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Abstract

Timeline summarization (TLS) creates an
overview of long-running events via dated
daily summaries for the most important dates.
TLS differs from standard multi-document
summarization (MDS) in the importance of
date selection, interdependencies between
summaries of different dates and by having
very short summaries compared to the num-
ber of corpus documents. However, we show
that MDS optimization models using submod-
ular functions can be adapted to yield well-
performing TLS models by designing objec-
tive functions and constraints that model the
temporal dimension inherent in TLS. Impor-
tantly, these adaptations retain the elegance
and advantages of the original MDS mod-
els (clear separation of features and inference,
performance guarantees and scalability, little
need for supervision) that current TLS-specific
models lack. An open-source implementation
of the framework and all models described in
this paper is available online.1

1 Introduction

There is an abundance of reports on events, crises
and disasters. Timelines (see Table 1) summarize
and date these reports in an ordered overview. Au-
tomatic Timeline Summarization (TLS) constructs
such timelines from corpora that contain articles
about the corresponding event.

In contrast to standard multi-document sum-
marization (MDS), in TLS we need to explic-
itly model the temporal dimension of the task,
specifically we need to select the most important
dates for a long-running event and summarize each
of these dates. In addition, TLS deals with a
much larger number of documents to summarize,

∗Work conducted while the author was a researcher at
the Institute of Computational Linguistics, Heidelberg Uni-
versity.

1http://smartschat.de/software

2011-03-16
Security forces break up a gathering in Marjeh Square in
Damascus of 150 protesters holding pictures of imprisoned
relatives. Witnesses say 30 people are arrested.
2011-03-24
President Bashar al-Assad orders the formation of a com-
mittee to study how to raise living standards and lift the law
covering emergency rule, in place for 48 years.
2011-03-29
Government resigns.

Table 1: Excerpt from a Syrian War Reuters timeline.

enhancing scalability and redundancy problems.
These differences have significant consequences
for constraints, objectives, compression rates and
scalability (see Section 2.2).

Due to these differences, most work on TLS
has been separate from the MDS community.2 In-
stead, approaches to TLS start from scratch, opti-
mizing task-specific heuristic criteria (Chieu and
Lee, 2004; Yan et al., 2011b; Wang et al., 2016,
inter alia), often with manually determined param-
eters (Chieu and Lee, 2004; Yan et al., 2011b) or
needing supervision (Wang et al., 2016). As fea-
tures and architectures are rarely reused or indeed
separated from each other, it is difficult to assess
reported improvements. Moreover, none of these
approaches give performance guarantees for the
task, which are possible in MDS models based on
function optimization (McDonald, 2007; Lin and
Bilmes, 2011) that yield state-of-the art models for
MDS (Hong et al., 2014; Hirao et al., 2017).

In this paper we take a step back from the dif-
ferences between MDS and TLS and consider the
following question: Can MDS optimization mod-
els be expanded to yield scalable, well-performing
TLS models that take into account the temporal
properties of TLS, while keeping MDS advantages

2The TLS systems in (Yan et al., 2011b; Tran et al.,
2013a) are compared to some simple MDS systems as base-
lines, but not to state-of-the art ones.

http://smartschat.de/software
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such as modularity and performance guarantees?
In particular, we make the following contributions:
• We adapt the submodular function model of

Lin and Bilmes (2011) to TLS (Section 3).
This framework is scalable and modular, al-
lowing a “plug-and-play” approach for dif-
ferent submodular functions. It needs little
supervision or parameter tuning. We show
that even this straightforward MDS adapta-
tion equals or outperforms two strong TLS
baselines on two corpora for most metrics.
• We modify the MDS-based objective func-

tion by adding temporal criteria that take
date selection and interdependencies between
daily summaries into account (Section 4).
• We then add more complex temporal con-

straints, going beyond the simple cardinal-
ity constraints in MDS (Section 5). These
new constraints specify the uniformity of the
timeline daily summaries and date distribu-
tion. We also give the first performance guar-
antees for TLS using these constraints.
• We propose a TLS evaluation framework, in

which we study the effect of temporal objec-
tive functions and constraints. We show per-
formance improvements of our temporaliza-
tions (Section 6). We also present the first or-
acle upper bounds for the problem and study
the impact that timeline properties, such as
compression rates, have on performance.

2 Timeline Summarization

Given a query (such as Syrian war) TLS needs to
(i) extract the most important events for the query
and their corresponding dates and (ii) obtain con-
cise daily summaries for each selected date (Al-
lan et al., 2001; Chieu and Lee, 2004; Yan et al.,
2011b; Tran et al., 2015a; Wang et al., 2016).

