Søgaard (2017) to identify datasets
which would benefit from multi-task learning.

Class Balance. Unbalanced classes are a known
problem in machine learning (Chawla et al., 2004,
2002), particularly if classes are not easily separa-
ble (Japkowicz, 2000). Underrepresented classes
are more difficult to learn because models are not
exposed to them as often.

Data Complexity. Humans find some pieces of
text more difficult to comprehend than others.
How difficult a piece of text is to read can be
calculated automatically using measures such as
those proposed by Mc Laughlin (1969); Senter and
Smith (1967); Kincaid et al. (1975). If a piece of
text is more difficult for a human to read and un-

derstand, the same may be true for an ML model.

2 Method

We used 78 text classification datasets and trained
12 different ML algorithms on each of the datasets
for a total of 936 models trained. The highest
achieved macro F1 score (Powers, 2011), on the
test set for each model was recorded. Macro F1
score is used because it is valid under imbalanced
classes. We then calculated 48 different statis-
tics which attempt to measure our four hypothe-
sised areas of difficulty for each dataset. We then
needed to discover which statistic or combination
thereof correlated with model F1 scores.

We wanted the discovered difficulty measure to
be useful as an analysis tool, so we enforced a re-
striction that the difficulty measure should be com-
posed only by summation, without weighting the
constituent statistics. This meant that each diffi-
culty measure could be used as an analysis tool by
examining its components and comparing them to
the mean across all datasets.

Each difficulty measure was represented as a bi-
nary vector of length 48 - one bit for each statistic
- each bit being 1 if that statistic was used in the
difficulty measure. We therefore had 248 possible
different difficulty measures that may have corre-
lated with model score and needed to search this
space efficiently.

Genetic algorithms are biologically inspired
search algorithms and are good at searching large
spaces efficiently (Whitley, 1994). They maintain
a population of candidate difficulty measures and
combine them based on their ”fitness” - how well
they correlate with model scores - so that each
”parent” can pass on pieces of information about
the search space (Jiao and Wang, 2000). Using a
genetic algorithm, we efficiently discovered which
of the possible combinations of statistics corre-
lated with model performance.

2.1 Datasets

We gathered 27 real-world text classification
datasets from public sources, summarised in Table
1; full descriptions are in Appendix A.

We created 51 more datasets by taking two or
more of the original 27 datasets and combining
all of the data points from each into one dataset.
The label for each data item was the name of the
dataset which the text originally came from. We
combined similar datasets in this way, for example
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Dataset Name Num. Class. Train Size Valid Size Test Size
AG’s News (Zhang et al., 2015) 4 108000 12000 7600
Airline Twitter Sentiment (FigureEight, 2018) 3 12444 - 2196
ATIS (Price, 1990) 26 9956 - 893
Corporate Messaging (FigureEight, 2018) 4 2650 - 468
ClassicLit 4 40489 5784 11569
DBPedia (wiki.dbpedia.org, 2015) 14 50400 5600 7000
Deflategate (FigureEight, 2018) 5 8250 1178 2358
Disaster Tweets (FigureEight, 2018) 2 7597 1085 2172
Economic News Relevance (FigureEight, 2018) 2 5593 799 1599
Grammar and Product Reviews (Datafiniti, 2018) 5 49730 7105 14209
Hate Speech (Davidson et al., 2017) 3 17348 2478 4957
Large Movie Review Corpus (Maas et al., 2011) 2 35000 5000 10000
London Restaurant Reviews (TripAdvisor3) 5 12056 1722 3445
New Year’s Tweets (FigureEight, 2018) 10 3507 501 1003
New Year’s Tweets (FigureEight, 2018) 115 3507 501 1003
Paper Sent. Classification (archive.ics.uci.edu, 2018) 5 2181 311 625
Political Social Media (FigureEight, 2018) 9 3500 500 1000
Question Classification (Li and Roth, 2002) 6 4906 546 500
Review Sentiments (Kotzias et al., 2015) 2 2100 300 600
Self Driving Car Sentiment (FigureEight, 2018) 6 6082 - 1074
SMS Spam Collection (Almeida and Hidalgo, 2011) 2 3901 558 1115
SNIPS Intent Classification (Coucke, 2017) 7 13784 - 700
Stanford Sentiment Treebank (Socher et al., 2013a) 3 236076 1100 2210
Stanford Sentiment Treebank (Socher et al., 2013a) 2 117220 872 1821
Text Emotion (FigureEight, 2018) 13 34000 - 6000
Yelp Reviews (Yelp.com, 2018) 5 29250 3250 2500
YouTube Spam (Alberto et al., 2015) 2 1363 194 391

