
CoNLL 2018

The 22nd Conference on
Computational Natural Language Learning

Proceedings of the Conference

October 31 - November 1, 2018
Brussels, Belgium

Sponsors

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-72-8

ii

Introduction

The 2018 Conference on Computational Natural Language Learning (CoNLL) is the 22nd in the series
of annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2018 will be held on October 31 - November 1, 2018, and is co-located with the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP) in Brussels, Belgium.

CoNLL 2018 followed the tradition of previous CoNLL conferences in inviting only long papers, in
order to accommodate papers with experimental material and detailed analysis. The final, camera-ready
submissions were allowed a maximum of nine content pages plus unlimited pages of references and
supplementary material.

CoNLL 2018 received a record number of 295 submissions in total, out of which 5 had to be rejected for
formal reasons and 16 were withdrawn by the authors during the review period. Of the remaining 274
papers, 57 papers were chosen to appear in the conference program, with an overall acceptance rate of
20.8%. One of these was withdrawn after the notification, resulting in 56 papers for the final program:
16 were selected for oral presentation, and the remaining 40 for poster presentation plus lightning oral
presentation. All 56 papers appear here in the conference proceedings.

CoNLL 2018 features two invited speakers, Asifa Majid (University of York) and Max Welling
(University of Amsterdam / CIFAR). As in recent years, it also features two shared tasks: one on
Universal Morphological Reinflection and one on Multilingual Parsing from Raw Text to Universal
Dependencies. Papers accepted for the shared tasks are published in companion volumes of the CoNLL
2018 proceedings.

We would like to thank all the authors who submitted their work to CoNLL 2018, and the program
committee for helping us select the best papers out of many high-quality submissions. We are grateful to
the many program committee members who did a thorough job reviewing our submissions. Due to the
the growing size of of the conference, we also had area chairs, for the first time, supporting the CoNLL
organization. We were fortunate to have 12 excellent areas chairs who assisted us greatly in selecting the
best programme:

Marine Carpuat, University of Maryland, USA
Paul Cook, University of New Brunswick, USA
Vera Demberg, Saarland University, Germany
Graham Neubig, Carnegie Mellon University, USA
Sebastian Pado, University of Stuttgart, Germany
Siva Reddy, Stanford University, USA
Roi Reichart, Technion, Israel
Alan Ritter, Ohio State University, USA
Tim Rocktäschel, University of Oxford, UK
Mehrnoosh Sadrzadeh, Queen Mary University of London, UK
Sameer Singh, University of California, Irvine USA
Yulia Tsvetkov, Carnegie Mellon University, USA

We are immensely thankful to Julia Hockenmaier and to the members of the SIGNLL board for their
valuable advice and assistance in putting together this year’s program. We also thank Ben Verhoeven,
for maintaining the CoNLL 2018 website and Miikka Silfverberg for preparing the proceedings for the
main conference. Finally, we would like to thank our hard working assistants, Phong Le and Edoardo
Ponti, for their great support with the conference administration and publicity.

iii

Finally, our gratitude goes to our sponsors, Google Inc. and Textkernel, for supporting the conference
financially.

We hope you enjoy the conference!

Anna Korhonen and Ivan Titov

CoNLL 2018 conference co-chairs

iv

Conference chairs:

Anna Korhonen, University of Cambridge
Ivan Titov, University of Edinburgh / University of Amsterdam

Invited speakers:

Asifa Maji, University of York
Max Welling, University of Amsterdam / CIFAR

Area chairs:

Marine Carpuat, University of Maryland, USA
Paul Cook, University of New Brunswick, USA
Vera Demberg, Saarland University, Germany
Graham Neubig, Carnegie Mellon University, USA
Sebastian Pado, University of Stuttgart, Germany
Siva Reddy, Stanford University, USA
Roi Reichart, Technion, Israel
Alan Ritter, Ohio State University, USA
Tim Rocktäschel, University of Oxford, UK
Mehrnoosh Sadrzadeh, Queen Mary University of London, UK
Sameer Singh, University of California, Irvine USA
Yulia Tsvetkov, Carnegie Mellon University, USA

Publication chair:

Miikka Silfverberg, University of Colorado, USA

Administration chair:

Phong Le, University of Edinburgh, UK

Publicity / sponsorship chair:

Edoardo Ponti, University of Cambridge, UK

Program Committee:

Omri Abend, Željko Agić, Roee Aharoni, Alan Akbik, Afra Alishahi, Stefanos Angelidis, Mar-
ianna Apidianaki, Kenji Araki, Wilker Aziz, Ashutosh Baheti, Fan Bai, Simon Baker, Omid
Bakhshandeh, Miguel Ballesteros, Joost Bastings, Timo Baumann, Yonatan Belinkov, Iz Belt-
agy, Anja Belz, Jonathan Berant, Taylor Berg-Kirkpatrick, Raffaella Bernardi, Yevgeni Berzak,
Alexandra Birch, Arianna Bisazza, Yonatan Bisk, Philippe Blache, Bernd Bohnet, Gerlof Bouma,
Samuel Bowman, S.R.K. Branavan, Chloé Braud, Daniel Cer, Snigdha Chaturvedi, Boxing Chen,
Danqi Chen, Xinchi Chen, Jianpeng Cheng, Christos Christodoulopoulos, Grzegorz Chrupała,
Shay B. Cohen, Trevor Cohn, Danish Contractor, Caio Corro, Marta R. Costa-jussà, Ryan Cot-
terell, Tim Van de Cruys, Joachim Daiber, Amitava Das, Rajarshi Das, Steve DeNeefe, Thomas
Demeester, Pascal Denis, Shuoyang Ding, Georgiana Dinu, Simon Dobnik, Jesse Dodge, Li Dong,
Doug Downey, Gabriel Doyle, Markus Dreyer, Maximillian Droog-Hayes, Xinya Du, Kevin Duh,
Nadir Durrani, Michael Elhadad, Micha Elsner, Federico Fancellu, Afsaneh Fazly, Marcello Fed-
erico, Christian Federmann, Yansong Feng, Raquel Fernández, Katja Filippova,

v

Andrea K. Fischer, Jeffrey Flanigan, Annie Foret, George Foster, Stefan L. Frank, Stella Frank,
Dan Garrette, Mehdi Ghanimifard, Dafydd Gibbon, Daniel Gildea, Roxana Girju, Yoav Goldberg,
Dan Goldwasser, Matthew R. Gormley, Yvette Graham, Edward Grefenstette, Nitish Gupta, Gho-
lamreza Haffari, Keith Hall, William L. Hamilton, Kazuma Hashimoto, Hua He, Luheng He, Au-
rélie Herbelot, Dirk Hovy, Renfen Hu, Tim Hunter, Alvin Grissom II, Marco Idiart, Srinivasan Iyer,
Laura Jehl, Robin Jia, Anders Johannsen, Alexander Johansen, Richard Johansson, Mandar Joshi,
Katharina Kann, Dimitri Kartsaklis, Daisuke Kawahara, Tushar Khot, Yoon Kim, Milton King,
Eliyahu Kiperwasser, Svetlana Kiritchenko, Sigrid Klerke, Roman Klinger, Thomas Kober, Philipp
Koehn, Ioannis Konstas, Julia Kreutzer, Jayant Krishnamurthy, Germán Kruszewski, Marco Kuhl-
mann, Sachin Kumar, Jonathan K. Kummerfeld, Oier Lopez de Lacalle, Ni Lao, Yoong Keok
Lee, Jochen L. Leidner, Roger Levy, Martha Lewis, Xi Victoria Lin, Xiao Ling, Wei Lu, Suresh
Manandhar, Diego Marcheggiani, Yuval Marton, Diana McCarthy, David McClosky, Stephen Mc-
Gregor, R. Thomas Mccoy, Pasquale Minervini, Jeff Mitchell, Daichi Mochihashi, Marie-Francine
Moens, Nasrin Mostafazadeh, Smaranda Muresan, Kenton Murray, Ajay Nagesh, Preslav Nakov,
Jason Naradowsky, Shashi Narayan, Massimo Nicosia, Xing Niu, Brendan O’Connor, Kemal
Oflazer, Ulrike Pado, Alexis Palmer, Martha Palmer, Alexander Panchenko, Ali Hakimi Parizi,
Panupong Pasupat, Michael J. Paul, Laura Perez-Beltrachini, Hieu Pham, Yuval Pinter, Barbara
Plank, Massimo Poesio, Ella Rabinovich, Preethi Raghavan, Afshin Rahimi, Carlos Ramisch,
Marek Rei, Steffen Remus, Xiang Ren, Sebastian Riedel, Martin Riedl, Laura Rimell, Brian Roark,
Laurent Romary, Michael Roth, Joseph Le Roux, Alla Rozovskaya, Sebastian Ruder, Andreas
Rücklé, Kenji Sagae, Ivan Sanchez, Ryohei Sasano, Carolina Scarton, Christian Scheible, Marten
van Schijndel, William Schuler, Philip Schulz, Roy Schwartz, Djamé Seddah, Abigail See, Rico
Sennrich, Minjoon Seo, Ehsan Shareghi, Wei Shi, Carina Silberer, Kevin Small, Daniil Sorokin,
Vivek Srikumar, Miloš Stanojević, Gabriel Stanovsky, Mark Steedman, Pontus Stenetorp, Karl
Stratos, Yu Su, Huan Sun, Partha Talukdar, Christoph Teichmann, Oren Tsur, Oscar Täckström,
Patrick Verga, Aline Villavicencio, Andreas Vlachos, Svitlana Volkova, Sabine Schulte im Walde,
William Yang Wang, Taro Watanabe, Julie Weeds, Dirk Weissenborn, Johannes Welbl, Michael
Wiegand, Gijs Wijnholds, Dekai Wu, Kun Xu, Mohamed Yahya, Bishan Yang, Weiwei Yang,
François Yvon, Congle Zhang, Victor Zhong, Shi Zong, Willem Zuidema

vi

Table of Contents

Inductive Bias in Deep Learning
Max Welling . xviii

Semantic Spaces Across Diverse Languages
Asifa Majid . xix

Embedded-State Latent Conditional Random Fields for Sequence Labeling
Dung Thai, Sree Harsha Ramesh, Shikhar Murty, Luke Vilnis and Andrew McCallum 1

Continuous Word Embedding Fusion via Spectral Decomposition
Tianfan Fu, Cheng Zhang and Stephan Mandt . 11

Dual Latent Variable Model for Low-Resource Natural Language Generation in Dialogue Systems
Van-Khanh Tran and Le-Minh Nguyen . 21

A Trio Neural Model for Dynamic Entity Relatedness Ranking
Tu Nguyen, Tuan Tran and Wolfgang Nejdl . 31

A Unified Neural Network Model for Geolocating Twitter Users
Mohammad Ebrahimi, Elaheh ShafieiBavani, Raymond Wong and Fang Chen 42

Corpus-Driven Thematic Hierarchy Induction
Ilia Kuznetsov and Iryna Gurevych . 54

Adversarially Regularising Neural NLI Models to Integrate Logical Background Knowledge
Pasquale Minervini and Sebastian Riedel . 65

From Strings to Other Things: Linking the Neighborhood and Transposition Effects in Word Reading
Stephan Tulkens, Dominiek Sandra and Walter Daelemans . 75

Global Attention for Name Tagging
Boliang Zhang, Spencer Whitehead, Lifu Huang and Heng Ji . 86

Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction
Maha Elbayad, Laurent Besacier and Jakob Verbeek. .97

Comparing Attention-Based Convolutional and Recurrent Neural Networks: Success and Limitations in
Machine Reading Comprehension

Matthias Blohm, Glorianna Jagfeld, Ekta Sood, Xiang Yu and Ngoc Thang Vu. 108

Uncovering Code-Mixed Challenges: A Framework for Linguistically Driven Question Generation and
Neural Based Question Answering

Deepak Gupta, Pabitra Lenka, Asif Ekbal and Pushpak Bhattacharyya . 119

Learning to Embed Semantic Correspondence for Natural Language Understanding
Sangkeun Jung, Jinsik Lee and Jiwon Kim . 131

Commonsense Knowledge Base Completion and Generation
Itsumi Saito, Kyosuke Nishida, Hisako Asano and Junji Tomita . 141

Active Learning for Interactive Neural Machine Translation of Data Streams
Álvaro Peris and Francisco Casacuberta . 151

vii

Churn Intent Detection in Multilingual Chatbot Conversations and Social Media
Christian Abbet, Meryem M’hamdi, Athanasios Giannakopoulos, Robert West, Andreea Hossmann,

Michael Baeriswyl and Claudiu Musat . 161

Learning Text Representations for 500K Classification Tasks on Named Entity Disambiguation
Ander Barrena, Aitor Soroa and Eneko Agirre . 171

Hierarchical Attention Based Position-Aware Network for Aspect-Level Sentiment Analysis
Lishuang Li, Yang Liu and AnQiao Zhou . 181

Bidirectional Generative Adversarial Networks for Neural Machine Translation
Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou and Enhong Chen . 190

Latent Entities Extraction: How to Extract Entities that Do Not Appear in the Text?
Eylon Shoshan and Kira Radinsky . 200

Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction
Yova Kementchedjhieva, Sebastian Ruder, Ryan Cotterell and Anders Søgaard.211

Simple Unsupervised Keyphrase Extraction using Sentence Embeddings
Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl and Martin

Jaggi . 221

A Temporally Sensitive Submodularity Framework for Timeline Summarization
Sebastian Martschat and Katja Markert . 230

Chinese Poetry Generation with a Salient-Clue Mechanism
Xiaoyuan Yi, Ruoyu Li and Maosong Sun . 241

Multi-Modal Sequence Fusion via Recursive Attention for Emotion Recognition
Rory Beard, Ritwik Das, Raymond W. M. Ng, P. G. Keerthana Gopalakrishnan, Luka Eerens, Pawel

Swietojanski and Ondrej Miksik . 251

Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data to Model Human
Conceptual Knowledge

Steven Derby, Paul Miller, Brian Murphy and Barry Devereux . 260

Similarity Dependent Chinese Restaurant Process for Cognate Identification in Multilingual Wordlists
Taraka Rama . 271

Uncovering Divergent Linguistic Information in Word Embeddings with Lessons for Intrinsic and Ex-
trinsic Evaluation

Mikel Artetxe, Gorka Labaka, Inigo Lopez-Gazpio and Eneko Agirre . 282

Comparing Models of Associative Meaning: An Empirical Investigation of Reference in Simple Lan-
guage Games

Judy Hanwen Shen, Matthias Hofer, Bjarke Felbo and Roger Levy . 292

Sequence Classification with Human Attention
Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek Rei and Anders Søgaard 302

Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!
Katharina Kann, Sascha Rothe and Katja Filippova . 313

Predefined Sparseness in Recurrent Sequence Models
Thomas Demeester, Johannes Deleu, Fréderic Godin and Chris Develder . 324

viii

Learning to Actively Learn Neural Machine Translation
Ming Liu, Wray Buntine and Gholamreza Haffari . 334

Upcycle Your OCR: Reusing OCRs for Post-OCR Text Correction in Romanised Sanskrit
Amrith Krishna, Bodhisattwa P. Majumder, Rajesh Bhat and Pawan Goyal 345

Weakly-Supervised Neural Semantic Parsing with a Generative Ranker
Jianpeng Cheng and Mirella Lapata . 356

Modeling Composite Labels for Neural Morphological Tagging
Alexander Tkachenko and Kairit Sirts . 368

Evolutionary Data Measures: Understanding the Difficulty of Text Classification Tasks
Edward Collins, Nikolai Rozanov and Bingbing Zhang . 380

Vectorial Semantic Spaces Do Not Encode Human Judgments of Intervention Similarity
Paola Merlo and Francesco Ackermann . 392

Lessons Learned in Multilingual Grounded Language Learning
Ákos Kádár, Desmond Elliott, Marc-Alexandre Côté, Grzegorz Chrupała and Afra Alishahi . . . 402

Unsupervised Sentence Compression using Denoising Auto-Encoders
Thibault Fevry and Jason Phang . 413

Resources to Examine the Quality of Word Embedding Models Trained on n-Gram Data
Ábel Elekes, Adrian Englhardt, Martin Schäler and Klemens Böhm. .423

Linguistically-Based Deep Unstructured Question Answering
Ahmad Aghaebrahimian . 433

DIMSIM: An Accurate Chinese Phonetic Similarity Algorithm Based on Learned High Dimensional
Encoding

Min Li, Marina Danilevsky, Sara Noeman and Yunyao Li . 444

Challenge or Empower: Revisiting Argumentation Quality in a News Editorial Corpus
Roxanne El Baff, Henning Wachsmuth, Khalid Al Khatib and Benno Stein 454

Bringing Order to Neural Word Embeddings with Embeddings Augmented by Random Permutations
(EARP)

Trevor Cohen and Dominic Widdows . 465

Aggregated Semantic Matching for Short Text Entity Linking
Feng Nie, Shuyan Zhou, Jing Liu, Jinpeng Wang, Chin-Yew Lin and Rong Pan 476

Adversarial Over-Sensitivity and Over-Stability Strategies for Dialogue Models
Tong Niu and Mohit Bansal .486

Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge
Debanjan Chaudhuri, Agustinus Kristiadi, Jens Lehmann and Asja Fischer 497

The Lifted Matrix-Space Model for Semantic Composition
WooJin Chung, Sheng-Fu Wang and Samuel Bowman . 508

End-to-End Neural Entity Linking
Nikolaos Kolitsas, Octavian-Eugen Ganea and Thomas Hofmann . 519

ix

Modelling Salient Features as Directions in Fine-Tuned Semantic Spaces
Thomas Ager, Ondřej Kuželka and Steven Schockaert . 530

Model Transfer with Explicit Knowledge of the Relation between Class Definitions
Hiyori Yoshikawa and Tomoya Iwakura . 541

Aiming to Know You Better Perhaps Makes Me a More Engaging Dialogue Partner
Yury Zemlyanskiy and Fei Sha . 551

Neural Maximum Subgraph Parsing for Cross-Domain Semantic Dependency Analysis
Yufei Chen, Sheng Huang, Fang Wang, Junjie Cao, Weiwei Sun and Xiaojun Wan 562

From Random to Supervised: A Novel Dropout Mechanism Integrated with Global Information
Hengru Xu, Shen Li, Renfen Hu, Si Li and Sheng Gao . 573

Sequence to Sequence Mixture Model for Diverse Machine Translation
Xuanli He, Gholamreza Haffari and Mohammad Norouzi . 583

x

Conference Program

Wednesday, October 31, 2018

08:45–09:00 Opening remarks

09:00–10:30 CoNLL Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies

10:30–11:00 Coffee break

11:00–12:30 CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection

12:30–14:00 Lunch

Invited Talk by Max Welling

14:00–15:00 Inductive Bias in Deep Learning

Session 1

15:00–15:15 Embedded-State Latent Conditional Random Fields for Sequence Labeling
Dung Thai, Sree Harsha Ramesh, Shikhar Murty, Luke Vilnis and Andrew McCal-
lum

15:15–15:30 Continuous Word Embedding Fusion via Spectral Decomposition
Tianfan Fu, Cheng Zhang and Stephan Mandt

15:30–16:00 Coffee break

16:00–17:30 Poster session 1

Dual Latent Variable Model for Low-Resource Natural Language Generation in
Dialogue Systems
Van-Khanh Tran and Le-Minh Nguyen

xi

Wednesday, October 31, 2018 (continued)

A Trio Neural Model for Dynamic Entity Relatedness Ranking
Tu Nguyen, Tuan Tran and Wolfgang Nejdl

A Unified Neural Network Model for Geolocating Twitter Users
Mohammad Ebrahimi, Elaheh ShafieiBavani, Raymond Wong and Fang Chen

Corpus-Driven Thematic Hierarchy Induction
Ilia Kuznetsov and Iryna Gurevych

Adversarially Regularising Neural NLI Models to Integrate Logical Background
Knowledge
Pasquale Minervini and Sebastian Riedel

From Strings to Other Things: Linking the Neighborhood and Transposition Effects
in Word Reading
Stephan Tulkens, Dominiek Sandra and Walter Daelemans

Global Attention for Name Tagging
Boliang Zhang, Spencer Whitehead, Lifu Huang and Heng Ji

Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence
Prediction
Maha Elbayad, Laurent Besacier and Jakob Verbeek

Comparing Attention-Based Convolutional and Recurrent Neural Networks: Suc-
cess and Limitations in Machine Reading Comprehension
Matthias Blohm, Glorianna Jagfeld, Ekta Sood, Xiang Yu and Ngoc Thang Vu

Uncovering Code-Mixed Challenges: A Framework for Linguistically Driven Ques-
tion Generation and Neural Based Question Answering
Deepak Gupta, Pabitra Lenka, Asif Ekbal and Pushpak Bhattacharyya

Learning to Embed Semantic Correspondence for Natural Language Understanding
Sangkeun Jung, Jinsik Lee and Jiwon Kim

Commonsense Knowledge Base Completion and Generation
Itsumi Saito, Kyosuke Nishida, Hisako Asano and Junji Tomita

Active Learning for Interactive Neural Machine Translation of Data Streams
Álvaro Peris and Francisco Casacuberta

xii

Wednesday, October 31, 2018 (continued)

Churn Intent Detection in Multilingual Chatbot Conversations and Social Media
Christian Abbet, Meryem M’hamdi, Athanasios Giannakopoulos, Robert West, An-
dreea Hossmann, Michael Baeriswyl and Claudiu Musat

Learning Text Representations for 500K Classification Tasks on Named Entity Dis-
ambiguation
Ander Barrena, Aitor Soroa and Eneko Agirre

Hierarchical Attention Based Position-Aware Network for Aspect-Level Sentiment
Analysis
Lishuang Li, Yang Liu and AnQiao Zhou

Bidirectional Generative Adversarial Networks for Neural Machine Translation
Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou and Enhong Chen

Latent Entities Extraction: How to Extract Entities that Do Not Appear in the Text?
Eylon Shoshan and Kira Radinsky

Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction
Yova Kementchedjhieva, Sebastian Ruder, Ryan Cotterell and Anders Søgaard

Simple Unsupervised Keyphrase Extraction using Sentence Embeddings
Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl
and Martin Jaggi

Thursday, November 1, 2018

Session 2

09:00–09:15 A Temporally Sensitive Submodularity Framework for Timeline Summarization
Sebastian Martschat and Katja Markert

09:15–09:30 Chinese Poetry Generation with a Salient-Clue Mechanism
Xiaoyuan Yi, Ruoyu Li and Maosong Sun

09:30–09:45 Multi-Modal Sequence Fusion via Recursive Attention for Emotion Recognition
Rory Beard, Ritwik Das, Raymond W. M. Ng, P. G. Keerthana Gopalakrishnan,
Luka Eerens, Pawel Swietojanski and Ondrej Miksik

xiii

Thursday, November 1, 2018 (continued)

09:45–10:00 Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data
to Model Human Conceptual Knowledge
Steven Derby, Paul Miller, Brian Murphy and Barry Devereux

10:00–10:15 Similarity Dependent Chinese Restaurant Process for Cognate Identification in
Multilingual Wordlists
Taraka Rama

10:15–10:30 Uncovering Divergent Linguistic Information in Word Embeddings with Lessons for
Intrinsic and Extrinsic Evaluation
Mikel Artetxe, Gorka Labaka, Inigo Lopez-Gazpio and Eneko Agirre

10:30–11:00 Coffee break

Invited talk by Asifa Majid

11:00–12:00 Semantic Spaces Across Diverse Languages

Session 3

12:00–12:15 Comparing Models of Associative Meaning: An Empirical Investigation of Refer-
ence in Simple Language Games
Judy Hanwen Shen, Matthias Hofer, Bjarke Felbo and Roger Levy

12:15–12:30 Sequence Classification with Human Attention
Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek Rei and Anders Søgaard

12:30–14:00 Lunch

xiv

Thursday, November 1, 2018 (continued)

Session 4

14:00–14:15 Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!
Katharina Kann, Sascha Rothe and Katja Filippova

14:15–14:30 Predefined Sparseness in Recurrent Sequence Models
Thomas Demeester, Johannes Deleu, Fréderic Godin and Chris Develder

14:30–14:45 Learning to Actively Learn Neural Machine Translation
Ming Liu, Wray Buntine and Gholamreza Haffari

14:45–15:00 Upcycle Your OCR: Reusing OCRs for Post-OCR Text Correction in Romanised
Sanskrit
Amrith Krishna, Bodhisattwa P. Majumder, Rajesh Bhat and Pawan Goyal

15:00–15:15 Weakly-Supervised Neural Semantic Parsing with a Generative Ranker
Jianpeng Cheng and Mirella Lapata

15:15–15:30 Modeling Composite Labels for Neural Morphological Tagging
Alexander Tkachenko and Kairit Sirts

15:30–16:00 Coffee break

16:00–17:30 Poster session 2

Evolutionary Data Measures: Understanding the Difficulty of Text Classification
Tasks
Edward Collins, Nikolai Rozanov and Bingbing Zhang

Vectorial Semantic Spaces Do Not Encode Human Judgments of Intervention Simi-
larity
Paola Merlo and Francesco Ackermann

Lessons Learned in Multilingual Grounded Language Learning
Ákos Kádár, Desmond Elliott, Marc-Alexandre Côté, Grzegorz Chrupała and Afra
Alishahi

xv

Thursday, November 1, 2018 (continued)

Unsupervised Sentence Compression using Denoising Auto-Encoders
Thibault Fevry and Jason Phang

Resources to Examine the Quality of Word Embedding Models Trained on n-Gram
Data
Ábel Elekes, Adrian Englhardt, Martin Schäler and Klemens Böhm

Linguistically-Based Deep Unstructured Question Answering
Ahmad Aghaebrahimian

DIMSIM: An Accurate Chinese Phonetic Similarity Algorithm Based on Learned
High Dimensional Encoding
Min Li, Marina Danilevsky, Sara Noeman and Yunyao Li

Challenge or Empower: Revisiting Argumentation Quality in a News Editorial Cor-
pus
Roxanne El Baff, Henning Wachsmuth, Khalid Al Khatib and Benno Stein

Bringing Order to Neural Word Embeddings with Embeddings Augmented by Ran-
dom Permutations (EARP)
Trevor Cohen and Dominic Widdows

Aggregated Semantic Matching for Short Text Entity Linking
Feng Nie, Shuyan Zhou, Jing Liu, Jinpeng Wang, Chin-Yew Lin and Rong Pan

Adversarial Over-Sensitivity and Over-Stability Strategies for Dialogue Models
Tong Niu and Mohit Bansal

Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating
Domain Knowledge
Debanjan Chaudhuri, Agustinus Kristiadi, Jens Lehmann and Asja Fischer

The Lifted Matrix-Space Model for Semantic Composition
WooJin Chung, Sheng-Fu Wang and Samuel Bowman

End-to-End Neural Entity Linking
Nikolaos Kolitsas, Octavian-Eugen Ganea and Thomas Hofmann

Modelling Salient Features as Directions in Fine-Tuned Semantic Spaces
Thomas Ager, Ondřej Kuželka and Steven Schockaert

xvi

Thursday, November 1, 2018 (continued)

Model Transfer with Explicit Knowledge of the Relation between Class Definitions
Hiyori Yoshikawa and Tomoya Iwakura

Aiming to Know You Better Perhaps Makes Me a More Engaging Dialogue Partner
Yury Zemlyanskiy and Fei Sha

Neural Maximum Subgraph Parsing for Cross-Domain Semantic Dependency Anal-
ysis
Yufei Chen, Sheng Huang, Fang Wang, Junjie Cao, Weiwei Sun and Xiaojun Wan

From Random to Supervised: A Novel Dropout Mechanism Integrated with Global
Information
Hengru Xu, Shen Li, Renfen Hu, Si Li and Sheng Gao

Sequence to Sequence Mixture Model for Diverse Machine Translation
Xuanli He, Gholamreza Haffari and Mohammad Norouzi

xvii

Keynote Talk

Inductive Bias in Deep Learning

Max Welling

Deep learning is often considered a ‘black box’ predictor, that is, a highly flexible mapping from input
variables to target variables which is hard to interpret. In almost all other scientific disciplines researchers
build highly intuitive models with few variables in which decades of accumulated expertise is embedded.
Not surprisingly, black box models need a lot of data to be successful as predictors while generative
models need much less data. One natural question to ask is if we can inject more inductive bias in black
box models, such as deep neural networks.

We will look at two different ways to achieve this. First, data often has certain symmetries, i.e. a satellite
image will have no useful information in the orientation of the objects of interest. This is of course
similar to the fact that in natural images there is typically no useful information in the absolute location
of the objects. Convolutions implement the latter inductive bias and lead to very significant gains in terms
of data efficiency. We will argue that there may be other symmetries present in data (such as orientation)
which can also be hardcoded in a deep architecture and result in data efficiency gains. We will illustrate
this idea in pathology slide analysis.

A second way to inject inductive bias into predictors is to consider the data generating process of the
data. I will argue that for certain tasks, such as image reconstruction, the generative process can be
directly embedded into the classifier by, at every layer of the network, comparing the data generated by
the current reconstruction with the observations and feeding the difference back into the network. We
will illustrate the resulting model, which we call the “Recurrent Inference Machine” on the task MRI
image reconstruction.

xviii

Keynote Talk

Semantic Spaces Across Diverse Languages

Asifa Majid

Across diverse disciplines there is a wide-spread assumption that natural languages are equally express-
ible: anything that can be thought can be said. In fact, words are held to label categories that exist
independently of language, such that language merely captures these pre-existing categories. In this talk,
I will illustrate through cross-linguistic comparison across diverse domains that named distinctions are
not nearly as self-evident as they may seem on first examination. Even for basic perceptual experiences,
languages vary in which notions they lexicalise, and which concepts are coded at all. Crucially, in order
to develop a universal theory of semantics, scholars must first seriously engage with the cultural variation
found worldwide.

xix

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 1–10
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Embedded-State Latent Conditional Random Fields
for Sequence Labeling

Dung Thai Sree Harsha Ramesh Shikhar Murty Luke Vilnis Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{dthai, shramesh, smurty, luke, mccallum}@cs.umass.edu

Abstract

Complex textual information extraction tasks
are often posed as sequence labeling or shal-
low parsing, where fields are extracted using
local labels made consistent through proba-
bilistic inference in a graphical model with
constrained transitions. Recently, it has be-
come common to locally parametrize these
models using rich features extracted by recur-
rent neural networks (such as LSTM), while
enforcing consistent outputs through a sim-
ple linear-chain model, representing Marko-
vian dependencies between successive labels.
However, the simple graphical model struc-
ture belies the often complex non-local con-
straints between output labels. For example,
many fields, such as a first name, can only oc-
cur a fixed number of times, or in the pres-
ence of other fields. While RNNs have pro-
vided increasingly powerful context-aware lo-
cal features for sequence tagging, they have
yet to be integrated with a global graphical
model of similar expressivity in the output dis-
tribution. Our model goes beyond the lin-
ear chain CRF to incorporate multiple hidden
states per output label, but parametrizes their
transitions parsimoniously with low-rank log-
potential scoring matrices, effectively learning
an embedding space for hidden states. This
augmented latent space of inference variables
complements the rich feature representation
of the RNN, and allows exact global infer-
ence obeying complex, learned non-local out-
put constraints. We experiment with several
datasets and show that the model outperforms
baseline CRF+RNN models when global out-
put constraints are necessary at inference-time,
and explore the interpretable latent structure.

1 Introduction

As with many other prediction tasks involving
complex structured outputs, such as image seg-
mentation (Chen et al., 2018), machine transla-

tion (Bahdanau et al., 2015), and speech recogni-
tion (Hinton et al., 2012), deep neural networks
(DNNs) for sequence labeling and shallow pars-
ing have become standard tools for for information
extraction (Collobert et al., 2011; Lample et al.,
2016). In the language of structured prediction,
DNNs process the input sequence to produce a
rich local parametrization for the output prediction
model. However, output variables obey a variety
of hard and soft constraints — for example, in se-
quence tagging tasks such as named entity recog-
nition, I-PER cannot follow B-ORG.

Interestingly, even with such powerful local fea-
turization, the DNN model does not automatically
capture a mode of the output distribution through
local decisions alone, and can violate these con-
straints. Successful applications of DNNs to se-
quence tagging gain from incorporating a sim-
ple linear chain probabilistic graphical model to
enforce consistent output predictions (Collobert
et al., 2011; Lample et al., 2016), and more gen-
erally the addition of a graphical model to en-
force output label consistency is common practice
for other tasks such as image segmentation (Chen
et al., 2018).

Previous work in DNN-featurized sequence tag-
ging with graphical models for information extrac-
tion has limited its output structure modeling to
these simple local Markovian dependencies. In
this work, we explore the addition of latent vari-
ables to the prediction model, and through a parsi-
monious factorized parameter structure, perform
representation learning of hidden state embed-
dings in the graphical model, complementary to
the standard practice of representation learning in
the local potentials of the segmentation model. By
factorizing the log-potentials of the hidden state
transition matrices, we are able to learn large num-
bers of hidden states without overfitting, while the
latent dynamics add the capability to learn global

1

Figure 1: An example result from the CLEF
eHealth dataset. The soft output constraint sug-
gests tagging patient status as Myshift/Others if
there already is a Myshift Status tag. Note that we
have the same phrase tagged as Myshift Status in
the training dataset.

constraints on the overall prediction, without sac-
rificing efficient exact inference.

While soft and hard global constraints have a
rich history in sequence tagging (Koo et al., 2010;
Rush and Collins, 2012; Anzaroot et al., 2014),
they have been underexplored in the context of
neural-network based feature extraction models.
In response, we present a latent-variable CRF
model with a novel mechanism for learning la-
tent constraints without overfitting, using low-rank
embeddings of large-cardinality latent variables.
For example, these non-local constraints appear
in fine-grained nested field extraction, which re-
quires hierarchical consistency between the sub-
tags of an entity. Further, information extraction
and slot filling tasks often require domain specific
constraints — for example, we must avoid extract-
ing the same field multiple times. A good combi-
nation of input featurization and output modeling
is needed to capture these structural dependencies.

In this work we present a method for sequence
labeling in which representation learning is ap-
plied not only to inputs, but also to output space,
in the form of a lightly parameterized transition
function between a large number of latent states.
We introduce a hidden state variable and learn the
model dynamics in the hidden state space rather
than the label state space. This relaxes the Markov

assumption between output labels and allows the
model to learn global constraints. To avoid the
quadratic blowup in parameters with the size of the
latent state space, we factorize the transition log-
potentials into a low-rank matrix, avoiding over-
fitting by effectively learning parsimonious em-
bedded representations of the latent states. While
the low rank log-potential matrix does not im-
prove test-time inference speed, we can perform
exact Viterbi inference to compute the labeling se-
quence. Figure 1 shows an example where our
model finds the correct labeling sequence while
a standard DNN+CRF model fails, by obeying a
global constraint learned from the training data.

We examine the performance of the Embedded-
State Latent CRF on two datasets: citation ex-
traction on the UMass Citations dataset and med-
ical record field extraction on the CLEF dataset.
We observe improved performance in both tasks,
whose outputs obey complex structural dependen-
cies that are not able to be captured by RNN fea-
turization. Our biggest improvement comes in the
medical domain, where the small training set gives
our parsimonious approach to output representa-
tion learning an extra advantage.

2 Proposed Model

2.1 Problem Formulation

We consider the sequence labeling task, defined as
follows. Given an input text sequence with T to-
kens x = {x1, x2, ..., xT }, find a corresponding
output sequence y = {y1, y2, ..., yT } where each
output symbol yi is one of N possible output la-
bels. There are structural dependencies between
the output labels, and resolving such dependencies
is necessary for good performance.

2.2 Background

The input featurization in our model is similar to
previously mentioned existing methods for tag-
ging with DNNs (Collobert et al., 2011). We rep-
resent each input token xt with a word embed-
ding wt. We then feed the embedded sequence
w = {w1, w2, ..., wT } into a bidirectional LSTM
(Graves and Schmidhuber, 2005). As a result,
each input xt is associated with a contextualized
feature vector ft = [

−→
ft ;
←−
ft] ∈ Rd where

−→
ft and

←−
ft

represent the left and right context at time step t of
the sequence.

In this work, we concern ourselves with the
mapping from these input features to a distribution

2

over output label sequences.

(a) Softmax (b) Linear-Chain CRF

(c) Embedded-State Latent CRF

Figure 2: Comparing PGMs for tag prediction.

A straightforward solution is to use a feed-
forward network to map the feature vector to the
corresponding label. From a probabilistic perspec-
tive, this method is equivalent to the probabilistic
graphical model in Fig.2a. Here, the goal is to es-
timate the posterior distribution:

P(y | x) =
T∏

i=1

P (yt | xt) =
T∏

i=1

ψ(yt;xt) (1)

where the joint distribution over the sequence is
fully factorized, i.e. there is no structural de-
pendency between yt and the distribution P (yt |
xt) is parameterized by a deep neural network
ψ(yt;xt) = feed forward(ft, yt). This model
ignores all the structural dependencies between
the output labels during prediction, though not fea-
turization, and has been found unsuitable for struc-
tured prediction tasks on sequences (Collobert
et al., 2011).

In order to enforce some local output consis-
tency, Collobert et al. (2011) introduce a linear
chain Conditional Random Field (CRF) layer to
the model (Fig.2b). They define the energy func-

tion for a particular configuration as follows

E(y | x) =
T∑

t=1

ψxy(xt, yt) + ψyy(yt, yt+1) (2)

where the local log-potentials ψxy are parameter-
ized by a DNN, and (for their application) the edge
log-potentials ψyy are parameterized by an input-
independent parameter matrix, modeling the intra-
state dependencies under a Markovian assump-
tion, giving the data log-likelihood as

logP(y | x) = E(y | x)− log
∑

y′
exp(E(y′ | x))

(3)

Collobert et al. (2011) show a +1.71 performance
gain in Named-Entity Recognition (NER) by ex-
plicitly enforcing these local structural dependen-
cies. However, the Markov assumption is limiting,
and much of the gain comes from enforcing deter-
ministic hard constraints of the segmentation en-
coding (e.g. I-ORG cannot go after B-PER). Simi-
lar types of local gains come from hierarchical tag-
ging schemes (e.g. I-DATE should be tagged as I-
VENUE/DATE if it appears inside the I-VENUE/*
segment). We would like to model, and learn,
global, semantically meaningful soft constraints,
e.g. BOOKTITLE should become TITLE if an-
other TITLE does not appear in the same citation
(Anzaroot et al., 2014). The state transition dy-
namics of the linear-chain CRF model are limited
by a restriction to interaction betweenN output la-
bels. The information-rich features ft ∈ Rd input
to the local potential are restricted to a local pref-
erence over the N labels in output space, failing
to exploit the full power of the underlying feature
space.

2.3 Embedded-State Latent CRF
Our proposed model, the embedded-state latent
CRF, is shown in Figure 2c. We introduce a se-
quence of hidden states z = {z1, z2, ..., zT }where
zt is one of M possible discrete hidden states and
M >> N . Similarly, the corresponding energy
for a particular joint configuration over y and z is

E(y, z | x) =
T∑

t=1

ψxz(xt, zt) + ψyz(yt, zt)

+ ψzz(zt, zt+1) (4)

where ψxz(xt, zt), ψyz(yt, zt) are the local inter-
action log-potentials between the input features

3

and hidden states, and the hidden states and out-
put states, respectively. The hidden state dynamics
come from the log-scores ψzz(zt, zt+1) for transi-
tioning between hidden state zt to zt+1. The pos-
terior distribution over output labels can be com-
puted by summing over all possible configurations
of z

P(y | x) = 1

Z

∑

z

exp (E(y, z | x)) (5)

where Z =
∑

y′
∑

z′ exp (E(y′, z′ | x)) is the
partition function. The local log-potentials
ψxz(xt, zt) are produced by an affine transform
from the RNN feature extractor, and the output
potentials ψzy(zt, yt) are many-to-one mappings
from the hidden state, with learned potentials but
pre-allocated numbers of states for each output la-
bel.

Factorized transition log-potentials We em-
pirically observe that introducing a large number
of hidden states can lead to overfitting, due to over-
parameterization of the output dependencies. For
example, JOURNAL often co-occurs with PAGES
but JOURNAL is not strictly accompanied by
PAGES (Anzaroot et al., 2014). Therefore, we
regularize the state transition log-potential with a
low-rank constraint, forming an embedding matrix
wherein state transition interaction scores are me-
diated through low-dimensional state embeddings
rather than a fully unconstrained parameter matrix.
Instead of learning A ∈ RM×M , a full-rank hid-
den state transition potential, we learn a low-rank
model A = UTV where U and V are two rank-k
matrices. This reduces the number of parameters
from M2 to 2Mk (where k << M) and shares
statistical strength when learning transitions be-
tween similar states.

Inference. The brute-force computation of the
posterior distribution using (5) is intractable, espe-
cially with the large number of hidden states. For-
tunately, both the energy and the partition func-
tion can be computed efficiently using tree be-
lief propagation. Due to the deterministic map-
ping from hidden states to outputs, we can sim-
ply fold the local input and output potentials
ψxz(xt, zt) and ψyz(yt, zt) into the edge poten-
tials and perform the forward-backward algorithm
as in a standard linear-chain CRF. This determin-
istic mapping also lets us enforce hard transition
constraints while retaining exact inference. Fur-
thermore, since our implementation is in PyTorch

(Paszke et al., 2017), we only need to imple-
ment the forward pass, as automatic differentiation
(back-propagation) is equivalent to the backward
pass (Eisner, 2016).

MAP inference. At test time, we run the Viterbi
algorithm to search for the best configuration over
z rather than over y. Mapping from the hidden
state zt to the output label yt is deterministic given
the output state embedding.

3 Related Work

Much deep learning research concerns itself with
learning to represent the structure of input space
in a way that is highly predictive of the output.
In this work, while using state-of-the-art sequence
tagging baselines for input representation learn-
ing, we concern ourselves with learning the global
structure of the output space of label sequences,
as well as fine-grained local distinctions in output
space. While representation learning in the form
of fine-grained, discrete, latent state transitions in
the output space has been explored in this context
(e.g. various latent-variable conditional random
fields (Quattoni et al., 2007; Sutton et al., 2007;
Morency et al., 2007) and latent structured support
vector machines (Yu and Joachims, 2009)), we en-
able the use of many more hidden states without
overfitting by factorizing the log-potential transi-
tion matrices and modeling the log-scores of latent
state interactions as products of low-dimensional
embeddings, effectively performing feature learn-
ing in output space.

A simple linear-chain CRF over the labels was
used in early applications of deep learning to se-
quence tagging (Collobert et al., 2011), as well
as the most recent high-performing segmenta-
tion models for named entity recognition (Lample
et al., 2016). Outside of NLP, in tasks such as com-
puter vision, certain classes of fully-connected
graphical models over the output pixels have been
used for multi-dimensional smoothing (Adams
et al., 2010; Krähenbühl and Koltun, 2011), bor-
rowing techniques for the graphics literature.

However, none of these models performs rep-
resentation learning in the output space, as in the
case of our proposed embedded latent-state model.
Srikumar and Manning (2014) propose a similar
factorized representation of output labels and their
transitions, but only apply this to pairwise transi-
tions of output labels and not latent dynamics of
the whole sequence, while we believe the biggest

4

gains are to be found by marrying representation
learning techniques with latent variable methods.

In the graphical models literature, the most sim-
ilar work to ours is the Latent-Dynamic CRF of
Morency et al. (2007), who propose the same
graphical model structure, without the deep input
featurization, or more importantly, the learned em-
bedded factorization of transition scores. Addi-
tionally, that work uses a deterministic mapping
of equal numbers of hidden states to output la-
bels, while we have a hard-constrained (hidden
states to output variables are always many-to-one),
but learned, potential with different outputs pre-
allocated different numbers of states based on cor-
pus frequency.

Many graphical models have been proposed for
natural language processing under hard and soft
global constraints, e.g. (Koo et al., 2010; Anza-
root et al., 2014; Vilnis et al., 2015), many based
on dual decomposition (Rush and Collins, 2012).
However, the constraints are often fixed, and even
when learned (Anzaroot et al., 2014; Vilnis et al.,
2015), the learning is done simply on constraint
weights generated from pre-made templates, the
construction of which requires domain knowledge.

Finally, Structured Prediction Energy Networks
(Belanger and McCallum, 2016; Belanger et al.,
2017) have been used for NLP tasks such as se-
mantic role labeling, but they perform approx-
imate inference through gradient descent on a
learned energy function over labelings, effec-
tively a fully-connected graphical model, while
our model sits more clearly within the frame-
work of graphical models, permitting exact infer-
ence with only nonconvex learning, common to all
latent-variable models.

4 Experiments

We experiment on two datasets with a rich output
label space, the UMass Citations dataset (Anza-
root and McCallum, 2013) and the CLEF eHealth
dataset (Suominen et al., 2015). Both of the
datasets have a hierarchical label space, enforced
by hard transition constraints, making this a form
of shallow parsing (Anzaroot et al., 2014), with
additional soft constraints in the label space due
to the interdependent nature of the fields being ex-
tracted.

4.1 Datasets

4.1.1 UMass Citations
We experiment with citation field extraction on
the UMass Citations dataset (Anzaroot and Mc-
Callum, 2013), a collection of 2476 richly la-
beled citation strings, each tagged in a hierar-
chical manner, across a set of 38 entities de-
marcating both coarse-grained labeled segments,
such as title, date, authors and venue, as well
as fine-grained inner segments where applica-
ble. The data follows a train/dev/test split of
1454, 655 and 367 citations, with 231085 to-
tal tokens. For example, a person’s last name
could be tagged as AUTHORS/PERSON/PERSON-
LAST or VENUE/EDITOR/PERSON/PERSON-LAST

depending on whether the person is the author of
the cited TITLE or an editor of the publication
VENUE. Similarly, year could be tagged as either
DATE/YEAR or VENUE/DATE/YEAR depending on
whether it is the cited work’s publication date or
the publication date of the venue of the cited work.

4.1.2 CLEF eHealth
We perform our second set of sequence label-
ing experiments on the NICTA Synthetic Nursing
Handover dataset (Suominen et al., 2015) for clin-
ical information extraction, consisting of 101 doc-
uments totaling 32122 tokens.

It is a synthetic dataset of handover records,
which contain patient profiles as written by a
registered nurse (RN) working in the medical
ward and delivering verbal handovers to another
nurse at a shift change by the patients bedside.
A document is typically 100-300 words long,
and the included handover information contains
five coarse entities i.e, PATIENTINTRODUCTION,
MYSHIFT, APPOINTMENTS, MEDICATION

and FUTURECARE. Similar to the setup of
the citation field extraction task described in
Section 4.1.1, each of these coarse categories
has a further level of nested finer labels and
the entities to be identified are all hierarchical
in nature. For example, the PATIENTINTRO-
DUCTION section contains entities such as
PATIENTINTRODUCTION/LASTNAME and PA-
TIENTINTRODUCTION/UNDERDR LASTNAME,
the APPOINTMENTS section contains APPOINT-
MENT/PROCEDURE CLINICIANLASTNAME, and
MEDICATION contains MEDICATION/DOSAGE

and MEDICATION/MEDICINE. There are a total
of 35 such fine-grained entities. In addition to

5

the hard-constrained hierarchical structure of the
labels, the task also exhibits interesting global
constraints, such as only tagging the first occur-
rence of the patient’s gender, or the convention
of labeling the most brief description of a nurse’s
shift status as MYSHIFT/STATUS, while the de-
tails of the shift are tagged as MYSHIFT/OTHER.
In such cases, information extraction benefits
from modeling output label dependencies, as we
show in the results section.

4.2 Training Details

Our baseline is the BiLSTM+CRF model from
Lample et al. (2016), employing a bidirectional
LSTM with 500 hidden units for input featuriza-
tion to capture long-range dependencies in the in-
put space. Since we do not focus on input featur-
ization, we do not use character-level embeddings
in the baseline model.

Both the baseline model and our EL-CRF model
were implemented in PyTorch. For training our
models, we use the hyper-parameter settings from
the LSTM+CRF model of Lample et al. (2016).
Although, we did explore different optimizer tech-
niques to enhance SGD such as Adam (Kingma
and Ba, 2015), Averaged SGD (Polyak and Judit-
sky, 1992) and YellowFin (Zhang et al., 2017),
none of them performed as well as mini-batch
SGD with a batch-size of 1. We also employed
gradient clipping to a norm of 5.0, a learning
rate of 0.01, learning rate decay of 0.05, dropout
with p = 0.5, and early stopping, tuned on the
citation development data. We initialized our
word level embeddings using pre-trained 100 di-
mensional Glove embeddings (Pennington et al.,
2014), which gave better performance on our tasks
than the skip-n-gram embeddings (Ling et al.,
2015) used in the original work of Lample et al.
(2016). The datasets were pre-processed to zero-
replace all occurrences of numbers. Finally, we
experimented with both IOBES and IOB tagging
schemes, with IOB demonstrating higher perfor-
mance on our tasks.

Embedding size We tune the embedding size
(rank constraint) for the hidden state matrix A,
varying from 10 to 40, alongside the neural net-
work parameters, and report results when fixing
the other hyperparameters and varying embedding
size, similar to ablation analysis. Table 4 shows
the impact of different embedding sizes on the per-
formance of the model. We found that a size of

20 works best for both datasets, confirming the
importance of the rank-constrained log-potential
when using large-cardinality hidden variables.

Mapping tags to hidden states We find that the
mapping between tags and hidden states greatly
influences the performance of the model. We ex-
perimented with several heuristics (e.g., individual
IOB tag count ratio and entity count ratio), and
found that allocating a number of hidden states
proportional to the entity count gives us the best
performance.

4.2.1 Evaluation
We report field-level F1 scores as computed using
the conlleval.pl script.

Since the train/validation/test splits were clearly
defined for the UMass Citation dataset, we trained
the models on the training split, tuned the hyper-
parameters on the validation split and report the
scores on the test dataset. However, as there
were only 101 documents in the CLEF eHealth
dataset, we report the Leave-One-Out (LOO)
cross-validation F1 scores for this dataset i.e., we
trained 101 models each with a different held-out
document, merged the respective test outputs, and
computed the F1 score on this merged output.

4.3 Results

Table 1 shows that overall performance on the
UMass Citation dataset using the embedded-state
latent CRF (95.18) is marginally better than the
baseline BiLSTM+CRF model (95.07). However,
examining the entities with the largest F1 score
improvement in Table 2, we see that they are
mostly within the VENUE section, which has long-
range constraints with other sections, giving ev-
idence of the model’s ability to learn constraints
from the citation dataset.

Dataset CRF EL-CRF +

UMASS CITATION 95.07 95.18 0.11

CLEF EHEALTH 68.66 70.32 1.66

Table 1: Entity-level F1 scores of the embedded-
state latent CRF and BiLSTM+CRF baseline.

Table 1 demonstrates that EL-CRF outperforms
the BiLSTM+CRF on both datasets, with larger
gains on the much smaller CLEF data. Table
3 shows the top-gaining entities include MEDI-
CATION MEDICINE and MEDICATION DOSAGE,

6

Label CRF EL-CRF + S

V/DEPARTMENT 66.67 100 33.33 1

V/STATUS 77.78 87.5 9.72 9

V/E/P/
PERSON MIDDLE

83.33 91.67 8.34 11

REFERENCE ID 85.11 93.02 7.91 22

V/SERIES 55.17 61.54 6.37 12

V/ADDRESS 78.85 84.31 5.46 46

Table 2: Top 5 entities in terms of F1 improve-
ment on the UMass Citation Dataset. The col-
umn S shows the support for a given entity in the
test dataset. Key for contracted entity names: V:
VENUE, E: EDITOR, P: PERSON

Label CRF EL-CRF + S

P/DR/GIVENNAMES/
INITIALS

33.33 64.29 30.96 15

A/PROCEDURE/
TIME

34.78 53.66 18.88 28

M/MEDICINE 55.28 71.1 15.82 157

FA/WARNING/
ABNORMALRESULT

0 11.43 11.43 59

M/DOSAGE 9.09 18.75 9.66 37

Table 3: Top 5 entities in terms of F1 im-
provement on the CLEF eHealth dataset.
Key for contracted entity names: P/DR:
PATIENT INTRODUCTION/UNDER DR, A:
APPOINTMENT, M: MEDICATION, FA: FU-
TURE ALERT

due to the global constraint that those entities al-
ways co-occur.

5 Qualitative Analysis

In this section, we provide qualitative evidence
that the embedded-state latent CRF learns con-
straints which are not captured by the standard
CRF.

First, we pick a few representative examples
from the UMass Citations dataset and discuss
when our model is able to correctly determine the
label sequence based on the output constraints. In
addition to the the hard constraints arising from hi-
erarchical segmentation, this dataset also exhibits
empirical pairwise constraints between fields e.g.
two different authors’ first names cannot be placed
next to each other. Figure 3 demonstrates that the
CRF model fails to enforce such constraints.
Another constraint we observe in the citation data

Factor Size UMass Citation CLEF eHealth

10 94.92 70.06

20 95.18 71.51

30 94.91 69.92

40 94.88 70.33

Full Rank 95.13 71.11

Table 4: Comparison of F1 scores obtained by
varying the factor size parameter, and setting the
other model and neural network parameters from
the model with the best cross validation.

Figure 3: Authors name constraint violation

is that the Venue/Series tag only appears once per
citation if Venue/Booktitle is also present. Our
model obeys this constraint and marks the whole
span as Title instead of breaking it into Title and
Venue/Series, even though the input text for that
segment in isolation could represent a valid series
(Figure4).

Figure 4: Title should not co-occur with series.

Sometimes output structural dependencies are not
able to resolve ambiguity in the labeling sequence.
In Figure 5 our model correctly predicts the pres-
ence of a Venue/Booktitle and a Venue/Series, but
it fails to correctly assign the entity labels.

7

Figure 5: There is at most one series per citation.

The CLEF eHealth dataset holds a different set
of constraints than the citation data, and its input
sequences are not strong local indicators of the
labeling sequence. Therefore, our model shows
stronger performance over the Markovian baseline
for this dataset. Some of the constraints concern
the number of entities per document. For exam-
ple, we only tag the first occurrence of a gender
indicator e.g. he, she, her, etc., or the most gen-
eral status of a nurse’s shift.

Figure 6: The gender indicator constraint and
nurse’s shift status constraint in the CLEF eHealth
dataset.

Finally, a T-SNE (Maaten and Hinton, 2008)
clustering on the embedding vectors of the output
tags, shown in Figure 7, demonstrates that output

structural dependencies can be reflected in tag em-
bedding space.

Figure 7: A part of the T-SNE clustering of the
tag embedding from the CLEF eHealth dataset.
The two tag PATIENTINTRODUCTION GENDER

and MYSHIFT STATUS are under the similar con-
straint of being tagged only once per document.

6 Conclusion & Future Work

We present a latent variable model which not
only parametrizes local potentials with the learned
features from a deep neural network, but learns
embedded representations in a large hidden state
space, leveraging feature learning in both the in-
put and output representations. Experimental re-
sults demonstrate that our model can learn global
structural dependencies in the presence of ambigu-
ities that cannot be resolved by local featurization
of the input sequence. We find interpretable struc-
ture in the output state embeddings.

Future work will apply our model to larger
datasets with more complex dependencies, and in-
troduce multiple latent states per time-step, en-
abling exponentially more expressivity in output
states at the cost of exact inference. We will
also explore approximate inference methods, such
as expectation propagation, to speed up message
passing in the regime of low-rank log-potentials.

References
Andrew Adams, Jongmin Baek, and Myers Abraham

Davis. 2010. Fast high-dimensional filtering using
the permutohedral lattice. In Computer Graphics
Forum, volume 29, pages 753–762. Wiley Online Li-
brary.

Sam Anzaroot and Andrew McCallum. 2013. A new
dataset for fine-grained citation field extraction.

8

Sam Anzaroot, Alexandre Passos, David Belanger, and
Andrew McCallum. 2014. Learning soft linear con-
straints with application to citation field extraction.
arXiv preprint arXiv:1403.1349.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

David Belanger and Andrew McCallum. 2016. Struc-
tured prediction energy networks. In International
Conference on Machine Learning, pages 983–992.

David Belanger, Bishan Yang, and Andrew McCallum.
2017. End-to-end learning for structured prediction
energy networks. ICML.

Liang-Chieh Chen, George Papandreou, Iasonas
Kokkinos, Kevin Murphy, and Alan L Yuille. 2018.
Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully
connected crfs. PAMI.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
networks. In Neural Networks, 2005. IJCNN’05.
Proceedings. 2005 IEEE International Joint Confer-
ence on, volume 4, pages 2047–2052. IEEE.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine, 29(6):82–97.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR.

Terry Koo, Alexander M Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In EMNLP.

Philipp Krähenbühl and Vladlen Koltun. 2011. Effi-
cient inference in fully connected crfs with gaussian
edge potentials. In Advances in neural information
processing systems, pages 109–117.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
ACL.

Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fer-
mandez, Chris Dyer, Alan W Black, Isabel Tran-
coso, and Chu-Cheng Lin. 2015. Not all contexts
are created equal: Better word representations with
variable attention. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1367–1372.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Louis-Philippe Morency, Ariadna Quattoni, and Trevor
Darrell. 2007. Latent-dynamic discriminative mod-
els for continuous gesture recognition. In Computer
Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pages 1–8. IEEE.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Boris T Polyak and Anatoli B Juditsky. 1992. Ac-
celeration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization,
30(4):838–855.

Ariadna Quattoni, Sybor Wang, Louis-Philippe
Morency, Morency Collins, and Trevor Darrell.
2007. Hidden conditional random fields. IEEE
transactions on pattern analysis and machine
intelligence, 29(10).

Alexander M Rush and MJ Collins. 2012. A tutorial
on dual decomposition and lagrangian relaxation for
inference in natural language processing. Journal of
Artificial Intelligence Research, 45:305–362.

Vivek Srikumar and Christopher D Manning. 2014.
Learning distributed representations for structured
output prediction. In Advances in Neural Informa-
tion Processing Systems, pages 3266–3274.

Hanna Suominen, Liyuan Zhou, Leif Hanlen, and
Gabriela Ferraro. 2015. Benchmarking clinical
speech recognition and information extraction: new
data, methods, and evaluations. JMIR medical in-
formatics, 3(2).

Charles Sutton, Andrew McCallum, and Khashayar
Rohanimanesh. 2007. Dynamic conditional random
fields: Factorized probabilistic models for labeling
and segmenting sequence data. Journal of Machine
Learning Research, 8(Mar):693–723.

Luke Vilnis, David Belanger, Daniel Sheldon, and An-
drew McCallum. 2015. Bethe projections for non-
local inference. arXiv preprint arXiv:1503.01397.

9

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 1169–1176. ACM.

Jian Zhang, Ioannis Mitliagkas, and Christopher Ré.
2017. Yellowfin and the art of momentum tuning.
arXiv preprint arXiv:1706.03471.

10

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 11–20
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Continuous Word Embedding Fusion via Spectral Decomposition

Tianfan Fu
Georgia Institute of Technology

Atlanta, GA, USA
tfu42@gatech.edu

Cheng Zhang
Microsoft Research Cambridge

Cambridge, CB1 2FB, UK
cheng.zhang@microsoft.com

Stephan Mandt
Los Angeles, CA, USA

stephan.mandt@gmail.com

Abstract

Word embeddings have become a mainstream
tool in statistical natural language processing.
Practitioners often use pre-trained word vec-
tors, which were trained on large generic text
corpora, and which are readily available on the
web. However, pre-trained word vectors often-
times lack important words from specific do-
mains. It is therefore often desirable to extend
the vocabulary and embed new words into a
set of pre-trained word vectors. In this paper,
we present an efficient method for including
new words from a specialized corpus, contain-
ing new words, into pre-trained generic word
embeddings. We build on the established view
of word embeddings as matrix factorizations
to present a spectral algorithm for this task. Ex-
periments on several domain-specific corpora
with specialized vocabularies demonstrate that
our method is able to embed the new words
efficiently into the original embedding space.
Compared to competing methods, our method
is faster, parameter-free, and deterministic.

1 Introduction

There has been a recent surge of neural word em-
bedding models (Mikolov et al., 2013a,b). These
models have been shown to perform well in a va-
riety of NLP problems, such as word similarity
and relational analogy tasks. Word embeddings
play a crucial role in diverse fields such as com-
puter vision (Hwang and Sigal, 2014), news clas-
sification (Kenter and De Rijke, 2015; Phung and
De Vine, 2015), machine translation (Zou et al.,
2013; Wu et al., 2014), and have been extended
in various ways (Rudolph et al., 2016; Bamler and
Mandt, 2017; Peters et al., 2018).

Instead of training word embeddings from
scratch, practitioners often resort to high-quality,

pre-trained word embeddings which can be down-
loaded from the web. These embeddings were
trained on massive corpora, such as online news.
The downside is that their vocabulary is often re-
stricted, and by nature, is very generic. An open
question remains of how to optimally include new
words from highly specialized text corpora into an
existing word embedding fit. Such transfer learning
has several advantages. First, one saves the com-
putational burden of learning high-quality word
vectors from scratch. Second, one can already
rely on the fact that the majority of word embed-
ding vectors are semantically meaningful. Third,
as we show in this paper, there are deterministic
and parameter-free approaches that fulfill this goal,
making the scheme robust and reproducible.

For a practical application, imagine that we are
given a small corpus, such as a collection of sci-
entific articles, and our goal is to include the as-
sociated vocabulary into a pre-trained set of word
vectors which were learned on Google Books or
Wikipedia. The scientific corpus contains both
common words (e.g., “propose”, “experiment”)
and domain-specific words, such as “submodular”
and “sublinear”. However, this specialized cor-
pus can be safely assumed to be too small to train
a word embedding model from scratch. Alterna-
tively, we could merge the domain-specific corpus
with a large generic corpus and train the entire
word-embedding from scratch, but this would be
computationally demanding and non-reproducible
due to the non-convexity of the underlying opti-
mization problem. In this paper, we show how to
include the specialized vocabulary into the generic
set of word vectors without having to re-train the
model on the large vocabulary, simply relying on
linear algebra.

A naive baseline method is to fix the pre-trained

11

word vectors and only update the new ones. We
found that this approach suffers from local optima
and sensitive to hyper-parameters; therefore it is
not reliable in practice. In contrast, our approach is
not based on gradient descent and therefore more
robust, deterministic, and parameter-free.

In this paper, we propose a Spectral Online Word
Embedding (SOWE) algorithm for integrating new
words into a pre-trained word embedding fit. Our
approach is based on online matrix factorization. In
more detail, our main contributions are as follows:

• We propose a Spectral Online Word Embed-
ding (SOWE) method to include new words
into a pre-trained set of word vectors. This
approach does naturally not suffer from opti-
mization problems, such as initialization, pa-
rameter tuning, and local optima.

• Our approach approximately reduces to an
online matrix factorization problem. We pro-
vide a bound on the approximation error and
show that this error does not scale with the
vocabulary size (Theorem 1).

• The complexity of proposed method scales lin-
early with the size of vocabulary and quadrat-
ically with embedding dimension, making the
approach feasible in large-scale applications.

• We evaluate our method on two domain spe-
cific corpora. Experimental results show that
our method is able to embed new vocabulary
faster than the baseline method while obtain-
ing more meaningful embeddings. It is also
parameter-free and deterministic, making the
approach easily reproducible.

2 Related Work

Our paper departs from word embeddings learned
via the skip-gram method, and shows how the vo-
cabulary can be extended in an online fashion, us-
ing methods from linear algebra. As such, our ap-
proach relates to word embeddings, online learning,
and the singular value decomposition (SVD).

Skip-Gram Model Our model builds on word
embeddings trained via the skip-gram model with
negative sampling (SGNS), proposed by Mikolov
et al. (2013a,b). These papers proposed a scalable
training algorithm based on negative sampling.

The model predicts a target word in the mid-
dle of a sentence based on its surrounding words

(contexts). Each target word / context word is asso-
ciated with a feature vector whose entries are latent,
and are treated as parameters to be learned. This
model is efficient to train via stochastic gradient
descent; its resulting word vectors provide state-of-
the-art results on various linguistic tasks (Liu et al.,
2015; Pickhardt et al., 2014). The skip-gram model
was influential both in the machine learning and
related communities.

Levy and Goldberg (2014) showed that
word2vec can be viewed as an implicit matrix
factorization of the pointwise mutual information
matrix (PMI) of word distributions. The authors
present a closed-form solution based on a singular
value decomposition of a sparse version of this ma-
trix, termed SPPMI. In this paper, we extend on this
view and present an efficient online learning algo-
rithm based on a decomposition of SPPMI matrix
which departs form pre-trained word embeddings.

Online Word Embeddings Kiros et al. (2015)
propose adding new words into an existing embed-
ding space using a projection method to warm-start
learning the new words. The authors assumed that
there already exist well-trained word vectors from a
large underlying vocabulary, and present a method
that projects word vectors from an old space to a
new space, where the projection matrix is learned
from known words.

Bojanowski et al. (2016) exploited character-
level features. Concretely, they train a character-n-
gram model to locate the new word vector near the
existing word with similar root. Le and Mikolov
(2014) introduced paragraph-level vectors (instead
of word-level), a fixed-length feature representa-
tions for variable-length texts. When embedding
new paragraphs, old paragraph vectors are frozen,
and the new ones are updated. Furthermore, Luo
et al. (2015) proposed an efficient online method to
address the memory issue encountered when learn-
ing word embeddings based on nonnegative matrix
factorization.

Online SVD We already discussed word embed-
dings via implicit matrix factorization (IMF) above.
This method is based on a truncated SVD on a
square matrix whose size is the vocabulary size. As
this paper combines this idea with online learning,
we review related word on online singular value
decompositions.

Online SVD (incremental SVD) is a classical
problem in numerical linear algebra (Datta, 2010),

12

and is intensively used in recommendation sys-
tems (Sarwar et al., 2002; Brand, 2003) and sub-
space learning (Li, 2004). Online SVD only pos-
sesses an approximate solution. Recently some
methods have been proposed to reduce the involved
approximation error (Shamir, 2015; Allen-Zhu and
Li, 2016) based on iterative learning. In this paper,
we use the same online SVD method as in Sarwar
et al. (2002), which owns a closed-form solution.

3 Method

We present our spectral word embedding method
to efficiently insert new words from an extended
vocabulary into pre-trained word embeddings, with-
out having to re-train the model on the extended
vocabulary. We first introduce some relevant back-
ground with respect to word embedding via implicit
matrix factorization (Section 3.1) before presenting
our method (Section 3.2) and theoretical considera-
tion (Section 3.3).

Notation In this paper, the vocabulary of the ex-
isting pre-trained word embedding is called base
vocabulary, whose size is m. After adding new
words, we call the whole vocabulary the extended
vocabulary; its size is n ≡ m + m′, where m′

is the number of unique new words. We assume
m′ � m, so O(n) = O(m). Furthermore, let
d denote the embedding dimension. As will be
explained below, let S0, Sfull denote the SPPMI
matrices of the base and extended vocabularies, re-
spectively. The subscript “full”, thus, always refers
to the extended vocabulary.

3.1 Background: Word Embedding via
Implicit Matrix Factorization (IMF)

The basis of our approach is the skip-gram
model with negative sampling (SGNS), also called
word2vec (Mikolov et al., 2013a,b). Let D denote
the set of all observed of word-context pairs. Fur-
thermore, #(w, c) denotes the number of times the
pair (w, c) appears in D, and ~w and ~c are the word
and context embeddings.

The objective that SGNS minimizes is

L =
∑

w∈Vw

∑

c∈Vc

{
#(w, c) log σ(~w · ~c)

+ k · EcN∼pD [log σ(−~w · ~cN)]
}
.

(1)

In the limit of large d, Levy and Goldberg
(2014) found the following closed-form solution
to Eq 1: x = ~w · ~c = log

(
#(w,c) ·|D|
#(w) #(c)

)
− log k.

S0 = WC> x′

y′ z′

m

m′

m m′

Figure 1: Block-structure of the Pointwise Mutual
Information Matrix considered in this paper, and
its block-structure for extended vocabulary. It cor-
responds to Equation (6).

The first term can be seen as an empirical es-
timate of Pointwise Mutual Information (PMI):
PMI(w, c) = log

(
P (w,c)
P (w)P (c)

)
. Thus, the matrix

M that SGNS factorizes can be constructed from
Mij = PMI(wi, cj) − log k. For computational
convenience, Levy and Goldberg (2014) suggested
a sparse and consistent alternative called Shifted
Positive PMI (SPPMI):

SPPMI(w, c) = max(PMI(w, c)− log k, 0).
(2)

Levy and Goldberg (2014) showed that using such
sparse representation, word and context embed-
dings could be efficiently obtained using a trun-
cated singular value decomposition.

As will be explained in the next section, our ap-
proach builds on the intuition that word2vec implic-
itly factorizes the SPPMI matrix. Given pre-trained
word and context vectors, we ask for an efficient
way of extending the vocabulary and re-adjusting
these vectors accordingly.

3.2 SOWE: Spectral Online Word
Embedding

Our method takes advantages of the implicit ma-
trix factorization method for efficiently embedding
previously unseen words. Given a pre-trained word
embedding, we firstly transform it to the SVD
form. Using such form, under mild approxima-
tion, we can utilize efficient online SVD (Sarwar
et al., 2002) to obtain the word embeddings for the
extended vocabulary.

Figure 1 presents a sketch of the problem that we
want to solve. We start from a (m+m′)×(m+m′)
matrix in the extended vocabulary space, for which

13

A = U(ΣV >) a U

ΣV > b Us
Σs

Vs

Figure 2: A sketch of the matrix manipulations carried out in online SVD (Algorithm 2). Given the
truncated SVD of A ≈ UΣV > and new columns a, we first compute b, the projection of a on U , i.e.,
b = U>a. Then we concatenate Z = ΣV > and b via V ′ = [Z, b]>. Finally, we do rank-d truncated SVD
on V ′, i.e, [Vs,Σs, Us] = tSVD(V ′, d). Final result is [UUs,Σs, Vs] = tSVD([A, a], d).

Algorithm 1 Spectral Online Word Embedding
(SOWE)
Input: Old word/context vectors W and C with

S0 ≡WC>, co-occurrence matrices involving
new vocabulary x′, y′, and z′ (see Fig. 1).

Output: Word/context vectors Wfull, Cfull for ex-
tended vocabulary.

1: SVD of WC> via QR decomposition.
2: U,R1 ← QR(W) // O(md2)
3: V,R2 ← QR(C) // O(md2)
4: U0,Σ, V0 ← SVD(R1R

>
2) // O(d3)

5: U ← UU0 // O(md2)
6: V ← V V0 // O(md2)
7: Horizontal and vertical Online SVD.
8: U ′,Σ′, V ′ ← OSVD([UΣV >, x′])

9: Ufull,Σfull, Vfull ← OSVD(
[
U ′Σ′V ′>

[y′,z′]

]
).

10: Return new embeddings.
11: Wfull ← Ufull ·

√
Σfull,

12: Cfull ← Vfull ·
√

Σfull

we seek an approximate factorization. We assume
that we already have a factorization of the upper-
left submatrix of size m×m, implicitly obtained
from word2vec or related word embedding algo-
rithms. We seek an efficient linear algebra algo-
rithm that, given the block-structure, results in a
factorization of the whole matrix in linear time in
m. This will be detailed below.

Overview The following steps summarize our
overall proposed procedure.

• We start by assuming that our word embed-
ding algorithm came from a factorization of
the pointwise mutual information matrix of
word frequencies. Thus, S0 ≈WC>.

• In order to make use of efficient only SVD,
we need to convert this matrix product into

an SVD form. This can be done in O(m)
time and results in WC> = UΣV > (Sec-
tion 3.2.1).

• Next, we need to estimate all elements in the
extended pointwise mutual information ma-
trix, see Figure 1. We first estimate the dom-
inant block (section 3.2.2 (i)), and show that
it can be approximated by our previously ob-
tained SVD. We then estimate the remaining
blocks (section 3.2.2 (ii)). For the latter, we
need to estimate the frequencies of the new
words relative to the old words.

• We are now in a position to efficiently com-
pute a new SVD for the extended pointwise
mutual information matrix, UfullΣfullV

>
full, us-

ing online SVD. The operational costs are still
O(m) ((iii) in Section 3.2.2).

• Finally we define our new embedding ma-
trices as Wfull = Ufull

√
Σfull and Cfull =

Vfull
√

Σfull, which completes our algorithm.

These steps will be explained in more detail below.

3.2.1 SVD from Word-Context Vectors
The first step in our algorithm is to obtain a singular
value decomposition (SVD) of the old vocabulary’s
approximate PMI matrix S0. Our working hypothe-
sis is that our pre-trained word and context embed-
ding matrices W and C are already approximately
factorizing this matrix,

S0 ≈WC>. (3)

Levy and Goldberg (2014) showed that this fac-
torization is correct in the limit of a large enough
embedding dimension d, but is only approximately
true otherwise. In this paper, we will use Eq. 3 as a
working hypothesis.

14

Computing an SVD from S0 would usually be
an operation that costs O(m2), thus would scale
quadratically in the vocabulary size. In such factor-
ization would be not practical, since m is typically
of the order of hundred thousands. Instead, we
show next that, given a low-rank factorization of
S0 in terms of W and C renders this cost linear
in the vocabulary size, making such an approach
practical. The following procedure corresponds to
steps 1-6 in Algorithm 1.

A truncated SVD (tSVD) of S0 with rank d can
be obtained from QR decompositions (Golub and
Loan, 1996) of W and C as follows:

U ′, R1 = QR(W); V ′, R2 = QR(C)

This results in S0 = U ′R1R
>
2 V
′>. In a second

step, we apply an SVD to R1R
>
2 :

U ′′,Σ, V ′′ = SVD(R1R
>
2).

The costs of this are small, as R1,2 are d × d ma-
trices. Since the composition of two orthogonal
matrices is still orthogonal, we obtain the SVD
of S0 as U = U ′U ′′, V = V ′V ′′. Note that
this transformation is exact since in our approx-
imation, S0 = WC> was already of rank d. Thus,
WC> = UΣV >. The complexity of this operation
is O(md2), which concludes the first step.

3.2.2 Utilizing Online SVD to Embed
Extended Vocabulary

The next steps amout to adding new words to the
old embeddings by adding rows and columns to the
original SPPMI matrix, and efficiently factorizing
it via online SVD.

Given a representation of the old block of the
PMI matrix in terms of an SVD, our next task is
to compute the new elements of this matrix that
correspond to the extended vocabulary ofm′ words,
with m′ � m. We denote this matrix Sfull ∈
R(m+m′)×(m+m′), and it has the following block
structure (see also Fig. 1):

Sfull ,
(
S′ x′

y′> z′

)
. (4)

In the following three steps, we describe how to
estimate and efficiently factorize this matrix.

(i) Approximating the main block In a first
step, we approximate the main block S′ of the
SPPMI matrix (Eq. 4). We show that to a first
approximation, this is just the SPPMI matrix of the
original vocabulary, hence S′ ≈ S0.

Algorithm 2 Recap: Online SVD (OSVD)

Input: Rank-d truncated SVD (tSVD) of A ∈
Rm×n: U,Σ, V = tSVD(A, d), where a ∈
Rm×m′

, U ∈ Rm×d, V ∈ Rn×d,Σ ∈ Rd×d,
{d,m′} � {m,n}.

Output: Rank-d truncated SVD of [A, a]:
1: U∗,Σ∗, V ∗ ← tSVD([A, a], d)
2: Compute projection of new matrix to U .
3: b← U>a. // O(ndm′)
4: Z ← ΣV > // O(nd)
5: V ′ ← [Z, b]>. // O(nd2)
6: Apply tSVD to projection.
7: Vs,Σs, Us← tSVD(V ′, d).
8: // O((n+m′)d2) ≈ O(nd2)
9: Return the results.

10: U∗ ← UUs, Σ∗ ← Σs, V ∗ ← Vs. // O(nd2)

To set up the SPPMI matrix, the following
formula has to be applied to the observed co-
occurrence counts #(w, c) between all word and
context words in the extended vocabulary:

max
{

log
(#(w, c) · |D|

#(w) #(c)

)
− log k, 0

}
(5)

Besides the co-occurrence counts, this also involves
the absolute frequencies #(w) and #(c) of words
and context vectors in the extended vocabulary, as
well as the total number of counts |D|. Note that all
these quantities enter only on a logarithmic scale.

The co-occurrence counts #(w, c) are the same
for the SPPMI matrices of the original and full
vocabularies. What differs slightly are the absolute
counts #(w), #(c), and |D| (these are slightly
higher in the extended corpus). However, since
we assumed that the original training corpus was
much bigger than the corpus containing the new
words, we can safely assume that the change in
log #(w), log #(c), and log |D| is negligible (we
will further specify and analyze this approximation
in our section 3.3). Thus, S′ ≈ S0. Furthermore,
since we have shown in section 3.2.1 that S0 =
UΣV >, this results in

Sfull ≈
(
UΣV > x′

y′> z′

)
. (6)

(ii) Adding rows and columns The matrices
x′, y′ ∈ Rm×m′

in Eq. 6 are tall-and-skinny ma-
trices that contain information about cross co-
ocurrences between old and new words, and z′ ∈
Rm′×m′

are the co-occurrences of new words in

15

the new vocabulary. Next, we will describe how to
estimate these quantities, taking into account that
we don’t have access to the original training corpus
that was used to learn the word embeddings of the
old vocabulary.

As follows, we focus on x′ as an example (es-
timating y′ works analogously). In this case, we
observe the co-occurrence counts #(w, c) between
words w from the base vocabulary in the context
of context words c from the new vocabulary. To
compute the SPPMI (2), we then apply Eq. 5 to all
obtained counts. This results in x′. The remaining
problem is that #(w) and |D| are unknown to us,
and some heuristics have to be found to circumvent
this problem.

First, notice that #(w)
|D| corresponds to the word

frequencies in the original corpus. Furthermore,
we are only interested in log #(w)

|D| . The logarithm
is less sensitive to the result of the estimation of
this quantity.

When using pre-trained word embeddings, the
embedding vectors are typically ranked according
to their frequency. We estimated the word fre-
quency based based on their frequencies on the
smaller corpus. For words from the old vocabulary
that are not present in the new corpus, we inter-
polated using an exponential model, taking their
frequency rankings into account.

Another heuristic has to be found to approximate
z′, in which case #(w) and #(c) are available, but
|D| is unknown. Here, we assume that the new
words are about as rare as the rarest words in the
old vocabulary, setting #(w)/|D| to the frequency
of the least frequent word in corpus. This specifies
the extended SPPMI matrix. Next, we show how
to efficiently re-factorize it.

(iii) Factorizing the Extended SPPMI Matrix
Finally, the approximated SPPMI matrix is effi-
ciently factorized using online SVD.

This can not be carried out in a single step, be-
cause the online SVD method sketched in Algo-
rithm 2 only supports the addition either rows or
columns (here presented for columns). Thus, we
first concatenate UΣV > and x′ horizontally and
perform a rank d truncated SVD. In a second step,
we concatenate the resulting singular value decom-
position vertically with the concatenation of y′ and
z′ to obtain a truncated SVD of the full SPPMI ma-
trix. Algorithm 2 gives the details; for more details
we refer to (Sarwar et al., 2002). This results in
an approximate SVD for the full matrix. Word and

context embeddings can be obtained trivially from
the SVD.

Finally, let us discuss the complexity of the
method. The online SVD subroutine dominates the
complexity of our approach, as it scales as O(nd2).
In all steps, the costs remain linear in the vocabu-
lary size. This makes our approach scalable and
convenient to use. In contrast, when carrying out an
SVD from scratch to compute the word and context
embeddings, we would have a quadratic scaling in
the vocabulary size, which would be impractical.

3.3 Theoretical Analysis
In this section, we show that under certain assump-
tions, the difference between approximate SPMMI
matrix S′full (Equation 6) and SPMMI matrix Sfull
(Equation 4) is bounded. This justifies the previ-
ous assumption that we can substitute S′full for Sfull.
Now we want to show theoretically that this is a
reasonable approximation. First, we make some
assumptions.

Assumption 1. There exists a constant c1 > 0
such that number of nonzero (nnz) entries inm×m
SPPMI matrix can be upper-bounded by c1m, i.e.,
nnz(SPPMI) ≤ c1m.

Remark 1. It is reasonable to assume that in
Shifted Positive PPMI matrix, most of the words
are only closely related to a small number of other
words.

Assumption 2. Every entry in co-occurrence ma-
trix can be bounded by c2 > 0, i.e., #(w, c) ≤
c2 for ∀ w, c.

This is always satisfied, since the number of
observed co-occurrences is always bounded.

Assumption 3. For m ×m SPPMI matrix, there
exists a constant c3 > 0 such that the number of
w and c occur in corpus D at least c3m times, i.e.,
min{ci, wi} ≥ c3

√
m for ∀ i.

Now, we provide our main theoretical result.

Theorem 1. Under Assumption 1, 2 and 3, the
gap between S′full and Sfull in Frobenius norm can

be bounded by a constant c4 =
3
√
c1c2
c3

, i.e., ‖S′full−
Sfull‖F ≤ c4.

This results implies that the difference between
S′full and Sfull is bounded by a constant independent
of the vocabulary size. Since in large-scale word
embedding models the size of the vocabulary is
typically 105 or even 106, the relative difference
between these two matrices can be negligible. We

16

Dataset Method Loss for new Loss for all time

NIPS
FOUN -1.47± 0.004e5 -1.7026±0.00004e7 103.8

FOUN+anneal -1.46±0.006e5 -1.7026±0.00006e7 103.3
SOWE (ours) -1.52e5 -1.7031e7 47.1

Economic
News

FOUN -8.64±0.007e4 -1.6907±0.000007e7 84.3
FOUN+anneal -8.63±0.01e4 -1.6907±0.00001e7 87.8
SOWE (ours) -8.65e4 -1.6904e7 45.79

Table 1: Performance on NIPS Abstract and Economic News. The unit of running time is second. We
report the average value of 10 independent runs for FOUN and standard deviation in brackets only for
“loss for new”. For FOUN, “loss for all words” is the sum of “loss for new words” and “loss that are only
related to old words”(which is a constant). So standard deviation of “loss for all” is equal to “loss for all”.

provide the proof of the theorem in supplementary
materials.

4 Experiment

In this section, we show empirical results where we
compare our proposed SOWE with other continu-
ous word embedding algorithms.We first present
some generic settings of our experiments, followed
by quantitative and qualitative baseline compar-
isons. Compared to the baselines, we find that
our method is more efficient and finds more se-
mantically meaningful embeddings. Our method
takes less than one minute to insert about 1,000
domain-specific words (e.g., machine learning re-
lated words from NIPS abstracts) into a pre-trained
embedding model with more than 180,000 words.

Experimental Setup Our approach departs from
pre-trained word vectors from a generic training
corpus. We downloaded publicly available pre-
trained word embeddings and two small text cor-
pora from specific domains. Our goal is to insert
the domain-specific words that do not already ap-
pear in the original vocabulary efficiently into the
embeddings.