2.1 Task Definition and Notation

A timeline is a sequence (d1, v1), . . . , (dk, vk)
where the di are dates and the vi are summaries
for the dates di. Given are a query q and an asso-
ciated corpus C that contains documents relevant
to the query. The task of timeline summarization
is to generate a timeline t based on C. The num-
ber of dates in t as well as the length of the daily
summaries are typically controlled by the user.

We denote with U the set of sentences in C. We
assume that each sentence in U is dated (either by
a date expression appearing in the sentence or by

the publication date of the article it appears in).
For a sentence s we write d(s) for the date of s.

2.2 Relation to MDS

In MDS, we also need to generate a (length-
limited) summary of texts in a corpus C (with an
optional query q used to retrieve the corpus). In
the traditional DUC multi-document summariza-
tion tasks3, most tasks are either not event-based at
all or concentrate on one single event. In contrast,
in TLS, the corpus describes an event that consists
of several subevents that happen on different days.

This difference has substantial effects. In MDS,
criteria (such as coverage and diversity) and length
constraints apply on a global level. In TLS, the
whole summary is naturally divided into per-day
summaries. Criteria and constraints apply on a
global level as well as on a per-day level.

Even for the small number of DUC tasks that
do focus on longer-running events, several differ-
ences to TLS still hold. First, the temporal dimen-
sion in the DUC gold standard summaries and sys-
tem outputs is playing a minor role, with few ex-
plicit datings of events and a non-temporal struc-
ture of the output, leading again to the above-
mentioned differences in constraints and criteria.
The ROUGE evaluation measures used in MDS
(Lin, 2004) also do not take into account temporal-
ity and do not explicitly penalize wrong datings.
Second, corpora in TLS typically contain thou-
sands of documents per query (Tran et al., 2013b,
2015a). This is magnitudes larger than the cor-
pora usually considered for MDS (Over and Yen,
2004). This leads to a low compression rate4 and
requires approaches to be scalable.

3 Casting TLS as MDS

In the introduction, we identified several issues in
existing TLS research, including lack of modular-
ity, insufficient separation between features and
model, and the lack of performance guarantees.
Global constrained optimization frameworks used
in MDS (McDonald, 2007; Lin and Bilmes, 2011)
do separate constraints, features and inference and
allow for optimal solutions or solutions with per-
formance guarantees. They also can be used in an
unsupervised manner. We now cast TLS as MDS,
employing constraints and criteria used for stan-

3https://duc.nist.gov/
4Compression rate is the length of the summary divided

by the length of the source (Radev et al., 2004).

https://duc.nist.gov/
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dard MDS (Lin and Bilmes, 2011). While this ig-
nores the temporal dimension of TLS, it will give
us a baseline and a starting point for systematically
incorporating temporal information.

3.1 Problem Statement and Inference
We can understand summarization as an optimiza-
tion of an objective function that evaluates sets of
sentences over constraints. Hence, let U be a set
of sentences in a corpus and let f : 2U → R≥0 be
a function that measures the quality of a summary.
Let I ⊆ {X | X ∈ 2U} be a set of constraints5.
We then consider the optimization problem

S∗ = argmax
S⊆U,S∈I

f(S). (1)

Solving Equation 1 exactly does not scale well
(McDonald, 2007) and is therefore inappropriate
for the large-scale data used in TLS. The greedy
Algorithm 1 that iteratively constructs an output
solves the equation approximately (also used in
McDonald (2007) and Lin and Bilmes (2011)).

Algorithm 1 Greedy algorithm.
Input: A set of sentences U , a function f , a set of

constraints I
function GREEDY(U , f , I)

Set S = ∅, K = U
while K 6= ∅ do

s = argmaxt∈K f(S ∪ {t})− f(S)
if S ∪ {s} ∈ I then

S = S ∪ {s}
K = K \ {s}

Output: A summary S

3.2 Monotonicity and Submodularity
The results obtained by GREEDY can be arbitrarily
bad. However, there are performance guarantees if
the objective function f and the constraints I are
“sufficiently nice” (Calinescu et al., 2011). Many
results rely on objective functions that are mono-
tone and submodular. A function f is monotone if
A ⊆ B implies that f(A) ≤ f(B). A function f is
submodular if it possesses a “diminishing returns
property”, i.e. if for A ⊆ B ⊂ U and v ∈ U \ B
we have f(A∪{v})−f(A) ≥ f(B∪{v})−f(B).

From now on we assume that the function f is
of the form f ≡

∑m
i=1 fi with monotone submod-

5An example are length constraints, which can be ex-
pressed as I = {X | |X| ≤ m,X ∈ 2U} for some m.

ular fi : U → [0, 1] (i ∈ {1, . . . ,m}). We normal-
ize all fi to [0, 1]. By closure properties of mono-
tonicity and submodularity, f is also submodular.