Table 1: The 27 different publicly available datasets we gathered with references.

two different datasets of tweets, so that the classes
would not be trivially distinguishable - there is no
dataset to classify text as either a tweet or Shake-
speare for example as this would be too easy for
models. The full list of combined datasets is in
Appendix A.2.

Our datasets focus on short text classification by
limiting each data item to 100 words. We demon-
strate that the difficulty measure we discover with
this setup generalises to longer text classification
in Section 3.1. All datasets were lowercase with
no punctuation. For datasets with no validation
set, 15% of the training set was randomly sampled
as a validation set at runtime.

2.2 Dataset Statistics

We calculated 12 distinct statistics with differ-
ent n-gram sizes to produce 48 statistics of each
dataset. These statistics are designed to increase in
value as difficulty increases. The 12 statistics are
described here and a listing of the full 48 is in Ap-
pendix B in Table 5. We used n-gram sizes from
unigrams up to 5-grams and recorded the average
of each statistic over all n-gram sizes. All proba-
bility distributions were count-based - the proba-
bility of a particular n-gram / class / character was
the count of occurrences of that particular entity

divided by the total count of all entities.

2.2.1 Class Diversity
We recorded the Shannon Diversity Index and
its normalised variant the Shannon Equitability
(Shannon, 2001) using the count-based probabil-
ity distribution of classes described above.

2.2.2 Class Balance
We propose a simple measure of class imbalance:

Imbal =

C∑
c=1

∣∣∣∣ 1C − nc

TDATA

∣∣∣∣ (1)

C is the total number of classes, nc is the count
of items in class c and TDATA is the total number
of data points. This statistic is 0 if there are an
equal number of data points in every class and the
upper bound is 2

(
1− 1

C

)
and is achieved when

one class has all the data points - a proof is given
in Appendix B.2.

2.2.3 Class Interference
Per-class probability distributions were calculated
by splitting the dataset into subsets based on the
class of each data point and then computing count-
based probability distributions as described above
for each subset.
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Hellinger Similarity One minus both the aver-
age and minimum Hellinger Distance (Le Cam
and Yang, 2012) between each pair of classes.
Hellinger Distance is 0 if two probability distri-
butions are identical so we subtract this from 1
to give a higher score when two classes are sim-
ilar giving the Hellinger Similarity. One minus
the minimum Hellinger Distance is the maximum
Hellinger Similarity between classes.

Top N-Gram Interference Average Jaccard
similarity (Jaccard, 1912) between the set of the
top 10 most frequent n-grams from each class. N-
grams entirely composed of stopwords were ig-
nored.

Mutual Information Average mutual informa-
tion (Cover and Thomas, 2012) score between the
set of the top 10 most frequent n-grams from each
class. N-grams entirely composed of stopwords
were ignored.

2.2.4 Data Complexity
Distinct n-grams : Total n-grams Count of dis-
tinct n-grams in a dataset divided by the total num-
ber of n-grams. Score of 1 indicates that each n-
gram occurs once in the dataset.

Inverse Flesch Reading Ease The Flesch Read-
ing Ease (FRE) formula grades text from 100 to 0,
100 indicating most readable and 0 indicating dif-
ficult to read (Kincaid et al., 1975). We take the
reciprocal of this measure.

N-Gram and Character Diversity Using the
Shannon Index and Equitability described by
Shannon (2001) we calculate the diversity and eq-
uitability of n-grams and characters. Probability
distributions are count-based as described at the
start of this section.