First, we report on basic settings for our exper-
iments. The pre-trained embedding model based
on English Wikipedia is available online 1. It con-
tains 183,870 words. The embedding dimension
is 300. The small, domain-specific corpora that
we considered were the following ones: (1) “NIPS
Abstracts”: this data set contains abstracts of all
the NIPS papers from 2014 to 2016. The data set
contains 981 new words. (2) “Economy News”:
This data set contains news articles, containing 868
new words. These two corpora are much smaller
than base corpus. For both the base corpus and
the new corpus, the text was pre-processed using a

1http://u.cs.biu.ac.il/~yogo/data/
syntemb/bow5.words.bz2

window of 5 tokens on each side of the target word,
where stop-words and non-textual elements were
removed, and sentence splitting and tokenization
were applied.

Baselines: FOUN and FOUN+annealing A
natural idea for inserting new words into a pre-
estisting word embedding fit is to fix the old
word/context vectors, and only to update the new
ones. This is our baseline method, referred in the
following as “Fix Old, Update New” (FOUN). The
approach uses the word2vec objective and employs
stochastic gradient descent for training. We employ
Robbins-Monro learning schedules (Robbins and
Monro, 1951), setting the stepsize at the t-th step
as εt = a(t+ γ)−0.51. We used grid-search to find
optimal parameters on all considered data sets, and
found k = 5, γ = 1e4, a = 1/10 (for different
tasks) to be optimal. Due to the involved random-
ness in the baseline approach, we conducted 10
independent trials using different random seeds for
each results and reported the average results. For
“FOUN+annealing” we used the same settings as
in FOUN, but added random zero-mean Gaussian
noise to the gradient. To this end, we employed a
version of Stochastic Gradient Langevin Dynam-
ics (Welling and Teh, 2011), where we scaled down
the noise by a factor of 0.01.

Loss minimization and runtime We considered
the word2vec loss on the extended vocabulary and
evaluated the value of the loss function on the em-
bedding vectors obtained form the different meth-
ods under consideration. The associated loss values
and runtimes are reported in Table 1 for the “NIPS
Abstracts”, and for “Economy News”. We found
both approaches yield similar values of the loss
function. (In our experiments below, however, we
will show that our obtained word vectors seem to
reflect the semantics of the original corpus better.)
As a clear improvement, we found that our method

17

Method Nearest Neighbor

FOUN joyous haworth legionnaires kristiansand cade dingo gaozu mightywords budged freret pepco
FOUN+annealing emmerich hotham totnes crescendo emt demesne family-friendly rutter khazars dijon isidro
SOWE (ours) midcap ultralow jawboning cdw lennar sucres moviefone terest supercenters ious wci

Table 2: Nearest Neighbors of “eurodollars” in extended vocabulary.

Method Nearest Neighbor

FOUN mattias valmiki invalided mailman malkovich bufo khufu dijon propagating madman
FOUN + annealing interrogative bouncers jf time-dependent invalidating bmo enameled subgroup brenda anal keller

SOWE (ours) cannot nonsmooth cnns coreset svrg sublinear denoising lstm interpretability

Table 3: Nearest Neighbors of “submodular” in extended vocabulary. We measure the distance using
cosine distance.

Method EN-WS-353-
SIM EN-MTurk-771 EN-MEN-TR-

3k
EN-RW-

STANFORD
EN-WS-353-

ALL

Ideal 69.94 57.45 64.43 43.26 65.14
FOUN 65.13 54.67 57.47 42.99 64.02

FOUN+anneal 64.99 54.89 57.50 42.73 64.01
SOWE (ours) 66.48 55.49 56.56 42.92 64.82

Table 4: Performance on word similarity task using text8 dataset. “ideal” means the matrix factorization
method proposed in Levy and Goldberg (2014). FOUN and FOUN+annealing are the baseline that we
are comparing with.

Method capital-common-
countries

nationality-
adjective family.txt Syntactic

Ideal 49.60% 50.55% 55.23% 30.49%
FOUN 45.73% 50.63% 55.01% 30.30%

FOUN + anneal 44.70% 49.97% 55.03% 30.26%
SOWE (ours) 46.43% 50.71% 50.43% 29.38%

Table 5: Performance on word analogy task using text8 dataset. “ideal” means learning the word embedding
with the full extended vocabulary from scratch. Here, the matrix factorization method proposed in Levy
and Goldberg (2014) is used on the Sfull. FOUN and FOUN+annealing are the baseline that we are
comparing with.

Method split
number

capital-
common-
countries

nationality-
adjective family.txt Syntactic

Ideal 64.74% 64.49% 62.32% 39.18%

FOUN 64.45±0.25 % 62.43±0.38% 61.29±0.44% 38.73±0.58 %
FOUN + anneal 20 64.26±0.38% 64.10±0.47 % 61.73±1.83 % 38.94±0.77%
SOWE (ours) 64.26±0.79% 64.22±0.47% 60.09±0.32% 38.20±0.72%

FOUN 59.80±1.27 % 60.93±1.76% 59.23±1.88% 38.47±1.23 %
FOUN + anneal 10 58.84±1.82% 59.93±1.90 % 59.77±2.00% 38.19±1.47%
SOWE (ours) 59.89±3.85% 60.86±1.02% 58.84±0.85% 38.00±1.83%

FOUN 51.88±4.03 % 52.10±2.94% 51.83±3.11% 33.33±2.09 %
FOUN + anneal 5 52.20±6.03% 52.08±3.96 % 54.01±3.88 % 33.84±2.11%
SOWE (ours) 51.14±%3.74 49.50±2.83% 50.84±1.44% 31.82±2.73 %

Table 6: Performance on word analogy task using existing embedding results and text8 dataset with
different folds of splits. In the row “Ideal”, we use the well-trained word embedding results downloaded
from Internet. FOUN and FOUN+annealing are the baseline that we are comparing with.

18

is faster than the baseline, yielding a factor of 8
times speedup. We consider the baseline method
to be converged when the loss value of the current
epoch is close (smaller than a threshold) to that of
the previous epoch, where the threshold is 1e2 for
NIPS abstract and Economics News.

Qualitative Nearest Neighbor Test To test
whether the learned embedding vectors are seman-
tically meaningful, we chose some words from the
new vocabulary and reported their nearest neigh-
bors in the extended vocabulary. We expect the
nearest neighbors to have a close semantic mean-
ings. We chose cosine similarity as a means to
measure distance between words.

We chose the words “eurodollars” as a query for
“Economic News” and “submodular” for “NIPS Ab-
stracts”. The results are reported in Table 2 and 3.
In the case of economics, we see that our algorithm
recovered meaningful words such as “midcap” and
“ultralow”. The baseline methods failed to return
meaningful results with respect to the query. One
possible reason is that the baseline’s underlying
optimization algorithm got trapped in a poor local
optimum. In the case of NIPS abstracts (Table 3),
our SOWE method results in words such as “nons-
mooth” and “coreset” which are highly related to
the query “submodular”, while the FOUN-based
methods fail. Our approach thus outperforms the
baseline in providing meaningful relationships be-
tween the pre-trained word vectors and the newly
embedded ones. More examples are provided in
the Appendix.

Evaluations on NLP Tasks Additionally, we
evaluated the proposed method on some down-
stream NLP tasks, such as pairwise word similarity.
To this end, we used datasets that contain word
pairs associated with human-assigned similarity
scores 2. The word vectors are evaluated by rank-
ing the pairs according to their cosine similarities,
and measuring the correlation (Spearmans ρ) with
the human ratings.

We excluded the word pairs of the similarity test
from the original vocabulary and trained word2vec
with the associated reduced vocabulary on sev-
eral corpora. We then added the test words us-
ing the three competing methods (SOWE, FOUN,
and FOUN+anneal). The fourth algorithm "Ideal"
amounts to evaluating the test on the generic pre-

2We used code and data from https://github.com/k-
kawakami/embedding-evaluation

trained word embeddings from the web. The results
on the word similarity task are shown in Table 4.
Our method obtains the best performance on four
out of five word similarity tasks.

Word analogy tests consists of questions of the
form “a is to a* as b is to b*”, where b* must be
completed (Mikolov et al., 2013b). We performed
such word analogy tests; our results are reported
in Table 5. We observe that SOWE outperform
FOUN-based methods in two out of four cases.

Word Analogy Analysis with Varying Number
of Folds We further split the corpus into folds to
evaluate the word analogy task, where we varied
the size of the folds. Here, we choose the most
frequent 20,000 words in text8 and then split the
vocabulary into k ∈ {5, 10, 20} folds. All folds but
one were considered as base vocabulary, and one
fold was considered as new vocabulary. We used
implicit matrix factorization on all but one fold, and
added the last fold’s vocabulary using the different
methods under comparison (FOUN, FOUN+anneal
and SOWE). We repeated this procedure k times
and report means and standard deviations in Table 6.
Our method achieves results comparable with the
baselines.

5 Conclusion

We proposed a deterministic spectral algorithm for
inserting new words into a pre-trained word embed-
ding model. The approach is based on a small cor-
pus (containing the new words) and the pre-trained
word embedding vectors. Under well-specified as-
sumptions, this vocabulary extension can be for-
mulated as an online matrix factorization problem.
This scheme scales linearly with the original vocab-
ulary size, and quadratically with the embedding
dimensions. Compared to baselines that involve
optimizing the original word2vec loss with the old
word vectors fixed, our method is parameter-free,
does not suffer from optimization problems such
as local optima, and as such easier to handle. We
further provided an analysis on the involved ap-
proximation error and showed that it is bounded.
While we found only slight improvements over the
baseline methods in terms of quality of the word
vectors, more work needs to be done to explore
tradeoffs of the involved approaches.

19

References
Zeyuan Allen-Zhu and Yuanzhi Li. 2016. LazySVD:

Even Faster SVD Decomposition Yet Without Ag-
onizing Pain. In Proceedings of the 30th Con-
ference on Neural Information Processing Systems,
NIPS ’16. Full version available at http://
arxiv.org/abs/1607.03463.

Robert Bamler and Stephan Mandt. 2017. Dynamic
word embeddings. In International Conference on
Machine Learning, pages 380–389.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Matthew Brand. 2003. Fast online svd revisions for
lightweight recommender systems. In Proceedings
of the 2003 SIAM International Conference on Data
Mining, pages 37–46. SIAM.

Biswa Nath Datta. 2010. Numerical linear algebra and
applications. SIAM.

Gene H. Golub and Charles F. Van Loan. 1996. Ma-
trix computations (3. ed.). Johns Hopkins University
Press.

Sung Ju Hwang and Leonid Sigal. 2014. A unified
semantic embedding: Relating taxonomies and at-
tributes. Neural Information Processing Systems,
pages 271–279.

Tom Kenter and Maarten De Rijke. 2015. Short text
similarity with word embeddings. pages 1411–
1420.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1188–1196.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Yongmin Li. 2004. On incremental and robust sub-
space learning. Pattern Recognition, 37(7):1509–
1518.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2015.
Learning context-sensitive word embeddings with
neural tensor skip-gram model. pages 1284–1290.

Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2015. Online learning of inter-
pretable word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1687–1692.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Viet Phung and Lance De Vine. 2015. A study on
the use of word embeddings and pagerank for viet-
namese text summarization. page 7.

Rene Pickhardt, Thomas Gottron, Martin Korner,
Paul Georg Wagner, Till Speicher, and Steffen Staab.
2014. A generalized language model as the combi-
nation of skipped n-grams and modified kneser ney
smoothing. meeting of the association for computa-
tional linguistics, pages 1145–1154.

Herbert Robbins and Sutton Monro. 1951. A stochas-
tic approximation method. Annals of Mathematical
Statistics, 22(3):400–407.

Maja Rudolph, Francisco Ruiz, Stephan Mandt, and
David Blei. 2016. Exponential family embeddings.
In Advances in Neural Information Processing Sys-
tems, pages 478–486.

Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2002. Incremental singular value de-
composition algorithms for highly scalable recom-
mender systems. In Fifth International Conference
on Computer and Information Science, pages 27–28.
Citeseer.

Ohad Shamir. 2015. A stochastic pca and svd algo-
rithm with an exponential convergence rate. interna-
tional conference on machine learning, pages 144–
152.

Max Welling and Yee W Teh. 2011. Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 681–688.

Haiyang Wu, Daxiang Dong, Xiaoguang Hu, Dian-
hai Yu, Wei He, Hua Wu, Haifeng Wang, and Ting
Liu. 2014. Improve statistical machine translation
with context-sensitive bilingual semantic embedding
model. pages 142–146.

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word
embeddings for phrase-based machine translation.
pages 1393–1398.

20

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 21–30
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Dual Latent Variable Model for Low-Resource Natural Language
Generation in Dialogue Systems

Van-Khanh Tran1,2 and Le-Minh Nguyen1

1Japan Advanced Institute of Science and Technology, JAIST
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
{tvkhanh, nguyenml}@jaist.ac.jp

2University of Information and Communication Technology, ICTU
Thai Nguyen University, Vietnam
tvkhanh@ictu.edu.vn

Abstract

Recent deep learning models have shown im-
proving results to natural language generation
(NLG) irrespective of providing sufficient an-
notated data. However, a modest training data
may harm such models’ performance. Thus,
how to build a generator that can utilize as
much of knowledge from a low-resource set-
ting data is a crucial issue in NLG. This paper
presents a variational neural-based generation
model to tackle the NLG problem of having
limited labeled dataset, in which we integrate a
variational inference into an encoder-decoder
generator and introduce a novel auxiliary auto-
encoding with an effective training procedure.
Experiments showed that the proposed meth-
ods not only outperform the previous models
when having sufficient training dataset but also
show strong ability to work acceptably well
when the training data is scarce.

1 Introduction

Natural language generation (NLG) plays an crit-
ical role in Spoken dialogue systems (SDSs) with
the NLG task is mainly to convert a meaning
representation produced by the dialogue manager,
i.e., dialogue act (DA), into natural language re-
sponses. SDSs are typically developed for various
specific domains, i.e., flight reservations (Levin
et al., 2000), buying a tv or a laptop (Wen et al.,
2015b), searching for a hotel or a restaurant (Wen
et al., 2015a), and so forth. Such systems often
require well-defined ontology datasets that are ex-
tremely time-consuming and expensive to collect.
There is, thus, a need to build NLG systems that
can work acceptably well when the training data
is in short supply.

There are two potential solutions for above-
mentioned problems, which are domain adapta-
tion training and model designing for low-resource
training. First, domain adaptation training which

aims at learning from sufficient source domain a
model that can perform acceptably well on a dif-
ferent target domain with a limited labeled target
data. Domain adaptation generally involves two
different types of datasets, one from a source do-
main and the other from a target domain. Despite
providing promising results for low-resource set-
ting problems, the methods still need an adequate
training data at the source domain site.

Second, model designing for low-resource set-
ting has not been well studied in the NLG litera-
ture. The generation models have achieved very
good performances irrespective of providing suf-
ficient labeled datasets (Wen et al., 2015b,a; Tran
et al., 2017; Tran and Nguyen, 2017). However,
small training data easily result in worse genera-
tion models in the supervised learning methods.
Thus, this paper presents an explicit way to con-
struct an effective low-resource setting generator.

In summary, we make the following contribu-
tions, in which we: (i) propose a variational ap-
proach for an NLG problem which benefits the
generator to not only outperform the previous
methods when there is a sufficient training data
but also perform acceptably well regarding low-
resource data; (ii) present a variational generator
that can also adapt faster to a new, unseen domain
using a limited amount of in-domain data; (iii) in-
vestigate the effectiveness of the proposed method
in different scenarios, including ablation studies,
scratch, domain adaptation, and semi-supervised
training with varied proportion of dataset.

2 Related Work

Recently, the RNN-based generators have shown
improving results in tackling the NLG problems
in task oriented-dialogue systems with varied pro-
posed methods, such as HLSTM (Wen et al.,
2015a), SCLSTM (Wen et al., 2015b), or espe-

21

cially RNN Encoder-Decoder models integrating
with attention mechanism, such as Enc-Dec (Wen
et al., 2016b), and RALSTM (Tran and Nguyen,
2017). However, such models have proved to work
well only when providing a sufficient in-domain
data since a modest dataset may harm the models’
performance.

In this context, one can think of a potential so-
lution where the domain adaptation learning is uti-
lized. The source domain, in this scenario, typ-
ically contains a sufficient amount of annotated
data such that a model can be efficiently built,
while there is often little or no labeled data in the
target domain. A phrase-based statistical genera-
tor (Mairesse et al., 2010) using graphical models
and active learning, and a multi-domain procedure
(Wen et al., 2016a) via data counterfeiting and dis-
criminative training. However, a question still re-
mains as how to build a generator that can directly
work well on a scarce dataset.

Neural variational framework for generative
models of text have been studied extensively.
Chung et al. (2015) proposed a recurrent latent
variable model for sequential data by integrating
latent random variables into hidden state of an
RNN. A hierarchical multi scale recurrent neu-
ral networks was proposed to learn both hierar-
chical and temporal representation (Chung et al.,
2016), while Bowman et al. (2015) presented a
variational autoencoder for unsupervised genera-
tive language model. Sohn et al. (2015) proposed
a deep conditional generative model for structured
output prediction, whereas Zhang et al. (2016) in-
troduced a variational neural machine translation
that incorporated a continuous latent variable to
model underlying semantics of sentence pairs. To
solve the exposure-bias problem (Bengio et al.,
2015) Zhang et al. (2017); Shen et al. (2017) pro-
posed a seq2seq purely convolutional and decon-
volutional autoencoder, Yang et al. (2017) pro-
posed to use a dilated CNN decoder in a latent-
variable model, or Semeniuta et al. (2017) pro-
posed a hybrid VAE architecture with convolu-
tional and deconvolutional components.

3 Dual Latent Variable Model

3.1 Variational Natural Language Generator

We make an assumption about the existing of a
continuous latent variable z from a underlying
semantic space of DA-Utterance pairs (d,u), so
that we explicitly model the space together with

Figure 1: Illustration of proposed variational mod-
els as a directed graph. (a) VNLG: joint learn-
ing both variational parameters φ and generative
model parameters θ. (b) DualVAE: red and blue
arrows form a standard VAE (parameterized by φ′

and θ′) as an auxiliary auto-encoding to the VNLG
model denoted by red and black arrows.

variable d to guide the generation process, i.e.,
p(u|z,d). The original conditional probability
p(y|d) modeled by a vanilla encoder-decoder net-
work is thus reformulated as follows:

p(u|d) =
∫

z
p(u, z|d)dz =

∫

z
p(u|z,d)p(z|d)dz

(1)
This latent variable enables us to model the under-
lying semantic space as a global signal for genera-
tion. However, the incorporating of latent variable
into the probabilistic model arises two difficulties
in (i) modeling the intractable posterior inference
p(z|d,u) and (ii) whether or not the latent vari-
ables z can be modeled effectively in case of low-
resource setting data.

To address the difficulties, we propose an
encoder-decoder based variational model to nat-
ural language generation (VNLG) by integrating
a variational autoencoder (Kingma and Welling,
2013) into an encoder-decoder generator (Tran
and Nguyen, 2017). Figure 1-(a) shows a graph-
ical model of VNLG. We then employ deep neu-
ral networks to approximate the prior p(z|d), true
posterior p(z|d,u), and decoder p(u|z,d). To
tackle the first issue, the intractable posterior is
approximated from both the DA and utterance in-
formation qφ(z|d,u) under the above assumption.
In contrast, the prior is modeled to condition on
the DA only pθ(z|d) due to the fact that the DA
and utterance of a training pair usually share the
same semantic information, i.e., a given DA in-
form(name=‘ABC’; area=‘XYZ’) contains key in-
formation of the corresponding utterance “The ho-
tel ABC is in XYZ area”. The underlying semantic
space with having more information encoded from
both the prior and the posterior provides the gener-
ator a potential solution to tackle the second issue.
Lastly, in generative process, given an observation

22

DA d the output u is generated by the decoder net-
work pθ(u|z,d) under the guidance of the global
signal z which is drawn from the prior distribu-
tion pθ(z|d). According to (Sohn et al., 2015), the
variational lower bound can be recomputed as:

L(θ,φ,d,u) = −KL(qφ(z|d,u)||pθ(z|d))
+Eqφ(z|d,u)[log pθ(u|z,d)] ≤ log p(u|d) (2)

3.1.1 Variational Encoder Network
The encoder consists of two networks: (i) a Bidi-
rectional LSTM (BiLSTM) which encodes the se-
quence of slot-value pairs {svi}TDAi=1 by separate
parameterization of slots and values (Wen et al.,
2016b); and (ii) a shared CNN/RNN Utterance
Encoder which encodes the corresponding utter-
ance. The encoder network, thus, produces both
the DA representation hD and the utterance repre-
sentation hU vectors which flow into the inference
and decoder networks, and the posterior approxi-
mator, respectively (see Suppl. 1.1).

3.1.2 Variational Inference Network
This section models both the prior pθ(z|d) and the
posterior qφ(z|d,u) by utilizing neural networks.

Neural Posterior Approximator: We approx-
imate the intractable posterior distribution of z
to simplify the posterior inference, in which we
first projects both DA and utterance representa-
tions onto the latent space:

h′z = g(Wz[hD;hU] + bz) (3)
where Wz ∈ Rdz×(dhD+dhU), bz ∈ Rdz are matrix
and bias parameters respectively, dz is the dimen-
sionality of the latent space, and we set g(.) to be
ReLU in our experiments. We then approximate
the posterior as:

qφ(z|d,u) = N (z;µ1(h′z), σ
2
1(h
′
z)I) (4)

with mean µ1 and standard variance σ1 are the out-
puts of the neural network as follows:

µ1 = Wµ1h′z + bµ1 , log σ
2
1 = Wσ1h′z + bσ1 (5)

where µ1, log σ21 are both dz dimension vectors.
Neural Prior: We model the prior as follows:

pθ(z|d) = N (z;µ′1(d), σ
′2
1(d)I) (6)

where µ′1 and σ′1 of the prior are neural mod-
els only based on the Dialogue Act representa-
tion, which are the same as those of the poste-
rior qφ(z|d,u) in Eq. 3 and 5, except for the ab-
sence of hU. To obtain a representation of the la-
tent variable z, we re-parameterize it as follows:
hz = µ1 + σ1 � ε where ε ∼ N (0, I).

Figure 2: The Dual latent variable model consists
of two VAE models: (i) a VNLG (red-dashed
box) is to generate utterances and (ii) a Variational
CNN-DCNN is an auxiliary auto-encoding model
(left side). The RNN/CNN Utterance Encoder is
shared between the two VAEs.

Note here that the parameters for the prior and
the posterior are independent of each other. More-
over, during decoding we set hz to be the mean of
the prior pθ(z|d), i.e., µ′1 due to the absence of the
utterance u. In order to integrate the latent variable
hz into the decoder, we use a non-linear transfor-
mation to project it onto the output space for gen-
eration: he = g(Wehz + be)(7), where he ∈ Rde .

3.1.3 Variational Decoder Network
Given a DA d and the latent variable z, the decoder
calculates the probability over the generation u as
a joint probability of ordered conditionals:

p(u|z,d) =
TU∏

t=1

p(ut|u<t, z,d) (8)

where p(ut|u<t, z,d)=g′(RALSTM(ut,ht−1,dt).
The RALSTM cell (Tran and Nguyen, 2017) is
slightly modified in order to integrate the repre-
sentation of latent variable, i.e., he, into the com-
putational cell (see Suppl. 1.3), in which the la-
tent variable can affect the hidden representation
through the gates. This allows the model can in-
directly take advantage of the underlying semantic
information from the latent variable z. In addi-
tion, when the model learns unseen dialogue acts,
the semantic representation he can benefit the gen-
eration process (see Table 1).

We finally obtain the VNLG model with RNN
Utterance Encoder (R-VNLG) or with CNN Utter-
ance Encoder (C-VNLG).

23

3.2 Variational CNN-DCNN Model
This standard VAE model (left side in Figure 2)
acts as an auxiliary auto-encoding for utterance
(used at training time) to the VNLG generator.
The model consists of two components. While the
shared CNN Utterance Encoder with the VNLG
model is to compute the latent representation vec-
tor hU (see Suppl. 1.1.3), a Deconvolutional CNN
Decoder to decode the latent representation he
back to the source text (see Suppl. 2.1). Specifi-
cally, after having the vector representation hU, we
apply another linear regression to obtain the distri-
bution parameter µ2 = Wµ2hU+bµ2 and log σ22 =
Wσ2hU + bσ2 . We then re-parameterize them to
obtain a latent representation hzu = µ2 + σ2 � ε,
where ε ∼ N (0, I). In order to integrate the la-
tent variable hzu into the DCNN Decoder, we use
the shared non-linear transformation as in Eq. 7
(denoted by the black-dashed line in Figure 2) as:
he = g(Wehzu + be).

The entire resulting model, named DualVAE,
by incorporating the VNLG with the Variational
CNN-DCNN model, is depicted in Figure 2.

4 Training Dual Latent Variable Model

4.1 Training VNLG Model
Inspired by work of Zhang et al. (2016), we also
employ the Monte-Carlo method to approximate
the expectation of the posterior in Eq. 2, i.e.
Eqφ(z|d,u)[.] ' 1

M

∑M
m=1 log pθ(u|d,h

(m)
z) where

M is the number of samples. In this work, the
joint training objective LVNLG for a training in-
stance pair (d,u) is formulated as:

L(θ, φ,d,u) ' −KL(qφ(z|d,u)||pθ(z|d))

+
1

M

M∑

m=1

TU∑

t=1

log pθ(ut|u<t,d,h(m)
z)

(9)

where h(m)
z = µ+ σ � ε(m), and ε(m) ∼ N (0, I),

and θ and φ denote decoder and encoder param-
eters, respectively. The first term is the KL di-
vergence between two Gaussian distribution, and
the second term is the approximation expectation.
We simply set M = 1 which degenerates the sec-
ond term to the objective of conventional genera-
tor. Since the objective function in Eq. 9 is dif-
ferentiable, we can jointly optimize the parame-
ter θ and variational parameter φ using standard
gradient ascent techniques. However, the KL di-
vergence loss tends to be significantly small dur-
ing training (Bowman et al., 2015). As a results,

the decoder does not take advantage of informa-
tion from the latent variable z. Thus, we apply
the KL cost annealing strategy that encourages the
model to encode meaningful representations into
the latent vector z, in which we gradually anneal
the KL term from 0 to 1. This helps our model to
achieve solutions with non-zero KL term.

4.2 Training Variational CNN-DCNN Model
The objective function LCNN-DCNN of the Varia-
tional CNN-DCNN model is the standard VAE
lower bound and maximized as follows:

L(θ′, φ′,u) = −KL(qφ′(z|u)||pθ′(z))
+ Eqφ′ (z|u)[log pθ′(u|z)] ≤ log p(u)

(10)

where θ′ and φ′ denote decoder and encoder
parameters, respectively. During training, we
also consider a denoising autoencoder where we
slightly modify the input by swapping some arbi-
trary word pairs.

4.3 Joint Training Dual VAE Model
To allow the model explore and balance maximiz-
ing the variational lower bound between the Vari-
ational CNN-DCNN model and VNLG model, an
objective is joint training as follows:

LDualVAE = LVNLG + αLCNN-DCNN (11)

where α controls the relative weight between two
variational losses. During training, we anneal the
value of α from 1 to 0, so that the dual latent
variable learned can gradually focus less on re-
construction objective of the CNN-DCNN model,
only retain those features that are useful for the
generation objective.

4.4 Joint Cross Training Dual VAE Model
To allow the dual VAE model explore and en-
code useful information of the Dialogue Act into
the latent variable, we further take a cross train-
ing between two VAEs by simply replacing the
RALSTM Decoder of the VNLG model with the
DCNN Utterance Decoder and its objective train-
ing LDA-DCNN as:

L(θ′, φ,d,u) ' −KL(qφ(z|d,u)||pθ′(z|d))
+ Eqφ(z|d,u)[log pθ′(u|z,d)],

(12)
and a joint cross training objective is employed:

LCrossVAE = LVNLG

+ α(LCNN-DCNN + LDA-DCNN)
(13)

24

5 Experiments

We assessed the proposed models on four different
original NLG domains: finding a restaurant and
hotel (Wen et al., 2015a), or buying a laptop and
television (Wen et al., 2016b).

5.1 Evaluation Metrics and Baselines

The generator performances were evaluated us-
ing the two metrics: the BLEU and the slot error
rate ERR by adopting code from an NLG toolkit∗.
We compared the proposed models against strong
baselines which have been recently published as
NLG benchmarks of those datasets, including
(i) gating models such as HLSTM (Wen et al.,
2015a), and SCLSTM (Wen et al., 2015b); and
(ii) attention models such as Enc-Dec (Wen et al.,
2016b), RALSTM (Tran and Nguyen, 2017).

5.2 Experimental Setups

In this work, the CNN Utterance Encoder con-
sists of L = 3 layers, which for a sentence of
length T = 73, embedding size d = 100, stride
length s = {2, 2, 2}, number of filters k =
{300, 600, 100} with filter sizes h = {5, 5, 16},
results in feature maps V of sizes {35× 300, 16×
600, 1 × 100}, in which the last feature map cor-
responds to latent representation vector hU.

The hidden layer size and beam width were set
to be 100 and 10, respectively, and the models
were trained with a 70% of keep dropout rate. We
performed 5 runs with different random initializa-
tion of the network, and the training process is ter-
minated by using early stopping. For the varia-
tional inference, we set the latent variable size to
be 300. We used Adam optimizer with the learn-
ing rate is initially set to be 0.001, and after 5
epochs the learning rate is decayed every epoch
using an exponential rate of 0.95.

6 Results and Analysis

We performed the models in different scenarios as
follows: (i) scratch training where models trained
from scratch using 10% (scr10), 30% (scr30),
and 100% (scr100) amount of in-domain data;
and (ii) domain adaptation training where mod-
els pre-trained from scratch using all source do-
main data, then fine-tuned on the target domain us-
ing only 10% amount of the target data. Overall,
the proposed models can work well in scenarios
∗https://github.com/shawnwun/RNNLG

Figure 3: Performance on Laptop domain with var-
ied limited amount, from 1% to 7%, of the adap-
tation training data when adapting models pre-
trained on [Restaurant+Hotel] union dataset.

of low-resource setting data. The proposed mod-
els obtained state-of-the-art performances regard-
ing both the evaluation metrics across all domains
in all training scenarios.

6.1 Integrating Variational Inference

We compare the encoder-decoder RALSTM
model to its modification by integrating with
variational inference (R-VNLG and C-VNLG) as
demonstrated in Figure 3 and Table 1.

It clearly shows that the variational generators
not only provide a compelling evidence on adapt-
ing to a new, unseen domain when the target do-
main data is scarce, i.e., from 1% to 7% (Figure 3)
but also preserve the power of the original RAL-
STM on generation task since their performances
are very competitive to those of RALSTM (Ta-
ble 1, scr100). Table 1, scr10 further shows the
necessity of the integrating in which the VNLGs
achieved a significant improvement over the RAL-
STM in scr10 scenario where the models trained
from scratch with only a limited amount of train-
ing data (10%). These indicate that the proposed
variational method can learn the underlying se-
mantic of the existing DA-utterance pairs, which
are especially useful information for low-resource
setting.

Furthermore, the R-VNLG model has slightly
better results than the C-VNLG when provid-
ing sufficient training data in scr100. In con-
trast, with a modest training data, in scr10, the
latter model demonstrates a significant improve-
ment compared to the former in terms of both the
BLEU and ERR scores by a large margin across
all four dataset. Take Hotel domain, for exam-
ple, the C-VNLG model (79.98 BLEU, 8.67%
ERR) has better results in comparison to the R-
VNLG (73.78 BLEU, 15.43% ERR) and RAL-

25

Model
Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

sc
r1

00
HLSTM 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%

SCLSTM 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
ENCDEC 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%
RALSTM 0.8965 0.58% 0.7779 0.20% 0.5373 0.49% 0.5231 0.50%

R-VNLG (Ours) 0.8851 0.57% 0.7709 0.36% 0.5356 0.73% 0.5210 0.59%
C-VNLG (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%
DualVAE (Ours) 0.8813 0.33% 0.7695 0.29% 0.5359 0.81% 0.5211 0.91%
CrossVAE (Ours) 0.8926 0.72% 0.7786 0.54% 0.5383 0.48% 0.5240 0.50%

sc
r1

0

HLSTM 0.7483 8.69% 0.6586 6.93% 0.4819 9.39% 0.4813 7.37%
SCLSTM 0.7626 17.42% 0.6446 16.93% 0.4290 31.87% 0.4729 15.89%
ENCDEC 0.7370 23.19% 0.6174 23.63% 0.4570 21.28% 0.4604 29.86%
RALSTM 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%

R-VNLG (Ours) 0.7378 15.43% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%
C-VNLG (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%
DualVAE (Ours) 0.8022 6.61% 0.6926 7.69% 0.5110 3.90% 0.5016 2.44%
CrossVAE (Ours) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

sc
r3

0

HLSTM 0.8104 6.39% 0.7044 2.13% 0.5024 5.82% 0.4859 6.70%
SCLSTM 0.8271 6.23% 0.6825 4.80% 0.4934 7.97% 0.5001 3.52%
ENCDEC 0.7865 9.38% 0.7102 13.47% 0.5014 9.19% 0.4907 10.72%
RALSTM 0.8334 4.23% 0.7145 2.67% 0.5124 3.53% 0.5106 2.22%

C-VNLG (Ours) 0.8553 2.64% 0.7256 0.96% 0.5265 0.66% 0.5117 2.15%
DualVAE (Ours) 0.8534 1.54% 0.7301 2.32% 0.5288 1.05% 0.5107 0.93%
CrossVAE (Ours) 0.8585 1.37% 0.7479 0.49% 0.5307 0.82% 0.5154 0.81%

Table 1: Results evaluated on four domains by training models from scratch with 10%, 30%, and 100%
in-domain data, respectively. The results were averaged over 5 randomly initialized networks. The bold
and italic faces denote the best and second best models in each training scenario, respectively.

STM (68.55 BLEU, 22.53% ERR). Thus, the rest
experiments focus on the C-VNLG since it shows
obvious sign for constructing a dual latent variable
models dealing with low-resource in-domain data.
We leave the R-VNLG for future investigation.

6.2 Ablation Studies

The ablation studies (Table 1) demonstrate the
contribution of each model components, in which
we incrementally train the baseline RALSTM, the
C-VNLG (= RALSTM + Variational inference),
the DualVAE (= C-VNLG + Variational CNN-
DCNN), and the CrossVAE (= DualVAE + Cross
training) models. Generally, while all models
can work well when there are sufficient training
datasets, the performances of the proposed models
also increase as increasing the model components.
The trend is consistent across all training cases no
matter how much the training data was provided.
Take, for example, the scr100 scenario in which
the CrossVAE model mostly outperformed all the
previous strong baselines with regard to the BLEU
and the slot error rate ERR scores.

On the other hand, the previous methods
showed extremely impaired performances regard-
ing low BLEU score and high slot error rate ERR

when training the models from scratch with only
10% of in-domain data (scr10). In contrast, by
integrating the variational inference, the C-VNLG
model, for example in Hotel domain, can signif-
icantly improve the BLEU score from 68.55 to
79.98, and also reduce the slot error rate ERR by a
large margin, from 22.53 to 8.67, compared to the
RALSTM baseline. Moreover, the proposed mod-
els have much better performance over the previ-
ous ones in the scr10 scenario since the Cross-
VAE, and the DualVAE models mostly obtained
the best and second best results, respectively. The
CrossVAE model trained on scr10 scenario, in
some cases, achieved results which close to those
of the HLSTM, SCLSTM, and ENCDEC mod-
els trained on all training data (scr100) scenario.
Take, for example, the most challenge dataset Lap-
top, in which the DualVAE and CrossVAE ob-
tained competitive results regarding the BLEU
score, at 50.16 and 50.85 respectively, which
close to those of the HLSTM (51.30 BLEU),
SCLSTM (51.09 BLEU), and ENCDEC (51.01
BLEU), while the results regardless the slot er-
ror rate ERR scores are also close to those of the
previous or even better in some cases, for exam-
ple DualVAE (2.44 ERR), CrossVAE (2.39 ERR),

26

Figure 4: Performance comparison of the models trained on Laptop domain.

and ENCDEC (4.24 ERR). There are also some
cases in TV domain where the proposed models
(in scr10) have results close to or better over the
previous ones (trained on scr100). These indicate
that the proposed models can encode useful infor-
mation into the latent variable efficiently to better
generalize to the unseen dialogue acts, addressing
the second difficulty with low-resource data.

The scr30 section further confirms the effective-
ness of the proposed methods, in which the Cross-
VAE and DualVAE still mostly rank the best and
second-best models compared with the baselines.
The proposed models also show superior ability in
leveraging the existing small training data to ob-
tain very good performances, which are in many
cases even better than those of the previous meth-
ods trained on 100% of in-domain data. Take
Tv domain, for example, in which the CrossVAE
in scr30 achieves a good result regarding BLEU
and slot error rate ERR score, at 53.07 BLEU
and 0.82 ERR, that are not only competitive to
the RALSTM (53.73 BLEU, 0.49 ERR), but also
outperform the previous models in scr100 train-
ing scenario, such as HLSTM (52.40 BLEU, 2.65
ERR), SCLSTM (52.35 BLEU, 2.41 ERR), and
ENCDEC (51.42 BLEU, 3.38 ERR). This further
indicates the need of the integrating with vari-
ational inference, the additional auxiliary auto-
encoding, as well as the joint and cross training.

6.3 Model comparison on unseen domain
In this experiment, we trained four models
(ENCDEC, SCLSTM, RALSTM, and CrossVAE)
from scratch in the most difficult unseen Laptop
domain with an increasingly varied proportion of
training data, start from 1% to 100%. The re-
sults are shown in Figure 4. It clearly sees that
the BLEU score increases and the slot error ERR
decreases as the models are trained on more data.
The CrossVAE model is clearly better than the pre-
vious models (ENCDEC, SCLSTM, RALSTM) in
all cases. While the performance of the Cross-
VAE, RALSTM model starts to saturate around
30% and 50%, respectively, the ENCDEC model

seems to continue getting better as providing more
training data. The figure also confirms that the
CrossVAE trained on 30% of data can achieve a
better performance compared to those of the pre-
vious models trained on 100% of in-domain data.

6.4 Domain Adaptation
We further examine the domain scalability of
the proposed methods by training the CrossVAE
and SCLSTM models on adaptation scenarios,
in which we first trained the models on out-of-
domain data, and then fine-tuned the model pa-
rameters by using a small amount (10%) of in-
domain data. The results are shown in Table 2.

Both SCLSTM and CrossVAE models can take
advantage of “close” dataset pairs, i.e., Restau-
rant↔ Hotel, and Tv↔ Laptop, to achieve better
performances compared to those of the “different”
dataset pairs, i.e. Latop↔ Restaurant. Moreover,
Table 2 clearly shows that the SCLSTM (denoted
by [) is limited to scale to another domain in terms
of having very low BLEU and high ERR scores.
This adaptation scenario along with the scr10 and
scr30 in Table 1 demonstrate that the SCLSTM
can not work when having a low-resource setting
of in-domain training data.

On the other hand, the CrossVAE model again
show ability in leveraging the out-of-domain data
to better adapt to a new domain. Especially in
the case where Laptop, which is a most difficult
unseen domain, is the target domain the Cross-
VAE model can obtain good results irrespective of
low slot error rate ERR, around 1.90%, and high
BLEU score, around 50.00 points. Surprisingly,
the CrossVAE model trained on scr10 scenario in
some cases achieves better performance compared
to those in adaptation scenario first trained with
30% out-of-domain data (denoted by]) which is
also better than the adaptation model trained on
100% out-of-domain data (denoted by ξ).

Preliminary experiments on semi-supervised
training were also conducted, in which we trained
the CrossVAE model with the same 10% in-
domain labeled data as in the other scenarios and

27

Source
Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
Hotel[- - 0.6243 11.20% 0.4325 29.12% 0.4603 22.52%

Restaurant[0.7329 29.97% - - 0.4520 24.34% 0.4619 21.40%
Tv[0.7030 25.63% 0.6117 12.78% - - 0.4794 11.80%

Laptop[0.6764 39.21% 0.5940 28.93% 0.4750 14.17% - -
Hotel] - - 0.7138 2.91% 0.5012 5.83% 0.4949 1.97%

Restaurant] 0.7984 4.04% - - 0.5120 3.26% 0.4947 1.87%
Tv] 0.7614 5.82% 0.6900 5.93% - - 0.4937 1.91%

Laptop] 0.7804 5.87% 0.6565 6.97% 0.5037 3.66% - -
Hotelξ - - 0.6926 3.56% 0.4866 11.99% 0.5017 3.56%

Restaurantξ 0.7802 3.20% - - 0.4953 3.10% 0.4902 4.05%
Tvξ 0.7603 8.69% 0.6830 5.73% - - 0.5055 2.86%

Laptopξ 0.7807 8.20% 0.6749 5.84% 0.4988 5.53% - -
CrossVAE (scr10) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

CrossVAE (semi-U50-L10) 0.8144 6.12% 0.6946 3.94% 0.5158 2.95% 0.5086 1.31%

Table 2: Results evaluated on Target domains by adaptation training SCLSTM model from 100% (de-
noted as [) of Source data, and the CrossVAE model from 30% (denoted as]), 100% (denoted as ξ) of
Source data. The scenario used only 10% amount of the Target domain data. The last two rows show
results by training the CrossVAE model on the scr10 and semi-supervised learning, respectively.

50% in-domain unlabeled data by keeping only
the utterances u in a given input pair of dialogue
act-utterance (d, u), denoted by semi-U50-L10.
The results showed CrossVAE’s ability in lever-
aging the unlabeled data to achieve slightly better
results compared to those in scratch scenario. All
these stipulate that the proposed models can per-
form acceptably well in training cases of scratch,
domain adaptation, and semi-supervised where
the in-domain training data is in short supply.

6.5 Comparison on Generated Outputs

We present top responses generated for different
scenarios from TV (Table 3) and Laptop (Table 4),
which further show the effectiveness of the pro-
posed methods.

On the one hand, previous models trained on
scr10, scr30 scenarios produce a diverse range
of the outputs’ error types, including missing,
misplaced, redundant, wrong slots, or spelling
mistake information, resulting in a very high
score of the slot error rate ERR. The ENCDEC,
HLSTM and SCLSTM models in Table 3-DA 1,
for example, tend to generate outputs with redun-
dant slots (i.e., SLOT HDMIPORT , SLOT NAME,
SLOT FAMILY), missing slots (i.e., [l7 family],
[4 hdmi port -s]), or even in some cases produce ir-
relevant slots (i.e., SLOT AUDIO, eco rating), re-
sulting in inadequate utterances.

On the other hand, the proposed models can ef-
fectively leverage the knowledge from only few
of the existing training instances to better gener-
alize to the unseen dialogue acts, leading to sat-
isfactory responses. For example in Table 3, the

proposed methods can generate adequate number
of the required slots, resulting in fulfilled utter-
ances (DualVAE-10, CrossVAE-10, DualVAE-30,
CrossVAE-30), or acceptable outputs with much
fewer error information, i.e., mis-ordered slots in
the generated utterances (C-VNLG-30).

For a much easier dialogue act in Table 3-DA 2,
previous models still produce some error outputs,
whereas the proposed methods seem to form some
specific slots into phrase in concise outputs. For
example, instead of generating “the proteus 73 is
a television” phrase, the proposed models tend to
concisely produce “the proteus 73 television”. The
trend is mostly consistent to those in Table 4.

7 Conclusion and Future Work
We present an approach to low-resource NLG by
integrating the variational inference and introduc-
ing a novel auxiliary auto-encoding. Experiments
showed that the models can perform acceptably
well using a scarce dataset. The ablation stud-
ies demonstrate that the variational generator con-
tributes to learning the underlying semantic of
DA-utterance pairs, while the variational CNN-
DCNN plays an important role of encoding useful
information into the latent variable. In the future,
we further investigate the proposed models with
adversarial training, semi-supervised, or unsuper-
vised training.

Acknowledgements

This work was supported by the JST CREST
Grant Number JPMJCR1513, the JSPS KAK-
ENHI Grant number 15K16048 and the grant of
a collaboration between JAIST and TIS.

28

Model Generated Responses from TV Domain
DA 1 compare(name=‘typhon 45’; hdmiport=‘2’; family=‘l2’; name=‘hades 48’; hdmiport=‘4’; family=‘l7’)
Reference 1 Compared to typhon 45 which has 2 hdmi port -s and is in the L2 product family, hades 48 has 4 hdmi port -s and is in the L7

product family. Which one do you prefer ?
ENCDEC-10 the typhon 45 is in the l2 product family and has 2 hdmi port -s and is in the l7 product family with 4 hdmi port -s, the hades 48 is

in the SLOT FAMILY product family with a SLOT AUDIO.
HLSTM-10 the typhon 45 is a great eco rating, the hades 48 is in the l2 family with 2 hdmi port -s. [l7 family] [4 hdmi port -s]
SCLSTM-10 the typhon 45 is the hades 48 with 2 hdmi port in the l2 family, the SLOT NAME has 4 hdmi port -s and SLOT HDMIPORT hdmi

port. [l7 family]
C-VNLG-10 the typhon 45 has 2 hdmi port -s and the hades 48 is in the l2 family and has 4 hdmi port -s. [l7 family]
DualVAE-10 the typhon 45 has 2 hdmi port -s and is in the l2 family while the hades 48 has 4 hdmi port -s and is in the l7 family. [OK]
CrossVAE-10 the typhon 45 is in the l2 family with 2 hdmi port -s while the hades 48 has 4 hdmi port -s and is in the l7 family. [OK]
ENCDEC-30 the typhon 45 has 2 hdmi port -s, the hades 48 has 4 hdmi port -s, the SLOT NAME has SLOT HDMIPORT hdmi port. [l2 family]

[l7 family]
HLSTM-30 the typhon 45 is in the l2 product family with 2 hdmi port -s, whereas the hades 48 has 4 hdmi port. [l7 family]
SCLSTM-30 the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family. [l7 family] [4 hdmi port -s]
C-VNLG-30 the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family and has 4 hdmi port -s in l7 family.
DualVAE-30 which do you prefer, the typhon 45 in the l2 product family with 2 hdmi port -s . the hades 48 is in the l7 family with 4 hdmi port

-s. [OK]
CrossVAE-30 the typhon 45 has 2 hdmi port -s and in the l2 family while the hades 48 has 4 hdmi port -s and is in the l7 family. which item do

you prefer. [OK]
DA 2 recommend(name=‘proteus 73’; type=‘television’; price=‘1500 dollars’; audio=‘nicam stereo’; hdmiport=‘2’)
Reference 2 proteus 73 is a nice television. its price is 1500 dollars, its audio is nicam stereo, and it has 2 hdmi port -s.
ENCDEC-10 the proteus 73 is a great television with a nicam stereo and 2 hdmi port -s [1500 dollars]
HLSTM-10 the proteus 73 is a television with 2 hdmi port -s and comes with a nicam stereo and costs 1500 dollars [OK]
SCLSTM-10 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s [1500 dollars]
C-VNLG-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
DualVAE-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
CrossVAE-10 the proteus 73 television has 2 hdmi port -s and a nicam stereo and costs 1500 dollars [OK]
ENCDEC-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio for 1500 dollars [OK]
HLSTM-30 the proteus 73 television has a nicam stereo and 2 hdmi port -s and is priced at 1500 dollars [OK]
SCLSTM-30 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s . it is priced at 1500 dollars [OK]
C-VNLG-30 the proteus 73 television has 2 hdmi port -s , nicam stereo audio , and costs 1500 dollars [OK]
DualVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]
CrossVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]

Table 3: Comparison of top Tv responses generated for different models in different scenarios. Errors are
marked in colors ([missing], misplaced, redundant, wrong, spelling mistake information). [OK] denotes
successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.

Model Generated Responses from Laptop Domain
DA compare(name=‘satellite pallas 21’; battery=‘4 hour’; drive=‘500 gb’; name=‘satellite dinlas 18’; battery=‘3.5 hour’; drive=‘1

tb’)
Reference compared to satellite pallas 21 which can last 4 hour and has a 500 gb drive , satellite dinlas 18 can last 3.5 hour and has a 1 tb

drive . which one do you prefer
Enc-Dec-10 the satellite pallas 21 has a 500 gb drive , the satellite dinlas 18 has a 4 hour battery life and a 3.5 hour battery life and a

SLOT BATTERY battery life and a 1 tb drive
HLSTM-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive . which one do you prefer [satellite pallas 18] [3.5 hour battery]

[1 tb drive]
SCLSTM-10 the satellite pallas 21 has a 4 hour battery , and has a 3.5 hour battery life and a 500 gb drive and a 1 tb drive [satellite dinlas 18]
C-VNLG-10 the satellite pallas 21 has a 500 gb drive and a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour battery life and a

SLOT BATTERY battery life [1 tb drive]
DualVAE-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive and the satellite dinlas 18 with a 3.5 hour battery life and is good

for business computing . which one do you prefer [1 tb drive]
CrossVAE-10 the satellite pallas 21 with 500 gb and a 1 tb drive . the satellite dinlas 18 with a 4 hour battery and a SLOT DRIVE drive . which

one do you prefer [3.5 hour battery]
Enc-Dec-30 the satellite pallas 21 has a 500 gb drive with a 1 tb drive and is the satellite dinlas 18 with a SLOT DRIVE drive for 4 hour -s .

which one do you prefer [3.5 hour battery]
HLSTM-30 the satellite pallas 21 is a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour battery life . which one do

you prefer [1 tb drive]
SCLSTM-30 the satellite pallas 21 has a 500 gb drive . the satellite dinlas 18 has a 4 hour battery life . the SLOT NAME has a 3.5 hour battery

life . which one do you prefer [1 tb drive]
C-VNLG-30 which one do you prefer the satellite pallas 21 with a 4 hour battery life , the satellite dinlas 18 has a 500 gb drive and a 3.5 hour

battery life and a 1 tb drive . which one do you prefer
DualVAE-30 satellite pallas 21 has a 500 gb drive and a 4 hour battery life while the satellite dinlas 18 with a 3.5 hour battery life and a 1 tb

drive . [OK]
CrossVAE-30 the satellite pallas 21 has a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 1 tb drive and a 3.5 hour battery

life . which one do you prefer [OK]

Table 4: Comparison of top Laptop responses generated for different models in different scenarios. Er-
rors are marked in colors ([missing], misplaced, redundant, wrong, spelling information). [OK] denotes
successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.

29

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and

Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2015. Generating sentences from a continuous
space. CoRR, abs/1511.06349.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2016. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Advances in neural information processing sys-
tems, pages 2980–2988.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Esther Levin, Shrikanth Narayanan, Roberto Pier-
accini, Konstantin Biatov, Enrico Bocchieri,
Giuseppe Di Fabbrizio, Wieland Eckert, Sungbok
Lee, A Pokrovsky, Mazin Rahim, et al. 2000. The
at&t-darpa communicator mixed-initiative spoken
dialog system. In Sixth International Conference on
Spoken Language Processing.

François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation
using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL ’10, pages
1552–1561, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2017. A hybrid convolutional variational
autoencoder for text generation. arXiv preprint
arXiv:1702.02390.

Dinghan Shen, Yizhe Zhang, Ricardo Henao, Qinliang
Su, and Lawrence Carin. 2017. Deconvolutional
latent-variable model for text sequence matching.
arXiv preprint arXiv:1709.07109.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015.
Learning structured output representation using
deep conditional generative models. In Advances
in Neural Information Processing Systems, pages
3483–3491.

Van-Khanh Tran and Le-Minh Nguyen. 2017. Natural
language generation for spoken dialogue system us-
ing rnn encoder-decoder networks. In Proceedings
of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), pages 442–451,
Vancouver, Canada. Association for Computational
Linguistics.

Van-Khanh Tran, Le-Minh Nguyen, and Satoshi Tojo.
2017. Neural-based natural language generation
in dialogue using rnn encoder-decoder with seman-
tic aggregation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 231–240, Saarbrcken, Germany. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic Language Generation
in Dialogue using Recurrent Neural Networks with
Convolutional Sentence Reranking. In Proceedings
SIGDIAL. Association for Computational Linguis-
tics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016a. Multi-domain
neural network language generation for spoken dia-
logue systems. arXiv preprint arXiv:1603.01232.

Tsung-Hsien Wen, Milica Gašic, Nikola Mrkšic,
Lina M Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016b. Toward multi-
domain language generation using recurrent neural
networks.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015b.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of EMNLP. Association for Computa-
tional Linguistics.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. arXiv preprint arXiv:1702.08139.

B. Zhang, D. Xiong, J. Su, H. Duan, and M. Zhang.
2016. Variational Neural Machine Translation.
ArXiv e-prints.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan,
Ricardo Henao, and Lawrence Carin. 2017. Decon-
volutional paragraph representation learning. In Ad-
vances in Neural Information Processing Systems,
pages 4172–4182.

30

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 31–41
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

A Trio Neural Model for Dynamic Entity Relatedness Ranking

Tu Ngoc Nguyen
L3S Research Center
tunguyen@L3S.de

Tuan Tran
Robert Bosch GmbH

anhtuan.tran2@de.bosch.com

Wolfgang Nejdl
L3S Research Center
nejdl@L3S.de

Abstract

Measuring entity relatedness is a fundamen-
tal task for many natural language processing
and information retrieval applications. Prior
work often studies entity relatedness in static
settings and an unsupervised manner. How-
ever, entities in real-world are often involved
in many different relationships, consequently
entity-relations are very dynamic over time.
In this work, we propose a neural network-
based approach for dynamic entity relatedness,
leveraging the collective attention as supervi-
sion. Our model is capable of learning rich
and different entity representations in a joint
framework. Through extensive experiments
on large-scale datasets, we demonstrate that
our method achieves better results than com-
petitive baselines.

1 Introduction

Measuring semantic relatedness between entities
is an inherent component in many text mining ap-
plications. In search and recommendation, the
ability to suggest most related entities to the
entity-bearing query has become a standard fea-
ture of popular Web search engines (Blanco et al.,
2013). In natural language processing, entity re-
latedness is an important factor for various tasks,
such as entity linking (Hoffart et al., 2012) or word
sense disambiguation (Moro et al., 2014).

However, prior work on semantic relatedness
often neglects the time dimension and consider
entities and their relationships as static. In prac-
tice, many entities are highly ephemeral (Jiang
et al., 2016), and users seeking information re-
lated to those entities would like to see fresh infor-
mation. For example, users looking up the entity
Taylor Lautner during 2008–2012 might want to
be recommended with entities such as The Twi-
light Saga, due to Lautner’s well-known perfor-
mance in the film series; however the same query

in August 2016 should be served with entities re-
lated to his appearances in more recent films such
as “Scream Queens”, “Run the Tide”. In addition,
much of previous work resorts to deriving seman-
tic relatedness from co-occurrence -based compu-
tations or heuristic functions without direct opti-
mization to the final goal. We believe that desir-
able framework should see entity semantic relat-
edness as not separate but an integral part of the
process, for instance in a supervised manner.

In this work, we address the problem of en-
tity relatedness ranking, that is, designing the se-
mantic relatedness models that are optimized for
ranking systems such as top-k entity retrieval or
recommendation. In this setting, the goal is not
to quantify the semantic relatedness between two
entities based on their occurrences in the data,
but to optimize the partial order of the related
entities in the top positions. This problem dif-
fers from traditional entity ranking (Kang et al.,
2015) in that the entity rankings are driven by
user queries and are optimized to their (ad-hoc) in-
formation needs, while entity relatedness ranking
also aims to uncover the meanings of the the relat-
edness from the data. In other words, while con-
ventional entity semantic relatedness learns from
data (editors or content providers’ perspectives),
and entity ranking learns from the user’s perspec-
tive, the entity relatedness ranking takes the trade-
off between these views. Such a hybrid approach
can benefit applications such as exploratory entity
search (Miliaraki et al., 2015), where users have
a specific goal in mind, but at the same time are
opened to other related entities.

We also tackle the issue of dynamic ranking and
design the supervised-learning model that takes
into account the temporal contexts of entities, and
proposes to leverage collective attention from pub-
lic sources. As an illustration, when one looks into
the Wikipedia page of Taylor Lautner, each navi-

31

Figure 1: The dynamics of collective attention for
related entities of Taylor Lautner in 2016.

gation to other Wikipedia pages indicates the user
interest in the corresponding target entity given her
initial interest in Lautner. Collectively, the naviga-
tion traffic observed over time is a good proxy to
the shift of public attention to the entity (Figure 1).

In addition, while previous work mainly focuses
on one aspect of the entities such as textual profiles
or linking graphs , we propose a trio neural model
that learns the low level representations of entities
from three different aspects: Content, structures
and time aspects. For the time aspect, we pro-
pose a convolutional model to embed and attend
to local patterns of the past temporal signals in the
Euclidean space. Experiments show that our trio
model outperforms traditional approaches in rank-
ing correlation and recommendation tasks. Our
contributions are summarized as follows.

• We present the first study of dynamic en-
tity relatedness ranking using collective at-
tention.

• We introduce an attention-based convolu-
tional neural networks (CNN) to capture the
temporal signals of an entity.

• We propose a joint framework to incorporate
multiple views of the entities, both from con-
tent provider and from user’s perspectives,
for entity relatedness ranking.

2 Related Work

2.1 Entity Relatedness and Recommendation
Most of existing semantic relatedness measures
(e.g. derived from Wikipedia) can be divided into
the following two major types: (1) text-based,
(2) graph-based. For the first, traditional meth-
ods mainly focus on a high-dimensional semantic

space based on occurrences of words (Gabrilovich
and Markovitch (2007, 2009)) or concepts (Ag-
garwal and Buitelaar (2014)). In recent years, em-
bedding methods that learn low-dimensional word
representations have been proposed. Hu et al.
(2015) leverages entity embedding on knowledge
graphs to better learn the distributional seman-
tics. Ni et al. (2016) use an adapted version of
Word2Vec, where each entity in a Wikipedia page
is considered as a term. For the graph-based ap-
proaches, these measures usually take advantage
of the hyperlink structure of entity graph (Wit-
ten and Milne, 2008; Guo and Barbosa, 2014).
Recent graph embedding techniques (e.g., Deep-
Walk (Perozzi et al., 2014)) have not been directly
used for entity relatedness in Wikipedia, yet its
performance is studied and shown very compet-
itive in recent related work (Zhao et al., 2015;
Ponza et al., 2017).

Entity relatedness is also studied in connec-
tion with the entity recommendation task. The
Spark (Blanco et al., 2013) system firstly intro-
duced the task for Web search, Yu et al. (2014);
Zhang et al. (2016a) exploit user click logs and
entity pane logs for global and personalized en-
tity recommendation. However, these approaches
are optimized to user information needs, and also
does not target the global and temporal dimension.
Recently, Zhang et al. (2016b); Tran et al. (2017)
proposed time-aware probabilistic approaches that
combine ‘static’ entity relatedness with tempo-
ral factors from different sources. Nguyen et al.
(2018) studied the task of time-aware ranking for
entity aspects and propose an ensemble model to
address the sub-features competing problem.

2.2 Neural Network Models
Neural Ranking. Deep neural ranking among
IR and NLP can be generally divided into two
groups: representation-focused and interaction-
focused models. The representation-focused ap-
proach (Huang et al., 2013) independently learns
a representation for each ranking element (e.g.,
query and document) and then employ a similar-
ity function. On the other hand, the interaction-
focused models are designed based on the early
interactions between the ranking pairs as the input
of network. For instance, Lu and Li (2013); Guo
et al. (2016) build interactions (i.e., local match-
ing signals) between two pieces of text and trains a
feed-forward network for computing the matching
score. This enables the model to capture various

32

interactions between ranking elements, while with
former, the model has only the chance of isolated
observation of input elements.

Attention networks. In recent years, attention-
based NN architectures, which learn to focus their
“attention” to specific parts of the input, have
shown promising results on various NLP tasks.
For most cases, attentions are applied on sequen-
tial models to capture global context (Luong et al.,
2015). An attention mechanism often relies on a
context vector that facilitates outputting a “sum-
mary” over all (deterministic soft) or a sample
(stochastic hard) of input states. Recent work
proposed a CNN with attention-based framework
to model local context representations of textual
pairs (Yin et al., 2016), or to combine with LSTM
to model time-series data (Ordóñez and Roggen,
2016; Lin et al., 2017) for classification and trend
prediction tasks.

3 Problem

3.1 Preliminaries

We denote as named entities any real-world ob-
jects registered in a database. Each entity has a
textual document (e.g. content of a home page),
and a sequence of references to other entities (e.g.,
obtained from semantic annotations), called the
entity link profile. All link profiles constitute an
entity linking graph. In addition, two types of in-
formation are included to form the entity collec-
tive attention.

Temporal signals. Each entity can be asso-
ciated with a number of properties such as view
counts, content edits, etc. Given an entity e and
a time point n, given D properties, the temporal
signals set, in the form of a (univariate or multi-
variate) time series X ∈ RD×T consists of T real-
valued vector xn−T , · · · ,xn−1 , where xt ∈ RD cap-
tures the past signals of e at time point t.

Entity Navigation. In many systems, the user
navigation between two entities is captured, e.g.,
search engines can log the total click-through of
documents of the target entity presented in search
results of a query involving the source entity. Fol-
lowing learning to rank approaches (Kang et al.,
2015), we use this information as the ground truth
in our supervised models. Given two entities
e1,e2, the navigation signal from e1 to e2 at time
point t is denoted by yt

{e1,e2}.

3.2 Problem Definition
In our setting, it is not required to have a pre-
defined, static function quantifying the semantic
relatedness between two entities. Instead, it can
capture a family of functions F where the prior
distribution relies on time parameter. We formal-
ize the concepts below.

Dynamic Entity Relatedness between two en-
tities es,et , where es is the source entity and et is
the target entity, in a given time t, is a function (de-
noted by ft(es,et)) with the following properties.

• asymmetric: ft(ei,e j) 6= ft(e j,ei)

• non-negativity: f (ei,e j)≥ 0

• indiscernibility of identicals: ei = e j →
f (ei,e j) = 1

Dynamic Entity Relatedness Ranking. Given
a source entity es and time point t, rank the candi-
date entities et’s by their semantic relatedness.

4 Approach Overview

4.1 Datasets and Their Dynamics
In this work we use Wikipedia data as the case
study for our entity relatedness ranking problem
due to its rich knowledge and dynamic nature.
It is worth noting that despite experimenting on
Wikipedia, our framework is universal can be ap-
plied to other sources of entity with available
temporal signals and entity navigation. We use
Wikipedia pages to represent entities and page
views as the temporal signals (details in sec-
tion 6.1).

Clickstream. For entity navigation, we use the
clickstream dataset generated from the Wikipedia
webserver logs from February until September,
2016. These datasets contain an accumulation of
transitions between two Wikipedia articles with
their respective counts on a monthly basis. We
study only actual pages (e.g. excluding disam-
biguation or redirects). In the following, we pro-
vide the first analysis of the clickstream data to
gain insights into the temporal dynamics of the en-
tity collective attention in Wikipedia.

Figure 2a illustrates the distribution of entities
by click frequencies, and the correlation of top
popular entities (measured by total navigations)
across different months is shown in Figure 2b. In
general, we observe that the user navigation activ-
ities in the top popular entities are very dynamic,

33

(a) Click times distribution (b) Correlation of top-k entities (c) Correlation by # of navigations

Figure 2: Click (navigation) times distribution and ranking correlation of entities in September 2016.

% new
es

% with new
et

% w. new
et in top-30

new et
(avg.)

08-2016 24.31 71.18 15.54 18.25
04-2016 30.61 66.72 53.44 42.20

Table 1: Statistics on the dynamic of clickstream,
es denote source entities, et related entities.

and changes substantially with regard to time. Fig-
ure 2c visualizes the dynamics of related entities
toward different ranking sections (e.g., from rank
0 to rank 20) of different months, in terms of their
correlation scores. It can be interpreted that the
entities that stay in top-20 most related ones tend
to be more correlated than entities in bottom-20
when considering top-100 related entities.

As we show in Table 1, there are 24.31% of en-
tities in top-10,000 most active entities of Septem-
ber 2006 do not appear in the same list the previ-
ous month. And 30.61% are new compared with
5 months before. In addition, there are 71% of
entities in top-10,000 having navigations to new
entities compared to the previous month, with ap-
prox. 18 new entities are navigated to, on aver-
age. Thus, the datasets are naturally very dynamic
and sensitive to change. The substantial amount of
missing past click logs on the newly-formed rela-
tionships also raises the necessity of an dynamic
measuring approach.

Figure 3 shows the overall architecture of our
framework, which consists of three major compo-
nents: time-, graph- and content-based networks.
Each component can be considered as a separate
sub-ranking network. Each network accepts a tu-
ple of three elements/representations as an input
in a pair-wise fashion, i.e., the source entity es, the
target entity et with higher rank (denoted as e(+))
and the one with lower rank (denoted as e(−)). For
the content network, each element is a sequence
of terms, coming from entity textual representa-
tion. For the graph network, we learn the embed-

Figure 3: The trio neural model for entity ranking.

dings from the entity linking graph. For the time
network, we propose a new convolutional model
learning from the entity temporal signals. More
detailed are described as follows.

4.2 Neural Ranking Model Overview

The entity relatedness ranking can be handled by
a point-wise ranking model that learns to predict
relatedness score directly. However, as the navi-
gational frequency distribution is often skewed at
top, supervisions guided by long-tail navigations
would be prone to errors. Hence instead of learn-
ing explicitly a calibrated scoring function, we opt
for a pair-wise ranking approach. When apply-
ing to ranking top-k entities, this approach has
the advantage of correctly predicting partial orders
of different relatedness functions ft at any time
points regardless of their non-transitivity (Cheng
et al., 2012).

This work builds upon the idea of interaction-
based deep neural models, i.e. learning soft se-
mantic matches from the source-target entity pairs.
Note that, we do not aim for a Siamese archi-
tecture (Chopra et al., 2005) (i.e., in representa-
tion-based models), where the weight parameters

34

are shared across networks. The reason is that,
the conventional kind of network produces a sym-
metric relation, violating the asymmetric prop-
erty of the relatedness function ft (section 3.2).
Concretely, each deep network ψ consists of an
input layer z0, n− 1 hidden layers and an out-
put layer zn. Each hidden layer zi is a fully-
connected network that computes the transforma-
tion: zi = σ(wi · zi−1 + bi), where wi and bi are
the weight matrix and bias at hidden layer i, σ is
a non-linear function such as the rectified linear
unit(ReLU). The final score under the trio setup is
summed from multiple networks.

φ(< es,e(+),e(−) >) = φtime +φgraph +φcontent

(1)
In the next section we describe the input repre-

sentations z0 for each network.

5 Entity Relatedness Ranking

5.1 Content-based representation learning

To learn the entity representation from its content,
we rely on entity textual document (word-based)
as well as its link profile (entity-based) (sec-
tion 3.1). Since the vocabulary size of entities and
words is often very large, conventional one-hot
vector representation becomes expensive. Hence,
we adopt the word hashing technique from (Huang
et al., 2013), that breaks a term into character tri-
graphs and thus can dramatically reduce the size
of the vector dimensionality. We then rely on em-
beddings to learn the distributed representations
and build up the soft semantic interactions via in-
put concatenation. Let E : V → Rm be the em-
bedding function, V is the vocabulary and m is
the embedding size. w : V → R, is the weight-
ing function that learns the global term impor-
tance and a weighted element-wise sum of word
embedding vectors -compositionality function ⊕,
the word-based representation for entity e is hence
⊕|ew|

i=1(E(wi),w(wi)). For entity-based representa-
tion, we break down the surface form of a linked
entity into bag-of-words and apply analogously.
The concatenation of the two representations for
the tuple< es,e(+),e(−) > is then input to the deep
feed-forward network.

5.2 Graph-based representation

To obtain the graph embedding for each entity, we
adopt the idea of DeepWalk (Perozzi et al., 2014),
which learns the embedding by predicting the ver-

tex sequence generated by random walk. Con-
cretely, given an entity e, we learn to predict the
sequence of entity references Se – which can be
considered as the graph-wise context in the Skip-
gram model. We then adopt the matching his-
togram mapping in (Guo et al., 2016) for the soft
interaction of the ranking model. Specifically, de-
note the bag of entities representation of es as Ces ,
and that of et as Cet ; we discretize the soft match-
ing (calculated by cosine similarity of the embed-
ding vectors) of each entity pair in (Ces ,Cet) into
different bins. The logarithmic numbers of the
count values of each bin then constitute the in-
teraction vector. This soft-interaction in a way is
similar in the idea with the traditional link-based
model (Witten and Milne, 2008), where the relat-
edness measure is based on the overlapping of in-
coming links.

5.3 Attention-based CNN for temporal
representation

For learning representation from entity temporal
signals, the intuition is to model the low-level tem-
poral correlation between two multivariate time
series. Specifically, we learn to embed these time
series of equal size T into an Euclidean space,
such that similar pairs are close to each other. Our
embedding function takes the form of a convolu-
tional neural network (CNN), shown in Figure 4.
The architecture rests on four basic layers: a 1-
D convolutional (that restricts the slide only along
the time window dimension, following (Zheng
et al., 2014)), a batch-norm, an attention-based
and a fully connected layer.

Convolution layer: A 1-D convolution opera-
tion involves applying a filter w f ∈R1×w×D (i.e., a
matrix of weight parameters) to each subsequence
X i

e of window size m to produce a new abstraction.

qi =w fL
i
t:t+m−1,D+b; si =BN(qi); hi =ReLU(si)

(2)
where Lit:t+w−1,D denotes the concatenation of

w vectors in the lookup layer representing the sub-
sequence X i

e, b is a bias term. The convolutional
layer is followed by a batch normalization (BN)
layer (Ioffe and Szegedy, 2015), to speed up the
convergence and help improve generalization.

Attention Mechanism: We apply an atten-
tion layer on the convolutional outputs. Con-
ceptually, attention mechanisms allow NN mod-
els to focus selectively on only the important fea-

35

Figure 4: The attentional CNN for time series rep-
resentation.

tures, based on the attention weights that often
derived from the interaction with the target or
within the input itself (self-attention) (Vaswani
et al., 2017). We adopt the former approach, with
the intuition that the time-spatial patterns should
not be treated equally, but the ones near the stud-
ied time should gain more focus. To ensure that
each feature in Fc

i that associates with different
timestamps are rewarded differently, the attention
weights are guided by a time-decay weight func-
tion, in a recency-favor fashion. More formally,
let A ∈ RT−w+1×1 be the time context vector and
Fc

i ∈ R1×(T−w+1) the output of convolution for X .
Then the kth column of the re-weighted feature
map Fh

i is derived by:

Fh
i [:,k] = A[k] ·Fc

i [:,k],k = 1 · · ·T −w+1 (3)

The time context vector a is generated by a
decay weight function, since each column k in
the vector is associated with a time tk which is
T − k+w time units away from studied time t.

Decay weight function: we leverage the Poly-
nomial Curve for the function. PD(ti, t) =

1
(t−ti)α+1 , whereas α defines the decay rate. It is
worth noting that when α is increased, the atten-
tion layer acts just like a pooling one 1. Stacking
up multiple convolutional layers is possible, in this
case |A| is the size of the previous layer. The at-
tention layer is only applied to the last convolution
layer in our architecture. The output of the atten-
tion layer is then passed to a fully-connected layer
with non-linear activation to obtain the temporal
representation.

1Note that, for clear visualization, we put flattening before
attention layer in Figure 4

5.4 Learning and Optimization
Finally, we describe the optimization and training
procedure of our network. We use a Logarithmic
loss that can lead to better probability estimation
at the cost of accuracy 2. Our network minimizes
the cross-entropy loss function as follows:

L =− 1
N

N

∑
i=1

[P{es,e1,e2}i log ȳi

+(1−P{es,e1,e2}i) log(1− ȳi)]+λ |θ |22 (4)

where N is the training size, ȳ is the output
of the sigmoid layer on the predicted label. θ
contains all the parameters of the network and
λ |θ |22 is the L2 regularization. P{es,e(+),e(−)}i is the
probability that e(+) is ranked higher than e(−)
derived from entity navigation, P{es,e(+),e(−)}i =

yt(i)
{es,e(+)}/(y

t(i)
{es,e(+)} + yt(i)

{es,e(−)}), where t(i) is the
observed time point of the training instance i. The
network parameters are updated using Adam opti-
mizer (Kingma and Ba, 2014).

6 Experiments

6.1 Dataset
To recap from Section 4.1, we use the click stream
datasets in 2016. We also use the corresponding
Wikipedia article dumps, with over 4 million enti-
ties represented by actual pages. Since the length
of the content of an Wikipedia article is often long,
in this work, we make use of only its abstract sec-
tion. To obtain temporal signals of the entity, we
use page view statistics of Wikipedia articles and
aggregate the counts by month. We fetch the data
from June, 2014 up until the studied time, which
results in the length of 27 months.

Seed entities and related candidates. To ex-
tract popular and trending entities, we extract from
the clickstream data the top 10,000 entities based
on the number of navigations from major search
engines (Google and Bing), at the studied time.
Getting the subset of related entity candidates –
for efficiency purposes– has been well-addressed
in related work (Guo and Barbosa, 2014; Ponza
et al., 2017). In this work, we do not leverage a
method and just assume the use of an appropriate
one. In the experiment, we resort to choose only

2Other ranking-based loss such as Hinge loss favours over
sparsity and accuracy (in the sense of direct punishing mis-
classification via margins) at the cost of probability estima-
tion. The logistic loss distinguishes better between examples
whose supervision scores are close.

36

Counts
Total seed entities 10,000
Total entities 1,420,819
Candidate per entities (avg.) 142

Training seed entities 8,000
Dev. seed entities 1,000
Test seed entities 1,000

Training pairs 100,650K
Dev. pairs 12,420K
Test pairs 12,590K

Table 2: Statistics of the dataset.

candidates which are visited from the seed entities
at studied time. We filtered out entity-candidate
pairs with too few navigations (less than 10) and
considered the top-100 candidates.

6.2 Models for Comparison
In this paper, we compare our models against the
following baselines.

Wikipedia Link-based (WLM): Witten and
Milne (2008) proposed a low-cost measure of
semantic relatedness based on Wikipedia entity
graph, inspired by Normalized Google Distance.

DeepWalk (DW): DeepWalk (Perozzi et al.,
2014) learned representations of vertices in a
graph with a random walk generator and language
modeling. We chose not to compare with the ma-
trix factorization approach in (Zhao et al., 2015),
as even though it allows the incorporation of dif-
ferent relation types (i.e., among entity, category
and word), the iterative computation cost over
large graphs is very expensive. When consider
only entity-entity relation, the performance is re-
ported rather similar to DW.

Entity2Vec Model (E2V): or entity embedding
learning using Skip-Gram (Mikolov et al., 2013)
model. E2V utilizes textual information to capture
latent word relationships. Similar to Zhao et al.
(2015); Ni et al. (2016), we use Wikipedia arti-
cles as training corpus to learn word vectors and
reserved hyperlinks between entities.

ParaVecs (PV): Le and Mikolov (2014); Dai
et al. (2015) learned document/entity vectors via
the distributed memory (ParaVecs-DM) and dis-
tributed bag of words (ParaVecs-DBOW) models,
using hierarchical softmax. We use Wikipedia ar-
ticles as training corpus to learn entity vectors.

RankSVM: Ceccarelli et al. (2013) learned
entity relatedness from a set of 28 handcrafted
features, using the traditional learning-to-rank
method, RankSVM. We put together additional
well-known temporal features (Kanhabua et al.,
2014; Zhang et al., 2016b) (i.e., time series cross

correlation, trending level and predicted popular-
ity based on page views) and report the results of
the extended feature set.

For our approach, we tested different combina-
tions of content (denoted as ContentEmb), graph,
(GraphEmb) and time (TS-CNN-Att) networks.
We also test the content and graph networks with
pretrained entity representations (i.e., ParaVecs-
DM and DeepWalk).

6.3 Experimental Setup
Evaluation procedures. The time granularity is
set to months. The studied time tn of our experi-
ments is September 2016. From the seed queries,
we use 80% for training, 10% for development and
10% for testing, as shown in Table 2. Note that, for
the time-aware setting and to avoid leakage and
bias as much as possible, the data for training and
development (including supervision) are up until
time tn−1. In specific, for content and graph data,
only tn−1 is used.

Metrics. We use 2 correlation coefficient meth-
ods, Pearson and Spearman, which have been used
often throughout literature, cf. (Dallmann et al.,
2016; Ponza et al., 2017). The Pearson index
focuses on the difference between predicted-vs-
correct relatedness scores, while Spearman fo-
cuses on the ranking order among entity pairs. Our
work studies on the strength of the dynamic re-
latedness between entities, hence we focus more
on Pearson index. However, traditional correlation
metrics do not consider the positions in the ranked
list (correlations at the top or bottom are treated
equally). For this reason, we adjust the metric to
consider the rankings at specific top-k positions,
which consequently can be used to measure the
correlation for only top items in the ranking (based
to the ground truth). In addition, we use Normal-
ized Discounted Cumulative Gain (NDCG) mea-
sure to evaluate the recommendation tasks.

Implementation details. All neural models
are implemented in TensorFlow. Initial learning
rate is tuned amongst {1.e-2, 1.e-3, 1.e-4, 1.e-5}.
The batch size is tuned amongst {50, 100, 200}.
The weight matrices are initialized with samples
from the uniform distribution (Glorot and Ben-
gio, 2010). Models are trained for maximum 25
epochs. The hidden layers for each network are
among {2, 3, 4}, while for hidden nodes are {128,
256, 512}. Dropout rate is set from {0.2, 0.3,
0.5}. The pretrained DW is empirically set to 128
dimensions, and 200 for PV. For CNN, the filter

37

number are in {10, 20, 30}, window size in {4,
5, 6}, convolutional layers in {1, 2, 3} and decay
rate α in {1.0, 1.5,· · · ,7.5}. 2 conv- layers with
window size 5 and 4, number of filters of 20 and
25 respectively are used for decay hyperparameter
analysis.

6.4 Experimental Tasks

We evaluate our proposed method in two differ-
ent scenarios: (1) Relatedness ranking and (2) En-
tity recommendation. The first task evaluates how
well we can mimic the ranking via the entity nav-
igation. Here we use the raw number of naviga-
tions in Wikipedia clickstream. The second task
is formulated as: given an entity, suggest the top-k
most related entities to it right now. Since there
is no standard ground-truth for this temporal task,
we constructed two relevance ground-truths. The
first one is the proxy ground-truth, with relevance
grade is automatically assigned from the (top-100)
most navigated target entities. The graded rele-
vance score is then given as the reversed rank or-
der. For this, all entities in the test set are used.
The second one is based on the human judgments
with 5-level graded relevance scale, i.e., from 4
- highly relevant to 0 - not (temporally) relevant.
Two human experts evaluate on the subset of 20
entities (randomly sampled from the test set), with
600 entity pairs (approx. 30 per seed, using pool-
ing method). The ground-truth size is comparable
the widely used ground-truth for static relatedness
assessment, KORE (Hoffart et al., 2012). The Co-
hen’s Kappa agreement is 0.72. Performance of
the best-performed models on this dataset is then
tested with paired t-test against the WLM baseline.

6.5 Results on Relatedness Ranking

We report the performance of the relatedness rank-
ing on the left side of Table 3, with the Pear-
son and Spearman metrics. Among existing base-
lines, we observe that link-based approaches i.e.,
WLM and DeepWalk perform better than others
for top-k correlation. Whereas, temporal mod-
els yield substantial improvement overall. Specif-
ically, the TS-CNN-Att performs better than the
no-attention model in most cases, improves 11%
for Pearson@10, and 3% when considering the to-
tal rank. Our trio model performs well overall,
gives best results for total rank. The duo models
(combine base with either pretrained DW or PV)
also deliver improvements over the sole tempo-
ral ones. We also observer additional gains while

combining of temporal base with pretrained DW
and PV altogether.

6.6 Results on Entity Recommendation

Here we report the results on the nDCG metrics.
Table 3 (right-side) demonstrates the results for
two ground-truth settings (proxy and human). We
can observe the good performance of the baselines
for this task over conventional temporal models,
significantly for proxy setting. It can be explained
that, ‘static’ entity relations are ranked high in
the non time-aware baselines, hence are still re-
warded when considering a fine-grained grading
scale (100 level). The margin becomes smaller
when comparing in human setting, with the stan-
dard 5-level scale. All the models with pretrained
representations perform poorly. It shows that for
this task, early interaction-based approach is more
suitable than purely based on representation.

6.7 Additional Analysis

We present an anecdotic example of top-selected
entities for Kingsman: The Golden Circle in
Table 4. While the content-based model favors
old relations like the preceding movies, TS-CNN
puts popular actress Halle Berry or the recent re-
leased X-men: Apocalypse on top. The latter
is not ideal as there is not a solid relationship be-
tween the two movies. One implication is that the
two entities are ranked high is more because of the
popularity of themself than the strength of the rela-
tionship toward the source entity. The Trio model
addresses the issue by taking other perspectives
into account, and also balances out the recency
and long-term factors, gives the best ranking per-
formance.

Analysis on decay hyper-parameter. We give
a study on the effect of decay parameter on per-
formance. Figure 5a illustrates the results on
Pearsonall and nDCG@10 for the trio model. It
can be seen that while nDCG slightly increases,
Pearson score peaks while α in the range [1.5,3.5].
Additionally, we show the convergence analysis
on α for TS-CNN-Att in Figure 6. Bigger α tends
to converge faster, but to a significant higher loss
when α is over 5.5 (omitted from the Figure).

Performances on different entity types. We
demonstrate in Figures 5b and 5c the model per-
formances on the person and event types. WLM
performs poorer for the latter, that can be inter-
preted as link-based methods tend to slowly adapt

38

Model Pearson ×100 ρ×100 nDCG (proxy) nDCG (human)
@10 @30 @50 all all @3 @10 @20 @3 @10 @20

B
as

el
in

es
WLM 27.6 28.3 24.0 19.4 12.1 0.63 0.59 0.62 0.50 0.46 0.52
RankSVM 28.5 34.7 31.4 20.7 27.5 0.65 0.61 0.64 0.52 0.61 0.65
Entity2Vec 18.6 22.0 21.8 20.5 18.7 0.62 0.60 0.61 0.54 0.53 0.54
DeepWalk 31.3 30.9 21.4 17.6 10.1 0.41 0.43 0.47 0.34 0.38 0.45
ParaVecs-DBOW 18.6 22.0 21.8 20.5 16.0 0.62 0.60 0.61 0.50 0.50 0.55
ParaVecs-DM 19.0 23.0 23.2 22.3 18.3 0.66 0.63 0.63 0.49 0.52 0.58

M
od

el
A

bl
at

io
n

TS-CNN 51.9 51.0 43.0 35.8 26.5 0.41 0.43 0.47 0.40 0.43 0.48
TS-CNN-Att (Base) 57.9 49.7 44.7 37.1 24.9 0.43 0.44 0.49 0.38 0.45 0.50
Base+PV 60.6 44.2 41.4 36.4 11.2 0.41 0.43 0.47 0.49 0.51 0.55
Base+DW 43.5 36.5 35.7 32.7 31.0 0.44 0.48 0.53 0.47 0.51 0.52
Base+PV+DW 56.9 46.1 43.4 32.9 28,4 0.41 0.44 0.48 0.49 0.54 0.57

ContentEmb+GraphEmb 48.9 40.1 49.9 37.5 27.9 0.67 0.62 0.70 0.61 0.69 0.65
Base+ContentEmb 67.1 54.2 53.4 43.7 26.5 0.67 0.69 0.71 0.61 0.72 0.74
Base+GraphEmb 55.2 50.2 41.3 31.5 35.5 0.71 0.75 0.78 0.65∓ 0.78∓ 0.81∓

Trio 58.6 54.3 50.2 45.4 43.5 0.75 0.78 0.83 0.74∓ 0.82∓ 0.85∓

Table 3: Performance of different models on task (1) Pearson, Spearman’s ρ ranking correlation, and
task (2) recommendation (measured by nDCG). Bold and underlined numbers indicate best and second-
to-best results. ∓ shows statistical significant over WLM (p< 0.05).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

alpha

Pearsonall

nDCG@10

(a) Decay parameter for time-series
embedding.