3.3 MDS Constraints

Constraints help to define a summary’s struc-
ture, and the performance guarantee of the greedy
algorithm depends on them. In MDS, typi-
cal constraints are upper bounds in the num-
ber of sentences or words, corresponding to car-
dinality (|S| ≤ m) or knapsack constraints
(
∑

s∈S |words(s)| ≤ m) for some upper bound m.
When optimizing a submodular monotone func-
tion under such constraints, GREEDY has a per-
formance guarantee of ≈ 0.63 and ≈ 0.39 re-
spectively (Calinescu et al., 2011; Lin and Bilmes,
2011). That is, for cardinality constraints, the out-
put is at least 0.63 as good as the optimal solution
in terms of objective function value.

3.4 MDS Objective Functions

In MDS, approaches typically try to maximize
coverage and diversity. In its simplest form, Lin
and Bilmes (2011) model coverage as

fCov(S) =
∑
s∈S

∑
v∈U

sim(s, v), (2)

where sim : U×U → R≥0 is a sentence similarity
function, e.g. cosine of word vectors.

Lin and Bilmes (2011) model diversity via

fDiv(S) =
k∑

i=1

√ ∑
s∈Pi∩S

r(s) (3)

where P1, . . . , Pk is a partition of U (e.g. obtained
by semantic clustering) and r : U → R≥0 is a sin-
gleton reward function. We get diminished reward
for adding additional sentences from one cluster.

3.5 Application to TLS

Applying this MDS model to TLS as-is may not
be adequate. For example, since the length con-
straints only limit the total number of sentences,
some days in the timeline could be overrepre-
sented. Furthermore, if objective functions ignore
temporal information, we may not be able to ex-
tract sentences that describe very important events
lasting only for short time periods. Instead, nat-
ural units for TLS are both the whole timeline as
well as individual dates, so criteria and constraints
for TLS should accommodate both units.
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4 Temporalizing Objective Functions

We now systematically add temporal information
to the objective function by (i) temporalizing cov-
erage functions, (ii) temporalizing diversity func-
tions, and (iii) adding date selection functions. We
prove the monotonicity and submodularity of all
functions in the supplementary material.

4.1 Temporalizing Coverage

MDS coverage functions (Equation 2) ignore
temporal information, computing coverage on a
corpus-wide level. We temporalize them by mod-
ifying the similarity computation. This is a mini-
mal but fundamental modification. Previous work
in TLS noted that coverage for candidate sum-
maries for a day d should look mainly at the
temporally local neighborhood, i.e. at sentences
whose dates are close to d (Chieu and Lee, 2004;
Yan et al., 2011b). We investigate two variants of
this idea. The first uses a hard cutoff (Chieu and
Lee, 2004), restricting similarity computations to
sentences that are at most p days apart:

simp(s, t) =

{
sim(s, t) |d(s)− d(t)| ≤ p

0 |d(s)− d(t)| > p
(4)

The second uses a soft variant (Yan et al., 2011b).
Let g : N→ R>0 be monotone with g(0) = 1. We
set simg(s, t) = sim(s, t)/g(|d(s)− d(t)|). Thus,
all date differences are penalized, and greater date
differences are penalized more.

4.2 Temporalizing Diversity

As with coverage, standard MDS diversity func-
tions (Equation 3) ignore temporal information. If
the singleton reward r in fDiv relies on sim, as is
the case with many implementations, then tempo-
ralizing sim implicitly temporalizes diversity. We
now go beyond such an implicit temporalization.

In TLS, we want to apply diversity on a tem-
poral basis: we do not want to concentrate the
summary on very few, albeit important dates, but
we want date (and subevent) diversity. fDiv, how-
ever, typically uses only a semantic criterion to
obtain a partition, e.g. by k-means clustering of
sentence vector representations (Lin and Bilmes,
2011). This may wrongly conflate events, such
as two unrelated protests on different dates. We
can instead employ a temporal partition. The
simplest method is to partition the sentences by
their date, i.e. for a temporalized diversity function

fTempDiv we have the same form as in Equation 3,
but Pi contains all sentences with date di, where
d1, . . . , dk are all sentence dates.

4.3 Date Selection Criteria
An important part of TLS is date selection. Ded-
icated algorithms for date selection use frequency
and patterns in date referencing to determine date
importance (Tran et al., 2015b). Most date impor-
tance measures can be integrated into the objec-
tive function to allow for joint date selection and
summary generation.6 One well-performing date
selection baseline is to measure for each date how
many sentences refer to it. This objective can be
described by the monotone submodular function

fDateRef(S) =
∑

d∈d(S)

|{u ∈ U | u refers to d}| .