2.3 Models
To ensure that any discovered measures did not
depend on which model was used (i.e. that they
were model agnostic), we trained 12 models on ev-
ery dataset. The models are summarised in Table
2. Hyperparameters were not optimised and were
identical across all datasets. Specific implemen-
tation details of the models are described in Ap-
pendix C. Models were evaluated using the macro
F1-Score. These models used three different rep-
resentations of text to learn from to ensure that the
discovered difficulty measure did not depend on
the representation. These are:

Word Embeddings Our neural network mod-
els excluding the Convolutional Neural Net-
work (CNN) used 128-dimensional FastText (Bo-
janowski et al., 2016) embeddings trained on the
One Billion Word corpus (Chelba et al., 2013)
which provided an open vocabulary across the
datasets.

Term Frequency Inverse Document Frequency
(tf-idf) Our classical machine learning mod-
els represented each data item as a tf-idf vector
(Ramos et al., 2003). This vector has one entry
for each word in the vocab and if a word occurs in
a data item, then that position in the vector is the
word’s tf-idf score.

Characters Our CNN, inspired by Zhang et al.
(2015), sees only the characters of each data item.
Each character is assigned an ID and the list of IDs
is fed into the network.

2.4 Genetic Algorithm

The genetic algorithm maintains a population of
candidate difficulty measures, each being a binary
vector of length 48 (see start of Method section).
At each time step, it will evaluate each member
of the population using a fitness function. It will
then select pairs of parents based on their fitness,
and perform crossover and mutation on each pair
to produce a new child difficulty measure, which
is added to the next population. This process is
iterated until the fitness in the population no longer
improves.

Population The genetic algorithm is non-
randomly initialised with the 48 statistics de-
scribed in Section 2.2 - each one is a difficulty
measure composed of a single statistic. 400 pairs
of parents are sampled with replacement from
each population, so populations after this first time
step will consist of 200 candidate measures. The
probability of a measure being selected as a parent
is proportional to its fitness.

Fitness Function The fitness function of each
difficulty measure is based on the Pearson corre-
lation (Benesty et al., 2009). Firstly, the Pearson
correlation between the difficulty measure and the
model test set score is calculated for each individ-
ual model. The Harmonic mean of the correlations
of each model is then taken, yielding the fitness of
that difficulty measure. Harmonic mean is used
because it is dominated by its lowest constituents,
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Word Embedding Based tf-idf Based Character Based
LSTM-RNN Adaboost 3 layer CNN
GRU-RNN Gaussian Naive Bayes (GNB) -
Bidirectional LSTM-RNN 5-Nearest Neighbors -
Bidirectional GRU-RNN (Multinomial) Logistic Regression -
Multilayer Perceptron (MLP) Random Forest -
- Support Vector Machine -

Table 2: Models summary organised by which input type they use.

so if it is high then correlation must be high for
every model.

Crossover and Mutation To produce a new dif-
ficulty measure from two parents, the constituent
statistics of each parent are randomly intermin-
gled, allowing each parent to pass on information
about the search space. This is done in the follow-
ing way: for each of the 48 statistics, one of the
two parents is randomly selected and if the parent
uses that statistic, the child also does. This pro-
duces a child which has features of both parents.
To introduce more stochasticity to the process and
ensure that the algorithm does not get trapped in
a local minima of fitness, the child is mutated.
Mutation is performed by randomly adding or tak-
ing away each of the 48 statistics with probability
0.01. After this process, the child difficulty mea-
sure is added to the new population.

Training The process of calculating fitness, se-
lecting parents and creating child difficulty mea-
sures is iterated until there has been no improve-
ment in fitness for 15 generations. Due to the
stochasticity in the process, we run the whole evo-
lution 50 times. We run 11 different variants of
this evolution, leaving out different statistics of the
dataset each time to test which are most impor-
tant in finding a good difficulty measure, in total
running 550 evolutions. Training time is fast, av-
eraging 79 seconds per evolution with a standard
deviation of 25 seconds, determined over 50 runs
of the algorithm on a single CPU.