(b) Model performances for person-
type entities.

(c) Model performances for social
event-type entities.

Figure 5: Performance results for variation of decay parameter and different entity types.

 1

 10

 100

 1000

 10000

 100000

 0 500000 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

V
a
lid

a
ti
o
n
 L

o
s
s

iterations

alpha=2.5
alpha=2.0
alpha=1.5
alpha=1.0
alpha=0.5

Figure 6: Convergence of decay parameters.

for recent trending entities. The temporal models
seem to capture these entites better.

7 Conclusion
In this work, we presented a trio neural model to
solve the dynamic entity relatedness ranking prob-
lem. The model jointly learns rich representations
of entities from textual content, graph and tempo-
ral signals. We also propose an effective CNN-
based attentional mechanism for learning the tem-

Models
PV-DM TS-CNN-Att Temp+PV Trio

Secret Service Halle Berry Elton John Mark Strong
Spider-Man X-Men Taron Egerton Jeff Bridges

Taron Egerton Jeff Bridges Edward Holcroft Julianne More

Table 4: Different top-k rankings for entity Kings-
man: The Golden Circle. Italic means irrelevance.

poral representation of an entity. Experiments
on ranking correlations and top-k recommenda-
tion tasks demonstrate the effectiveness of our ap-
proach over existing baselines. For future work,
we aim to incorporate more temporal signals, and
investigate on different ‘trainable’ attention mech-
anisms to go beyond the time-based decay, for in-
stance by incorporating latent topics.

Acknowledgments. This work is funded by the
ERC Advanced Grant ALEXANDRIA (grant no.
339233). We thank the reviewers for the sugges-
tions on the content and structure of the paper.

39

References

Nitish Aggarwal and Paul Buitelaar. 2014. Wikipedia-
based distributional semantics for entity relatedness.
In 2014 AAAI Fall Symposium Series.

Roi Blanco, Berkant Barla Cambazoglu, Peter Mika,
and Nicolas Torzec. 2013. Entity recommendations
in web search. In ISWC, pages 33–48. Springer.

Diego Ceccarelli, Claudio Lucchese, Salvatore Or-
lando, Raffaele Perego, and Salvatore Trani. 2013.
Learning relatedness measures for entity linking. In
Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management,
pages 139–148. ACM.

Weiwei Cheng, Eyke Hüllermeier, Willem Waegeman,
and Volkmar Welker. 2012. Label ranking with
partial abstention based on thresholded probabilistic
models. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 2501–2509.
Curran Associates, Inc.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
539–546. IEEE.

Andrew M Dai, Christopher Olah, and Quoc V Le.
2015. Document embedding with paragraph vec-
tors. arXiv preprint arXiv:1507.07998.

Alexander Dallmann, Thomas Niebler, Florian Lem-
merich, and Andreas Hotho. 2016. Extracting se-
mantics from random walks on wikipedia: Compar-
ing learning and counting methods.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
the 20th International Joint Conference on Artifical
Intelligence, IJCAI’07, pages 1606–1611, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Evgeniy Gabrilovich and Shaul Markovitch. 2009.
Wikipedia-based semantic interpretation for natural
language processing. Journal of Artificial Intelli-
gence Research, 34:443–498.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and
statistics, pages 249–256.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model
for ad-hoc retrieval. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 55–64. ACM.

Zhaochen Guo and Denilson Barbosa. 2014. Robust
entity linking via random walks. In Proceedings of
the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management,
pages 499–508. ACM.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
Kore: keyphrase overlap relatedness for entity dis-
ambiguation. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 545–554. ACM.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,
and Eric Xing. 2015. Entity hierarchy embedding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), vol-
ume 1, pages 1292–1300.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Conference on informa-
tion & knowledge management, pages 2333–2338.
ACM.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
Conference on Machine Learning, pages 448–456.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao
Chang, Sujian Li, and Zhifang Sui. 2016. Towards
time-aware knowledge graph completion. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1715–1724.

Changsung Kang, Dawei Yin, Ruiqiang Zhang, Nico-
las Torzec, Jianzhang He, and Yi Chang. 2015.
Learning to rank related entities in web search. Neu-
rocomputing, 166:309–318.

Nattiya Kanhabua, Tu Ngoc Nguyen, and Claudia
Niederée. 2014. What triggers human remember-
ing of events? a large-scale analysis of catalysts
for collective memory in wikipedia. In Digital Li-
braries (JCDL), 2014 IEEE/ACM Joint Conference
on, pages 341–350. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Tao Lin, Tian Guo, and Karl Aberer. 2017. Hybrid neu-
ral networks for learning the trend in time series.

40

Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Advances in Neural
Information Processing Systems, pages 1367–1375.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Iris Miliaraki, Roi Blanco, and Mounia Lalmas. 2015.
From selena gomez to marlon brando: Understand-
ing explorative entity search. In Proceedings of the
24th International Conference on World Wide Web,
pages 765–775. International World Wide Web Con-
ferences Steering Committee.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Tu Ngoc Nguyen, Nattiya Kanhabua, and Wolfgang
Nejdl. 2018. Multiple models for recommending
temporal aspects of entities. In The Semantic Web
- 15th International Conference, ESWC 2018, Her-
aklion, Crete, Greece, June 3-7, 2018, Proceedings,
pages 462–480.

Yuan Ni, Qiong Kai Xu, Feng Cao, Yosi Mass, Dafna
Sheinwald, Hui Jia Zhu, and Shao Sheng Cao.
2016. Semantic documents relatedness using con-
cept graph representation. In Proceedings of the
Ninth ACM International Conference on Web Search
and Data Mining, WSDM ’16, pages 635–644, New
York, NY, USA. ACM.

Francisco Javier Ordóñez and Daniel Roggen. 2016.
Deep convolutional and lstm recurrent neural net-
works for multimodal wearable activity recognition.
Sensors, 16(1):115.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM.

Marco Ponza, Paolo Ferragina, and Soumen
Chakrabarti. 2017. A two-stage framework for
computing entity relatedness in wikipedia. In
Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
’17, pages 1867–1876, New York, NY, USA. ACM.

Nam Khanh Tran, Tuan Tran, and Claudia Niederée.
2017. Beyond time: Dynamic context-aware entity
recommendation. In European Semantic Web Con-
ference, pages 353–368. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ian H Witten and David N Milne. 2008. An effective,
low-cost measure of semantic relatedness obtained
from wikipedia links.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. Abcnn: Attention-based convo-
lutional neural network for modeling sentence pairs.
Transactions of the Association of Computational
Linguistics, 4(1):259–272.

Xiao Yu, Hao Ma, Bo-June Paul Hsu, and Jiawei Han.
2014. On building entity recommender systems us-
ing user click log and freebase knowledge. In Pro-
ceedings of WSDM, pages 263–272. ACM.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing
Xie, and Wei-Ying Ma. 2016a. Collaborative
knowledge base embedding for recommender sys-
tems. In Proceedings of the 22nd ACM SIGKDD in-
ternational conference on knowledge discovery and
data mining, pages 353–362. ACM.

Lei Zhang, Achim Rettinger, and Ji Zhang. 2016b.
A probabilistic model for time-aware entity recom-
mendation. In International Semantic Web Confer-
ence, pages 598–614. Springer.

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015. Rep-
resentation learning for measuring entity relatedness
with rich information. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon
Zhao. 2014. Time series classification using multi-
channels deep convolutional neural networks. In
International Conference on Web-Age Information
Management, pages 298–310. Springer.

41

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 42–53
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

A Unified Neural Network Model for Geolocating Twitter Users

Mohammad Ebrahimi, Elaheh ShafieiBavani, Raymond Wong, Fang Chen
University of New South Wales, Sydney, Australia

Data61 CSIRO, Sydney, Australia
{mohammade,elahehs,wong,fang}@cse.unsw.edu.au

Abstract

Locations of social media users are impor-
tant to many applications such as rapid disas-
ter response, targeted advertisement, and news
recommendation. However, many users do
not share their exact geographical coordinates
due to reasons such as privacy concerns. The
lack of explicit location information has mo-
tivated a growing body of research in recent
years looking at different automatic ways of
determining the user’s primary location. In
this paper, we propose a unified user geoloca-
tion method which relies on a fusion of neural
networks. Our joint model incorporates dif-
ferent types of available information includ-
ing tweet text, user network, and metadata to
predict users’ locations. Moreover, we uti-
lize a bidirectional LSTM network augmented
with an attention mechanism to identify the
most location indicative words in textual con-
tent of tweets. The experiments demonstrate
that our approach achieves state-of-the-art per-
formance over two Twitter benchmark geolo-
cation datasets. We also conduct an abla-
tion study to evaluate the contribution of each
type of information in user geolocation perfor-
mance.

1 Introduction

Knowing physical locations involved in social me-
dia data helps us to understand what is happening
in real life, to bridge the online and offline worlds,
and to develop applications for supporting real-life
demands. For example, we can monitor public
health of residents (Cheng et al., 2010), recom-
mend local events (Yuan et al., 2013) or attractive
places (Noulas et al., 2012) to tourists, identify
locations of emergency (Ao et al., 2014) or even
disasters (Lingad et al., 2013), and summarize re-
gional topics (Rakesh et al., 2013). Even though
platforms such as Twitter allow users to geolocate
their posts to reveal their locations either manually

or with the help of GPS, it is reported that less than
1% of Twitter data has geo-coordinates provided
(Jurgens, 2013). Moreover, location information
on Twitter is far from being complete and accu-
rate. For instance, self-declared home information
in many user profiles is inaccurate or even invalid
(Hecht et al., 2011). The lack of explicit location
information in the majority of tweets has moti-
vated a growing body of research in recent years
looking at different automatic ways of determining
the user’s primary location (i.e.,user geolocation)
and/or - as a proxy for the former - the location
from which tweets have been posted (Ajao et al.,
2015).

Geolocation methods usually train a model on
a small set of users whose locations are known
(e.g., through GPS-based geotagging), and pre-
dict locations of other users using the resulting
model. These models broadly fall into three cat-
egories: text-based (Eisenstein et al., 2010; Wing
and Baldridge, 2011; Roller et al., 2012), network-
based (Jurgens, 2013; Compton et al., 2014; Jur-
gens et al., 2015), and hybrid methods that com-
bine text, user network, and metadata information
(Rahimi et al., 2015b,a; Jayasinghe et al., 2016;
Miura et al., 2016) with the aim of achieving state-
of-the-art performance.

In this paper, we present a neural network-based
system that we developed for user geolocation in
Twitter. Our model combines different sources
of information including tweet text, metadata, and
user network. We employ a neural network model
to generate a dense vector representation for each
field and then use the concatenation of these rep-
resentations as the feature for classification. Our
main contributions can be summarized as follows:

1. We propose a unified user geolocation
method that relies on a fusion of neural net-
works, incorporating different types of avail-

42

able information: tweet message, users’ so-
cial relationships, and metadata fields embed-
ded in tweets and profiles.

2. For modeling the tweet text (and textual
metadata fields), we use bidirectional Long
Short-Term Memory (LSTM) networks aug-
mented with a context-aware attention mech-
anism (Yang et al., 2016), which helps to
identify the most location indicative words.

3. Through the empirical studies on two stan-
dard Twitter datasets, we demonstrate that the
proposed method outperforms other state-of-
the-art approaches in addressing the problem
of user geolocation.

4. We train an individual model for each infor-
mation field, and analyze the contribution of
each component in the geolocation process.

The rest of the paper is organized as follows.
We review the related work in Section 2. Utilized
data is described in Section 3. Section 4 explains
the proposed approach. The experimental results
are given in Section 5, and finally, we conclude
the paper and outline possible future work in Sec-
tion 6.

2 Related Work

2.1 Text-based Methods

Text-based methods utilize the geographical bias
of language use in social media for geolocation.
These methods have widely used probability dis-
tributions of words over locations. Maximum
likelihood estimation approaches (Cheng et al.,
2010, 2013) and language modeling approaches
minimizing KL-divergence (Roller et al., 2012)
have succeeded in predicting user locations using
word distributions. Topic modeling approaches
to extract latent topics with geographical regions
(Eisenstein et al., 2010; Hong et al., 2012; Ahmed
et al., 2013; Yuan et al., 2013) have also been ex-
plored considering word distributions.

Supervised learning methods with word fea-
tures are also popular in text-based geoinfer-
ence. Multinomial Naı̈ve Bayes (Han et al.,
2012, 2014; Wing and Baldridge, 2011), logis-
tic regression (Wing and Baldridge, 2014; Han
et al., 2014), hierarchical logistic regression (Wing
and Baldridge, 2014), and multi-layer neural net-
work with stacked denoising autoencoder (Liu and
Inkpen, 2015) have realized geolocation predic-

tion from text. A semi-supervised learning ap-
proach has been proposed by Cha et al. (2015)
using a sparse-coding and dictionary learning.
Hulden et al. (2015) have used a kernel-based
method to smooth linguistic features over very
small grid sizes and consequently alleviate data
sparseness. Chi et al. (2016) have employed
Multinomial Naı̈ve Bayes and focused on the use
of textual features (i.e., location indicative words,
GeoNames gazetteers, user mentions, and hash-
tags) for geolocation inference. More recently,
Rahimi et al. (2017b) have proposed a neural
network-based geolocation approach. They used
the parameters of the hidden layer of the neural
network as word and phrase embeddings, and per-
formed a nearest neighbor search on a sample of
city names and dialect terms.

While having good results, text-based ap-
proaches are often limited to those users who gen-
erate text that contains geographic references (Ju-
rgens, 2013).

2.2 Network-based Methods
Network-based methods rely on the geospatial ho-
mophily of interactions (of several kinds) between
users. An early work by Davis Jr et al. (2011)
proposed an approach in which the location of a
given user is inferred by simply taking the most-
frequently seen location among its social network.
Jurgens (2013) have extended the idea of loca-
tion inference as label propagation over some form
of friendship graph by interpreting location labels
spatially. Locations are then inferred using an iter-
ative, multi-pass procedure. This method has been
further extended by Compton et al. (2014) to take
into account edge weights in the social network,
and to limit the propagation of noisy locations.
They weigh locations as a function of how many
times users interacted there, hence favoring loca-
tions of friends with evidence of a close relation-
ship. Jurgens et al. (2015) have released a frame-
work for nine network-based geolocation methods
targeting Twitter.

The main limitation of network-based models
is that they completely fail to geolocate users who
are not connected to geolocated components of the
graph (i.e., isolated users).

2.3 Hybrid Methods
Several attempts have been made to combine dif-
ferent sources of information for geolocating so-
cial media users. Li et al. (2012) have proposed a

43

geolocation method by integrating both friendship
and content information in a probabilistic model.

Rahimi et al. (2015b) showed that geolocation
predictions from text can effectively be used as
a back-off for disconnected users in a network-
based approach. In another work by Rahimi et al.
(2015a), a hybrid approach has been proposed by
propagating information on a graph built from user
mentions in Twitter messages, together with don-
gle nodes corresponding to the results of a text-
based geolocation method. Ebrahimi et al. (2017,
2018b) have presented a hybrid approach by in-
corporating both text and network information,
and shown that the filtering of highly mentioned
users in the social graph can improve the geolo-
cation performance. Rahimi et al. (2017b) have
proposed a text geoloation method based on neu-
ral network and incorporated it into their network-
based approach (Rahimi et al., 2015a). Wang et al.
(2017) have introduced a collective geographical
embedding algorithm to embed multiple informa-
tion sources into a low dimensional space, such
that the distance in the embedding space reflects
the physical distance in the real world.

Metadata such as location fields have also been
used as effective clues to predict the user’s location
(Hecht et al., 2011). Different geoinference ap-
proaches have been proposed to consider text and
metadata information simultaneously, such as dy-
namically weighted ensemble method (Mahmud
et al., 2012), and stacking approach (Han et al.,
2014). Jayasinghe et al. (2016) have proposed
a cascade ensemble approach by combining text-
based, metadata-based, and network-based ge-
olocation methods. Additionally, their approach
makes use of several dedicated services, such
as GeoNames gazetteers, time zone to GeoName
mappings, IP country resolver and customized
scrapers for social media websites.

Miura et al. (2016) have trained a neural net-
work utilizing the fastText n-gram model (Joulin
et al., 2016) on tweet text, user location, user de-
scription, and user timezone. They have utilized
several mapping services using external resources,
such as GeoNames and time zone boundaries for
feature preprocessing. This model has been fur-
ther extended by Miura et al. (2017) to also con-
sider user network information for geolocation.

Thomas and Hennig (2017) have proposed a ge-
olocation method that relies on the combination
of individual neural networks trained on text and

metadata fields. Ebrahimi et al. (2018a) have pro-
posed a word embedding-based approach to pre-
dict the geographic proximity of connected users
in the social graph based on their linguistic simi-
larities. The calculated similarity scores have been
used for weighting edges between users in the
graph. Tweet content and metadata is also com-
bined with an ensemble learning method to geolo-
cate isolated users in the graph.

3 Data

We have used two benchmark Twitter geolocation
datasets in our experiments:

• TWITTERUS is a dataset compiled by
(Roller et al., 2012), which contains 38M
tweets from 450K users in the United States.
Out of 450K users, 10K are reserved for the
development set and another 10K for the test
set. The ground truth location of each user is
set to its first geotag in the dataset. To make
city prediction possible in this dataset, we
additionally assigned city centers to ground
truth geotags using the city category of Han
et al. (2012).

• WNUT is a user-level dataset from the ge-
olocation prediction shared task of WNUT
2016 (Han et al., 2016). The dataset covers
13M tweets from 3362 cities worldwide, and
consists of 1M training users, 10K develop-
ment users, and 10K test users. The ground
truth location of a user is decided by majority
voting of the closest city center.

Note that the metadata of a tweet includes not
only the tweet message (text) but also a variety
of information such as tweet publication time, and
user account data such as location and timezone.
The organizers have provided full metadata for the
test sets but only the tweet IDs for training and
development sets. We collect metadata for train-
ing/development tweets using the Twitter API1.

4 The Proposed Approach

Figure 1 illustrates an overview of the proposed
model for user geolocation. We make use of
the following sources of information to train our
model: 1) Tweet text; 2) User network; and 3)

1We were able to obtain approximately 71-75% of the
full datasets. The remaining tweets are no longer available,
mainly because users deleted these messages and/or accessi-
bility changes in Twitter.

44

Metadata including user-declared location, user
description, user name, timezone, user language,
tweet creation time, user UTC offset, links (URL
domains), and application source.

Each field is processed by a separate sub-
network to generate a feature vector representation
Rj . These feature vectors are then concatenated
to build a final user representation R̂ which is fed
into a linear classification layer:

R̂ = R1 ‖ ... ‖ RN (1)

r = softmax(WrR̂+ br) (2)

where N is the number of features (11 in total),
r ∈ RR is the hidden representation at the penul-
timate layer. Wr is a weight matrix and br is a
bias vector. r is fully connected to the output layer
and activated by softmax to generate a probabil-
ity distribution over the classes. We employ the
cross-entropy loss as the objective function. Let
M be the number of examples (i.e., users) and c
be the number of classes (i.e., regions), then the
cross-entropy loss is defined by:

L = −
M∑

i=1

c∑

j=1

yi
j log(ỹji) (3)

where yi, i = 1, ...,M is the ground-truth vec-
tor, ỹi is the predicted probability vector, and ỹji is
the probability that user i resides in region j. We
minimize the objective function through Stochas-
tic Gradient Descent (SGD) over shuffled mini-
batches with Adam (Kingma and Ba, 2014).

We design several sub-networks to provide vec-
torized representation for each raw field. For
processing the tweet text, we utilize word em-
beddings (Mikolov et al., 2013) and bidirectional
Long Short-Term Memory (LSTM) unit (Hochre-
iter and Schmidhuber, 1997) augmented with a
context-aware attention mechanism (Yang et al.,
2016) (Section 4.1). We construct a @-mention
graph as a representation of users’ interactions,
and utilize this graph to extract the user network.
We then use an embedding layer with attention
mechanism to create the final user network rep-
resentation (Section 4.2).

We divide metadata fields into two classes: tex-
tual, and categorical. For representing textual
metadata fields (i.e., location, description, user
name, and timezone), we use word embeddings
and bidirectional LSTM networks with attention

mechanism. We treat other metadata fields (lan-
guage, tweet time, UTC offset, links, and source)
as categorical features, and convert them to one-
hot encodings which are then fed forward to a
dense layer (Section 4.3). In the following sub-
sections, we describe details of each component.

4.1 Text Component
Figure 2(a) demonstrates the architecture of text
sub-network. It takes the sequence of words in
the tweet T = {w1, w2, ..., wn} as input. An
embedding layer is used to project the words to
a low-dimensional vector space RE , where E is
the size of the embedding layer. We initialize
the weights of the embedding layer using our pre-
trained word embeddings (Section 5.1). The em-
beddings of tweet words are then forwarded to
an LSTM layer. An LSTM takes as input the
words of a tweet and produces the word annota-
tions H = (h1, h2, ..., hn), where hi is the hidden
state of the LSTM at time-step i, summarizing all
the information of the sentence up to wi. We use
bidirectional LSTM (BiLSTM) in order to get an-
notations for each word that summarize the infor-
mation from both directions of the message. A
bidirectional LSTM consists of a forward LSTM,−→
f , that reads the sentence from w1 to wT , and a
backward LSTM,

←−
f , that reads the sentence from

wT to w1. We obtain the final annotation for each
word wi, by concatenating the annotations from
both directions:

hi =
−→
hi ‖

←−
hi , hi ∈ R2L (4)

where ‖ denotes the concatenation operation and
L the size of each LSTM. In order to amplify
the contribution of important words in the final
representation, we use a context-aware attention
mechanism (Yang et al., 2016), that aggregates all
the intermediate hidden states using their relative
importance. An attention mechanism assigns a
weight ai to each word annotation, which reflects
its importance. We compute the representation of
the tweet text,Rtext, as the weighted sum of all the
word annotations using the attention weights. This
attention mechanism introduces a context vector
uh that helps to identify the informative words and
it is randomly initialized and jointly learned with
the rest of the attention layer weights. Formally,
Rtext is defined as:

Rtext =

|T |∑

i=1

aihi, Rtext ∈ R2L (5)

45

Figure 1: Overview of the proposed approach

ai =
exp(ei

>uh)∑|T |
t=1 exp(et

>uh)
,

|T |∑

i=1

ai = 1 (6)

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (7)

where Wh, bh and uh are the layer’s weights.
We use batch normalization (Ioffe and Szegedy,

2015) for normalizing inputs in order to reduce
internal covariate shift. The risk of overfitting
by co-adapting units is reduced by implementing
dropout (Srivastava et al., 2014) between individ-
ual neural network layers.

4.2 User Network Component

As a representation of users’ social relationships,
we construct an undirected graph from interac-
tions among Twitter users based on @-mentions in
their tweets (Rahimi et al., 2015b). In this graph,
nodes are all users in the dataset (train and test),
as well as other external users mentioned in their
tweets, and undirected edges are created between
two users if either user mentioned the other. This
unidirectional setting results in large numbers of
edges. To make the process more tractable, we
remove all nodes corresponding to external users
with degree less than 3 (i.e., external users who
have been mentioned by less than 3 different users
in a training set).

Figure 2(b) illustrates an overview of the user
network component. After filtering the graph, we
consider the adjacent nodes (i.e., immediate linked
users) of each training user as its network. The
user network N = {u1, u2, ..., un} is given as in-
put to an embedding layer. Embedding of user
network EN = (e1, e2, ..., en) is then fed to an
attention layer to compute the final representation
of user network, Rnetwork:

Rnetwork =

T∑

i=1

aiei, Rnetwork ∈ R2L (8)

where ai is the weight assigned to embedding ei
by the attention mechanism (Equation 6).

4.3 Metadata Component
According to (Guo and Berkhahn, 2016), the em-
beddings of categorical variables can reduce the
network size while capturing the intrinsic proper-
ties of the categorical variables. Hence, we con-
vert metadata fields with a finite set of elements
(UTC offset, links, user language, tweet publi-
cation time, and application source) to one-hot
encodings, which are then forwarded to a dense
layer with Rectified Linear Units (ReLU) activa-
tion function.

The user UTC offset is an integer in seconds
representation (e.g.,−18000), and the tweet publi-
cation time is given in UTC time , e.g., Fri Mar 02

46

Figure 2: Architectures of the proposed sub-networks for (a) Tweet text, and (b) User network . ⊕ shows
element-wise addition.

12:19:40 +0000 2012. We convert user UTC offset
into hours representation (e.g., −18000/3600 =
−5). For tweet publication time, we use only time
of the day information (e.g., 12:19) and split it into
multiple bins. Specifically, we interpret every 10
minutes as a bin (144 bins in total). The intuition
is that tweets originated from a particular location
(e.g., Germany) favor certain bins, and this prefer-
ence of bins should be different to tweets from a
distant location (e.g., Japan) (Lau et al., 2017).

For metadata fields containing texts (i.e., user
description, user location, user name, and time-
zone), we use an embedding layer and conse-
quently forward the results to an LSTM layer. The
attention mechanism is also employed to provide
the final representation of textual metadata fields.
Again batch normalization and dropout is applied
between individual layers to avoid overfitting.

5 Experimental Results

5.1 Experiment Settings
In the text sub-network, words are input to the
model as n-dimensional word embeddings. We
pre-trained word embeddings using word2vec
(Mikolov et al., 2013) over tweet text of the full
training data. The model was trained using the
Skip-gram architecture and negative sampling (k
= 5) for five iterations, with a context window

of 5 and subsampling factor of 0.001. It is note-
worthy that to be part of the vocabulary, words
should occur at least five times in the corpus. We
chose word embeddings of size 200/300 for TWIT-
TERUS/WNUT datasets because smaller embed-
dings experimentally showed to capture not as
much detail and resulted in a lower accuracy.
Larger word embeddings, on the other hand, made
the model too complex to train. In the preprocess-
ing step, we used replacement tokens for URLs,
mentions and numbers. However, we did not re-
place hashtags as doing so experimentally demon-
strated to decrease the accuracy.

The layers and the embeddings in our sub-
networks have parameters like embedding dimen-
sion, LSTM unit size, and attention context vector
size. We chose optimal values for these parame-
ters in terms of accuracy with a grid search using
the development sets of TwitterUS and WNUT.
The selected parameters values are reported in Ta-
ble 1. It should be noted that the main reason
for selecting smaller values for the TWITTERUS
dataset is its larger size (in terms of tweet num-
ber) comparing to the WNUT dataset. We set the
hyper-parameters of our final model as follows:
batch size = 256, learning rate = 0.001, epochs =
5. The dropout rate between layers is set to 0.2.

47

Model Embedding size LSTM unit size Attention vector size

TwitterUS WNUT TwitterUS WNUT TwitterUS WNUT

Tweet text 200 300 100 200 200 400

User network 200 400 100 200 200 400

Location 100 200 100 200 200 400

Description 100 200 100 200 200 400

User name 100 200 100 200 200 400

Timezone 100 200 100 200 200 400

Table 1: Parameter settings of the proposed models.

5.2 Evaluation Metrics
We evaluate our approach in the following three
commonly used metrics for user geolocation:

• Acc@161: The percentage of predicted loca-
tions which are within a 161km (100 mile)
radius of the actual location (Cheng et al.,
2010). This metric is a proxy for accuracy
within a metro area.

• Mean error: The mean value of error
distances in predicted locations (Eisenstein
et al., 2010).

• Median error: The median value of error dis-
tances in predictions (Eisenstein et al., 2010).

Note that higher numbers are better for Acc@161
but lower numbers are better for mean and median
errors.

5.3 Results
Table 2 presents the performance of user geolo-
cation methods over TWITTERUS and WNUT2

datasets.
The results show that our proposed method

achieves the best performance in terms of all eval-
uation metrics. The main reason is the effective
representation of text, metadata, and network in-
formation, and unifying them through a fusion of
neural networks.

5.4 Ablation Study
To evaluate the contribution of each component in
indicating the user’s location, we train an individ-
ual neural network model for each field. To this
end, we feed the final representation of each sub-
network to a fully-connected dense layer, activated

2For WNUT, we have reported the results of participating
teams in user-level location prediction task.

by softmax function. We use stochastic gradi-
ent descent over shuffled mini-batches with Adam
(Kingma and Ba, 2014) and cross-entropy loss as
objective function for classification. The parame-
ters of all models are set as follows: batch size =
256, epochs = 5, dropout=0.2, and learning rate =
0.001. Table 3 shows the performance breakdown
for each model over the WNUT dataset.

The results conclude that user-declared loca-
tion in tweet metadata is the most informative
field for geolocating users, and model trained on
this source achieves the best single source perfor-
mance. This model can correctly geolocate 44.9%
of users with a median error of 41.0km.

Using only tweet text, our model can predict
the correct location for 34.9% of all users with a
median error of 169.3km. It is noteworthy that
this model outperforms the text-based approach
IBM.1 (Chi et al., 2016) in terms of all metrics
by a large margin.

User network model can correctly geolocate
only 18.4% of users. However, our experiments
show that excluding user network information de-
clines the performance of the final model in terms
of accuracy by 5.1%. Models using other meta-
data fields provide an accuracy between 2.7% to
10.6%, with description field being the most in-
formative one. Tweet publication time, on the
other hand, has the minimum accuracy in predict-
ing user’s location. However, mining the tempo-
ral patterns of users’ posting habits can potentially
provide useful information for geolocation infer-
ence.

We have also reported the results of our model
when it takes only the metadata fields as inputs.
The metadata-based model can correctly geolocate
46.1% of the users with a mean error of 1318.3km,
and a median error of 37.9km. It shows the ef-

48

TWITTERUS WNUT

Category Acc@161 Mean Median Accuracy Acc@161 Mean Median

WB-UNIFORM (Wing and Baldridge, 2014) TB 49 703 170 - - - -

WB-KDTREE (Wing and Baldridge, 2014) TB 48 686 191 - - - -

MDN-SHARED (Rahimi et al., 2017a) TB 42 655 216 - - - -

MLP+KDTREE (Rahimi et al., 2017b) TB 54 562 121 - - - -

MLP+K-MEAN (Rahimi et al., 2017b) TB 55 581 91 - - - -

LP-RAHIMI (Rahimi et al., 2015b) NB 37 747 431 - - - -

LP-NA (Rahimi et al., 2016) NB 50 610 144 - - -

MADCELB (Rahimi et al., 2015a) NB 54 709 117 - - - -

MADCELW (Rahimi et al., 2015a) NB 54 705 116 - - - -

LP-LR (Rahimi et al., 2015b) Hyb 50 620 157 - - - -

MADCELW-LR (Rahimi et al., 2015a) Hyb 60 529 78 - - - -

MADCELW-MLP (Rahimi et al., 2017b) Hyb 61 515 77 - - - -

GEOCEL-BK (Ebrahimi et al., 2017) Hyb 66 438 56 - - - -

DREXEL.2 ? - - - 7.9 - 6161.4 4000.2

DREXEL.1 ? - - - 8.0 - 6053.3 5714.9

AIST ? - - - 9.8 - 4002.4 1711.1

IBM.1 (Chi et al., 2016) TB - - - 22.5 - 2860.2 630.2

DREXEL.3 ? - - - 35.2 - 3124.4 262.7

FUJIXEROX.3 (Miura et al., 2016) Hyb - - - 45.1 - 1084.3 28.2

FUJIXEROX.1 (Miura et al., 2016) Hyb - - - 46.4 - 963.8 21.0

FUJIXEROX.2 (Miura et al., 2016) Hyb - - - 47.6 - 1122 16.1

CSIRO.3 (Jayasinghe et al., 2016) Hyb - - - 50.1 - 2242.4 30.6

CSIRO.2 (Jayasinghe et al., 2016) Hyb - - - 52.0 - 2071.5 23.1

CSIRO.1 (Jayasinghe et al., 2016) Hyb - - - 52.6 - 1929 21.7

THOMAS (Thomas and Hennig, 2017) Hyb - - - 53.0 - 839 14.9

PROPOSED APPROACH Hyb 70.8 313.2 40.1 56.7 72.3 731.5 0

Table 2: Performance of Text-based (TB), Network-based (NB), and Hybrid (Hyb) geolocation methods
over TWITTERUS and WNUT datasets (”-” signifies that no results were published for the given dataset,
and ”?” signifies that the participant team has not provided descriptions of the proposed system). We have
also reported the Accuracy of our proposed approach on WNUT dataset to make our results comparable
with the existing methods.

fectiveness of utilized metadata fields for user ge-
olocation. Meanwhile, a deeper analysis of meta-
data fields can further improve the performance
of user location prediction. As an example, cus-
tomized scrapers for social media websites like
FourSquare, Swarm, Path, Facebook, and Insta-
gram can be employed as described by (Jayas-
inghe et al., 2016) to increase the geolocation ac-
curacy.

5.5 Error Analysis

As reported in Table 2, our proposed approach
achieves quite low median errors over the TWIT-
TERUS and WNUT datasets (i.e., 40.1km and

0km, respectively). However, there are some cases
with large error distances, which make the mean
errors much larger than median errors. Our analy-
sis shows that some notable error distances are re-
lated to the following cases: (1) Users from remote
areas for which less supervisions are available;
(2) Users from small cities/states are misclassi-
fied to be in the neighboring larger cities/states; (3)
Users from some neighboring cities/states are also
misclassified between the two cities/states, which
might be the result of business and entertainment
connections between them.

Our ablation study demonstrates that the loca-
tion field highly contributes to the geolocation per-

49

Model Accuracy Mean Median

Tweet text 34.9 1674.1 169.3

User network 18.4 2551.7 789.8

Metadata fields 46.1 1318.3 37.9

- Location 44.9 3515.0 41.0

- Description 10.6 5540.7 3005.4

- Timezone 6.4 5203.6 5181.0

- User name 6.1 5836.1 3966.7

- UTC offset 5.3 6305.9 3727.8

- User language 4.6 9077.1 8585.4

- Links 4.5 6543.2 6691.6

- Source application 4.4 6950.3 6937.7

- Tweet time 2.7 11138.3 10165.5

Table 3: Performance breakdown for each compo-
nent over WNUT dataset

formance. However, some prediction errors arise
when location fields are incorrect. We found two
main cases that result in incorrect location fields:
(1) Users who move to a new place (i.e., house) but
do not update their locations; (2) Users who visit a
new place (e.g., as tourists) and temporarily update
their locations. Our proposed model cannot handle
these types of errors, since it only supports single
location field. A future direction is to extend the
current architecture to track location changes and
deal with temporal states such as traveling.

Previous network-based methods (Jurgens,
2013; Compton et al., 2014) have demonstrated
the effectiveness of users’ social relationships for
geolocation inference. However, our ablation
study shows relatively low accuracy for the user
network component. One main reason is that our
model is less sophisticated (but more scalable)
comparing to the mentioned network-based meth-
ods, since it only considers the immediate con-
nected nodes as the network for each user. As
a future work of this study, node/graph embed-
dings such as DeepWalk (Perozzi et al., 2014) can
be employed to provide better representation of
users’ social relationships, and consequently im-
prove the accuracy of network component.

6 Conclusion and Future Work

In this paper, we have proposed a unified user ge-
olocation method which relies on a fusion of neu-
ral networks. Our joint model effectively utilizes
different sources of information including tweet

message, users’ social relationships, and metadata
fields embedded in tweets and profiles. In par-
ticular, we employed a neural network model to
generate a dense vector representation for each in-
formation field and then used the concatenation
of these representations as the feature for classi-
fication. For modeling tweet message and textual
metadata fields, we utilized a bidirectional LSTM
network augmented with an attention mechanism
to identify the most location indicative words.

We have conducted comprehensive experiments
on two standard Twitter geolocation datasets, and
demonstrated that our method achieves the best
performance in terms of all three evaluation met-
rics. In an ablation study, we have also trained
individual models to investigate the usefulness of
each information field in predicting the locations
of Twitter users.

As a future work, it would be intriguing to uti-
lize customized scrapers for social media websites
(Jayasinghe et al., 2016) to further improve the
performance of our geolocation model. It is note-
worthy that the proposed model could be modified
to infer other user demographic attributes such as
gender and age.

Tweet publication time include both date and
time, however, only time information is exploited
in this work to infer users’ geolocations. A fu-
ture direction is to leverage tweeting behavior
over dates for user geolocation. The intuition is
that local residents would occasionally post tweets
about their home city in a long-term manner, while
tourists tend to tweet a lot while visiting the city.
Hence, their different tweeting patterns can be
easily revealed using date information from their
tweet timestamps.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable feedbacks to improve this paper.

References

Amr Ahmed, Liangjie Hong, and Alexander J Smola.
2013. Hierarchical geographical modeling of user
locations from social media posts. In Proceedings
of the 22nd international conference on World Wide
Web (WWW 2013), pages 25–36. ACM.

Oluwaseun Ajao, Jun Hong, and Weiru Liu. 2015. A
survey of location inference techniques on twitter.
Journal of Information Science, 41(6):855–864.

50

Ji Ao, Peng Zhang, and Yanan Cao. 2014. Estimat-
ing the locations of emergency events from twitter
streams. Procedia Computer Science, 31:731–739.

Miriam Cha, Youngjune Gwon, and HT Kung. 2015.
Twitter geolocation and regional classification via
sparse coding. In Proceedings of the 9th Inter-
national Conference on Weblogs and Social Media
(ICWSM 2015), pages 582–585.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: a content-based ap-
proach to geo-locating twitter users. In Proceedings
of the 19th ACM International Conference Infor-
mation and Knowledge Management (CIKM 2010),
pages 759–768. ACM.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2013. A content-driven framework for geolocating
microblog users. ACM Transactions on Intelligent
Systems and Technology (TIST), 4(1):2.

Lianhua Chi, Kwan Hui Lim, Nebula Alam, and
Christopher J Butler. 2016. Geolocation prediction
in twitter using location indicative words and tex-
tual features. In Proceedings of the 2nd Workshop
on Noisy User-generated Text (WNUT 2016), pages
227–234. ACL.

Ryan Compton, David Jurgens, and David Allen. 2014.
Geotagging one hundred million twitter accounts
with total variation minimization. In Proceedings
of the 2014 IEEE International Conference on Big-
Data (BigData 2014), pages 393–401. IEEE.

Clodoveu A Davis Jr, Gisele L Pappa, Diogo
Rennó Rocha de Oliveira, and Filipe de L Arcanjo.
2011. Inferring the location of twitter messages
based on user relationships. Transactions in GIS,
15(6):735–751.

Mohammad Ebrahimi, Elaheh ShafieiBavani, Ray-
mond Wong, and Fang Chen. 2017. Exploring
celebrities on inferring user geolocation in twitter.
In Proceedings of the 21st Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD
2017), pages 395–406. Springer.

Mohammad Ebrahimi, Elaheh ShafieiBavani, Ray-
mond Wong, and Fang Chen. 2018a. Leveraging lo-
cal interactions for geolocating social media users.
In Proceedings of the 22nd Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD
2018), pages 803–815. Springer.

Mohammad Ebrahimi, Elaheh ShafieiBavani, Ray-
mond Wong, and Fang Chen. 2018b. Twitter user
geolocation by filtering of highly mentioned users.
Journal of the Association for Information Science
and Technology (JASIST), 69(7):879–889.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2010), pages 1277–
1287. ACL.

Cheng Guo and Felix Berkhahn. 2016. Entity
embeddings of categorical variables. CoRR,
abs/1604.06737.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by find-
ing location indicative words. In Proceedings of
the 24th International Conference on Computa-
tional Linguistics (COLING 2012), pages 1045–
1062. ACL.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based twitter user geolocation prediction. Journal of
Artificial Intelligence Research (JAIR), 49:451–500.

Bo Han, AI Hugo, Afshin Rahimi, Leon Derczyn-
ski, and Timothy Baldwin. 2016. Twitter geoloca-
tion prediction shared task of the 2016 workshop on
noisy user-generated text. In Proceedings of the 2nd
Workshop on Noisy User-generated Text (WNUT
2016), pages 213–217. ACL.

Brent Hecht, Lichan Hong, Bongwon Suh, and Ed H
Chi. 2011. Tweets from justin bieber’s heart: the dy-
namics of the location field in user profiles. In Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 237–246. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Liangjie Hong, Amr Ahmed, Siva Gurumurthy,
Alexander J Smola, and Kostas Tsioutsiouliklis.
2012. Discovering geographical topics in the twit-
ter stream. In Proceedings of the 21st International
Conference on World Wide Web (WWW 2012), pages
769–778. ACM.

Mans Hulden, Miikka Silfverberg, and Jerid Francom.
2015. Kernel density estimation for text-based ge-
olocation. In Proceedings of the 29th Conference on
Artificial Intelligence (AAAI 2015), pages 145–150.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 37th International Conference on Machine
Learning (ICML 2015), pages 448–456.

Gaya Jayasinghe, Brian Jin, James Mchugh, Bella
Robinson, and Stephen Wan. 2016. Csiro data61
at the wnut geo shared task. In Proceedings of
the 2nd Workshop on Noisy User-generated Text
(WNUT 2016), pages 218–226. ACL.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

David Jurgens. 2013. That’s what friends are for: Infer-
ring location in online social media platforms based
on social relationships. In Proceedings of the 7th In-
ternational Conference on Weblogs and Social Me-
dia (ICWSM 2013), volume 13, pages 273–282.

51

David Jurgens, Tyler Finethy, James McCorriston,
Yi Tian Xu, and Derek Ruths. 2015. Geolocation
prediction in twitter using social networks: A criti-
cal analysis and review of current practice. In Pro-
ceedings of the 9th International Conference on Web
and Social Media (ICWSM 2015), volume 15, pages
188–197.

Diederik P Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Jey Han Lau, Lianhua Chi, Khoi-Nguyen Tran, and
Trevor Cohn. 2017. End-to-end network for twitter
geolocation prediction and hashing. In Proceedings
of the 8th International Joint Conference on Natural
Language Processing (IJCNLP 2017), pages 744–
753.

Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and
Kevin Chen-Chuan Chang. 2012. Towards social
user profiling: unified and discriminative influence
model for inferring home locations. In Proceedings
of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD
2012), pages 1023–1031. ACM.

John Lingad, Sarvnaz Karimi, and Jie Yin. 2013. Lo-
cation extraction from disaster-related microblogs.
In Proceedings of the 22nd International Confer-
ence on World Wide Web (WWW 2013), pages 1017–
1020. ACM.

Ji Liu and Diana Inkpen. 2015. Estimating user lo-
cation in social media with stacked denoising auto-
encoders. In Proceedings of the 14th Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics - Human
Language Technologies (NAACL-HLT 2015), pages
201–210. ACL.

Jalal Mahmud, Jeffrey Nichols, and Clemens Drews.
2012. Where is this tweet from? inferring home
locations of twitter users. In Proceedings of the 6th
International Conference on Web and Social Media
(ICWSM 2012), volume 12, pages 511–514.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi,
and Tomoko Ohkuma. 2016. A simple scalable neu-
ral networks based model for geolocation prediction
in twitter. In Proceedings of the 2nd Workshop on
Noisy User-generated Text (WNUT 2016), volume
9026924, pages 235–239. ACL.

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi,
and Tomoko Ohkuma. 2017. Unifying text, meta-
data, and user network representations with a neural
network for geolocation prediction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL 2017), volume 1,
pages 1260–1272. ACL.

Anastasios Noulas, Salvatore Scellato, Neal Lathia,
and Cecilia Mascolo. 2012. Mining user mobility
features for next place prediction in location-based
services. In Proceedings of the 12th IEEE Inter-
national Conference on Data mining (ICDM 2012),
pages 1038–1043. IEEE.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2014), pages
701–710. ACM.

Afshin Rahimi, Timothy Baldwin, and Trevor Cohn.
2017a. Continuous representation of location for
geolocation and lexical dialectology using mixture
density networks. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2017), pages 167–176. ACL.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015a. Twitter user geolocation using a unified
text and network prediction model. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics - 7th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2015), pages 630–636. ACL.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2016. pigeo: A python geotagging tool. In Proceed-
ings of the 54st Annual Meeting of the Association
for Computational Linguistics (ACL 2014): System
Demonstrations, pages 127–132. ACL.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2017b. A neural model for user geolocation and lex-
ical dialectology. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers) (ACL 2017), vol-
ume 2, pages 209–216. ACL.

Afshin Rahimi, Duy Vu, Trevor Cohn, and Timothy
Baldwin. 2015b. Exploiting text and network con-
text for geolocation of social media users. In Pro-
ceedings of the 14th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL-HLT 2015), pages 1362–1367. ACL.

Vineeth Rakesh, Chandan K Reddy, and Dilpreet
Singh. 2013. Location-specific tweet detection and
topic summarization in twitter. In Proceedings of
the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining
(ASONAM 2013), pages 1441–1444. ACM.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CONLL 2012), pages
1500–1510. ACL.

52

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research (JMLR), 15(1):1929–1958.

Philippe Thomas and Leonhard Hennig. 2017. Twit-
ter geolocation prediction using neural networks. In
International Conference of the German Society for
Computational Linguistics and Language Technol-
ogy, pages 248–255. Springer.

Fengjiao Wang, Chun-Ta Lu, Yongzhi Qu, and S Yu
Philip. 2017. Collective geographical embedding
for geolocating social network users. In Proceed-
ings of the 21th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PAKDD 2017),
pages 599–611. Springer.

Benjamin Wing and Jason Baldridge. 2011. Simple su-
pervised document geolocation with geodesic grids.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1 (ACL-HLT 2011),
pages 955–964. ACL.

Benjamin Wing and Jason Baldridge. 2014. Hierar-
chical discriminative classification for text-based ge-
olocation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2014), pages 336–348. ACL.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 15th Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT 2016), pages 1480–1489. ACL.

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and
Nadia Magnenat Thalmann. 2013. Who, where,
when and what: discover spatio-temporal topics for
twitter users. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM-SIGKDD 2013),
pages 605–613. ACM.

53

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 54–64
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Corpus-driven Thematic Hierarchy Induction

Ilia Kuznetsov and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA) and Research Training Group AIPHES

Department of Computer Science
Technische Universität Darmstadt

http://www.ukp.tu-darmstadt.de/

Abstract

Thematic role hierarchy is a linguistic tool
used to describe interactions between semantic
roles and their syntactic realizations. Despite
decades of dedicated research and numerous
thematic hierarchy suggestions in the litera-
ture, this concept has not been used in NLP so
far due to incompatibility and limited scope of
existing hierarchies. We introduce an empir-
ical framework for thematic hierarchy induc-
tion and evaluate several role ranking strate-
gies on English and German corpus data. We
hypothesize that inducing a thematic hierar-
chy is feasible, that a hierarchy can be induced
from small amounts of data and that resulting
hierarchies apply cross-lingually. We evaluate
these assumptions empirically.

1 Introduction

Semantic roles are one of the core concepts in
NLP, and automatic semantic role labeling (SRL)
is a major task with applications in question an-
swering (Shen and Lapata, 2007), machine trans-
lation (Liu and Gildea, 2010) and information ex-
traction (Christensen et al., 2010). The goal of
SRL is to label the semantic arguments of a pred-
icate (e.g. a verb) with roles from a pre-defined
role inventory. Conceptually, role assignment in
SRL can be split in two steps: local labeling es-
timates the likelihood of a certain semantic argu-
ment bearing a certain role; global optimization
takes context-dependent role interactions into ac-
count and enforces certain theoretically motivated
constraints (e.g. “each role must appear only once
per predication”).

State of the art in SRL is held by the systems
based on deep neural networks (Marcheggiani and
Titov, 2017; He et al., 2017). While achieving
remarkable quality on benchmark datasets, mod-
ern systems show a considerable ≈10-point per-
formance drop when applied out-of-domain. This

issue is aggravated by the fact that deep neural net-
works require significant amounts of training data,
and SRL annotations are expensive to produce.
While local role assignment can be augmented us-
ing unlabeled data (e.g. via pre-trained word and
character embeddings), context-dependent role in-
teraction is an SRL-specific phenomenon and can
only be learned from annotated SRL corpora.

Aiming to reduce the training data requirements
for SRL, we revisit the notion of thematic hierar-
chy (TH), a compact delexicalized way to model
context-dependent role interactions. Thematic hi-
erarchies assume that given a syntactic hierarchy
(e.g. subject ≺1 object ≺ oblique) semantic roles
can be ranked in a way that higher ranked roles
take higher ranked syntactic positions. One exam-
ple of phenomena captured by THs is the choice
of subject: given a thematic hierarchy Agent ≺
... ≺ Instrument, an Instrument can only
become subject if the Agent is not present, e.g.
“[John]Ag broke the window with a [hammer]In”
→ “A [hammer]In broke the window”.

THs have received considerable attention in lin-
guistic literature, but were so far impractical for
use in NLP and SRL due to incompatibility and
limited scope of the existing hierarchies. As a first
step towards including THs into the NLP tool in-
ventory we suggest an empirical framework for in-
ducing THs from role-annotated corpora. Since
VerbNet (Schuler, 2006) is the only SRL frame-
work that operates with thematic roles, we choose
it as our basis and perform experiments on the
PropBank corpus (Palmer et al., 2005) enriched
with VerbNet role labels via SemLink (Bonial
et al., 2013).

The contributions of this paper are as follows:

• We suggest a method for global thematic hi-
erarchy induction from corpus data;

1We use ≺ for rank precedence, and / for ties

54

• We propose several thematic and syntactic
ranking models and evaluate them on English
and German data;
• We show that thematic hierarchies can be in-

duced and applied cross-lingually while leav-
ing room for improvement; we further show
that thematic hierarchy induction is data-
efficient and can produce a high-quality hi-
erarchy using just a fraction of training data.

2 Related work

2.1 Semantic roles and the Lexicon
Semantic roles in the modern sense have been in-
troduced in 1960s as a way to account for variation
in syntactic behavior of verbs which can not be ex-
plained by purely syntactic means (Gruber, 1965;
Fillmore, 1968). A commonly used motivational
example contrasts the use of verbs hit and break:
while both are regular transitive verbs, hit does not
allow construction (4); and construction (5) is un-
grammatical in both cases.

(1) [John]X broke/hit the [window]Y with a
[stone]Z.

(2) [John]X broke/hit the [window]Y.
(3) A [stone]Z broke/hit the [window]Y.
(4) The [window]Y broke/*hit.
(5) The [window]Y *broke/*hit with a [stone]Z.

There exist several principled ways to describe
the syntactic behavior of arguments in the lexicon.
Available constructions can be defined individu-
ally on verb sense basis. This strategy is pre-
cise but highly redundant, since verbs show sub-
stantial similarities in syntactic behavior; besides,
it does not generalize to the out-of-vocabulary
(OOV) predicates.

A step towards a more general representation is
verb class grouping (Levin, 1993): verbs senses
can be grouped into verb classes with syntactic be-
havior shared among the members of the class. For
example, syntactically break behaves like crash,
shred and split, while hit behaves like bash and
whack in the corresponding verb senses. This sig-
nificantly reduces the lexicon redundancy and al-
lows treatment of the OOV verbs if the verb class
can be determined. A similar level of granularity
is used by the major SRL frameworks: FrameNet
SRL (Das et al., 2010) and, to some extent, Prop-
Bank SRL (Roth and Woodsend, 2014).

Semantic arguments share similarities across
verb classes, giving rise to the notion of gen-

eral semantic roles. While there exists no con-
sensus on the inventory of semantic roles, a sub-
set shared by the most theoretical approaches in-
cludes roles such as Agent (the active sentient
initiator of the event), Theme (the most affected
participant), Result (the outcome of the event),
Instrument (the instrument used) etc. Seman-
tic roles show similar behavior across languages
and can be thought of as grammatically relevant
universal categories humans use to conceptual-
ize real-world events. Following common ter-
minology, we further refer to general, predicate-
independent semantic roles as thematic roles.
This level of granularity is, for example, used by
VerbNet (Schuler, 2006).

Thematic roles’ syntactic behavior depends on
the presence of other thematic roles in the sen-
tence: as our example above demonstrates, an
Instrument can only take the subject posi-
tion if the Agent is not present (3); and Theme
can only become subject if both Agent and
Instrument are not expressed (4-5). A widely
used modeling tool to account for context de-
pendency is the thematic hierarchy (TH): given
a syntactic prominence scale (e.g. subject ≺
oblique... ≺ object), one can assume that there ex-
ists a universal ranking of thematic roles, which
is homomorphic to the syntactic ranking (e.g.
Agent ≺ Instrument ≺ Theme). The top-
ranking semantic argument gets assigned to the
highest available syntactic position, the second-
ranking gets the second-highest position, etc.

THs are a compact delexicalized way to de-
scribe semantic roles’ syntactic behavior at the
grammar level, which could reduce data require-
ments and improve generalization capability of
SRL systems. However, THs from the literature
come from varying theoretical backgrounds, are
based on different syntactic formalisms and oper-
ate with different role inventories. Most of these
THs are justified via basic (often synthetic) lan-
guage examples, aiming to verify a certain the-
ory cross-lingually rather than to describe the lan-
guage use in a compact way.

2.2 Major SRL Frameworks

The choice of linguistic theory in SRL is mostly
dictated by the availability of training data. Prop-
Bank SRL is based on the PropBank corpus
(Palmer et al., 2005) which utilizes a set of
predicate-specific core roles (A0-5) and a set

55

of general, predicate-independent adjunct roles
(AM-TMP, AM-LOC etc.). Core roles are defined
on verb sense level. An effort is made to en-
sure consistency in assigning A0 (Agent-like) and
A1 (Patient-like). The rest of the core arguments
(A2-5) are verb sense-specific; no finer-grained
distinctions between roles are made.

PropBank annotation is closely tied to syntax.
FrameNet (Baker et al., 1998) takes a different
stance and focuses on accurate and detailed rep-
resentation of event semantics. Verbs (as well as
lexemes from other categories) are grouped into
frames so that members of the same frame share
a set of fine-grained frame-specific semantic roles
(e.g. Impactee, Force, Buyer, Goods).

Both PropBank and FrameNet SRL operate
on the verb sense/verb class generalization level.
VerbNet (Schuler, 2006) groups verbs into Levin-
inspired verb classes and defines sets of general,
lexicon-level thematic roles and constructions for
each class. It is the only SRL formalism that
operates with a thematic role set. VerbNet role
sets and verb class information are mapped to the
PropBank corpus annotations via SemLink (Bo-
nial et al., 2013).

2.3 Thematic roles in SRL

So far only few studies have considered VerbNet-
level granularity in SRL and we are not aware
of SRL systems specifically designed to exploit
the thematic role generalizations. Zapirain et al.
(2008) compare PropBank and VerbNet perfor-
mance using a simple SRL system and conclude
that PropBank labels generally perform better;
however, they do not use any additional mod-
eling possibilities offered by VerbNet’s general,
predicate-independent role set. Loper et al. (2007)
show that replacing verb-specific PropBank roles
A2-5 with the corresponding VerbNet roles im-
proves the SRL performance. Merlo and van der
Plas (2009) report a statistical analysis of Prop-
Bank and VerbNet annotations and conclude that
while PropBank role inventory better correlates
with syntax and is therefore easier to learn, Verb-
Net thematic roles are more informative and bet-
ter generalize to new verb instances. Finally, a
recent comparison on German data by Hartmann
et al. (2017) positions VerbNet inventory above
FrameNet and below PropBank in terms of com-
plexity and generalization capabilities; however,
the experiment is again based on the mateplus sys-

tem (Roth and Woodsend, 2014) designed with
PropBank generalization level in mind.

2.4 Semantic Proto-Roles
A related line of work is Semantic Proto Role
Labeling (SPRL) (Reisinger et al., 2015; White
et al., 2017) which, following Dowty (1991), dis-
cards the notion of atomic semantic role inven-
tory and replaces it with Proto-Agent and
Proto-Patient property sets. While our
study utilizes traditional atomic role inventories,
we see SPRL as a compatible parallel line of work
and believe that additional benefits can be gained
by combining the two views on syntax-semantics
interface. In particular, Reisinger et al. (2015)
investigate the alignment between Dowty-style
role properties and VerbNet thematic roles and
show that VerbNet Agents tend to bear Dowty’s
instigated, awareness and volitional
properties, while Themes are more likely to
change posession, change state, etc.

2.5 Thematic hierarchies
Numerous THs have been proposed in the linguis-
tic literature, e.g. Agent ≺ Instrument ≺
Theme (Fillmore, 1968); see (Levin and Rappa-
port Hovav, 2005) for an overview. These hierar-
chies are rarely applicable for NLP since they orig-
inate from different theoretical backgrounds and
are usually focused on a narrow set of linguistic
phenomena (e.g. subject selection), aiming to pro-
vide a cross-linguistically valid hierarchy based on
a set of manually constructed examples. In con-
trast, our approach is data-driven and aims to de-
scribe the general syntactic behavior of thematic
roles. While an optimal TH that would success-
fully describe semantic roles’ behavior across lan-
guages might not exist (and would imply the exis-
tence of a universal role inventory and grammar),
our evidence suggests that this concept is at least
partially applicable.

To the best of our knowledge, there exists
no prior work explicitly aiming at discovering
thematic hierarchies in corpora. However, the
hierarchy-related effects are reported in some
studies. For example, White et al. (2017) observe
on a reduced role set that VerbNet roles dispre-
fer the violations of thematic/syntactic hierarchy
alignment. Sun et al. (2009) experiment on the-
matic rank prediction for PropBank A0 and A1,
but extend their analysis neither to VerbNet the-
matic roles, nor to the PropBank A2-5.

56

2.6 Syntactic formalisms

Cross-lingual applicability has traditionally been
a strong component in semantic role theory, and
universality is one of the common desiderata for a
thematic hierarchy. This, however, implies the ex-
istence of a universal syntactic prominence scale.

From the NLP perspective, the closest to uni-
versal syntactic representation for which auto-
matic parsers are available is the Universal De-
pendencies (UD) representation. Universal De-
pendencies (Nivre et al., 2016) is a recent initia-
tive aimed at creating a single dependency-based
formalism suited for describing syntactic structure
in a language-independent way. It encompasses
freely available treebanks for more than 60 lan-
guages, and universal dependency parsing is an ac-
tive research area (Zeman et al., 2017). Based on
that, we make an effort to ground our study in UD
syntax for English. Since neither gold UD anno-
tations, nor a deterministic converter are available,
for German we use the TIGER dependency syntax
representation (Dipper et al., 2001).

3 Hierarchical Linking model

3.1 Model

We suggest a simple model to describe the inter-
face between syntactic and thematic rankings. An
SRL corpus can be seen as a collection of sen-
tences with corresponding predications, where
each predication has a target (e.g. verb) and a set
of arguments labeled with semantic roles.

Let a1...an ∈ A be the set of arguments in the
predication p; r(ai) be the role label af the argu-
ment ai, and d(ai) be the path between the predi-
cate and the argument in the dependency parse tree
of the sentence. A syntactic ranker S provides a
syntactic rank si = S(d(ai)) for each argument ai
in A based on the path, and a thematic ranker T
provides a thematic rank ti = T (r(ai)) based on
the argument’s role. For each pair of arguments
(ai, aj) we expect their syntactic ranks to align
with their thematic ranks, i.e.

∀i 6= j : sign(ti − tj) = sign(si − sj)

The model per se does not imply the existence of
a global ranking and allows flexible ranker defini-
tion. It allows ties in both syntactic and thematic
rankings.

We use accuracy to assess how well a given
syntactic-semantic ranker pair reflects the actual

Ag In Pa Th Va

Ag
In

Pa
Th

Va

1.00 1.00 1.00 0.98

0.00 0.50 0.75

0.00 0.50

0.00 0.25 0.75

0.02 0.25

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Preference matrix

argument ranks found in data. Given a set of test
predications p1, p2...pk ∈ P with the argument
sets A1, A2...Ak, we measure the correspondence
between syntactic and semantic ranking over the
argument pairs (aki , a

k
j) via accuracy defined as

#(sign(tki − tkj) = sign(ski − skj))
#total pairs

To avoid the majority class bias, we measure ac-
curacy for each role pair and use macro-averaged
accuracy over pairs as the final score. A straight-
forward alternative to our evaluation metric would
be the Kendall rank correlation coefficient, which,
based on our preliminary experiments, tends to
overemphasize the performance on most frequent
role pairs.

4 Thematic Hierarchy Induction

This paper investigates several thematic rank-
ing strategies. As a running example we use
a small role set: Agent (Ag), Patient (Pa),
Instrument (In), Theme (Th) and Value
(Va). For now we assume the following syntac-
tic hierarchy: subj ≺ iobj ≺ nmod ≺ obj ≺ other.

Local ranker The simplest way to model role
ranking is to extract the average syntactic rank for
each role based on the data, and then, given a test
pair, assign ranks based on average syntactic rank.

role Ag Pa In Th Va
mean(s) 1.01 2.58 1.72 3.95 3.74

Table 1: Mean syntactic rank per role (1-5)

Pairwise ranker Given that roles often strongly
prefer a certain syntactic position (also see (White

57

0.98

1.00

1.00

1.
00

0.
75

0.75

Va

Ag

Pa

Th

In

Figure 2: Preference graph

et al., 2016)), local ranking is a reasonable base-
line strategy. However, it fails to account for the
context dependency of thematic roles’ syntactic
realization. The next step is to construct a pair-
wise preference matrix: for each pair of roles
encountered in training data we calculate the pro-
portion of times role ri receives a higher syntactic
rank than role rj . For our role set this results in
the matrix shown on Fig. 1.

The preference matrix, for example, shows
that Agent clearly dominates all the roles,
Instrument ranks over Theme, and Value is
below Theme.

Global ranker The pairwise ranking approach
takes context into account. However, some role
pairs only co-occur rarely. In such cases no pair-
wise ranking information is available to the model.
Finding a global TH based on pairwise prefer-
ences is an example of a rank aggregation prob-
lem which can be solved via constrained ILP op-
timization on a preference graph (Conitzer et al.,
2006). We represent the pairwise preference ma-
trix as a graph G = (v, e) where each vertex v
represents a role, the edge weight is the preference
strength measured as #(ri ≺ rj)/#(ri, rj). The
edge direction is from higher- to lower-ranking
role. If we assume a global ordering of the roles,
we can induce the global ranking via transitivity
relations. For example (Fig. 2), Instrument
never appears with Value in our training data;
however, by transitivity via Themewe can assume
that Instrument ranks over Value.

Given the preference graph G = (v, e), let wij
be the weight of the edge between vi and vj . Let
xij ∈ 0, 1 denote that we rank vertice vi above vj .

The goal is then to maximize
∑

i,j xijwij subject
to two groups of constraints. First, we prohibit two
nodes to rank above each other, but allow ties, by
enforcing ∀i,j : xij+xji ≤ 1. Second, we enforce
transitivity, i.e. if ri is ranked above rj , and rj is
ranked above rk, then ri must be ranked above rk,
formally ∀i,j,k, i 6= j 6= k : xij + xjk − xik ≤ 1.
We solve the ILP problem using the off-the-shelf
pulp optimizer (Mitchell et al., 2011).

For our restricted example, optimization pro-
duces the following global hierarchy: Ag ≺ In ≺
Th≺ Va/Pa. This hierarchy ranks Instrument
above Value by transitivity, however, in case of
Patient and Value no preference can be in-
ferred from the graph, so they receive the same
thematic rank.

5 Experiments

5.1 Datasets and Restrictions

For our experiments on English, we use SemLink
(Bonial et al., 2013), a manually constructed re-
source that enriches PropBank’s (Palmer et al.,
2005) semantic role annotations with VerbNet’s
(Schuler, 2006) thematic role labels. We use the
Universal Dependencies converter (Schuster and
Manning, 2016) to transform original PropBank
syntactic annotation to UD. PropBank semantic
role annotation and the corresponding SemLink
reference are constituents-based. However, UD is
a dependency formalism, and we employ a number
of heuristics to align original PropBank annota-
tions with the CoNLL-2009 datasets (Hajič et al.,
2009) to recover the head node positions. We em-
ploy additional transformations, filtering out the
predications in which not all PropBank core roles
got aligned to the VerbNet thematic roles.

For German, we use the recently introduced
SR3de dataset (Mújdricza-Maydt et al., 2016;
Hartmann et al., 2017) which explicitly provides
VerbNet annotations on top of SALSA corpus
(Burchardt et al., 2006). There exist no gold UD
annotations for the SALSA corpus, and we use
the SALSA’s default TIGER syntactic formalism
(Dipper et al., 2001) in our experiments.

Following previous work, we employ certain re-
strictions on our data. Since thematic roles in both
VerbNet and SR3de are only defined for verbal
predicates, we restrict the scope of our study to
verbs. We only consider direct dependents of the
verbs in active voice, and since having access to
the full argument set is important to study con-

58

dataset #sent #tok #pred #arg
EN (PropBank→SemLink)

train 16 603 446 641 21 276 44 333
test 1 031 27 751 1 336 2 761
dev 550 15 157 684 1422

DE (SR3de VerbNet)
train 898 20 277 905 1 992
test 240 4 738 245 532
dev 117 2 429 119 266

Table 2: Dataset statistics

text dependency, we only consider the predica-
tions where all arguments are direct dependents
of the verb in the UD dependency tree. Since we
are interested in relative ranking, only predications
that contain more than one semantic argument are
considered in the study.

Dataset statistics for English and German (after
filtering) are summarized in Table 2. In all exper-
iments we induce a TH and related statistics from
the training data and evaluate it on the test data,
using the split from the CoNLL SRL shared tasks.

5.2 Syntactic ranker
For simplicity in this paper we only experiment
with two syntactic rankers per language. A com-
mon syntactic prominence scale assumed in lin-
guistic literature is subject ≺ object ≺ indirect ob-
ject ≺ oblique. This scale has to be adapted to
the UD and TIGER labeling schemes. For each
language we evaluate two syntactic rankings: one
that positions objects above indirect objects and
obliques, and one that positions objects below.

For English, we rank the UD syntactic relations
as follows (SE1): nsubj / csubj ≺ iobj ≺ nmod
≺ ccomp / dobj≺ other; where nmod corresponds
to oblique and other is used for any other syntac-
tic relation. An alternative ranking positions dobj
directly after the subject (SE2): nsubj / csubj ≺
ccomp / dobj ≺ iobj ≺ nmod ≺ other.

For German, the following ranking of TIGER
syntactic relations is employed (SD1): SB ≺ DA
≺ OP / MO / OG/ OC ≺ OA / OA2 / CVC ≺
other; where SB is the subject, DA is dative ob-
ject, OP / MO / OG / OC correspond to oblique
relations, and OA / OA2 / CVC to direct object re-
lations (see (Dipper et al., 2001) for detailed de-
scription). Similarly, we evaluate the performance
of the ranking that positions the direct object after
the subject (SD2): SB≺ OA / OA2 / CVC ≺ DA≺
OP / MO / OG / OC ≺ other.

synt glob pair loc RND UB
EN SE1 .869 .887 .867 .509 .927
EN SE2 .930 .929 .913 .500 .932
DE SD1 .655 .726 .637 .471 .818
DE SD2 .790 .820 .820 .456 .920

Table 3: Thematic ranker evaluation, incl. random
ranker (RND) and upper bound (UB); bold - best
result over syntactic rankers, underlined - best re-
sult over thematic rankers

5.3 Bounds
We construct the upper bound for the hierarchy
induction by evaluating a global ranker trained on
the test dataset. The upper bound reflects the data
properties, as well as the maximal alignment ac-
curacy that can be achieved with the selected syn-
tactic ranker. The lower bound is constructed
by evaluating 100 random thematic rankers which
rank roles according to a random (but consistent)
hierarchy, and averaging the result.

5.4 Data utilization setup
To evaluate how effective the proposed rankers use
the training data, we conduct a series of experi-
ments with reduced dataset sizes using the follow-
ing protocol. The training dataset is shuffled and
split into n = 100 slices. A ranker is consecutively
trained on the first m ∈ 1..n slices and evaluated
against the full test dataset. The procedure is re-
peated k = 100 times to eliminate the effect of
data order, and the results per slice are averaged.

6 Results

6.1 General Accuracy and Syntactic Ranker
To get an overall impression of the ranking qual-
ity, we first compare the performance of thematic
rankers with respect to syntactic rankers and avail-
able datasets. The results of this comparison are
summarized in Table 3 and show that syntactic
rankers positioning the object second in the hier-
archy (SE2 and SD2) lead to better alignment on
both datasets and have a higher upper bound. We
report the results on these rankers for the rest of
the paper.

For English the global hierarchy-based ranker
approaches the upper bound, closely followed by
the pairwise ranker. The accuracy on German data
is lower and the pairwise and local rankers outper-
form the global hierarchy-based ranker. We revisit
this observation in 6.5.

59

EN Agent ≺ Cause/Instrument/Experiencer ≺ Pivot ≺ Theme ≺ Patient ≺ Ma-
terial/Source/Asset ≺ Product ≺ Recipient/Beneficiary/Destination/Location ≺
Value/Stimulus/Topic/Result/Predicate/Goal/InitialLocation/Attribute/Extent

DE Agent ≺ Experiencer ≺ Stimulus/Pivot ≺ Cause ≺ Theme ≺ Patient ≺ Topic ≺ Instrument ≺
Beneficiary/InitialLocation ≺ Result ≺ Product/Goal ≺ Destination/Attribute ≺ Recipient ≺
Value/Time/CoAgent/Locus/Manner/Source/Trajectory/Location/Duration/Path/Extent

Table 4: Induced hierarchies

EN-test DE-test
UB .932 .920

EN-train .930 .787
DE-train .852 .790

RND .500 .456

Table 5: Cross-lingual evaluation, global ranker

6.2 Qualitative analysis

The result of hierarchy induction is a global rank-
ing of thematic roles. Table 4 shows full rank-
ings extracted for English and German data. While
some correspondence to the hierarchies proposed
in literature is evident (e.g. for English Agent
≺ Instrument ≺ Theme, similar to (Fillmore,
1968)), a direct comparison is impossible due to
the differences in role definitions and underlying
syntactic formalisms. Notice the high number of
ties: some roles never co-occur (either by chance
or by design) or occur on the same syntactic rank
(e.g. oblique) so there is no evidence for prefer-
ence even if we enforce transitivity.

6.3 Cross-lingual hierarchy induction

The induced hierarchies for English and German
bear certain similarities, which raises the question
on cross-lingual applicability of the hierarchies.
This analysis is only possible because the VerbNet
and SR3de role inventories are mostly compati-
ble with few exceptions (Mújdricza-Maydt et al.,
2016). Table 5 contrasts the performance of THs
induced from English and German training data,
and evaluated on German and English test data re-
spectively. While the cross-lingual performance
is expectedly lower than the monolingual perfor-
mance, it outperforms the random baseline by a
large margin, suggesting the potential for cross-
lingual hierarchy induction.

6.4 Data utilization

One can assume that constructing a global hierar-
chy should require less training data due to the ef-

Role pair score #(train)
Recipient - Topic 0.35 338
Source - Theme 0.46 246
Location - Theme 0.53 400
Material - Product 0.67 29
Result - Theme 0.67 30
Experiencer - Stimulus 0.74 922
Destination - Theme 0.86 401
Instrument - Theme 0.88 110
Recipient - Theme 0.89 419
Attribute - Experiencer 0.90 166

Table 6: Global ranker accuracy, English

fective utilisation of transitivity. We evaluate this
assumption empirically. Fig. 3 reports the perfor-
mance of rankers with access to different amounts
of training data for English and German. The re-
sults on English data show that global hierarchy-
based ranker effectively utilizes the training data
and can be trained using just fractions of the orig-
inal training dataset.

The accuracy measurements on German are less
conclusive: the local ranker generally performs
best and learns fastest. We attribute this to the
fact that filtered SR3de is an order of magnitude
smaller than the PropBank/SemLink dataset. For
pairwise and global rankers as many role pairs as
possible should be observed at least once to es-
tablish the pairwise preference. This holds for
PropBank/SemLink (all role pairs from test data
seen at least once after observing 20% of the train-
ing data, on average), however, for filtered SR3de,
even given the full training data, only 83% of role
pairs from the test set have been seen at least once.

6.5 Error analysis
Our evaluation procedure allows detailed insights
into the performance of the models. To illustrate,
we extract the role pairs from English and German
data with ranking accuracy below 1.0.

Table 6 lists the ranking inconsistencies pro-
duced by the global ranker for English. We can

60

0 20 40 60 80 100
data %

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

m
ea

n
ac

c

0 20 40 60 80 100
data %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

global
pairwise
local
upper

Figure 3: Data utilization for English (left) and German (right) along with max/min values

Role pair score #(train)
Attribute - Source 0.00 0
Beneficiary - Manner 0.00 0
Beneficiary - Value 0.00 1
Extent - Goal 0.00 2
Goal - Recipient 0.00 12
Instrument - Result 0.00 3
Locus - Topic 0.12 3
Recipient - Theme 0.40 26
Recipient - Topic 0.50 5
Pivot - Theme 0.67 57

Table 7: Global ranker accuracy, German

see that false ranking might be caused by the
lack of training examples (e.g. Material vs.
Product, Theme vs. Result). We also ob-
serve complications with positioning the Theme
on the hierarchy. In many cases the misalign-
ment is due to non-standard use of thematic roles,
e.g. Location as subject in wsj 2322:7 [the
delayLoc resulted from difficultiesTh]. Another
common reason for false alignments is the syn-
tactic ranker. For example, in wsj 2372:1
[the SenateAg voted 87-7Res to approveTh...] the
Result is connected to the predicate via an ad-
vmod relation, and Theme is xcomp, both ranked
equally (other) by our syntactic ranker.

Error analysis on the much smaller German
dataset (Table 7) reveals the sparsity-related is-
sues: most of the role pairs that tend to get mis-
aligned do not, or only rarely appear in the training
data, heavily influencing the score. As on English
data, many misalignments are due to simplicity of
the syntactic ranker.

7 Discussion

7.1 Importance of the syntactic ranker
The choice of syntactic ranking has a drastic ef-
fect on the resulting TH and the alignment quality,
even if only direct syntactic dependents and a lim-
ited set of relations are taken into account. Real-
istically there might exist an arbitrary set of paths
connecting arguments to predicates. UD as syn-
tactic formalism is also subject to rapid change.
Inducing a joint syntactic and thematic hierar-
chy that maximizes the overall alignment quality
is a crucial direction for future work with potential
benefits for SRL and syntactic parsing. Although
we show that THs can be induced with an arbitrary
dependency formalism, a cross-lingual UD-based
study would be another extension to our work.

7.2 SRL integration
To utilize and evaluate the potential of thematic
hierarchies for role interaction modeling, SRL in-
tegration is necessary. This, however, is not a
trivial task: the absolute majority of semantic role
labeling systems are designed with PropBank or
FrameNet SRL formalism in mind and are not
tailored to general VerbNet-style semantic roles
and verb class-level disambiguation. A dedicated
VerbNet SRL system would enable this assess-
ment, and applying THs to such a system is an
important future work direction.

7.3 Robustness to parsing errors
This paper focuses on TH induction using pre-
defined syntactic annotation: a corpus annotated
with semantic roles without an underlying syntac-
tic layer is a rare occurence. However, for prac-

61

tical applications and for the cases when an SRL
corpus is provided without syntactic annotations,
it would be important to evaluate how effectively
THs can be induced given parsing errors in train-
ing and in test data.

7.4 Data selection

We have demonstrated that THs can be induced
from small portions of training data. The large dis-
crepancy in the scores on the first data slices seen
on Fig. 3 suggests that some data instances are
more informative for TH induction. This raises
the question whether it is possible to automati-
cally select useful training instances, supported
by the evidence from previous work in SRL (Pe-
terson et al., 2014). One obvious strategy would
be to make sure that the hierarchy inducer is pre-
sented as many role pairs as early as possible. Ap-
proximating this objective in an unsupervised way
would reduce the amount of data needed to induce
a high-quality thematic hierarchy.

7.5 The need for a global hierarchy

Our results regarding the necessity of a global hi-
erarchy which ranks all the roles are inconclusive.
While global ranking reaches the best quality for
English, on the German data pairwise and local
ranking approaches perform best. Although we
attribute the latter to sparsity, more German data
would be needed to evaluate this hypothesis. In
particular, this can be achieved by relaxing some
of the constraints we impose on the data.

8 Conclusion

This paper has presented an empirical framework
for thematic hierarchy induction and evaluation.
We have suggested several syntactic and thematic
ranking strategies and a method to induce global
thematic hierarchies from corpus data. Analysis
on English and German data shows that hierarchy
induction is feasible, data-efficient and has poten-
tial for cross-lingual applications. Promising di-
rections for future work include joint modeling of
syntactic and thematic ranking, selecting informa-
tive training instances and evaluating the utility of
global hierarchies on extended language material.

Acknowledgements

This work has been supported by the German Re-
search Foundation as part of the Research Training

Group AIPHES (grant No. GRK 1994/1), QA-
EduInf project (grant GU 798/18-1 and grant RI
803/12-1) and FAZIT Stiftung.

References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FrameNet project. In Pro-
ceedings of the 17th International Conference on
Computational Linguistics, volume 1, pages 86–90,
Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

Claire Bonial, Kevin Stowe, and Martha Palmer. 2013.
Renewing and revising SemLink. In Proceedings
of the 2nd Workshop on Linked Data in Linguistics
(LDL-2013): Representing and linking lexicons, ter-
minologies and other language data, pages 9–17.
Association for Computational Linguistics.

Aljoscha Burchardt, Katrin Erk, Anette Frank, An-
drea Kowalski, Sebastian Pado, and Manfred Pinkal.
2006. The SALSA corpus: A German corpus re-
source for lexical semantics. In Proceedings of
the Fifth International Conference on Language
Resources and Evaluation (LREC’06), pages 969–
974. European Language Resources Association
(ELRA).

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2010. Semantic role labeling for
open information extraction. In Proceedings of the
NAACL HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Read-
ing, FAM-LbR ’10, pages 52–60, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Vincent Conitzer, Andrew Davenport, and Jayant
Kalagnanam. 2006. Improved bounds for comput-
ing kemeny rankings. In Proceedings of the 21st Na-
tional Conference on Artificial Intelligence - Volume
1, AAAI’06, pages 620–626. AAAI Press.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, HLT ’10, pages 948–956, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Stefanie Dipper, Thorsten Brants, Wolfgang Lezius,
Oliver Plaehn, and George Smith. 2001. The TIGER
treebank. In Proceedings of the Workshop on Tree-
banks and Linguistic Theories, pages 24–41.

David Dowty. 1991. Thematic proto-roles and argu-
ment selection. Language, 76(3):474–496.

Charles J. Fillmore. 1968. The Case for Case. In Em-
mon Bach and Robert T. Harms, editors, Universals
in Linguistic Theory, pages 1–88. Holt, Rinehart and
Winston, New York.

62

Jeffrey S. Gruber. 1965. Studies in Lexical Relations.
Ph.D. thesis, MIT, Cambridge, MA.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 Shared Task: Syntactic and Semantic Depen-
dencies in Multiple Languages. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning: Shared Task, CoNLL ’09,
pages 1–18, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Silvana Hartmann, Éva Mújdricza-Maydt, Ilia
Kuznetsov, Iryna Gurevych, and Anette Frank.
2017. Assessing SRL frameworks with automatic
training data expansion. In Proceedings of the 11th
Linguistic Annotation Workshop, pages 115–121.
Association for Computational Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
473–483. Association for Computational Linguis-
tics.

Beth Levin. 1993. English Verb Classes and Alterna-
tions: A Preliminary Investigation. University of
Chicago Press.

Beth Levin and Malka Rappaport Hovav. 2005. Argu-
ment Realization. Research Surveys in Linguistics.
Cambridge University Press.

Ding Liu and Daniel Gildea. 2010. Semantic role
features for machine translation. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 716–724.
Coling 2010 Organizing Committee.

Edward Loper, Szu ting Yi, and Martha Palmer. 2007.
Combining lexical resources: Mapping between
propbank and verbnet. In Proceedings of the 7th In-
ternational Workshop on Computational Linguistics,
Tilburg, the Netherlands.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1507–1516, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Paola Merlo and Lonneke van der Plas. 2009. Abstrac-
tion and generalisation in semantic role labels: Prop-
bank, verbnet or both? In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 288–
296. Association for Computational Linguistics.

Stuart Mitchell, Michael OSullivan, and Iain Dun-
ning. 2011. Pulp: a linear programming toolkit for
python.

Éva Mújdricza-Maydt, Silvana Hartmann, Iryna
Gurevych, and Anette Frank. 2016. Combining se-
mantic annotation of word sense & semantic roles:
A novel annotation scheme for VerbNet roles on
German language data. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association (ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A multi-
lingual treebank collection. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation LREC 2016. European Lan-
guage Resources Association (ELRA).

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Daniel Peterson, Martha Palmer, and Shumin Wu.
2014. Focusing annotation for semantic role la-
beling. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), Reykjavik, Iceland. European Language
Resources Association (ELRA).

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van
Durme. 2015. Semantic Proto-Roles. Transactions
of the Association for Computational Linguistics,
3:475–488.

Michael Roth and Kristian Woodsend. 2014. Composi-
tion of word representations improves semantic role
labelling. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 407–413. Association for Compu-
tational Linguistics.

Karin Kipper Schuler. 2006. VerbNet: A Broad-
Coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis, University of Pennsylvania.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016). European Language Resources
Association (ELRA).

Dan Shen and Mirella Lapata. 2007. Using seman-
tic roles to improve question answering. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 12–21, Prague, Czech Republic. As-
sociation for Computational Linguistics.

63

Weiwei Sun, Zhifang Sui, and Meng Wang. 2009. Pre-
diction of thematic rank for structured semantic role
labeling. In Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, pages 253–256. Associa-
tion for Computational Linguistics.

Aaron Steven White, Kyle Rawlins, and Benjamin Van
Durme. 2017. The Semantic Proto-Role Linking
Model. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics, volume 2, pages 92–98. As-
sociation for Computational Linguistics.

Aaron Steven White, Drew Reisinger, Rachel
Rudinger, Kyle Rawlins, and Benjamin Van Durme.
2016. Computational linking theory. arXiv,
abs/1610.02544.

Benat Zapirain, Eneko Agirre, and Lluı̀s Marquez.
2008. Robustness and generalization of role sets:
PropBank vs. VerbNet. In Proceedings of the 46th
Annual Meeting of the Association for Computa-
tional Linguistics, June, pages 550–558. Association
for Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajič jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonca, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. Conll 2017 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–19. Association for Computational
Linguistics.