4.4 Combining Criteria
We combine coverage, diversity and date impor-
tance via unweighted sums for our final objective
functions. An alternative would be to combine
them via weighted sums learned from training data
(Lin and Bilmes, 2011, 2012) but since there are
only few datasets available for training and testing
TLS algorithms we choose the unweighted sum to
estimate as few parameters as possible from data.

5 Temporalizing Constraints

The MDS knapsack/cardinality constraints are too
simple for TLS as an overall sentence limit does
not constrain a timeline to have daily summaries
of roughly similar length or enforce other unifor-
mity properties. We introduce constraints going
beyond simple cardinality, and prove performance
guarantees of GREEDY under such constraints.

5.1 Definition of Constraints
Typically, we have two requirements on the time-
line: the total number of days should not exceed a
given number ` and the length of the daily sum-
mary (in sentences) should not exceed a given
number k (for every day). Let d be the func-
tion that assigns each sentence its date. For a set
S ⊆ U , the requirements can be formalized as

|{d(s) | s ∈ S}| ≤ ` (5)

and, for all s ∈ S,∣∣{s′ | s′ ∈ S, d(s′) = d(s)}
∣∣ ≤ k. (6)

6Our framework can also be extended to accommodate
pipelined date selection. We leave this to future work.
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5.2 Performance Guarantees

While the constraints expressed by Equations 5
and 6 are more complex than constraints used in
MDS, they have a property in common: if a set S
fulfills the constraints (i.e. S ∈ I), then also any
subset T ⊆ S fulfills the constraints (i.e. T ∈ I).
In combinatorics, such constraints are called inde-
pendence systems (Calinescu et al., 2011).

Definition 1. Let V be some set and I ⊂ 2V be
a collection of subsets of V . The tuple (V, I) is
called an independence system if (i) ∅ ∈ I and
(ii) B ∈ I and A ⊆ B implies A ∈ I.

Optimization theory shows that GREEDY also
has performance guarantees when generalizing
cardinality/knapsack constraints to “sufficiently
nice” independence systems. Based on these re-
sults, we prove Lemma 1 (see the suppl. material):

Lemma 1. Let I be the set of subsets of U that
fulfill Equations 5 and 6. Then GREEDY has a
performance guarantee of 1/(k + 1).

The lemma implies that for small k that is typi-
cal in TLS (e.g. k = 2), we obtain a good approxi-
mation with reasonable constraints. However, our
performance guarantees are still weaker than for
MDS (for example, 0.33 for k = 2 compared
to 0.63 in MDS). The reason for this is that our
constraints are more complex, going beyond the
simple well-studied cardinality and knapsack con-
straints. We also observe that this is a worst-case
bound: in practice the performance of the algo-
rithm may approach the exact solution (as Lin and
Bilmes (2010) show for MDS). However, such an
analysis is out of scope for our paper, since com-
puting the exact solution is intractable in TLS.7

6 Experiments

We evaluate the performance of modeling TLS as
MDS and the effect of various temporalizations.

6.1 Data and Preprocessing

We run experiments on timeline17 (Tran et al.,
2013b) and crisis (Tran et al., 2015a). Both data
sets consist of (i) journalist-generated timelines on
events such as the Syrian War as well as (ii) cor-
responding corpora of news articles on the topic
scraped via Google News. They are publically

7McDonald (2007) and Lin and Bilmes (2010) already re-
port scalability issues for obtaining exact solutions for MDS,
which is of smaller scale and has simpler constraints than our
task.

Name Topics TLs Docs Sentences
Total Filtered

timeline17 9 19 4,622 273,432 56,449
crisis 4 22 18,246 689,165 121,803

Table 2: Data set statistics.

No Start End Dates Avg. Daily
Summ. Length

1 2010-04-20 2010-05-02 13 4
2 2010-04-20 2012-11-15 16 2
3 2010-04-20 2010-10-15 12 2
4 2010-04-20 2010-09-19 48 2
5 2010-04-20 2011-01-06 102 3

Table 3: Properties for the BP oil spill timelines in
timeline17. The corpus contains documents for 218
dates from 2010-04-01 to 2011-01-31.

available8 and have been used in previous work
(Wang et al., 2016).9 Table 2 shows an overview.

In the data sets, even timelines for the same
topic have considerable variation. Table 3 shows
properties for the five BP oil spill timelines in
timeline17. There is substantial variation in range,
granularity and average daily summary length.

Following previous work (Chieu and Lee, 2004;
Yan et al., 2011b), we filter sentences in the cor-
pus using keywords. For each topic we manually
define a set of keywords. If any of the keywords
appears in a sentence, the sentence is retained.