3 Results and Discussion

The four hypothesized areas of difficulty - Class
Diversity, Balance and Interference and Data
Complexity - combined give a model agnostic
measure of difficulty. All runs of the genetic al-
gorithm produced different combinations of statis-
tics which had strong negative correlation with
model scores on the 78 datasets. The mean cor-
relation was −0.8795 and the standard deviation

was 0.0046. Of the measures found through evo-
lution we present two of particular interest:

1. D1: Distinct Unigrams : Total Unigrams +
Class Imbalance + Class Diversity + Top
5-Gram Interference + Maximum Unigram
Hellinger Similarity + Unigram Mutual Info.
This measure achieves the highest correlation
of all measures at −0.8845.

2. D2: Distinct Unigrams : Total Unigrams +
Class Imbalance + Class Diversity + Max-
imum Unigram Hellinger Similarity + Uni-
gram Mutual Info. This measure is the short-
est measure which achieves a higher correla-
tion than the mean, at−0.8814. This measure
is plotted against model F1 scores in Figure 1.

Figure 1: Model F1 scores against difficulty measure
D2 for each of the three input types.

We perform detailed analysis on difficulty mea-
sure D2 because it relies only on the words of the
dataset and requires just five statistics. This sim-
plicity makes it interpretable and fast to calculate.
All difficulty measures which achieved a correla-
tion better than −0.88 are listed in Appendix D,
where Figure 3 also visualises how often each met-
ric was selected.
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Model AG Sogou Yelp
P.

Yelp
F.

DBP Yah
A.

Amz.
P.

Amz.
F.

Corr.

D2 3.29 3.77 3.59 4.42 3.50 4.51 3.29 4.32 -
char-CNN (Zhang et al., 2015) 87.2 95.1 94.7 62 98.3 71.2l 95.1 59.6 -0.86
Bag of Words (Zhang et al.,
2015)

88.8 92.9 92.2 57.9 96.6 68.9 90.4 54.6 -0.87

Discrim. LSTM (Yogatama
et al., 2017)

92.1 94.9 92.6 59.6 98.7 73.7 - - -0.87

Genertv. LSTM (Yogatama
et al., 2017)

90.6 90.3 88.2 52.7 95.4 69.3 - - -0.88

Kneser-Ney Bayes (Yogatama
et al., 2017)

89.3 94.6 81.8 41.7 95.4 69.3 - - -0.79

FastText Lin. Class. (Joulin
et al., 2016)

91.5 93.9 93.8 60.4 98.1 72 91.2 55.8 -0.86

Char CRNN (Xiao and Cho,
2016)

91.4 95.2 94.5 61.8 98.6 71.7 94.1 59.2 -0.88

VDCNN (Conneau et al., 2017) 91.3 96.8 95.7 64.7 98.7 73.4 95.7 63 -0.88
Harmonic Mean -0.86

Table 3: Difficulty measure D2 compared to recent results from papers on large-scale text classification. The
correlation column reports the correlation between difficulty measure D2 and the model scores for that row.

3.1 Does it Generalise?

A difficulty measure is useful as an analysis and
performance estimation tool if it is model agnos-
tic and provides an accurate difficulty estimate on
unseen datasets.

When running the evolution, the F1 scores of
our character-level CNN were not observed by
the genetic algorithm. If the discovered difficulty
measure still correlated with the CNN’s scores de-
spite never having seen them during evolution, it
is more likely to be model agnostic. The CNN has
a different model architecture to the other mod-
els and has a different input type which encodes
no prior knowledge (as word embeddings do) or
contextual information about the dataset (as tf-idf
does). D1 has a correlation of −0.9010 with the
CNN and D2 has a correlation of −0.8974 which
suggests that both of our presented measures do
not depend on what model was used.

One of the limitations of our method was that
our models never saw text that was longer than 100
words and were never trained on any very large
datasets (i.e. >1 million data points). We also per-
formed no hyperparameter optimisation and did
not use state-of-the-art models. To test whether
our measure generalises to large datasets with text
longer than 100 words, we compared it to some
recent state-of-the-art results in text classification
using the eight datasets described by Zhang et al.
(2015). These results are presented in Table 3 and
highlight several important findings.

The Difficulty Measure Generalises to Very
Large Datasets and Long Data Items. The

smallest of the eight datasets described by Zhang
et al. (2015) has 120 000 data points and the
largest has 3.6 million. As D2 still has a strong
negative correlation with model score on these
datasets, it seems to generalise to large datasets.
Furthermore, these large datasets do not have an
upper limit of data item length (the mean data
item length in Yahoo Answers is 520 words), yet
D2 still has strong negative correlation with model
score, showing that it does not depend on data item
length.