64

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 65–74
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Adversarially Regularising Neural NLI Models
to Integrate Logical Background Knowledge

Pasquale Minervini
University College London

p.minervini@cs.ucl.ac.uk

Sebastian Riedel
University College London

s.riedel@cs.ucl.ac.uk

Abstract

Adversarial examples are inputs to machine
learning models designed to cause the model
to make a mistake. They are useful for under-
standing the shortcomings of machine learn-
ing models, interpreting their results, and for
regularisation. In NLP, however, most ex-
ample generation strategies produce input text
by using known, pre-specified semantic trans-
formations, requiring significant manual ef-
fort and in-depth understanding of the prob-
lem and domain. In this paper, we investi-
gate the problem of automatically generating
adversarial examples that violate a set of given
First-Order Logic constraints in Natural Lan-
guage Inference (NLI). We reduce the prob-
lem of identifying such adversarial examples
to a combinatorial optimisation problem, by
maximising a quantity measuring the degree
of violation of such constraints and by using a
language model for generating linguistically-
plausible examples. Furthermore, we propose
a method for adversarially regularising neu-
ral NLI models for incorporating background
knowledge. Our results show that, while the
proposed method does not always improve
results on the SNLI and MultiNLI datasets,
it significantly and consistently increases the
predictive accuracy on adversarially-crafted
datasets – up to a 79.6% relative improve-
ment – while drastically reducing the num-
ber of background knowledge violations. Fur-
thermore, we show that adversarial examples
transfer among model architectures, and that
the proposed adversarial training procedure
improves the robustness of NLI models to ad-
versarial examples.

1 Introduction

An open problem in Artificial Intelligence is quan-
tifying the extent to which algorithms exhibit in-
telligent behaviour (Levesque, 2014). In Machine
Learning, a standard procedure consists in esti-

mating the generalisation error, i.e. the predic-
tion error over an independent test sample (Hastie
et al., 2001). However, machine learning models
can succeed simply by recognising patterns that
happen to be predictive on instances in the test
sample, while ignoring deeper phenomena (Rimell
and Clark, 2009; Paperno et al., 2016).

Adversarial examples are inputs to machine
learning models designed to cause the model to
make a mistake (Szegedy et al., 2014; Goodfel-
low et al., 2014). In Natural Language Processing
(NLP) and Machine Reading, generating adversar-
ial examples can be really useful for understanding
the shortcomings of NLP models (Jia and Liang,
2017; Kannan and Vinyals, 2017) and for regular-
isation (Minervini et al., 2017).

In this paper, we focus on the problem of gener-
ating adversarial examples for Natural Language
Inference (NLI) models in order to gain insights
about the inner workings of such systems, and reg-
ularising them. NLI, also referred to as Recog-
nising Textual Entailment (Fyodorov et al., 2000;
Condoravdi et al., 2003; Dagan et al., 2005), is a
central problem in language understanding (Katz,
1972; Bos and Markert, 2005; van Benthem, 2008;
MacCartney and Manning, 2009), and thus it is es-
pecially well suited to serve as a benchmark task
for research in machine reading. In NLI, a model
is presented with two sentences, a premise p and a
hypothesis h, and the goal is to determine whether
p semantically entails h.

The problem of acquiring large amounts of la-
belled data for NLI was addressed with the cre-
ation of the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017) datasets. In
these processes, annotators were presented with
a premise p drawn from a corpus, and were re-
quired to generate three new sentences (hypothe-
ses) based on p, according to the following crite-
ria: a) Entailment – h is definitely true given p (p

65

entails h); b) Contradiction – h is definitely not
true given p (p contradicts h); and c) Neutral – h
might be true given p. Given a premise-hypothesis
sentence pair (p, h), a NLI model is asked to clas-
sify the relationship between p and h – i.e. either
entailment, contradiction, or neutral. Solving NLI
requires to fully capture the sentence meaning by
handling complex linguistic phenomena like lexi-
cal entailment, quantification, co-reference, tense,
belief, modality, and lexical and syntactic ambigu-
ities (Williams et al., 2017).

In this work, we use adversarial examples for:
a) identifying cases where models violate existing
background knowledge, expressed in the form of
logic rules, and b) training models that are robust
to such violations.

The underlying idea in our work is that NLI
models should adhere to a set of structural con-
straints that are intrinsic to the human reasoning
process. For instance, contradiction is inherently
symmetric: if a sentence p contradicts a sentence
h, then h contradicts p as well. Similarly, entail-
ment is both reflexive and transitive. It is reflexive
since a sentence a is always entailed by (i.e. is true
given) a. It is also transitive, since if a is entailed
by b, and b is entailed by c, then a is entailed by c
as well.

Example 1 (Inconsistency). Consider three sen-
tences a, b and c each describing a situation, such
as: a) “The girl plays”, b) “The girl plays with a
ball”, and c) “The girl plays with a red ball”. Note
that if a is entailed by b, and b is entailed by c, then
also a is entailed by c. If a NLI model detects that
b entails a, c entails b, but c does not entail a, we
know that it is making an error (since its results are
inconsistent), even though we may not be aware of
the sentences a, b, and c and the true semantic re-
lationships holding between them. 4

Our adversarial examples are different from
those used in other fields such as computer vi-
sion, where they typically consist in small, seman-
tically invariant perturbations that result in dras-
tic changes in the model predictions. In this pa-
per, we propose a method for generating adver-
sarial examples that cause a model to violate pre-
existing background knowledge (Section 4), based
on reducing the generation problem to a combina-
torial optimisation problem. Furthermore, we out-
line a method for incorporating such background
knowledge into models by means of an adversar-
ial training procedure (Section 5).

Our results (Section 8) show that, even though
the proposed adversarial training procedure does
not sensibly improve accuracy on SNLI and
MultiNLI, it yields significant relative improve-
ment in accuracy (up to 79.6%) on adversarial
datasets. Furthermore, we show that adversarial
examples transfer across models, and that the pro-
posed method allows training significantly more
robust NLI models.

2 Background

Neural NLI Models. In NLI, in particu-
lar on the Stanford Natural Language In-
ference (SNLI) (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017) datasets, neu-
ral NLI models – end-to-end differentiable models
that can be trained via gradient-based optimisation
– proved to be very successful, achieving state-
of-the-art results (Rocktäschel et al., 2016; Parikh
et al., 2016; Chen et al., 2017).

Let S denote the set of all possible sentences,
and let a = (a1, . . . , a`a) ∈ S and b =
(b1, . . . , b`b) ∈ S denote two input sentences –
representing the premise and the hypothesis – of
length `a and `b, respectively. In neural NLI mod-
els, all words ai and bj are typically represented
by k-dimensional embedding vectors ai,bj ∈ Rk.
As such, the sentences a and b can be encoded by
the sentence embedding matrices a ∈ Rk×`a and
b ∈ Rk×`b , where the columns ai and bj respec-
tively denote the embeddings of words ai and bj .

Given two sentences a, b ∈ S, the goal of a NLI
model is to identify the semantic relation between
a and b, which can be either entailment, contra-
diction, or neutral. For this reason, given an in-
stance, neural NLI models compute the following
conditional probability distribution over all three
classes:

pΘ(· | a, b) = softmax(scoreΘ(a,b)) (1)

where scoreΘ : Rk×`a × Rk×`b → R3 is a model-
dependent scoring function with parameters Θ,
and softmax(x)i = exp{xi}/

∑
j exp{xj} de-

notes the softmax function.
Several scoring functions have been proposed in

the literature, such as the conditional Bidirectional
LSTM (cBiLSTM) (Rocktäschel et al., 2016), the
Decomposable Attention Model (DAM) (Parikh
et al., 2016), and the Enhanced LSTM model
(ESIM) (Chen et al., 2017). One desirable qual-
ity of the scoring function scoreΘ is that it should

66

be differentiable with respect to the model param-
eters Θ, which allows the neural NLI model to be
trained from data via back-propagation.

Model Training. Let D = {(x1, y1), . . . ,
(xm, ym)} represent a NLI dataset, where xi de-
notes the i-th premise-hypothesis sentence pair,
and yi ∈ {1, . . . ,K} their relationship, where
K ∈ N is the number of possible relationships –
in the case of NLI, K = 3. The model is trained
by minimising a cross-entropy loss JD on D:

JD(D,Θ) = −
m∑

i=1

K∑

k=1

1{yi = k} log(ŷi,k) (2)

where ŷi,k = pΘ(yi = k | xi) denotes the proba-
bility of class k on the instance xi inferred by the
neural NLI model as in Eq. (1).

In the following, we analyse the behaviour of
neural NLI models by means of adversarial exam-
ples – inputs to machine learning models designed
to cause the model to commit mistakes. In com-
puter vision models, adversarial examples are cre-
ated by adding a very small amount of noise to
the input (Szegedy et al., 2014; Goodfellow et al.,
2014): these perturbations do not change the se-
mantics of the images, but they can drastically
change the predictions of computer vision mod-
els. In our setting, we define an adversary whose
goal is finding sets of NLI instances where the
model fails to be consistent with available back-
ground knowledge, encoded in the form of First-
Order Logic (FOL) rules. In the following sec-
tions, we define the corresponding optimisation
problem, and propose an efficient solution.

3 Background Knowledge

For analysing the behaviour of NLI models, we
verify whether they agree with the provided back-
ground knowledge, encoded by a set of FOL rules.
Note that the three NLI classes – entailment, con-
tradiction, and neutrality – can be seen as binary
logic predicates, and we can define FOL formulas
for describing the formal relationships that hold
between them.

In the following, we denote the predicates asso-
ciated with entailment, contradiction, and neutral-
ity as ent, con, and neu, respectively. By doing so,
we can represent semantic relationships between
sentences via logic atoms. For instance, given
three sentences s1, s2, s3 ∈ S, we can represent

NLI Rules

R1 > ⇒ ent(X1, X1)
R2 con(X1, X2)⇒ con(X2, X1)
R3 ent(X1, X2)⇒ ¬con(X2, X1)
R4 neu(X1, X2)⇒ ¬con(X2, X1)
R5 ent(X1, X2) ∧ ent(X2, X3)⇒ ent(X1, X3)

Table 1: First-Order Logic rules defining desired
properties of NLI models: Xi are universally
quantified variables, and operators ∧, ¬, and> de-
note logic conjunction, negation, and tautology.

the fact that s1 entails s2 and s2 contradicts s3 by
using the logic atoms ent(s1, s2) and con(s2, s3).

Let X1, . . . , Xn be a set of universally quanti-
fied variables. We define our background knowl-
edge as a set of FOL rules, each having the follow-
ing body⇒ head form:

body(X1, . . . , Xn)⇒ head(X1, . . . , Xn), (3)

where body and head represent the premise and
the conclusion of the rule – if body holds, head
holds as well. In the following, we consider the
rules R1, . . . ,R5 outlined in Table 1. Rule R1

enforces the constraint that entailment is reflex-
ive; rule R2 that contradiction should always be
symmetric (if s1 contradicts s2, then s2 contra-
dicts s1 as well); rule R5 that entailment is tran-
sitive; while rules R3 and R4 describe the formal
relationships between the entailment, neutral, and
contradiction relations.

In Section 4 we propose a method to automat-
ically generate sets of sentences that violate the
rules outlined in Table 1 – effectively generating
adversarial examples. Then, in Section 5 we show
how we can leverage such adversarial examples by
generating them on-the-fly during training and us-
ing them for regularising the model parameters, in
an adversarial training regime.

4 Generating Adversarial Examples

In this section, we propose a method for efficiently
generating adversarial examples for NLI models
– i.e. examples that make the model violate the
background knowledge outlined in Section 3.

4.1 Inconsistency Loss

We cast the problem of generating adversarial ex-
amples as an optimisation problem. In particular,
we propose a continuous inconsistency loss that

67

measures the degree to which a set of sentences
causes a model to violate a rule.

Example 2 (Inconsistency Loss). Consider the
rule R2 in Table 1, i.e. con(X1, X2) ⇒
con(X2, X1). Let s1, s2 ∈ S be two sentences:
this rule is violated if, according to the model, a
sentence s1 contradicts s2, but s2 does not con-
tradict s1. However, if we just use the final deci-
sion made by the neural NLI model, we can sim-
ply check whether the rule is violated by two given
sentences, without any information on the degree
of such a violation.

Intuitively, for the rule being maximally vi-
olated, the conditional probability associated to
con(s1, s2) should be very high (≈ 1), while the
one associated to con(s2, s1) should be very low
(≈ 0). We can measure the extent to which the rule
is violated – which we refer to as inconsistency
loss JI – by checking whether the probability of
the body of the rule is higher than the probability
of its head:

JI(S = {X1 7→ s1, X2 7→ s2})
= [pΘ(con | s1, s2)− pΘ(con | s2, s1)]+

where S is a substitution set that maps the vari-
ables X1 and X2 in R2 to the sentences s1 and
s2, [x]+ = max(0, x), and pΘ(con | si, sj) is the
(conditional) probability that si contradicts sj ac-
cording to the neural NLI model. Note that, in
accordance with the logic implication, the incon-
sistency loss reaches its global minimum when the
probability of the body is close to zero – i.e. the
premise is false – and when the probabilities of
both the body and the head are close to one – i.e.
the premise and the conclusion are both true. 4

We now generalise the intuition in Ex. 2 to any
FOL rule. Let r = (body ⇒ head) denote an
arbitrary FOL rule in the form described in Eq. (3),
and let vars(r) = {X1, . . . , Xn} denote the set of
universally quantified variables in the rule r.

Furthermore, let S = {X1 7→ s1, . . . , Xn 7→
sn} denote a substitution set, i.e. a mapping from
variables in vars(r) to sentences s1, . . . , sn ∈ S.
The inconsistency loss associated with the rule r
on the substitution set S can be defined as:

JI(S) = [p(S; body)− p(S; head)]+ (4)

where p(S; body) and p(S; head) denote the
probability of body and head of the rule, after re-
placing the variables in r with the corresponding

sentences in S. The motivation for the loss in
Eq. (4) is that logic implications can be understood
as “whenever the body is true, the head has to be
true as well”. In terms of NLI models, this trans-
lates as “the probability of the head should at least
be as large as the probability of the body”.

For calculating the inconsistency loss in Eq. (4),
we need to specify how to calculate the probabil-
ity of head and body. The probability of a single
ground atom is given by querying the neural NLI
model, as in Eq. (1). The head contains a single
atom, while the body can be a conjunction of mul-
tiple atoms. Similarly to Minervini et al. (2017),
we use the Gödel t-norm, a continuous generali-
sation of the conjunction operator in logic (Gupta
and Qi, 1991), for computing the probability of the
body of a clause:

pΘ(a1 ∧ a2) = min{pΘ(a1), pΘ(a2)}
where a1 and a2 are two clause atoms.

In this work, we cast the problem of generating
adversarial examples as an optimisation problem:
we search for the substitution set S = {X1 7→
s1, . . . , Xn 7→ sn} that maximises the inconsis-
tency loss in Eq. (4), thus (maximally) violating
the available background knowledge.

4.2 Constraining via Language Modelling
Maximising the inconsistency loss in Eq. (4) may
not be sufficient for generating meaningful adver-
sarial examples: they can lead neural NLI mod-
els to violate available background knowledge, but
they may not be well-formed and meaningful.

For such a reason, in addition to maximising the
inconsistency loss, we also constrain the perplex-
ity of generated sentences by using a neural lan-
guage model (Bengio et al., 2000). In this work,
we use a LSTM (Hochreiter and Schmidhuber,
1997) neural language model pL(w1, . . . , wt) for
generating low-perplexity adversarial examples.

4.3 Searching in a Discrete Space
As mentioned earlier in this section, we cast the
problem of automatically generating adversarial
examples – i.e. examples that cause NLI models
to violate available background knowledge – as an
optimisation problem. Specifically, we look for
substitutions sets S = {X1 7→ s1, . . . , Xn 7→ sn}
that jointly: a) maximise the inconsistency loss
described in Eq. (4), and b) are composed by sen-
tences with a low perplexity, as defined by the neu-
ral language model in Section 4.2.

68

The search objective can be formalised by the
following optimisation problem:

maximise
S

JI(S)

subject to log pL(S) ≤ τ
(5)

where log pL(S) denotes the log-probability of the
sentences in the substitution set S, and τ is a
threshold on the perplexity of generated sentences.

For generating low-perplexity adversarial ex-
amples, we take inspiration from Guu et al. (2017)
and generate the sentences by editing prototypes
extracted from a corpus. Specifically, for search-
ing substitution sets whose sentences jointly have
a high probability and are highly adversarial, as
measured the inconsistency loss in Eq. (4), we
use the following procedure, also described in Ap-
pendix A.4: a) we first sample sentences close to
the data manifold (i.e. with a low perplexity), by
either sampling from the training set or from the
language model; b) we then make small variations
to the sentences – analogous to adversarial images,
which consist in small perturbations of training ex-
amples – so to optimise the objective in Eq. (5).

When editing prototypes, we consider the fol-
lowing perturbations: a) change one word in one
of the input sentences; b) remove one parse sub-
tree from one of the input sentences; c) insert one
parse sub-tree from one sentence in the corpus in
the parse tree of one of the input sentences.

Note that the generation process can easily lead
to ungrammatical or implausible sentences; how-
ever, these will be likely to have a high perplexity
according to the language model (Section 4.2), and
thus they will be ruled out by the search algorithm.

5 Adversarial Regularisation

We now show one can use the adversarial exam-
ples to regularise the training process. We propose
training NLI models by jointly: a) minimising the
data loss (Eq. (2)), and b) minimising the incon-
sistency loss (Eq. (4)) on a set of generated adver-
sarial examples (substitution sets).

More formally, for training, we jointly minimise
the cross-entropy loss defined on the data JD(Θ)
and the inconsistency loss on a set of generated
adversarial examples maxS JI(S; Θ), resulting in
the following optimisation problem:

minimise
Θ

JD(D,Θ) + λmax
S
JI(S; Θ)

subject to log pL(S) ≤ τ
(6)

Premise A man in a suit walks through a train station.
Hypothesis Two boys ride skateboard.

Type Contradiction

Premise Two boys ride skateboard.
Hypothesis A man in a suit walks through a train station.

Type Contradiction

Premise Two people are surfing in the ocean.
Hypothesis There are people outside.

Type Entailment

Premise There are people outside.
Hypothesis Two people are surfing in the ocean.

Type Neutral

Table 2: Sample sentences from an Adversarial
NLI Dataset generated using the DAM model, by
maximising the inconsistency loss JI .

where λ ∈ R+ is a hyperparameter specifying the
trade-off between the data loss JD (Eq. (2)), and
the inconsistency loss JI (Eq. (4)), measured on
the generated substitution set S.

In Eq. (6), the regularisation term
maxS JI(S; Θ) has the task of generating
the adversarial substitution sets by maximising
the inconsistency loss. Furthermore, the con-
straint log pL(S) ≤ τ ensures that the perplexity
of generated sentences is lower than a threshold
τ . For this work, we used the max aggregation
function. However, other functions can be used
as well, such as the sum or mean of multiple
inconsistency losses.

For minimising the regularised loss in Eq. (6),
we alternate between two optimisation processes –
generating the adversarial examples (Eq. (5)) and
minimising the regularised loss (Eq. (6)). The al-
gorithm is outlined in Appendix A.4: at each itera-
tion, after generating a set of adversarial examples
S, it computes the gradient of the regularised loss
in Eq. (6), and updates the model parameters via a
gradient descent step.

6 Creating Adversarial NLI Datasets

We crafted a series of datasets for assessing the ro-
bustness of the proposed regularisation method to
adversarial examples. Starting from the SNLI test
set, we proceeded as follows. We selected the k
instances in the SNLI test set that maximise the in-
consistency loss in Eq. (4) with respect to the rules
in R1, R2, R3, and R4 in Table 1. We refer to the
generated datasets as Akm, where m identifies the
model used for selecting the sentence pairs, and k
denotes number of examples in the dataset.

69

For generating each of the Akm datasets,
we proceeded as follows. Let D =
{(x1, yi), . . . , (xn, yn)} be a NLI dataset (such
as SNLI), where each instance xi = (pi, hi) is a
premise-hypothesis sentence pair, and yi denotes
the relationship holding between pi and hi. For
each instance xi = (pi, hi), we consider two
substitution sets: Si = {X1 7→ pi, X2 7→ hi} and
S′i = {X1 7→ hi, X2 7→ pi}, each corresponding
to a mapping from variables to sentences.

We compute the inconsistency score associated
to each instance xi in the dataset D as JI(Si) +
JI(S′i). Note that the inconsistency score only de-
pends on the premise pi and hypothesis hi in each
instance xi, and it does not depend on its label yi.

After computing the inconsistency scores for all
sentence pairs inD using a modelm, we select the
k instances with the highest inconsistency score,
we create two instances xi = (pi, hi) and x̂i =
(hi, pi), and add both (xi, yi) and (x̂i, ŷi) to the
dataset Akm. Note that, while yi is already known
from the datasetD, ŷi is unknown. For this reason,
we find ŷi by manual annotation.

7 Related Work

Adversarial examples are receiving a considerable
attention in NLP; their usage, however, is consid-
erably limited by the fact that semantically invari-
ant input perturbations in NLP are difficult to iden-
tify (Buck et al., 2017).

Jia and Liang (2017) analyse the robustness of
extractive question answering models on exam-
ples obtained by adding adversarially generated
distracting text to SQuAD (Rajpurkar et al., 2016)
dataset instances. Belinkov and Bisk (2017) also
notice that character-level Machine Translation
are overly sensitive to random character manipu-
lations, such as typos. Hosseini et al. (2017) show
that simple character-level modifications can dras-
tically change the toxicity score of a text. Iyyer
et al. (2018) proposes using paraphrasing for gen-
erating adversarial examples. Our model is fun-
damentally different in two ways: a) it does not
need labelled data for generating adversarial ex-
amples – the inconsistency loss can be maximised
by just making an NLI model produce inconsistent
results, and b) it incorporates adversarial examples
during the training process, with the aim of train-
ing more robust NLI models.

Adversarial examples are also used for as-
sessing the robustness of computer vision mod-

Model Original Regularised
Valid. Test Valid. Test

M
ul

tiN
L

I cBiLSTM 61.52 63.95 66.98 66.68
DAM 72.78 73.28 73.57 73.51
ESIM 73.66 75.22 75.72 75.80

SN
L

I cBiLSTM 81.41 80.99 82.27 81.12
DAM 86.96 86.29 87.08 86.43
ESIM 87.83 87.25 87.98 87.55

Table 3: Accuracy on the SNLI and MultiNLI
datasets with different neural NLI models before
(left) and after (right) adversarial regularisation.

Model Rule |B| |B ∧ ¬H| Violations (%)

cBiLSTM

R1 1,098,734 261,064 23.76 %
R2 174,902 80,748 46.17 %
R3 197,697 24,294 12.29 %
R4 176,768 33,435 18.91 %

DAM

R1 1,098,734 956 00.09 %
R2 171,728 28,680 16.70 %
R3 196,042 11,599 05.92 %
R4 181,597 29,635 16.32 %

ESIM

R1 1,098,734 10,985 01.00 %
R2 177,950 17,518 09.84 %
R3 200,852 6,482 03.23 %
R4 170,565 17,190 10.08 %

Table 4: Violations (%) of rules R1,R2,R3,R4

from Table 1 on the SNLI training set, yield by
cBiLSTM, DAM, and ESIM.

els (Szegedy et al., 2014; Goodfellow et al., 2014;
Nguyen et al., 2015), where they are created by
adding a small amount of noise to the inputs that
does not change the semantics of the images, but
drastically changes the model predictions.

8 Experiments

We trained DAM, ESIM and cBiLSTM on the
SNLI corpus using the hyperparameters provided
in the respective papers. The results provided by
such models on the SNLI and MultiNLI validation
and tests sets are provided in Table 3. In the case
of MultiNLI, the validation set was obtained by
removing 10,000 instances from the training set
(originally composed by 392,702 instances), and
the test set consists in the matched validation set.

Background Knowledge Violations. As a first
experiment, we count the how likely our model is
to violate rules R1,R2,R3,R4 in Table 1.

In Table 4 we report the number sentence pairs
in the SNLI training set where DAM, ESIM and
cBiLSTM violate R1,R2,R3,R4. In the |B|
column we report the number of times the body

70

Model
Dataset A100

DAM A500
DAM A1000

DAM A100
ESIM A500

ESIM A1000
ESIM A100

cBiLSTM A500
cBiLSTM A1000

cBiLSTM

DAMAR 83.33 79.15 79.37 71.35 72.19 70.05 93.00 88.99 86.00
DAM 47.40 47.93 51.66 55.73 60.94 60.88 81.50 77.37 75.28

ESIMAR 89.06 86.00 85.08 78.12 76.04 73.32 96.50 91.92 88.52
ESIM 72.40 74.59 76.92 52.08 58.65 60.78 87.00 84.34 82.05

cBiLSTMAR 85.42 80.39 78.74 73.96 70.52 65.39 92.50 88.38 83.62
cBiLSTM 56.25 59.96 61.75 47.92 53.23 53.73 51.50 52.83 53.24

Table 5: Accuracy of unregularised and regularised neural NLI models DAM, cBiLSTM, and ESIM, and
their adversarially regularised versions DAMAR, cBiLSTMAR, and ESIMAR, on adversarial datasets
Akm.

of the rule holds, according to the model. In the
|B ∧ ¬H| column we report the number of times
where the body of the rule holds, but the head does
not – which is clearly a violation of available rules.

We can see that, in the case of rule R1 (reflex-
ivity of entailment), DAM and ESIM make a rel-
atively low number of violations – namely 0.09
and 1.00 %, respectively. However, in the case of
cBiLSTM, we can see that, each sentence s ∈ S
in the SNLI training set, with a 23.76 % chance,
s does not entail itself – which violates our back-
ground knowledge.

With respect to R2 (symmetry of contradic-
tion), we see that none of the models is completely
consistent with the available background knowl-
edge. Given a sentence pair s1, s2 ∈ S from the
SNLI training set, if – according to the model – s1

contradicts s2, a significant number of times (be-
tween 9.84% and 46.17%) the same model also
infers that s2 does not contradict s1. This phe-
nomenon happens 16.70 % of times with DAM,
9.84 % of times with ESIM, and 46.17 % with
cBiLSTM: this indicates that all considered mod-
els are prone to violating R2 in their predictions,
with ESIM being the more robust.

In Appendix A.2 we report several examples of
such violations in the SNLI training set. We se-
lect those that maximise the inconsistency loss de-
scribed in Eq. (4), violating rules R2 and R3. We
can notice that the presence of inconsistencies is
often correlated with the length of the sentences.
The model tends to detect entailment relationships
between longer (i.e., possibly more specific) and
shorter (i.e., possibly more general) sentences.

8.1 Generation of Adversarial Examples

In the following, we analyse the automatic gen-
eration of sets of adversarial examples that make
the model violate the existing background knowl-

0.0 10 4 10 3 10 2 10 1 1.0
Regularisation Parameter

0

5

10

Vi
ol

at
io

ns
 (%

)

Number of violations (%) made by ESIM
con(X1, X2) con(X2, X1)
ent(X1, X2) ¬con(X2, X1)
neut(X1, X2) ¬con(X2, X1)

ent(X1, X1)

Figure 1: Number of violations (%) to rules in Ta-
ble 1 made by ESIM on the SNLI test set.

edge. We search in the space of sentences by ap-
plying perturbations to sampled sentence pairs, us-
ing a language model for guiding the search pro-
cess. The generation procedure is described in
Section 4.

The procedure was especially effective in gen-
erating adversarial examples – a sample is shown
in Table 6. We can notice that, even though
DAM and ESIM achieve results close to human
level performance on SNLI, they are likely to fail
when faced with linguistic phenomena such as
negation, hyponymy, and antonymy. Gururangan
et al. (2018) recently showed that NLI datasets
tend to suffer from annotation artefacts and lim-
ited linguistic variations: this allows NLI mod-
els to achieve nearly-human performance by cap-
turing repetitive patterns and idiosyncrasies in a
dataset, without being able of effectively captur-
ing textual entailment. This is visible, for instance,
in example 5 of Table 6, where the model fails
to capture the hyponymy relation between “male”
and “man”, incorrectly predicting an entailment in
place of a neutral relationship. Furthermore, it is
clear that models lack commonsense knowledge,
such as the relation between “pushing” and “car-
rying” (example 1), and being outside and swim-
ming (example 2). Generating such adversarial

71

Adversarial Example Prediction Inconsistency

1
s1 A man in uniform is pushing a medical bed. s1

0.72−−→s2 .01 .92
s2 a man is pushing carrying something. s2

0.93−−→s1

1
s1 A dog swims in the water s1

0.78−−→s2 .00 .99
s2 A dog is swimming outside. s2

0.99−−→s1

2
s1 A young man is sledding down a snow covered hill on a green sled. s1

0.98−−→s2 .00 .97
s1 A man is sledding down to meet his daughter. s2

1.00−−→s1

3
s1 A woman sleeps on the ground. A boy and girl play in a pool. s1

0.94−−→s2 .00 .82
s2 Two kids are happily playing in a swimming pool. s2

0.85−−→s1

4
s1 The school is having a special event in order to show the american culture on how other cultures are dealt with in parties. s1

0.96−−→s2 .01 .63
s2 A school dog is hosting an event. s2

0.66−−→s1

s1 A boy is drinking out of a water fountain shaped like a woman. s1
0.96−−→s2

5 s2 A male is getting a drink of water. s2
0.93−−→s3 .00 .94

s3 A male man is getting a drink of water. s1
0.97−−→s3

Table 6: Inconsistent results produced by DAM on automatically generated adversarial examples. The
notation segment one segment two denotes that the corruption process removes “segment one” and intro-
duced “segment two” in the sentence, and s1

p−→s2 indicates that DAM classifies the relation between s1

and s2 as contradiction, with probability p. We use different colours for representing the contradiction,
entailment and neutral classes. Examples 1, 2, 3, and 4 violate the rule R2, while example 5 violates the
rule R5. .00 .99 indicates that the corruption process increases the inconsistency loss from .00 to .99,
and the red boxes are used for indicating mistakes made by the model on the adversarial examples.

examples provides us with useful insights on the
inner workings of neural NLI models, that can be
leveraged for improving the robustness of state-of-
the-art models.

8.2 Adversarial Regularisation

We evaluated whether our approach for integrat-
ing logical background knowledge via adversar-
ial training (Section 5) is effective at reducing
the number of background knowledge violations,
without reducing the predictive accuracy of the
model. We started with pre-trained DAM, ESIM,
and cBiLSTM models, trained using the hyperpa-
rameters published in their respective papers.

After training, each model was then fine-tuned
for 10 epochs, by minimising the adversarially
regularised loss function introduced in Eq. (6). Ta-
ble 3 shows results on the SNLI and MultiNLI
development and test set, while Fig. 1 shows the
number of violations for different values of λ,
where regularised models are much more likely to
make predictions that are consistent with the avail-
able background knowledge.

We can see that, despite the drastic reduc-
tion of background knowledge violations, the im-
provement may not be significant, supporting the
idea that models achieving close-to-human per-
formance on SNLI and MultiNLI may be captur-
ing annotation artefacts and idiosyncrasies in such

datasets (Gururangan et al., 2018).

Evaluation on Adversarial Datasets. We eval-
uated the proposed approach on 9 adversarial
datasets Akm, with k ∈ {100, 500, 1000}, gen-
erated following the procedure described in Sec-
tion 6 – results are summarised in Table 5. We
can see that the proposed adversarial training
method significantly increases the accuracy on
the adversarial test sets. For instance, consider
A100

DAM: prior to regularising (λ = 0), DAM
achieves a very low accuracy on this dataset – i.e.
47.4%. By increasing the regularisation parameter
λ ∈ {10−4, 10−3, 10−2, 10−1}, we noticed sensi-
ble accuracy increases, yielding relative accuracy
improvements up to 75.8% in the case of DAM,
and 79.6% in the case of cBiLSTM.

From Table 5 we can notice that adversarial ex-
amples transfer across different models: an unreg-
ularised model is likely to perform poorly also on
adversarial datasets generated by using different
models, with ESIM being the more robust model
to adversarially generated examples. Furthermore,
we can see that regularised models are generally
more robust to adversarial examples, even when
those were generated using different model archi-
tectures. For instance we can see that, while cBiL-
STM is vulnerable also to adversarial examples
generated using DAM and ESIM, its adversari-

72

ally regularised version cBiLSTMAR is generally
more robust to any sort of adversarial examples.

9 Conclusions

In this paper, we investigated the problem of auto-
matically generating adversarial examples that vi-
olate a set of given First-Order Logic constraints in
NLI. We reduced the problem of identifying such
adversarial examples to an optimisation problem,
by maximising a continuous relaxation of the vio-
lation of such constraints, and by using a language
model for generating linguistically-plausible ex-
amples. Furthermore, we proposed a method for
adversarially regularising neural NLI models for
incorporating background knowledge.

Our results showed that the proposed method
consistently yields significant increases to the pre-
dictive accuracy on adversarially-crafted datasets
– up to a 79.6% relative improvement – while
drastically reducing the number of background
knowledge violations. Furthermore, we showed
that adversarial examples transfer across model
architectures, and the proposed adversarial train-
ing procedure produces generally more robust
models. The source code and data for re-
producing our results is available online, at
https://github.com/uclmr/adversarial-nli/.

Acknowledgements

We are immensely grateful to Jeff Mitchell, Jo-
hannes Welbl, and the whole UCL Machine Read-
ing research group for all useful discussions, in-
puts, and ideas. This work has been supported by
an Allen Distinguished Investigator Award, and a
Marie Curie Career Integration Award.

References

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. CoRR, abs/1711.02173.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. In
Advances in Neural Information Processing Systems
13, Papers from Neural Information Processing Sys-
tems (NIPS) 2000, pages 932–938. MIT Press.

Johan van Benthem. 2008. A brief history of natural
logic. In M. Chakraborty, B. Löwe, M. Nath Mi-
tra, and S. Sarukki, editors, Logic, Navya-Nyaya
and Applications: Homage to Bimal Matilal. Col-
lege Publications.

Johan Bos and Katja Markert. 2005. Recognis-
ing textual entailment with logical inference. In
HLT/EMNLP 2005, Human Language Technology
Conference and Conference on Empirical Methods
in Natural Language Processing, Proceedings of the
Conference, pages 628–635. The Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2015, pages 632–642. The Association for Compu-
tational Linguistics.

Christian Buck, Jannis Bulian, Massimiliano Cia-
ramita, Andrea Gesmundo, Neil Houlsby, Wojciech
Gajewski, and Wei Wang. 2017. Ask the right ques-
tions: Active question reformulation with reinforce-
ment learning. CoRR, abs/1705.07830.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, pages 1657–1668.
Association for Computational Linguistics.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Rein-
hard Stolle, and Daniel G. Bobrow. 2003. Entail-
ment, intensionality and text understanding. In Pro-
ceedings of the HLT-NAACL 2003 Workshop on Text
Meaning, pages 38–45.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Clas-
sification and Recognizing Textual Entailment, First
PASCAL Machine Learning Challenges Workshop,
MLCW 2005, volume 3944 of LNCS, pages 177–
190. Springer.

Yaroslav Fyodorov, Yoad Winter, and Nissim Francez.
2000. A natural logic inference system. In Proceed-
ings of the of the 2nd Workshop on Inference in Com-
putational Semantics.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. CoRR, abs/1412.6572.

M. M. Gupta and J. Qi. 1991. Theory of t-norms
and fuzzy inference methods. Fuzzy Sets Syst.,
40(3):431–450.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in natu-
ral language inference data. CoRR, abs/1803.02324.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2017. Generating sentences by
editing prototypes. CoRR, abs/1709.08878.

73

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2001. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Hossein Hosseini, Baicen Xiao, and Radha Pooven-
dran. 2017. Deceiving google’s cloud video intel-
ligence API built for summarizing videos. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops, pages
1305–1309. IEEE Computer Society.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
CoRR, abs/1804.06059.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, pages 2011–2021. Association for Computa-
tional Linguistics.

Anjuli Kannan and Oriol Vinyals. 2017. Adver-
sarial evaluation of dialogue models. CoRR,
abs/1701.08198.

J.J. Katz. 1972. Semantic theory. Studies in language.
Harper & Row.

Hector J. Levesque. 2014. On our best behaviour. Ar-
tif. Intell., 212:27–35.

Bill MacCartney and Christopher D Manning. 2009.
An extended model of natural logic. In Proceed-
ings of the of the Eighth International Conference
on Computational Semantics, Tilburg, Netherlands.

Pasquale Minervini, Thomas Demeester, Tim Rock-
täschel, and Sebastian Riedel. 2017. Adversarial
sets for regularising neural link predictors. In Pro-
ceedings of the Thirty-Third Conference on Uncer-
tainty in Artificial Intelligence, UAI 2017. AUAI
Press.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune.
2015. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images.
In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, pages 427–436. IEEE
Computer Society.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016.
The Association for Computer Linguistics.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In (Su et al.,
2016), pages 2249–2255.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In (Su et al., 2016),
pages 2383–2392.

Laura Rimell and Stephen Clark. 2009. Port-
ing a lexicalized-grammar parser to the biomedi-
cal domain. Journal of Biomedical Informatics,
42(5):852–865.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In International Conference on Learning Represen-
tations (ICLR).

Jian Su et al., editors. 2016. Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2016. The Association
for Computational Linguistics.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR,
abs/1704.05426.

74

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 75–85
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

From Strings to Other Things:
Linking the Neighborhood and Transposition effects in Word Reading

Stéphan Tulkens and Dominiek Sandra and Walter Daelemans
CLiPS - Computational Linguistics Group

Department of Linguistics
University of Antwerp

{stephan.tulkens,dominiek.sandra,walter.daelemans}@uantwerpen.be

Abstract

We investigate the relation between the trans-
position and deletion effects in word read-
ing, i.e., the finding that readers can success-
fully read “SLAT” as “SALT”, or “WRK”
as “WORK”, and the neighborhood effect.
In particular, we investigate whether lexi-
cal orthographic neighborhoods take into ac-
count transposition and deletion in determin-
ing neighbors. If this is the case, it is more
likely that the neighborhood effect takes place
early during processing, and does not solely
rely on similarity of internal representations.
We introduce a new neighborhood measure,
rd20, which can be used to quantify neigh-
borhood effects over arbitrary feature spaces.
We calculate the rd20 over large sets of words
in three languages using various feature sets
and show that feature sets that do not allow
for transposition or deletion explain more vari-
ance in Reaction Time (RT) measurements.
We also show that the rd20 can be calculated
using the hidden state representations of an
Multi-Layer Perceptron, and show that these
explain less variance than the raw features. We
conclude that the neighborhood effect is un-
likely to have a perceptual basis, but is more
likely to be the result of items co-activating
after recognition. All code is available at:
www.github.com/clips/conll2018

1 Introduction

Despite their many disagreements and differences,
a common thread among many models of word
reading is that they attempt to explain differ-
ences in reading speeds by assuming that sim-
ilarity between words modulate reading speed.
There is good reason for this assumption; many
experiments have shown that responses on tri-
als are modulated by a word’s similarity to other
words, be it semantic (Rodd et al., 2002, 2004),
orthographic (Andrews, 1997; Perea and Pollat-

Time

U
N
C
E
R
T
A
I
N
T
Y

Span

Span

Snap Spin Span

Span

Snap

Spin

SpinNeighborhood

Neighborhood

Figure 1: This diagram shows the two positions con-
trasted in this paper. The left model is the early model,
in which the neighborhood effect arises before percep-
tual uncertainty is resolved; this causes transposition
and substitution neighbors to count as neighbors. In
the late model, the neighborhood effect only arises af-
ter perceptual uncertainty is resolved, and transposi-
tion and substitution neighbors do not count towards
the neighborhood.

sek, 1998), or phonological similarity (Van Orden,
1987; Rastle and Brysbaert, 2006).

In psycholinguistic research on word reading,
this has led to the common practice of including
a measure of orthographic neighborhood similar-
ity as a control variable, as these neighborhood
measures explain variance in word reading even
when controlling for frequency and length (Colt-
heart, 1977; Yarkoni et al., 2008).

Orthographic neighborhood measures are usu-
ally operationalized using edit distance metrics,
such as the Levenshtein distance (Levenshtein,
1966). The most well-known measure of neigh-
borhood size is Coltheart’s N (Coltheart, 1977),
which is the number of types within a substitution
distance of 1. Yarkoni et al. (2008) show that N
is nearly always 0 for longer words, as long words
tend are less frequent, and present an alternative
to N , called old20, which is the mean Levenshtein
distance to the 20 closest neighbors. old20 corre-

75

lates well with reaction time (RT) measures on two
experiments, and explains more variance than N
after accounting for length and frequency, and is
therefore considered superior to N , and often used
as a de facto replacement for N (Yarkoni et al.,
2008).

Despite its ubiquity as a control variable, the
cause for the neighborhood effect is unknown or
disputed (Perea, 2015). One aspect, which we ex-
plore in the current work, is that it is currently un-
known whether the neighborhood effect is early
or late. If the neighborhood effect is early, it is
caused by the visual stimulus co-activating mul-
tiple representations. If it is late, the effect is
caused by an already activated representation co-
activating similar representations.

Of particular interest regarding this question
is the finding that skilled readers are remarkably
proficient in reading words that contain trans-
posed letters, e.g. “SLAT” versus “SALT” (Davis
and Bowers, 2006; Grainger, 2008), or words
from which letters are deleted, e.g. “WRK” and
“WORK” (Schoonbaert and Grainger, 2004). In
this work, we refer to these two effects in tandem
as flexible letter encoding. Examples of models
that try to explain flexible letter encoding include
the open bigram family of models (Whitney, 2001;
Grainger and Van Heuven, 2004; Schoonbaert and
Grainger, 2004; Whitney and Cornelissen, 2008),
the SOLAR model (Davis, 2001), the overlap
model (Gomez et al., 2008), and, most recently,
the spatial coding model (Davis, 2010b).

Taking into consideration both the neighbor-
hood effect and flexible letter encoding, we define
the following research question: are the neighbor-
hoods also defined using flexible letter encoding?
That is, if we know that readers activate “SALT”
upon reading “SLAT”, does this also imply that
the lexical neighborhood of “THREE” includes
“THERE”?

To answer this question, we calculate the neigh-
borhood density using a variety of feature sets, in-
cluding features that do not allow for flexible let-
ter encoding, and those that do. If lexical neigh-
borhoods calculated using flexible letter encod-
ings account for less variance in word reading
times than neighborhoods based on slot-based fea-
tures, we can surmise that it is more likely that
the neighborhood effect is late in origin. This fol-
lows from the fact that flexible letter encodings are
most likely to be an intermediate encoding step to-

wards a concrete internal representation. Hence, if
neighborhoods with flexible letter encodings ex-
plain less variance, flexible letter encoding most
likely does not play a role in the neighborhood ef-
fect. This, in turn implies that the neighborhood
effect is likely a late effect, and is caused by con-
crete representations co-activating similar repre-
sentations. These two positions are contrasted in
Figure 1.

2 Main Contributions

To quantify the effect of different forms of repre-
sentations and their respective neighborhoods, we
introduce the Representation Distance 20 (rd20),
a generalization of old20 which operates on arbi-
trary feature spaces.

We first replicate the original findings of
Yarkoni et al. (2008) regarding old20 and N
on Dutch, British English, and French lexical
databases. As old20 uses the Levenshtein met-
ric, which encodes flexible letter position by al-
lowing deletions and transpositions, the neighbor-
hoods defined by old20 in principle support the
idea of flexible letter encoding.

Comparing to old20 and N , we show that rd20
can be used to create neighborhood measures for
various feature sets. Furthermore, we use regres-
sion models to quantify the relation between word
length, frequency and rd20 on the one hand, and
Reaction Times (RT) in lexical decision exper-
iments on the other. We do this for four dif-
ferent feature sets on all aforementioned lexical
databases. Two of the four feature sets are slot-
based feature sets used in older models of com-
putational psycholinguistics, and two of them are
used by models that assume some kind of flexible
letter encoding. We can therefore use rd20 to as-
sess the effect of the representational assumptions
in models of flexible letter encoding, as well as
provide a direct comparison to old20.

We show that rd20 using one hot encoded let-
ter features explains slightly more variance in lex-
ical decision experiments than old20. The fact that
rd20 takes much less time to compute and is more
flexible in the choice of inputs shows that it is a
practical alternative to old20. Additionally, we
show that the rd20 of feature sets which specifi-
cally encode letters in a flexible manner explains
far less variance in RT than the rd20 of encod-
ings which do not support flexible letter encoding.
This leads us to hypothesize that lexical neighbor-

76

hoods are not defined using flexible letter encod-
ing, and that, consequently, the neighborhood ef-
fect itself is a late effect, that is, an effect caused
by co-activation of similar representations, and not
caused by the visual likeness of stimuli.

To provide additional evidence regarding the
statement that the neighborhood effect follows
from internal representations, we perform an ex-
periment using Multi-Layer Perceptrons. After
training the network on each feature set, we cal-
culate rd20 of the hidden states of these networks,
and use these distances as a predictor in a linear
regression experiment

2.1 Representation Distance 20

Representation Distance 20 (rd20) is a measure
that does not assume a particular representational
format, and thus applies to any kind of vector rep-
resentation. It is therefore well-suited to quantify-
ing the effect feature sets have on lexical decision
experiments.

The rd20 for a featurized word x given a set of
featurized words X , where x ∈ X , is defined as
follows:

s(x, X) = sort(cos(x, X)) (1)

Where sort is a sorting operator, cos is the co-
sine distance, x is featurized item, and X is the set
of featurized items. We then take the mean of the
20 first items, excluding the item itself.

rd20(x, X) =

∑21
i=1 s(x, X)i

20
(2)

We use the 20 closest neighbors to be able to
compare to old20, which also uses 20 neighbors.
As Yarkoni et al. (2008) note, the value of 20 is
quite arbitrary, and values between 5 and 50 seem
to work well for most experiments. Because rd20
uses the cosine distance, it directly applies to any
vector representation. It is therefore suitable for
inspecting both external phenomena, i.e. featur-
ized string representations, and internal represen-
tations, e.g. weight matrices of neural networks.

3 Materials

This section describes the materials used in the pa-
per: the corpora, reaction time datasets, and the
various feature sets.

3.1 Corpora

Throughout the paper we use three different lex-
ical databases derived from subtitle corpora as
the source of our words and frequency counts.
For Dutch we use SUBTLEX-NL (Keuleers
et al., 2010a), for English we use SUBTLEX-
UK (Van Heuven et al., 2014), and for French
we use Lexique 3 (New et al., 2007). Frequency
counts from subtitle corpora account for sub-
stantially more variance in Reaction Time mea-
surements, and are based on far larger corpora,
than previously available databases (Brysbaert and
New, 2009; Brysbaert and Cortese, 2011), such as
CELEX (Baayen et al., 1993) and previous ver-
sions of Lexique (New et al., 2001).

For all three languages, we use reaction times
(RT) from megastudies (Seidenberg and Waters,
1989). For Dutch we extract the reaction times
from the Dutch Lexicon Project 2 (DLP) (Keuleers
et al., 2010b; Brysbaert et al., 2016), for En-
glish we use the British Lexicon project (BLP)
(Keuleers et al., 2012), and for French we use
the French Lexicon project (FLP) (Ferrand et al.,
2010). As with the subtitle corpora, these megas-
tudies provide us with a more accurate estimate
of Reaction Times than previous studies with a
smaller number of participants and a smaller set
of items.

We extract a subset of these corpora accord-
ing to the following procedure: for each lan-
guage, we take all words from the SUBTLEX cor-
pora and lexicon projects, removing any words
which were shorter than 2 characters, or words
which contained non-alphabetic characters, such
as ‘#’ and ‘-’. We then remove any words from
the lexicon project database which are not in the
SUBTLEX database, such that the words extracted
from the lexicon project were a subset of those in
the SUBTLEX database.

Additionally, for all languages we remove any
diacritic markers, transforming e.g. the French
word ‘très’ to ‘tres’. This was done because not all
feature sets can appropriately featurize these dia-
critic markers.

For each language, this leaves us with a set of
SUBTLEX words, for which we only have fre-
quency counts, and a set of words from the lexicon
project, for which we have both frequency counts
and Reaction Time measurements. The sizes of
the resulting corpora are listed in Table 1.

77

Dutch English French
SUBTLEX 117,789 157,378 115,550
Lexicon project 24,908 28,530 36,677

Table 1: The number of words left over in the
SUBTLEX and Lexicon projects after filtering. Note
that we removed any words from the Lexicon project
which were not in the SUBTLEX database, so that the
words from the lexicon project are an exact subset of
those in the SUBTLEX database.

3.2 Features

We use four different orthographic feature sets.
All the feature sets were previously implemented
in wordkit (Tulkens et al., 2018).

3.2.1 Slots
The two slot-based feature encodings are cre-
ated by left-justifying strings, padding them with
spaces to the length of the longest word in our cor-
pus, and then replacing each letter in each result-
ing slot by a feature vector. These feature vec-
tors are then concatenated to create a final fea-
ture vector. As noted in the introduction, these
types of encodings are thought to be unrealistic
(Grainger and Van Heuven, 2004; Davis and Bow-
ers, 2006), as they predict that words which are not
aligned have low similarity. The words “STAR”
and “TAR”, for example, have a similarity of 0 ac-
cording to a naive slot-based encoding. Despite
this shortcoming, the influence of slot-based en-
codings on contemporary models of word reading
can not be understated (Miikkulainen, 1997; Mc-
Clelland and Rumelhart, 1981; Harm and Seiden-
berg, 2004; Coltheart et al., 2001).

One hot encoded characters One hot encoded
character featurization assigns a single orthogonal
vector to each character, and hence assumes that
there is no underlying similarity, visual or other-
wise, between letters. This encoding is closest to
the encoding implicitly used by the Levenshtein
distance, and used by old20. In this encoding we
treat the space character as a separate character,
and not as a zero vector.

Fourteen segment encoding The fourteen seg-
ment encoding was first introduced by Rumelhart
and Siple (1974), and is used in the original ver-
sion of the Interactive Activation model (McClel-
land and Rumelhart, 1981). As its name implies,
it uses fourteen binary segments, each of which
denotes a specific vertical, horizontal, or diago-

nal line segment. Because the encoding is sub-
symbolic, words with different letters in the same
slot might still have some overlap in their similar-
ity. In this encoding, we treat the space character
as a zero vector.

3.2.2 Wickelgraphs
Wickelgraphs were first introduced as Wickel-
phones in the context of phonological representa-
tions (Seidenberg and McClelland, 1989) and are
named after, and based on the work of, Wickelgren
(1969). As we saw above, slot-based encodings
predict that words which are not aligned are com-
pletely dissimilar. Wickelgraphs attempt to over-
come this downside by representing words as sets
of contiguous ngrams, where n is usually set to
3, and n − 1 padding characters are added to the
start and end of each word. For example, the word
“SALT” has the following wickelgraph represen-
tation: {##S, #SA, SAL, ALT, LT#, T##}.

3.2.3 Weighted Open bigrams
Another way of representing flexible letter cod-
ing in reading is the open bigram family of fea-
ture encodings. Open bigrams were first pro-
posed by Whitney (2001) to account for read-
ers’ resilience to letter transposition effects, al-
though earlier accounts of transposition-like en-
codings can be found in work by Mozer (1987).
For a criticism of open bigrams, see work by Davis
(2010a) and Kinoshita and Norris (2013).

Open bigrams are constructed by taking the or-
dered set of 2-combinations of all letters in a word.
For example, the word ‘SALT’ becomes {SA, SL,
ST, AL, AT, LT} in an open bigram encoding
scheme. This scheme can account for transpo-
sition and deletion effects because most bigrams
survive the transposition or deletion of two letters.

The weighted open bigram scheme attaches a
weight to each bigram combination depending on
the distance between the constituent letters of the
bigram in the word (Schoonbaert and Grainger,
2004; Whitney and Cornelissen, 2008; Whitney,
2001). This encoding scheme was introduced to
account for the observation that participants expe-
rience more inhibition to transpositions which are
further apart. Following Whitney et al. (2012) we
used weights of 1.0, .7, and .2 for bigrams with 0,
1, or 2 intervening letters in all our experiments.
Bigrams with more than 2 intervening letters get
a weight of 0, and are therefore discarded in the
distance computation.

78

●
●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
● ● ●

●
●

●

●

●
●

●
● ● ● ● ●

●
●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

French

English

Dutch

2 3 4 5 6 7 8 9 1011121314151617181920

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

length

s
c
o
re

features
● N

fourteen
old 20

one hot
bigrams
wickelfeatures

Figure 2: rd20, N and old20, plotted against word
length for three languages. The figure shows the mea-
sures behave the same across languages. The y-axes
denote the scaled quantities, as the old20 and N mea-
sures are expressed on a different scale than the various
rd20 measures.

4 Experiment 1: empirical validation of
rd20

Using the materials defined in Section 3, we carry
out comparative experiments of old20, N , and the
rd20 of the four feature sets described above.

Figure 2 shows the word length versus the mean
distance for each of the measures for all three
languages. The figure shows that old20 and the
measures based on slot-based encodings correlate
strongly with length, while flexible encodings do
not correlate with length. We observe the same

9. RT

8. length

7. freq

6. N

5. old 20

4. rd 20 - wickel

3. rd 20 - bigrams

2. rd 20 - one hot

1. rd 20 - fourteen

-.34 .02 .30

-.29 .55 .26

-.33 .86 .27

-.32 -.07 .32

-.33 .84 .27

.30 -.66 -.20

.51

.37

.85 .42 -.33

.81 .53 .81 -.68

.34 .98 -.81

.39 -.32

-.81

-.25 -.60

.17

Dutch

9. RT

8. length

7. freq

6. N

5. old 20

4. rd 20 - wickel

3. rd 20 - bigrams

2. rd 20 - one hot

1. rd 20 - fourteen

-.32 .14 .25

-.18 .52 .18

-.24 .83 .27

-.25 -.08 .20

-.25 .82 .27

.21 -.75 -.25

.52

.46

.83 .49 -.44

.76 .48 .76 -.73

.33 .98 -.95

.36 -.34

-.95

-.21 -.61

.24

English

1 2 3 4 5 6 7 8 9

9. RT

8. length

7. freq

6. N

5. old 20

4. rd 20 - wickel

3. rd 20 - bigrams

2. rd 20 - one hot

1. rd 20 - fourteen

-.05 -.13 .13

-.09 .28 .22

-.27 .80 .41

.01 -.33 .07

-.27 .77 .40

.19 -.55 -.29

.52

.29

.83 .34 -.32

.64 .51 .64 -.58

.16 .97 -.82

.21 -.26

-.82

-.30 -.52

.38

French

Figure 3: The correlations between the control vari-
ables (length and frequency), the various distance mea-
sures, and RT. All correlations are significant (p < .05).

pattern of performance for all three languages. As
a similar pattern of performance was observed in
Yarkoni et al. (2008), we consider this to be an
empirical validation of our datasets.

Figure 3 shows the Spearman correlations be-
tween the different predictor variables (length, fre-
quency), and the various measures for all lan-
guages. As the figure indicates, the pattern of
correlations is consistent across all surveyed lan-
guages, and only differs in magnitude, not di-
rection. Additionally, because the results corre-

79

Dutch English French
Predictor β R2

adj ∆R2
adj β R2

adj ∆R2
adj β R2

adj ∆R2
adj

base length .025 .252 .0 .083 .344 .0 .263 .314 .0
freq -.494 -.558 -.414

rd20 - fourteen length -.058 .270 .018 .053 .346 .002 .209 .339 .025
freq -.472 -.553 -.421
score .161 .059 .164

rd20 - one hot length -.305 .292 .040 -.066 .353 .011 .003 .353 .039
freq -.459 -.552 -.417
score .397 .181 .326

rd20 - bigrams length .044 .273 .021 .079 .349 .005 .292 .342 .028
freq -.438 -.536 -.401
score .154 .076 .167

rd20 - wickel length .006 .289 .037 .096 .351 .007 .333 .350 .036
freq -.417 -.533 -.397
score .206 .088 .200

old20 length -.240 .283 .022 -.051 .352 .008 .035 .349 .035
freq -.457 -.550 -.412
score .329 .166 .295

N length .087 .259 .007 .078 .344 .000 .261 .314 .0
freq -.510 -.557 -.414
score .110 -.007 -.005

Table 2: The coefficients, explained variance, and change in explained variance of the regression analyses. The
rd20 measure using one hot features explains the most variance across all languages, although the difference is not
significant for English.

spond with those from Yarkoni et al. (2008), this
provides additional evidence for old20 and our
datasets. Given that old20 is considered to be a
good neighborhood measure, and the various rd20
measures show the same type of effects, i.e., ef-
fects in the same direction, this indirectly validates
rd20 as a good measure.

As an aside, while we see the same direction
of effects as in Yarkoni et al. (2008), we do see
that the magnitude of the correlations between the
scores and RT are lower for all corpora, which was
reported to be .612 for the English Lexicon Project
stimuli used in Yarkoni et al. (2008).

4.1 Regression analyses

In addition to the zero-order correlations above,
we also conduct stepwise regression analyses.
We use the RT values from the various lexicon
projects, as explained in Section 3 as dependent
variables, and consider the length, frequency, and
the distance measures as independent variables.
We first start by adding the control variables,
length and frequency in this case. Then, for each
defined measure, we add the score predictor as an

additional variable, while measuring the effect this
addition has on model fit.

The difference between the adjusted R-squared,
or R2

adj from here on, of the model with the con-
trol variables and the model with the extra predic-
tor is called the ∆R2

adj , and explains how much
additional variance is explained by the added pre-
dictor. Because all measures were calculated using
the same data, we can simply compare the ∆R2

adj

of each of the regression models to determine the
effect of that particular measure.

The results of the regression analyses are shown
in Table 2. The rows above the horizontal line
show the base model, i.e. the model with only
the control variables as predictors, while the rows
below the line denote the various statistics of the
different models with respect to the base model.

All score predictors for each model but the N
model show positive effect of score on RT, indicat-
ing that words in denser neighborhoods, i.e. words
with a lower average distance to nearest neighbors,
have shorter Reaction Times. These scores thus
predict a positive effect of neighborhood density.

For N we expect a negative correlation, as the

80

measure is inverted, i.e. words with denser neigh-
borhoods have higher figures. Nevertheless we see
a positive effect of N for Dutch, which is unex-
pected.

In all three corpora the one hot encoded features
explain the most variance out of all the measures,
with the wickelfeatures following in second place
for Dutch and French, and OLD20 following in
second place for English. To see if these differ-
ence were significant, we bootstrapped the differ-
ence between the R2

adj estimates of one hot en-
coded rd20 and other feature sets with an α of
.05. For Dutch, we bootstrapped the differences
between the one hot encoded and wickelfeatures;
which led to intervals of [0.0004, 0.0058], indicat-
ing a significant, albeit really small, difference be-
tween the one hot encoded and wickelfeatures. For
English and French, we compared old20 to both
the rd20 of the one hot and the wickelfeatures.
Because of multiple comparisons, we used Bon-
ferroni correction to correct our α of .05 to .025.
For English, the confidence interval of the boot-
strapped differences between the one hot encoding
and wickelgraphs was [-0.0028, -.0003], indicat-
ing significance, while the same confidence inter-
val for one hot encoding and old20 was [0.0003,
0.0020], again indicating a significant difference.
For French, the confidence intervals for the dif-
ferences between one hot encoding and wickel-
graphs were [-0.0011, 0.0032], indicating a non-
significant difference, while the confidence inter-
val for the differences between one hot encoding
and old20 was [0.0029, 0.0061], again indicating
significance.

In a practical sense, the significance is not that
important: as all of these values are really small,
there seems to be little reason to prefer one of the
metrics over the other. That is, even though the
difference between old 20 and the rd20 of a one
hot encoded representation is significant, the dif-
ference in explained variance is so small to not re-
ally matter.

Theoretically, these results point towards a
smaller role for transposition effects than previ-
ously assumed, for two reasons:

First, given that the main difference between
the one-hot encoded features and the Levenshtein-
based old20 is that the Levenshtein metric allows
for transpositions and deletions, we can view the
difference in explained variance between these
two measures as the net transposition effect. If

7. RT

6. length

5. freq

4. rd 20 - wickel

3. rd 20 - bigrams

2. rd 20 - one hot

1. rd 20 - fourteen

-.24 .57 .17

-.26 .72 .22

-.23 .52 .26

-.11 .41 .10

.64

.61

.44

.80 .51

.50

-.25 -.60

.17

Dutch

7. RT

6. length

5. freq

4. rd 20 - wickel

3. rd 20 - bigrams

2. rd 20 - one hot

1. rd 20 - fourteen

-.16 .38 .18

-.17 .60 .20

-.15 .33 .20

-.02 .33 .09

.57

.60

.36

.72 .44

.44

-.21 -.61

.24

English

1 2 3 4 5 6 7

7. RT

6. length

5. freq

4. rd 20 - wickel

3. rd 20 - bigrams

2. rd 20 - one hot

1. rd 20 - fourteen

-.28 .47 .29

-.31 .76 .39

-.29 .55 .39

-.24 .44 .22

.54

.58

.35

.75 .45

.43

-.30 -.52

.38

French

Figure 4: The correlations between the control vari-
ables, length and frequency, and the various distance
measures for representations learned by the MLP.

transpositions and deletions played a large role
during lexical access, then we would expect to see
a large positive net transposition effect. In our ex-
periments, we see exactly the opposite: a small
but significant negative net transposition effect in
all corpora. Second, we observe that the bigrams,
the feature set specifically constructed for model-
ing transposition effects during word reading, ex-
plains less variance than the slot-based encodings
in all cases.

Both of these results lead us to hypothesize that

81

Dutch English French
Predictor β R2

adj ∆R2
adj β R2

adj ∆R2
adj β R2

adj ∆R2
adj

base length .025 .252 .0 .08 .344 .0 .263 .315 .0
freq -.493 -.55 -.414

fourteen length -.054 .257 .005 .031 .348 .004 .143 .327 .012
freq -.484 -.556 -.400
score .110 .083 .168

one hot length -.068 .274 .022 .041 .356 .012 .144 .347 .032
freq -.475 -.551 -.390
score .179 .119 .221

bigrams length .020 .252 .0 .061 .346 .002 .23 .319 .004
freq -.492 -.554 -.403
score .008 .051 .075

wickel length .008 .254 .002 .067 .345 .001 .256 .315 .000
freq -.493 -.560 -.412
score .041 .047 .016

Table 3: The coefficients, adjusted explained variance, and change in adjusted explained variance of the regression
analyses on the hidden state representations learned by an MLP.

transposition and deletions play a smaller role in
defining lexical neighborhoods than previously as-
sumed.

5 Experiment 2: internal
Representations

In the previous experiment, we showed that rd20
can be used to assess the neighborhood of featur-
ized words. Calculating the rd20 over the raw fea-
tures, however, assumes that our internal represen-
tations are exemplars instead of learned abstract
representations, such as those found in a neural
network. To assess whether rd20 can also be used
with hidden state representations, we performed
an additional experiment using a Multi-Layer Per-
ceptron (MLP).

For each feature set, we trained an MLP to pre-
dict the identity of the word based on the input fea-
tures, which is similar to experiments conducted
by Dandurand et al. (2010). Each MLP had one
hidden layer with 500 hidden units and a Sigmoid
activation function, while the output layer had a
softmax activation function, and a dimensionality
of the vocabulary size. We used cross-entropy as a
loss function, and optimized using Adam (Kingma
and Ba, 2014). Our training regime was as fol-
lows: we shuffled before each epoch, and then
presented all featurized words to the MLP. As in
the previous experiment, we used the whole cor-
pus for each language during training. We trained
each model until convergence, where we defined

convergence as there being no change in the loss
for 20 epochs in a row. After convergence, we cal-
culated the accuracy score for each of the models
in each language. Each of the models achieved an
accuracy of .95 or higher, showing that each model
has correctly learned to predict nearly every word.

We then presented the words for which we
had RTs (i.e. the words which were both in the
SUBTLEX database and in the Lexicon Project for
each language) to the network again, and stored
the hidden unit activations in response to the in-
put. Following the neural network literature (e.g.
(Elman, 1991)), we assume these internal repre-
sentations are the representations learned during
the task of attempting to predict the word identity.
We then calculated rd20 for each representation,
and used these as input to the same analyses as the
previous experiment.

Comparing the MLP results in Figure 4 to the
results from Figure 3, we see that the MLP has
a normalizing effect; as far as these statistics
are concerned, the differences between the differ-
ent feature sets have become smaller. The most
prominent change is that all rd20 measures now
correlate with length, whereas before only the
rd20 based on slot-based values correlated with
length. Similarly, the rd20 based on the one hot
features did not correlate with the rd20 based on
the bigram and wickelgraphs in experiment 1, but
does correlate in the present experiment.

We also conducted regression analyses, using

82

the distances between the hidden layer represen-
tations as a predictor, as in experiment 1. Table
3 shows the results of these regression analyses.
These analyses confirm that the MLP has a nor-
malizing effect; whereas the effect of frequency
and length differed in magnitude and sign between
feature sets in Experiment 1, nearly all feature sets
see a positive effect of length and a negative effect
of frequency. The regression analysis shows that
the R2

adj was generally lower for the representa-
tions in the MLP, with the wickelgraphs especially
suffering in comparison to Experiment 1.

6 Discussion and conclusion

Jointly, our experiments show that one hot en-
coded characters outperform other feature rep-
resentations in explaining variance beyond fre-
quency and length. In Experiment 1, we showed
that transposition effects play a smaller role than
previously thought; rd20 over a one hot encoded
character representation explains significantly, al-
beit small amounts, more variance than old20. The
rd20 of open bigrams, a feature set specifically
constructed for a representation which takes into
account transposition effects, does not explain a
lot of variance. Returning to the main research
question of this paper, i.e. whether the neighbor-
hood effect is influenced by transposition neigh-
bors, our evidence shows that it more likely the
case that they do not.

Counter to what we found, experiments have
shown that human subjects do take into account
transposition neighbors in their neighborhoods
(Davis et al., 2009; Acha and Perea, 2008). This
raises an interesting conundrum, and shows that
more research is required.

Furthermore, while the effect of denser neigh-
borhoods was uniformly positive throughout all
experiments and measures, this is not the case
in human processing, where dense neighborhoods
can sometimes have an inhibitory effect due to
competition (Perea, 2015).

This leads us to another point of concern: the
theoretical status of the neighborhood metric, be
it old20, N , or rd20. Should these metrics be
conceived of as purely diagnostic instruments, or
as full-fledged, albeit limited, models of word
processing? As our research shows, varying the
neighborhood metric allows us to advance theo-
retical claims, like any model would allow us to
do. In the future, we would like to investigate how

much of a model one can build out of the neigh-
borhood metric.

Experiment 2 shows the validity of using rd20
on internal representations learned by a neural net-
work. This opens up new avenues for research,
and allows us to quantitatively determine the ef-
fect of neighborhood density in neural networks
on behavioral measures.

7 Implementation details

All statistical analyses were carried out us-
ing R (Team et al., 2013), some of the Fig-
ures were made in ggplot2 (Wickham et al.,
2008). rd20, old20 and N were implemented in
Python (Van Rossum and Drake Jr, 1995), us-
ing Numpy (Walt et al., 2011), while the MLP
was implemented using PyTorch (Paszke et al.,
2017). Some Figures were made in Matplotlib
(Hunter, 2007).

8 Acknowledgments

The first author is supported by a PhD scholarship
from the FWO Research Foundation - Flanders.
We would like to thank Robert Grimm and Gio-
vanni Cassani for help with the statistical analysis
and general comments. Additionally, we would
like to thank the reviewers for helpful comments
and suggestions, which improved the paper a lot.

References
Joana Acha and Manuel Perea. 2008. The effect of

neighborhood frequency in reading: Evidence with
transposed-letter neighbors. Cognition, 108(1):290–
300.

Sally Andrews. 1997. The effect of orthographic
similarity on lexical retrieval: Resolving neighbor-
hood conflicts. Psychonomic Bulletin & Review,
4(4):439–461.

R Harald Baayen, Richard Piepenbrock, and Rijn van
H. 1993. The CELEX lexical data base on CD-
ROM.

Marc Brysbaert and Michael J Cortese. 2011. Do
the effects of subjective frequency and age of ac-
quisition survive better word frequency norms?
Quarterly Journal of Experimental Psychology,
64(3):545–559.

Marc Brysbaert and Boris New. 2009. Moving beyond
kučera and francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for ameri-
can english. Behavior research methods, 41(4):977–
990.

83

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and
Emmanuel Keuleers. 2016. The impact of word
prevalence on lexical decision times: Evidence from
the dutch lexicon project 2. Journal of Experimental
Psychology: Human Perception and Performance,
42(3):441.

Max Coltheart. 1977. Access to the internal lexicon.
The psychology of reading.

Max Coltheart, Kathleen Rastle, Conrad Perry, Robyn
Langdon, and Johannes Ziegler. 2001. Drc: a dual
route cascaded model of visual word recognition and
reading aloud. Psychological review, 108(1):204.

Frédéric Dandurand, Jonathan Grainger, and Stéphane
Dufau. 2010. Learning location-invariant ortho-
graphic representations for printed words. Connec-
tion Science, 22(1):25–42.

Colin J Davis. 2010a. Solar versus seriol revisited. Eu-
ropean Journal of Cognitive Psychology, 22(5):695–
724.

Colin J Davis. 2010b. The spatial coding model of
visual word identification. Psychological Review,
117(3):713.

Colin J Davis and Jeffrey S Bowers. 2006. Contrast-
ing five different theories of letter position coding:
Evidence from orthographic similarity effects. Jour-
nal of Experimental Psychology: Human Perception
and Performance, 32(3):535.

Colin J Davis, Manuel Perea, and Joana Acha. 2009.
Re (de) fining the orthographic neighborhood: The
role of addition and deletion neighbors in lexical
decision and reading. Journal of Experimental
Psychology: Human Perception and Performance,
35(5):1550.

Colin John Davis. 2001. The self-organising lexical ac-
quisition and recognition (SOLAR) model of visual
word recognition. Ph.D. thesis, ProQuest Informa-
tion & Learning.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning, 7(2-3):195–225.

Ludovic Ferrand, Boris New, Marc Brysbaert, Em-
manuel Keuleers, Patrick Bonin, Alain Méot, Maria
Augustinova, and Christophe Pallier. 2010. The
french lexicon project: Lexical decision data for
38,840 french words and 38,840 pseudowords. Be-
havior Research Methods, 42(2):488–496.

Pablo Gomez, Roger Ratcliff, and Manuel Perea. 2008.
The overlap model: a model of letter position cod-
ing. Psychological review, 115(3):577.

Jonathan Grainger. 2008. Cracking the orthographic
code: An introduction. Language and cognitive pro-
cesses, 23(1):1–35.

Jonathan Grainger and Walter JB Van Heuven. 2004.
Modeling letter position coding in printed word per-
ception.

Michael W Harm and Mark S Seidenberg. 2004. Com-
puting the meanings of words in reading: coopera-
tive division of labor between visual and phonologi-
cal processes. Psychological review, 111(3):662.

J. D. Hunter. 2007. Matplotlib: A 2d graphics en-
vironment. Computing In Science & Engineering,
9(3):90–95.

Emmanuel Keuleers, Marc Brysbaert, and Boris New.
2010a. Subtlex-nl: A new measure for dutch word
frequency based on film subtitles. Behavior re-
search methods, 42(3):643–650.

Emmanuel Keuleers, Kevin Diependaele, and Marc
Brysbaert. 2010b. Practice effects in large-scale vi-
sual word recognition studies: A lexical decision
study on 14,000 dutch mono-and disyllabic words
and nonwords. Frontiers in Psychology, 1:174.

Emmanuel Keuleers, Paula Lacey, Kathleen Rastle,
and Marc Brysbaert. 2012. The british lexicon
project: Lexical decision data for 28,730 monosyl-
labic and disyllabic english words. Behavior re-
search methods, 44(1):287–304.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sachiko Kinoshita and Dennis Norris. 2013. Letter or-
der is not coded by open bigrams. Journal of mem-
ory and language, 69(2):135–150.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

James L McClelland and David E Rumelhart. 1981. An
interactive activation model of context effects in let-
ter perception: I. an account of basic findings. Psy-
chological review, 88(5):375.

Risto Miikkulainen. 1997. Dyslexic and category-
specific aphasic impairments in a self-organizing
feature map model of the lexicon. Brain and lan-
guage, 59(2):334–366.

Michael C Mozer. 1987. Early parallel processing in
reading: A connectionist approach. Lawrence Erl-
baum Associates, Inc.

Boris New, Marc Brysbaert, Jean Veronis, and
Christophe Pallier. 2007. The use of film subtitles to
estimate word frequencies. Applied psycholinguis-
tics, 28(4):661–677.

Boris New, Christophe Pallier, Ludovic Ferrand, and
Rafael Matos. 2001. Une base de données lexicales
du français contemporain sur internet: Lexique//a
lexical database for contemporary french: Lexique.
L’année psychologique, 101(3):447–462.

84

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Manuel Perea. 2015. Neighborhood effects in visual
word recognition and reading. The Oxford Hand-
book of Reading, page 76.

Manuel Perea and Alexander Pollatsek. 1998. The ef-
fects of neighborhood frequency in reading and lex-
ical decision. Journal of Experimental Psychology:
Human Perception and Performance, 24(3):767.

Kathleen Rastle and Marc Brysbaert. 2006. Masked
phonological priming effects in english: Are they
real? do they matter? Cognitive Psychology,
53(2):97–145.

Jennifer Rodd, Gareth Gaskell, and William Marslen-
Wilson. 2002. Making sense of semantic ambiguity:
Semantic competition in lexical access. Journal of
Memory and Language, 46(2):245–266.

Jennifer M Rodd, M Gareth Gaskell, and William D
Marslen-Wilson. 2004. Modelling the effects of se-
mantic ambiguity in word recognition. Cognitive
Science, 28(1):89–104.

David E Rumelhart and Patricia Siple. 1974. Process
of recognizing tachistoscopically presented words.
Psychological review, 81(2):99.

Sofie Schoonbaert and Jonathan Grainger. 2004. Letter
position coding in printed word perception: Effects
of repeated and transposed letters. Language and
Cognitive Processes, 19(3):333–367.

Mark S Seidenberg and James L McClelland. 1989. A
distributed, developmental model of word recogni-
tion and naming. Psychological review, 96(4):523.

Mf S Seidenberg and GS Waters. 1989. Reading words
aloud-a mega study.

R Core Team et al. 2013. R: A language and environ-
ment for statistical computing.

Stphan Tulkens, Dominiek Sandra, and Walter Daele-
mans. 2018. Wordkit: a python package for ortho-
graphic and phonological featurization. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Paris, France. European Language Resources Asso-
ciation (ELRA).

Walter JB Van Heuven, Pawel Mandera, Emmanuel
Keuleers, and Marc Brysbaert. 2014. Subtlex-uk:
A new and improved word frequency database for
british english. Quarterly Journal of Experimental
Psychology, 67(6):1176–1190.

Guy C Van Orden. 1987. A rows is a rose:
Spelling, sound, and reading. Memory & cognition,
15(3):181–198.

Guido Van Rossum and Fred L Drake Jr. 1995. Python
reference manual. Centrum voor Wiskunde en In-
formatica Amsterdam.

Stéfan van der Walt, S Chris Colbert, and Gael Varo-
quaux. 2011. The numpy array: a structure for effi-
cient numerical computation. Computing in Science
& Engineering, 13(2):22–30.

Carol Whitney. 2001. How the brain encodes the order
of letters in a printed word: The seriol model and
selective literature review. Psychonomic Bulletin &
Review, 8(2):221–243.

Carol Whitney, Daisy Bertrand, and Jonathan Grainger.
2012. On coding the position of letters in words.
Experimental psychology.

Carol Whitney and Piers Cornelissen. 2008. Se-
riol reading. Language and Cognitive Processes,
23(1):143–164.

Wayne A Wickelgren. 1969. Context-sensitive coding,
associative memory, and serial order in (speech) be-
havior. Psychological Review, 76(1):1.

Hadley Wickham, Winston Chang, et al. 2008. gg-
plot2: An implementation of the grammar of graph-
ics. R package version 0.7, URL: http://CRAN. R-
project. org/package= ggplot2.

Tal Yarkoni, David Balota, and Melvin Yap. 2008.
Moving beyond colthearts n: A new measure of or-
thographic similarity. Psychonomic Bulletin & Re-
view, 15(5):971–979.

85

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 86–96
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Global Attention for Name Tagging

Boliang Zhang, Spencer Whitehead, Lifu Huang and Heng Ji
Computer Science Department

Rensselaer Polytechnic Institute
{zhangb8,whites5,huangl7,jih}@rpi.edu

Abstract

Many name tagging approaches use local con-
textual information with much success, but fail
when the local context is ambiguous or lim-
ited. We present a new framework to improve
name tagging by utilizing local, document-
level, and corpus-level contextual informa-
tion. We retrieve document-level context from
other sentences within the same document and
corpus-level context from sentences in other
topically related documents. We propose a
model that learns to incorporate document-
level and corpus-level contextual informa-
tion alongside local contextual information via
global attentions, which dynamically weight
their respective contextual information, and
gating mechanisms, which determine the in-
fluence of this information. Extensive exper-
iments on benchmark datasets show the ef-
fectiveness of our approach, which achieves
state-of-the-art results for Dutch, German, and
Spanish on the CoNLL-2002 and CoNLL-
2003 datasets.1.

1 Introduction

Name tagging, the task of automatically identify-
ing and classifying named entities in text, is often
posed as a sentence-level sequence labeling prob-
lem where each token is labeled as being part of a
name of a certain type (e.g., location) or not (Chin-
chor and Robinson, 1997; Tjong Kim Sang and
De Meulder, 2003). When labeling a token, lo-
cal context (i.e., surrounding tokens) is crucial be-
cause the context gives insight to the semantic
meaning of the token. However, there are many in-
stances in which the local context is ambiguous or
lacks sufficient content. For example, in Figure 1,
the query sentence discusses “Zywiec” selling a

1The programs are publicly available for research pur-
pose: https://github.com/boliangz/global_
attention_ner

product and profiting from these sales, but the lo-
cal contextual information is ambiguous as more
than one entity type could be involved in a sale.
As a result, the baseline model mistakenly tags
“Zywiec” as a person (PER) instead of the cor-
rect tag, which is organization (ORG). If the model
has access to supporting evidence that provides ad-
ditional, clearer contextual information, then the
model may use this information to correct the mis-
take given the ambiguous local context.

Baseline:
So far this year [PER Zywiec], whose full name
is Zaklady Piwowarskie w Zywcu SA, has netted six
million zlotys on sales of 224 million zlotys.

So far this year [ORG Zywiec], whose full name
is Zaklady Piwowarskie w Zywcu SA, has netted six
million zlotys on sales of 224 million zlotys.

Our model (Documentlevel + Corpuslevel Attention):

Van Boxmeer also said [ORG Zywiec] would be boosted
by its recent shedding of soft drinks which only
accounted for about three percent of the firm's
overall sales and for which 7.6 million zlotys in
provisions had already been made.

Polish brewer [ORG Zywiec]'s 1996 profit slump may
last into next year due in part to hefty
depreciation charges, but recent high investment
should help the firm defend its 10percent market
share, the firm's chief executive said.

Documentlevel Supporting Evidence:

The [ORG Zywiec] logo includes all of the most
important historical symbols of the brewery and
Poland itself.

[LOC Zywiec] is a town in southcentral
Poland 32,242 inhabitants (as of November 2007).

Corpuslevel Supporting Evidence:

Figure 1: Example from the baseline and our model
with some supporting evidence.

Additional context may be found from other
sentences in the same document as the query sen-
tence (document-level). In Figure 1, the sentences
in the document-level supporting evidence provide
clearer clues to tag “Zywiec” as ORG, such as
the references to “Zywiec” as a “firm”. A con-
cern of leveraging this information is the amount
of noise that is introduced. However, across all the

86

data in our experiments (Section 3.1), we find that
an average of 35.43% of named entity mentions in
each document are repeats and, when a mention
appears more than once in a document, an aver-
age of 98.78% of these mentions have the same
type. Consequently, one may use the document-
level context to overcome the ambiguities of the
local context while introducing little noise.

Although a significant amount of named en-
tity mentions are repeated, 64.57% of the men-
tions are unique. In such cases, the sentences at
the document-level cannot serve as a source of
additional context. Nevertheless, one may find
additional context from sentences in other doc-
uments in the corpus (corpus-level). Figure 1
shows some of the corpus-level supporting evi-
dence for “Zywiec”. In this example, similar
to the document-level supporting evidence, the
first sentence in this corpus-level evidence dis-
cusses the branding of “Zywiec”, corroborating
the ORG tag. Whereas the second sentence intro-
duces noise because it has a different topic than
the current sentence and discusses the Polish town
named “Zywiec”, one may filter these noisy con-
texts, especially when the noisy contexts are ac-
companied by clear contexts like the first sentence.

We propose to utilize local, document-level, and
corpus-level contextual information to improve
name tagging. Generally, we follow the one sense
per discourse hypothesis introduced by Yarowsky
(2003). Some previous name tagging efforts ap-
ply this hypothesis to conduct majority voting for
multiple mentions with the same name string in
a discourse through a cache model (Florian et al.,
2004) or post-processing (Hermjakob et al., 2017).
However, these rule-based methods require man-
ual tuning of thresholds. Moreover, it’s challeng-
ing to explicitly define the scope of discourse.
We propose a new neural network framework
with global attention to tackle these challenges.
Specifically, for each token in a query sentence,
we propose to retrieve sentences that contain the
same token from the document-level and corpus-
level contexts (e.g., document-level and corpus-
level supporting evidence for “Zywiec” in Fig-
ure 1). To utilize this additional information, we
propose a model that, first, produces representa-
tions for each token that encode the local context
from the query sentence as well as the document-
level and corpus-level contexts from the retrieved
sentences. Our model uses a document-level at-

tention and corpus-level attention to dynamically
weight the document-level and corpus-level con-
textual representations, emphasizing the contex-
tual information from each level that is most rel-
evant to the local context and filtering noise such
as the irrelevant information from the mention
“[LOC Zywiec]” in Figure 1. The model learns
to balance the influence of the local, document-
level, and corpus-level contextual representations
via gating mechanisms. Our model predicts a tag
using the local, gated-attentive document-level,
and gated-attentive corpus-level contextual repre-
sentations, which allows our model to predict the
correct tag, ORG, for “Zywiec” in Figure 1.

The major contributions of this paper are: First,
we propose to use multiple levels of contextual
information (local, document-level, and corpus-
level) to improve name tagging. Second, we
present two new attentions, document-level and
corpus-level, which prove to be effective at ex-
ploiting extra contextual information and achieve
the state-of-the-art.

2 Model

We first introduce our baseline model. Then, we
enhance this baseline model by adding document-
level and corpus-level contextual information to
the prediction process via our document-level and
corpus-level attention mechanisms, respectively.