We identify temporal expressions with Heidel-
Time (Strötgen and Gertz, 2013). If a sentence s
contains a time expression that can be mapped to
a day d via HeidelTime we set the date of s to d
(if there are multiple expressions we take the first
one). Otherwise, we set the date of s to the publi-
cation date of the article which contains s.10

6.2 Evaluation Metrics

Automatic evaluation of TLS is done by ROUGE
(Lin, 2004). We report ROUGE-1 and ROUGE-
2 F1 scores for the concat, agreement and align+
m:1 metrics for TLS we presented in Martschat
and Markert (2017). These metrics perform eval-
uation by concatenating all daily summaries, eval-
uating only matching days and evaluating aligned

8http://www.l3s.de/˜gtran/timeline/
9The datasets used in Chieu and Lee (2004) or Nguyen

et al. (2014) are not available.
10This procedure is in line with previous TLS work (Chieu

and Lee, 2004). The focus of the current paper is not on fur-
ther improving date assignment.

http://www.l3s.de/~gtran/timeline/
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dates based on date and content similarity, respec-
tively. We evaluate date selection using F1 score.

6.3 Experimental Settings

TLS has no established settings. Ideally, reference
and predicted timelines should be given the same
compression parameters, such as overall length or
number of days.11 Since there is considerable vari-
ation in timeline parameters (Table 3), we evaluate
against each reference timeline individually, pro-
viding systems with the parameters they need via
extraction from the reference timeline, including
range and needed length constraints. We set m to
the number of sentences in the reference timeline,
` to the number of dates in the timeline, and k to
the average length of the daily summaries.

Most previous work uses different or unreported
settings, which makes comparison difficult. For
instance, Tran et al. (2013b) do not report how
they obtain timeline length. Wang et al. (2015,
2016) create a constant-length summary for each
day that has an article in the corpus, thereby com-
paring reference timelines with few days with pre-
dicted timelines that have summaries for each day.

6.4 Baselines

Past work on crisis generated summaries from
headlines (Wang et al., 2016) or only used manual
evaluation (Tran et al., 2015a). Past work on time-
line17 evaluates with ROUGE (Tran et al., 2013b;
Wang et al., 2016) but suffers from the fact that
parameters for presented systems, baselines and
reference timelines differ or are not reported (see
above). Therefore, we reimplement two baselines
that were competitive in previous work (Yan et al.,
2011b; Wang et al., 2015, 2016).

Chieu. Our first baseline is CHIEU, the unsuper-
vised approach of Chieu and Lee (2004). It oper-
ates in two stages. First, it ranks sentences based
on similarity: for each sentence s, similarities to
all sentences in a 10-day window around the date
of s are summed up12. This yields a ranked list
of sentences, sorted by highest to lowest summed
up similarities. Using this list, a timeline contain-
ing one-sentence daily summaries is constructed

11This would mirror settings in MDS, where reference and
predicted summary have the same length constraint.

12This corresponds to the Interest ranking proposed by
Chieu and Lee (2004). We do not use the more complex
Burstiness measure since Interest was found to perform at
least as well in previous work when evaluated with ROUGE-
based measures (Wang et al., 2015, p.c.)

as follows: iterating through the ranked sentence
list, a sentence is added to the timeline depend-
ing on the extent of the sentences already in the
timeline. Extent of a sentence s is defined as the
smallest window of days such that the total simi-
larity of s to sentences in this window reaches at
least 80% of the similarity to the sentences in the
full 10-day window. If the candidate sentence does
not fall into the extent of any sentence already in
the timeline, it is added to the timeline.

As we can see, the model and parameters such
as daily summary length are intertwined in this ap-
proach. We therefore reimplement CHIEU exactly
instead of giving it reference timeline parameters.
As we describe below, we use the same sentence
similarity function as Chieu and Lee (2004).

Regression. Our second baseline is REG, a su-
pervised linear regression model (Tran et al.,
2013b; Wang et al., 2015). We represent each
sentence with features describing its length, num-
ber of named entities, unigram features, and aver-
aged/summed tf-idf scores. During training, for
each sentence, standard ROUGE-1 F1 w.r.t. the
reference summary of the sentence’s date is com-
puted. The model is trained to predict this score.13

During prediction, sentences are selected greedily
according to predicted F1 score, respecting tempo-
ral constraints defined by the reference timeline.