The Difficulty Measure is Model and Input
Type Agnostic. The state-of-the-art models pre-
sented in Table 3 have undergone hyperparame-
ter optimisation and use different input types in-
cluding per-word learned embeddings (Yogatama
et al., 2017), n-grams, characters and n-gram em-
beddings (Joulin et al., 2016). As D2 still has
a strong negative correlation with these models’
scores, we can conclude that it has accurately mea-
sured the difficulty of a dataset in a way that is
useful regardless of which model is used.

The Difficulty Measure Lacks Precision. The
average score achieved on the Yahoo Answers
dataset is 69.9% and its difficulty is 4.51. The av-
erage score achieved on Yelp Full is 56.8%, 13.1%
less than Yahoo Answers and its difficulty is 4.42.
In ML terms, a difference of 13% is significant
yet our difficulty measure assigns a higher diffi-
culty to the easier dataset. However, Yahoo An-
swers, Yelp Full and Amazon Full, the only three
of Zhang et al. (2015)’s datasets for which the
state-of-the-art is less than 90%, all have difficulty
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scores > 4, whereas the five datasets with scores
> 90% all have difficulty scores between 3 and
4. This indicates that the difficulty measure in its
current incarnation may be more effective at as-
signing a class of difficulty to datasets, rather than
a regression-like value.

3.2 Difficulty Measure as an Analysis Tool

Statistic Mean Sigma
Distinct Words : Total Words 0.0666 0.0528
Class Imbalance 0.503 0.365
Class Diversity 0.905 0.759
Max. Unigram Hellinger Similarity 0.554 0.165
Top Unigram Mutual Info 1.23 0.430

Table 4: Means and standard deviations of the con-
stituent statistics of difficulty measure D2 across the
78 datasets from this paper and the eight datasets from
Zhang et al. (2015).

As our difficulty measure has no dependence
on learned weightings or complex combinations of
statistics - only addition - it can be used to analyse
the sources of difficulty in a dataset directly. To
demonstrate, consider the following dataset:

Stanford Sentiment Treebank Binary Classifi-
cation (SST 2) (Socher et al., 2013b) SST is a
dataset of movie reviews for which the task is to
classify the sentiment of each review. The current
state-of-the-art accuracy is 91.8% (Radford et al.,
2017).

Figure 2: Constituents of difficulty measure D2 for
SST, compared to the mean across all datasets.

Figure 2 shows the values of the constituent statis-
tics of difficulty measure D2 for SST and the mean
values across all datasets. The mean (right bar)

also includes an error bar showing the standard de-
viation of statistic values. The exact values of the
means and standard deviations for each statistic in
measure D2 are shown in Table 4.

Figure 2 shows that for SST 2 the Mutual Infor-
mation is more than one standard deviation higher
than the mean. A high mutual information score
indicates that reviews have both positive and neg-
ative features. For example, consider this review:
”de niro and mcdormand give solid performances
but their screen time is sabotaged by the story s in-
ability to create interest” which is labelled ”pos-
itive”. There is a positive feature referring to the
actors’ performances and a negative one referring
to the plot. A solution to this would be to treat the
classification as a multi-label problem where each
item can have more than one class, although this
would require that the data be relabelled by hand.
An alternate solution would be to split reviews like
this into two separate ones: one with the positive
component and one with the negative.

Furthermore, Figure 2 shows that the Max.
Hellinger Similarity is higher than average for
SST 2, indicating that the two classes use simi-
lar words. Sarcastic reviews use positive words to
convey a negative sentiment (Maynard and Green-
wood, 2014) and could contribute to this higher
value, as could mislabelled items of data. Both
of these things portray one class with features of
the other - sarcasm by using positive words with
a negative tone and noise because positive exam-
ples are labelled as negative and vice versa. This
kind of difficulty can be most effectively reduced
by filtering noise (Smith et al., 2014).