2.1 Baseline

We consider name tagging as a sequence label-
ing problem, where each token in a sequence is
tagged as the beginning (B), inside (I) or out-
side (O) of a name mention. The tagged names
are then classified into predefined entity types.
In this paper, we only use the person (PER), or-
ganization (ORG), location (LOC), and miscel-
laneous (MISC) types, which are the predefined
types in CoNLL-02 and CoNLL-03 name tagging
dataset (Tjong Kim Sang and De Meulder, 2003).

Our baseline model has two parts: 1) En-
coding the sequence of tokens by incorporat-
ing the preceding and following contexts us-
ing a bi-directional long short-term memory (Bi-
LSTM) (Graves et al., 2013), so each token is as-
signed a local contextual embedding. Here, fol-
lowing Ma and Hovy (2016a), we use the con-
catenation of pre-trained word embeddings and
character-level word representations composed by
a convolutional neural network (CNN) as input

87

to the Bi-LSTM. 2) Using a Conditional Random
Fields (CRFs) output layer to render predictions
for each token, which can efficiently capture de-
pendencies among name tags (e.g., “I-LOC” can-
not follow “B-ORG”).

The Bi-LSTM CRF network is a strong baseline
due to its remarkable capability of modeling con-
textual information and label dependencies. Many
recent efforts combine the Bi-LSTM CRF net-
work with language modeling (Liu et al., 2017;
Peters et al., 2017, 2018) to boost the name tag-
ging performance. However, they still suffer from
the limited contexts within individual sequences.
To overcome this limitation, we introduce two at-
tention mechanisms to incorporate document-level
and corpus-level supporting evidence.

2.2 Document-level Attention

Many entity mentions are tagged as multiple types
by the baseline approach within the same docu-
ment due to ambiguous contexts (14.43% of the
errors in English, 18.55% in Dutch, and 17.81% in
German). This type of error is challenging to ad-
dress as most of the current neural network based
approaches focus on evidence within the sentence
when making decisions. In cases where a sentence
is short or highly ambiguous, the model may ei-
ther fail to identify names due to insufficient in-
formation or make wrong decisions by using noisy
context. In contrast, a human in this situation
may seek additional evidence from other sentences
within the same document to improve judgments.

In Figure 1, the baseline model mistak-
enly tags “Zywiec” as PER due to the am-
biguous context “whose full name is...”,
which frequently appears around a person’s
name. However, contexts from other sentences
in the same document containing “Zywiec”
(e.g., sq and sr in Figure 2), such as “’s
1996 profit...” and “would be boosted
by its recent shedding...”, indicate that
“Zywiec” ought to be tagged as ORG. Thus,
we incorporate the document-level supporting
evidence with the following attention mecha-
nism (Bahdanau et al., 2015).

Formally, given a document D = {s1, s2, ...},
where si = {wi1, wi2, ...} is a sequence of
words, we apply a Bi-LSTM to each word in si,
generating local contextual representations hi =
{hi1,hi2, ...}. Next, for each wij , we retrieve the
sentences in the document that contain wij (e.g.,

sq and sr in Figure 2) and select the local contex-
tual representations of wij from these sentences as
supporting evidence, h̃ij = {h̃1

ij , h̃
2
ij , ...} (e.g., h̃qj

and h̃rk in Figure 2), where hij and h̃ij are ob-
tained with the same Bi-LSTM. Since each repre-
sentation in the supporting evidence is not equally
valuable to the final prediction, we apply an atten-
tion mechanism to weight the contextual represen-
tations of the supporting evidence:

ekij = v> tanh
(
Whhij +Wh̃h̃kij + be

)
,

αkij = Softmax
(
ekij

)
,

where hij is the local contextual representation of

word j in sentence si and h̃kij is the k-th support-
ing contextual representation. Wh, Wh̃ and be are
learned parameters. We compute the weighted av-
erage of the supporting representations by

H̃ij =
∑

k=1

αkij h̃
k
ij ,

where H̃ij denotes the contextual representation of
the supporting evidence for wij .

For each word wij , its supporting evidence rep-
resentation, H̃ij , provides a summary of the other
contexts where the word appears. Though this ev-
idence is valuable to the prediction process, we
must mitigate the influence of the supporting ev-
idence since the prediction should still be made
primarily based on the query context. Therefore,
we apply a gating mechanism to constrain this in-
fluence and enable the model to decide the amount
of the supporting evidence that should be incorpo-
rated in the prediction process, which is given by

rij = σ(WH̃,rH̃ij +Wh,rhij + br) ,

zij = σ(WH̃,zH̃ij +Wh,zhij + bz) ,

gij = tanh(Wh,ghij + zij � (WH̃,gH̃ij + bg)) ,

Dij = rij � hij + (1− rij)� gij ,

where all W , b are learned parameters and Dij is
the gated supporting evidence representation for
wij .

2.3 Topic-aware Corpus-level Attention
The document-level attention fails to generate sup-
porting evidence when the name appears only
once in a single document. In such situations,
we analogously select supporting sentences from
the entire corpus. Unfortunately, different from

88

So far this year Zywiec, whose full name is
Zaklady Piwowarskie w Zywcu SA , has netted six
million zlotys on sales of 224 million zlotys .

So far this year Zywiec , whose full name is Zaklady Piwowarskie w Zywcu SA , has
netted six million zlotys on sales of 224 million zlotys .

Polish brewer Zywiec 's 1996 profit slump may last into next year due in part to
hefty depreciation charges , but recent high investment should help the firm defend
its 00percent market share , the firm 's chief executive said .

Van Boxmeer also said Zywiec would be boosted by its recent shedding of soft drinks
which only accounted for about three percent of the firm 's overall sales and for
which 0.0 million zlotys in provisions had already been made .

The two largest brands are Heineken and Amstel.

The list includes Cruzcampo, Affligem and Zywiec .

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

A +

G

A

+

G

A Attentive Summation G Gated Summation

contextual representaions of
Zywiec from topically related
documents

BiLSTM CRF Layer

BiLSTM CRF Layer

concatenate

A Attentive Summation

G Gated Summation

Bidirectional LSTM Encoder

A

+

G

A Attentive Summation G Gated Summation

contextual representaions of Zywiec from
topically related documents

BiLSTM CRF Layer

The Zywiec logo includes all of the most
important historical symbols of the brewery and
Poland itself.

Zywiec is a town in southcentral Poland 32,242
inhabitants (as of November 2007).

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Corpuslevel supporting sentences

Documentlevel supporting sentences

Figure 2: Document-level Attention Architecture. (Within-sequence context in red incorrectly indicates
the name as PER, and document-level context in green correctly indicates the name as ORG.)

the sentences that are naturally topically relevant
within the same documents, the supporting sen-
tences from the other documents may be about
distinct topics or scenarios, and identical phrases
may refer to various entities with different types,
as in the example in Figure 1. To narrow down
the search scope from the entire corpus and avoid
unnecessary noise, we introduce a topic-aware
corpus-level attention which clusters the docu-
ments by topic and carefully selects topically re-
lated sentences to use as supporting evidence.

We first apply Latent Dirichlet allocation
(LDA) (Blei et al., 2003) to model the topic dis-
tribution of each document and separate the doc-
uments into N clusters based on their topic dis-
tributions.2 As in Figure 3, we retrieve supporting
sentences for each word, such as “Zywiec”, from
the topically related documents and employ an-
other attention mechanism (Bahdanau et al., 2015)
to the supporting contextual representations, ĥij =
{ĥ1

ij , ĥ
2
ij , ...} (e.g., h̃xi and h̃yi in Figure 3). This

yields a weighted contextual representation of the
corpus-level supporting evidence, Ĥij , for each
wij , which is similar to the document-level sup-
porting evidence representation, H̃ij , described in

2N = 20 in our experiments.

section 2.2. We use another gating mechanism to
combine Ĥij and the local contextual representa-
tion, hij , to obtain the corpus-level gated support-
ing evidence representation, Cij , for each wij .

So far this year Zywiec, whose full name is
Zaklady Piwowarskie w Zywcu SA , has netted six
million zlotys on sales of 224 million zlotys .

So far this year Zywiec , whose full name is Zaklady Piwowarskie w Zywcu SA , has
netted six million zlotys on sales of 224 million zlotys .

Polish brewer Zywiec 's 1996 profit slump may last into next year due in part to
hefty depreciation charges , but recent high investment should help the firm defend
its 00percent market share , the firm 's chief executive said .

Van Boxmeer also said Zywiec would be boosted by its recent shedding of soft drinks
which only accounted for about three percent of the firm 's overall sales and for
which 0.0 million zlotys in provisions had already been made .

The two largest brands are Heineken and Amstel.

The list includes Cruzcampo, Affligem and Zywiec .

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

A +

G

A

+

G

A Attentive Summation G Gated Summation

contextual representaions of
Zywiec from topically related
documents

BiLSTM CRF Layer

BiLSTM CRF Layer

concatenate

A Attentive Summation

G Gated Summation

Bidirectional LSTM Encoder

A

+

G

A Attentive Summation G Gated Summation

contextual representaions of Zywiec from
topically related documents

BiLSTM CRF Layer

The Zywiec logo includes all of the most
important historical symbols of the brewery and
Poland itself.

Zywiec is a town in southcentral Poland 32,242
inhabitants (as of November 2007).

Bidirectional LSTM Encoder

Bidirectional LSTM Encoder

Corpuslevel supporting sentences

Documentlevel supporting sentences

Figure 3: Corpus-level Attention Architecture.

89

2.4 Tag Prediction

For each word wij of sentence si, we concatenate
its local contextual representation hij , document-
level gated supporting evidence representation
Dij , and corpus-level gated supporting evidence
representation Cij to obtain its final representa-
tion. This representation is fed to another Bi-
LSTM to further encode the supporting evidence
and local contextual features into an unified repre-
sentation, which is given as input to an affine-CRF
layer for label prediction.

3 Experiments

3.1 Dataset

We evaluate our methods on the CoNLL-2002
and CoNLL-2003 name tagging datasets (Tjong
Kim Sang and De Meulder, 2003). The CoNLL-
2002 dataset contains name tagging annotations
for Dutch (NLD) and Spanish (ESP), while the
CoNLL-2003 dataset contains annotations for En-
glish (ENG) and German (DEU). Both datasets
have four pre-defined name types: person (PER),
organization (ORG), location (LOC) and miscel-
laneous (MISC).3

Code Train Dev. Test
NLD 202,931 (13,344) 37,761 (2,616) 68,994 (3,941)
ESP 264,715 (18,797) 52,923 (4,351) 51,533 (3,558)
ENG 204,567 (23,499) 51,578 (5,942) 46,666 (5,648)
DEU 207,484 (11,651) 51,645 (4,669) 52,098 (3,602)

Table 1: # of tokens in name tagging datasets statis-
tics. # of names is given in parentheses.

We select at most four document-level sup-
porting sentences and five corpus-level support-
ing sentences.4 Since the document-level attention
method requires input from each individual docu-
ment, we do not evaluate it on the CoNLL-2002
Spanish dataset which lacks document delimiters.
We still evaluate the corpus-level attention on the
Spanish dataset by randomly splitting the dataset
into documents (30 sentences per document). Al-
though randomly splitting the sentences does not
yield perfect topic modeling clusters, experiments
show the corpus-level attention still outperforms
the baseline (Section 3.3).

3The miscellaneous category consists of names that do not
belong to the other three categories.

4Both numbers are tuned from 1 to 10 and selected when
the model performs best on the development set.

Hyper-parameter Value
CharCNN Filter Number 25
CharCNN Filter Widths [2, 3, 4]
Lower Bi-LSTM Hidden Size 100
Lower Bi-LSTM Dropout Rate 0.5
Upper Bi-LSTM Hidden Size 100
Learning Rate 0.005
Batch Size N/A∗

Optimizer SGD (Bottou, 2010)
∗ Each batch is a document. The batch size varies as the
different document length.

Table 2: Hyper-parameters.

3.2 Experimental Setup

For word representations, we use 100-dimensional
pre-trained word embeddings and 25-dimensional
randomly initialized character embeddings. We
train word embeddings using the word2vec pack-
age.5 English embeddings are trained on the En-
glish Giga-word version 4, which is the same cor-
pus used in (Lample et al., 2016). Dutch, Span-
ish, and German embeddings are trained on corre-
sponding Wikipedia articles (2017-12-20 dumps).
Word embeddings are fine-tuned during training.

Table 2 shows our hyper-parameters. For
each model with an attention, since the Bi-
LSTM encoder must encode the local, document-
level, and/or corpus-level contexts, we pre-train
a Bi-LSTM CRF model for 50 epochs, add our
document-level attention and/or corpus-level at-
tention, and then fine-tune the augmented model.
Additionally, Reimers and Gurevych (2017) report
that neural models produce different results even
with same hyper-parameters due to the variances
in parameter initialization. Therefore, we run each
model ten times and report the mean as well as the
maximum F1 scores.

3.3 Performance Comparison

We compare our methods to three categories of
baseline name tagging methods:

• Vanilla Name Tagging Without any additional
resources and supervision, the current state-of-
the-art name tagging model is the Bi-LSTM-
CRF network reported by Lample et al. (2016)
and Ma and Hovy (2016b), whose difference
lies in using a LSTM or CNN to encode char-
acters. Our methods fall in this category.

• Multi-task Learning Luo et al. (2015); Yang
et al. (2017) apply multi-task learning to boost

5https://github.com/tmikolov/word2vec

90

Table 1

0 41.5 41.5

1 59.33 59.33

2 55.62 55.62

3 58.89 58.89

4 62.8 62.8

5 62.33 62.33

6 70.39 70.39

7 69.81 69.81

8 73.25 73.25

9 75.68 75.68

10 76.12 76.12

11 73.1 73.1

12 75.1 75.1

13 77.16 77.16

14 75.8 75.8

15 80.66 80.66

16 78.11 78.11

17 78.42 78.42

18 78.38 78.38

19 79.49 79.49

20 80.51 80.51

21 77.35 77.35

22 80.81 80.81

23 79.63 79.63

24 81.69 81.69

25 80.9 80.9

26 80.71 80.71

27 80.37 80.37

28 80.2 80.2

29 80.4 80.4

30 80.46 80.46

31 82.55 82.55

32 81.55 81.55

33 82.62 82.62

34 81.28 81.28

35 82.61 82.61

36 82.26 82.26

37 81.53 81.53

38 82.36 82.36

39 82.36 82.36

40 80.71 80.71

41 83.61 83.61

42 83.93 83.93

43 83.5 83.5

44 81.97 81.97

45 83.21 83.21

46 83.76 83.76

47 82.74 82.74

48 82.96 82.96

49 84.31 84.31

50 83.78 83.78

51 81.03 80.03

52 82.57 81.57

53 83.8 82.8

54 83.87 82.87

55 84.42 83.42

56 84.19 83.19

57 84.82 83.82

58 84.36 83.36

59 84.52 83.52

60 84.83 83.83

61 85.06 84.06

62 85.27 84.27

63 84.23 83.23

64 84.1 83.1

65 85.49 84.49

66 85.07 84.07

67 85.13 84.13

68 85.37 84.37

69 85.63 84.63

70 85.18 84.18

71 85.77 84.77

72 86.22 85.22

73 86.08 85.08

74 85.29 84.29

75 85.23 84.23

76 84.83 83.83

77 85.96 84.96

78 85.25 84.25

79 85.19 84.19

F1
(%

)

75

77.6

80.2

82.8

85.4

88

Training Epochs

0 10 20 30 40 50 60 70 80 90

�1

(a) Dutch (F1 scales between 75%-88%)

Table 1

0 67.89 66.89 68.89

1 72.29 71.29 73.29

2 74.78 73.78 75.78

3 75.74 74.74 76.74

4 78.25 77.25 79.25

5 78.05 77.05 79.05

6 79.56 78.56 80.56

7 79.83 78.83 80.83

8 80.67 79.67 81.67

9 80.1 79.1 81.1

10 81.05 80.05 82.05

11 80.76 79.76 81.76

12 81.46 80.46 82.46

13 81.09 80.09 82.09

14 81.28 80.28 82.28

15 82.37 81.37 83.37

16 82.13 81.13 83.13

17 81.63 80.63 82.63

18 82.85 81.85 83.85

19 83.94 82.94 84.94

20 82.99 81.99 83.99

21 82.98 81.98 83.98

22 83.09 82.09 84.09

23 84.09 83.09 85.09

24 83.22 82.22 84.22

25 83.43 82.43 84.43

26 83.0 82.0 84.0

27 83.77 82.77 84.77

28 84.23 83.23 85.23

29 84.71 83.71 85.71

30 84.43 83.43 85.43

31 84.91 83.91 85.91

32 83.43 82.43 84.43

33 84.63 83.63 85.63

34 84.05 83.05 85.05

35 84.16 83.16 85.16

36 84.31 83.31 85.31

37 84.83 83.83 85.83

38 84.6 83.6 85.6

39 84.76 83.76 85.76

40 84.67 83.67 85.67

41 84.8 83.8 85.8

42 84.71 83.71 85.71

43 84.83 83.83 85.83

44 84.51 83.51 85.51

45 85.16 84.16 86.16

46 84.67 83.67 85.67

47 84.69 83.69 85.69

48 85.26 84.26 86.26

49 84.97 83.97 85.97

50 84.86 83.86 85.86

51 84.14 83.14 85.14

52 85.37 84.37 85.67

53 85.59 84.59 85.89

54 85.57 84.57 85.87

55 85.47 84.47 85.77

56 85.56 84.56 85.86

57 84.94 83.94 85.24

58 85.29 84.29 85.59

59 85.53 84.53 85.83

60 85.71 84.71 86.01

61 85.34 84.34 85.64

62 85.49 84.49 85.79

63 85.63 84.63 85.93

64 85.69 84.69 85.99

65 85.47 84.47 85.77

66 85.45 84.45 85.75

67 85.72 84.72 86.02

68 85.12 84.12 85.42

69 85.53 84.53 85.83

70 85.5 84.5 85.8

71 85.48 84.48 85.78

72 85.58 84.58 85.88

73 85.66 84.66 85.96

74 85.76 84.76 86.06

75 85.56 84.56 85.86

76 85.47 84.47 85.77

77 85.03 84.03 85.33

78 85.64 84.64 85.94

79 85.33 84.33 85.63

80 85.31 84.31 85.61

81 85.11 84.11 85.41

82 85.36 84.36 85.66

83 85.37 84.37 85.67

F1
(%

)

82

82.8

83.6

84.4

85.2

86

Training Epochs

0 10 20 30 40 50 60 70 80 90

�1

(b) Spanish (F1 scales between 82%-86%)

Table 1

f1 raw_f1
0 82.81 82.81

1 86.13 86.13

2 87.64 87.64

3 88.57 88.57

4 89.0 89.0

5 89.35 89.35

6 89.2 89.2

7 89.16 89.16

8 89.53 89.53

9 89.82 89.82

10 90.19 90.19

11 90.07 90.07

12 90.3 90.3

13 90.25 90.25

14 90.24 90.24

15 90.28 90.28

16 90.67 90.67

17 90.58 90.58

18 90.5 90.5

19 90.59 90.59

20 90.52 90.52

21 90.68 90.68

22 90.67 90.67

23 90.72 90.72

24 90.64 90.64

25 90.77 90.77

26 90.79 90.79

27 90.67 90.67

28 90.79 90.79

29 90.73 90.73

30 90.77 90.77

31 90.93 90.93

32 90.87 90.87

33 90.78 90.78

34 90.72 90.72

35 90.71 90.71

36 90.78 90.78

37 90.8 90.8

38 90.83 90.83

39 90.87 90.87

40 90.82 90.82

41 90.89 90.89

42 90.76 90.76

43 90.88 90.88

44 90.86 90.86

45 90.88 90.88

46 90.89 90.89

47 90.75 90.75

48 90.87 90.87

49 90.92 90.92

50 90.58 90.48

51 90.98 90.88

52 90.95 90.85

53 90.96 90.86

54 90.96 90.86

55 91.22 91.12

56 91.11 91.01

57 91.15 91.05

58 90.8 90.7

59 91.06 90.96

60 91.03 90.93

61 91.44 91.34

62 91.14 91.04

63 91.08 90.98

64 91.12 91.02

65 91.04 90.94

66 91.08 90.98

67 91.23 91.13

68 91.05 90.95

69 91.1 91.0

70 91.05 90.95

71 91.19 91.09

72 91.26 91.16

73 91.15 91.05

74 91.24 91.14

75 91.23 91.13

76 91.17 91.07

77 91.23 91.13

F1
(%

)

90

90.4

90.8

91.2

91.6

Training Epochs

0 10 20 30 40 50 60 70 80 90

�1

(c) English (F1 scales between 90%-91.6%)

Table 1

0 60.67 60.67

1 66.07 66.07

2 68.82 68.82

3 70.77 70.77

4 71.71 71.71

5 72.91 72.91

6 73.36 73.36

7 74.49 74.49

8 74.95 74.95

9 74.33 74.33

10 75.19 75.19

11 75.37 75.37

12 75.81 75.81

13 76.51 76.51

14 76.3 76.3

15 76.57 76.57

16 76.73 76.73

17 76.86 76.86

18 76.68 76.68

19 77.18 77.18

20 77.19 77.19

21 77.38 77.38

22 76.97 76.97

23 77.25 77.25

24 77.19 77.19

25 77.43 77.43

26 77.56 77.56

27 77.85 77.85

28 77.82 77.82

29 77.46 77.46

30 77.75 77.75

31 77.81 77.81

32 77.72 77.72

33 77.71 77.71

34 77.47 77.47

35 77.84 77.84

36 77.89 77.89

37 77.57 77.57

38 77.84 77.84

39 78.02 78.02

40 77.85 77.85

41 77.83 77.83

42 77.89 77.89

43 77.89 77.89

44 78.04 78.04

45 77.73 77.73

46 77.77 77.77

47 77.78 77.78

48 77.95 77.95

49 77.86 77.86

50 77.93 77.93

51 77.66 77.66

52 77.69 77.79 77.49

53 77.66 77.76 77.46

54 78.1 78.2 77.9

55 78.2 78.3 78.0

56 77.97 78.07 77.77

57 78.36 78.46 78.16

58 77.89 77.99 77.69

59 78.66 78.76 78.46

60 78.61 78.71 78.41

61 78.64 78.74 78.44

62 77.59 77.69 77.39

63 77.96 78.06 77.76

64 78.37 78.47 78.17

65 78.14 78.24 77.94

66 77.98 78.08 77.78

67 78.2 78.3 78.0

68 78.51 78.61 78.31

69 78.55 78.65 78.35

70 78.35 78.45 78.15

71 77.85 77.95 77.65

72 78.25 78.35 78.05

73 78.05 78.15 77.85

74 78.51 78.61 78.31

75 78.22 78.32 78.02

76 78.32 78.42 78.12

77 78.26 78.36 78.06

78 78.49 78.59 78.29

79 78.15 78.25 77.95

80 78.24 78.34 78.04

81 78.26 78.36 78.06

82 78.34 78.44 78.14

83 78.25 78.35 78.05

84 78.01 78.11 77.81

85 77.99 78.09 77.79

86 78 78.1 77.8

F1
(%

)

76

76.6

77.2

77.8

78.4

79

Training Epochs

0 10 20 30 40 50 60 70 80 90

�1

(d) German (F1 scales between 76%-79%)

Figure 4: Average F1 score for each epoch of the ten runs of our model with both document-level and
corpus-level attentions. Epochs 1-50 are the pre-training phase and 51-100 are the fine-tuning phase.

name tagging performance by introducing ad-
ditional annotations from related tasks such as
entity linking and part-of-speech tagging.

• Join-learning with Language Model Peters
et al. (2017); Liu et al. (2017); Peters et al.
(2018) leverage a pre-trained language model
on a large external corpus to enhance the se-
mantic representations of words in the local cor-
pus. Peters et al. (2018) achieve a high score on
the CoNLL-2003 English dataset using a giant
language model pre-trained on a 1 Billion Word
Benchmark (Chelba et al., 2013).

Table 3 presents the performance comparison
among the baselines, the aforementioned state-
of-the-art methods, and our proposed methods.
Adding only the document-level attention offers a
F1 gain of between 0.37% and 1.25% on Dutch,
English, and German. Similarly, the addition of
the corpus-level attention yields a F1 gain be-
tween 0.46% to 1.08% across all four languages.
The model with both attentions outperforms our
baseline method by 1.60%, 0.56%, and 0.79% on
Dutch, English, and German, respectively. Using
a paired t-test between our proposed model and
the baselines on 10 randomly sampled subsets, we
find that the improvements are statistically signifi-
cant (p ≤ 0.015) for all settings and all languages.

By incorporating the document-level and
corpus-level attentions, we achieve state-of-the-art
performance on the Dutch (NLD), Spanish (ESP)
and German (DEU) datasets. For English, our
methods outperform the state-of-the-art methods
in the “Vanilla Name Tagging” category. Since
the document-level and corpus-level attentions in-
troduce redundant and topically related informa-
tion, our models are compatible with the language
model enhanced approaches. It is interesting to
explore the integration of these two methods, but
we leave this to future explorations.

Figure 4 presents, for each language, the learn-
ing curves of the full models (i.e., with both
document-level and corpus-level attentions). The
learning curve is computed by averaging the F1
scores of the ten runs at each epoch. We first pre-
train a baseline Bi-LSTM CRF model from epoch
1 to 50. Then, starting at epoch 51, we incor-
porate the document-level and corpus-level atten-
tions to fine-tune the entire model. As shown in
Figure 4, when adding the attentions at epoch 51,
the F1 score drops significantly as new parameters
are introduced to the model. The model gradually
adapts to the new information, the F1 score rises,
and the full model eventually outperforms the pre-
trained model. The learning curves strongly prove
the effectiveness of our proposed methods.

91

Code Model F1 (%)
(Gillick et al., 2015) reported 82.84
(Lample et al., 2016) reported 81.74

NLD

(Yang et al., 2017) reported 85.19

Our Baseline mean 85.43
max 85.80

Doc-lvl Attention mean 86.82
max 87.05

Corpus-lvl Attention mean 86.41
max 86.88

Both
mean 87.14
max 87.40
∆ +1.60

ESP

(Gillick et al., 2015) reported 82.95
(Lample et al., 2016) reported 85.75
(Yang et al., 2017) reported 85.77

Our Baseline mean 85.33
max 85.51

Corpus-lvl Attention mean 85.77
max 86.01
∆ +0.50

(Luo et al., 2015) reported 91.20

ENG

(Lample et al., 2016) reported 90.94
(Ma and Hovy, 2016b) reported 91.21
(Liu et al., 2017) reported 91.35
(Peters et al., 2017) reported 91.93
(Peters et al., 2018) reported 92.22

Our Baseline mean 90.97
max 91.23

Doc-lvl Attention mean 91.43
max 91.60

Corpus-lvl Attention mean 91.41
max 91.71

Both
mean 91.64
max 91.81
∆ +0.58

(Gillick et al., 2015) reported 76.22

DEU

(Lample et al., 2016) reported 78.76

Our Baseline mean 78.15
max 78.42

Doc-lvl Attention mean 78.90
max 79.19

Corpus-lvl Attention mean 78.53
max 78.88

Both
mean 78.83
max 79.21
∆ +0.79

Table 3: Performance of our methods versus the
baseline and state-of-the-art models.

We also compare our approach with a sim-
ple rule-based propagation method, where we use
token-level majority voting to make labels con-
sistent on document-level and corpus-level. The
score of document-level propagation on English is
90.21% (F1), and the corpus-level propagation is
89.02% which are both lower than the BiLSTM-
CRF baseline 90.97%.

3.4 Qualitative Analysis

Table 5 compares the name tagging results from
the baseline model and our best models. All ex-

amples are selected from the development set.
In the Dutch example, “Granada” is the name

of a city in Spain, but also the short name of
“Granada Media”. Without ORG related con-
text, “Granada” is mistakenly tagged as LOC by
the baseline model. However, the document-level
and corpus-level supporting evidence retrieved by
our method contains the ORG name “Granada
Media”, which strongly indicates “Granada” to
be an ORG in the query sentence. By adding the
document-level and corpus-level attentions, our
model successfully tags “Granada” as ORG.

In example 2, the OOV word “Kaczmarek” is
tagged as ORG in the baseline output. In the re-
trieved document-level supporting sentences, PER
related contextual information, such as the pro-
noun “he”, indicates “Kaczmarek” to be a PER.
Our model correctly tags “Kaczmarek” as PER
with the document-level attention.

In the German example, “Grünen” (Greens) is
an OOV word in the training set. The character
embedding captures the semantic meaning of the
stem “Grün” (Green) which is a common non-
name word, so the baseline model tags “Grünen”
as O (outside of a name). In contrast, our model
makes the correct prediction by incorporating the
corpus-level attention because in the related sen-
tence from the corpus “Bundesvorstandes
der Grünen” (Federal Executive of the Greens)
indicates “Grünen” to be a company name.

3.5 Remaining Challenges

By investigating the remaining errors, most of the
named entity type inconsistency errors are elimi-
nated, however, a few new errors are introduced
due to the model propagating labels from negative
instances to positive ones. Figure 5 presents a neg-
ative example, where our model, being influenced
by the prediction “[B-ORG Indianapolis]”
in the supporting sentence, incorrectly predicts
“Indianapolis” as ORG in the query sen-
tence. A potential solution is to apply sentence
classification (Kim, 2014; Ji and Smith, 2017)
to the documents, divide the document into fine-
grained clusters of sentences, and select support-
ing sentences within the same cluster.

In morphologically rich languages, words may
have many variants. When retrieving supporting
evidence, our exact query word match criterion
misses potentially useful supporting sentences that
contain variants of the word. Normalization and

92

#1 Dutch
Baseline [B-LOC Granada] overwoog vervolgens een bod op Carlton uit te brengen, maar daar ziet het

concern nu van af.
Granada then considered issuing a bid for Carlton, but the concern now sees it.

Our model [B-ORG Granada] overwoog vervolgens een bod op Carlton uit te brengen, maar daar ziet het
concern nu van af.

D-lvl sentences [B-ORG Granada] [I-ORG Media] neemt belangen in United News.
Granada Media takes interests in United News.

C-lvl sentences Het Britse concern [B-ORG Granada] [I-ORG Media] heeft voor 1,75 miljard pond sterling (111
miljard Belgische frank) aandelen gekocht van United News Media.
The British group Granada Media has bought shares of GBP 1.75 trillion (111 billion Belgian
francs) from United News Media.

#2 English
Baseline Initially Poland offered up to 75 percent of Ruch but in March [ORG Kaczmarek] cancelled the

tender and offered a minority stake with an option to increase the equity.
Our model Initially Poland offered up to 75 percent of Ruch but in March [PER Kaczmarek] cancelled the

tender and offered a minority stake with an option to increase the equity.
D-lvl sentences [PER Kaczmarek] said in May he was unhappy that only one investor ended up bidding for Ruch.
#3 German
Baseline Diese Diskussion werde ausschlaggebend sein für die Stellungnahme der Grünen in dieser Frage.

This discussion will be decisive for the opinion of the Greens on this question.
Our model Diese Diskussion werde ausschlaggebend sein für die Stellungnahme der [B-ORG Grünen] in dieser

Frage.
C-lvl sentences Auch das Mitglied des Bundesvorstandes der [B-ORG Grünen], Helmut Lippelt, sprach sich für ein

Berufsheer au.
Helmut Lippelt, a member of the Federal Executive of the Greens, also called for a
professional army.

#4 Negative Example
Reference [B-LOC Indianapolis] 1996-12-06
Our model [B-ORG Indianapolis] 1996-12-06
D-lvl sentence The injury-plagued [B-ORG Indianapolis] [I-ORG Colts] lost another quarterback on Thursday but

last year's AFC finalists rallied together to shoot down the Philadelphia Eagles 37-10 in a
showdown of playoff contenders.

* D-lvl sentences: document-level supporting sentences.
* C-lvl sentences: corpus-level supporting sentences.

Figure 5: Comparison of name tagging results between the baseline and our methods.

morphological analysis can be applied in this case
to help fetch supporting sentences.

4 Related Work

Name tagging methods based on sequence label-
ing have been extensively studied recently. Huang
et al. (2015) and Lample et al. (2016) proposed
a neural architecture consisting of a bi-directional
long short-term memory network (Bi-LSTM) en-
coder and a conditional random field (CRF) out-
put layer (Bi-LSTM CRF). This architecture has
been widely explored and demonstrated to be ef-
fective for sequence labeling tasks. Efforts incor-
porated character level compositional word em-
beddings, language modeling, and CRF re-ranking
into the Bi-LSTM CRF architecture which im-
proved the performance (Ma and Hovy, 2016a;
Liu et al., 2017; Sato et al., 2017; Peters et al.,
2017, 2018). Similar to these studies, our ap-
proach is also based on a Bi-LSTM CRF archi-
tecture. However, considering the limited contexts
within each individual sequence, we design two
attention mechanisms to further incorporate top-
ically related contextual information on both the
document-level and corpus-level.

There have been efforts in other areas of infor-
mation extraction to exploit features beyond indi-
vidual sequences. Early attempts (Mikheev et al.,
1998; Mikheev, 2000) on MUC-7 name tagging
dataset used document centered approaches. A
number of approaches explored document-level
features (e.g., temporal and co-occurrence pat-
terns) for event extraction (Chambers and Juraf-
sky, 2008; Ji and Grishman, 2008; Liao and Gr-
ishman, 2010; Do et al., 2012; McClosky and
Manning, 2012; Berant et al., 2014; Yang and
Mitchell, 2016). Other approaches leveraged fea-
tures from external resources (e.g., Wiktionary or
FrameNet) for low resource name tagging and
event extraction (Li et al., 2013; Huang et al.,
2016; Liu et al., 2016; Zhang et al., 2016; Cotterell
and Duh, 2017; Zhang et al., 2017; Huang et al.,
2018). Yaghoobzadeh and Schütze (2016) aggre-
gated corpus-level contextual information of each
entity to predict its type and Narasimhan et al.
(2016) incorporated contexts from external infor-
mation sources (e.g., the documents that contain
the desired information) to resolve ambiguities.
Compared with these studies, our work incorpo-
rates both document-level and corpus-level con-

93

textual information with attention mechanisms,
which is a more advanced and efficient way to cap-
ture meaningful additional features. Additionally,
our model is able to learn how to regulate the in-
fluence of the information outside the local context
using gating mechanisms.

5 Conclusions and Future Work

We propose document-level and corpus-level at-
tentions for name tagging. The document-level
attention retrieves additional supporting evidence
from other sentences within the document to en-
hance the local contextual information of the
query word. When the query word is unique in
the document, the corpus-level attention searches
for topically related sentences in the corpus. Both
attentions dynamically weight the retrieved con-
textual information and emphasize the information
most relevant to the query context. We present
gating mechanisms that allow the model to reg-
ulate the influence of the supporting evidence on
the predictions. Experiments demonstrate the ef-
fectiveness of our approach, which achieves state-
of-the-art results on benchmark datasets.

We plan to apply our method to other tasks,
such as event extraction, and explore integrating
language modeling into this architecture to further
boost name tagging performance.

Acknowledgments

This work was supported by the U.S. DARPA
AIDA Program No. FA8750-18-2-0014,
LORELEI Program No. HR0011-15-C-0115, Air
Force No. FA8650-17-C-7715, NSF IIS-1523198
and U.S. ARL NS-CTA No. W911NF-09-2-0053.
The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation
here on.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
2015 International Conference on Learning Repre-
sentations.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D Manning.
2014. Modeling biological processes for reading
comprehension. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research.

Léon Bottou. 2010. Large-scale machine learning with
stochastic gradient descent. In Proceedings of the
2010 International Conference on Computational
Statistics.

Nathanael Chambers and Dan Jurafsky. 2008. Jointly
combining implicit constraints improves temporal
ordering. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Process-
ing.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Nancy Chinchor and Patricia Robinson. 1997. Muc-7
named entity task definition. In Proceedings of the
7th Conference on Message Understanding.

Ryan Cotterell and Kevin Duh. 2017. Low-
resource named entity recognition with cross-
lingual, character-level neural conditional random
fields. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing.

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
inference for event timeline construction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning.

R. Florian, H. Hassan, A. Ittycheriah, H. Jing,
N. Kambhatla, X. Luo, N. Nicolov, and S. Roukos.
2004. A statistical model for multilingual entity
detection and tracking. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (HLT-NAACL 2004).

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2015. Multilingual language process-
ing from bytes. arXiv preprint arXiv:1512.00103.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional lstm. In Proceedings of the 2013 IEEE
Workshop on Automatic Speech Recognition and
Understanding.

Ulf Hermjakob, Qiang Li, Daniel Marcu, Jonathan
May, Sebastian J. Mielke, Nima Pourdamghani,

94

Michael Pust, Xing Shi, Kevin Knight, Tomer Lev-
inboim, Kenton Murray, David Chiang, Boliang
Zhang, Xiaoman Pan, Di Lu, Ying Lin, and Heng
Ji. 2017. Incident-driven machine translation and
name tagging for low-resource languages. Machine
Translation, pages 1–31.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics.

Lifu Huang, Kyunghyun Cho, Boliang Zhang, Heng
Ji, and Kevin Knight. 2018. Multi-lingual common
semantic space construction via cluster-consistent
word embedding. arXiv preprint arXiv:1804.07875.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. Pro-
ceedings of the 2008 Annual Meeting of the Associ-
ation for Computational Linguistics.

Yangfeng Ji and Noah Smith. 2017. Neural discourse
structure for text categorization. Proceedings of the
2017 Annual Meeting of the Association for Compu-
tational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of 2016 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics.

Liyuan Liu, Jingbo Shang, Frank Xu, Xiang Ren, Huan
Gui, Jian Peng, and Jiawei Han. 2017. Empower
sequence labeling with task-aware neural language
model.

Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and
Jun Zhao. 2016. Leveraging framenet to improve
automatic event detection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing.

Xuezhe Ma and Eduard Hovy. 2016a. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf.

Xuezhe Ma and Eduard Hovy. 2016b. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics.

David McClosky and Christopher D Manning. 2012.
Learning constraints for consistent timeline extrac-
tion. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning.

Andrei Mikheev. 2000. Document centered approach
to text normalization. In Proceedings of the 23rd
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 136–143. ACM.

Andrei Mikheev, Claire Grover, and Marc Moens.
1998. Description of the ltg system used for muc-
7. In Seventh Message Understanding Conference
(MUC-7): Proceedings of a Conference Held in
Fairfax, Virginia, April 29-May 1, 1998.

Karthik Narasimhan, Adam Yala, and Regina Barzilay.
2016. Improving information extraction by acquir-
ing external evidence with reinforcement learning.
arXiv preprint arXiv:1603.07954.

Matthew E Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Nils Reimers and Iryna Gurevych. 2017. Optimal hy-
perparameters for deep lstm-networks for sequence
labeling tasks. arXiv preprint arXiv:1707.06799.

Motoki Sato, Hiroyuki Shindo, Ikuya Yamada, and Yuji
Matsumoto. 2017. Segment-level neural conditional
random fields for named entity recognition. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the 2003 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics.

95

Yadollah Yaghoobzadeh and Hinrich Schütze.
2016. Corpus-level fine-grained entity typing
using contextual information. arXiv preprint
arXiv:1606.07901.

Bishan Yang and Tom Mitchell. 2016. Joint extrac-
tion of events and entities within a document con-
text. arXiv preprint arXiv:1609.03632.

Zhilin Yang, Ruslan Salakhutdinov, and William W
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. arXiv
preprint arXiv:1703.06345.

David Yarowsky. 2003. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proc.
ACL1995.

Boliang Zhang, Di Lu, Xiaoman Pan, Ying Lin, Hal-
idanmu Abudukelimu, Heng Ji, and Kevin Knight.
2017. Embracing non-traditional linguistic re-
sources for low-resource language name tagging. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers).

Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish
Vaswani, Heng Ji, Kevin Knight, and Daniel Marcu.
2016. Name tagging for low-resource incident lan-
guages based on expectation-driven learning. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

96

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 97–107
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Pervasive Attention: 2D Convolutional Neural Networks
for Sequence-to-Sequence Prediction

Maha Elbayad1,2 Laurent Besacier1 Jakob Verbeek2

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, LJK, F-38000 Grenoble France
1 firstname.lastname@univ-grenoble-alpes.fr

2 firstname.lastname@inria.fr

Abstract
Current state-of-the-art machine translation
systems are based on encoder-decoder archi-
tectures, that first encode the input sequence,
and then generate an output sequence based
on the input encoding. Both are interfaced
with an attention mechanism that recombines
a fixed encoding of the source tokens based
on the decoder state. We propose an alterna-
tive approach which instead relies on a sin-
gle 2D convolutional neural network across
both sequences. Each layer of our network re-
codes source tokens on the basis of the out-
put sequence produced so far. Attention-like
properties are therefore pervasive throughout
the network. Our model yields excellent re-
sults, outperforming state-of-the-art encoder-
decoder systems, while being conceptually
simpler and having fewer parameters.

1 Introduction

Deep neural networks have made a profound im-
pact on natural language processing technology
in general, and machine translation in particular
(Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Jean et al., 2015; LeCun et al., 2015). Ma-
chine translation (MT) can be seen as a sequence-
to-sequence prediction problem, where the source
and target sequences are of different and vari-
able length. Current state-of-the-art approaches
are based on encoder-decoder architectures (Blun-
som, 2013; Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2015). The encoder “reads” the
variable-length source sequence and maps it into
a vector representation. The decoder takes this
vector as input and “writes” the target sequence,
updating its state each step with the most recent
word that it generated. The basic encoder-decoder
model is generally equipped with an attention
model (Bahdanau et al., 2015), which repetitively
re-accesses the source sequence during the decod-
ing process. Given the current state of the decoder,

a probability distribution over the elements in the
source sequence is computed, which is then used
to select or aggregate features of these elements
into a single “context” vector that is used by the
decoder. Rather than relying on the global rep-
resentation of the source sequence, the attention
mechanism allows the decoder to “look back” into
the source sequence and focus on salient positions.
Besides this inductive bias, the attention mecha-
nism bypasses the problem of vanishing gradients
that most recurrent architectures encounter.

However, the current attention mechanisms
have limited modeling abilities and are generally a
simple weighted sum of the source representations
(Bahdanau et al., 2015; Luong et al., 2015), where
the weights are the result of a shallow matching
between source and target elements. The atten-
tion module re-combines the same source token
codes and is unable to re-encode or re-interpret the
source sequence while decoding.

To address these limitations, we propose an al-
ternative neural MT architecture, based on deep
2D convolutional neural networks (CNNs). The
product space of the positions in source and tar-
get sequences defines the 2D grid over which the
network is defined. The convolutional filters are
masked to prohibit accessing information derived
from future tokens in the target sequence, obtain-
ing an autoregressive model akin to generative
models for images and audio waveforms (Oord
et al., 2016a,b). See Figure 1 for an illustration.

This approach allows us to learn deep feature
hierarchies based on a stack of 2D convolutional
layers, and benefit from parallel computation dur-
ing training. Every layer of our network computes
features of the the source tokens, based on the tar-
get sequence produced so far, and uses these to
predict the next output token. Our model therefore
has attention-like capabilities by construction, that
are pervasive throughout the layers of the network,

97

Alice

a

dit

à

Bob

que

Charlie

<
s
t
a
r
t
>

A
l
i
c
e

t
o
l
d

B
o
b

t
h
a
t

C
h
a
r
l
i
e

t
o
l
d

Target sequence
S
ou

rc
e
se
q
u
en
ce

Figure 1: Convolutional layers in our model use
masked 3×3 filters so that features are only com-
puted from previous output symbols. Illustration
of the receptive fields after one (dark blue) and two
layers (light blue), together with the masked part
of the field of view of a normal 3×3 filter (gray).

rather than using an “add-on” attention model.
We validate our model with experiments on

the IWSLT 2014 German-to-English (De-En) and
English-to-German(En-De) tasks. We improve on
state-of-the-art encoder-decoder models with at-
tention, while being conceptually simpler and hav-
ing fewer parameters.

In the next section we will discuss related work,
before presenting our approach in detail in Sec-
tion 3. We present our experimental evaluation re-
sults in Section 4, and conclude in Section 5.

2 Related work

The predominant neural architectures in machine
translation are recurrent encoder-decoder net-
works (Graves, 2012; Sutskever et al., 2014; Cho
et al., 2014). The encoder is a recurrent neu-
ral network (RNN) based on gated recurrent units
(Hochreiter and Schmidhuber, 1997; Cho et al.,
2014) to map the input sequence into a vector rep-
resentation. Often a bi-directional RNN (Schuster
and Paliwal, 1997) is used, which consists of two
RNNs that process the input in opposite directions,
and the final states of both RNNs are concatenated
as the input encoding. The decoder consists of a
second RNN, which takes the input encoding, and
sequentially samples the output sequence one to-

ken at a time whilst updating its state.

While best known for their use in visual recog-
nition models, (Oord et al., 2016a; Salimans et al.,
2017; Reed et al., 2017; Oord et al., 2016c).
Recent works also introduced convolutional net-
works to natural language processing. The first
convolutional apporaches to encoding variable-
length sequences consist of stacking word vec-
tors, applying 1D convolutions then aggregating
with a max-pooling operator over time (Collobert
and Weston, 2008; Kalchbrenner et al., 2014; Kim,
2014). For sequence generation, the works of
Ranzato et al. (2016); Bahdanau et al. (2017);
Gehring et al. (2017a) mix a convolutional en-
coder with an RNN decoder. The first entirely
convolutional encoder-decoder models where in-
troduced by Kalchbrenner et al. (2016b), but they
did not improve over state-of-the-art recurrent ar-
chitectures. Gehring et al. (2017b) outperformed
deep LSTMs for machine translation 1D CNNs
with gated linear units (Meng et al., 2015; Oord
et al., 2016c; Dauphin et al., 2017) in both the en-
coder and decoder modules.

Such CNN-based models differ from their
RNN-based counterparts in that temporal connec-
tions are placed between layers of the network,
rather than within layers. See Figure 2 for a con-
ceptual illustration. This apparently small dif-
ference in connectivity has two important conse-
quences. First, it makes the field of view grow lin-
early across layers in the convolutional network,
while it is unbounded within layers in the recur-
rent network. Second, while the activations in the
RNN can only be computed in a sequential man-
ner, they can be computed in parallel across the
temporal dimension in the convolutional case.

In all the recurrent or convolutional models
mentioned above, each of the input and out-
put sequences are processed separately as a one-
dimensional sequence by the encoder and decoder
respectively. Attention mechanisms (Bahdanau
et al., 2015; Luong et al., 2015; Xu et al., 2015)
were introduced as an interface between the en-
coder and decoder modules. During encoding, the
attention model finds which hidden states from the
source code are the most salient for generating the
next target token. This is achieved by evaluating
a “context vector” which, in its most basic form,
is a weighted average of the source features. The
weights of the summation are predicted by a small
neural network that scores these features condi-

98

<start> The cat sat on the

The cat sat on the mat

Figure 2: Illustration of decoder network topol-
ogy with two hidden layers, nodes at bottom and
top represent input and output respectively. Hor-
izontal connections are used for RNNs, diagonal
connections for convolutional networks. Vertical
connections are used in both cases. Parameters
are shared across time-steps (horizontally), but not
across layers (vertically).

tioning on the current decoder state.
Vaswani et al. (2017) propose an architecture re-

lying entirely on attention. Positional input coding
together with self-attention (Parikh et al., 2016;
Lin et al., 2017) replaces recurrent and convolu-
tional layers. Huang et al. (2018) use an attention-
like gating mechanism to alleviate an assumption
of monotonic alignment in the phrase-based trans-
lation model of Wang et al. (2017). Deng et al.
(2018) treat the sentence alignment as a latent vari-
able which they infer using a variational inference
network during training to optimize a variational
lower-bound on the log-likelihood.

Beyond uni-dimensional encoding/decoding.
Kalchbrenner et al. (2016a) proposed a 2D LSTM
model similar to our 2D CNN for machine trans-
lation. Like our model, a 2D grid is defined across
the input and output sequences, as in Figure 1.
In their model, each cell takes input from its left
and bottom neighbor. In a second LSTM stream,
each cell takes input from its left and top neigh-
bor, as well as from the corresponding cell in the
first stream. They also observed that such a struc-
ture implements an implicit form of attention, by
producing an input encoding that depends on the
output sequence produced so far.

Wu et al. (2017) used a CNN over the 2D
source-target representation as in our work, but
only as a discriminator in an adversarial training
setup. They do not use masked convolutions, since

their CNN is used to predict if a given source-
target pair is a human or machine translation. A
standard encoder-decoder model with attention is
used to generate translations.

3 Translation by 2D Convolution

In this section we present our 2D CNN translation
model in detail.

Input source-target tensor. Given the source
and target pair (s, t) of lengths |s| and |t| respec-
tively, we first embed the tokens in ds and dt di-
mensional spaces via look-up tables. The word
embeddings {x1, . . . , x|s|} and {y1, . . . , y|t|} are
then concatenated to form a 3D tensor X ∈
R|t|×|s|×f0 , with f0 = dt + ds, where

Xij = [yi xj]. (1)

This joint unigram encoding is the input to our
convolutional network.

Convolutional layers. We use the
DenseNet (Huang et al., 2017) convolutional
architecture, which is the state of the art for
image classification tasks. Layers are densely
connected, meaning that each layer takes as input
the activations of all the preceding layers, rather
than just the last one, to produce its g feature
maps. The parameter g is called the “growth rate”
as it is the number of appended channels to the
network’s output at each layer. The long-distance
connections in the network improve gradient flow
to early network layers during training, which is
beneficial for deeper networks.

Each layer first batch-normalizes (Ioffe and
Szegedy, 2015) its input and apply a ReLU (Nair
and Hinton, 2010) non-linearity. To reduce the
computation cost, each layer first computes 4g
channels using a 1×1 convolution from the f0 +
(l − 1)g input channels to layer l ∈ {1, . . . , L}.
This is followed by a second batch-normalization
and ReLU non-linearity. The second convolution
has (k × dk2e) kernels, i.e. masked as illustrated
in Figure 1, and generates the g output features
maps to which we apply dropout (Srivastava et al.,
2014). The architecture of the densely connected
network is illustrated in Figure 3.

We optionally use gated linear units (Dauphin
et al., 2017) in both convolutions, these double
the number of output channels, and we use half
of them to gate the other half.

99

In
pu

t

B
N

R
eL

U

C
on

v(
1)

B
N

R
eL

U

C
on

v(
k)

D
ro

po
ut

Figure 3: Architecture of the DenseNet at block
level (top), and within each block (bottom).

Target sequence prediction. Starting from the
initial f0 feature maps, each layer l ∈ {1, . . . , L}
of our DenseNet produces a tensor H l of size
|t| × |s| × fl, where fl is the number of output
channels of that layer. To compute a distribution
over the tokens in the output vocabulary, we need
to collapse the second dimension of the tensor,
which is given by the variable length of the input
sequence, to retrieve a unique encoding for each
target position.

The simplest aggregation approach is to apply
max-pooling over the input sequence to obtain a
tensor Hpool ∈ R|t|×fL , i.e.

H
pool
id = max

j∈{1,...,|s|}
HL
ijd. (2)

Alternatively, we can use average-pooling over the
input sequence:

H
pool
id =

1√
|s|

∑

j∈{1,...,|s|}
HL
ijd. (3)

The scaling with the inverse square-root of the
source length acts as a variance stabilization term,
which we find to be more effective in practice than
a simple averaging.

The pooled features are then transformed to pre-
dictions over the output vocabulary V , by linearly
mapping them with a matrix E ∈ R|V|×fL to the
vocabulary dimension |V|, and then applying a
soft-max. Thus the probability distribution over
V for the i-th output token is obtained as

pi = SoftMax(EHpool
i). (4)

Alternatively, we can use E to project to dimen-
sion dt, and then multiply with the target word
embedding matrix used to define the input tensor.
This reduces the number of parameters and gener-
ally improves the performance.

Implicit sentence alignment. For a given out-
put token position i, the max-pooling operator of
Eq. (2) partitions the fL channels by assigning
them across the source tokens j. Let us define

Bij = {d ∈ {1, . . . , fL}| j = argmax(HL
ijd)}

as the channels assigned to source token j for out-
put token i. The energy that enters into the soft-
max to predict token w ∈ V for the i-th output
position is given by

eiw =
∑

d∈{1,...,fL}
EwdH

pool
id (5)

=
∑

j∈{1,...,|s|}

∑

d∈Bij
EwdH

L
ijd. (6)

The total contribution of the j-th input token is
thus given by

αij =
∑

d∈Bij
EwdH

L
ijd, (7)

where we dropped the dependence on w for sim-
plicity. As we will show experimentally in the next
section, visualizing the values αij for the ground-
truth output tokens, we can recover an implicit
sentence alignment used by the model.

Self attention. Besides pooling we can collapse
the source dimension of the feature tensor with an
attention mechanism. This mechanism will gen-
erate a tensor Hatt that can be used instead of, or
concatenated with, HPool.

We use the self-attention approach of Lin et al.
(2017), which for output token i computes the at-
tention vector ρi ∈ R|s| from the activations HL

i :

ρi = SoftMax
(
HL
i w + b1|s|

)
, (8)

Hatt
i =

√
|s|ρ>i HL

i , (9)

where w ∈ RfL and b ∈ R are parameters of the
attention mechanism. Scaling of attention vectors
with the square-root of the source length was also
used by Gehring et al. (2017b), and we found it ef-
fective here as well as in the average-pooling case.

4 Experimental evaluation

In this section, we present our experimental setup,
followed by quantitative results, qualitative ex-
amples of implicit sentence alignments from our
model, and a comparison to the state of the art.

100

4.1 Experimental setup

Data and pre-processing. We experiment with
the IWSLT 2014 bilingual dataset (Cettolo et al.,
2014), which contains transcripts of TED talks
aligned at sentence level, and translate between
German (De) and English (En) in both directions.
Following the setup of (Edunov et al., 2018),
sentences longer than 175 tokens and pairs with
length ratio exceeding 1.5 were removed from the
original data. There are 160+7K training sentence
pairs, 7K of which are separated and used for vali-
dation/development. We report results on a test set
of 6,578 pairs obtained by concatenating dev2010
and tst2010-2013. We tokenized and lowercased
all data using the standard scripts from the Moses
toolkit (Koehn et al., 2007).

For open-vocabulary translation, we segment
sequences using joint byte pair encoding (Sen-
nrich et al., 2016) with 14K merge operations on
the concatenation of source and target languages.
This results in a German and English vocabularies
of around 12K and 9K types respectively.

Implementation details. Unless stated other-
wise, we use DenseNets with masked convolu-
tional filters of size 5× 3, as given by the light
blue area in Figure 1. To train our models, we
use maximum likelihood estimation (MLE) with
Adam (β1 = 0.9, β2 = 0.999, ε = 1e−8) starting
with a learning rate of 5e−4 that we scale by a fac-
tor of 0.8 if no improvement (δ ≤ 0.01) is noticed
on the validation loss after three evaluations, we
evaluate every 8K updates.

After training all models up to 40 epochs, the
best performing model on the validation set is used
for decoding the test set. We use a beam-search
of width 5 without any length or coverage penalty
and measure translation quality using the BLEU
metric (Papineni et al., 2002).

Baselines. For comparison with state-of-the-
art architectures, we implemented a bidirec-
tional LSTM encoder-decoder model with dot-
product attention (Bahdanau et al., 2015; Luong
et al., 2015) using PyTorch (Paszke et al., 2017),
and used Facebook AI Research Sequence-to-
Sequence Toolkit (Gehring et al., 2017b) to train
the ConvS2S and Transformer (Vaswani et al.,
2017) models on our data.

For the Bi-LSTM encoder-decoder, the encoder
is a single layer bidirectional LSTM with input
embeddings of size 128 and a hidden state of size

Model BLEU Flops×105 #params

Average 31.57 ± 0.11 3.63 7.18M
Max 33.70 ± 0.06 3.44 7.18M
Attn 32.07 ± 0.13 3.61 7.24M

Max, gated 33.66 ± 0.16 3.49 9.64M
[Max, Attn] 33.81 ± 0.03 3.51 7.24M

Table 1: Our model (L=24, g=32, ds=dt=128)
with different pooling operators and using gated
convolutional units.

256 (128 in each direction). The decoder is a sin-
gle layer LSTM with similar input size and a hid-
den size of 256, the target input embeddings are
also used in the pre-softmax projection. For regu-
larization, we apply a dropout of rate 0.2 to the in-
puts of both encoder and decoder and to the output
of the decoder prior to softmax. As in (Bahdanau
et al., 2015), we refer to this model as RNNsearch.

The ConvS2S model we trained has embed-
dings of dimension 256, a 16-layers encoder and
12-layers decoder. Each convolution uses 3×1 fil-
ters and is followed by a gated linear unit with a
total of 2 × 256 channels. Residual connections
link the input of a convolutional block to its out-
put. We first trained the default architecture for
this dataset as suggested in FairSeq (Gehring et al.,
2017b), which has only 4 layers in the encoder and
3 in the decoder, but achieved better results with
the deeper version described above. The model
is trained with MLE using Nesterov accelerated
gradient with a momentum of 0.99 and an initial
learning rate of 0.25 decaying by a factor of 0.1
every epoch. ConvS2S is also regularized with a
dropout rate of 0.2.

For the transformer model, use the settings of
(Vaswani et al., 2017). We use token embeddings
of dimension 512, and the encoder and decoder
have 6 layers and 8 attention heads. For the in-
ner layer in the per-position feed-forawrd network
we use dff = 2048. For MLE training we use
Adam (β1 = 0.9, β2 = 0.98, ε = 1e−8) (Kingma
and Ba, 2015), and a learning rate starting from
1e−5 that is increased during 4,000 warm-up steps
then used a learning rate of 5e−4 that follows an
inverse-square-root schedule afterwards (Vaswani
et al., 2017). Similar to previous models we set the
dropout rate to 0.2.

4.2 Experimental results
Architecture evaluation. In this section we ex-
plore the impact of several parameters of our

101

(a) L = 20, g = 32 (b) L = 20, d = 128 (c) d = 128, g = 32

Figure 4: Impact of token embedding size, number of layers (L), and growth rate (g).

model: the token embedding dimension, depth,
growth rate and filter sizes. We also evaluate dif-
ferent aggregation mechanisms across the source
dimension: max-pooling, average-pooling, and at-
tention.

In each chosen setting, we train five models
with different initializations and report the mean
and standard deviation of the BLEU scores. We
also state the number of parameters of each model
and the computational cost of training, estimated
in a similar way as Vaswani et al. (2017), based on
the wall clock time of training and the GPU single
precision specs.

In Table 1 we see that using max-pooling in-
stead average-pooling across the source dimen-
sion increases the performance with around 2
BLEU points. Scaling the average representa-
tion with

√
|s| Eq. (3) helped improving the per-

formance but it is still largely outperformed by
the max-pooling. Adding gated linear units on
top of each convolutional layer does not improve
the BLEU scores, but increases the variance due
to the additional parameters. Stand-alone self-
attention i.e. weighted average-pooling is slightly
better than uniform average-pooling but it is still
outperformed by max-pooling. Concatenating the
max-pooled features (Eq. (2)) with the represen-
tation obtained with self-attention (Eq. (9)) leads
to a small but significant increase in performance,
from 33.70 to 33.81. In the remainder of our ex-
periments we only use max-pooling for simplicity,
unless stated otherwise.

In Figure 4 we consider the effect of the token
embedding size, the growth rate of the network,
and its depth. The token embedding size together

with the growth rate g control the number of fea-
tures that are passed though the pooling operator
along the source dimension, and that can be used
used for token prediction. Using the same embed-
ding size d = dt = ds on both source and target,
the total number of features for token prediction
produced by the network is fL = 2d + gL. In
Figure 4 we see that for token embedding sizes
between 128 to 256 lead to BLEU scores vary
between 33.5 and 34. Smaller embedding sizes
quickly degrade the performance to 32.2 for em-
beddings of size 64. The growth rate (g) has an im-
portant impact on performance, increasing it from
8 to 32 increases the BLEU scrore by more than
2.5 point. Beyond g = 32 performance saturates
and we observe only a small improvement. For a
good trade-off between performance and compu-
tational cost we choose g = 32 for the remaining
experiments. The depth of the network also has an
important impact on performance, increasing the
BLEU score by about 2 points when increasing the
depth from 8 to 24 layers. Beyond this point per-
formance drops due to over-fitting, which means
we should either increase the dropout rate or add
another level of regularization before considering
deeper networks. The receptive field of our model
is controlled by its depth and the filter size. In Ta-
ble 2, we note that narrower receptive fields are
better than larger ones with less layers at equiva-
lent complextities e.g. comparing (k = 3, L= 20)
to (k = 5, L = 12), and (k = 5, L = 16) with
(k=7, L=12).

Comparison to the state of the art. We com-
pare our results to the state of the art in Ta-

102

k L BLEU Flops×105 #params

3 16 32.99±0.08 2.47 4.32M
3 20 33.18±0.19 3.03 4.92M

5 8 31.79±0.09 0.63 3.88M
5 12 32.87±0.07 2.61 4.59M
5 16 33.34±0.12 3.55 5.37M
5 20 33.62±0.07 3.01 6.23M
5 24 33.70±0.06 3.44 7.18M
5 28 33.46±0.23 5.35 8.21M

7 12 32.58±0.12 2.76 5.76M

Table 2: Performance of our model (g = 32, ds =
dt = 128) for different filter sizes k and depths L
and filter sizes k.

ble 3 for both directions German-English (De-En)
and English-German (En-De). We refer to our
model as Pervasive Attention . Unless stated oth-
erwise, the parameters of all models are trained
using maximum likelihood estimation (MLE). For
some models we additionally report results ob-
tained with sequence level estimation (SLE, e.g.
using reinforcement learning approaches), typi-
cally aiming directly to optimize the BLEU mea-
sure rather than the likelihood of correct transla-
tion.

First of all we find that all results obtained using
byte-pair encodings (BPE) are superior to word-
based results. Our model has about the same num-
ber of parameters as RNNsearch, yet improves
performance by almost 3 BLEU points. It is also
better than the recent work of Deng et al. (2018)
on recurrent architectures with variational atten-
tion. Our model outperforms both the recent trans-
former approach of Vaswani et al. (2017) and the
convolutional model of Gehring et al. (2017b) in
both translation directions, while having about 3
to 8 times fewer parameters. Our model has an
equivalent training cost to the transformer (as im-
plemented in fairseq) while the convs2s imple-
mentation is well optimized with fast running 1d-
convolutions leading to shorter training times.

Performance across sequence lengths. In Fig-
ure 5 we consider translation quality as a func-
tion of sentence length, and compare our model
to RNNsearch, ConvS2S and Transformer. Our
model gives the best results across all sen-
tence lengths, except for the longest ones where
ConvS2S and Transformer are better. Overall,
our model combines the strong performance of
RNNsearch on short sentences with good perfor-

Figure 5: BLEU scores across sentence lengths.

mance of ConvS2S and Transformer on longer
ones.

Implicit sentence alignments. Following the
method described in Section 3, we illustrate in Fig-
ure 6 the implicit sentence alignments the max-
pooling operator produces in our model. For ref-
erence we also show the alignment produced by
our model using self-attention. We see that with
both max-pooling and attention qualitatively sim-
ilar implicit sentence alignments emerge.

Notice in the first example how the max-pool
model, when writing I’ve been working, looks at
arbeite but also at seit which indicates the past
tense of the former. Also notice some cases of
non-monotonic alignment. In the first example for
some time occurs at the end of the English sen-
tence, but seit einiger zeit appears earlier in the
German source. For the second example there
is non-monotonic alignment around the negation
at the start of the sentence. The first example
illustrates the ability of the model to translate
proper names by breaking them down into BPE
units. In the second example the German word
Karriereweg is broken into the four BPE units
karri,er,e,weg. The first and the fourth are mainly
used to produce the English a carreer, while for
the subsequent path the model looks at weg.

Finally, we can observe an interesting pattern
in the alignment map for several phrases across
the three examples. A rough lower triangular pat-
tern is observed for the English phrases for some
time, and it’s fantastic, and it’s not, a little step,
and in that direction. In all these cases the phrase
seems to be decoded as a unit, where features are
first taken across the entire corresponding source

103

(a) Max-pooling (b) Self-attention

(c) Max-pooling (d) Self-attention

(e) Max-pooling (f) Self-attention

Figure 6: Implicit BPE token-level alignments produced by our Pervasive Attention model. For the max-
pooling aggregation we visualize α obtained with Eq. (7) and for self-attention the weights ρ of Eq. (8).

104

Word-based De-En
Flops

(×105) # prms En-De # prms

Conv-LSTM (MLE) (Bahdanau et al., 2017) 27.56
Bi-GRU (MLE+SLE) (Bahdanau et al., 2017) 28.53

Conv-LSTM (deep+pos) (Gehring et al., 2017a) 30.4
NPMT + language model (Huang et al., 2018) 30.08 25.36

BPE-based
RNNsearch* (Bahdanau et al., 2015) 31.02 1.79 6M 25.92 7M

Varational attention (Deng et al., 2018) 33.10

Transformer** (Vaswani et al., 2017) 32.83 3.53 59M 27.68 61M
ConvS2S** (MLE) (Gehring et al., 2017b) 32.31 1.35 21M 26.73 22M

ConvS2S (MLE+SLE) (Edunov et al., 2018) 32.84

Pervasive Attention (this paper) 33.81± 0.03 3.51 7M 27.77± 0.1 7M

Table 3: Comparison to state-of-the art results on IWSLT German-English translation. (*): results ob-
tained using our implementation. (**): results obtained using FairSeq (Gehring et al., 2017b).

phrase, and progressively from the part of the
source phrase that remains to be decoded.

5 Conclusion

We presented a novel neural machine translation
architecture that departs from the encoder-decoder
paradigm. Our model jointly encodes the source
and target sequence into a deep feature hierarchy
in which the source tokens are embedded in the
context of a partial target sequence. Max-pooling
over this joint-encoding along the source dimen-
sion is used to map the features to a prediction for
the next target token. The model is implemented
as 2D CNN based on DenseNet, with masked con-
volutions to ensure a proper autoregressive factor-
ization of the conditional probabilities.

Since each layer of our model re-encodes the
input tokens in the context of the target sequence
generated so far, the model has attention-like prop-
erties in every layer of the network by construc-
tion. Adding an explicit self-attention module
therefore has a very limited, but positive, effect.
Nevertheless, the max-pooling operator in our
model generates implicit sentence alignments that
are qualitatively similar to the ones generated by
attention mechanisms. We evaluate our model on
the IWSLT’14 dataset, translation German to En-
glish and vice-versa. We obtain excellent BLEU
scores that compare favorably with the state of the
art, while using a conceptually simpler model with
fewer parameters.

We hope that our alternative joint source-target
encoding sparks interest in other alternatives to the
encoder-decoder model. In the future, we plan to

explore hybrid approaches in which the input to
our joint encoding model is not provided by token-
embedding vectors, but the output of 1D source
and target embedding networks, e.g. (bi-)LSTM or
1D convolutional. We also want to explore how
our model can be used to translate across multiple
language pairs.

Our PyTorch-based implementation is avail-
able at https://github.com/elbayadm/
attn2d.

References

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe,
J. Pineau, A. Courville, and Y. Bengio. 2017. An
actor-critic algorithm for sequence prediction. In
ICLR.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In ICLR.

N. Kalchbrenner P. Blunsom. 2013. Recurrent contin-
uous translation models. In ACL.

M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and
M. Federico. 2014. Report on the 11th IWSLT eval-
uation campaign. In IWSLT.

K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio.
2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
In EMNLP.

R. Collobert and J. Weston. 2008. A unified architec-
ture for natural language processing: Deep neural
networks with multitask learning. In ICML.

105

Y. Dauphin, A. Fan, M. Auli, and D. Grangier. 2017.
Language modeling with gated convolutional net-
works. In ICML.

Y. Deng, Y. Kim, J. Chiu, D. Guo, and A. Rush. 2018.
Latent alignment and variational attention. arXiv
preprint arXiv:1807.03756.

S. Edunov, M. Ott, M. Auli, D. Grangier, and M. Ran-
zato. 2018. Classical structured prediction losses for
sequence to sequence learning. In NAACL.

J. Gehring, M. Auli, D. Grangier, and Y. Dauphin.
2017a. A convolutional encoder model for neural
machine translation. In ACL.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and
Y. Dauphin. 2017b. Convolutional sequence to se-
quence learning. In ICML.

A. Graves. 2012. Sequence transduction with recurrent
neural networks. arXiv preprint arXiv:1211.3711.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–
1780.

G. Huang, Z. Liu, L. van der Maaten, and K. Wein-
berger. 2017. Densely connected convolutional net-
works. In CVPR.

P. Huang, C. Wang, S. Huang, D. Zhou, and L. Deng.
2018. Towards neural phrase-based machine trans-
lation. In ICLR.

S. Ioffe and C. Szegedy. 2015. Batch normalization:
Accelerating deep network training by reducing in-
ternal covariate shift. In ICML.

S. Jean, K. Cho, R. Memisevic, and Y. Bengio. 2015.
On using very large target vocabulary for neural ma-
chine translation. In ACL.

N. Kalchbrenner, I. Danihelka, and A. Graves. 2016a.
Grid long short-term memory. In ICLR.

N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den
Oord, A. Graves, and K. Kavukcuoglu. 2016b.
Neural machine translation in linear time. arXiv,
arXiv:1610.10099.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom.
2014. A convolutional neural network for modelling
sentences. In ACL.

Y. Kim. 2014. Convolutional neural networks for sen-
tence classification. In ACL.

D. Kingma and J. Ba. 2015. Adam: A method for
stochastic optimization. In ICLR.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. In ACL.

Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learn-
ing. Nature, 52:436–444.

Z. Lin, M. Feng, C. dos Santos, M. Yu, B. Xiang,
B. Zhou, and Y. Bengio. 2017. A structured self-
attentive sentence embedding. In ICLR.

T. Luong, H. Pham, and C. Manning. 2015. Effective
approaches to attention-based neural machine trans-
lation. In EMNLP.

F. Meng, Z. Lu, M. Wang, H. Li, W. Jiang, and Q. Liu.
2015. Encoding source language with convolutional
neural network for machine translation. In ACL.

V. Nair and G. Hinton. 2010. Rectified linear units im-
prove restricted Boltzmann machines. In ICML.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu. 2016a. Wavenet: a genera-
tive model for raw audio. In ISCA Speech Syntesis
Workshop.

A. van den Oord, N. Kalchbrenner, and
K. Kavukcuoglu. 2016b. Pixel recurrent neu-
ral networks. In ICML.

A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espe-
holt, A. Graves, and K. Kavukcuoglu. 2016c. Con-
ditional image generation with PixelCNN decoders.
In NIPS.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. In ACL.

A. Parikh, O. Täckström, D. Das, and J. Uszkoreit.
2016. A decomposable attention model for natural
language inference. In EMNLP.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison L. Antiga, and
A. Lerer. 2017. Automatic differentiation in py-
torch. In NIPS-W.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba.
2016. Sequence level training with recurrent neural
networks. In ICLR.

S. Reed, A. van den Oord, N. Kalchbrenner, S. Gómez
Colmenarejo, Z. Wang, D. Belov, and N. de Freitas.
2017. Parallel multiscale autoregressive density es-
timation. In ICML.

T. Salimans, A. Karpathy, X. Chen, and D. Kingma.
2017. PixelCNN++: Improving the PixelCNN with
discretized logistic mixture likelihood and other
modifications. In ICLR.

M. Schuster and K. Paliwal. 1997. Bidirectional
recurrent neural networks. Signal Processing,
45(11):2673–2681.

R. Sennrich, B. Haddow, and A. Birch. 2016. Neu-
ral machine translation of rare words with subword
units. In ACL.

106

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from overfitting.
JMLR.

I. Sutskever, O. Vinyals, and Q. Le. 2014. Sequence to
sequence learning with neural networks. In NIPS.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.
2017. Attention is all you need. In NIPS.

C. Wang, Y. Wang, P.-S. Huang, A. Mohamed,
D. Zhou, and L. Deng. 2017. Sequence modeling
via segmentations. In ICML.

L. Wu, Y. Xia, L. Zhao, F. Tian, T. Qin, J. Lai, and T.-Y.
Liu. 2017. Adversarial neural machine translation.
arXiv, arXiv:1704.06933.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhutdinov, R. Zemel, and Y. Bengio. 2015.
Show, attend and tell: Neural image caption genera-
tion with visual attention. In ICML.

107

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 108–118
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Comparing Attention-based Convolutional and Recurrent Neural
Networks: Success and Limitations in Machine Reading Comprehension

Matthias Blohm, Glorianna Jagfeld, Ekta Sood, Xiang Yu, Ngoc Thang Vu
Institute for Natural Language Processing (IMS)

Universität Stuttgart, Germany
{blohmms,jagfelga,soodea,xiangyu,thangvu}

@ims.uni-stuttgart.de

Abstract

We propose a machine reading comprehension
model based on the compare-aggregate frame-
work with two-staged attention that achieves
state-of-the-art results on the MovieQA ques-
tion answering dataset. To investigate the lim-
itations of our model as well as the behavioral
difference between convolutional and recur-
rent neural networks, we generate adversarial
examples to confuse the model and compare to
human performance. Furthermore, we assess
the generalizability of our model by analyz-
ing its differences to human inference, draw-
ing upon insights from cognitive science.

1 Introduction

Current state-of-the-art deep learning (DL) mod-
els outperform other techniques in many tasks
including computer vision (Krizhevsky et al.,
2012), speech recognition (Hinton et al., 2012)
and more recently natural language processing
(NLP) (Collobert et al., 2011). Neural-based
NLP systems often use word embeddings (Ben-
gio et al., 2003; Collobert and Weston, 2008;
Mikolov et al., 2013) which are then fed into
a convolutional neural network (CNN) (LeCun
et al., 1990; Waibel et al., 1990) or a recurrent
neural network (RNN) (Elman, 1990; Hochre-
iter and Schmidhuber, 1997) for further classifica-
tion. These approaches proved to be successful for
many NLP tasks (Mikolov et al., 2010; Kim, 2014;
Hu et al., 2014; Bahdanau et al., 2014). Along
with the success of DL in a wide range of appli-
cations, adversarial examples (Goodfellow et al.,
2014) - that aim to confuse the system - have
gained popularity in a wide range of research com-
munities such as computer vision and NLP, since
they can reveal the limitations in the generalizabil-
ity of the models. As opposed to adversarial ex-
amples in computer vision, which are computed

on continuous data and can thus easily be imper-
ceptible if desired, adversarial attacks in NLP en-
tail the necessity to perform discrete and percep-
tible changes to the data. Thus, attack methods
for computer vision such as the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2014) cannot
be directly applied to NLP.

Machine comprehension has recently received
increased interest in the NLP community (Yang
et al., 2015; Tapaswi et al., 2016; Rajpurkar et al.,
2016; Chen et al., 2016). Neural network models
perform reasonably well on many data sets with
different question answering setups, e.g. multi-
ple choice or answer generation (Wang and Jiang,
2016; Liu et al., 2017; Yu et al., 2018).

Among others, Wang and Jiang (2016) pro-
posed the compare-aggregate framework, which
uses an attention mechanism (Luong et al., 2015)
to compare the question and candidate answers,
and a CNN to aggregate information. However,
there is still an ongoing debate whether CNNs or
RNNs are more suitable to NLP (Yin et al., 2017),
and the behavioral differences between them are
still under research. Many papers reported re-
markable gains when combining these two models
in ensembles (Deng and Platt, 2014; Zhou et al.,
2015; Vu et al., 2016), since they process informa-
tion in different ways and thus are complimentary
to each other.

Despite the seemingly high accuracies of many
models on machine comprehension tasks, Jia and
Liang (2017) argued that many questions in such
datasets are easily solvable by superficial cues.
They showed with adversarial examples that most
models can be easily tricked by modifications on
the data which do not confuse humans. Similarly,
Sanchez et al. (2018) performed controlled exper-
iments on the robustness of several Natural Lan-
guage Inference models by altering hypernym, hy-
ponym, and antonym relations in the data. Both

108

studies revealed a major weakness of the mod-
els: They largely rely on pattern matching in-
stead of human decision-making processes as re-
quired in the tasks, including heuristics (Gigeren-
zer and Gaissmaier, 2011) and elimination by as-
pects (Tversky, 1972).

In this paper, we implement two machine
comprehension models based on the compare-
aggregate framework with a hierarchical atten-
tion structure using CNNs and RNNs. First we
show that we achieve state-of-the-art results on
the MovieQA multiple choice question answering
dataset (Tapaswi et al., 2016) outperforming other
systems by a large margin.1 Second, we investi-
gate the different behavior of the two systems ap-
plying adversarial attacks in a systematic way. To
our best knowledge, this is the first work explor-
ing the difference between CNNs and RNNs by
such an approach. Third, we present a detailed
comparison between human and machine reading
comprehension, giving insights when and why our
systems fail. Therefore, these insights are im-
portant for future research towards enhancing ma-
chine comprehension systems loosely inspired by
human processing. All code necessary to repro-
duce our experimental results is made available.2

2 Hierarchical Attention-based
Compare-Aggregate Model

The basis for our model is the compare-aggregate
model with attention (Wang and Jiang, 2016) that
has been shown effective for reading comprehen-
sion. We extend the model in two aspects that lead
to significant improvements.

Given a preprocessed matrix-representation of
the question Q, a text (movie plot) P , and k an-
swer candidates A1 . . . Ak, the main idea of Wang
and Jiang (2016)’s compare-aggregate model is to
compare P to Q and each Aj and then aggregate
this information into a vector to derive a confi-
dence score cj for each answer candidate.

Wang and Jiang (2016) concatenate all plot sen-
tences and do not leverage the inherent structur-
ing of the text into sentences. Inspired by the re-
cent success of hierarchical models in NLP (Sor-
doni et al., 2015; Yang et al., 2016; Liu et al.,
2017) we extend the model to perform compar-
ison and aggregation on the word and sentence

1See MovieQA leaderboard, http://movieqa.cs.
toronto.edu/leaderboard/

2https://github.com/DigitalPhonetics/
reading-comprehension

level separately (see Figure 1). Specifically, we
first apply the compare-aggregate model to each
plot sentence Pi individually to obtain question
and answer-weighted representations Twqi , T

w
aij for

each sentence. We then run the aggregation op-
eration on each sentence representation individu-
ally to obtain sentence vector representations rpij .
The sentence representations are concatenated to
obtain a plot representation rpj , which enters the
sentence level of comparison and aggregation that
mirrors the word level architecture.

As a second modification of the base model,
we implement an RNN-based aggregation func-
tion to replace the CNN-based aggregation orig-
inally proposed by Wang and Jiang (2016). In the
following we detail the building blocks of our hier-
archical attention-based compare-aggregate model
as depicted in Figure 1.

Preprocessing We represent the words in the
question q, the plot sentences pi and the answer
candidates aj by pretrained embeddings to obtain
matrices Q,P ,Aj . We project them to lower di-
mensional Q,P,Aj via the following operation:

X = σ
(
W iX + bi

)
� tanh

(
W uX + bu

)
(1)

Attention The attention operation weights the
plot regarding the question or a candidate answer.

G = softmax
(
XTP

)
(2)

H = XG, (3)

where X on the word level represents Q or an
answer candidate Aj and on the sentence level rq
or raj .

3

Comparison The comparison operation per-
forms an element-wise comparison of each hl
in H with its counterparts ql/ajl on the word level
and rq/raj on the sentence level, respectively.
Wang and Jiang (2016) compared many compar-
ison functions. Here we use only the SUBMULT
function since it performed best for MovieQA:

tl = ReLU(W

[
(xl − hl)� (xl − hl)

xl � hl

]
+ b)

where � denotes element-wise multiplication
and xl corresponds to entries of Q/Aj or rq/raj .

3Different from Wang and Jiang (2016) we use dot-
product attention instead of general attention (Luong et al.,
2015) because we found no benefit of the additional parame-
ters of general attention in preliminary experiments.

109

Q Pi Aj

attentionw attentionw

Hw
qi

Hw
aij

comparew comparew

Q|Q Twqi |Twaij Aj |Aj

aggregatew aggregatew aggregatew

rq raj

rpnj
rp2jrp1j . .

.

concatenate

Rpj

attentions attentions

Hs
q Hs

aj

compares compares

T sq |T saj

aggregates

rsj

prediction

cj

w
or

d
le

ve
l(

w
)

se
nt

en
ce

le
ve

l(
s)

Figure 1: Hierarchical compare-aggregate model to
compute the confidence score cj of a preprocessed an-
swer candidate Aj given question Q and plot P =
P1 . . . Pn.

Aggregation The goal of the aggregation oper-
ation is to condense the information of a variable-
length sequence into a single vector. Wang and
Jiang (2016) implemented the aggregation opera-
tion as a single-layer CNN following Kim (2014).
Specifically, they used a 1D convolution with filter
sizes {1,3,5}, to capture unigrams, trigrams and 5-
grams.

aggregateCNN = CNN([z1 . . . zm]) (4)

where [z1 . . . zm] on the word level corresponds

to the sequence of row vectors of Q,Tw =
Twqi |Twaij , Aj , and on the sentence level to that
of T s = T sq |T saj .

While CNNs are effective in modeling location-
independent n-gram patterns, they cannot capture
longer-range dependencies. Yet, we argue that it
is important to also consider the context of the
matched phrases. This motivates our proposed se-
quential aggregation function based on a single-
layer unidirectional RNN with Long Short-Term
Memory (LSTM) units (Hochreiter and Schmid-
huber, 1997).

aggregateRNN-LSTM = RNN([z1 . . . zm]) (5)

By performing 1-max pooling over the outputs
of aggregateCNN or aggregateRNN-LSTM

4 we obtain
a single vector r (representing rq, rpij , raj on the
word level, or rsj on the sentence level):

r = max pool(aggregate([z1 . . . zm])) (6)

We share the weights between the comparison
and aggregation operations within the word and
sentence level but not across levels.

Prediction We map each aggregated answer-
specific plot representation rsj to a confidence
score cj by two dense layers with shared weights
for all answer candidates and of which the first
uses tanh activation and the second one no activa-
tion function. The confidence scores are normal-
ized to form a probability distribution p1 . . . pk by
a softmax operation.

3 Experimental Set-Up

The hyperparameters for our models are provided
in §A.1 in the appendix.

3.1 Data
We evaluate our models on the MovieQA
dataset (Tapaswi et al., 2016) that contains
14,944 multiple-choice questions on 408 movies
collected by human annotators. The questions
vary from simple “who” or “when” to more com-
plex “why” or “how” question types. Each ques-
tion is provided along with five candidate answers
of which only one is correct.

While the dataset contains multiple sources of
information about the movie contents such as

4Using only the last RNN output for aggregateRNN-LSTM
did not provide convincing results.

110

videos, subtitles, and movie scripts, here we fo-
cus on answering the questions only from plot syn-
opses. Plot synopses are summaries of the movies
collected from Wikipedia that mostly describe the
actions happening in the story. They were used
as references for the question collection and so far
yield the best results on the dataset according to
the MovieQA leaderboard. Figure 2 shows a sam-
ple question together with its candidate answers
and an excerpt of the corresponding movie plot
which contains the necessary information to an-
swer the question. The dataset is split into 9,848
training, 1,958 development and 3,138 test ques-
tions, respectively. Note that the test set accura-
cies can only be evaluated by submitting the pre-
dictions to the server.