6.5 Model Parameters

For all submodular models and for CHIEU we use
sparse inverse-date-frequency sentence represen-
tations (Chieu and Lee, 2004)14. This yields a vec-
tor representation vs for each sentence s. We set
sim(s, t) = cos(vs, vt). We did not tune any fur-
ther parameters but re-used settings from previous
work. For modifications to sim when temporaliz-
ing coverage and diversity (Section 4), we use a
cutoff of 10 (as Chieu and Lee (2004)), and con-
sider g(x) =

√
x+ 1 for reweighting. We choose

the square root since it quickly provides strong pe-
nalizations for date differences but then saturates.
Following Lin and Bilmes (2011), we set singleton
reward for fDiv to r(s) =

∑
u∈U sim(s, u) and ob-

tain the partition P1, . . . , Pk by k-means clustering
with k = 0.2 · |U |. We obtain a temporalization
fTempDiv of diversity by considering a partition of
sentences induced by their dates (see Section 4).

13We use per-topic cross-validation (Tran et al., 2013b).
14In preliminary experiments, results using such sparse

representations were higher than results using dense vectors.
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6.6 Results
Results are displayed in Table 4. The numbers
are averaged over all timelines in the respective
corpus. We test for significant differences using
an approximate randomization test (Noreen, 1989)
with a p-value of 0.05.

Baselines. Overall, performance on crisis is
much lower than on timeline17. This is because (i)
the corpora in crisis contain articles for more days
over a larger time span and (ii) average percentage
of article publication dates for which a summary in
a corresponding reference timeline exists is 11%
for timeline17 and 3% for crisis. This makes date
selection more difficult. On crisis, CHIEU outper-
forms REG except for date selection. On time-
line17, REG outperforms CHIEU for four out of
seven metrics. Timelines in crisis contain fewer
dates and shorter daily summaries than timelines
in timeline17, which aligns well with CHIEU’s re-
dundancy post-processing.

TLS as MDS. The model ASMDS uses stan-
dard length constraints from MDS and an ob-
jective function combining non-temporalized fCov
and fDiv. It allows us to evaluate how well stan-
dard MDS ports to TLS. Except for concat and
date selection on crisis, this model outperforms
both baselines, while providing the advantages of
modularity, non-supervision and feature/inference
separation discussed throughout the paper.

Temporalizing Constraints. The model
TLSCONSTRAINTS uses the temporal constraints
described in Section 5, but has the same objective
function as ASMDS. Compared to ASMDS, there
are improvements on all metrics on timeline17
and similar performance on crisis.

Temporalizing Criteria. We temporalize
ASMDS objective functions (Section 4) via
modifications of the similarity function (cut-
offs/reweightings), replacing diversity by tempo-
ral diversity fTempDiv, and adding date selection
fDateRef. Constraints are kept non-temporal. If
modifications improve over ASMDS we also
check for cumulative improvements. Modifying
similarity is not effective, results drop or stay
roughly the same according to most metrics. The
other modifications improve performance w.r.t.
most metrics, especially for date selection.

Temporalizing Constraints and Criteria.
Lastly, we evaluate the joint contribution of

temporalized constraints and criteria.15 Modifi-
cations to the similarity function have a positive
effect, especially reweighting. fDateRef provides
information about date importance not encoded in
the constraints, improving results on crisis.

Oracle Results. Previous research in MDS com-
puted oracle upper bounds (e.g. Hirao et al.
(2017)). To estimate TLS difficulty and our
limitations, we provide the first oracle upper
bound for TLS: For each sentence s, we compute
ROUGE-1 F1 gs w.r.t. the reference summary for
the sentence’s date. We then run GREEDY for
fOracle(S) =

∑
s∈S gs, employing the same con-

straints as TLSCONSTRAINTS (see Table 7).
Scores of the models are most similar to oracle

results for the temporally insensitive concat met-
ric, with gaps comparable to gaps in MDS (Hirao
et al., 2017). The biggest gap is in date selection
F1. This also leads to higher differences in the
scores of temporally sensitive metrics, highlight-
ing the importance of temporal information.

6.7 Analysis
We now investigate where and how temporal infor-
mation helps compared to ASMDS. We have al-
ready identified two potential weaknesses of mod-
eling TLS as MDS: the low compression rate (Sec-
tion 2) and the likely case that ASMDS overrep-
resents certain dates in a timeline (Section 3). We
now analyze the behavior of AsMDS w.r.t. these
points and discuss the effect of temporal informa-
tion. To avoid clutter, we restrict analysis to time-
line17 and report only align+ m:1 ROUGE-1 F1.

Effect of Compression Rate. We hypothesize
that difficulty increases as compression rate de-
creases. We measure compression rate in two
ways. We first adopt the definition from MDS
and define corpus compression rate as the num-
ber of sentences in a reference timeline divided
by the number of sentences in the (unfiltered) cor-
responding corpus. Second, we define a TLS-
specific notion called spread as the number of
dates in the reference timeline divided by the max-
imum possible number of dates given its start and
end date. For example, the timeline from Table 1
in the introduction has spread 3/14. We see that
timelines with lowest compression rate/spread are
indeed the hardest (Table 5). Temporal informa-
tion leads to improvements in all categories.