To show that our analysis with this difficulty
measure was accurately observing the difficulty in
SST, we randomly sampled and analysed 100 mis-
classified data points from SST’s test set out of 150
total misclassified. Of these 100, 48 were reviews
with both strong positive and negative features and
would be difficult for a human to classify, 22 were
sarcastic and 8 were mislabelled. The remaining
22 could be easily classified by a human and are
misclassified due to errors in the model rather than
the data items themselves being difficult to inter-
pret. These findings show that our difficulty mea-
sure correctly determined the source of difficulty
in SST because 78% of the errors are implied by
our difficulty measure and the remaining 22% are
due to errors in the model itself, not difficulty in
the dataset.
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3.3 The Important Areas of Difficulty

We hypothesized that the difficulty of a dataset
would be determined by four areas not including
noise: Class Diversity, Class Balance, Class Inter-
ference and Text Complexity. We performed mul-
tiple runs of the genetic algorithm, leaving statis-
tics out each time to test which were most impor-
tant in finding a good difficulty measure which re-
sulted in the following findings:

No Single Characteristic Describes Difficulty
When the Class Diversity statistic was left out
of evolution, the highest achieved correlation was
−0.806, 9% lower than D1 and D2. However,
on its own Class Diversity had a correlation of
−0.644 with model performance. Clearly, Class
Diversity is necessary but not sufficient to estimate
dataset difficulty. Furthermore, when all measures
of Class Diversity and Balance were excluded,
the highest achieved correlation was −0.733 and
when all measures of Class Interference were ex-
cluded the best correlation was −0.727. These
three expected areas of difficulty - Class Diversity,
Balance and Interference - must all be measured to
get an accurate estimate of difficulty because ex-
cluding any of them significantly damages the cor-
relation that can be found. Correlations for each
individual statistic are in Table 6, in Appendix D.

Data Complexity Has Little Affect on Diffi-
culty Excluding all measures of Data Complex-
ity from evolution yielded an average correlation
of −0.869, only 1% lower than the average when
all statistics were included. Furthermore, the only
measure of Data Complexity present in D1 and D2
is Distinct Words : Total Words which has a mean
value of 0.067 and therefore contributes very little
to the difficulty measure. This shows that while
Data Complexity is necessary to achieve top cor-
relation, its significance is minimal in comparison
to the other areas of difficulty.

3.4 Error Analysis

3.4.1 Overpowering Class Diversity
When a dataset has a large number of balanced
classes, then Class Diversity dominates the mea-
sure. This means that the difficulty measure is not
a useful performance estimator for such datasets.

To illustrate this, we created several fake
datasets with 1000, 100, 50 and 25 classes. Each
dataset had 1000 copies of the same randomly
generated string in each class. It was easy for mod-

els to overfit and score a 100% F1 score on these
fake datasets.

For the 1000-class fake data, Class Diversity is
6.91, which by our difficulty measure would indi-
cate that the dataset is extremely difficult. How-
ever, all models easily achieve a 100% F1 score.
By testing on these fake datasets, we found that the
limit for the number of classes before Class Diver-
sity dominates the difficulty measure and renders
it inaccurate is approximately 25. Any datasets
with more than 25 classes with an approximately
equal number of items per class will be predicted
as difficult regardless of whether they actually are
because of this diversity measure.

Datasets with more than 25 unbalanced classes
are still measured accurately. For example, the
ATIS dataset (Price, 1990) has 26 classes but be-
cause some of them have only 1 or 2 data items,
it is not dominated by Class Diversity. Even when
the difficulty measure is dominated by Class Di-
versity, examining the components of the difficulty
measure independently would still be useful as an
analysis tool.

3.4.2 Exclusion of Useful Statistics

One of our datasets of New Year’s Resolution
Tweets has 115 classes but only 3507 data points
(FigureEight, 2018). An ML practitioner knows
from the number of classes and data points alone
that this is likely to be a difficult dataset for an ML
model.

Our genetic algorithm, based on an unweighted,
linear sum, cannot take statistics like data size into
account currently because they do not have a con-
venient range of values; the number of data points
in a dataset can vary from several hundred to sev-
eral million. However, the information is still use-
ful to practitioners in diagnosing the difficulty of a
dataset.