Plot: . . . Aragorn is crowned King of Gondor
and taking Arwen as his queen before all
present at his coronation bowing before Frodo
and the other Hobbits. The Hobbits return to
the Shire where Sam marries Rosie Cotton. . . .

Question: Where does Sam marry Rosie?

Candidate Answers: 0) Grey Havens
1) Gondor 2) The Shire 3) Erebor 4) Mordor

Figure 2: MovieQA example question (Wang and Jiang,
2016).

4 Results

We train 11 models with different random initial-
izations for both the CNN and RNN-LSTM aggre-
gation function and form majority-vote ensembles
of the nine models with the highest validation ac-
curacy. Table 1 shows the accuracies of ensembles
of our proposed model variations in comparison to
the published results on the MovieQA validation
and test set. To the best of our knowledge, the re-
sults of Wang and Jiang (2016) and Dzendzik et al.
(2017) were achieved by single models, while the
results of Liu et al. (2017) corresponds to an en-
semble of multiple models.

All our hierarchical single and ensemble mod-
els outperform the previous state of the art on both
the validation and test set. With a test accuracy
of 85.12, the RNN-LSTM ensemble achieves a
new state of the art that is more than five percent-
age points above the previous best result.

The hierarchical structure is crucial for the
model’s success. Adding it to the CNN that oper-

Systems Val. Test

Wang and Jiang (2016) 72.10 72.90
Liu et al. (2017) 79.00 79.99
Dzendzik et al. (2017) - 80.02

Proposed models

CNN word level only 76.51 -
CNN 79.62 -
CNN ensemble 82.58 82.73
RNN-LSTM 83.14 -
RNN-LSTM ensemble 84.37 85.12

CNN RNN-LSTM ensemble 84.78 84.70

Table 1: MovieQA accuracies for previously published
results and our proposed single models (best out of 11)
and ensembles (nine best out of 11).

ates only at word level5 causes a pronounced im-
provement on the validation set.

Furthermore, the RNN-LSTM aggregation
function is superior to aggregation via CNNs, im-
proving the validation accuracy by 1.5 percent-
age points. While this improvement is statis-
tically significant,6 combining both aggregation
functions by ensembling the nine best CNN and
RNN-LSTM models each, yields a small but sta-
tistically insignificant improvement of 0.41 per-
centage points over the RNN-LSTM ensemble on
the validation set. This might explain why the
RNN-LSTM ensemble even outperforms the CNN
RNN-LSTM ensemble on the test set by a small
margin. The difference in test set performance
between these two ensembles is likely not signif-
icant. We cannot test this as the test set is not re-
leased and only accuracy values can be obtained
for model evaluation on the test set.

4.1 Impact of Sentence Attention

The sentence attention allows us to get more in-
sight into the models’ inner state. For example, it
allows us to check whether the model actually fo-
cuses on relevant sentences in order to answer the
questions. The MovieQA dataset provides human
annotations of the minimal set of plot sentences re-
quired to answer a question. In average, 1.15/1.11
sentences in the training/validation set are marked
as containing the clue to the answer. We leverage

5The CNN word level only model essentially corresponds
to our reimplementation of Wang and Jiang (2016). The per-
formance gain on the validation set might be due to using
consistent random initializations for unknown words.

6McNemar test (McNemar, 1947), p < 0.05.

111

Systems CNN RNN-LSTM

All questions 71.45 71.31
- Correctly solved 80.86 79.35
- Incorrectly solved 35.73 34.49

Table 2: Percentage of questions in which the plot sen-
tences containing the clues for the answer are ranked
highest according to the model’s sentence attention dis-
tribution (relative to its selected answer) on the valida-
tion set (averaged results of nine models).

this information and compute the ranks of these
relevant plot sentences according to the models’
sentence attention distribution. We extract the plot
sentence relevance scores after the sentence-level
comparison operation as average of T sq and T saj ,
where aj corresponds to the selected answer of
the model. As Table 2 reveals, both model vari-
ants pay most attention to the relevant plot sen-
tences for 70% of the cases. Identifying the rele-
vant sentences is an important success factor: Rel-
evant sentences are ranked highest only in 35% of
the incorrectly solved questions.

5 Limitations

To help us identifying the models’ weaknesses, we
design a series of systematic adversarial attacks.
These attacks are defined in different categories
depending on the linguistic level (word vs. sen-
tence level) and the knowledge of the adversaries
(black-box vs. white-box). According to the tax-
onomy proposed by Yuan et al. (2017), black-box
and white-box attacks differ in the access of the
adversary to the trained neural network model. In
black-box settings, the adversary acts as a stan-
dard user that has only access to the output of the
model in form of labels or confidence scores. In
contrast, the adversary in white-box settings has
access to all the details of the models such as train-
ing data, network architectures and hyperparame-
ters. In this work, the white-box adversary has ac-
cess to the attention weights of the model at the
word and sentence level. We apply all our attacks
to the nine selected models (see §4) for each ag-
gregation type.

5.1 Word-level Black-box Attack

Adversarial examples for image recognition are
typically created by adding some imperceptible
noise (Szegedy et al., 2014; Goodfellow et al.,
2015), yet this is difficult to do for natural lan-

Systems Average Ensemble

CNN 78.74 81.72
RNN-LSTM 81.53 83.76
CNN RNN-LSTM 81.14 84.27

Table 3: Adversarial accuracies on the validation set
under the word-level black-box attack based on manual
lexical substitutions in questions.

guage because of its discrete nature. The closest
analogue would be paraphrasing but high-quality
paraphrases are difficult to obtain automatically:
Recent attempts with a sophisticated paraphrase-
generation system based on a large paraphrase
database yielded about 20% contradicting adver-
sarial examples (Iyyer et al., 2018).

Thus, we designed an adversarial black-box at-
tack on the questions based on manual lexical sub-
stitution. We inspected the 106 most frequent
words of the validation set questions and manually
defined lexical substitutions of single words and
multiword expressions of up to two tokens wher-
ever applicable. We made sure that the lexical sub-
stitutions were meaning preserving and resulted in
grammatical sentences in all contexts.7 Our final
set of 51 substitution rules resulted in a modifica-
tion of 25% of the validation set questions.

As can be seen from Table 3, the models are
quite robust against meaning-preserving lexical
substitutions: The accuracy drops by less than one
percentage point for all ensembles. Although the
differences are small, the RNN-LSTM and CNN
RNN-LSTM ensembles are even less affected by
lexical substitutions than the CNN ensemble. By
only modifying the questions, we have likely re-
duced their lexical overlap with the answer candi-
dates and the plots. The robustness of the mod-
els against this attack can probably be attributed
to the pretrained GloVe embeddings, which allow
it to generalize for semantically equivalent lexical
choices. Stronger attacks involving substitutions
with more infrequent words that do not appear in
the pretrained embeddings could show the limita-
tion of the models in this respect. We leave the au-
tomatic generation of further-reaching adversarial
examples based on paraphrases to future work.

7We only substituted with words contained in the pre-
trained GloVe embeddings used by the models to avoid in-
troducing unknown words. Even though we did not restrict
the substitutes to words from the training set vocabulary, it
turned out that all selected words and multiword expressions
were indeed contained in the training set vocabulary already,
except for the synonym buddy for friend.

112

1 2 3 5 10 20 40

20

40

60

80

100

replaced words k

ac
cu

ra
cy

(%
)

human
CNN

RNN-LSTM
chance

Figure 3: Adversarial accuracies on the validation set
under the word-level white-box attack based on word
exchange. k is the number of words that are modified
in the plot sentence with most attention (average accu-
racies over nine models). Human evaluation is based
on 20 randomly sampled questions with plots attacked
for a single CNN model (single annotator, one of the
authors of this paper).

5.2 Word-level White-box Attack

We performed a word-level white-box adversarial
attack in which we used the models’ internal atten-
tion distributions to explicitly target the plot words
they base their decision on. More precisely, in this
experiment we leveraged the models’ sentence-
level attention distribution to find the plot sentence
it gave most weight to conditioned on the correct
answer. In this sentence, the k words that received
most attention were then exchanged by randomly
chosen words from the MovieQA vocabulary.

As Figure 3 reveals, already modifying the sin-
gle most important word in the most important
sentence has a large effect on the average perfor-
mance of both the CNN and RNN-LSTM mod-
els. For increasing k, the RNN-LSTM versions
appeared to be a bit more robust against the at-
tack, but for k ≥ 10 the difference shrinks and the
accuracy of both models drops to only about 30%.
This experiment shows that manipulating the most
relevant plot information by removing important
words makes the model fail quickly, since it is
no longer able to draw correct conclusions for the
questions without the necessary plot context. Al-
though the human annotator proved more robust
against this attack for a small number of replaced
words, increasing k beyond five showed the same
drastic decline in performance.

Systems Orig. AddC AddQ AddQA

Without optimization

CNN 76.87 76.67 76.66 76.33
RNN-LSTM 81.11 81.11 81.05 81.05

After two optimization epochs

CNN N/A 73.38 57.39 13.61
RNN-LSTM N/A 79.94 68.05 23.22

Table 4: Adversarial accuracies on 200 random vali-
dation questions under the sentence-level black-box at-
tacks (averaged results of nine models).

5.3 Sentence-level Black-box Attacks

In order to find out to which extent our models are
susceptible to distracting information added to the
plot, we adapt the AddAny attack by Jia and Liang
(2017) originally designed for the SQuAD read-
ing comprehension dataset. This adversarial attack
consists of adding a distractor sentence s at the
end of the plot, regardless of grammaticality. The
word sequence s = w1w2 . . . w10 is initialized by
ten common English words. Then each word is
greedily changed from a pool of 20 random com-
mon words (AddC) to minimize the model’s con-
fidence score for the correct answer. We refer the
reader to Jia and Liang (2017) for the full details
of this attack. Likewise we generate adversarial
sentences using a pool of ten random common
words for each wi in conjunction with all ques-
tion words (AddQ) or additionally the words from
all incorrect answer candidates (AddQA). While
these attacks do not take any particular measures
to prevent the added sentence from contradicting
the correct answer, this is very unlikely given the
ungrammatical nature of the generated word se-
quences.

The first two rows in Table 4 show the effect of
appending a random sentence to the plot.8 The im-
pact on performance is fairly small indicating the
robustness of both models. However, after only
two epochs of optimizing the selected words in the
added sentence, the performance drops markedly
under all variants of the sentence-level black-box
attacks as displayed in the two bottom rows of
Table 4. While composing the sentence of just
common English words (AddC) does not affect the
models too much, adding words from the question

8As this attack is computationally very expensive we only
ran it on a random subset of 200 validation questions for two
optimization epochs of the distractor sentence.

113

Attack optimized for
Evaluated systems CNN RNN-LSTM

CNN 13.61 21.50
RNN-LSTM 22.06 23.22

Table 5: AddQA attack results when testing models on
adversarial examples optimized to fool another model
(averaged results of nine models).

and incorrect answers (AddQA) is most detrimen-
tal and causes both models to perform at or even
below chance level. The models’ performance un-
der AddQ, where the distractor sentence does not
contain answer candidate words, is much higher
than under AddQA. We observe that the models
can be easily distracted by adding a single se-
quence of significant words, even though it bears
no semantic relation to the rest of the plot. This
suggests that both models heavily rely on the con-
tent of the provided answer candidates and might
just perform matching of learned patterns to select
the right answer.

Another observation is that the RNN-LSTM
models outperform the CNN models by a large
margin under all attacks. The stronger the attack,
the larger is the performance gap, indicating that
RNNs depend less on pattern matching and are
less prone to this kind of attack. Figure 5 and 6 in
the appendix provide an example of the sentence
and word attention distributions of a CNN model
before and after the AddQA attack.

To test the transferability of the adversarial ex-
amples across models, we test the CNN models
on the adversarial examples optimized to fool the
RNN models and vice versa. As Table 5 shows,
the performance of both models is degraded to the
same level independent of the model the attack
was optimized for. This suggests that both mod-
els suffer from similar weaknesses.

A straightforward way to try to improve the
models’ robustness against adversarial attacks is
to mix some adversarial examples into the train-
ing data. Jia and Liang (2017) evaluated this
for the AddAny attack on SQuAD and found that
training on a mix of adversarial and original sam-
ples indeed improves the performance with respect
to this specific adversarial attack. Yet a slight
change of the attack, e.g. adding the distracting
sentence as first instead of last sentence, made
the adversarially-trained models to fail almost as
badly as without adversarial training. Therefore,

Systems Average Ensemble

CNN 31.59 32.07
RNN-LSTM 32.61 32.17

Table 6: Adversarial accuracies on the validation set
under the sentence-level white-box attack based on re-
moval of the plot sentence with highest attention (aver-
aged results of nine models).

we argue that it is more promising to look for gen-
eral improvements of the model than training on
adversarial examples generated by a specific at-
tack.

5.4 Sentence-level White-box Attack

Instead of modifying the words in the sentence we
also attempted to attack the model by removing
the whole plot sentence with the highest attention.
In this experiment, we wanted to test (1) if the
model really focuses on the most important sen-
tence, so it would become more difficult to answer
the question, and (2) if the model is able to pick
up more subtle cues or perform answer elimina-
tion to still be able to infer the correct answer with
some confidence. As can be seen from Table 6, the
accuracy decreases dramatically for both models
by removing only one plot sentence. This proves
that the model indeed focuses on the correct sen-
tence where the hint to answer a question is given.
These results correspond to those of the white-box
attack at word level with a large number k of mod-
ified words. For the remaining 30% of correctly
answered questions we observed that sometimes
the models still were able to answer correctly be-
cause of the context information provided in other
plot sentences.

We also measured human performance under
this attack on 20 randomly sampled questions
on distinct plots, where the sentence containing
the answer information was removed. A sin-
gle annotator (one of the authors of this paper)
achieved 55% accuracy on this task, which is way
above chance level and the models’ performance.
The human reported to be able to answer nine
questions with reasonable confidence by deduc-
ing from other information distributed across the
plots; two answers were correct by guessing. An-
swering the questions under this attack took a lot
of time and effort. This highlights the weakness of
the model to give answers in more complex sce-
narios where the answer is less obvious.

114

6 Human vs. Machine Processing

In order to gain insights how to further improve
machine reading comprehension, we performed a
case study in which a human was asked to answer
difficult questions that none of 11 CNN or RNN-
LSTM models solved correctly. The human eval-
uator obtained the plots and the questions with the
corresponding five answer candidates; having ac-
cess to the information in the same manner as the
models. There are clear motifs in the type of rea-
soning and logic required, inherent to human cog-
nition. In this light, we aim at inferring the gap
between the model’s and human cognitive infor-
mation processing to identify problems followed
by potential solutions.

Since we were especially interested in getting
insights on human strategies for the cases where
our models failed, 50 difficult questions of the
CNN models in the validation set were analyzed
by a human evaluator. All of the questions were
correctly answered by the human evaluator notic-
ing several key postulates: textual entailment,
choice by elimination, referential knowledge and
their combination (Hummel and Holyoak, 2005).

Textual entailment is required to solve 60%
of the questions, such as the question “What do
Matt, Steve, and Andrew record themselves do-
ing weeks after their experience in the woods?”
with the relevant sentence “Weeks later, Andrew,
Matt, and Steve record themselves as they display
telekinetic abilities, but begin bleeding from their
noses when they overexert themselves”. The hu-
man predicts the correct answer, “Moving objects
with their mind”, based on world knowledge of
the word telekinetic. A further example in this re-
gard is the question “Do the robbers take people in
the bank as hostage?” with the relevant sentence
“They seize control of a Manhattan bank and take
the employees and patrons hostage.” The human
picks the correct answer “Yes, they do”, as peo-
ple in the bank is a hypernym of employees and
patrons in this context. Lacking notion of these
semantic relations, the model answers incorrectly.

The process of elimination and heuristics
proved essential to solve 44% of the questions.
One example is “Where is New Penzance lo-
cated?” with the relevant sentence “In September
1965, on a New England island called New Pen-
zance, 12-year-old orphan Sam Shakusky is at-
tending Camp Ivanhoe [. . .]”. The human could
not infer the answer “Off the coast of North Car-

olina” from reading the plot alone, as this re-
gion is not inherently known to be associated with
New England, the location mentioned in the plot.
However, by using the process of elimination and
heuristics, the annotator was able to deduce the
likely answer with the certainty that the other
candidates are less likely correct. Additionally,
with the ranking of keywords, humans can infer
the correct answer in examples such as the ques-
tion “What kind of classes does Toula take up?”,
with the relevant sentence “After some persuasion
by his wife, Maria [. . .], Gus reluctantly permits
Toula to begin taking computer classes at a lo-
cal community college [. . .]”. In this case, the
human identified the keywords classes and Toula.
The word classes obtains a higher ranking as it ap-
pears in three of the five possible answers. Ul-
timately, the correct prediction was made using
ranking and the main keyword to find the correct
answer, “Computer classes”.

Referential knowledge is presumed in 36% of
the questions, e.g. in the question “What does Stig-
man do with the money?” with the relevant sen-
tence “After the heist, Stigman follows orders to
betray Trench and escape with the money, man-
aging to pull his gun right as Trench is about to
pull his own”. The human chooses the correct an-
swer “He takes it”, however the models select ei-
ther “He splits it with Trench” or “He leaves it in
the vault”. When analyzing the plot, we can see
that the two pronouns, He and it, are ambiguous to
the models but clear to the human, leading to in-
correct model predictions. The variance is due to
the notion that humans have the ability to under-
stand the referents from the plot. Another exam-
ple where lack of referential knowledge effects the
models’ performances, but not the human, can be
observed with the question “What happens to any
human who is encountered in Narnia?” with the
relevant sentence “If a human is encountered they
are to be brought to her”. The human is able to
select the correct answer, “They are to be brought
to the White Witch”, even though the plot refers to
the character by the pronoun her.

Furthermore, it is apparent that many questions
expect a combination of various reasoning skills.
The question “What is Xavier’s mutant ability?”
with the relevant sentence “Present are Lehnsherr,
now known as Magneto, and the telepathic Profes-
sor Charles Xavier, who privately discuss their dif-
fering views on the relationship between humans

115

and mutants”, depicts this phenomena. The hu-
man reports that she utilized the keywords Xavier,
mutant and ability, raking Xavier more predomi-
nantly. By identifying Professor Charles Xavier
in the plot as referent of the most important key-
word, she could eliminate the incorrect answers.

The human evaluator also conducted an exten-
sive comparison of the baseline word-level mod-
els with the hierarchical CNN models. In particu-
lar, she looked at those questions where the perfor-
mance of both model types differed most (in terms
of the number of models out of 11 that solved
the question correctly). There are 101 validation
questions which the majority of hierarchical CNN
models solved correctly but only a minority (at
least six less) word-level models did so. These
were compared to the 28 validation questions on
which the word-level models outperformed the hi-
erarchical ones.

No prevailing pattern could be identified for
the few instances where the word-level models
did better than the hierarchical ones. Yet, we
found some evidence that the hierarchical models
seem to do better for questions requiring match-
ing longer answer candidates and handling lexical
variation. An example for such a more complex
question is “What happens to Deon in the end?”.
The relevant plot sentence is “He then transfers
the dying Deon’s consciousness into a spare robot
through the modified MOOSE helmet”, and the
correct answer “His consciousness is transferred
into a robot”. All answer candidates consist of at
least five words; the lexical overlap between the
question and correct answer with the plot sentence
is just {into, a, robot}. While only two baseline
models identify the correct answer, all but one of
the hierarchical models do so.

Additionally, among the 101 questions where
the hierarchical models do far better than the
word-level models there are only very few (18)
questions where none of the word-level models
predicted the correct answer. It seems to be the
case that the hierarchical structure helps the model
to gain confidence, causing more models to make
the correct prediction. An example for this is the
question “What does Lucius tell Harry?, where
the relevant sentence is “Lucius reveals that Harry
only saw a dream of Sirius being tortured; it was a
method to lure Harry into the Death Eaters’ grasp,
not an actual situation., and the correct answer is
“His vision of Sirius being tortured was a dream

used to lure Harry to the Death . The majority
of the word-level models predicted an incorrect
answer “His vision of Sirius being tortured was
true, and only five of them selected the correct an-
swer. In contrast, all hierarchical models solved
this question correctly.

The same comparison was conducted between
the hierarchical CNN and RNN-LSTM models.
Although there are improvements, which indicate
that sequential processing is better suited for QA
tasks, the RNN-LSTM models exhibit the same
fundamental drawbacks. They suffer from co-
reference errors, lack the entailment ability, and
are inefficient at keyword elimination. This obser-
vation reveals the fundamental weaknesses of our
proposed network architecture and indicates direc-
tions for future improvements.

7 Conclusion

We proposed a machine reading comprehension
model based on the compare-aggregate framework
with a hierarchical attention structure that achieves
state-of-the-art results on the MovieQA question
answering dataset, greatly outperforming previ-
ous models. Then, we explored the limitations of
our models and the behavioral difference between
CNNs and RNN-LSTMs with adversarial exam-
ples generated at different linguistic levels (word
vs. sentence level) and from different adversary’s
knowledge (black-box vs. white-box). In general,
RNN-LSTM models outperformed CNN models,
but our results for sentence-level black-box attacks
indicate they might share the same weaknesses.

Finally, our intensive analysis on the differences
between the model and human inference suggest
that both models seem to learn matching patterns
to select the right answer rather than performing
plausible inferences as humans do. The results of
these studies also imply that other human like pro-
cessing mechanism such as referential relations,
implicit real world knowledge, i.e., entailment,
and answer by elimination via ranking plausibil-
ity (Hummel and Holyoak, 2005) should be inte-
grated in the system to further advance machine
reading comprehension.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

116

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. arXiv
preprint arXiv:1606.02858.

Ronan Collobert and Jason Weston. 2008. A Uni-
fied Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In
Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, New York, New
York, USA. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Li Deng and John C Platt. 2014. Ensemble deep learn-
ing for speech recognition. In Fifteenth Annual Con-
ference of the International Speech Communication
Association.

Daria Dzendzik, Carl Vogel, and Qun Liu. 2017. Who
framed roger rabbit? multiple choice questions an-
swering about movie plot.

Jeffrey L Elman. 1990. Finding Structure in Time.
Cognitive science, 14(2).

Gerd Gigerenzer and Wolfgang Gaissmaier. 2011.
Heuristic decision making. Annual review of psy-
chology, 62:451–482.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy. PMLR.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine, 29(6):82–97.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Computation, 9(8).

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
Advances in neural information processing systems,
pages 2042–2050.

John E Hummel and Keith J Holyoak. 2005. Relational
reasoning in a neurally plausible cognitive architec-
ture: An overview of the lisa project. Current Di-
rections in Psychological Science, 14(3):153–157.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
arXiv preprint arXiv:1804.06059.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Yann LeCun, Bernhard E Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne E Hub-
bard, and Lawrence D Jackel. 1990. Handwritten
digit recognition with a back-propagation network.
In Advances in neural information processing sys-
tems, pages 396–404.

Tzu-Chien Liu, Yu-Hsueh Wu, and Hung-yi Lee.
2017. Attention-based CNN matching net. CoRR,
abs/1709.05036.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Eleventh Annual Conference of the International
Speech Communication Association.

117

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392. Asso-
ciation for Computational Linguistics.

Ivan Sanchez, Jeff Mitchell, and Sebastian Riedel.
2018. Behavior analysis of nli models: Uncovering
the influence of three factors on robustness. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), volume 1, pages 1975–1985.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement, CIKM ’15.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. Movieqa: Understanding stories in movies
through question-answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 4631–4640.

Amos Tversky. 1972. Elimination by aspects: A theory
of choice. Psychological review, 79(4):281.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hin-
rich Schütze. 2016. Combining recurrent and convo-
lutional neural networks for relation classification.
In Proceedings of NAACL HLT.

Alexander Waibel, Toshiyuki Hanazawa, Geoffrey
Hinton, Kiyohiro Shikano, and Kevin J Lang. 1990.
Phoneme recognition using time-delay neural net-
works. In Readings in speech recognition, pages
393–404. Elsevier.

Shuohang Wang and Jing Jiang. 2016. A compare-
aggregate model for matching text sequences.
CoRR, abs/1611.01747.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J. Smola, and Eduard H. Hovy. 2016. Hi-
erarchical Attention Networks for Document Classi-
fication. In HLT-NAACL.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong,
Rui Zhao, and Kai Chen. 2018. Fast and accurate
reading comprehension by combining self-attention
and convolution. In International Conference on
Learning Representations.

Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana
Bhat, and Xiaolin Li. 2017. Adversarial exam-
ples: Attacks and defenses for deep learning. arXiv
preprint arXiv:1712.07107.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

118

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 119–130
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Uncovering Code-Mixed Challenges: A Framework for Linguistically
Driven Question Generation and Neural based Question Answering

Deepak Gupta‡, Pabitra Lenka†∗, Asif Ekbal‡, Pushpak Bhattacharyya‡
‡Indian Institute of Technology Patna, India

†International Institute of Information Technology Bhubaneswar, India
‡{deepak.pcs16, asif, pb}@iitp.ac.in

†pabitra.lenka18@gmail.com

Abstract

Existing research on question answering (QA)
and comprehension reading (RC) are mainly
focused on the resource-rich language like
English. In recent times, there has been a
rapid growth of multi-lingual contents on the
web, and this has posed several challenges
to the existing QA systems. Code-mixing is
one such challenge that makes the task even
more complex. In this paper, we propose a
linguistically motivated technique for code-
mixed question generation (CMQG) and a neu-
ral network based architecture for code-mixed
question answering (CMQA). For evaluation,
we manually create the code-mixed questions
for Hindi-English language pair. In order
to show the effectiveness of our neural net-
work based CMQA technique, we utilize two
benchmark datasets, viz. SQuAD andMMQA.
Experiments show that our proposed model
achieves encouraging performance on CMQG
and CMQA.

1 Introduction

The people who are multilingual in nature often
switch back and forth between their native lan-
guages and the foreign (popular) languages to ex-
press themselves on the web. This is very common
nowadays, particularly when people express their
opinions (or making any communication) through
various social media platforms. This phenomenon
of embedding the morphemes, words, phrases, etc.
of one language into another is popularly termed as
code-mixing (CM) (Myers-Scotton, 1997, 2002).
The recent study (Safran, 2015) has uncovered
that users frequently use question patterns, namely
‘how’ (38%), ‘why’ (24%), ‘where’ (15%), ‘what’
(11%), and ‘which’ (12%) in their queries as op-
posed to a ‘statement query’.

∗Work carried out during the internship at IIT Patna

Presently, the search engines have become
intelligent and are capable enough to pro-
vide precise answer to a natural language
query/question1.Several virtual assistants such as
Siri, Cortana, Alexa, Google Assistant, etc are also
equipped with these facilities. However, these
search engines and virtual assistants are efficient
only in handling the queries written in English.
Let us consider the following two representations
(English and code-mixed) of the same question.
(i) Q: “Who is the foreign secretary of USA?”
(ii) Q: “USA ke foreign secretary koun hai?”
(Trans:“Who is the foreign secretary of USA?”)
Search engines are able to provide the exact
answer to the first question. It is to be noted that
although both the questions are same, the search
engine is unable to return the exact answer for the
second question, which is code-mixed in nature.
It rather returns the top-most relevant web pages.
In this paper, we propose a framework for code-

mixed question generation (CMQG) as well as
code-mixed question answering (CMQA) involv-
ing English and Hindi. Firstly, we propose a lin-
guistically motivated technique for generating the
code-mixed questions. We followed this approach
as we did not have access to any labeled data
for code-mixed question generation. Thereafter,
we propose an effective framework based on deep
neural network for Code-mixed Question Answer-
ing (CMQA). In our proposed CMQA technique,
we use multiple attention based recurrent units to
represent the code-mixed questions and the En-
glish passages. Finally, our answer-type focused
network (attentive towards the answer-type of the
question being asked) extracts the answer for a
given code-mixed question. We summarize our
contributions as follows:
(i). Wepropose a linguistically motivated unsuper-

1The capability of handling factoid questions is higher
than the complex questions or descriptive questions.

119

vised algorithm for Code-mixed Question Genera-
tion (CMQG). (ii). We propose a bilinear attention
and answer-type focused neural framework to deal
with CMQA. (iii). We create two CMQA datasets
to further explore the research on CMQA. In addi-
tion to this, wemanually create a code-mixed ques-
tion dataset, and subsequently a code-mixed ques-
tion classification dataset. (iv)We provide a state-
of-the-art setup to extract answers from the English
passages for the corresponding code-mixed ques-
tions. The source code of our proposed systems
and the datasets can be found here2.

2 Related Work

Code-mixing refers to the mixing of more than
one language in the same sentence. Creating re-
sources and tools capable of handling code-mixed
languages is more challenging in comparison to
the traditional language processing activities that
are concerned with only one language. In recent
times, researchers have started investigating meth-
ods for creating tools and resources for various
Natural Language Processing (NLP) applications
involving code-mixed languages. Some of the ap-
plications include language identification (Chit-
taranjan et al., 2014; Barman et al., 2014), part-
of-speech (PoS) tagging (Vyas et al., 2014; Jama-
tia et al., 2015; Gupta et al., 2017), question clas-
sification (Raghavi et al., 2015), entity extraction
(Gupta et al., 2018a, 2016b), sentiment analysis
(Rudra et al., 2016; Gupta et al., 2016a) etc. De-
veloping QA system in a code-mixed scenario is,
itself, very novel in the sense that there have not
been very significant attempts towards this direc-
tion, except the few such as (Chandu et al., 2017).
Our literature survey shows that the existing meth-
ods of question generation (general) include both
rules Heilman and Smith (2010); Ali et al. (2010)
and machine learning (Serban et al., 2016; Wang
et al., 2017a) techniques. A joint model of ques-
tion generation and answering based on sequence-
to-sequence neural network model is proposed in
(Wang et al., 2017a).
In recent times, there have been several stud-

ies on deep learning based reading comprehen-
sion/ QA (Hermann et al., 2015; Cui et al., 2017;
Shen et al., 2017; Wang et al., 2017b; Gupta et al.,
2018c; Wang and Jiang, 2016; Berant et al., 2014;
Maitra et al., 2018; Cheng et al., 2016; Trischler

2http://www.iitp.ac.in/~ai-nlp-ml/
resources.html

et al., 2016). To the best of our knowledge, this is
the very first attempt to automatically generate the
code-mixed questions (i.e. question generation),
as well as provide a robust solution by developing
an end-to-end neural network model for CMQA.

3 Code-Mixed Question Generation

We focus on a code-mixed scenario involving two
languages, viz. English and Hindi. Due to the
scarcity of labeled data, we could not employ any
sophisticatedmachine learning technique for ques-
tion generation. Rather, we propose an unsuper-
vised algorithm that automatically formulates the
code-mixed questions. The algorithm makes use
of several NLP components such as PoS tagger,
transliteration and lexical translation. We con-
struct Hindi-English code-mixed question from a
given Hindi question. Let us consider the follow-
ing three questions:

• Q1: What is the name of the baseball team in
Seattle?

• Q2: िसएटल मӒ बसेबॉल दल का नाम Թा ह?ै
(Trans: What is the name of the baseball
team in Seattle?)
(Transliteration: Seattle mai baseball dal ka
naam kya hai?)

• Q3:Seattle mein baseball team ka naam kya
hai?
(Trans: What is the name of the baseball
team in Seattle?)

All the three questions are same but are asked in
English, Hindi and the code-mixed English-Hindi
languages. It can be seen that Q2 and Q3 are sim-
ilar and share many false cognates (Moss, 1992)
[(Seattle, िसएटल), (naam, नाम), (kya, Թा), (mai,
मӒ), (baseball, बसेबॉल)]. The question Q3 has the
direct transliteration of theHindi words (िसएटल→
Seattle), (नाम→ naam), (Թा→ kya), (मӒ→mai)
and (बसेबॉल → baseball). There are some words
(e.g. ‘team’) in Q3 which are the English lexical
translations from Hindi. We perform a thorough
study of Hindi sentences and their corresponding
code-mixed Hindi-English sentences, and observe
the following:

(1) Named entities (NEs) of type person (PER)
remain same in both Hindi as well as the code-
mixed English-Hindi (EN-HI) sentence. These
NEs are only transliterated. E.g.
Hindi: महाͤमा गांधी का जͨम कब हुआ था?
(Trans: When was Mahatma Gandhi born?)

120

Code-Mixed (EN-HI):Mahatma Gandhi ka birth
kab hua tha?
TheNEMahatmaGandhi of type ‘PER’ is translit-
erated in code-mixed sentence.

(2) NEs of type location (LOC) and organization
(ORG) present in a Hindi sentence are replaced
with their best lexical translations in English. For
example:
Hindi: लखनऊ ўदթी से ўकतनी दरू ह?ै
(Trans: How far Lucknow is from Delhi?)
Code-Mixed (EN-HI): Lucknow New Delhi se
kitni dur hai?
The ‘PER’ type NEs are only transliterated as the
names do not have any variation in Hindi or En-
glish. For example,सѠचन तӒदलुकर (Trans: Sachin
Tendulkar)→ ‘Sachin Tendulkar’. It is just needed
to be written in Roman script. However, same
does not hold for ‘LOC’ and ‘ORG’. For example,
transliterating भारतीय अतंѝर̯ अनसुधंान सगंठन
(Trans: Indian Space Research Organisation) →
‘Bharatiya Antriksh Anushandhan Sangathan’ is
incorrect.

(3) PoS tags such as singular or plural noun
(NN), proper noun (NNP), spatio-temporal noun
(NST) and adjective (JJ) present in a Hindi sen-
tence are often replaced with their context aware
lexical translation in English. For example:
Hindi: ͲयџЭयӖ को उनकҴ रचनाͤमकता के Ѡलए
कौन से अѠधकार ўदए जाते हӔ?
(Trans: Which rights are given to individuals for
their creativity?)
Code-Mixed (EN-HI): Individuals ko unki
creativity ke liye koun se rights diya jate hain?

The underlined words in the Hindi sentence
have noun (NN) PoS tags, therefore the cor-
responding words are replaced with their best
lexical translations in their respective code-mixed
sentence.

(4) The remaining words in the Hindi sentence
are transliterated (in English) and a code-mixed
EN-HI sentence is formed. For example, the re-
maining words of the previous Hindi sentence are
transliterated (in underlines) and the code-mixed
EN-HI sentence is formed.
Code-Mixed (EN-HI): Individuals ko unki cre-
ativity ke liye koun se rights diye jate hain?

The main challenge of automatic CMQG is to
find the best lexical translation which suits the

most in the given context of the particular ques-
tion. Let us consider the various lexical translation
choices tri = {tr(i, 1), tr(i, 2), . . . , tr(i, li)} for the
token (ti), where li is the number of lexical transla-
tions available for the token ti. The lexical trans-
lation disambiguation algorithm selects the most
probable lexical translation of token ti from a set
of li possible translations. We generate a query
by adding the previous token ti−1 and the next to-
ken ti+1 with the token of interest designated by
ti. The context within a query provides impor-
tant clues for choosing the right transliteration of
a given query word. For example, for a query
S ={शहर, पवू,˨ ःकॉटलӔड} (Trans: {city, east,
Scotland}), where the word ‘पवू’˨ is the word in in-
terest for which the most probable lexical transla-
tion needs to be identified from the list {BC, East}.
Here, based on the context, we can see that the
choice of translation for the word ‘पवू’˨ is ‘east’
since the combinations {city, east} and {east, Scot-
land} are more likely to co-occur in the corpus
than {city, BC} and {BC, Scotland}. We follow
the iterative disambiguation algorithm (Monz and
Dorr, 2005) which judges a pair of items to gather
partial evidences for the likelihood of a translation
in a given context. An occurrence graph is con-
structed using the query term S and the translation
set TR, such that the translation candidates of dif-
ferent query terms are connected with the associ-
ated Dice Co-efficient weight between them. At
the same time, it is also ensured that there should
not be any edge between the different translation
candidates of the same query term. We initialize
each translation candidate with equal likelihood of
a translation. After initialization, the weight of
each translation candidate is iteratively updated us-
ing the weights of the translation candidate linked
to it and the weight of the link connecting them. At
the end of the iteration the weight of each transla-
tion candidate is normalized to ensure that these all
sum up to 1.

4 Proposed Approach for CMQA

Given a code-mixed question Q with tokens
{q1, q2 . . . , qm} and an English passage P hav-
ing tokens {p1, p2 . . . , pn}, wherem and n are the
number of tokens in the question and the passage,
respectively. The task is to identify answer A with
tokens {pi, pi+1 . . . , pj} of length j − i+1, where
1 ≤ i ≤ n and i ≤ j ≤ n.
Each model component is described below:

121

Figure 1: Illustrations of the proposed CMQG. The English transliterations are given in the bracket. The
right part of the image shows the basic steps to select the best lexical translation. The red color tags in
PoS and NER tags list denote the tags of the words that qualify to the next step.

4.1 Token and Sequence Encoding
From the given code-mixed question Q and pas-
sage P , we first obtain the respective token-
level embeddings {xQ

t }m
t=1 and {xP

t }n
t=1 from the

pre-trained word embedding matrix. Due to the
code-mixed nature, our model faces the out-of-
vocabulary (OOV) word issue. To tackle this,
we adopt character-level embedding to represent
each token of the question and passage. These
are denoted by {cQ

t }m
t=1 and {cP

t }n
t=1 for question

and passage, respectively. The character-level em-
beddings are generated by taking the final hidden
states of a bi-directional gated recurrent units (Bi-
GRU) (Chung et al., 2014) applied to the character
embedding of the tokens. The final representations
of each token uQ

t and uP
t of question and passage,

respectively, are obtained through the Bi-GRU as
follows:

uQ
t = Bi-GRU(uQ

t−1, [x
Q
t ⊕ cQ

t])

uP
t = Bi-GRU(uP

t−1, [x
P
t ⊕ cP

t])
(1)

where, ⊕ is the concatenation operator. In order
to encode the token sequence, we apply convo-
lution followed by Bi-GRU operation as follows:
First, the convolution operation is performed on
the zero-padded sequence ūP over the passage se-
quence uP , where ūP

t ∈ Rd. A set of k filters
F ∈ Rk×l×d, is applied to the sequence. We ob-
tain the convoluted features cP

t at given time t for
t = 1, 2, . . . , n by the following formula.

cP
t = tanh(F [ūP

t− l−1
2

. . . ūP
t . . . ūP

t+ l−1
2

]) (2)

The feature vector C̄P = [c̄P
1 , c̄P

2 . . . c̄P
n] is gen-

erated by applying the max pooling on each ele-
ment cP

t ofCP . This sequence of convolution fea-
ture vector C̄P is passed through a Bi-GRU net-
work. The same convolution operations are also
performed over the question sequence uQ and the
convolution feature vector C̄Q is obtained. Simi-
lar to e.q. 1, we compute Bi-GRU outputs vP

t (vQ
t)

by giving the inputs vP
t−1 (v

Q
t−1) and c̄P

t (c̄Q
t). We

represent the question and passage representation
matrix by V Q ∈ Rm×h and V P ∈ Rn×h, respec-
tively, where h is the number of hidden units of the
Bi-GRUs.

4.2 Question-aware Passage Encoding

When a single passage contains the answer of two
or more than two different questions then the pas-
sage encoding obtained from the previous layer
(c.f. section 4.1) will not be effective enough to
provide the answer of each question. It is because
the obtained passage encoding does not take into
account the question information. In this layer first
we compute an attentionmatrixM ∈ Rn×m as fol-
lows:

Mi, j = 1/(1 + dist(V P [i, :], V Q[j, :])) (3)

Mi, j is the similarity score between the ith ele-
ment of the passage encoding V P and jth element
of the question encoding V Q. The dist(x, y) func-
tion is an euclidean distance3 between x and y.

3We observe that e.q. 3 performs well, when dist is an
euclidean distance.

122

Thereafter, the normalization of element Mi,j of
matrixM is performed with respect to the ith row.

M i, j =
Mi, j∑m

k=0 Mi, k
(4)

Intuitively, it calculates the relevance of a word
in the given passage with each word in the ques-
tion. We compute the question vector Q ∈ Rn×h

corresponding to all the words in the passage as
Q = M × V Q. Each row t of the question vector
Q denotes the encoding of the passage word twith
respect to all the words in the question. The ques-
tion aware passage encoding will be computed by
theword-level concatenation of the passage encod-
ing vP

t and question vector of the tth rowQt. More
formally, the question aware passage encoding at

of the word at time twill be at = vP
t ⊕Qt. Finally,

we apply a Bi-GRU to encode the question aware
information over time. It is computed as follows:

st = Bi-GRU(st−1, at) (5)

We can represent the question aware passage en-
coding matrix as S ∈ Rn×h.

4.3 Bilinear Attention on Passage
Question aware passage encoding accounts the rel-
evance of the words in a question with the given
passage. If the answer spans more than one token
(i.e. a multi-word tokens), it is important to com-
pute the relevance between the constituents of the
multi-word tokens. We calculate the bilinear atten-
tion matrix B ∈ Rn×n on question aware passage
encoding S ∈ Rn×h as follows:

B = S ×Wb × ST (6)

where, Wb ∈ Rh×h is a bilinear weight matrix.
Similar to e.q. 4, normalization is performed on
B, and the normalized attention matrix is denoted
asB. The elementBi,j is the measure of relevance
between the ith and jth words of the passage. Sim-
ilar to the question vector Q, we calculate the pas-
sage vectorR ∈ Rn×h as computed onR = B×S.
The concatenation (word wise) of question depen-
dent passage encoding vector st and passage vec-
tor rt is performed to obtainRt and form thematrix
R ∈ Rn×2h. Similar toWang et al. (2017b), we in-
troduce a gating mechanism to control the impact
of R and denote it as the G ∈ Rn∈2h. In order
to identify the start and end indices of the answer
from the passage, we employ two Bi-GRUwith in-
put as G. Similar to e.q. 1, output of the Bi-GRUs
is computed as Ps ∈ Rn×h and Pe ∈ Rn×h.

4.4 Answer-type Focused Answer Extraction
The answer-type of a question provides the clues
to detect the correct answer from the passage.
Consider a code-mixed question Q: Kaun sa Por-
tuguese player, Spanish club Real Madrid ke liye
as a forward player khelta hai? (Trans: Which
Portuguese player plays as a forward for Spanish
club Real Madrid?.) The answer-type of the ques-
tion Q is ‘person’. Even though the network has
the capacity to capture this information up to a cer-
tain degree, it would be better if the model takes
into account this information in advance while se-
lecting the answer span. Li and Roth (2002) pro-
posed a hierarchical question classification based
on the answer-type of a question. Based on the
coarse and fine classes of Li and Roth (2002),
we train two separate answer-type detection net-
works on the Text REtrieval Conference (TREC)
question classification dataset4. First, we trans-
late5 5952 TREC English questions into Hindi
and thereafter transform the Hindi questions into
the code-mixed questions by using our proposed
CMQG algorithm. We train the answer-type detec-
tion network with code-mixed questions and their
associated labels using the technique as discussed
in (Gupta et al., 2018b). The network learns the
encoding of coarse (Cat ∈ Rh) and fine class
(Fat ∈ Rh) of answer-types obtained from the
answer-type detection network. The attention ma-
trix M calculated in e.q. 3 undergoes the max-
pooling over the columns to capture the most rele-
vant parts of the question.

Qj
p = max-pool(M [:, j]) (7)

The max-pooled representation of question and
answer-type representation are concatenated in the
following way:

Qf = Qp.V
P ⊕ Cat ⊕ Fat (8)

A feed-forward neural network with tanh activa-
tion function is used to obtain the final output
Qf ∈ Rh. The probability distribution of the be-
ginning of answer As and the end of answer Ae is
computed as:

prob(As) = softmax(Qf × Ps)

prob(Ae) = softmax(Qf × Pe)
(9)

4http://cogcomp.org/Data/QA/QC/
5We use Google Translate because of its better perfor-

mance on EN → HI translation.

123

of CM Questions 5,535 # of Hindi Words 37,300

of words 59,733 Average # of Hindi
Words/Question 6.7389

Average Length of
CM Questions 10.79 # of English Words 22,433

Code-Mixing Index
(CMI) Score 37.14 Average # of English

Words/Question 4.05

Table 1: Statistics of manually formulated CM
questions

To train the network, we minimize the sum of the
negative log probabilities of the ground truth start
and end position by the predicted probability dis-
tributions.

5 Datasets and Experiments

In this section, we report the datasets and the ex-
perimental setups.

5.1 Datasets (CMQG)
For CMQG task, we require the input question to
be in Hindi. We use the manually created Hindi
questions obtained from the Hindi-English ques-
tion answering dataset (Gupta et al., 2018b). We
generate the code-mixed questions by our pro-
posed approach (c.f. Section 3). In order to eval-
uate the performance of our proposed CMQG al-
gorithm, we also manually formulate6 the Hindi-
English code-mixed questions. Details of this
dataset are shown in Table 1. We compute
the complexity of code-mixing using the metric,
Code-mixing Index (CMI) score (Gambäck and
Das, 2014). We name this code-mixed question
dataset as ‘HinglishQue’. We observe that our
HinglishQue dataset has higher CMI score as com-
pared to the FIRE7 2015 (CMI=11.65) and ICON8

2015 (5.73) CM corpus (Soumil Mandal and Das,
2018)9. This implies that our HinglishQue dataset
is more complex and challenging in comparison to
the other Hindi-English codemixing (CM) dataset.
The CMI score of the system generated code-
mixed questions is 37.22.

5.2 Datasets (CMQA)
(1) CM-SQuAD: We generate the CMQA
dataset from the portion of SQuAD (Rajpurkar
et al., 2016) dataset. We translate the English

6The question formulators are the undergraduate and post-
graduate students having good proficiencies in English and
Hindi.

7http://fire.irsi.res.in/fire/2015/home
8http://ltrc.iiit.ac.in/icon2015/
9Please note that these two datasets are not related to QA

Datasets Train Dev Test Total
CM-SQuAD 16,632 2,080 2,080 20,792
CM-MMQA 2,746 341 341 3,428

Table 2: Detailed statistics (# of question-passage
pairs) of the derived CMQA datasets

questions into Hindi and use our approach of
CMQG (c.f. Section 3) to transform the Hindi
questions into the code-mixed questions. We
manually verify the questions to ensure the qual-
ity. We use the corresponding English passage to
find the answer pair of the code-mixed question.
Detailed statistics of the dataset are shown in
Table 2. We randomly split the dataset into
training, development and test set.
(2) CM-MMQA: We experiment with a recently
released multilingual QA dataset (Gupta et al.,
2018b). It provides Hindi questions along with
their English passages. Similar to the CM-SQuAD
dataset, we create code-mixed questions and their
respective answer pairs. Details of the dataset are
shown in Table 2.

5.3 Experimental Setup for CMQG
The tokenization and PoS tagging are per-
formed using the publicly available Hindi Shal-
low Parser10. The Polyglot11 Named Entity Rec-
ognizer (NER) (Al-Rfou et al., 2015) is used for
named entity recognition. The lexical transla-
tion set is obtained by the lexical translation ta-
ble generated as an intermediate output of Sta-
tistical Machine Translation (SMT) training by
Moses (Koehn et al., 2007) on publicly avail-
able12 English-Hindi (EN-HI) parallel corpus (Bo-
jar et al., 2014). We aggregate the output proba-
bility p(e|h) and inverse probability p(h|e) along
with their associated words in both English (e) and
Hindi (h) languages. We choose a threshold (5)
to filter out the least probable translations. The
co-occurrence weight (Dice Co-efficient) is calcu-
lated on the available13 n-gram dataset consisting
of unique 2, 86, 358 bigrams and 3, 33, 333 uni-
grams. For Devanagari (Hindi) to Roman (En-
glish) transliteration, we use the transliteration sys-
tem14 based on Ekbal et al. (2006). We evaluate

10http://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php

11http://polyglot.readthedocs.io/en/latest/
NamedEntityRecognition.html

12http://ufal.mff.cuni.cz/hindencorp
13http://norvig.com/ngrams/
14https://github.com/libindic/indic-trans

124

Figure 2: Proposed CMQA model architecture. The green color column denotes the character embed-
dings.

the performance of CMQG in terms of accuracy,
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) score.

5.4 Experimental Setup for CMQA

CMQA datasets contain the words both in Roman
script and English. For English, we use the fast-
Text (Bojanowski et al., 2016) word embedding
of dimension 300. We use the Hindi sentences
from Bojar et al. (2014), and then transliterate it
into the Roman script. These sentences are used
to train the word embeddings of dimension 300 by
the word embedding algorithm (Bojanowski et al.,
2016). Finally, we align monolingual vectors of
English and Roman words in an unified vector
space using a linear transformation matrix learned
by the approach as discussed in Smith et al. (2017).
Other optimal hyper-parameters are set to: char-
acter embedding dimension=50, GRU hidden unit
size=150, CNN filter size=150, filter size=3, 4,
batch size=60, # of epochs=100, initial learning
rate=0.001. Optimal values of the hyperparame-
ters are decided based on the model performance
on the development set of CM-SQuAD dataset.
Adam optimizer (Kingma and Ba, 2014) is used to
optimize the weights during training. For the eval-
uation of CMQA, we adopt the exact match (EM)
and F1-score (Rajpurkar et al., 2016).

5.5 Baselines

5.5.1 Baselines (CMQG)
We portray the problem of code-mixed question
generation with respect to sequence to sequence
learning where the input sequence comprises of
Hindi question and the output sequence is the code-
mixed EN-HI question. A seq2seq with attention
(Sutskever et al., 2014; Bahdanau et al., 2014) net-
work is trained using the default parameters of Ne-
matus (Sennrich et al., 2017). The training dataset
of the pair of Hindi translated question and code-
mixed questions from CM-SQuAD dataset (c.f.
Section 5.2) is used for training the seq2seq net-
work. We evaluate the network on the manually
created CMQG dataset (c.f. Section 5.1).

5.5.2 Baselines (CMQA)
To compare the performance of our proposed
CMQA model, we define the following baseline
models.
1) IR based model: This baseline is our imple-
mentation of the WebShodh (Chandu et al., 2017)
with improvements in some existing components.
We replaced WebShodh’s support vector machine
based (SVM) based question classification with
our recurrent CNN based answer-type detection
network (c.f. Section 4.4). In spite of searching
the answer on the web (as WebShodh does), we
search it within the passage. We choose the high-

125

Datasets → CM-SQuAD (1) CM-MMQA (2)
Dev Test Test (2) Dev Test

Models EM F1 EM F1 EM F1 EM F1 EM F1
IR (Chandu et al., 2017) 5.82 9.51 5.02 8.92 - - 5.52 9.66 6.10 10.64
BiDAF (Seo et al., 2016) 21.44 29.18 21.63 28.45 22.26 37.54 22.38 33.10 22.09 32.82
R-Net (Wang et al., 2017b) 24.17 31.12 23.76 30.74 24.47 39.15 24.27 37.33 23.72 36.86

Proposed Approach 31.12 37.78 31.05 36.97 30.91 46.18 28.14 46.25 30.56 46.10
Table 3: Performance comparison of the proposed CMQA algorithm with the IR-based and neural-based
baselines. Test (2) refers the test set of CM-MMQA.

Models Accuracy Bleu ROUGE-1 ROUGE-2 ROUGE-L
Seq2Seq 39.24 52.18 53.28 56.05 52.11
Proposed
Algorithm 67.11 86.17 95.15 90.53 95.13

Table 4: Performance comparison of the proposed
CMQG algorithm with seq2seq baseline.

est ranked answer as our final answer.
2) R-Net (Wang et al., 2017b): This is a deep
neural network based comprehension reading (RC)
model. We train the R-Net model with the hyper-
parameters as described in Wang et al. (2017b).
3) BiDAF (Seo et al., 2016): This is another
state-of-the-art neural model for RC. We trained
this model with the same hyperparameters as given
in (Seo et al., 2016).

6 Results and Analysis

We demonstrate the evaluation results of our
proposed CMQG algorithm on the HinglishQue
dataset in Table 4. For evaluation, we employed
three annotators who were instructed to assign the
label (same or different) depending upon whether
the system generated and manually created ques-
tions are similar or dissimilar. The agreement
among the annotators was calculated by Cohen’s
Kappa (Cohen, 1960) coefficient, and it was found
to be 92.45%. Evaluation of question generation

Model
Components

CM-SQuAD CM-MMQA
EM F1 EM F1

Proposed 31.12 37.78 28.14 46.25
(-) Convolution 29.46 36.14 26.19 43.76

(-) Bilinear Attention 26.42 33.31 25.36 41.29
(-) Answer-type Focused 28.41 35.14 26.69 42.37

Table 5: Effect of the various components of the
CMQA model on the development set of CM-
SQuAD and CM-MMQA dataset. (-) X denotes
the model architecture after removal of ‘X’.

shows that our proposed CMQG algorithm per-
forms better than the seq2seq based baseline. One
reason could be the insufficient amount (16, 632)

of training instances and the out-of-vocabulary
(only 62.35% words available in the vocab) is-
sue. Performance improvement in our proposed
model over the baseline is statistically significant
as p < 0.05. In literature, we find only one
study on English-Hindi code-mixed question clas-
sification i.e. Raghavi et al. (2015). They used
only 1, 000 code-mixed questions, and used Sup-
port Vector Machine (SVM) to classify the ques-
tions into coarse and fine-grained answer-types.
They reported to achieve 63% and 45% accura-
cies for coarse and fine-grained answer-type de-
tection, respectively under 5-fold cross validation
setup. In contrast, we manually create 5, 535 code-
mixed questions and train a CNNmodel that shows
87.21% and 83.56% accuracies for coarse and fine
answer types, respectively, for the 5-fold cross val-
idation.
Results of CMQA for both the datasets are

shown in Table 3. Performance of IR based base-
line (Chandu et al., 2017) on both the datasets are
poor. This may be because Chandu et al. (2017)’s
system was mainly developed to answer pure fac-
toid questions based only on the named entities
denoting person, location and organization. How-
ever, the datasets used in this experiment have dif-
ferent types of answers beyond the basic factoid
questions. We also perform a cross-domain exper-
iment, where the test data of CM-MMQA is used to
evaluate the system trained on CM-SQuAD. Per-
formance improvements in our proposed model
over the baselines are statistically significant as
p < 0.05. Experiments show that the perfor-
mance of CM-MMQA is better than CM-SQuAD.
This might be due to the relatively smaller length
passages in CM-MMQA, extracting answers from
which are easier.
We perform ablation study to observe the effects

of various components of the CMQA model. Re-
sults are shown in Table 5. The component con-
volution refers to the convolution operation per-

126

Sr.
No. Reference Questions System Generated Questions

1 Maharaja Ranjit Singh ne Mandi par kab occupy kar
liya tha?

Maharaja Ranjit Singh ne Mandi par kab Czechoslo-
vakia kar liya tha?

2 Babur kaa death kab ho gaya tha? Babur kaa died kab ho gaya tha?
3 IMF kaa primary purpose kya hai? Imef kaa primary purpose kya hai?
4 Demographics kya hai? Population kya hai?

Table 6: Some examples from the HinglishQue dataset depicting the errors occurred. The correct and
incorrect words in the questions are denoted with bold and italic fonts, respectively.

formed before the Bi-GRUs in sequence encoding.

6.1 Error Analysis
We analyze the errors encountered by our CMQG
and CMQA systems. The CMQG algorithm uses
several NLP components such as PoS tagger, NE
tagger, translation, transliteration etc. The errors
occurred in these components propagate towards
the final question generation. We list some of the
major causes of errors with examples in Table 6.
As in (1), the algorithm could not find the correct
lexical translation from the lexical table itself and
therefore selected an irrelevant word ‘Czechoslo-
vakia’ instead of ‘occupy’. In (2) and (4), the algo-
rithm picked the words ‘died’ and ‘population’ in-
stead of ‘death’ and ‘demographics’, respectively.
It could be because the word ‘died’ and ‘popu-
lation’ have higher n-gram frequencies compared
to the words ‘death’ and ‘demographics’ in the n-
gram corpus. In (3), the system generated incorrect
word (‘imef’) instead of ‘IMF’. Here, the Hindi
word ‘आईएमएफ’ is incorrectly tagged as ‘Other’
instead of ‘Organization’. Thereafter, the translit-
eration system provides an incorrect transliteration
(‘imef’) of the abbreviated Hindi word ‘आईएमएफ’
(Trans: IMF).
We observe that sometimes our CMQA sys-

tem incorrectly predicts the answer words which
are actually very close to some other word in the
shared embedding space ((c.f. section 5.4), and
hence gets high attention score in the bilinear atten-
tion module. For example, in this passage ‘...India
was ruled by the Bharata clan and ...’, the system
predicted the answer ‘India’ instead of ‘Bharata’
(reference answer) because the word ‘Bharata’ is
the transliteration form ofभारत andभारत is the cor-
rect translation form of the word ‘India’.
Our close analysis to the prediction of CM-

SQuAD and CM-MMQA development data re-
veals that the systems suffer mostly due to the er-
rors where the answer strings are relatively longer.
The CM-MMQA dataset has some definitional

questions (requires at least one-sentence long an-
swer). We evaluate the performance on CM-
MMQA dataset after removing those questions
(92), and obtain the EM and F1 scores of 40.50%
and 53.73%, respectively. These are much higher
(28.14%, 46.25%) than the model where all the
questions are considered. Due to ambiguity in se-
lecting answers (between two candidate answers,
location type answer) the system sometimes pre-
dicts incorrectly. We also observed some other
types of errors which were mainly due to the con-
text mismatch as well as long-distance dependence
between the answer and the context words.

7 Conclusion

In this work, we have proposed a linguisticallymo-
tivated unsupervised algorithm for CMQG and a
neural framework for CMQA. We have proposed
a bilinear attention and answer-type focused neu-
ral framework to deal with CMQA. We have eval-
uated the performance of CMQG on manually cre-
ated code-mixed questions involving English and
Hindi. For CMQA, we have created two CMQA
datasets. Experiments show that our proposed
models attain state-of-the-art performance. In the
future, we would like to scale our work for other
code-mixed languages.

8 Acknowledgment

Asif Ekbal acknowledges the Young Faculty Re-
search Fellowship (YFRF), supported by Visves-
varaya PhD scheme for Electronics and IT, Min-
istry of Electronics and Information Technology
(MeitY), Government of India, being implemented
by Digital India Corporation (formerly Media Lab
Asia). We would like to thank Sukanta Sen, IIT
Patna for extending his support in machine trans-
lation experiment.

127

References
Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, and
Steven Skiena. 2015. Polyglot-NER: Massive Mul-
tilingual Named Entity Recognition. Proceedings of
the 2015 SIAM International Conference on Data
Mining, Vancouver, British Columbia, Canada,
April 30 - May 2, 2015.

HusamAli, Yllias Chali, and SadidAHasan. 2010. Au-
tomation of Question Generation From Sentences.
In Proceedings of QG2010: The Third Workshop on
Question Generation, pages 58–67.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code Mixing: A Challenge
for Language Identification in the Language of So-
cial Media. In Proceedings of the First Workshop
on Computational Approaches to Code Switching,
pages 13–23.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D. Man-
ning. 2014. Modeling Biological Processes for
Reading Comprehension. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1499–1510,
Doha, Qatar. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching Word Vec-
tors with Subword Information. arXiv preprint
arXiv:1607.04606.

Ondřej Bojar, Vojtěch Diatka, Pavel Rychlý, Pavel
Straňák, Vít Suchomel, Aleš Tamchyna, and Daniel
Zeman. 2014. HindEnCorp - Hindi-English and
Hindi-only Corpus for Machine Translation. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

Khyathi Raghavi Chandu, Manoj Chinnakotla, Alan W
Black, and Manish Shrivastava. 2017. WebShodh:
A Code Mixed Factoid Question Answering Sys-
tem for Web. In International Conference of the
Cross-Language Evaluation Forum for European
Languages, pages 104–111. Springer.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long Short-Term Memory-Networks for Machine
Reading. In Proceedings of the 2016 Conference
on EmpiricalMethods in Natural Language Process-
ing, pages 551–561, Austin, Texas. Association for
Computational Linguistics.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and
Monojit Choudhury. 2014. Word-level Language

Identification using CRF: Code-switching Shared
Task Report of MSR India System. In Proceed-
ings of The First Workshop on Computational Ap-
proaches to Code Switching, pages 73–79.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling. arXiv preprint arXiv:1412.3555.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and psychological
measurement, 20(1):37–46.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
Attention Neural Networks for Reading Comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 593–602. Association
for Computational Linguistics.

Asif Ekbal, Sudip Kumar Naskar, and Sivaji Bandy-
opadhyay. 2006. A Modified Joint Source-Channel
Model for Transliteration. In Proceedings of the
COLING/ACL on Main conference poster sessions,
pages 191–198. Association for Computational Lin-
guistics.

Björn Gambäck and Amitava Das. 2014. On Measur-
ing the Complexity of Code-Mixing. In Proceedings
of the 11th International Conference on Natural Lan-
guage Processing, Goa, India, pages 1–7.

Deepak Gupta, Asif Ekbal, and Pushpak Bhat-
tacharyya. 2018a. A Deep Neural Network based
Approach for Entity Extraction in Code-Mixed In-
dian Social Media Text. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Deepak Gupta, Surabhi Kumari, Asif Ekbal, and Push-
pak Bhattacharyya. 2018b. MMQA: A Multi-
domain Multi-lingual Question-Answering Frame-
work for English and Hindi. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Deepak Gupta, Ankit Lamba, Asif Ekbal, and Pushpak
Bhattacharyya. 2016a. Opinion Mining in a Code-
Mixed Environment: A Case Study with Govern-
ment Portals. In International Conference on Natu-
ral Language Processing, pages 249–258. NLP As-
sociation of India.

Deepak Gupta, Rajkumar Pujari, Asif Ekbal, Push-
pak Bhattacharyya, Anutosh Maitra, Tom Jain, and
Shubhashis Sengupta. 2018c. Can Taxonomy Help?
Improving Semantic QuestionMatching usingQues-
tion Taxonomy. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,

128

pages 499–513. Association for Computational Lin-
guistics.

Deepak Gupta, Shubham Tripathi, Asif Ekbal, and
Pushpak Bhattacharyya. 2016b. A Hybrid Approach
for Entity Extraction in Code-Mixed Social Media
Data. MONEY, 25:66.

Deepak Gupta, Shubham Tripathi, Asif Ekbal, and
Pushpak Bhattacharyya. 2017. SMPOST: Parts of
Speech Tagger for Code-Mixed Indic Social Media
Text. arXiv preprint arXiv:1702.00167.

Michael Heilman and Noah A Smith. 2010. Good
Question! Statistical Ranking for Question Gener-
ation. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 609–617. Association for Computational Lin-
guistics.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching Ma-
chines to Read and Comprehend. In Advances
in Neural Information Processing Systems, pages
1693–1701.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-Speech Tagging for Code-Mixed
English-Hindi Twitter and Facebook ChatMessages.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing,
pages 239–248.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177–180. Association for Computational Lin-
guistics.

Xin Li and Dan Roth. 2002. Learning Question Clas-
sifiers. In Proceedings of the 19th International
Conference on Computational Linguistics, COLING
2002, pages 1–7. Association for Computational
Linguistics.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
workshop, volume 8. Barcelona, Spain.

Anutosh Maitra, Shubhashis Sengupta, Deepak
Gupta, Rajkumar Pujari, Asif Ekbal, Pushpak
Bhattacharyya, Anutosh Maitra, Mukhopadhyay
Abhisek, and Tom Jain. 2018. Semantic Question
Matching in Data Constrained Environment. In
Proceedings of the 21st International Conference
on Text, Speech and Dialogue (TSD-2018).

Christof Monz and Bonnie J Dorr. 2005. Iterative
Translation Disambiguation for Cross-language In-
formation Retrieval. In Proceedings of the 28th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 520–527. ACM.

Gillian Moss. 1992. Cognate Recognition: Its Impor-
tance in the Teaching of ESP Reading Courses to
Spanish Speakers. English for specific purposes,
11(2):141–158.

Carol Myers-Scotton. 1997. Duelling Languages:
Grammatical Structure in Codeswitching. Oxford
University Press.

Carol Myers-Scotton. 2002. Contact Linguistics:
Bilingual Encounters and Grammatical Outcomes.
Oxford University Press on Demand.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318. Association
for Computational Linguistics.

Khyathi Chandu Raghavi, Manoj Kumar Chinnakotla,
and Manish Shrivastava. 2015. Answer ka type kya
he? Learning to Classify Questions in Code-Mixed
Language. In Proceedings of the 24th International
Conference on World Wide Web, pages 853–858.
ACM.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. SQuAD: 100,000+ Ques-
tions for Machine Comprehension of Text. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2383–
2392. Association for Computational Linguistics.

KoustavRudra, Shruti Rijhwani, Rafiya Begum, Kalika
Bali, Monojit Choudhury, and Niloy Ganguly. 2016.
Understanding Language Preference for Expression
of Opinion and Sentiment: What do Hindi-English
Speakers do on Twitter? In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1131–1141.

Nathan Safran. 2015. Psychology of the Searcher: Pat-
terns in How Searchers Formulate Queries. Blue
Nile Research.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 65–68, Valencia, Spain. Association
for Computational Linguistics.

129

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional Attention
Flow for Machine Comprehension. arXiv preprint
arXiv:1611.01603.

Iulian Vlad Serban, Alberto García-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
Factoid Questions With Recurrent Neural Networks:
The 30M Factoid Question-Answer Corpus. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 588–598. Association for Computa-
tional Linguistics.

Yelong Shen, Po-SenHuang, JianfengGao, andWeizhu
Chen. 2017. ReasoNet: Learning to Stop Read-
ing in Machine Comprehension. In Proceedings of
the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1047–1055. ACM.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline Bilingual
Word Vectors, Orthogonal Transformations and the
Inverted Softmax. CoRR, abs/1702.03859.

Sainik Kumar Mahata Soumil Mandal and Dipankar
Das. 2018. Preparing Bengali-English Code-Mixed
Corpus for Sentiment Analysis of Indian Languages.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Paris, France. European Language Resources
Association (ELRA).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bach-
man, Alessandro Sordoni, and Kaheer Suleman.
2016. Natural Language Comprehension with the
EpiReader. In Proceedings of the 2016 Conference
on EmpiricalMethods in Natural Language Process-
ing, pages 128–137, Austin, Texas. Association for
Computational Linguistics.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. POS Tagging
of English-Hindi Code-Mixed Social Media Con-
tent. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 974–979.

Shuohang Wang and Jing Jiang. 2016. Machine
Comprehension Using Match-LSTM and Answer
Pointer. CoRR, abs/1608.07905.

Tong Wang, Xingdi Yuan, and Adam Trischler. 2017a.
A Joint Model for Question Answering and Question
Generation. CoRR, abs/1706.01450.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017b. Gated Self-Matching Net-
works for Reading Comprehension and Question

Answering. InProceedings of the 55th AnnualMeet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

130

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 131–140
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Learning to Embed Semantic Correspondence
for Natural Language Understanding

Sangkeun Jung1, Jinsik Lee2, and Jiwon Kim3

1,2,3T-Brain, AI Research Center, SK telecom
1Dept. of Computer Science and Engineering, Chungnam National University

1hugmanskj@gmail.com
2,3 {jinsik16.lee, jk}@sktbrain.com

Abstract

While learning embedding models has yielded
fruitful results in several NLP subfields, most
notably Word2Vec, embedding correspon-
dence has relatively not been well explored es-
pecially in the context of natural language un-
derstanding (NLU), a task that typically ex-
tracts structured semantic knowledge from a
text. A NLU embedding model can facilitate
analyzing and understanding relationships be-
tween unstructured texts and their correspond-
ing structured semantic knowledge, essential
for both researchers and practitioners of NLU.
Toward this end, we propose a framework that
learns to embed semantic correspondence be-
tween text and its extracted semantic knowl-
edge, called semantic frame. One key con-
tributed technique is semantic frame recon-
struction used to derive a one-to-one mapping
between embedded vectors and their corre-
sponding semantic frames. Embedding into
semantically meaningful vectors and comput-
ing their distances in vector space provide a
simple, but effective way to measure seman-
tic similarities. With the proposed framework,
we demonstrate three key areas where the em-
bedding model can be effective: visualization,
semantic search and re-ranking.

1 Introduction

The goal of NLU is to extract meaning from a nat-
ural language and infer the user intention. NLU
typically involves two tasks: identifying user in-
tent and extracting domain-specific entities, the
second of which is often referred to as slot-filling
(Mesnil et al., 2013; Jeong and Lee, 2006; Kim
et al., 2016). Typically, the NLU task can be
viewed as an extraction of structured text from a
raw text. In NLU literature, the structured form of
intent and filled slots is called a semantic frame.

�

��: text �� : semantic

frame

ℛ� ℛ��

“Please list all

flights from Dallas

to Philadelphia on

Monday.”

���

	

intent : atis_flight

fromloc.

city_name
Dallas

toloc.

city_name
Philadelphia

depart_date.

day_name
Monday

 ∶ shared vector space

�

(a) Framework

distance

�

distance

�

distance
comparison

��
��

��

visualization

distance

��

�

�

�

(b) Applications

Figure 1: Semantic vector learning framework and
applications. We assume a pair of corresponding
text and semantic frame (t, s), which has semanti-
cally the same meaning in a raw text domain (χT),
and a semantic frame domain (χS) can be encoded
to a vector v in a shared embedding vector space
Z . RT and RS are two reader functions that en-
code raw and structured text to a semantic vector.
W is a writing function that decodes a semantic
vector to a symbolic semantic frame.

In this study, we aim to learn the meaningful
distributed semantic representation, rather than fo-
cusing on building the NLU system itself. Once
we obtained a reliable and reasonable semantic
representation in a vector form, we can devise
many useful and new applications around the NLU
(Figure 1). Because all the instances of text and se-
mantic frame are placed on a single vector space,
we can obtain the natural and direct distance mea-
sure between them. Using the distance measure,
the similar text or semantic frame instances can

131

be searched directly and interchangeably by the
distance comparison. Moreover, re-ranking of
multiple NLU results can be applied without fur-
ther learning by comparing the distances between
the text and the corresponding predicted seman-
tic frame. Converting symbols to vectors makes it
possible to do visualization naturally as well.

In this study, we assumed that the reasonable
semantic vector representation satisfies the follow-
ing properties.

• Property - embedding correspondence:
Distributed representation of text should be
the same as the distributed representation of
the corresponding semantic frame.

• Property - reconstruction: Symbolic se-
mantic frame should be recovered from the
learned semantic vector.

We herein introduce a novel semantic vector learn-
ing framework called ESC (Embedding Semantic
Correspondence learning), which satisfies the as-
sumed properties.

The remainder of the paper is structured as fol-
lows: Section 2 describes the detailed structure of
the framework. Section 3 introduces semantic vec-
tor applications in NLU. Section 4 describes the
experimental settings and results. Section 5 dis-
cusses the related work. Finally, section 6 presents
the conclusion.

2 ESC Framework

Our framework consists of text reader, semantic
frame reader, and semantic frame writer. The
text reader embeds a sequence of tokens to a dis-
tributed vector representation. The semantic frame
reader reads the structured texts and encodes each
to a vector. vt represents a vector semantic frame
derived from the text reader, and vs represents a
vector semantic frame derived from the semantic
frame reader. Finally, the semantic frame writer
generates a symbolic semantic frame from a vec-
tor representation.

2.1 Text Reader
A text reader (Figure 2), implementing a neural
sentence encoder, reads a sequence of input tokens
and encodes each to a vector. In this study, we
used long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) for encoding input
sequences. The encoding process can be defined
as

−→
h s = Rtext(EX(xs),

−→
h s−1)

vt = sigmoid(
−→
h S)

where s = {1, 2, ..., S} and
−→
h s is the forward

hidden states over the input sequence at time s;
Rtext is an RNN cell; andEX(xs) is the token em-
bedding function, which returns a distributed vec-
tor representation of token x at time s. The final
RNN output

−→
h S is taken as vt, which is a seman-

tic vector derived from the text.

2.2 Semantic Frame Reader
A semantic frame consists of structured tags such
as the intent and slot-tag and slot-values. In this
study, the intent tag is handled as a symbol, and the
slot-tags and slot-values are handled as a sequence
of symbols. For example, the sentence, “Please list
all flights from Dallas to Philadelphia on Monday.”
is handled as

• intent tag : atis flight

• slot-tag sequence :
[fromloc.city name, toloc.city name, de-
part date.day name]

• slot-value sequence :
[Dallas, Philadelphia, Monday].

The intent reader is a simple embedding func-
tion vintent = EI(i), which returns a distributed
vector representation of the intent tag i for a sen-
tence.

Stacked LSTM layer is used to read the se-
quences of slot-tags and slot-values. ES(o) is a
slot-tag embedding function with o as a token.
EV (a) is an embedding function with a as a to-
ken. The embedding result ES(om) and EV (am)
are concatenated at time-step m, and the merged
vectors are fed to the stacked layer for each time-
step (Figure 2). vtag,value - the reading result of
sequence of slot-tags and values - is taken from
the final output of RNN at time M . Finally, intent,
slot-tag and value encoded vectors are merged to
construct a distributed semantic frame representa-
tion as

vs = sigmoid(Wsf ([vintent; vtag,value]) + bsf)

where [;] denotes the vector concatenation opera-
tor. The dimension of vs is same as vt. All embed-
ding weights are randomly initialized and learned
through the training process.

132

Semantic Frame ReaderText Reader

������ ������

��

⊚
��	
���, ���

�′� �′� �′�

⨀ ⨀ ⨀ ⨁

�������

�����
�

���
����

�����

⨀ �	
��
�

�	
��
� ��	
��
�

�����	

�
����
slot-tag

writer

intent writer

Semantic Frame Writer

��

[Please, list, all,
flights, from, Dallas,
to, Philadelphia, on,
Monday]

��, ��, … , ��
� [fromloc.city_name,

toloc.city_name,
depart_date.day_name]

�� , ��, … , �� �

[Dallas, Philadelphia]�� , �� , … , �� �

atis_flight� �

��
�

�
⊛

������

������

⊛

������

������

� ⊛
��
�����

Figure 2: Text reader, semantic reader and semantic frame writer neural architecture. EX is an embedding
function for the input text token x. EI , ES , and EV are the embedding functions for the intent tag, slot-
tag and slot-value, respectively. � is a vector concatenation operation; � is a cross-entropy; ⊕ is an
average calculation; � represents the distance calculation. ŷintent is a reference intent tag vector and
ŷmslot is a reference slot tag vector at time m. M is the number of slots in a sentence (in the above
example, M = 3).

2.3 Semantic Frame Writer and Loss
Functions

One of the objectives of this study is to learn se-
mantically the reasonable vector representations
of text and a related semantic frame. Hence, we
set the properties of the desirable semantic vec-
tor, and the loss functions are defined to satisfy
the properties.

Loss for Property “embedding correspon-
dence” Distance loss measures the dissimilarity
between the encoded semantic vectors from the
text reader and those from the semantic frame
reader in the vector space. The loss is defined as

Ldist = dist(vt, vs)

where the dist function can be any vector distance
measure; however, in this study, we employed a
Euclidean and a cosine distance (=1.0 - cosine
similarity).

Loss for Property “reconstruction” Content
loss provides a measure of how much semantic
information the semantic frame vector contains.
Without the content loss, vt and vs tend to quickly

converge to zero vectors, implying the failure to
learn the semantic representation. To measure the
content keeping, symbolic semantic frame gen-
erations from semantic vector is performed, and
the difference between the original semantic frame
and the generated semantic frame is calculated.

Because the semantic frame’s slot-value has a
large vocabulary size to generate the slot values, a
reduced semantic frame is devised to ease the gen-
eration problem. A reduced semantic frame is cre-
ated by simply dropping the slot values from the
corresponding semantic frame. For example, in
Figure 2, slot values [Dallas, Philadelphia, Mon-
day] are removed to create a reduced semantic
frame. Content loss calculation is performed on
this reduced semantic frame. Another advantage
of employing reduced semantic frame is that the
learned distributed semantic vectors have more ab-
stract power because the learned semantic vectors
are less sensitive to the lexical vocabulary.

For content loss, the intent and slot-tags’ gen-
eration qualities are measured. The intent gener-
ation network can be simply defined using linear

133

Notation Dim. Description
EX 50 Token embedding
ES 50 Slot-tag embedding
EV 50 Slot-value embedding
vintent 50 Intent reader output
vtag,value 200 Slot-tag and value reader output
v 200 Semantic vector

Table 1: Hyperparameters of the model.

projection as

yintent =W
′
Iv + bI

where v is the semantic vector, and yintent is the
output vector.

The slot-tag generation networks are defined as
−→q m = RG(v,

−→q m−1)
ymslot =W ′S

−→q m + bS

where RG is an RNN cell. The semantic vector v
is copied and repeatedly fed into each RNN input.
The outputs from the RNN are projected onto the
slot tag space with W

′
S .

Figure 2 shows the intent and slot tag generation
networks and the corresponding loss calculation
methods. The generational losses can be defined
with the cross entropy between the generated tag
vector and the reference tag vector as

Lintent = CrossEntropy(ŷintent, yintent)

Lslot =
1

M

M∑

m=1

CrossEntropy(ŷmslot, y
m
slot)

where M is the number of slots in a sentence.
With the combination of intent and slot losses,

the content loss(Lcontent) to reconstruct a seman-
tic frame from a semantic vector v can be defined
as follows:

Lcontent = Lintent + Lslot

Finally, the total loss value (L) for learning the
semantic frame representation is defined with the
distance loss and content loss as

L = Ldist + Lcontent

The hyperparameters of the proposed model are
summarized in Table 1.

3 Applications

3.1 Multi-form Distance Measurement

Using the learned text- and semantic-frame reader,
we can measure not only the instances from the
same form (text or semantic frame form) but also

from different forms. Let’s denote a text as t and
a semantic frame as s, and the text and semantic
frame reader as RT and RS , respectively. The
distance measurements between them can be per-
formed as follows:

• dist(vit, vjt) :
ti → RT (ti) = vit

tj → RT (tj) = vjt

• dist(vit, vjs):
ti → RT (ti) = vit

sj → RS(tj) = vjs

• dist(vis, vjs):
si → RS(si) = vis

sj → RS(sj) = vjs

3.2 Visualization
With vector semantic representation, we can vi-
sualize the instances (sentences) in an easier and
more natural way. Once the symbolic text or se-
mantic frame are converted to vector, vector visu-
alization methods such as t-sne (Maaten and Hin-
ton, 2008) can be used directly to check the rela-
tionship between instances or the distribution of
the entire corpus.

3.3 Re-ranking Without Further Learning
Re-ranking the NLU results from multiple NLU
modules is difficult but important if a robust NLU
system is to be built. Typically, a choice is made
by comparing the scores produced by each system.
However, this technique is not always feasible be-
cause the scores are often in different scales, or are
occasionally not provided at all (e.g., in the purely
rule-based NLU systems). The vector form of the
semantic frame provides a very clear and natural
solution for the re-ranking problem.

Figure 3 shows the flow of the re-ranking algo-
rithm with the proposed vector semantic represen-
tation. In this study, we reordered the NLU results
from multiple NLU systems according to their cor-
responding distances of vt to vs. It is noteworthy
that the proposed re-ranking algorithm does not re-
quire further learning for ranking such as ensem-
ble learning or learning-to-rank techniques. Fur-
ther, the proposed methods are applicable to any
type of NLU system. Even purely rule-based sys-
tems can be satisfactorily compared to purely sta-
tistical systems.

134

���

��

text

��������

	�
����������

��

���������

������	�����

����

���

��

��������

	�
����������

��

���������

������	�����

����

���

��

��������

	�
����������

��

���������

������	�����

����

�����

	�����

��

������� , ��
��

�

������� , ��
��

�

������� , ��
��

�

��

Figure 3: Re-ranking multiple NLU results using
the semantic vector. The semantic vector from the
text (vt) functions as a pivot. We show three dif-
ferent NLU systems in this illustration.

4 Experiments

For training and testing purposes, we used the
ATIS2 dataset (Price, 1990). The ATIS2 dataset
consists of an annotated intent and slot corpus for
an air travel information search task. ATIS2 data
set comes with a commonly used training and test
split. For tuning parameters, we further split the
training set into 90% training and 10% develop-
ment set.

4.1 Validity of Learned Semantic Vector with
Visualization

The intuition behind the proposed method is that
semantically similar instances will be grouped to-
gether if the semantic vector learning is performed
successfully. Figure 4 supports that the intuition
is correct. In the early stages of training, the in-
stances are scattered randomly; however, as the
training progresses, semantically similar instances
gather closer to each other. We observed that the
proposed framework groups and depicts the sen-
tences based on the intent tag remarkably well.

4.2 Multi-form Distance Measurement

In our framework, the instances having differ-
ent forms (text or semantic frame) can be com-
pared directly on a semantic vector space. To
demonstrate that multi-form distance measure-
ment works well, the sentence and semantic frame
search results with a sentence and a semantic

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

(a) Initial (Before Training)
60 40 20 0 20 40 60

80

60

40

20

0

20

40

60

(b) After 3 Epochs

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

(c) After 30 Epochs
60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

(d) After 300 Epochs

60 40 20 0 20 40 60

60

40

20

0

20

40

60

ATIS_FLIGHT
ATIS_AIRFARE
ATIS_FLIGHT#ATIS_AIRFARE
ATIS_GROUND_SERVICE
ATIS_MEAL
ATIS_AIRPORT
ATIS_AIRLINE
ATIS_FLIGHT_TIME
ATIS_CITY
ATIS_GROUND_FARE
ATIS_QUANTITY
ATIS_ABBREVIATION
ATIS_DISTANCE
ATIS_AIRCRAFT
ATIS_CAPACITY
ATIS_FLIGHT_NO

(e) After Full Training

Figure 4: Visualization of semantic vectors through
training process. The plotted points are vt from
the text reader by t-sne processing in the testing
sentences. The different colors and shape combi-
nations represent different intent tags.

frame query are shown in Table 2.

Table 2 shows that text to text search is very well
done with the learned vector. The retrieved sen-
tence patterns are similar to the given text, and the
vocabulary presented is also similar. On the other
hand, in the case of the text to semantic frame
search, The sentence patterns are similar, but the
content words such as city name are not similar.
In fact, this is what we predicted, because the con-
tent loss for reconstruction property is measured
on reduced semantic frame which does not include
slot-values. In semantic frame to text search, we
can find similar behaviors. Retrieved results have
almost same intent tag and slot-tags, but have dif-

135

No. Text Semantic Frame

“Show Delta Airlines from Boston to Salt Lake”

1 Show Delta Airlines flights from Boston to
Salt Lake

1

ATIS FLIGHT
airline name Delta Airlines

fromloc.city name Boston
toloc.city name Salt Lake

2 Show Delta Airlines flights from Boston to
Salt Lake City

2

ATIS FLIGHT
airline name American Airlines

fromloc.city name Phonenix
toloc.city name Milwaukee

3 List Delta flights from Seattle to Salt Lake
City

3

ATIS FLIGHT
airline name Delta Airlines

fromloc.city name Montreal
toloc.city name Orlando

(a) Text as Query

No. Text Semantic Frame

[ATIS FLIGHT] flight mod(last), depart date.day name(Wednesday),
fromloc.city name(Oakland), toloc.city name(Salt Lake City)

1 Get last flight from Oakland to Salt Lake
City on Wednesday

1

ATIS FLIGHT
flight mod last

depart date.day name Wednesday
fromloc.city name Oakland

toloc.city name Salt Lake City

2 Get last flight from Oakland to Salt Lake
City on Wednesday or first flight from Oak-
land to Salt Lake City on Thursday

2

ATIS FLIGHT
flight mod first

depart date.day name Thursday
fromloc.city name Oakland

toloc.city name Salt Lake City

3 Get first flight from Oakland to Salt Lake
City on Thursday

3

ATIS FLIGHT
flight mod last

depart date.day name Wednesday
fromloc.city name Oakland

toloc.city name Salt Lake City
or or

flight mod first
depart date.day name Thursday

fromloc.city name Oakland
toloc.city name Salt Lake City

(b) Semantic Frame as Query

Table 2: Example of most similar instance search results in the test data according to the proposed frame-
work. Top-3 text and semantic frame retrieved instances given a single query are shown in left and right
side respectively.

ferent city or airport names which are correspond-
ing to slot-values. If we could include the slot-
value generation in the reconstruction loss with
large data, a better multi-form semantic search re-
sult might be expected.