15We do not evaluate fTempDiv, since the temporal con-
straints already capture temporal diversity.
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concat agree align+ m:1 Date Sel.
Model R1 R2 R1 R2 R1 R2 F1

timeline17

Baselines
CHIEU 0.296 0.072 0.039 0.016 0.066 0.019 0.251
REG 0.336 0.065 0.063 0.014 0.074 0.016 0.491

Non-temporal Submodular Models
ASMDS 0.351† 0.088∗ 0.071† 0.019 0.086† 0.022 0.452†

Temporalizing Constraints
TLSCONSTRAINTS 0.368† 0.090†∗ 0.082†∗ 0.022 0.098†∗ 0.025∗ 0.482†

Temporalizing Criteria
ASMDS+cutoff 0.338x 0.083∗ 0.065† 0.021 0.077 0.024 0.393†∗x

ASMDS+reweighting 0.329x 0.081x 0.063† 0.019 0.075x 0.022 0.390†∗x

ASMDS+fDateRef 0.357† 0.092†∗x 0.082†∗x 0.022∗ 0.095†∗x 0.025∗ 0.529†x

ASMDS+fTempDiv 0.347 0.088∗ 0.088†∗x 0.026†∗ 0.103†∗x 0.029†∗x 0.526†x

ASMDS+fTempDiv+fDateRef 0.347 0.090∗ 0.092†∗x 0.027†∗x 0.105†∗x 0.030†∗x 0.544†∗x
Temporalizing Constraints and Criteria

TLSCONSTRAINTS+cutoff 0.366† 0.085∗ 0.091†∗x 0.023∗ 0.105†∗x 0.026∗ 0.505†x

TLSCONSTRAINTS+reweighting 0.371† 0.088†∗ 0.091†∗x 0.026†∗x 0.106†∗x 0.028†∗x 0.506†x

TLSCONSTRAINTS+fDateRef 0.371†∗x 0.090†∗ 0.089†∗x 0.023∗ 0.103†∗x 0.026∗ 0.517†x

TLSCONSTRAINTS+fDateRef+reweighting 0.370†∗ 0.091†∗ 0.090†∗x 0.024∗ 0.104†∗x 0.027∗ 0.515†x

crisis

Baselines
CHIEU 0.374 0.070 0.029 0.008 0.052 0.012 0.142
REG 0.271 0.034 0.014 0.001 0.028 0.003 0.189

Non-temporal Submodular Models
ASMDS 0.309†∗ 0.064∗ 0.037∗ 0.009∗ 0.060∗ 0.014∗ 0.183†

Temporalizing Constraints
TLSCONSTRAINTS 0.339†∗x 0.066∗ 0.035∗ 0.008∗ 0.058∗ 0.012∗ 0.180†

Temporalizing Criteria
ASMDS+cutoff 0.283†x 0.061†∗ 0.036∗ 0.011∗ 0.050∗ 0.014∗ 0.186
ASMDS+reweighting 0.294†∗ 0.061†∗ 0.039∗ 0.011∗ 0.056∗ 0.015∗ 0.212†∗

ASMDS+fDateRef 0.314†∗ 0.067∗ 0.042†∗ 0.009∗ 0.065†∗x 0.014∗ 0.248†∗x

ASMDS+fTempDiv 0.311† 0.062∗ 0.034∗ 0.007∗ 0.058∗ 0.012∗x 0.196†∗

ASMDS+fTempDiv+fDateRef 0.311†∗ 0.064∗ 0.039†∗ 0.008∗ 0.063†∗ 0.012∗ 0.233†∗x

Temporalizing Constraints and Criteria
TLSCONSTRAINTS+cutoff 0.323†∗x 0.068∗ 0.046†∗ 0.011∗ 0.066†∗ 0.015∗ 0.242†x

TLSCONSTRAINTS+reweighting 0.332†∗x 0.071∗x 0.044†∗ 0.009∗ 0.068†∗ 0.014∗ 0.237†x

TLSCONSTRAINTS+fDateRef 0.333†∗x 0.069∗x 0.045†∗x 0.009∗ 0.067†∗x 0.013∗ 0.248†∗x

TLSCONSTRAINTS+fDateRef+reweighting 0.333†∗x 0.072∗x 0.054†∗x 0.012†∗ 0.075†∗x 0.016∗ 0.281†∗x

Table 4: Results. Highest values per column/dataset are boldfaced. For the submodular models, † denotes sign.
difference to CHIEU, ∗ to REG, x to ASMDS.