Given that the difficulty measure lacks precision
and may be better suited to classification than re-
gression as discussed in Section 3.1, cannot take
account of statistics without a convenient range
of values and that the difficulty measure must be
interpretable, we suggest that future work could
look at combining statistics with a white-box, non-
linear algorithm like a decision tree. As opposed
to summation, such a combination could take ac-
count of statistics with different value ranges and
perform either classification or regression while
remaining interpretable.
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3.5 How to Reduce the Difficulty Measure
Here we present some general guidelines on how
the four areas of difficulty can be reduced.

Class Diversity can only be sensibly reduced by
lowering the number of classes, for example by
grouping classes under superclasses. In academic
settings where this is not possible, hierarchical
learning allows grouping of classes but will pro-
duce granular labels at the lowest level (Kowsari
et al., 2017). Ensuring a large quantity of data in
each class will also help models to better learn the
features of each class.

Class Interference is influenced by the amount
of noise in the data and linguistic phenomena like
sarcasm. It can also be affected by the way the data
is labelled, for example as shown in Section 3.2
where SST has data points with both positive and
negative features but only a single label. Filtering
noise, restructuring or relabelling ambiguous data
points and detecting phenomena like sarcasm will
help to reduce class interference. Easily confused
classes can also be grouped under one superclass
if practitioners are willing to sacrifice granularity
to gain performance.

Class Imbalance can be addressed with data
augmentation such as thesaurus based methods
(Zhang et al., 2015) or word embedding perturba-
tion (Zhang and Yang, 2018). Under- and over-
sampling can also be utilised (Chawla et al., 2002)
or more data gathered. Another option is transfer
learning where knowledge from high data domains
can be transferred to those with little data (Jaech
et al., 2016).

Data Complexity can be managed with large
amounts of data. This need not necessarily be la-
belled - unsupervised pre-training can help mod-
els understand the form of complex data before
attempting to use it (Halevy et al., 2009). Cur-
riculum learning may also have a similar effect to
pre-training (Bengio et al., 2009).

3.6 Other Applications of the Measure
Model Selection Once the difficulty of a dataset
has been calculated, a practitioner can use this to
decide whether they need a complex or simple
model to learn the data.

Performance Checking and Prediction Practi-
tioners will be able to compare the results their
models get to the scores of other models on
datasets of an equivalent difficulty. If their mod-
els achieve lower results than what is expected ac-

cording to the difficulty measure, then this could
indicate a problem with the model.

4 Conclusion

When their models do not achieve good results,
ML practitioners could potentially calculate thou-
sands of statistics to see what aspects of their
datasets are stopping their models from learning.
Given this, how do practitioners tell which statis-
tics are the most useful to calculate? Which ones
will tell them the most? What changes could they
make which will produce the biggest increase in
model performance?

In this work, we have presented two measures of
text classification dataset difficulty which can be
used as analysis tools and performance estimators.
We have shown that these measures generalise to
unseen datasets. Our recommended measure can
be calculated simply by counting the words and
labels of a dataset and is formed by adding five
different, unweighted statistics together. As the
difficulty measure is an unweighted sum, its com-
ponents can be examined individually to analyse
the sources of difficulty in a dataset.

There are two main benefits to this difficulty
measure. Firstly, it will reduce the time that
practitioners need to spend analysing their data
in order to improve model scores. As we have
demonstrated which statistics are most indicative
of dataset difficulty, practitioners need only calcu-
late these to discover the sources of difficulty in
their data. Secondly, the difficulty measure can
be used as a performance estimator. When practi-
tioners approach new tasks they need only calcu-
late these simple statistics in order to estimate how
well models are likely to perform.

Furthermore, this work has shown that for text
classification the areas of Class Diversity, Balance
and Interference are essential to measure in order
to understand difficulty. Data Complexity is also
important, but to a lesser extent.

Future work should firstly experiment with non-
linear but interpretable methods of combining
statistics into a difficulty measure such as deci-
sion trees. Furthermore, it should apply this dif-
ficulty measure to other NLP tasks that may re-
quire deeper linguistic knowledge than text clas-
sification, such as named entity recognition and
parsing. Such tasks may require more advanced
features than simple word counts as were used in
this work.
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