To measure the quantitative search perfor-
mance, precision at K are reported in Table 3. Pre-
cision at K corresponds to the number of same sen-
tence pattern instances in the top K results. From
the search result, we can conclude that the learned
semantic vectors keep sentence pattern (intent tag
and slot-tags) information very well.

4.3 Re-ranking

We prepared 11 NLU systems for re-ranking.
Nine intent-/slot-combined classifiers and two in-

K Text Query SF Query
I S J I S J

1 98.30 63.15 62.93 99.43 70.75 70.52
3 99.09 72.45 72.00 99.55 77.78 77.44
5 99.09 75.17 74.72 99.77 78.80 78.68

10 99.09 76.98 76.42 99.77 80.39 80.27

Table 3: Same sentence pattern (intent and slot-
tags should be matched) search performance (Pre-
cision @K). SF, I, S and J stand for semantic
frame, intent, slot-tag and joint of intent and slot-
tag.

136

Identifier Combinations
C1 CRF
C2 CNN RNN
C3 RNN+CRF
C4 CRF
C5 MaxEnt RNN
C6 RNN+CRF
C7 CRF
C8 SVM RNN
C9 RNN+CRF
C10 Joint Liu (Liu and Lane, 2016)
C11 Joint Tur (Hakkani-Tür et al., 2016)

Table 4: Multiple NLU systems for re-ranking.

tent/slot joint classifiers were implemented. For
the combined classifiers, three intent classifiers
and three slot sequential classifiers were prepared
and combined. For the joint classifiers, those of
Liu and Lane (2016) and Hakkani-Tür et al. (2016)
were each implemented. Here, we did not signif-
icantly tune the NLU systems, as the purpose of
this paper is to learn the semantic vector, not to
build the state-of-the-art NLU systems.

A maximum-entropy (MaxEnt)- and a sup-
port vector machine (SVM)-based intent classi-
fier were implemented as a traditional sentence
classification method. Both classifiers share the
same feature set (1-gram, 2-gram, 3-gram, and 4-
gram around each word). Also, a convolutional-
neural network-based (CNN-based) (Kim, 2014)
sentence classification method was implemented.

A conditional random field (CRF)-based se-
quential classifier was implemented as a tradi-
tional slot classifier. Also, an RNN- and an
RNN+CRF-based sequential classifier were im-
plemented as a deep learning method. Bidirec-
tional LSTMs were used to build the simple RNN-
based classifier. By placing a CRF layer on top of
the bidirectional LSTM network (Lee, 2017), an
RNN+CRF-based network was implemented. In
addition, two joint NLU systems (Liu and Lane,
2016; Hakkani-Tür et al., 2016) are prepared by
reusing their codes, which are publicly accessi-
ble12 3.

Table 4 shows the summary of the NLU sys-
tems that we prepared and used for the re-ranking
experiments.

Table 5 shows the performance of all the NLU

1https://github.com/yvchen/JointSLU.git
2https://github.com/DSKSD/RNN-for-Joint-NLU
3The reported performance of C10 and C11 in their paper

were not reproduced with the open code.

NLU
systems

Intent Slot
acc. prec. rec. f m

C1 90.70 94.36 89.61 91.92
C2 90.70 92.33 92.46 92.40
C3 90.70 93.53 92.39 92.96
C4 94.10 94.36 89.61 91.92
C5 94.10 92.33 92.46 92.40
C6 94.10 93.53 92.39 92.96
C7 91.84 94.36 89.61 91.92
C8 91.84 92.33 92.46 92.40
C9 91.84 93.53 92.39 92.96
C10 96.03 93.68 92.64 93.16
C11 93.54 94.74 94.00 94.37
random 92.86 93.96 92.29 93.12
majority vote 94.10 95.63 93.68 94.64(baseline)
NLU score 95.58 94.81 93.89 94.35(baseline)
re-ranked 97.05 93.74 91.96 92.84(Euclidean)
re-ranked 97.05 95.40 94.11 94.75(cosine)
oracle 97.85 96.77 95.29 96.02

Table 5: NLU performance of multiple NLU sys-
tems and re-ranked results. Acc., prec., rec., and
f m stand for accuracy, precision, recall, and f-
measure, respectively.

systems, the proposed re-ranking algorithm’s per-
formance, and the oracle performance. Typical
choices in re-ranking NLU results are majority
voting and score-based ranking. In the majority
voting method, the semantic frame most predicted
by the NLU systems is selected. The score of the
NLU scoring method in Table 5 is the prediction
probability. In the case of joint NLU classifiers
(C10 and C11), the joint prediction probabilities
are used for the score. In the case of combina-
tion NLU systems (C1 to C9), the product of the
intent and slot prediction probabilities is used for
the score.

The proposed distance-based re-ranking
method using semantic vector shows superior se-
lection performance at both intent and slot-filling
tasks. It is noteworthy that the re-ranked intent
prediction performance (acc. 97.05) is relatively
close to the oracle intent performance (acc.
97.85), which is the upper bound. Compared to
the baseline re-ranker (NLU score), the proposed
re-ranker (cosine) achieves 33.25% and 7.07%
relative error reduction for intent prediction and
slot-filling task, respectively.

137

5 Related Work

The task of spoken NLU consists of intent clas-
sification and domain entity slot filling. Tradi-
tionally, both tasks are approached using statis-
tical machine-learning methods (Schwartz et al.,
1997; He and Young, 2005; Dietterich, 2002). Re-
cently, with the advances in deep learning, RNN-
based sequence encoding techniques have been
used to detect the intent or utterance type (Ravuri
and Stolcke, 2015), and RNN-based neural archi-
tectures have been employed for slot-filling tasks
(Mesnil et al., 2013, 2015). The combinations of
CRF and neural networks have also been explored
by Xu and Sarikaya (2013).

Recent works have focused on enriching the
representations for neural architectures to imple-
ment NLU. For example, Chen et al. focused on
leveraging substructure embeddings for joint se-
mantic frame parsing (Chen et al., 2016). Kim
et al. utilized several semantic lexicons, such as
WordNet, PPDB, and the Macmillan dictionary, to
enrich the word embeddings, and later used them
in the initial representation of words for intent de-
tection (Kim et al., 2016).

Previous NLU works have used statistical mod-
eling for the intent and slot-filling tasks, and input
representation. None of the work performed has
represented the text and semantic frame as a vec-
tor form simultaneously. To our best knowledge,
this is the first presentation of a method for learn-
ing the distributed semantic vector for both text
and semantic frame and it’s applications in NLU
research.

In general natural language processing litera-
ture, many raw text to vector studies to learn
the vector representations of text have been per-
formed. Mikolov et al. (2013); Pennington et al.
(2014); Collobert et al. (2011) proposed word
to vector techniques. Mueller and Thyagarajan
(2016); Le and Mikolov (2014) introduced embed-
ding methods at the sentence and document level.
Some attempts have shown that in this embed-
ding process, certain semantic information such as
analogy, antonym, and gender can be obtained in
the vector space.

Further, many structured text to vector tech-
niques have been introduced recently. Preller
(2014) introduced a logic formula embedding
method while Bordes et al. (2013); Do et al. (2018)
proposed translating symbolic structured knowl-
edge such as Wordnet and freebase.

We herein introduce a novel semantic frame em-
bedding method by simultaneously executing the
raw text to vector and structured text to vector
method in a single framework to learn semantic
representations more directly. In this framework,
the text and semantic frame are each projected
onto a vector space, and the distance loss between
the vectors is minimized to satisfy embedding cor-
respondence. Our research goes a step further to
guarantee that the learned vector indeed keep the
semantic information by checking the reconstruc-
tion the symbolic semantic frame from the vector.

In learning the parameters by minimizing the
vector distances, this work is similar to a Siamese
constitutional neural network (Chopra et al., 2005;
Mueller and Thyagarajan, 2016) or an autoencoder
(Hinton and Salakhutdinov, 2006); however, the
weights are not shared or transposed in this work.

6 Conclusion

In this study, we have proposed a new method
to learn a correspondence embedding model for
NLU. To learn a valid and meaningful distributed
semantic representation, two properties - embed-
ding correspondence and reconstruction - are con-
sidered. By minimizing the distance between the
semantic vectors which are the outputs of text
and semantic frame reader, the semantically equiv-
alent vectors are placed very close in the vec-
tor space. In addition, reconstruction consistency
from a semantic vector to symbol semantic frame
was jointly enforced to prevent the method from
learning trivial degenerate mappings (e.g. map-
ping all to zeros).

Through various experiments with ATIS2
dataset, we confirmed that the learned semantic
vectors indeed contain semantic information. Se-
mantic vector visualization and the results of sim-
ilar text and semantic frame search showed that
semantically similar instances are actually located
near on the vector space. Also, using the learned
semantic vector, re-ranking multiple NLU systems
can be implemented without further learning by
comparing semantic vector values of text and se-
mantic frame.

Based on the results of the proposed research,
various research directions can be considered in
the future. A semantic operation or algebra on
a vector space will be a very promising research
topic. Furthermore, with enough training data and
appropriate modification to our method, adding

138

text reconstruction constraint can be pursed and
generating text directly from a semantic vector
would be possible, somewhat resembling problem
settings of neural machine translation tasks.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Yun-Nung Chen, Dilek Hakanni-Tür, Gokhan Tur, Asli
Celikyilmaz, Jianfeng Guo, and Li Deng. 2016.
Syntax or semantics? knowledge-guided joint se-
mantic frame parsing. In Spoken Language Tech-
nology Workshop (SLT), 2016 IEEE, pages 348–355.
IEEE.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
539–546. IEEE.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Thomas Dietterich. 2002. Machine learning for se-
quential data: A review. Structural, syntactic, and
statistical pattern recognition, pages 227–246.

Kien Do, Truyen Tran, and Svetha Venkatesh. 2018.
Knowledge graph embedding with multiple relation
projections. arXiv preprint arXiv:1801.08641.

Dilek Hakkani-Tür, Gökhan Tür, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional rnn-lstm. In Inter-
speech, pages 715–719.

Yulan He and Steve Young. 2005. Semantic process-
ing using the hidden vector state model. Computer
speech & language, 19(1):85–106.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. science, 313(5786):504–507.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Minwoo Jeong and Gary Geunbae Lee. 2006. Jointly
predicting dialog act and named entity for spoken
language understanding. In Spoken Language Tech-
nology Workshop, 2006. IEEE, pages 66–69. IEEE.

Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin
Cao, and Ye-Yi Wang. 2016. Intent detection using
semantically enriched word embeddings. In Spoken
Language Technology Workshop (SLT), 2016 IEEE,
pages 414–419. IEEE.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Changki Lee. 2017. Lstm-crf models for named en-
tity recognition. IEICE Transactions on Information
and Systems, 100(4):882–887.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. arXiv preprint arXiv:1609.01454.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
2015. Using recurrent neural networks for slot fill-
ing in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech and Language Pro-
cessing (TASLP), 23(3):530–539.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In Interspeech, pages
3771–3775.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In AAAI, pages 2786–2792.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Anne Preller. 2014. From logical to distributional mod-
els. arXiv preprint arXiv:1412.8527.

Patti J Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

139

Suman V Ravuri and Andreas Stolcke. 2015. Re-
current neural network and lstm models for lexical
utterance classification. In INTERSPEECH, pages
135–139.

Richard Schwartz, Scott Miller, David Stallard, and
John Makhoul. 1997. Hidden understanding models
for statistical sentence understanding. In Acoustics,
Speech, and Signal Processing, 1997. ICASSP-97.,
1997 IEEE International Conference on, volume 2,
pages 1479–1482. IEEE.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional
neural network based triangular crf for joint in-
tent detection and slot filling. In Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE
Workshop on, pages 78–83. IEEE.

140

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 141–150
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Commonsense Knowledge Base Completion and Generation

Itsumi Saito Kyosuke Nishida Hisako Asano Junji Tomita
NTT Media Intelligence Laboratories

{saito.itsumi, nishida.kyosuke}@lab.ntt.co.jp,
{asano.hisako, tomita.junji}@lab.ntt.co.jp

Abstract

This study focuses on acquisition of common-
sense knowledge. A previous study proposed
a commonsense knowledge base completion
(CKB completion) method that predicts a con-
fidence score of triplet-style knowledge for
improving the coverage of CKBs. To im-
prove the accuracy of CKB completion and ex-
pand the size of CKBs, we formulate a new
commonsense knowledge base generation task
(CKB generation) and propose a joint learning
method that incorporates both CKB comple-
tion and CKB generation. Experimental re-
sults show that the joint learning method im-
proved completion accuracy and the genera-
tion model created reasonable knowledge. Our
generation model could also be used to aug-
ment data and improve the accuracy of com-
pletion.

1 Introduction

Knowledge bases (KBs) are a kind of information
network, and they have been applied to many nat-
ural language processing tasks such as question
answering (Yang and Mitchell, 2017; Long et al.,
2017) and dialog tasks (Young et al., 2018). In
this paper, we focus on commonsense knowledge
bases (CKBs). Commonsense knowledge is also
referred to as background knowledge and is used
in natural language application tasks that require
reasoning based on implicit knowledge. For exam-
ple, machine comprehension tasks that need com-
monsense reasoning have been proposed very re-
cently (Lin et al., 2017; Ostermann et al., 2018). In
particular, Wang et al. (2018) used commonsense
knowledge provided by ConceptNet (Speer et al.,
2017) to efficiently resolve ambiguities and infer
implicit information.

Information in CKB is represented in RDF-
style triples ⟨t1, r, t2⟩, where t1 and t2 are ar-
bitrary words or phrases, and r ∈ R is

a relation between t1 and t2. For example,
⟨go to restaurant, subevent, order food⟩ means
“order food” happens as a subevent of “go to
restaurant”. Although researchers have devel-
oped techniques for acquiring CKB from raw text
with patterns (Angeli and Manning, 2013), it has
been pointed out that some sorts of knowledge
are rarely expressed explicitly in textual corpora
(Gordon and Van Durme, 2013). Therefore, re-
searchers have developed curated CKB resources
by manual annotation (Speer et al., 2017). While
manually created knowledge has high precision,
these resources suffer from lack of coverage.

Knowledge base completion methods are used
to improve the coverage of existing general-
purpose KBs, such as Freebase (Bollacker et al.,
2008; Bordes et al., 2013; Lin et al., 2015). For
example, given a node pair ⟨Athens, Greece⟩,
a completion method predicts the missing rela-
tion “IsLocatedIn”. Such KBs consist of well-
connected entities; thus, the completion meth-
ods are mainly used to find missing links of the
existing nodes. On the other hand, CKBs are
very sparse because their nodes contain arbitrary
phrases and it is difficult to define all phrases in ad-
vance. Therefore, it is important to consider CKB
completion that can robustly take arbitrary phrases
as input queries, even if they are not contained in
the CKBs, to improve the coverage.

Li et al. (2016b) proposed an on-the-fly CKB
completion model to improve the coverage of
CKBs. They defined the CKB completion task as
a binary classification distinguishing true knowl-
edge from false knowledge for arbitrary triples.
They proposed a simple neural network model
that can embed arbitrary phrases on-the-fly and
achieved reasonable accuracy for ConceptNet.
Here, in order to acquire new knowledge by us-
ing a CKB completion model, we have to pre-
pare triplet candidates as input for the completion

141

model, because the model can only verify whether
the triple is true or not. Li et al. (2016b) ex-
tracted such triplet candidates from the raw text
of Wikipedia and also randomly selected from the
phrase and relation set of ConceptNet. Extracts
from raw text likely contain unseen phrases, i.e.,
ones which do not exist in the CKB, and these
phrases are useful for expanding the node size of
the CKB; however, they reported that the qual-
ity of triples acquired from Wikipedia were sig-
nificantly lower than that of combination triples
from ConceptNet, because patterns extracted from
Wikipedia by using linguistic patterns are noisier
than those from ConceptNet. For acquiring new
knowledge with high quality, there are still prob-
lems with expanding new nodes and with the ac-
curacy of CKB completion.

In this study, we focus on problems of increas-
ing the node size of CKBs and increasing the con-
nectivity of CKBs. We introduce a new common-
sense knowledge base generation (CKB genera-
tion) task for generating new nodes. We also de-
vise a model that jointly learns the completion and
generation tasks. The generation task can generate
an arbitrary phrase t2 from an input query and rela-
tion pair ⟨t1, r⟩. The joint learning of the two tasks
improves the completion task and triples generated
by the generation model can be used as additional
training data for the completion model.

Our contributions are summarized as follows:

• We define a new task, called commonsense
knowledge base generation, and propose a
method for joint learning of knowledge base
completion and knowledge base generation.

• Experimental results demonstrate that our
method achieved state-of-the-art CKB com-
pletion results on both ConceptNet and
Japanese commonsense knowledge datasets.

• Experimental results show that our CKB gen-
eration can generate reasonable knowledge
and augmented data generated by the model
can improve CKB completion.

2 Task Definition

Our study focuses on two tasks, CKB completion
and CKB generation. We describe the settings of
these tasks below.

Problem 1 (CKB completion). Given a triple
⟨t1, r, t2⟩, CKB completion provides a confidence

score that distinguishes true triples from false
ones. t1 and t2 are arbitrary phrases. r is a re-
lation in a set R.

Problem 2 (CKB generation). Given a pair of
t1(t2) and r ∈ R, CKB generation generates
t2(t1), which has a relationship r with t1(t2). t1
and t2 are arbitrary phrases.

3 Proposed Method

The proposed method is illustrated in Figure 1.
Our method consists of two models. It performs
both the CKB completion task and CKB gener-
ation task. Two models share the parameters of
a phrase encoder, word embeddings, and relation
embeddings. We describe these models in detail in
Sections 3.1 and 3.2.

3.1 CKB Completion Model

The basic structure of our CKB completion model
is similar to that of Li et al. (2016b). The main dif-
ference between ours and theirs is that our method
learns the CKB completion and generation tasks
jointly. The completion model only considers the
binary classification task, and therefore, it can be
easily overfitted when there are not enough train-
ing data. By incorporating the generation model,
the shared layers are trained for both binary clas-
sification and phrase generation. This is expected
to be a good constraint to prevent overfitting.

Previous model Li et al. (2016b) defined a
CKB completion model that estimates a confi-
dence score of an arbitrary triple ⟨t1, r, t2⟩. They
used a simple neural network model to formulate
score(t1, r, t2) ∈ R.

score(t1, r, t2) = W2g(W1vin + b1) + b2 (1)

where vin = concat(v12, vr) ∈ Rdv+dr . v12 ∈
Rdv is a phrase representation of concatenating t1
and t2. vr ∈ Rdr is a relation embedding for r.
g is a nonlinear activation function. Note that we
use ReLU for g.

Our model Our CKB completion model is
based on Li et al.’s (2016b). However, the shared
structure and the formulation of the phrase repre-
sentations v12 are different. Li et al. (2016b) used
the average of the word embeddings (called DNN
AVG) and max pooling of LSTM (called DNN
LSTM) for calculating v12. On the other hand, we

142

Figure 1: Architecture of proposed method. The CKB completion model estimates the score of ⟨t1 =
“play game”, r = “HasPrerequisite (HP)”, t2 = “know rule”⟩, and the CKB generation model generates t2
from ⟨t1, r⟩ and t1 from ⟨t2, r′⟩. r′:HP denotes the reverse direction of “HasPrerequisite”.

formulate the phrase embedding by using attention
pooling of LSTM and a bilinear function.

hi
j = BiLSTM(xi

j , h
i
j−1)(i = 1, 2) (2)

vi =

J∑

j=1

exp(ej)∑J
k=1 exp(ek)

hi
j (3)

ek = u⊤tanh(Whi
k) (4)

v12 = Bilinear(v1, v2) (5)
vin = concat(v12, vr) (6)

where J is the word length of phrase ti, u is a
linear transformation vector for calculating the at-
tention vector, xi

j and hi
j are the j th word em-

bedding and hidden state of the LSTM for phrase
ti, and vr is the relation embedding. Note that we
calculated v12 for DNN AVG and DNN LSTM by
concatenating v1 and v2. We used batch normal-
ization (Ioffe and Szegedy, 2015) for vin before
passing through the next layer.

3.2 CKB Generation Model

We use an attentional encoder-decoder model to
generate phrase knowledge. Here, we expected
that the quality of the phrase representation would
be increased by sharing the BiLSTM and embed-
dings between the CKB completion and CKB gen-
eration models.

For constructing the encoder-decoder model,
we use relation information in addition to word
sequences. Let X = (x1, x2, ..., xJ) be the in-
put word sequences and Y = (y1, y2, ..., yT) be
the output word sequences. The conditional gen-

eration probability of Y is as follows:

p(Y |X, θ) =
T∏

t=1

p(yt|y<t, ct, r) (7)

p(yt|y<t, ct, r) = g(yt−1, st, ct, r) (8)
st = LSTM(concat(vyt−1

, vr), st−1) (9)

where θ is a set of model parameters, st is a hidden
state of the decoder, and ct is a context vector of
input sequences that is weighted by the attention
probability and calculated as

hj = BiLSTM(xj , hj−1) (10)

ct =

J∑

j=1

exp(et)∑J
k=1 exp(ek)

hj (11)

ek = v⊤tanh(Wast + Wehk) (12)

Here, the BiLSTM, which is the encoder of the
CKB generation model, is shared with that of the
CKB completion model described in equation (2).
As shown in equation (9), we use relation embed-
ding vr as additional input information. There
are several related studies on incorporating addi-
tional label information in a decoder (Li et al.,
2016a). Although the previous work used addi-
tional labels mainly for representing individuality
or style information, we use this idea to represent
relation information. We also use the technique
of tying word vectors and word classifiers (Inan
et al., 2016). The encoder BiLSTM is a single-
layer bidirectional LSTM, and the decoder LSTM
is a single-layer LSTM.

We use a triple ⟨t1, r, t2⟩ for training the
encoder-decoder model. We train our models to
be dual directional. In the forward direction, the
model predicts t2 with the input ⟨t1, r⟩, and in the

143

backward direction, it predicts t1 with the input
⟨t2, r⟩. Here, since the relation r has a direction,
we introduce a new relation r′ for each r to train
dual-directional CKB generation in one model. In
the reverse direction, we replace the relation label
r with r′; namely, the output is t1, and the input is
⟨t2, r′⟩. Therefore, in our CKB generation model,
the vocabulary size of the relation is twice that of
the original relation set.

4 Training

Loss Function We use the following loss func-
tion for training: L(θ) = Lc + λLg, where θ is
the set of model parameters, Lc is the loss func-
tion of our CKB completion model, and Lg is the
loss function of our CKB generation model. We
use binary cross entropy for Lc.

Lc(τ, l) = − 1

N

N∑

n=1

{llogσ(score(τ)) (13)

+ (1 − l)log(1 − σ(score(τ)))},

where τ indicates the triple ⟨t1, r, t2⟩, l is a binary
variable that is 1 if the triple is a positive example
(true triple) and 0 if the triple is a negative exam-
ple (false triple), which we will explain in the next
subsection. σ is a sigmoid function. We formulate
the loss function for the encoder-decoder (CKB
generation) model by using the cross entropy:

Lg = − 1

N

N∑

n=1

T (n)∑

t=1

logp(y
(n)
t |y(n)

<t , c
(n)
t , r(n)), (14)

where N is the sample size, T (n) is the number of
words in the output phrase, ct is the context vector
of the input sequence, and r is the relation label.

Negative sampling We generate negative exam-
ples automatically for training the CKB comple-
tion model by using random sampling. Specifi-
cally, we create three negative examples τneg1 =
⟨tneg

1 , r, t2⟩, τneg2 = ⟨t1, rneg, t2⟩, and τneg3 =
⟨t1, r, tneg

2 ⟩ for the positive triple τ by replacing
each component. Here, tneg

1 and tneg
2 are sampled

in mini-batches, while rneg is sampled in all rela-
tion sets.

Generating augmentation data using CKB gen-
eration model For training the CKB completion
and generation model, we need a large amount
of data that covers a wide range of commonsense
knowledge. Since our CKB generation model can

ConceptNet Ja-KB
train 100,000 192,714
validation1 1,200 13,778
validation2 1,200 -
test 2,400 13,778
size of relation 34 7
size of vocabulary 21,471 18,119
average word length 2.02 3.96

Table 1: Summary of data

make new triples, we use it to make the augmenta-
tion data. We use the original training data as seed
data and generate new triples on the basis of it.
More specifically, given a training triple ⟨t1, r, t2⟩,
we generate a new tgen

2 with the input ⟨t1, r⟩ and
new tgen

1 with the input ⟨t2, r′⟩. This idea is in-
spired by a technique for improving NMT mod-
els (Sennrich et al., 2016). To filter out unreliable
candidates, we use the CKB completion score as a
threshold. We refer to the generated augmentation
data as “auggen” in the experiment section.

5 Experimental Setup

5.1 Data

For the experiments with English, we used
the ConceptNet 100K data released by Li et
al. (2016b)1. The original ConceptNet is a large-
scale and multi-lingual CKB. However, the evalu-
ation set, which was created from a subset of the
whole ConceptNet, consists of data only in En-
glish and contains many short phrases including
single words. In order to evaluate the robustness of
CKB completion models in terms of the language
and long phrases, we created a new open-domain
Japanese commonsense knowledge dataset, Ja-
KB. The statistics of these data are listed in Ta-
ble 1. There are more relation labels in Concept-
Net than in Ja-KB, because we limited the rela-
tion types, which often contain nouns and verbs,
when creating the Ja-KB data. The relation set of
Ja-KB is Causes, MotivatedBy, Subevent, HasPre-
requisite, ObstructedBy, Antonym, and Synonym.
The average length of phrases in Ja-KB is longer
than in ConceptNet because of the data creation
process. The details of our dataset are described
below:

To create the Ja-KB data, we used crowdsourc-
ing like in Open Mind Common Sense (OMCS)
(Singh et al., 2002). Since data annotated by

1http://ttic.uchicago.edu/ kgimpel/commonsense.html

144

crowd workers is usually noisy, we performed a
two-step data collection process to eliminate noisy
data. In the data creating step, a crowd worker cre-
ated triples ⟨t1, r, t2⟩ from the provided keywords.
The keywords consisted of combinations of nouns
and verbs that frequently appeared in Web texts.

Each crowd worker created an arbitrary phrase
t1 (or t2) by using the provided keywords and then
selected a relation r ∈ R and created a corre-
sponding phrase t2 (or t1). In the evaluation step,
three workers chose a suitable r ∈ R when they
were given ⟨t1, t2⟩, which were created by another
worker. Since a worker does not know which rela-
tion r the creator selected in the creation step, we
can measure the reliability of the created knowl-
edge from the overlap of the selected relations. We
used triples for which three or more workers se-
lected the same relation label r. In our preliminary
study, we found that the accuracy of CKB comple-
tion is lower when using low-reliability data.

We randomly selected the test and validation
data among the data for which all workers chose
the same label. The remaining data were used as
training data. For the training data, we added the
same number of triples as the evaluator selected
same label for considering data reliability. For ex-
ample, if three evaluators selected the same label
for a triple, we added the three triples. For the test
and validation data, we randomly sampled nega-
tive examples, as described in Section 4, whose
size was the same as the number of positive exam-
ples according to (Li et al., 2016b). The details are
described in the Supplementary Material.

5.2 Model Configurations

We set the dimensions of the hidden layer of the
shared BiLSTM to 200, the word and relation em-
beddings to 200, and the intermediate hidden layer
of the completion model to 1000. We set the batch
size to 100, dropout rate to 0.2, and weight de-
cay to 0.00001. For optimization, we used SGD
and set the initial learning rate to 1.0. We set
the reduction of the learning rate to 0.5 and ad-
justed the learning rate. We set λ of the loss func-
tion to 1.0. fastText (Bojanowski et al., 2016) and
Wikipedia text were used to train the initial word
embeddings. When generating the augmentation
data, we set the threshold score of CKB comple-
tion to 0.95 for the ConceptNet data and 0.8 for
the Ja-KB data. The additional data amounted to
about 200,000 triples.

5.3 Baseline Method

CKB completion As baselines, we used the
DNN AVG and DNN LSTM models (Li et al.,
2016b) that were described in Section 3.1. To as-
sess the effectiveness of joint learning, we com-
pared our CKB completion model only (proposed
w/o CKB generation) and the joint model (pro-
posed w/ CKB generation). Moreover, we eval-
uated the effectiveness of simply adding augmen-
tation data, as described in Section 4 to the train-
ing data (+auggen). We used the accuracy of bi-
nary classification as the evaluation measure. The
threshold was determined by using the validation1
data to maximize the accuracy of binary classifi-
cation for each method, as in (Li et al., 2016b).

CKB generation We used a simple attentional
encoder-decoder model that does not use relation
information as a baseline (base). We compared
the proposed model with and without joint learn-
ing (proposed and proposed w/o CKBC). We also
evaluated the effectiveness of simply adding aug-
mentation data as described in Section 4 to the
training data (+auggen).

6 Results

6.1 CKB completion

Does joint learning method improve the accu-
racy of CKB completion? Table 2 shows the
accuracy of the CKB completion model. The bot-
tom two lines show the best performances reported
in (Li et al., 2016b). The results indicate that our
method improved the accuracy of CKB comple-
tion compared with the previous method. Our
method achieved 0.945 accuracy on the valida-
tion2 data. This result is close to human accu-
racy (about 0.95). By comparing the results of
the single model (proposed w/o CKB generation)
and joint model (proposed w/ CKB generation),
we can see that the joint model improved the ac-
curacy for both ConceptNet and Ja-KB. This in-
dicates that the loss function of CKB generation
works as a good constraint for the CKB comple-
tion model.

Does data augmentation from CKB genera-
tion improve the accuracy of CKB completion?
Table 2 shows that augmentation data slightly im-
proved the accuracy of both the ConceptNet test
data and Ja-KB test data.

145

ConceptNet Ja-KB
method valid2 test test
base (DNN AVG) 0.923 0.929 0.904
base (DNN LSTM) 0.927 0.936 0.901
proposed w/o CKBG 0.927 0.932 0.907
proposed w/ CKBG 0.945 0.947 0.910
proposed w/ CKBG (+auggen) 0.944 0.954 0.912
Li et al (Li et al., 2016b) 0.913 0.920 -
human (Li et al., 2016b) 0.950 - -

Table 2: Results of CKB completion. CKBG denotes
CKB generation.

ConceptNet Ja-KB
base(DNN AVG) 0.66 0.58
proposed 0.74 0.62
proposed (+auggen) 0.72 0.61

Table 3: Accuracy of binary classification for manually
annotated triples

Human evaluation for assessing the quality of
CKB completion Since negative examples were
randomly selected from the whole test set in the
experiments described above (Table 2), it was easy
to distinguish some of them as positive and neg-
ative examples. To evaluate the ability of CKB
completion in a more difficult setting, we elimi-
nated obviously-false triples and performed man-
ual annotation with the remaining triples. Then we
conducted a binary classification experiment with
these annotated triples. The details are described
below:

First, we prepared triple candidates by using the
ConceptNet and Ja-KB datasets. We replaced one
of the phrases of the existing triple with a simi-
lar phrase, where the similarity was calculated by
using the average of the word embeddings. We
made 100 replacement triples per triple. Next, we
scored the prepared triples by using our CKB com-
pletion model and randomly sampled 500 triples
whose CKB completion scores were larger than
a threshold. Then, ten annotators gave subjective
evaluation scores to all 500 triples. In this evalua-
tion, the annotators rated the degree of agreement
with each statement (triple) on 0-4 rating scale (0
= strongly disagree, 4 = strongly agree), where
the annotator interpreted each triple as a statement
by using the relation explanation. For example,
⟨dog, HasA, tail⟩ means “a dog has a tail”. Fi-
nally, we sampled the top 100 triples which had
small variance from the 500 annotated data and la-
beled those having average scores of 3 or over with
1 (positive examples; 57% and 55% of the top 100

triples of CN and Ja-KB, respectively) and those
having average scores lower than 3 with 0 (nega-
tive examples; 43% and 45%).

Table 3 indicates the binary classification accu-
racy for the 100 sampled triples. While the pro-
posed method improved accuracy, the accuracy of
+auggen was slightly lower than it. This indicates
that we have to select the augmentation data and
the thresholds more carefully to improve the accu-
racy of difficult examples. Moreover, the overall
score is lower than the result of Table 2. This in-
dicates there is room for improving the CKB com-
pletion accuracy for difficult examples. To distin-
guish more difficult examples and improve the ac-
curacy of knowledge acquisition, we have to de-
velop a better negative sampling strategy for train-
ing.

6.2 CKB generation

It is difficult to evaluate the quality of the CKB
generation model directly, since there are many
correct phrase candidates in addition to phrases
that appear in the test data. For that reason, we
evaluated our CKB generation model from differ-
ent viewpoints.

Can our CKB generation model generate rea-
sonable phrases? To see whether the top-n
phrases generated from each query in the test set
included the reference phrase that corresponds to
the query, we calculated the recall of the reference
phrases as follows:

recall = Nmatch/Nreference, (15)

where Nmatch is the number of generated phrases
that exactly match the reference phrases. Figure 2
shows the recall of the reference phrases for each
CKB generation model. The results shown in the
figure are averages over the test queries. Com-
pared with the baseline system, our CKB gener-
ation model achieved higher recalls on both Con-
ceptNet and Ja-KB. This indicates that considering
relation information worked well.

The effectiveness of using augmentation data is
also illustrated in Figure 2. For the Ja-KB data,
recall improved as a result of adding augmenta-
tion data. Since the phrase length of the node in
ConceptNet is shorter than in Ja-KB, it is easier to
cover reference phrases for ConceptNet.

Can our CKB generation model generate new
phrases? To evaluate the effectiveness of our

146

0 10 20 30 40 50
n-best

0.3

0.4

0.5

0.6

0.7

0.8
re

ca
ll

base
prop-w/o:CKBC
prop
prop-w/:auggen

0 10 20 30 40 50
n-best

0.05

0.10

0.15

0.20

0.25

re
ca

ll

base
prop-w/o:CKBC
prop
prop-w/:auggen

Figure 2: Recall of reference phrase (left: ConceptNet,
right: Ja-KB)

n-best	 n-best	

Figure 3: Average number of new phrases generated by
CKBG (blue lines) and average score of CKBC of each
triple (orange dashed lines). Left: ConceptNet, Right:
Ja-KB.

generation model at increasing the node size of
a CKB, we determined whether our model could
generate new phrases that are not included in the
existing CKB. Figure 3 shows that the average
number of such new phrases in the n-best outputs
of our model that were generated from a query
pair of a phrase and a relation in the test set of
ConceptNet and Ja-KB. We can see from the fig-
ure that our model could make triples that contain
new phrases by generating multiple phrases from a
query pair. The figure also plots the average CKB
completion score of each generated triple that con-
tains new phrases; the results confirm that the gen-
erated triples had a high CKB completion score.

Generated examples Table 4 lists examples of
phrases created by the generation model; score-g
indicates the logarithmic probability of the gen-
eration model, and score-c indicates the score of
the completion model. The upper row lists the
top-five results with the input ⟨t1, r⟩=(play game,
HasPrerequisite). The lower row lists the top-five
results with the input ⟨t1, r⟩=(play game, Used-
For). These results indicate that our CKB genera-
tion model can generate reasonable candidates in-
cluding new triples that reflected relation informa-
tion. More examples are shown in the Supplemen-
tary Material.

How high is the quality of knowledge acquired
with our CKB generation? We performed sub-

generated triple ⟨t1, r, t2⟩ score-g score-c
input ⟨t1, r⟩, output t2
play game , HP , learn rule * -3.57 0.985
play game , HP , have game ** -3.87 0.955
play game , HP , find someone to play ** -4.20 0.984
play game , HP , find friend * -4.23 0.978
play game , HP , skill -4.24 0.988
play game , UsedFor , entertainment -2.21 0.950
play game , UsedFor , fun -2.29 0.934
play game , UsedFor , have fun * -2.64 0.920
play game , UsedFor , enjoyment -3.13 0.976
play game , UsedFor , recreation * -3.38 0.971

Table 4: Examples of phrases created using CKB gen-
eration model. The relation label “HP” represents
HasPrerequisite. t2 is the generated phrase, and the in-
put is ⟨t1, r⟩. * represents that the generated triple is
new, and ** represents that the generated t2 is new.

jective evaluations of the quality of the triples
generated with our model. First, we generated
two types of query pairs: ones generated from
ConceptNet (CN gen) and ones generated from
Wikipedia (Wiki gen). In CN gen, we used all
phrase and relation pairs ⟨t, r⟩ appearing in the test
data. In Wiki gen, we used triples extracted by
using the POS tag sequence pattern for each rela-
tion according to Li et al. (2016b) and scored each
triple with CKB completion scores. Then, we used
⟨t, r⟩ pairs of 10000 triples that had higher scores
than a threshold as the input query pairs.

Next, we generated a phrase tgen from ⟨t, r⟩ and
made new triples ⟨t, r, tgen⟩ with our CKB gener-
ation model. We sorted the generated triples ac-
cording to the CKB completion score and selected
the top-100 new triples for CN gen and Wiki gen.
The annotators assigned a (semantic) quality score
and grammatical score to each triple. We used
a 0-4 degree agreement score (described in 6.1)
for evaluating triple quality and a 0-2 score (0.
Doesn’t make sense. 1. There are some grammat-
ical errors. 2. There are no grammatical errors.)
for the evaluation of grammatical quality. We re-
cruited ten annotators who were native speakers of
each language.

We show the results in Table 5. The quality
score of each triple of CN gen was quite high. The
quality score of Wiki gen was lower than that of
CN gen. Since Wikipedia has lots of specific in-
formation, it is difficult to extract an input query
that is useful for making commonsense knowl-
edge. This tendency is similar to the results re-
ported in Li et al. (Li et al., 2016b). The grammat-
ical score was high for both CN gen and Wiki gen.

147

ConceptNet Ja-KB
method semantic grammar semantic grammar
CN gen 3.452 1.651 3.466 1.996
Wiki gen 2.685 1.749 2.415 1.849

Table 5: Subjective evaluation of CKB generation
model

This indicates that our CKB generation model can
generate phrases that have almost no grammatical
errors for high confidence triples for top ranked
triples.

7 Related Work

Knowledge base completion for entity-relation
triples There are many studies that embed graph
structures such as TransE, TransR, HolE, and
STransE (Bordes et al., 2013; Lin et al., 2015;
Nickel et al., 2016; Nguyen et al., 2016). Their
methods aim to learn low-dimensional representa-
tions for entities and relationships by using topo-
logical features. Although these methods are
widely used, they rely on the connectivity of the
existing KB and are only suitable for predicting
relationships between existing, well-connected en-
tities (Shi and Weninger, 2018). Therefore, it is
difficult to get good representations for new nodes
that have no connections with existing nodes.

Several studies have added text information to
the graph embeddings (Zhong et al., 2015; Wang
and Li, 2016; Xiao et al., 2017). These stud-
ies aim to incorporate richer information in the
graph embedding. They combine a graph em-
bedding model and a text embedding model into
one. The text information they use is the descrip-
tion or definition statement of each node. For
example, they would use the description “Barack
Obama is the 44th and current President of United
States” for the node “Barack Obama” and make
better quality embeddings. Although these meth-
ods effectively incorporate text information, they
assume that the descriptions of entities can be eas-
ily acquired. For example, they use the origi-
nally aligned descriptions (e.g., DBpedia, Free-
base) or descriptions acquired by using a simple
entity linking method. Moreover, the methods use
topological information, and they are not designed
for on-the-fly knowledge base completion.

Knowledge base completion for commonsense
triples In commonsense knowledge base com-
pletion, the nodes of the KB consist of arbitrary

phrases (word sequences), and there are a huge
number of unique nodes. In such case, the KB
graph becomes very sparse, and consequently,
there is almost no merit to considering the topo-
logical features of the KBs. Moreover, on-the-fly
KBC is needed because we have to handle new
nodes as input. It is thus more important to for-
mulate phrase and relation embeddings that can
robustly represent arbitrary phrases. There are a
few studies on CKB completion models. In par-
ticular, Li et al. (2016b) and Socher et al. (2013)
proposed a simple KBC model for CKB. The for-
mulations of CKB completion in the two studies
are the same, and we evaluated Li et al. (2016b)’s
method as a baseline.

Open Information Extraction Open Informa-
tion Extraction (OpenIE) aims to extract triple
knowledge from raw text. It finds triples that have
specific predefined relations by using lexical and
syntactic patterns (Mintz et al., 2009; Fader et al.,
2011). Several neural-network-based relation ex-
traction methods have been proposed (Lin et al.,
2016; Zhang et al., 2017). These models construct
classifiers to estimate the relation between two ar-
bitrary entities. OpenIE models are trained with
sentence-level annotation data or distant supervi-
sion, while our model is trained with triples in a
knowledge base. Since openIE can extract new
triples from raw text, it can be used to make aug-
mentation data for the CKB completion model.

Knowledge generation There are several stud-
ies on the knowledge generation task that use
neural network models. For example, Hu et
al. (2017) proposed an event prediction model that
uses a sequence-to-sequence model. Prakash et
al. (2016) and Li et al. (2017) proposed a para-
phrase generation model. These studies targeted
only specific relationships and did not explicitly
incorporate relations into the generation model.
Our CKB generation model explicitly incorpo-
rates relation information into the decoder and can
model multiple relationships in one model.

8 Conclusion

We proposed a new CKB generation task and joint
learning method of CKB completion and gener-
ation. Experimental results with two common-
sense datasets demonstrated that our model has
two strengths: it improves the coverage of the
knowledge bases. While conventional completion

148

tasks are limited to verifying given triples, our
generative model can create new knowledge in-
cluding new phrases that are not in the knowledge
bases. Second, our completion model can improve
the verification accuracy. Two characteristics of
our completion model contribute to this improve-
ment: (i) the model shares the hidden layers, word
embedding, and relation embedding with the gen-
eration model to acquire good phrase and rela-
tion representations, and (ii) it can be trained with
the augmentation data created by the generation
model.

In this study, we did not utilize raw text infor-
mation such as from Wikipedia during training ex-
cept for pre-trained word embeddings. We would
like to extend our method so that it can incorpo-
rate raw text information. Moreover, we would
like to develop a method that effectively utilizes
this commonsense knowledge for other NLP tasks
that need commonsense reasoning.

References
Gabor Angeli and Christopher Manning. 2013.

Philosophers are mortal: Inferring the truth of un-
seen facts. In Proceedings of the Seventeenth Con-
ference on Computational Natural Language Learn-
ing, pages 133–142.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, pages 1247–1250. ACM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th Interna-
tional Conference on NIPS, pages 2787–2795.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information
extraction. In Proceedings of the Conference on
EMNLP, pages 1535–1545.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 Workshop on Automated Knowledge
Base Construction, AKBC ’13, pages 25–30. ACM.

Linmei Hu, Juanzi Li, Liqiang Nie, Xiaoli Li, and Chao
Shao. 2017. What happens next? future subevent

prediction using contextual hierarchical LSTM. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pages 3450–3456.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. CoRR,
abs/1611.01462.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016a. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the ACL,
pages 994–1003.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016b. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the
ACL, pages 1445–1455.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2017. Paraphrase generation with deep reinforce-
ment learning. CoRR, abs/1711.00279.

Hongyu Lin, Le Sun, and Xianpei Han. 2017. Rea-
soning with heterogeneous knowledge for common-
sense machine comprehension. In Proceedings of
the 2017 Conference on EMNLP, pages 2032–2043.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 2181–2187.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the ACL.

Teng Long, Emmanuel Bengio, Ryan Lowe, Jackie
Chi Kit Cheung, and Doina Precup. 2017. World
knowledge for reading comprehension: Rare entity
prediction with hierarchical lstms using external de-
scriptions. In Proceedings of the 2017 Conference
on EMNLP, pages 825–834.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009.
Distant supervision for relation extraction without
labeled data. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
IJCNLP, pages 1003–1011.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. Stranse: a novel embedding model
of entities and relationships in knowledge bases. In
Proceedings of the 2016 Conference of the NAACL:
HLT, pages 460–466.

149

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 1955–
1961.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018. Mcscript: A
novel dataset for assessing machine comprehension
using script knowledge. CoRR, abs/1803.05223.

aaditya prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual lstm networks. In Proceedings of COLING
2016, pages 2923–2934.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the ACL, pages 86–96.

Baoxu Shi and Tim Weninger. 2018. Open-world
knowledge graph completion. AAAI Conference on
Artificial Intelligence.

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open
mind common sense: Knowledge acquisition from
the general public. In On the Move to Meaning-
ful Internet Systems, 2002 - DOA/CoopIS/ODBASE
2002 Confederated International Conferences DOA,
CoopIS and ODBASE 2002, pages 1223–1237.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Proceedings of the 26th International Conference on
NIPS, pages 926–934.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence,
pages 4444–4451.

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and
Jingming Liu. 2018. Yuanfudao at semeval-2018
task 11: Three-way attention and relational knowl-
edge for commonsense machine comprehension. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT.

Zhigang Wang and Juanzi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, pages 1293–
1299.

Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan
Zhu. 2017. SSP: semantic space projection for
knowledge graph embedding with text descriptions.
In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pages 3104–3110.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in lstms for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the ACL, pages 1436–1446.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting end-to-end dialogue systems with common-
sense knowledge. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2017.
End-to-end neural relation extraction with global op-
timization. In Proceedings of the 2017 Conference
on EMNLP, pages 1730–1740.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan,
and Zheng Chen. 2015. Aligning knowledge and
text embeddings by entity descriptions. In Proceed-
ings of the 2015 Conference on EMNLP, pages 267–
272.

150

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 151–160
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Active Learning for Interactive Neural
Machine Translation of Data Streams

Álvaro Peris and Francisco Casacuberta
Pattern Recognition and Human Language Technology Research Center

Universitat Politècnica de València, València, Spain
{lvapeab, fcn}@prhlt.upv.es

Abstract

We study the application of active learning
techniques to the translation of unbounded
data streams via interactive neural machine
translation. The main idea is to select, from an
unbounded stream of source sentences, those
worth to be supervised by a human agent. The
user will interactively translate those samples.
Once validated, these data is useful for adapt-
ing the neural machine translation model.

We propose two novel methods for selecting
the samples to be validated. We exploit the
information from the attention mechanism of
a neural machine translation system. Our ex-
periments show that the inclusion of active
learning techniques into this pipeline allows
to reduce the effort required during the pro-
cess, while increasing the quality of the trans-
lation system. Moreover, it enables to balance
the human effort required for achieving a cer-
tain translation quality. Moreover, our neural
system outperforms classical approaches by a
large margin.

1 Introduction

The translation industry is a high-demand field.
Large amounts of data must be translated on a reg-
ular basis. Machine translation (MT) techniques
greatly boost the productivity of the translation
agencies (Arenas, 2008). However, despite the re-
cent advances achieved in this field, MT systems
are still far to be perfect and make errors. The
correction of such errors is usually done in a post-
processing step, called post-editing. This requires
a great effort, as it needs from expert human su-
pervisors.

The requirements of the translation industry
have increased in the last years. We live in a global
world, in which large amounts of data must be pe-
riodically translated. This is the case of the Euro-
pean Parliament, whose proceedings must be reg-

ularly translated; or the Project Syndicate1 plat-
form, which translates editorials from newspapers
to several languages. In these scenarios, the sen-
tences to be translated can be seen as unbounded
streams of data (Levenberg et al., 2010).

When dealing with such massive volumes of
data, it is prohibitively expensive to manually re-
vise all the translations. Therefore, it is manda-
tory to spare human effort, at the expense of some
translation quality. Hence, when facing this sit-
uation, we have a twofold objective: on the one
hand, we aim to obtain translations with the high-
est quality possible. On the other hand, we are
constrained by the amount of human effort spent
in the supervision and correction process of the
translations proposed by an MT system.

The active learning (AL) framework is well-
suited for these objectives. The application of AL
techniques to MT involve to ask a human oracle to
supervise a fraction of the incoming data (Blood-
good and Callison-Burch, 2010). Once the human
has revised these samples, they are used for im-
proving the MT system, via incremental learning.
Therefore, a key element of AL is the so-called
sampling strategy, which determines the sentences
that should be corrected by the human.

Aiming to reduce the human effort required
during post-editing, other alternative frameworks
have been study. A successful one is the
interactive-predictive machine translation (IMT)
paradigm (Foster et al., 1997; Barrachina et al.,
2009). In IMT, human and MT system jointly
collaborate for obtaining high-quality translations,
while reducing the human effort spent in this pro-
cess.

In this work, we explore the application of NMT
to the translation of unbounded data streams. We
apply AL techniques for selecting the instances to

1www.project-syndicate.org

151

be revised by a human oracle. The correction pro-
cess is done by means of an interactive-predictive
NMT (INMT) system, which aims to reduce the
human effort of this process. The supervised sam-
ples will be used for the NMT system to incremen-
tally improve its models. To the best of our knowl-
edge, this is the first work that introduces an INMT
system into the scenario involving the translation
of unbounded data. Our main contributions are:

• We study the application of AL on an INMT
framework when dealing with large data
streams. We introduce two sampling strate-
gies for obtaining the most useful samples to
be supervised by the human. We compare
these techniques with other classical, well-
performing strategies.

• We conduct extensive experiments, analyzing
the different sampling strategies and studying
the amount of effort required for obtaining a
certain translation quality.

• The results show that AL succeeds at improv-
ing the translation pipeline. The translation
systems featuring AL have better quality and
require less human effort in the IMT process
than static systems. Moreover, the applica-
tion of the AL framework allows to obtain
a balance between translation quality and ef-
fort required for achieving such quality. This
balance can be easily tuned, according to the
needs of the users.

• We open-source our code2 and use publicly-
available corpora, fostering further research
on this area.

2 Related work

The translation of large data streams is a problem
that has been thoroughly studied. Most works aim
to continuously modify the MT system as more
data become available. These modifications are
usually performed in an incremental way (Leven-
berg et al., 2010; Denkowski et al., 2014; Turchi
et al., 2017), learning from user post-edits. This
incremental learning has also been applied to IMT,
either to phrase-based statistical machine transla-
tion (SMT) systems (Nepveu et al., 2004; Ortiz-
Martı́nez, 2016) or NMT (Peris and Casacuberta,
2018b).

2The source code can be found at: https:
//github.com/lvapeab/nmt-keras/tree/
interactive_NMT.

The translation of large volumes of data is a
scenario very appropriate for the AL framework
(Cohn et al., 1994; Olsson, 2009; Settles, 2009).
The application of AL to SMT has been stud-
ied for pool-based (Haffari et al., 2009; Blood-
good and Callison-Burch, 2010) and stream-based
(González-Rubio et al., 2011) setups. Later works
(González-Rubio et al., 2012; González-Rubio
and Casacuberta, 2014), combined AL together
with IMT, showing that AL can effectively reduce
the human effort required for achieving a certain
translation quality.

All these works were based on SMT systems.
However, the recently introduced NMT paradigm
(Sutskever et al., 2014; Bahdanau et al., 2015) has
irrupted as the current state-of-the-art for MT (Bo-
jar et al., 2017). Several works aimed at build-
ing more productive NMT systems. Related to
our work, studies on interactive NMT systems
(Knowles and Koehn, 2016; Peris et al., 2017;
Hokamp and Liu, 2017) proved the efficacy of this
framework. A body of work has been done aim-
ing to build adaptive NMT systems, which con-
tinuously learn from human corrections (Turchi
et al., 2017; Peris and Casacuberta, 2018b). Re-
cently, Lam et al. (2018) applied AL techniques
to an INMT system, for deciding whether the user
should revise a partial hypothesis or not. How-
ever, to our knowledge, a study on the use of AL
for NMT in a scenario of translation of unbounded
data streams is still missing.

3 Neural machine translation

NMT is a particular case of sequence-to-sequence
learning: given a sequence of words from the
source language, the goal is to generate another
sequence of words in the target language. This
is usually done by means of an encoder–decoder
architecture (Sutskever et al., 2014; Vaswani
et al., 2017). In this work, we use a recur-
rent encoder–decoder system with long short-term
memory (LSTM) units (Hochreiter and Schmidhu-
ber, 1997) and an attention mechanism (Bahdanau
et al., 2015).

Each element from the input sequence is pro-
jected into a continuous space by means of an em-
bedding matrix. The sequence of embeddings is
then processed by a bidirectional (Schuster and
Paliwal, 1997) LSTM network, that concatenates
the hidden states from forward and backward lay-
ers and produces a sequence of annotations.

152

The decoder is a conditional LSTM (cLSTM)
network (Peris and Casacuberta, 2018b). A
cLSTM network is composed of several LSTM
transition blocks with an attention mechanism in
between. We use two LSTM blocks.

The output of the decoder is combined together
with the attended representation of the input sen-
tence and with the word embedding of the word
previously generated in a deep output layer (Pas-
canu et al., 2014). Finally, a softmax layer com-
putes a probability distribution over the target lan-
guage vocabulary.

The model is jointly trained by means of
stochastic gradient descent (SGD) (Robbins and
Monro, 1951), aiming to minimize the cross-
entropy over a bilingual training corpus. SGD
is usually applied to mini-batches of data; but it
can be also applied sample-to-sample, allowing
the training of the NMT system in an incremen-
tal way (Turchi et al., 2017).

For decoding, the model uses a beam search
method (Sutskever et al., 2014) for obtaining the
most probable target sentence ŷ, given a source
sentence x:

ŷ = argmax
y

p(y | x) (1)

3.1 Interactive machine translation
As previously discussed, MT systems are not per-
fect. Their outputs must be corrected by a human
agent in a post-editing stage, in order to achieve
high-quality translations.

The IMT framework constitutes a more effi-
cient alternative to the regular post-editing. In a
nutshell, IMT consists in an iterative process in
which, at each iteration, the user introduces a cor-
rection to the system hypothesis. The system takes
into account the correction and provides an alter-
native hypothesis, considering the feedback from
the user.

In this work, we use a prefix-based IMT pro-
tocol: the user corrects the left-most wrong char-
acter of the hypothesis. With this action, the user
has also validated a correct prefix. Then, the sys-
tem must complete the provided prefix, generating
a suitable suffix. Fig. 1 shows an example of the
prefix-based IMT protocol.

More formally, the expression for computing
the most probable suffix (ŷs) is:

ŷs = argmax
ys

p(ys | x,yp) (2)

Source (x): They are lost forever .

Target (ŷ): Ils sont perdus à jamais .

IT-0 MT Ils sont perdus pour toujours .

IT-1
User Ils sont perdus à pour toujours .

MT Ils sont perdus à jamais .

IT-2 User Ils sont perdus à jamais .

Figure 1: IMT session to translate a sentence from
English to French. IT- is the number of iterations
of the process. The MT row shows the MT hy-
pothesis in the current iteration. In the User row is
the feedback introduced by the user: the corrected
character (boxed). We color in green the prefix
that the user inherently validated with the charac-
ter correction.

where yp is the validated prefix provided by the
user and x is the source sentence. Note that this
expression is similar to Eq. (1). The difference is
that now, the search space is the set of suffixes that
complete yp.

For NMT systems, Eq. (2) is implemented as a
beam search, constrained by the prefix provided
by the user (Peris et al., 2017; Peris and Casacu-
berta, 2018b).

4 Active learning in machine translation

When dealing with potentially unbounded
datasets, it becomes prohibitively expensive to
manually supervise all the translations. Aiming
to address this problem, in the AL framework, a
sampling strategy selects a subset of sentences
worth to be supervised by the user. Once cor-
rected, the MT system adapts its models with
these samples.

Therefore, the AL protocol applied to un-
bounded data streams is as follows (González-
Rubio et al., 2012): first, we retrieve from the
data stream S a block B of consecutive sentences,
with the function getBlockFromStream(S). Ac-
cording to the sampling(B, ε) function, we select
from B a subset V of ε instances, worth to be su-
pervised by the user. See Section 5 for deeper
insights on the sampling functions used in this
work. These sampled sentences are interactively
translated together with the user (Section 3.1).
This process is done in the function INMT(θ,x,y).
Once the user translates via INMT a source sen-
tence x, a correct translation ŷ is obtained. Then,
we use the pair (x, ŷ) to retrain the parameters

153

Algorithm 1: Active learning for unbounded
data streams with interactive neural machine
translation.
input : θ (NMT model)

S (stream of source sentences)
ε (effort level desired)

auxiliar : B (block of source sentences)
V ⊆ B (sentences to be supervised

by the user
1 begin
2 repeat
3 B = getBlockFromStream(S);
4 V = sampling(B, ε);
5 foreach x ∈ B do
6 y = translate(θ,x);
7 if x ∈ V then
8 ŷ = INMT(θ,x,y);
9 θ = update(θ, (x, ŷ));

10 output(ŷ);
11 else
12 output(y);
13 end
14 end
15 until S 6= ∅;
16 end

θ from the NMT model, via SGD. This is done
with the function update(θ, (x, ŷ)). Therefore,
the NMT system is incrementally adapted with
new data. The sentences considered unworthy
to be supervised are automatically translated ac-
cording to according Eq. (1), with the function
translate(θ,x). Once we finish the translation
of the current block B, we start the process again.
Algorithm 1 details the full procedure.

5 Sentence sampling strategies

One of the key elements of AL is to have a mean-
ingful strategy for obtaining the most useful sam-
ples to be supervised by the human agent. This re-
quires an evaluation of the informativeness of un-
labeled samples. The sampling strategies used in
this work belong to two major frameworks: un-
certainty sampling (Lewis and Catlett, 1994) and
query-by-committee (Seung et al., 1992).

As baseline, we use a random sampling strat-
egy: sentences are randomly selected from the
data stream S . Although simple, this strategy usu-
ally works well in practice. In the rest of this sec-
tion, we describe the sampling strategies used in

this work.

5.1 Uncertainty sampling

The idea behind this family of methods is to se-
lect those instances for which the model has the
least confidence to be properly translated. There-
fore, all techniques compute, for each sample, an
uncertainty score. The selected sentences will be
those with the highest scores.

Quality estimation sampling
A common and effective way for measuring the
uncertainty of a MT system is to use confidence
estimation (Gandrabur and Foster, 2003; Blatz
et al., 2004; Ueffing and Ney, 2007). The idea is
to estimate the quality of a translation according to
confidence scores of the words.

More specifically, given a source sentence x =
x1, . . . , xJ and a translation hypothesis y =
y1, . . . , yI , a word confidence score (Cw) as com-
puted as (Ueffing and Ney, 2005):

Cw(x, yi) = max
0≤j≤J

p(yi|xj) (3)

where p(yi|xj) is the alignment probability of yi
and xj , given by an IBM Model 2 (Brown et al.,
1993). x0 denotes the empty source word. The
choice of the IBM Model 2 is twofold: on the one
hand, it is a very fast method, which only requires
to query in a dictionary. We are in an interactive
framework, therefore speed becomes a crucial re-
quirement. On the other hand, its performance is
close to more complex methods (Blatz et al., 2004;
Dyer et al., 2013).

Following González-Rubio et al. (2012), the un-
certainty score for the quality estimation sampling
is defined as:

Cqe(x,y) = 1− |{yi ∈ y|Cw(x, yi) > τw}|
|y| (4)

where τw is a word confidence threshold, adjusted
according to a development corpus. | · | denotes
the size of a sequence or set.

Coverage sampling
One of the main issues suffered by NMT sys-
tems is the lack of coverage: the NMT system
may not translate all words from a source sen-
tence. This results in over-translation or under-
translation problems (Tu et al., 2016).

We propose to use the translation coverage as
a measure of the uncertainty suffered by the NMT

154

system when translating a sentence. Therefore, we
modify the coverage penalty proposed by Wu et al.
(2016), for obtaining a coverage-based uncertainty
score:

Ccov(x,y) =

∑|x|
j=1 log

(
min(

∑|y|
i=1 αi,j , 1)

)

|x|
(5)

where αi,j is attention probability of the i-th target
word and the j-th source word.

Attention distraction sampling
When generating a target word, an attentional
NMT system should attend on meaningful parts
of the source sentence. If the system is translating
an uncertain sample, its attention mechanism will
be distracted. That means, dispersed throughout
the source sequence. A sample with a great dis-
traction will feature an attention probability distri-
bution with heavy tails (e.g. a uniform distribu-
tion). Therefore, for the attention distraction sam-
pling strategy, the sentences to select will be those
with highest attention distraction.

For computing a distraction score, we compute
the kurtosis of the weights given by the attention
model for each target word yi:

Kurt(yi) =
1
|x|
∑|x|

j=1(αi,j − 1
|x|)

4

(
1
|x|
∑|x|

j=1(αi,j − 1
|x|)

2
)2 (6)

being, as above, αi,j the weight assigned by the
attention model to the j-th source word when de-
coding the i-th target word. Note that, by construc-
tion of the attention model, 1

|x| is equivalent to the
mean of the attention weights of the word yi.

Since we want to obtain samples with heavy
tails, we average the minus kurtosis values for all
words in the target sentence, obtaining the atten-
tion distraction score Cad:

Cad(x,y) =

∑|y|
i=1−Kurt(yi)
|y| (7)

5.2 Query-by-committee

This framework maintains a committee of mod-
els, each one able to vote for the sentences to be
selected. The query-by-committee (QBC) method
selects the samples with the largest disagreement
among the members of the committee. The level
of disagreement of a sample x measured according

to the vote-entropy function (Dagan and Engelson,
1995):

Cqbc(x) = −
#V (x)

|C| + log
#V (x)

|C| (8)

where #V (x) is the number of members of the
committee that voted x to be worth to be super-
vised and |C| is the number of members of the
committee. If #V (x) is zero, we set the value of
Cqbc(x) to −∞.

Our committee was composed by the four un-
certainty sampling strategies, namely quality es-
timation, coverage, attention distraction and ran-
dom sampling. The inclusion of the latter into the
committee can be seen as a way of introducing
some noise, aiming to prevent overfitting.

6 Experimental framework

In order to assess the effectiveness of AL for
INMT, we conducted a similar experimentation
than the latter works in AL for IMT (González-
Rubio and Casacuberta, 2014): we started from a
NMT system trained on a general corpus and fol-
lowed Algorithm 1. This means that the sampling
strategy selected those instances to be supervised
by the human agent, who interactively translated
them. Next, the NMT system was updated in an
incremental way with the selected samples.

Due to the prohibitive cost that an experimen-
tation with real users conveys, in our experiments,
the users were simulated. We used the references
from our corpus as the sentences the users would
like to obtain.

6.1 Evaluation

An IMT scenario with AL requires to assess two
different criteria: translation quality of the system
and human effort spent during the process.

For evaluating the quality of the translations, we
used the BLEU (bilingual evaluation understudy)
(Papineni et al., 2002) score. BLEU computes an
average mean of the precision of the n-grams (up
to order 4) from the hypothesis that appear in the
reference sentence. It also has a brevity penalty
for short translations.

For estimating the human effort, we simulated
the actions that the human user would perform
when using the IMT system. Therefore, at each
iteration the user must search in the hypothesis the
next error, and position the mouse pointer on it.

155

Once the pointer is positioned, the user would in-
troduce the correct character. These actions corre-
spond to a mouse-action and a keystroke, respec-
tively.

Therefore, we use a commonly-used met-
ric that accounts for both types of interaction:
the keystroke mouse-action ratio (KSMR) (Bar-
rachina et al., 2009). It is defined as the number of
keystrokes plus the number of mouse-actions re-
quired for obtaining the desired sentence, divided
by the number of characters of such sentence. We
add a final mouse-action, accounting for action
of accepting the translation hypothesis. Although
keystrokes and mouse-actions are different and re-
quire a different amount of effort (Macklovitch
et al., 2005), KSMR makes an approximation and
assumes that both actions require a similar effort.

6.2 Corpora

To ensure a fair comparison with the latter works
of AL applied to IMT (González-Rubio and
Casacuberta, 2014), we used the same datasets:
our training data was the Europarl corpus (Koehn,
2005), with the development set provided at the
2006 workshop on machine translation (Koehn
and Monz, 2006). As test set, we used the News
Commentary corpus (Callison-Burch et al., 2007).
This test set is suitable to our problem at hand be-
cause i. it contains data from different domains
(politics, economics and science), which represent
challenging out-of-domain samples, but account
for a real-life situation in a translation agency; and
ii. it is large enough to properly simulate long-
term evolution of unbounded data streams. All
data are publicly available. We conducted the ex-
perimentation in the Spanish to English language
direction. Table 1 shows the main figures of our
data.

Table 1: Corpora main figures, in terms of number
of sentences (|S|), number of running words (|W |)
and vocabulary size (|V |). k and M stand for thou-
sands and millions of elements, respectively.

Corpus Usage |S| |W | |V |

Europarl
Train En 2M 46M 106k

Es 48M 160k

Dev. En 2k 58k 6.1k
Es 61k 7.7k

News Test En 51k 1.2M 35k
Commentary Es 1.5M 49k

6.3 NMT systems and AL setup

Our NMT system was built using NMT-Keras
(Peris and Casacuberta, 2018a) and featured a
bidirectional LSTM encoder and a decoder with
cLSTM units. Following Britz et al. (2017), we set
the dimension of the LSTM, embeddings and at-
tention model to 512. We applied batch normaliz-
ing transform (Ioffe and Szegedy, 2015) and Gaus-
sian noise during training (Graves, 2011). The L2

norm of the gradients was clipped to 5, for avoid-
ing the exploiting gradient effect (Pascanu et al.,
2012). We applied joint byte pair encoding (BPE)
(Sennrich et al., 2016) to all corpora. For train-
ing the system, we used Adam (Kingma and Ba,
2014), with a learning rate of 0.0002 and a batch
size of 50. We early-stopped the training accord-
ing to the BLEU on our development set. For de-
coding, we used a beam of 6.

We incrementally update the system (Line 9 in
Algorithm 1), with vanilla SGD, with a learning
rate of 0.0005. We chose this configuration ac-
cording to an exploration on the validation set.

The rest of hyperparameters were set according
to previous works. The blocks retrieved from the
data stream contained 500 samples (according to
González-Rubio et al. (2012), the performance is
similar regardless the block size). For the quality
estimation method, the IBM Model 2 was obtained
with fast align (Dyer et al., 2013) and τw was
set to 0.4 (González-Rubio et al., 2010).

7 Results and discussion

A system with AL involves two main facets to
evaluate: the improvement on the quality of the
system and the amount of human effort required
for achieving such quality. In this section, we
compare and study our AL framework for all our
sampling strategies: quality estimation sampling
(QES), coverage sampling (CovS), attention dis-
traction sampling (ADS), random sampling (RS)
and query-by-committee (QBC).

7.1 Active learning evaluation

First, we evaluated the effectiveness of the appli-
cation of AL in the NMT system, in terms of trans-
lation quality. Fig. 2 shows the BLEU of the initial
hypotheses proposed by the NMT system (Line 6
in Algorithm 1), as a function of the percentage
of sentences supervised by the user (ε in Algo-
rithm 1). That means, the percentage of sentences
used to adapt the system. The BLEU of a static

156

system without AL was 34.6. Applying AL, we
obtained improvements up to 4.1 points of BLEU.

0 20 40 60 80 100

35

36

37

38

39

Sentences supervised [%]

B
L

E
U

[%
]

QES ADS CovS QBC RS

Figure 2: BLEU of the initial hypotheses pro-
posed by the the NMT system as a function of the
amount of data used to adapt it. The percentage of
sentences supervised refers to the value of ε with
respect to the block size.

As expected, the addition of the new knowledge
had a larger impact when applied to a non-adapted
system. Once the system becomes more special-
ized, a larger amount of data was required to fur-
ther improve.

The sampling strategies helped the system to
learn faster. Taking RS as a baseline, the learning
curves of the other techniques were better, espe-
cially when using few (up to a 30%) data for fine-
tuning the system. The strategies that achieved a
fastest adaptation were those involving the atten-
tion mechanism (ADS, CovS and QBC). This in-
dicates that the system is learning from the most
useful data. The QES and RS required more su-
pervised data for achieving the comparable BLEU
results. When supervising high percentages of the
data, we observed BLEU differences. This is due
to the ordering in which the selected sentences
were presented to the learner. The sampling strate-
gies performed a sort of curriculum learning (Ben-
gio et al., 2009).

7.2 Introducing the human into the loop

From point of view a user, it is important to assess
not only the quality of the MT system, but also the
effort spent to obtain such quality. Fig. 3 relates
both, showing the amount of effort required for ob-
taining a certain translation quality. We compared

the results of system with AL against the same
NMT system without AL and with two other SMT
systems, with and without AL, from González-
Rubio and Casacuberta (2014).

Results in Fig. 3 show consistent positive results
of the AL framework. In all cases, AL reduced
the human effort required for achieving a certain
translation quality. Compared to a static NMT sys-
tem, approximately a 25% of the human effort can
be spent using AL techniques.

0 5 10 15 20 25

20

40

60

80

100

KSMR

B
L

E
U

[%
]

QES Static-NMT
CovS AL-SMT†

ADS Static-SMT†

QBC RS

Figure 3: Translation quality (BLEU) as a func-
tion of the human effort (KSMR) required. Static-
NMT relates to the same NMT system without
AL. † denotes systems from González-Rubio and
Casacuberta (2014): Static-SMT is a SMT system
without AL and AL-SMT is the coverage augmen-
tation SMT system.

Regarding the different sampling strategies, all
of them behaviored similarly. They provided con-
sistent and stable improvements, regardless the
level of effort desired (ε). This indicates that, al-
though the BLEU of the system may vary (Fig. 2),
this had small impact on the effort required for cor-
recting the samples. All sampling strategies out-
performed the random baseline, which had a more
unstable behavior.

Compared to classical SMT systems, NMT per-
formed surprisingly well. Even the NMT sys-
tem without AL largely outperformed the best AL-
SMT system. This is due to several reasons: on the
one hand, the initial NMT system was much bet-
ter than the original SMT system (34.6 vs. 14.9
BLEU points). Part of this large difference were

157

presumably due to the BPE used in NMT: the
data stream contained sentences from different do-
mains, but they can be effectively encoded into
known sequences via BPE. The SMT system was
unable to handle well such unseen sentences. On
the other hand, INMT systems usually respond
much better to the human feedback than inter-
active SMT systems (Knowles and Koehn, 2016;
Peris et al., 2017). Therefore, the differences be-
tween SMT and NMT were enlarged even more.

Finally, it should be noted that all our sampling
strategies can be computed speedily. They involve
analysis of the NMT attention weights, which are
computed as a byproduct of the decoding process;
or queries to a dictionary (in the case of QES). The
update of NMT system is also fast, taking approx-
imately 0.1 seconds. This makes AL suitable for a
real-time scenario.

8 Conclusions and future work

We studied the application of AL methods to
INMT systems. The idea was to supervise the
most useful samples from a potentially unbounded
data stream, while automatically translating the
rest of samples. We developed two novel sam-
pling strategies, able to outperform other well-
established methods, such as QES, in terms of
translation quality of the final system.

We evaluated the capabilities and usefulness
of the AL framework by simulating real-life sce-
nario, involving the aforementioned large data
streams. AL was able to enhance the performance
of the NMT system in terms of BLEU. More-
over, we obtained consistent reductions of approx-
imately a 25% of the effort required for reaching
a desired translation quality. Finally, it is worth
noting that NMT outperformed classical SMT sys-
tems by a large margin.

We want to explore several lines of work in a
future. First, we intend to apply our method to
other datasets, involving linguistically diverse lan-
guage pairs and low-resource scenarios, in order to
observe whether the results obtained in this work
hold. We also aim to devise more effective sam-
pling strategies. To take into account the cogni-
tive effort or time required for interactively trans-
lating a sentence seem promising objective func-
tions. Moreover, these sampling strategies can be
used as a data selection technique. It would be in-
teresting to assess their performance on this task.
We also want to study the addition of reinforce-

ment or bandit learning into our framework. Re-
cent works (Nguyen et al., 2017; Lam et al., 2018)
already showed the usefulness of these learning
paradigms, which are orthogonal to our work. Fi-
nally, we intend to assess the effectiveness of our
proposals with real users in a near future.

Acknowledgments

The research leading this work received funding
from grants PROMETEO/2018/004 and CoMUN-
HaT - TIN2015-70924-C2-1-R. We also acknowl-
edge NVIDIA Corporation for the donation of
GPUs used in this work.

References
Ana Guerberof Arenas. 2008. Productivity and quality

in the post-editing of outputs from translation mem-
ories and machine translation. Localisation Focus,
7(1):11–21.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473.

Sergio Barrachina, Oliver Bender, Francisco Casacu-
berta, Jorge Civera, Elsa Cubel, Shahram Khadivi,
Antonio Lagarda, Hermann Ney, Jesús Tomás, En-
rique Vidal, and Juan-Miguel Vilar. 2009. Statistical
approaches to computer-assisted translation. Com-
putational Linguistics, 35(1):3–28.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning, pages 41–48.

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence es-
timation for machine translation. In Proceedings of
the international conference on Computational Lin-
guistics, pages 315–321.

Michael Bloodgood and Chris Callison-Burch. 2010.
Bucking the trend: Large-scale cost-focused active
learning for statistical machine translation. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 854–864.

Ondřej Bojar, Christian Buck, Rajen Chatterjee, Chris-
tian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, and Julia Kreutzer, editors. 2017. Proceed-
ings of the Second Conference on Machine Transla-
tion.

Denny Britz, Anna Goldie, Thang Luong, and Quoc
Le. 2017. Massive exploration of neural machine
translation architectures. arXiv:1703.03906.

158

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2):263–311.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2007.
(Meta-) evaluation of machine translation. In Pro-
ceedings of the Workshop on Statistical Machine
Translation, pages 136–158.

David Cohn, Les Atlas, and Richard Ladner. 1994. Im-
proving generalization with active learning. Ma-
chine learning, 15(2):201–221.

Ido Dagan and Sean P Engelson. 1995. Committee-
based sampling for training probabilistic classifiers.
In Machine Learning Proceedings 1995, pages 150–
157.

Michael Denkowski, Chris Dyer, and Alon Lavie.
2014. Learning from post-editing: Online model
adaptation for statistical machine translation. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 395–404.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM Model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

George Foster, Pierre Isabelle, and Pierre Plamon-
don. 1997. Target-text mediated interactive machine
translation. Machine Translation, 12:175–194.

Simona Gandrabur and George Foster. 2003. Confi-
dence estimation for text prediction. In Proceedings
of the Conference on Computational Natural Lan-
guage Learning, pages 315–321.

Jesús González-Rubio and Francisco Casacuberta.
2014. Cost-sensitive active learning for computer-
assisted translation. Pattern Recognition Letters,
37:124–134.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and
Francisco Casacuberta. 2010. Balancing user effort
and translation error in interactive machine trans-
lation via confidence measures. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics, pages 173–177.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and
Francisco Casacuberta. 2011. An active learning
scenario for interactive machine translation. In Pro-
ceedings of the 13th international conference on
multimodal interfaces, pages 197–200.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and
Francisco Casacuberta. 2012. Active learning for in-
teractive machine translation. In Proceedings of the
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 245–254.

Alex Graves. 2011. Practical variational inference for
neural networks. In Advances in Neural Information
Processing Systems, pages 2348–2356.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based
machine translation. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 415–423.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. arXiv:1704.07138.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980.

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction. In Proceedings
of the Association for Machine Translation in the
Americas, pages 107–120.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
Machine Translation Summit, pages 79–86.

Philipp Koehn and Christof Monz, editors. 2006. Pro-
ceedings on the Workshop on Statistical Machine
Translation. Association for Computational Lin-
guistics.

Tsz Kin Lam, Julia Kreutzer, and Stefan Riezler. 2018.
A reinforcement learning approach to interactive-
predictive neural machine translation. In Proceed-
ings of the European Association for Machine Trans-
lation conference, pages 169–178.

Abby Levenberg, Chris Callison-Burch, and Miles Os-
borne. 2010. Stream-based translation models for
statistical machine translation. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 394–402.

David D Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In Machine Learning Proceedings 1994, pages 148–
156.

Elliot Macklovitch, Nam-Trung Nguyen, and Roberto
Silva. 2005. User evaluation report. Technical re-
port. Transtype2 (ISR-2001-32091).

Laurent Nepveu, Guy Lapalme, Philippe Langlais, and
George Foster. 2004. Adaptive language and trans-
lation models for interactive machine translation. In
Proceedings of the Conference on Empirical Method
in Natural Language Processing, pages 190–197.

159

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017. Reinforcement learning for bandit
neural machine translation with simulated human
feedback. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1464–1474.

Fredrik Olsson. 2009. A literature survey of active ma-
chine learning in the context of natural language pro-
cessing. Technical report.

Daniel Ortiz-Martı́nez. 2016. Online learning for sta-
tistical machine translation. Computational Linguis-
tics, 42(1):121–161.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of the Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to construct deep
recurrent neural networks. arXiv:1312.6026.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv:1211.5063.

Álvaro Peris and Francisco Casacuberta. 2018a. NMT-
Keras: a very flexible toolkit with a focus on interac-
tive NMT and online learning. The Prague Bulletin
of Mathematical Linguistics, 111:113–124.

Álvaro Peris and Francisco Casacuberta. 2018b. On-
line learning for effort reduction in interactive neural
machine translation. arXiv:1802.03594.

Álvaro Peris, Miguel Domingo, and Francisco Casacu-
berta. 2017. Interactive neural machine translation.
Computer Speech & Language, 45:201–220.

Herbert Robbins and Sutton Monro. 1951. A stochastic
approximation method. The Annals of Mathemati-
cal Statistics, pages 400–407.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics, pages 86–96.

B. Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

H Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. In Proceed-
ings of the fifth annual workshop on Computational
learning theory, pages 287–294.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the Advances in Neural
Information Processing Systems, volume 27, pages
3104–3112.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, volume 1, pages 76–85.

Marco Turchi, Matteo Negri, M Amin Farajian, and
Marcello Federico. 2017. Continuous learning from
human post-edits for neural machine translation.
The Prague Bulletin of Mathematical Linguistics,
108(1):233–244.

Nicola Ueffing and Hermann Ney. 2005. Application
of word-level confidence measures in interactive sta-
tistical machine translation. In Proceedings of the
European Association for Machine Translation con-
ference, pages 262–270.

Nicola Ueffing and Hermann Ney. 2007. Word-
level confidence estimation for machine translation.
Computational Linguistics, 33:9–40.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv:1706.03762.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson,
X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
2016. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Ma-
chine Translation. arXiv:1609.08144.

160

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 161–170
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Churn Intent Detection in Multilingual Chatbot Conversations and Social
Media

Christian Abbet†‡, Meryem M’hamdi†‡, Athanasios Giannakopoulos∗,
Robert West†, Andreea Hossmann∗, Michael Baeriswyl∗ and Claudiu Musat∗

‡ Equal Contribution
∗Data, Analytics & AI — Swisscom AG

{firstName.lastName}@swisscom.com
† Ecole Polytechnique Fédérale de Lausanne (EPFL)

{firstName.lastName}@epfl.ch

Abstract

We propose a new method to detect when
users express the intent to leave a service, also
known as churn. While previous work focuses
solely on social media, we show that this intent
can be detected in chatbot conversations. As
companies increasingly rely on chatbots, they
need an overview of potentially churny users.
To this end, we crowdsource and publish a
dataset of churn intent expressions in chatbot
interactions in German and English. We show
that classifiers trained on social media data can
detect the same intent in the context of chat-
bots.

We introduce a classification architecture that
outperforms existing work on churn intent de-
tection in social media. Moreover, we show
that, using bilingual word embeddings, a sys-
tem trained on combined English and German
data outperforms monolingual approaches. As
the only existing dataset is in English, we
crowdsource and publish a novel dataset of
German tweets. We thus underline the uni-
versal aspect of the problem, as examples of
churn intent in English help us identify churn
in German tweets and chatbot conversations.

1 Introduction

Identifying customers who intend to terminate
their relation with a company is commonly known
as churn detection. This is very important for
companies if we consider that attracting new cus-
tomers is a time and cost-intensive task. There-
fore, it is often preferable for companies to focus
on the existing customers in order to prevent los-
ing them instead of trying to acquire new ones.

Traditionally, churn detection is based on track-
ing the user behavior and correlating it with the
decision to churn. The analysis of the user be-
havior typically includes metadata such as the sub-
scription information, network usage or customer
transactions (Qian et al., 2007; Dave et al., 2013).

English
Dictionary

Churn Detection in Twitter

churny

non-churny

Chatbot Conversations

German
Dictionary

Mono/Multi
Embeddings

CNN

Bi-GRU-Att

Multilingual
Alignment

English

German

Figure 1: Overview of Overall Pipeline.

The behavior-based techniques thus require a sig-
nificant amount of data that are not easily avail-
able. In addition, there is a cold start problem with
novel systems which may not have access to the
background required for this type of analysis.

The current trend for detecting churn intent is
to focus on textual user statements. This intent is
sufficient evidence for the likely following churn
decision of a user. Moreover, it is an action-
able insight, as it allows companies to allocate re-
sources to prevent the likely customer churn de-
cision. Textual churn detection is only based on
the current interaction between the user and the
service provider. As a result, no a priori knowl-
edge of the customer background is needed, thus
bypassing the cold start problem.

A text-based analysis of the intent to churn is
even more relevant today in the context of the
chatbot explosion (Hill et al., 2015; Fadhil and
Gabrielli, 2017; Xu et al., 2017; Argal et al.,
2018). Chatbots are becoming one of the main
means of textual communication with the evolu-
tion of automation processes.

This chatbot explosion aims at converting the
usual human-to-human interaction into a human-
to-machine one, which however comes at a high
cost. Concretely, companies have no longer a full
grasp on their users’ level of discontent, since the
customer contact is handled by chatbots. Adding a

161

churn detection functionality to bots allows com-
panies to spot cases where the discontent reaches
a high level, and the user expresses an intent to
churn. This, in turn, becomes an actionable in-
sight, as the bot can decide if human intervention
is needed and route the conversation to a human
agent.