(Over)representation of Dates. We hypothe-
sized that ASMDS may overrepresent certain
dates. We test this hypothesis by measuring the
length (in sentences) of the longest daily summary
in a timeline, and computing mean and median
over all timelines (Table 6). The numbers confirm
the hypothesis: When modeling TLS as MDS,
some daily summaries tend to be very long. By
construction of the constraints employed, the ef-
fect does not occur or is much weaker for CHIEU,
REG and TLSCONSTRAINTS. Temporal objective
functions (as in ASMDS+fTempDiv+fDateRef) also
weaken the effect substantially.

7 Related Work

The earliest work on TLS is Allan et al. (2001),
who introduce the concepts of usefulness (concep-
tually similar to coverage) and novelty (similar to
diversity), using a simple multiplicative combina-
tion. However, both concepts are not temporal-
ized. The notion of usefulness is developed fur-
ther as “interest” by Chieu and Lee (2004), which
we use as one of our baselines. Chieu and Lee
(2004) compute interest/coverage in a static lo-
cal date-based window, instead of using global
optimization as we do. They handle redundancy
only during post-processing s.t. the interplay be-
tween coverage and diversity is not adequately
modeled. Further optimization criteria are intro-
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Name Compression rate r Spread s
r ∈ [0, 0.001] r ∈ (0.001, 0.01] r ∈ (0.01, 0.1] s ∈ [0, 1/3] s ∈ (1/3, 2/3] s ∈ (2/3, 1]

CHIEU 0.06 0.08 0.07 0.06 0.08 0.04
REG 0.04 0.09 0.07 0.05 0.11 0.11
ASMDS 0.05 0.10 0.09 0.07 0.10 0.10
TLSCONSTRAINTS 0.08 0.10 0.10 0.08 0.12 0.14
ASMDS+fTempDiv+fDateRef 0.09 0.11 0.12 0.09 0.13 0.13

Table 5: Results (align+ m:1 ROUGE-1 F1) by compression rate and spread on timeline17.

Name Max. Length
Mean Median

Reference 5.6 ± 2.7 5

CHIEU 1.0 ± 0.0 1
REGRESSION 2.3 ± 1.7 2
ASMDS 23.7 ± 41.2 8
TLSCONSTRAINTS 2.3 ± 1.7 2
ASMDS+fTempDiv+fDateRef 3.8 ± 5.3 1

Table 6: Length of longest daily summary, mean and
median over all timelines on timeline18.

concat agree align+ m:1 Date
Corpus R1 R2 R1 R2 R1 R2 F1

tl17 0.50 0.18 0.30 0.14 0.30 0.14 0.87
crisis 0.49 0.16 0.34 0.14 0.35 0.14 0.95

Table 7: Oracle results optimizing per-day R1 F1.

duced by Yan et al. (2011b,a) and Nguyen et al.
(2014), but their frameworks suffer from a lack of
modularity or from an unclear separation of fea-
tures and architecture. Wang et al. (2015) devise a
local submodular model for predicting daily sum-
maries in TLS, but they do not model the whole
timeline generation as submodular function opti-
mization under suitable constraints.

Wang et al. (2016) tackle only the task of gener-
ating daily summaries without date selection using
a supervised framework, greedily optimizing per-
day predicted ROUGE scores, using images and
text. In contrast, Kessler et al. (2012) and Tran
et al. (2015b) only tackle date selection but do not
generate any summaries. We consider the full task,
including date selection and summary generation.

TLS is related to standard MDS. We discussed
differences in Section 2. Our framework is in-
spired by Lin and Bilmes (2011) who cast MDS as
optimization of submodular functions under car-
dinality and knapsack constraints. We go beyond
their work by modeling temporally-sensitive ob-
jective functions as well as more complex con-
straints encountered in TLS.

A related task is TREC real-time summarization
(RTS) (Lin et al., 2016).16. In contrast to TLS, this
task requires online summarization by presenting
the input as a stream of documents and emphasizes
novelty detection and lack of latency. In addition,
RTS focuses on social media and has a very fine-
grained temporal granularity. TLS also has an em-
phasis on date selection and dating for algorithms
and evaluation which is not present in RTS as the
social media messages are dated a priori.

8 Conclusions

We show that submodular optimization models
for MDS can yield well-performing models for
TLS, despite the differences between the tasks.
Therefore we can port advantages such as mod-
ularity and separation between features and in-
ference, which current TLS models lack. In ad-
dition, we temporalize these MDS-based mod-
els to take into account TLS-specific properties,
such as timeline uniformity constraints, impor-
tance of date selection and temporally sensitive
objectives. These temporalizations increase per-
formance without losing the mentioned advan-
tages. We prove that the ensuing functions are still
submodular and that the more complex constraints
still retain performance guarantees for a greedy al-
gorithm, ensuring scalability.
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