Churn detection is hard, as it requires dis-
criminating between the intent to switch to and
switch from a service. For instance in the tweet
”@MARKE das klingt gut zu den genannten Kon-
ditionen würde ich dann doch gern wechseln :)”
which translates as ”@BRAND the conditions
sound good to me. I would like to switch :)”, the
intention is not churny for the brand this tweet
is addressed to. However in ”@MARKE Inter-
net langsamer als gedrosseltes. bin deshalb zu
eurer konkurrenz gewechselt” which translates as
”@BRAND Internet slower than throttled. So
I switched to your competitor” the intention is
churny.

In this paper, we claim that (i) we can transfer
knowledge about churn intent detection from so-
cial media to chatbot conversations and (ii) churn
intent detection can work in a multilingual way for
both social media and chatbot conversations. We
visualize the approach we adopt in Fig. 1.

We start by creating churn intent detectors, that
are based on a neural architecture, that exploits
convolutional, recurrent and attention layers. We
compare the performance of our model with the
existing state-of-the-art for churn detection in En-
glish microblogs (Mourad Gridach, 2017) and val-
idate that our classifier achieves top-notch perfor-
mance in this task.

We also contribute by providing datasets in En-
glish and German for churn detection to the re-
search community. First, we collect and anno-
tate a dataset with German tweets that refer to
any German telecommunication brand (e.g., Voda-
fone and O2). This dataset complements the al-
ready existing microblog based dataset released
from Hadi Amiri (2015). Secondly, we create our
own chatbot platform which helps us in building
and annotating the first datasets in German and
English for chatbot conversations. We later use
these datasets as evaluation sets in order to prove
our claim that we can successfully transfer knowl-
edge from data extracted from social media to
chatbot conversations.

In addition, we contribute by showing that

expressions of churn intent are language-
independent. The intuition is that if we train a
classifier to detect churny intents in a language,
this knowledge can help identify churn intents
in a second language. To make the computation
lighter, we do not use translation but rely on mul-
tilingual embeddings. Multilingual embeddings
extend monolingual ones with the objective of
mapping similar words from different languages
closely together in a unified space.

We perform experiments and show that models
trained on data coming from both languages are
more accurate than language-specific ones. This
is true for both the social media and the chatbot
corpora. As a result, we demonstrate not only that
churn intent models generalize across media, but
also across languages. Our findings have a ma-
jor implication. Concretely, we prove that know-
ing how a customer, writing in English, expresses
discontent with a telecommunications company in
the US helps the system detect the churn intent
in simulated chatbot conversations written in Ger-
man about a German operator.

We summarize our contributions as follows:
• we present a neural-based model that achieve

state-of-the-art model results for churn detec-
tion (Section 3.1).
• we create a first multilingual approach for

churn intent detection using multilingual em-
beddings (Section 3.2).
• we show that churn detection patterns can

be learned from social media content and
successfully applied to chatbot conversations
(Section 3.3).
• we publish a novel dataset for churn detection

in German tweets (Section 4.2).
• and finally, we create the first German and

English datasets for churn intent detection in
chatbot conversations (Section 4.3).

The paper continues with an outline of related
work in Section 2. Section 3 describes our text
classifier and our approach for multilingual word
embeddings. The dataset construction is detailed
in Section 4. We describe our experiments in Sec-
tion 5 and finally conclude in Section 6.

2 Related Work

This work is an intersection of (i) churn detection
in social media, (ii) multilingual churn detection
and (iii) churn detection in chatbots Therefore we
present the related work for each domain sepa-

162

rately. As there are no direct applications of multi-
lingual embeddings and knowledge transfer from
social media to churn detection in chatbot conver-
sations, we include other applications that inspired
our work.

2.1 Churn in Social Media
The first approach of performing churn detection
relies on user metadata. Metadata are information
about the customer activity for a particular ser-
vice. Qian et al. (2007) propose a method based
on customer transactions over time to detect churn
whereas Dave et al. (2013) focus on user’s session
duration. Such techniques have proven to be effi-
cient but rely on the fact that we possess a large
amount of data regarding the user behavior, a fact
which is rarely true.

The second approach focuses on textual in-
teractions such as in social media. Here, no a
priori knowledge of the customer actions is re-
quired since churn detection is solely based on
textual interactions between the user and the com-
pany. Hadi Amiri (2015) distributed a labeled En-
glish dataset of tweets (hereafter denoted as ENT)
about telecommunication brands and provided a
baseline for churn detection in social media.

Hadi Amiri (2016); Mourad Gridach (2017)
worked on ENT . Hadi Amiri (2016) focused on
the extraction of additional features from tweets.
They gathered information about the context of
the tweet (e.g. number of replies). This contex-
tual information was passed through a pre-trained
RNN to generate new features and improve clas-
sification performance. Unfortunately, this tech-
nique depends on the availability of additional data
which is not always present and therefore does
not scale well. On the contrary, Mourad Gri-
dach (2017) focused only on tweets and achieved
the best-known performance on textual churn de-
tection. They did so by performing text classi-
fication using a Convolutional Neural Networks
(CNN) (Lecun and Y., 1995) enriched with rule-
based features. Even though this approach has
proven to improve the score significantly, it di-
rectly limits the model to English applications.

2.2 Transfer from Social Media to Chatbots
Previous work on churn intent detection is cen-
tered on social media while chatbots are slowly re-
placing human-to-human interaction and becom-
ing the main way of communication between cus-
tomers and brands. Due to the novel aspect of the

topic, there are no publicly available datasets re-
lated to churn detection in chatbot conversations,
and therefore no previous work on that field ex-
ists. Lee et al. (2018) propose multiple sentiment-
based reply models for chatbot conversation. They
trained their models on a Twitter sentiment anal-
ysis corpus (Pak and Paroubek, 2010) which is
composed of 15M data points with labeled sen-
timent. However, to the best of our knowledge,
there is no work that uses churn detection in the
context of chatbot conversations.

2.3 Multilingual Aspect

Multilingual word embeddings have been applied
in the context of tasks like Cross-Lingual Doc-
ument Classification (CLDC) as in (Klementiev
et al., 2012). The authors evaluate the quality of
multilingual embeddings they induced using par-
allel data to classify unlabeled documents in a tar-
get language using only labeled documents in a
source language. However, a comparison between
the performance using monolingual versus mul-
tilingual data is missing. We try to address this
problem in our research.

Other downstream tasks which benefited from
multilingual embeddings include Cross Language
Sentiment Classification (CLSC) as in (Hui-
wei Zhou and Huang, 2015). They train the bilin-
gual embeddings jointly using the task data and
its translation and show that the multilingual ap-
proach outperforms the monolingual experiments.
This gain in performance encouraged us to try this
approach to churn detection. To the best of our
knowledge, there is no prior work leveraging mul-
tilingual embeddings for this task.

3 Methodology

Social media includes a wide range of platforms,
however, we choose to use Twitter. We do so
for the following reasons. First, we would like to
take advantage of the free and widely used Twit-
ter API. Secondly, we would like to compile and
annotate a German dataset for churn detection in
order to complement the already existing dataset
of Hadi Amiri (2015). Twitter helps to this end
with its flexible policy for data distribution which
allows us to release our novel dataset effortlessly.

Churn intent detection can be seen as a classifi-
cation task where the input is a text, and the output
is one of two classes (churn and non churn). Here,
we adapt a new architecture, tailored to the nature

163

of tweets (e.g., short text length) and also low data
availability.

In addition, the churn intent detection problem
is not tied to a single language or domain of appli-
cation. We analyze the synergies between churn
intents in multiple languages and how multilin-
gual embeddings can help us solve the problem at
hand. For chatbot applications, the intuition is that
a model trained on the social media domain might
be helpful in finding churn expressions in the con-
text of chatbots.

3.1 Text Classification Architecture

Our churn detection architecture is a text classi-
fier based on cascaded collaborative layers where
different feature extractors and aggregators com-
plement each other. More precisely, we employ a
combination of a CNN and a bidirectional Gated
Recurrent Unit (BiGRU) to make use of both spa-
tial and temporal dependencies in the data (Sainath
et al., 2015; Chen et al., 2017). On top of that,
an attention mechanism (Bahdanau et al., 2014) is
employed in order to recognize which BiGRU out-
puts have higher weights of importance.

While CNN acts as n-grams feature extractors,
GRU cells are used to take word order into con-
sideration. This is crucially important as the word
order can play an important role to understand the
context and detect something as churny or non-
churny. We use GRU since it is a lightweight and
more computationally efficient version of Long
Short-Term Memory (LSTM) networks that pre-
serves a comparable performance without using a
memory unit (Chung et al., 2014). BiGRU is used
instead of unidirectional GRU to preserve infor-
mation from the past and future.

The overall view of the architecture is depicted
in Fig. 2. Each sentence can be represented as an
n×m input matrix, where n is the maximum num-
ber of words over all sentences (padding is per-
formed to the length of the longest tweet) and m
is the number of features (i.e., dimensionality of
word embeddings). We apply dropout directly to
the embedding matrix to reduce overfitting. For
each sentence matrix, we apply f convolution fil-
ters of kernel size k which result in f vectors of
size n−k+1. We then feed the extracted features
to a BiGRU which traverses the sentence in both
the forward and backward directions. In the end,
we apply a softmax activation function to get the
final prediction.

3.2 Multilingual Churn Intent Detection

We introduce the task of cross-lingual churn de-
tection by aiming at detecting churn in any lan-
guage. More specifically, we train and test one
single robust model by concatenating data com-
ing from English and German using multilingual
embeddings. We rely on the assumption that us-
ing multilingual embeddings — as a mechanism to
represent words coming from different languages
into the same low dimensional vector space —
can capture the semantic and syntactic similari-
ties between the languages which help with trans-
fer learning between them. In a sense, languages
which are resource rich in churn detection can help
those which lack the features needed to build a
strong classifier by their own. Our aim with this
multilingual approach is to bridge the gap between
English and German and improve the performance
of German for which data is not as strongly la-
beled.

We build our multilingual embeddings which
map words from different languages into one joint
vector space by learning translation of embed-
dings in the source space into the target space.
We set German as the source space and English
as the target space. We then learn the transfor-
mation matrix that aligns German to English. In
other words, this approach fine-tunes German em-
beddings by applying a linear transformation that
maps them into the English space. Due to the pres-
ence of compound words and high availability of
training data, the embedding space for English al-
lows for a richer representation of the semantics
of individual words. The availability of multiple
bilingual dictionaries, where English is one of the
languages, motivates us to choose English as a tar-
get language.

For that purpose, we adopt an offline approach
to guarantee a fair comparison between monolin-
gual and multilingual churn detection. We do so
to show clearly the added value of the multilin-
gual approach where both monolingual and multi-
lingual embeddings are initially trained using the
same monolingual constraints.

According to Smith et al. (2017), this transfor-
mation matrix can be learned analytically using
the product of the left and right singular vectors
obtained from SVD of the product of the source
and target dictionary vectors XD and YD. Con-
cretely, WDE→EN = U · V such that XD · YD =
U ·Σ·V which was proven to have the same quality

164

...

Embedding Matrix

Convolution Filters

k

Matrix of filter outputs

GRU

GRU

GRU

...

A
t
t
e
n
t
i
o
n

h0

h1

hn

h2

...

S
o
f
t
m
a
x f filtersm features

n
w

or
ds

n-
k+

1

f feature vectors

D
r
o
p
o
u
t

m

Figure 2: Architecture of CNN-GRU with Attention.

as those obtained via iterative optimization. The
product of U and V is the closed form solution
that optimizes the transformation from the source
to the target spaces Smith et al. (2017).

3.3 Transfer from Social Media to Chatbots

We make the assumption that tweets and chatbot
conversations are similar to a certain extent. Even
if the language is mostly different, we believe that
the parts that are relevant to churn detection stay
the same. In other words, if a model trained on
tweets gives promising results on chatbot conver-
sations, then it confirms that there is an underlying
churn intent pattern that can be generalized across
mediums. Still, differences exist between the
way costumers express themselves through social
media and chatbot conversations. Social media,
and especially Twitter, tend to carry specific struc-
tures that might prevent our model from detecting
churn in chatbot conversations. To this end, we
work towards removing domain specific features
of the text in order to be able to transfer knowl-
edge from Twitter to chatbots successfully. There-
fore, we first remove patterns such as RT, # and @
that are Twitter-specific. Moreover, users usually
start their message with the mention of the brand
such as ”@X I want to switch to @Y!” where X
is the targeted brand and Y any potential competi-
tor. However, this is rarely true for chatbot con-
versations. We can generalize these examples by
removing the mention of the source brand to ob-
tain ”I want to switch to @Y!” where the targeted
brand is implicitly known and therefore is more
likely to represent a typical chatbot entry.

4 Churn Intent Datasets

In this work, we use pairs of datasets from two dif-
ferent languages (English and German) with the
certainty that churn detection is a universal prob-
lem and therefore does not depend on the lan-
guage. Each pair is composed of a Twitter and
a chatbot conversations dataset denoted as LangT

Twitter English Data (ENT)
brand churn non churn
Verizon 447 1543
AT&T 402 1389

T-Mobile 95 978

Table 1: Distribution of English tweets along the dif-
ferent brands.

and LangC respectively. Lang is a 2-letter abbre-
viation of the source language. As a result, we
discuss the creation of 4 different datasets, namely
ENT , ENC , DET and DEC 1.

4.1 English Twitter Dataset (ENT)

The dataset is introduced by Hadi Amiri (2015)
and is composed of English tweets that show men-
tions of Verizon, AT&T, and T-Mobile (telecom-
munication brands). Each tweet is associated with
a source brand (name of the company that is tar-
geted by the tweet) and a label (1 or 0 whether
the content is churny or not). Table 1 tabulates the
exact distribution of the data as a function of the
source brand where churn is the number of churny
tweets associated to the brand and non churn the
number of non-churny ones. Overall, the dataset
contains 43392 labeled tweets and is highly im-
balanced regarding the distribution of churny/non-
churny tweets.

4.2 German Twitter Dataset (DET)

Since there is no existing dataset for churn detec-
tion except for English, we create a novel German
dataset. As a first step, we crawl all mentions on
Twitter of multiple telecommunication brands that
are active in German-speaking countries for a pe-
riod of six months. The result is a large Twitter
dataset, DETFULL , containing more than 160000
tweets. However, labeling such a large corpus

1The created datasets are publicly available at https:
//github.com/swisscom/churn-intent-DE

2We only keep those with annotation confidence above
0.7 as in (Hadi Amiri, 2015).

165

Filters
DE Translation EN
zur konkurrenz to the competitor
tschüss goodbye
vertrag beende end contract
anbieter wechs change provider
zurückkommen zu return to
verlassen quit
wechseln switch to

Table 2: Non-exhaustive list of word filters used to
detect potential churny tweets in German.

is extremely time intensive and would result in
a waste of resources since the density of churny
tweets is extremely low. A solution to reduce the
size of DETFULL is to apply filters composed of
predefined keywords to isolate potential churny
tweets and generate a sub-dataset of candidates,
DETFILTER , as depicted in Fig. 3. Those key-
words are manually selected and are assumed to
be linked with or carry churny content. A non-
exhaustive list of used keywords is displayed in
Table 2.

Churn

Non Churn

Churn

Non Churn

Filtered ()
Chatbot

Conversations

Twitter Dataset ()

DET FILTER

DET

DET BOOT

DET FULL

Figure 3: Creation of DET and transition to chatbots.

The resulting subset, DETFILTER , is given to
annotation through a platform specifically created
for this purpose. All tweets are annotated by
at least two annotators. We keep in our dataset
only the entries where both annotators agree on
the label. We train the first version of our model
with the newly labeled subset and then apply it
to our initial dataset DETFULL . By selecting only
predictions with high confidence, we can gener-
ate an additional subset, DETBOOT , of potential
churny tweets. This new subset has the advantage
of not being biased by the predefined filter key-
words as opposed to DETFILTER . Therefore, we
can reduce the overall bias of our dataset by label-
ing DETBOOT and concatenating it to DETFILTER .

Twitter German Data (DET)
brand churn non churn

O2 247 905
Vodafone 203 1061
Telekom 121 1397
Others 40 365

Table 3: Distribution of German tweets along the dif-
ferent brands.

The final result is German Twitter dataset as
DET = DETFILTER + DETBOOT .

The complete distribution of the labels of DET
is displayed in Table 3 for comparison purposes
with ENT . Here, three main companies emerged
from our dataset, namely O2, Vodafone and
Telekom (all other brands are grouped in the table
as Others). It is interesting to note that the size and
distribution of the labels of the German dataset is
comparable to the English one which allows fair
performance comparison across languages.

4.3 Chatbot Conversations (ENC + DEC)

Our ultimate goal is to detect churn intent in chat-
bot conversations. However, no English nor Ger-
man labeled chatbot conversations are available
for this purpose. To overcome this problem, we
create our own chatbot platform to gather data and
build our German (DEC) and English (ENC) chat-
bot conversations. Our platform consists of a basic
interface where the user can enter text that is pro-
cessed by the chatbot as depicted in Fig. 4.

Figure 4: Annotation process using our platform.

We want the user to enter customer service re-
lated examples and their ground truth (churn or
non-churn) to create our dataset. However, creat-
ing and labeling data is a tedious task for the user
and might lower the quality of our text-label pairs.
Therefore, we choose to present the chatbot inter-
face as a game to make it more user-friendly.

166

Chatbot Conversation Data
Lang churn non churn
EN 119 188
DE 116 218

Table 4: Distribution of labels in chatbot conversations
for both languages (EN/DE).

Firstly, the user is asked to enter a sentence that
is either churny or non churny. Then, the chat-
bot predicts the output using a model trained on
social media and informs the user about the pre-
diction. Finally, the user can approve or disap-
prove the prediction of the chatbot using buttons.
In both cases, we get the ground truth of the text
and are able of expanding our database and even
giving feedback to the user accordingly. A second
annotator is then responsible for double-checking
the labeled data coming from the chatbot. We
keep only the data points where the two annota-
tors agree. Note that we append the results to the
databases (ENC + DEC) as a function of the de-
tected language of the input text.

We end up with two novel datasets for churn de-
tection in chatbot conversations. Table 4 presents
the distribution of the labels in both languages.
The two columns indicate the number of churny
and non-churny examples in each dataset respec-
tively.

5 Evaluation

For textual churn detection, we design and report
on the performance of three experiments:
• Training on ENT and testing on ENT using

English monolingual embeddings.
• Training on DET and testing on DET using

German monolingual embeddings.
• Training on (EN+DE)T and testing on ENT

and DET using multilingual embeddings.
For all experiments, a consistent model with

the same hyper-parameters is used to ensure a fair
comparison. We employ 256 filters with a kernel
size of 2 for the convolutional layer. In addition,
we set the number of GRU units to 128 and apply
a dropout with a rate of 0.3. Finally, we use the
Adam optimizer with its default parameters. To al-
low a fair comparison, 10-fold cross validation is
used as in (Hadi Amiri, 2015). This ensures that
the results are less affected by the train/test split
and all models are trained until convergence for
each fold. In the end, the mean and standard de-

viation of macro precision, recall and F1-score are
computed over the maximum of each fold. We
execute all experiments 20 times, test them under
statistical dependence and reject with a threshold
of α = 5%.

For chatbot conversations, we directly evaluate
the best model trained on datasets from social me-
dia on chatbot conversation data. We report the
performance for the following three experiments
in Section 5.3:
• Best model trained on ENT and tested on

ENC using English embeddings.
• Best model trained on DET and tested on

DEC using German embeddings.
• Best model trained on (EN+DE)T and tested

on ENC and DEC using multilingual embed-
dings.

5.1 Embeddings and Data Augmentation
We use pre-trained 300-dimensional word embed-
dings for English and German from fastText (Pi-
otr Bojanowski and Mikolov, 2017). The same
distributional vectors used in monolingual exper-
iments are employed in building multilingual em-
beddings. We learn the alignment based on a train
part of a ground truth bilingual dictionary consist-
ing of 5000 German-English pairs (Conneau et al.,
2017). We then apply dimensionality reduction on
top of SVD by deleting the last few rows corre-
sponding to a value threshold of 1 in the diagonal
vector. The threshold value is chosen to maximize
the performance on the test part of the bilingual
dictionary pairs used for learning the alignment
from DE to EN .

We also replace all brands with either ”tar-
get” or ”competitor” to improve vocabulary cov-
erage. ”Target” refers to the brand concerned by
the churny content and ”competitor” to all other
brands mentioned in the text. Finally, it is im-
portant to notice that if a tweet is churny for a
specific brand, it is not churny for the other cited
brands. For example, ”@X I want switch to @Y!”
is churny for brand X but not for Y. We can, there-
fore, generate more examples where Y is replaced
as ”target”. We use this procedure for each fold to
augment the training set.

5.2 Social Media Results
Table 5 contains the results for churn detection
in social media. The first row shows the results
for training and testing on ENT data which al-
lows us to compare our score to state-of-the-art

167

Twitter Data
Model Train Test F1-Score (%) Precision (%) Recall (%)
Churn teacher ENT ENT 83.85 82.56 85.18
CNN-GRU-Att ENT ENT 84.23± 3.14 87.70± 3.21 81.22± 4.08
CNN-GRU-Att (EN+DE)T ENT 85.88± 2.36 85.85± 2.49 85.94± 2.56

CNN-GRU-Att DET DET 66.69± 3.30 63.90± 5.80 70.44± 5.32
CNN-GRU-Att (EN+DE)T DET 78.09± 2.43 78.62± 2.05 77.72± 3.09

Table 5: Performance comparison of our model on English against the current state-of-the-art (Mourad Gridach,
2017). EN and DE are scores for language dependent models using monolingual embeddings, whereas EN+DE is
for system trained on both languages at the same time using multilingual word embeddings. The indices T stands
for Twitter.

Chatbot conversations
Model Train Test F1-Score (%) Precision (%) Recall (%)
CNN-GRU-Att ENT ENC 82.10 78.99 85.45
CNN-GRU-Att (EN+DE)T ENC 84.43 84.75 84.18

CNN-GRU-Att DET DEC 74.25 74.14 74.32
CNN-GRU-Att (EN+DE)T DEC 73.58 73.45 73.72

Table 6: Results on chatbot conversations. EN and DE are scores for language dependent models using mono-
lingual embeddings. EN+DE are for system trained on both languages at the same time using multilingual word
embeddings. We distinguish Twitter from chatbot dataset using respectively the indices T and C.

results. We outperform the previous performance
from Mourad Gridach (2017) and reach 85.88%
using multilingual word embeddings. Note that
the standard deviation over the 10-fold cross vali-
dation is not provided by Mourad Gridach (2017).
However, an increase of 2.03% of the mean still
represents an important improvement over the
state-of-the-art. As a result, we prove that our
novel architecture provides an efficient way to de-
tect churn in social media.

We notice a significant improvement in the per-
formance of Twitter data when both English and
German tweets are aggregated and used for train-
ing with multilingual embeddings. The advan-
tage of our multilingual model is promising es-
pecially for German with an increase of 7.8% in
F1-score. English also benefits with a slight in-
crease of 1.65%. The better quality of the English
word embeddings makes it easier for our model to
identify the churn patterns, compared to German.
This explains the gap between the gain in perfor-
mance for German compared to English, although
we used two corpora comparable in size for both
languages.

To gain more insights into why the multilin-
gual approach improves the test performance in
German, it is worth reconsidering the example in-
troduced earlier: ”@MARKE das klingt gut zu
den genannten Konditionen würde ich dann doch

gern wechseln :)”. This example is predicted as
churny using German monolingual model, while it
is not churny according to the multilingual model.
This can be explained by the fact that the Ger-
man model could only rely on the presence of
switch keyword, while the multilingual approach
can learn more complex patterns that are present
in both languages. There is a similar example in
English: ”I want to switch to @BRAND already”
that portrays more or less the same pattern.

5.3 Chatbot Results

Table 6 shows that for chatbot conversations we
obtain results comparable to Twitter. This proves
that our model is able of capturing the structure of
the churny tweets in both languages and general-
ize it to other applications (e.g., chatbot conversa-
tions).

Moreover, we observe that the performance
of churn detection in English chatbot conversa-
tions also benefits from the multilingual approach.
Concretely, the model trained on (EN+DE)T and
tested on ENC outperforms its monolingual coun-
terpart trained on ENT and tested on ENC with an
increase 2.34% in F1-score. On the other hand,
performance for German exhibits a marginal drop
compared to its monolingual counterpart. This can
be due to the small number of conversation exam-
ples and their lack of variability which makes them

168

more similar in structure to the training tweets.
Therefore, even a monolingual model would work
well in this case.

A final observation is that the recall is usually
higher than the precision on chatbot conversations.
This is noteworthy in our application since it is
more important to reduce the number of false neg-
ative in churn prediction. Indeed, it is better for
companies to falsely detect churn intent (in case
of false positives) than missing actual customers
(in case of false negatives).

6 Conclusion

Preventing customers from leaving a service is an
essential topic for companies, as acquiring new
customers is a time and cost-intensive procedure.
While previous work solely focuses on user behav-
ior over time or social media, here, we propose a
novel approach for churn intent detection in chat-
bot conversations.

In this paper, we work towards multilingual
churn intent detection in chatbot conversation with
knowledge transfer from Twitter datasets. First,
we release a novel dataset of German tweets for
churn intent detection to complement the exist-
ing English one. Moreover, we create and dis-
tribute a dataset for churn intent detection in chat-
bot conversations for both English and German.
We present a model based on a neural architec-
ture that outruns the state-of-the-art performance
on churn intent detection in social media.

Our experiments show that our model can gen-
eralize churn intent patterns learned from social
media and successfully apply them to chatbot con-
versations, proving that we can transfer churn de-
tection knowledge from Twitter to chatbots. In
addition, we prove that our model, trained using
multilingual word embeddings, surpasses mono-
lingual approaches. This result highlights the
universal facet of the problem, as examples of
churn intent in English help us in identifying churn
about German telecommunication brands in Ger-
man tweets and chatbot conversations.

References
Ashay Argal, Siddharth Gupta, Ajay Modi, Pratik

Pandey, Simon Shim, and Chang Choo. 2018. Intel-
ligent travel chatbot for predictive recommendation
in echo platform. In Computing and Communica-
tion Workshop and Conference (CCWC), 2018 IEEE
8th Annual, pages 176–183. IEEE.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang.
2017. Improving sentiment analysis via sentence
type classification using bilstm-crf and cnn. Expert
Systems with Applications, 72:221–230.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégoi. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Kushal S. Dave, Vishal Vaingankar, Sumanth Kolar,
and Vasudeva Varma. 2013. Timespent Based Mod-
els for Predicting User Retention. WWW ’13.
ACM, New York, NY, USA.

Ahmed Fadhil and Silvia Gabrielli. 2017. Addressing
challenges in promoting healthy lifestyles: The ai-
chatbot approach.

Hal Daume III Hadi Amiri. 2015. Target-dependent
churn classification in microblogs. AAAI, pages
2361–2367.

Hal Daume III Hadi Amiri. 2016. Short text repre-
sentation for detecting churn in microblogs. AAAI,
pages 2566–2572.

Jennifer Hill, W Randolph Ford, and Ingrid G Farreras.
2015. Real conversations with artificial intelligence:
A comparison between human–human online con-
versations and human–chatbot conversations. Com-
puters in Human Behavior, 49:245–250.

Fulin Shi Huiwei Zhou, Long Chen and Degen Huang.
2015. Learning bilingual sentiment word embed-
dings for cross-language sentiment classification. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Conference on Natural Language Pro-
cessing, pages 26–31, Beijing, China.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed rep-
resentations of words. In Proceedings of COLING
2012: Technical Papers, pages 1459–1474, Mum-
bai, India.

Yann Lecun and Bengio Y. 1995. Convolutional net-
works for images, speech, and time-series.

Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu,
Kuan-Yu Chen, Hung-yi Lee, and Lin-shan Lee.
2018. Scalable sentiment for sequence-to-sequence
chatbot response with performance analysis.

169

Hala Mulki Mourad Gridach, Hatem Haddad. 2017.
Churn identification in microblogs using convo-
lutional neural networks with structured logical
knowledge. Proceedings of the 3rd Workshop on
Noisy User-generated Text, pages 21–30.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10.

Armand Joulin Piotr Bojanowski, Edouard Grave and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. In Transactions of the Asso-
ciation for Computational Linguistics, pages 135–
146.

Qian, Wei Jiang, and Kwok-Leung Tsui. 2007.
Churn detection via customer profile modelling.
International Journal of Production Research,
44(14):2913–2933.

T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. 2015.
Convolutional, long short-term memory, fully con-
nected deep neural networks. In 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4580–4584.

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. CoRR, abs/1702.03859.

Anbang Xu, Zhe Liu, Yufan Guo, Vibha Sinha, and
Rama Akkiraju. 2017. A new chatbot for customer
service on social media. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems, pages 3506–3510. ACM.

170

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 171–180
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Learning text representations for 500K classification tasks
on Named Entity Disambiguation

Ander Barrena and Aitor Soroa and Eneko Agirre
IXA NLP Group

UPV/EHU University of the Basque Country
Donostia, Basque Country

ander.barrena,a.soroa,e.agirre@ehu.eus

Abstract

Named Entity Disambiguation algorithms typ-
ically learn a single model for all target en-
tities. In this paper we present a word ex-
pert model and train separate deep learning
models for each target entity string, yielding
500K classification tasks. This gives us the
opportunity to benchmark popular text repre-
sentation alternatives on this massive dataset.
In order to face scarce training data we pro-
pose a simple data-augmentation technique
and transfer-learning. We show that bag-
of-word-embeddings are better than LSTMs
for tasks with scarce training data, while
the situation is reversed when having larger
amounts. Transferring an LSTM which is
learned on all datasets is the most effective
context representation option for the word ex-
perts in all frequency bands. The experi-
ments show that our system trained on out-of-
domain Wikipedia data surpasses comparable
NED systems which have been trained on in-
domain training data.

1 Introduction

Named Entity Disambiguation (NED), also known
as Entity Linking or Entity Resolution, is a task
where entity mentions in running text need to be
linked to its entity entry in a Knowledge Base
(KB), such as Wikidata, Wikipedia or other de-
rived resources like DBpedia (Bunescu and Pasca,
2006; McNamee and Dang, 2009; Hoffart et al.,
2011). This task is challenging, as some en-
tity mentions like “London” can refer to a num-
ber of places, people, fictional characters, brands,
movies, books or songs.

Given a mention in context, NED methods
(Cucerzan, 2007; Han and Sun, 2011; Ratinov
et al., 2011; Lazic et al., 2015) typically rely on
three models: (1) a mention model which collects
possible entities which can be referred to by the

mention string (aliases or surface forms), possi-
bly weighted according to prior probabilities; (2) a
context model which measures to which extent the
entities fit well in the context of the mention, us-
ing textual features; (3) a coherence model which
prefers entities that are related to the other entities
in the document. The first and second models are
local in that they only require a short context of
occurrence and disambiguate each mention in the
document separately. The third model is global,
in that all mentions are disambiguated simulta-
neously (Ratinov et al., 2011). Recent work has
shown that local models can be improved adding
a global coherence model (Ratinov et al., 2011;
Globerson et al., 2016). In this work we focus on
a local model, and a global model could improve
the results further.

All local and global systems mentioned above,
as well as the current state-of-the-art systems
(Lazic et al., 2015; Globerson et al., 2016; Yamada
et al., 2016; Ganea and Hofmann, 2017), rely on
single models for each of the above, that is, they
have a single mention model, context model and
coherence model for all entities, e.g. the 500K am-
biguous entity mentions occurring more than 10
times in Wikipedia. While this has the advantage
of reusing the parameters across mentions, it also
makes the problem unnecessarily complex.

In this paper we propose to break the task of
NED into 500K classification tasks, one for each
target mention, as opposed to building a single
model for all 500K mentions. The advantage of
this approach is that each of the 500K classifica-
tion tasks is simpler, as the classifier needs to focus
on learning a good context model for a single men-
tion and a limited set of entities (those returned
by the mention model). On the negative side,
training instances for mentions follow a long tail
distribution, with some mentions having a huge
number of examples, but with the vast majority

171

of mentions having very limited training data, e.g.
10 occurrences linking to an entity in Wikipedia.
Our results will show that data-augmentation and
transfer learning allow us to overcome the sparse-
ness problem, yielding the best results among lo-
cal systems, very close to the best local/global
combined systems. Contrary to systems trained
on in-domain data (Cucerzan, 2012; Chisholm and
Hachey, 2015; Globerson et al., 2016; Yamada
et al., 2016; Sil et al., 2018), ours is trained on
Wikipedia and tested out-of-domain.

From another perspective, a set of 500K clas-
sification problems provides a great experimen-
tal framework for testing text representation and
classification algorithms. More specifically, deep
learning methods provide end-to-end algorithms
to learn both representations and classifiers jointly
(LeCun et al., 2015). In fact, learning text rep-
resentations models has become a center topic in
natural language understanding, as it allows to
transfer representation models across tasks (Con-
neau and Kiela, 2018; Peters et al., 2018; Wang
et al., 2018). In this paper, we explore several pop-
ular text representation options, as well as data-
augmentation (Zhang and LeCun, 2015) and trans-
fer learning (Bengio, 2012). All training examples
and models in this paper, as well as the pytorch
code to reproduce results is availabe 1.

This paper is structured as follows. We first
present our models. Section 3 presents the experi-
ments, followed by related work and conclusions.

2 Deep Learning models for NED

In this section we describe the deep learning mod-
els proposed in this work. We first present our use
of Wikipedia to produce the candidate model and
the training instances, followed by the deep learn-
ing models. We will mention options and hyper-
parameters as we explain each component. Un-
less explicitly stated we used default values. The
rest were selected and tuned solely on develop-
ment data from Wikipedia itself, with no access
to other datasets (cf. Section 3).

2.1 Pre-processing and Resources
We used the English Wikipedia2 as the only re-
source for training the models. On the one hand,
Wikipedia articles define the target set of entities.

1https://github.com/anderbarrena/
500kNED

2We chose the 2014 snapshot, which gives good results in
the contemporary evaluation datasets.

On the other hand, Wikipedia editors have manu-
ally added hyperlinks to articles, where the anchor
text corresponds to the mention, and the url corre-
sponds to the entity.

We first built a candidate model as a dictio-
nary that links each text anchor to possible en-
tities, using the method presented in (Spitkovsky
and Chang, 2012; Barrena et al., 2016). Let M be
the set of all unique mention strings m, E the set
of all target entities e, andEm = {e1, . . . , em} the
set of entities that can be referred by mention m.
We kept the 30 most frequent candidates for each
mention for the sake of efficiency. We report the
sizes of E and M below.

We then extracted annotated examples by scan-
ning through the page contents for hyperlinks that
link anchors (the mentions) to the corresponding
Wikipedia pages (the entities). For each such hy-
perlink, we build a context c by first tokenizing
and removing the stop words, and then extracting
a window of 20 words to the left and 20 words to
the right from the anchor. We thus construct a set
of Nm labeled instances {ci, yi}, where yi ∈ Em,
for each m. We did not apply any kind of lemma-
tization or stemming to the training contexts.

2.2 Word Expert models

In the word expert approach we train one clas-
sifier for each possible ambiguous mention. We
are thus interested in learning a classifier that as-
signs a target mention m ∈ M appearing in a
context c to one of its possible entity candidates
Em = {e1, . . . , em} based on the set of Nm train-
ing instances {ci, yi}, where yi ∈ Em. From
the approximately 1M ambiguous mentions in
Wikipedia only 523K occur more than 10 times
as anchors in Wikipedia, and we thus limit M to
523 mentions and learn 523K classifiers.

Given the textual context of a mention, ci,
the text representations model will output a vec-
tor representation h. We tried different alterna-
tives for representing context, as described be-
low. Given the vector h, we define the classi-
fier as a neural network consisting of a number
of fully connected layers, followed by a softmax
layer with as many output dimension as the num-
ber of candidates of the target mention Em. The
whole network (representation model and classi-
fier) is trained end-to-end using cross-entropy loss.

In order to tune the hyper-parameters, we split
the examples into training (90%) and development

172

Figure 1: Deep learning models for NED. On the left side, context models: (a) Sparse BoW, (b) Continuous BoW,
(c) LSTM. On the right side the classification models: (d) word expert model, (e) single model. The transfer model
first learns an LSTM on the single model, then reuses the LSTM to learn each of the word expert models.

(10%). We tried different configurations of the
classifier, such as the number of fully connected
layers or the activation function. Two layers of Re-
LUs performed best in the development set. The
rest of parameters were set by default: 256 hidden
units, adam optimizer with an initial learning rate
of 1.0e− 3 and batches of 256 instances. Training
stops when the accuracy in the development set
drops for 10 consecutive epochs or when a max-
imum of 300 epochs is reached. We select the
model that obtained the best accuracy in the devel-
opment set before stopping. The same parameters
and model were used for all word experts.

We now describe the how to represent context.
Sparse bag-of-words (BoW): In this model, de-
picted in Figure 1 (a), the context is represented as
the addition of the one-hot vector for each word,
with as many dimensions as the vocabulary size.
The target mention is assigned a zero vector, akin
to ignoring it. The vocabulary is large, compris-
ing more than 200K different words, which slowed
down learning. Alternatively, we also clustered
the words in the vocabulary. In this case, we use
those clusters to represent the words in the one-
hot vector, yielding a bag of clusters representa-
tion. We used the word2vec3 toolkit to build the
clusters from English Wikipedia text. The corpus
was lower-cased and tokenized. We found that us-
ing 3K cluster size does best in development.4 As
the results on development for the models using
words were below those of clusters we will report
only results for clusters.
Continuous bag-of-words (CBoW): In this case,
see Figure 1 (b), context is represented with the

3https://code.google.com/archive/p/
word2vec/

4We tried 100,300,800,1K,3K,8K and 10K cluster sizes.

centroid of pre-trained word embeddings, where
the mention is represented by a vector of ze-
ros. The embeddings were trained over the En-
glish Wikipedia using word2vec (Mikolov et al.,
2013). The corpus was first lower-cased, and we
used a window size of 20, 10 negative samples and
7 iterations. The embeddings have a dimensional-
ity of 300. We also tested a number of pre-trained
embeddings, but we did not obtain better results,
perhaps because our embeddings were trained on
Wikipedia, which is also the training corpus for
the NED system. When combined with the classi-
fiers, we kept the embeddings fixed.

Recurrent Neural Network (LSTM): As a
third alternative, we considered a recurrent neu-
ral network based on LSTMs (Hochreiter and
Schmidhuber, 1997) to exploit the dependencies
among the word sequence that forms the input
context (Figure 1, (c)). We use a single LSTM
to encode the input contexts as follows. We first
replace the target mention with a special sym-
bol which has a manually assigned constant em-
bedding, and then feed the sequence into the
LSTM. The last hidden vector is taken to represent
the context. The LSTMs have 512 hidden units
and 300 dimensional word embeddings, which
are initialized with the embeddings vectors used
in the continuous BoW model described above.
The LSTM layers have a dropout layer, with 0.2
dropout probability.

We explored GRUs, stacking LSTMs, temporal
average and max pooling among hidden states, but
did not improve results on development.

2.3 Single model

One of the main problems of word experts is that
they need a large number of manually annotated

173

examples for each possible mention, which makes
it unsuitable for less frequent mentions. As an al-
ternative, we also trained a single model. Given
the set of all training instances Nm for all possi-
ble mentionsm ∈M , we train a classifier that, for
each context ci produces the correct entity ei ∈ E.
This classifier has a large number of classes |E|.
We discarded entities with less than 50 mentions,
and gather up to 5K random instances for the
rest. Note that clipping the instance number to
5K effectively downsamples those entities that are
highly frequent. All in all, we gather a training
corpus of 53M annotated examples for 248K tar-
get entities in this single model.

We adopted the recurrent model presented in the
previous section. In this case, we also replace the
target mention with a special symbol which has
a manually assigned constant embedding vector,
we feed it into the LSTM, and use the last hidden
vector h as the context representation. The clas-
sifier follows the same architecture as the word
expert model. In this case the LSTM has 2048
hidden units, producing a 512-dimensional con-
text representation and 300 dimensional word em-
beddings, which are again initialized with the pre-
trained embeddings in the previous section keep-
ing them fixed. The final softmax layer has 248K
dimensions, the number of candidate entities. We
checked other hidden-unit sizes with no better re-
sults. In order to improve results, we filter out the
candidates which are not in dictionary.

Regarding the training details, we use the Adam
optimization algorithm with an initial learning rate
of 1.0e−4, and a dropout value of 0.2. In this case,
we used a 1% sample of Wikipedia instances as
a validation set, and we stop early, whenever the
accuracy in this validation set does not improve
for 3 consecutive epochs. Training the model takes
around 16 hours per epoch in a single GPU, taking
at most 18 iterations.

2.4 Transfer learning

As an alternative to learning a single model, we
can use the text representation layer of the afore-
mentioned single model in the word expert model.
That is, after training the single model with the
whole Wikipedia, we use the learned model of the
LSTM as the text representation layer of the word
expert models. This way, we reuse the LSTM
which was learned alongside the single model in-
stead of learning a separate LSTM layer for each

word expert (see Section 2.2). When training the
word experts, we keep the LSTM layer fixed.

2.5 Data augmentation

As mentioned above, some mentions only have as
few as 10 training instances. In order to have a
larger number of training instances, we augment
the training set for target mention m with the con-
texts of other mentions that occur as anchors of
one of the ei candidates m (ei ∈ Em). Using this
strategy, we randomly select up to 250K examples
as training instances for each mention. Although
augmenting the training set has the advantage of
providing more training instances, it also has the
drawback of distorting the number of examples for
each entity. For instance, in the case of the men-
tion EU most of the examples in Wikipedia refer
to the European Union (around 2800) and only a
few to Europe (the continent, 716). When aug-
menting the training set with examples for the en-
tities, we add more examples for Europe (around
44000) than for European Union (around 13000),
changing the ratio of labels in the training data
significantly. In order to counter-balance this ef-
fect, we tried to combine the priors from the orig-
inal data with the output of the classifier trained
with the augmented dataset. Alternatively, we
combined both original and augmented classifiers,
yielding better results in development. We thus
train two classifiers for each mention, one using
the original training set P (e|c)orig, and one using
the augmented dataset P (e|c)aug. Finaly, we com-
bine their scores to produce the combined output
P (e|c):

P (e|c) = P (e|c)origP (e|c)aug (1)

3 Experiments

We developed and evaluated our model in standard
datasets for easier comparison to the state of the
art. The main dataset is the Aida CoNLL dataset
which is composed of news documents from the
Reuters corpus. It comprises three parts: Aida-
train training set, Aidatesta development set and
Aidatestb test set. We also include the three earli-
est Text Analysis Conference (TAC) datasest, that
focus on highly ambiguous mentions from news,
web and discussion forums: Tac2010, Tac2011
and Tac2012. As we are interested in building a
robust model based on Wikipedia alone, we ignore
the training data accompanying each dataset. We

174

testa testb tac2010 tac2011 tac2012
mentions 5917 5616 2250 2250 2229
inKB mentions 4792 4485 1020 1124 1177
uniq mentions 2600 2441 750 1315 781
uniq inKB mentions 1850 1685 386 628 509
inKB mentions in dict 1841 1675 382 597 499

Table 1: Statistics of the datasets (see text for details).

use Aidatesta for model selection only (i.e. the pa-
rameters were tuned on a subset of Wikipedia, cf.
Section 2), and Aidatestb, Tac2010, Tac2011 and
Tac2012 for out-of-domain test.

Note that we used Aidatesta only to select the
best models, given that all hyperparameters where
tuned over Wikipedia itself. Table 1 shows the
statistics for all datasets. From all mentions, only
a subset of them actually refers to an entity in the
KB provided by the dataset authors (“inKB men-
tions” row). Our dictionary covers most but not all
of those KB entities (“uniq inKB mentions in dict”
row). Some of the mentions in the datasets are re-
solved as NIL, for cases where the mention refers
to an entity which is not in the KB. The simplest
method to return NIL is to first resolve over all
Wikipedia entities, and if the selected entity is not
in the KB then to return NIL. We focus the evalu-
ation in the mentions linked to an entity in the re-
spective KB, and use the so-called inKB accuracy
as the evaluation measure, which is defined as the
fraction of correctly disambiguated mentions di-
vided by the total number of mentions which are
linked to the KB. We perform 3 runs for each re-
ported result, reporting mean accuracy and stan-
dard deviation values. We also include MFS base-
lines in the results: given a mention, the baseline
is computed assigning the entity in the dictionary
with highest prior probabilities.

During testing, given a mention, we search the
document and try to find the longest string that a)
contains the mention and b) matches an entry in
the dictionary. Next, we replace every mention
string with that longer string in the document.5 We
also apply the ’One entity per Document’ hypoth-
esis, averaging the results of the occurrences for
the same mention in the same document (Barrena
et al., 2014).

5Mentions that are named as a DBPedia entity classified
as location are not expanded.

3.1 Development results

Table 2 shows the performance of each of the con-
text representation models and data augmentation
options in Aidatesta. The MFS baseline obtains
71.91, which is a good point of comparison to
benchmark our candidate model (the dictionary)
with respect to other systems. All our models im-
prove over the MFS baseline by a large margin.
As mentioned in Section 2.5, we have three classi-
fiers for each mention. P (e|c)orig uses the orig-
inal training set, P (e|c)aug uses the augmented
training set, and P (e|c) combines both. The ta-
ble shows that the results of the original and aug-
mented classifiers are more or less comparable,
while the combination consistently yields the best
results for all context representations options.

Regarding the representation models, we can
observe that the sparse Bag-of-word model yields
worse results than the continuous Bag-of-words.
The LSTMs learned separately do not improve
over continuous BoW, while the LSTM transferred
from the single model obtains the best results. In
addition to the results in the table, the single model
obtains an accuracy of 45.95, well below the rest.

These results confirm our intuitions. Regard-
ing the single model vs. word experts, the classi-
fier has a much easier task in the second case, as
the number of classes to predict is much smaller
for each classifier. Regarding the performance
of the word expert LSTMs, our hypothesis was
that, given the long tail distribution of the num-
ber of training instances, the per-mention LSTMs
of many mentions would not have enough training
instances to learn effective representations. We
checked this hypothesis plotting the results for
each method according to the number of train-
ing instances. Figure 2 shows the inKB accuracy
for mentions bucketed according to the number
of training instances6. Continuous BoW overpe-
forms LSTMs on mentions with a small number of

6We set 10 buckets with an equal number of mentions in
each bucket

175

Sparse BoW CBoW LSTM Transfer
P (e|c)orig 79.65±0.06 82.48±0.48 80.35±0.05 84.70±0.06
P (e|c)aug 79.54±0.26 81.74±0.21 80.66±0.26 82.39±0.42
P (e|c) 83.28±0.17 86.19±0.19 84.35±0.30 86.87±0.14

Table 2: Development results (Aidatesta) as inKB accuracy and standard deviation for Sparse BoW, Continuous
BoW, LSTM and transferred LSTMs. Each row corresponds to the original training data, augmented training data,
and combination.

Figure 2: Development results (Aidatesta) as inKB ac-
curacy according to number of training instances.

training instances, while the situation is reversed
for mentions with a large number of training in-
stances. The graph also shows that the transferred
LSTM yields better results for all frequencies, and
that the Sparse BoW model underperforms the rest
of models consistently. As an aside, we observed
that for the words which have more than 200.000
training instances, both the per-mention LSTM
and the transferred LSTM yield similar results.

3.2 Final results

In this section we compare our system with the
state-of-the-art in Named Entity Disambiguation.
Given the vast number of NED systems, we only
report the results of the most relevant high per-
forming systems only. Note that, contrary to
us, many high-performing systems use in-domain
training data (Ganea and Hofmann, 2017; Glober-
son et al., 2016), and/or external candidates and
link counts when building the dictionary (Lazic
et al., 2015; Globerson et al., 2016; Yamada et al.,
2016).

Table 3 shows the inKB results on Aidatestb, the
most popular evaluation dataset. The results show

Method testb
Local models
(Lazic et al., 2015) sup. 79.7
Sparse BoW 86.72±0.23
Continuous BoW 89.39±0.44
LSTM 88.44±0.26
Transfer LSTM 91.19±0.07
(Lazic et al., 2015)† semi-sup. 86.4 †
(Yamada et al., 2016)* 87.2*
(Ganea and Hofmann, 2017)* 88.8*
Local & Global models
(Chisholm and Hachey, 2015)* 88.7*
(Globerson et al., 2016)* 91.0*
(Yamada et al., 2016)* 91.5*
(Ganea and Hofmann, 2017)* 92.2*

Table 3: Test results on Aidatestb as inKB accuracy. *
for systems trained on in-domain data. † for systems
using semi-supervised methods.

that all our models improve over locals out-of-
domain systems trained solely on Wikipedia, but,
most notably, also over in-domain systems which
were trained on Aidatrain (marked with *) and the
semi-supervised system (marked with †), which
uses large numbers of un-annotated data. As ex-
pected, the relative performance of our systems is
the same as in development.

All the systems included in Table 3 (except
Lazic et al., 2015) use the “means” tables of
YAGO as candidates, as this was the entity inven-
tory used by the developers of the dataset (Hof-
fart et al., 2011). In our case, as we link mention
to Wikipedia entities, we just ignore those enti-
ties not belonging to the YAGO “means” table. In
order to provide head-to-head comparison, the re-
sults of our best system when not using the YAGO
information is 89.93, more than three points better.

Table 4 shows the inKB accuracy results on
the three TAC datasets. In this case, the dataset
is accompanied by a KB which is a subset of
the Wikipedia 2008 snapshot. Following stan-
dard procedure (Globerson et al., 2016), we fil-

176

Method tac10 tac11 tac12
Local models
(Lazic et al., 2015) sup. — 74.5 68.7
Sparse BoW 85.82 80.25 63.12
Continuous BoW 86.96 81.55 67.49
LSTM 86.73 81.44 67.32
Transfer LSTM 87.32 84.41 72.58
(Lazic et al., 2015)† semi-sup. — 79.3† 74.2†
(Chang et al., 2016)* 84.5* — —
(Yamada et al., 2016)* 84.6* — —
Local & Global models
(Cucerzan, 2012)* — — 72.0*
(Chisholm and Hachey, 2015)* 80.7* — —
(Globerson et al., 2016)* 87.2* 84.3* 82.4*
(Yamada et al., 2016)* 85.2*

Table 4: Test results on TAC datasets as inKB accuracy.
* for systems trained on in-domain data. † for systems
using semi-supervised methods.

ter out entities not listed in the KB before eval-
uating the results. The table shows that the rel-
ative performance of our systems is stable. Our
best system outperforms the results of the local
system trained on Wikipedia on both Tac2011 and
Tac2012 (10 and 3 points). Regarding the com-
parison with other local systems (in-domain and
semi-supervised), our results are the best, includ-
ing global methods. The only exception is on the
TAC2012 dataset, where the mentions were short
and known to be specially challenging. In fact, the
winner of the task (Cucerzan, 2012) performed an
especial effort on finding longer correferent men-
tions in the document. In the case of (Lazic et al.,
2015; Globerson et al., 2016), they use a coref-
erence resolver, which could explain their better
results on this dataset.

Note that in this section we do not report results
of systems which use the candidate dictionary of
(Pershina et al., 2015). As observed by (Glober-
son et al., 2016), among others, that candidate dic-
tionary has been manually pruned and extended to
contain the gold standard entity, yielding a dictio-
nary that has a 100% upperbound and very lim-
ited ambiguity. This makes the results of systems
using this dictionary look much better than those
using automatically constructed candidate models.
We thus miss results from some papers (Pershina
et al., 2015; Sil et al., 2018), and report the re-
sults using automatically constructed dictionaries
for the rest (e.g. Globerson et al., 2016).

4 Related Work

In this section we will briefly review NED systems
and text representation literature. Hachey et al.

(2012) present a detailed overview of all possible
components, but in this section we will focus on
the most relevant high performing systems. Please
see (Ling et al., 2015) for a more detailed review
of past research.

4.1 NED systems

Among local systems that are trained on
Wikipedia alone, (Lazic et al., 2015) was the
best performing one to date. Their system is
based on probabilistic estimation, with a rich pre-
processing pipeline, including dependency pars-
ing, common noun phrase identificacion and
coreference resolution. They present the re-
sults for both a supervised version, and a graph-
based semi-supervised extension which improves
results. We think that the results of our method
could be improved using richer pre-processing,
specially the use of coreference to find longer
coreferent mentions, which reduces the ambiguity
of the mention and improve results.

Among global models, (Chisholm and Hachey,
2015) use a learning to rank algorithm which
combines local and global features, trained on
in-domain corpora (Aidatrain and Tac2010 train,
respectively). They improve the results signif-
icantly by extending the information extracted
from Wikipedia with a web crawl.

In (Yamada et al., 2016), the authors jointly
learn word and entity embeddings using
Wikipedia. The similarity of word and en-
tity embeddings are used as features to train a
Gradient Boosted Regression Trees on in-domain
data. They report both local and global results,
with a clear improvement when adding a global
component.

Ganea and Hofmann (2017) also present a lo-
cal and global algorithm. In their local algorithm,
they combine word and entity embeddings with an
attention mechanism trained on in-domain data.
The global component is Loopy Belief Propaga-
tion, which optimizes the global sequence coher-
ence initialized by the local algorithm. They report
the best results among both local and global al-
gorithms in Aidatestb, but, unfortunately they don
not provide results on the TAC datasets. Given that
their global algorithm yields an improvement of 3
points, and that our local method exploits comple-
mentary information, we would like to combine
both in future work.

Globerson et al. (2016) add a global compo-

177

nent to Plato (Lazic et al., 2015), whose weights
are used to initialize a multi-focal attention mech-
anism. The global model is trained and optimized
on in-domain training datasets. They report the
best performance for TAC datasets to date, and
very good results on Aida. Their very strong re-
sults on TAC 2012 (together with those of Lazic
et al., 2015) seem to be due to the use coreference
in the candidate model, as this dataset includes
shorter target mentions than the rest.

More recently, Sil et al. (2018) introduce a deep
neural cross-lingual entity linking system using
a combination of CNN, LSTM and NTNs, with
strong results. Their method performs similar to
ours on TAC2010, but using the manually curated
dictionary of (Pershina et al., 2015), which, as
stated before, greatly simplifies the task (c.f. Sec-
tion 3.2).

All NED systems mentioned above build a sin-
gle model for all possible target mentions. The
only word expert approach that we are aware of
is briefly mentioned in (Chang et al., 2016). This
paper compares NED and word sense disambigua-
tion, and builds a bag of words logistic regression
classifier for each mention. Their results on the
TAC2010 dataset is 84.5, below our results.

4.2 Text representation

Text representation for deep learning is a hot
topic on natural language processing (LeCun et al.,
2015), and several evaluation frameworks have
been proposed (Conneau and Kiela, 2018; Wang
et al., 2018). Our 500K classification tasks can be
seen as an additional large-scale testbed for text
representation proposals.

In a setting similar to ours, (Yuan et al., 2016;
Peters et al., 2018) propose to train a language
model based on LSTMs and then use it for word
sense disambiguation. Instead of using the con-
text representations to learn a classifier directly as
we do, they use label propagation in representa-
tion space. In our case, instead of using a language
model, we train the text representation model on a
more closely related task, i.e., that of disambiguat-
ing all possible entities.

While bags of pre-trained word embeddings and
LSTMs are the most popular approaches for text
representation, many alternatives exist. For in-
stance, ELMo (Peters et al., 2018) obtains word
embeddings that include contextual information,
and then combine them using bag-of-words or

other alternative. Alternatively, universal sentence
encoding models that are useful in many tasks are
being proposed (Arora et al., 2017; Logeswaran
and Lee, 2018; Subramanian et al., 2018; Cer
et al., 2018). We think that, in supervised classi-
fication tasks such as ours, the transferred LSTM
already captures well contextual information and
that the performance bottleneck might lie on the
classifier. If that is the case, stronger context rep-
resentation models might not make much of a dif-
ference. We plan to explore this in future work.

5 Conclusions and Future Work

In this paper we propose to break the task of NED
into 500K classification tasks, one for each target
mention, as opposed to building a single model for
all 500K mentions. The advantage of this word ex-
pert approach is that each of the 500K classifica-
tion tasks is simpler. On the negative side, scarcity
of training data is made worse. We show that this
problem can be effectively alleviated with data-
augmentation and specially with transfer learning.

A set of 500K classification problems pro-
vides a great experimental framework for testing
text representation and classification algorithms.
Given the scarce data available, learning a classi-
fier directly on a bag-of-words or LSTM represen-
tation yields weak results. Bringing in pre-trained
embeddings improves results, but the key to strong
performance is to learn a single model for all en-
tities using an LSTM and then transfer the LSTM
to each of the word experts.

Our model is a local system using Wikipedia in-
formation alone, yielding the best results among
local systems, comparable to systems trained on
in-domain data and incorporating global coher-
ence models. All training examples and models
in this paper, as well as the pytorch code to repro-
duce results is availabe 7.

For the future, the performance of our sys-
tem can be easily improved combining it with
a global method such as (Ganea and Hofmann,
2017). There are also specific improvements that
can be done, such as using correference (Lazic
et al., 2015) or additional information from web
crawls (Chisholm and Hachey, 2015). Regarding
the use of in-domain training, we think that our
out-of-domain results reflect the most realistic sce-
nario, as in-domain training data is rare in practice.

7https://github.com/anderbarrena/
500kNED

178

Regarding text representation, we tested some
straightforward alternatives. Recent work has pro-
posed stronger options which could improve the
results of our word experts further.

Acknowledgments

This research was partially supported by the
Spanish MINECO (TUNER TIN2015-65308-C5-
1-R, MUSTER PCIN-2015-226, cofunded by
EU FEDER), the UPV/EHU (excellence research
group), and the NVIDIA GPU grant program.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.

A simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations.

Ander Barrena, Eneko Agirre, Bernardo Cabaleiro,
Anselmo Peñas, and Aitor Soroa. 2014. ”one entity
per discourse” and ”one entity per collocation” im-
prove named-entity disambiguation. In Proceedings
of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 2260–2269, Dublin, Ireland. Dublin City
University and Association for Computational Lin-
guistics.

Ander Barrena, Aitor Soroa, and Eneko Agirre. 2016.
Alleviating poor context with background knowl-
edge for named entity disambiguation. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1903–1912, Berlin, Germany. Associa-
tion for Computational Linguistics.

Yoshua Bengio. 2012. Deep learning of representa-
tions for unsupervised and transfer learning. In Pro-
ceedings of ICML Workshop on Unsupervised and
Transfer Learning, pages 17–36.

R. C. Bunescu and M. Pasca. 2006. Using encyclo-
pedic knowledge for named entity disambiguation.
In Proceesings of the 11th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (EACL), pages 9–16, Trento, Italy. The
Association for Computer Linguistics.

D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco,
R. St. John, N. Constant, M. Guajardo-Cespedes,
S. Yuan, C. Tar, Y.-H. Sung, B. Strope, and
R. Kurzweil. 2018. Universal Sentence Encoder.
ArXiv e-prints.

Angel Chang, Valentin I. Spitkovsky, Christopher D.
Manning, and Eneko Agirre. 2016. A comparison
of named-entity disambiguation and word sense dis-
ambiguation. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), Paris, France. European Lan-
guage Resources Association (ELRA).

Andrew Chisholm and Ben Hachey. 2015. Entity dis-
ambiguation with web links. Transactions of the As-
sociation for Computational Linguistics, 3:145–156.

A. Conneau and D. Kiela. 2018. SentEval: An Evalua-
tion Toolkit for Universal Sentence Representations.
ArXiv e-prints.

S. Cucerzan. 2007. Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 708–716, Prague, Czech Republic.

Silviu Cucerzan. 2012. Msr system for entity linking at
tac 2012. In Text Analysis Conference - Knowledge
Base Population 2012 TAC-KBP 2012.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2619–2629, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Amir Globerson, Nevena Lazic, Soumen Chakrabarti,
Amarnag Subramanya, Michael Ringaard, and Fer-
nando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
621–631, Berlin, Germany. Association for Compu-
tational Linguistics.

B. Hachey, W. Radford, J. Nothman, M. Honnibal, and
J.R. Curran. 2012. Evaluating Entity Linking with
Wikipedia. Artificial Intelligence, 194:130–150.

X. Han and L. Sun. 2011. A generative entity-mention
model for linking entities with knowledge base. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, pages
945–954, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

J. Hoffart, M.A. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and
G. Weikum. 2011. Robust Disambiguation of
Named Entities in Text. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’11, pages 782–792, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Nevena Lazic, Amarnag Subramanya, Michael Ring-
gaard, and Fernando Pereira. 2015. Plato: A selec-
tive context model for entity resolution. Transac-
tions of the Association for Computational Linguis-
tics, 3:503–515.

179

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436.

Xiao Ling, Sameer Singh, and Daniel S Weld. 2015.
Design challenges for entity linking. Transactions
of the Association for Computational Linguistics,
3:315–328.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. In International Conference on Learning
Representations.

Paul McNamee and Hoa Dang. 2009. Overview of the
TAC 2009 Knowledge Base Population track. In
TAC.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Maria Pershina, Yifan He, and Ralph Grishman. 2015.
Personalized page rank for named entity disam-
biguation. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 238–243, Denver, Colorado. Asso-
ciation for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

L.A. Ratinov, D. Roth, D. Downey, and M. Ander-
son. 2011. Local and Global Algorithms for Disam-
biguation to Wikipedia. In The 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, Proceedings
of the Conference, 19-24 June, 2011, Portland, Ore-
gon, USA, pages 1375–1384. The Association for
Computer Linguistics.

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual entity linking.
In AAAI2018.

Valentin I Spitkovsky and Angel X Chang. 2012. A
cross-lingual dictionary for english wikipedia con-
cepts. In LREC, pages 3168–3175.

S. Subramanian, A. Trischler, Y. Bengio, and C. J Pal.
2018. Learning General Purpose Distributed Sen-
tence Representations via Large Scale Multi-task
Learning. ArXiv e-prints.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman. 2018. GLUE: A Multi-Task Bench-
mark and Analysis Platform for Natural Language
Understanding. ArXiv e-prints.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. In Proceedings of The 20th SIGNLL

Conference on Computational Natural Language
Learning, pages 250–259, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin
Evans, and Eric Altendorf. 2016. Semi-supervised
word sense disambiguation with neural models. In
COLING 2016, 26th International Conference on
Computational Linguistics, Proceedings of the Con-
ference: Technical Papers, December 11-16, 2016,
Osaka, Japan, pages 1374–1385.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

180

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 181–189
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Abstract

Aspect-level sentiment analysis aims to
identify the sentiment of a specific target in
its context. Previous works have proved
that the interactions between aspects and
the contexts are important. On this basis,
we also propose a succinct hierarchical
attention based mechanism to fuse the
information of targets and the contextual
words. In addition, most existing methods
ignore the position information of the
aspect when encoding the sentence. In this
paper, we argue that the position-aware
representations are beneficial to this task.
Therefore, we propose a hierarchical
attention based position-aware network
(HAPN), which introduces position
embeddings to learn the position-aware
representations of sentences and further
generate the target-specific representations
of contextual words. The experimental
results on SemEval 2014 dataset show that
our approach outperforms the state-of-the-
art methods.

1 Introduction

Aspect-level sentiment analysis is a fine-grained
task in sentiment analysis, which aims to identify
the sentiment polarity (i.e., negative, neutral, or
positive) of a specific opinion target expressed in
a comment/review by a reviewer. For example,
given a sentence “The price is reasonable although
the service is poor”, the sentiment polarity for
aspects “price” and “service” are positive and
negative respectively.

Traditional methods for aspect-level sentiment
analysis mainly focus on designing a set of features
(such as bag-of-words, sentiment lexicons, and
linguistic features) to train a classifier for
sentiment classification (Kiritchenko et al., 2014;

Wagner et al., 2014; Vo and Zhang, 2015).
However, such kind of feature engineering work
often relies on human ingenuity, which is a time-
consuming process and lacks generalization. In
recent years, more and more neural network based
models have been proposed and obtained the state-
of-the-art results (Wang et al., 2016; Tang et al.,
2016a;2016b; Chen et al,. 2017; Ma et al., 2017;
Tay et al., 2017; Zheng et al., 2018; Huang et al.,
2018).

As previous research (Jiang et al., 2011) reveals
that 40% of sentiment classification errors are
caused by not considering targets in sentiment
classification, recent works tend to focus on fusing
the information of the targets and the contexts.
Wang et al. (2016) and Tang et al. (2016a) both
concatenated the aspect embeddings and
embeddings of each word as inputs to a LSTM
based model so as to introduce the information of
the target into the model. Tay et al. (2017) adopted
circular convolution and circular correlation to
model the similarity between aspect and contextual
words. Ma et al. (2017) and Zheng et al. (2018)
both employed a bidirectional attention operation
to achieve the representations of targets and
contextual words determined by each other. Huang
et al. (2018) introduced an attention-over-attention
based network to model the aspects and contexts in
a joint way and explicitly capture the interaction
between aspects and the context.

As described above, the existing studies show
that the interactions between aspects and the
context are important to the aspect-level sentiment
analysis. Leveraging this idea, we also propose a
succinct hierarchical attention based mechanism to
fuse the information of targets and the contextual
words, which aims to generate the target-specific
representations of each word.

In addition, most of the above methods ignore
the position information of the aspect when

Hierarchical Attention Based Position-aware Network
for Aspect-level Sentiment Analysis

Lishuang Li, Yang Liu and AnQiao Zhou

School of Computer Science and Technology, Dalian University of Technology
lilishuang314@163.com

181

encoding the sentence. We argue that the position
of a candidate aspect is important for the sentence
modelling. For instance, consider the sentence “I
bought a mobile phone, its camera is wonderful
but the battery life is a bit short”. For the candidate
aspect “battery life”, “wonderful” and “short” are
both likely to be considered as its adjunct word. In
this case, if we encode the position information
into the representation of each word effectively, we
would have more confidence in concluding that the
“short” is the adjunct word of “battery life” and
predict the sentiment as negative. Then, the next
problem is how to introduce the position
information. In some previous works (Tang et al.,
2016b; Chen et al,. 2017), they weighted the
representation of each word according to the
position, and the words close to the aspect could be
paid more attention. However, this operation is not
always reasonable and sometimes the adjunct word
may be far away from the target word. Thus, we
introduce position embeddings when modelling
the sentence and further generate the position-
aware representations. In other words, the position
information is considered as a kind of features and
embedded into position embeddings. The model
will learn to exploit both of the semantic
information and the position clues.

Based on the analysis above, in this paper, we
propose a hierarchical attention based position-
aware network (HAPN) for aspect-level sentiment
classification. A position-aware encoding layer is
introduced for modelling the sentence to achieve
the position-aware abstract representation of each
word. On this basis, a succinct fusion mechanism
is further proposed to fuse the information of
aspects and the contexts, achieving the final
sentence representation. Finally, we feed the
achieved sentence representation into a softmax
layer to predict the sentiment polarity.

We evaluate our approach on SemEval 2014
dataset (Pontiki et al., 2014), containing reviews of
restaurant domain and laptop domain. The
experimental results demonstrate that the proposed
approach is effective for aspect-level sentiment
classification, and it outperforms state-of-the-art
approaches with remarkable gains. We make our
source code public at
https://github.com/DUT-

LiuYang/Aspect-Sentiment-Analysis.

2 Related Work

Many approaches have been proposed to address
the problem of aspect-level sentiment analysis.
Traditional approaches to this task normally
exploited a diverse set of strategies to convert
classification clues (i.e., sentiment lexicons, bag-
of-word) into feature vectors (Kiritchenko et al.,
2014; Wagner et al., 2014; Vo and Zhang, 2015).
Although these methods have achieved
comparable performance, their models highly
depend on the effectiveness of the handcraft
features which are labor intensive and lack
generalization.

Therefore, many neural network based models
have been proposed in recent years. And most
current state-of-the-art works in aspect-based
sentiment analysis pay more attention to fusing the
information of the targets and contextual words.
Wang et al., (2016) proposed an attention based
LSTM which introduced the aspect clues by
concatenating the aspect embeddings and the
word representations. Tang et al. (2016a)
developed two target-dependent LSTM to model
the left and right contexts with target, where the
target information was automatically taken into
account. Tay et al. (2017) proposed an attention
based LSTM which learned to attend based on
associative relationships between sentence words
and aspect by adopting circular convolution and
circular correlation. Ma et al. (2017) proposed an
interactive attention network which interactively
learned attentions in the contexts and targets.
Similarly, Zheng et al. (2018) introduced a
rotatory attention mechanism to achieve the
representations of the targets, the left context and
the right context, which were determined by each
other. Huang et al. (2018) introduced an attention-
over-attention network modeled the aspects and
sentences in a joint way, which jointly learned the
representations for aspects and sentences and
automatically focused on the important parts in
sentences. In addition, other current researches
focus on capturing more accurate information by
adopting multiple attentions. Tang et al. (2016b)
designed a deep memory network which consisted
of multiple computational layers, each of which
was an attention model over an external memory.
Chen et al. (2017) proposed a recurrent attention
based network which introduced multiple
attention mechanisms.

182

Compared with the above models, we introduce
position embeddings when modelling the sentence
to generate position-aware representations; on this
basis, we propose a hierarchical attention based
fusion mechanism to fuse the clues of aspects and
the contexts.

3 Model

In our approach, each target along with the
sentence where the target is located constitutes an
instance. We suppose that a sentence consists of n
words � = {��,��,⋯ ,��} and a target has m

words �� = {��
�,��

�,⋯ ,��
� } . �� is a sub-

sequence of �. The goal of our model is to predict
the sentiment polarity of the sentence over the
target.

As shown in Figure 1, our model primarily
includes four parts: input embeddings, Bi-GRU
based encoding layer, hierarchical attention based
fusion layer and the output layer.

3.1 Input Embedding

The embedding layer has two parts: the word
embeddings and the position embeddings. Let

�� ∈ ℝ��×�� be a word embedding lookup table
generated by an unsupervised method such as
GloVe (Pennington et al., 2014) or CBOW

(Mikolov et al., 2013), where �� is the dimension
of the word embeddings and �� is the size of word
vocabulary. As described in Section 1, we also
introduce position embeddings, which have been
widely used in CNN based models, as a part of the
inputs to the model. Similar as the word
embedding layer, the position embedding layer is a

�� ∈ ℝ��×�� , where �� is the dimension of the

position embeddings and �� is the number of

possible relevant positions between each word and
the target. The position embedding lookup table is
initialized randomly and tuned in the training
phase.

3.2 Bi-GRU Based Sentence Encoder

In this paper, we apply a Bi-GRU (Cho et al., 2014)
to learn a more abstract representation of the
sentence. In the following, we describe our
encoding layer in detail.

In the encoding phase, we first transform each
token �� in the sentence into a real-valued vector
�� using the concatenation of the following vectors:

 The pre-trained word embeddings �� of ��.

 The position embeddings of ��: the relevant
position between the i-th word and the target
is defined as the relative offset with respect

1x 2x 3x
nx

tr

t

1
t

2
t

3
t

m

hr

1r 2r 3r nr

Figure 1: The architecture of the proposed model.

183

to the target and calculated by the follow
equation:

 �
� − � � < �

 � − � − � � ≥ � > � + �
 0 � + � ≥ � ≥ �

 (1)

 where k is the index of the first word of target,
m is the length of the target, n is the length
of the sentence, and none is the special
marks assigned to the token padded. The
position embedding vector is obtained by
looking up the randomly initialized
embeddings table according to the relevant
position.

Hence a sequence of words can be represented
as � = {��,��,… ,��} . We then run two parallel
GRU layers: forward GRU layer and backward
GRU layer. We run the forward GRU to generate

the hidden representation �ℎ�⃗ �, ℎ�⃗ �,… ,ℎ�⃗ �� and run

the backward GRU to get the hidden representation

�ℎ⃖��,ℎ⃖��,… ,ℎ⃖��� . Eventually, we obtain the new

representation � = (ℎ�,ℎ�,… ,ℎ�) by concatena-

ting the hidden vectors in �ℎ�⃗ �, ℎ�⃗ �,… ,ℎ�⃗ �� and

�ℎ⃖��,ℎ⃖��,… ,ℎ⃖��� : ℎ� = �ℎ�⃗ �,ℎ⃖��� . Note that ℎ� ∈ ℝ���

essentially encapsulates the context information
over the whole sentence (from 1 to n) with a greater
focus on position i, where �� is the dimension of
hidden states. Due to the introduction of the
position embeddings, ℎ� is considered to be
position-aware.

3.3 Hierarchical Attention Based Fusion
Layer

In this subsection, we illustrate the proposed
succinct mechanism to fuse the information of
targets and the contextual words. In detail, a
source2aspect attention is first employed to capture
the most important clues in the target words and
the representation of the aspect is obtained.
Subsequently, an aspect-specific representation of
each word is generated based on the aspect
representation and the encoded position-aware
representation. A source2context attention is then
used to capture the most indicative sentiment
words in the context and generate the weighted
sum embeddings as the final sentence
representation.

Source2aspect Attention: Due to the fact that
substantial numbers of aspects contain at least two
words (Zheng et al., 2018), we introduce a
source2aspect mechanism to generate the

representation of the aspect. The source2*
attention is inspired by the related research of self-
attention network (Shen et al., 2017). First, we
introduce a score function by taking the word
embeddings of each word in target as inputs.

�����
�� = ���ℎ��� ∙ ��

�� (2)

where �� ∈ ℝ�� is a weight vector and tanh is a
non-linear function. The score �� is then used as a
weight denoting the importance of a word in the
target. On this basis, the normalized importance
weight of i-th word in the target ��

� is computed as
follows:

��
� =

���������
���

∑ ���������
����

���

 (3)

At last, a weighted combination of word
embeddings is considered as the representation for
the target:

�� = ∑ ��
� ∙ ��

��
��� (4)

Information Fusion: After achieving the target

representation, we then further make use of the

achieved representation to construct the target-
specific representation of each word in the
sentence by the following equation:

�� = �� ∙ [ℎ�,��] (5)

where �� ∈ ℝ(������)×�� is a weight matrix. ��
denotes the target-specific representation of the i-th
word �� in the sentence.

Source2context Attention: Then, the target-
specific representation of each word is used to learn
attentions and further generate the final sentence
representation. The attention is defined as the
following equations:

��([��,ℎ�]) = ���ℎ(�� ∙ [��,ℎ�]) (6)

�� =
������([��,��])�

∑ ������([��,��])��
���

 (7)

where �� ∈ ℝ������ is a weight vector and ��
denotes the importance of the i-th word in the
sentence.

At last, a weighted combination of position-aware

hidden states is computed:

�� = ∑ �� ∙ ℎ�
�
��� (8)

which is considered as the final representation of
the current instance.

184

3.4 Output and Model Training

Hence, we can get the final representation �� of
the current instance after the last three subsections.
Then we feed it into a softmax layer to predict the
target sentiment.

Given all of our (suppose N) training samples
��(�); �(�)�, we can then define the loss function as

the negative log-likelihood:

ℒ(�) = − ∑ ��� ���(�) | �(�),���
��� (9)

In order to compute the network parameter �,
we minimize the average negative log-likelihood
ℒ(�) via RMSprop proposed by Tieleman and
Hinton (2012) over shuffled mini-batches. We also
adopt the dropout regularization (Zaremba et al.,
2014) and early stopping to ease overfitting.

4 Experiments

4.1 Experiment Settings

We conduct experiments on SemEval 2014 Task 4
to validate the effectiveness of our model, as
shown in Table 1. The SemEval 2014 dataset
contains reviews of restaurant and laptop domains,
which are widely used in previous works. The
evaluation metric is classification accuracy.

We use 300-dimension word vectors pre-trained
by GloVe (Pennington et al., 2014) (whose
vocabulary size is 1.9M) for our experiments, as
previous works did (Tang et al., 2016b; Chen et al.,
2017; Zheng et al., 2018). All out-of-vocabulary
words are initialized as zero vectors, and all biases
are set to zero. The dimensions of hidden states and
fused embeddings are set to 300. The dimension of
position embeddings is set to 50. Keras is used for
implementing our neural network model. In model
training, we set the learning rate to 0.001, the batch
size to 64, and dropout rate to 0.5. The paired t-test
is used for the significance testing.

4.2 Compared Methods

In order to evaluate the performance of proposed
model, we select the following state-of-the-art
methods for comparison:

 Majority assigns the sentiment polarity with
most frequent occurrences in the training set
to each sample in test set.

 Bi-LSTM and Bi-GRU adopt a Bi-LSTM
and a Bi-GRU network to model the
sentence and use the hidden state of the final
word for prediction respectively.

 TD-LSTM adopts two LSTMs to model the
left context with target and the right context
with target respectively (Tang et al., 2016a);
It takes the hidden states of LSTM at last
time-step to represent the sentence for
prediction.

 MemNet (Tang et al., 2016b) applies
attention multiple times on the word
embeddings, and the output of last attention
is fed to softmax for prediction.

 IAN (Ma et al., 2017) interactively learns
attentions in the contexts and targets, and
generates the representations for targets and
contexts separately.

 RAM (Chen et al., 2017) is a multilayer
architecture where each layer consists of
attention-based aggregation of word features
and a GRU cell to learn the sentence
representation.

 LCR-Rot (Zheng et al., 2018) employs three
Bi-LSTMs to model the left context, the
target and the right context. Then they
propose a rotatory attention mechanism
which models the relation between target
and left/right contexts.

 AOA-LSTM (Huang et al., 2018)
introduces an attention-over-attention (AOA)
based network to model aspects and
sentences in a joint way and explicitly
capture the interaction between aspects and
context sentences.

4.3 System Performance Comparision

Table 2 shows the performance comparison of our
method with the state-of-the-art methods on the
same test dataset. From the table, we make the
following observations:

(1) As shown in the table, we can clearly
observe that the Majority method is the worst,
which means the majority sentiment polarity
occupies 65.0% and 53.45% of all samples on the
Restaurant and Laptop corpus respectively. In
addition to MemNet, all the other models are RNN
based models and better than the Majority method.
This indicates that RNN based models can obtain
better representations of sentence automatically

Dataset

Positive Neutral Negative

Train Test Train Test Train Test

Restaurant 2164 728 633 196 805 196

Laptop 987 341 460 169 866 128

Table 1: Statistics of SemEval 2014 Dataset.

185

without manual feature engineering and improve
the performance in this task.

(2) The TD-LSTM model, which has been
shown to be better than LSTM (Tang et al., 2016a),
gets the worst performance of all RNN based
models and the accuracy achieved by TD-LSTM
is 2.94% and 2.4% lower than those by Bi-LSTM
on the two datasets respectively. This results show
that introducing target clues only by splitting the
sentence according to the position of target is
inadequate and bidirectional RNN based model
can achieve better performance than unidirectional
model in this task. Another noticeable observation
is that Bi-GRU achieves 80.27% and 73.35%
accuracies which are 1.7% and 2.82% higher than
those of Bi-LSTM on the Restaurant and Laptop
dataset respectively. It indicates that Bi-GRU is
more suitable to this task than Bi-LSTM.

(3) Compared with the state-of-the-art methods,
our model achieves the best performance, which
illustrates the effectiveness of the proposed
approach. Our method achieves accuracies of
82.23% as well as 77.27% on the Restaurant and
Laptop dataset respectively, which are 0.89% and
2.03% higher than the current best method. We will
give a detailed analysis in the following
subsections.

4.4 Effects of Position Embeddings

In order to verify the efficiency and advantage of
position embeddings, we design the following
models:

Bi-GRU employs the standard Bi-GRU to
encode the sentence and predict the sentiment
polarity.

Bi-GRU-PW first weights the word embedd-
ings of each word in the sentence based on the
distance from the target, as did in (Tang et al.,
2016b; Chen et al,. 2017). Then the weighted
representations are fed into the Bi-GRU.

Bi-GRU-PE concatenates the word
embeddings and the position embeddings of each
word as inputs to the Bi-GRU when modelling the
sentence.

In Table 3, we report the performance of the
three models. It can be observed that Bi-GRU-PE
performs better than Bi-GRU significantly. After
introducing the position embeddings, the accuracy
has an increase of 0.62% and 2.67% on two
datasets. This indicates that exploiting the position
clues effectively can improve the performance of
models in this task. In addition, another
observation is that Bi-GRU-PW performs even
worse than Bi-GRU. The accuracy achieved by Bi-
GRU-PW is 0.72% as well as 1.41% lower than
that by Bi-GRU on the Restaurant and Laptop
dataset respectively. To an extent, the results verify
that weighting the word representations according
to the distance to the aspect is ineffective in this
task.

4.5 Effects of the Information Fusion

To verify the efficiency of the information fusion,
we further design the following model for
comparison:

No-fusion is a simplified version of HAPN,
where we directly concatenate the target
representation and the position-aware represen-
tation of each word as the inputs to the
source2context attention.

In Table 4, we report the performance
comparison of HAPN and No-fusion. From the
Table, we can observe that HAPN performs better

Dataset Restaurant (%) Laptop (%)

Majority 65.00 53.45

Bi-LSTM 78.57 70.53

Bi-GRU 80.27 73.35

TD-LSTM 75.63* 68.13*

MemNet 79.98 70.33

IAN 78.60 72.10

RAM 80.23 74.49

LCR-Rot 81.34 75.24

AOA-LSTM 81.20 74.50

HAPN 82.23 77.27

Table 2: Comparison with baselines on SemEval
2014 dataset. The results with * are retrieved from

MemNet paper.

Dataset Restaurant (%) Laptop (%)

Bi-GRU 80.27 73.35

Bi-GRU-PW 79.55 71.94

Bi-GRU-PE 80.89 76.02

Table 3: The performance of models with different
strategies to introduce position information.

Dataset Restaurant (%) Laptop (%)

HAPN 82.23 77.27

No-fusion 81.88 76.49

Table 4: The performance of models with or
without fusion operation.

186

than No-fusion. HAPN achieves improvement of
0.35% and 0.78% on accuracy respectively on the
two dataset. It indicates that the fusion operation
we propose has potentials in automatically
generating target-specific representations and
improves the performance.

4.6 Effects of The Hierarchical Attention

This subsection evalutes the effectiveness of the

hierarchical attention mechanism. To achieve this
goal, we deactivate the two attention respectively
from the proposed model.

Firstly, to verify the efficiency of the
Source2aspect attention, we design the following
model for comparison:

No-S2A-attention is a simplified version of
HAPN, where the Source2aspect attention is
replaced with averaging the initial word
embeddings to represent the target phrase.

Table 5 presents the performance comparison of
HAPN and No-S2A-attention. From Table 5, we
can see that No-S2A-attention achieve the
accuracies of 81.34% as well as 76.49% on the
Restaurant and Laptop dataset respectively, which
are 0.89% and 0.78% lower than the proposed
model. This indicates that the Source2aspect
attention in our model is effective to this task.

Secondly, as described in the privious sections,
the Source2context attention in the paper aims at
weighted summing the position-aware hidden
states based on the target-specific representations
generated by the information fusion operation.
From Figure 1, it could be observed that: (1) The
information fusion operation is only used to
calculate the Source2context attention value. (2)
The output of Source2aspect attention is only used
for information fusion.

Therefore, we remove the fusion operation and
Source2aspect attention while removing the
Source2context attention. And the achieved model
is “Bi-GRU-PE” reported in the Table 3, achieving
the accuracies of 80.89% and 76.02% on the two
datasets respectively, which are 1.34% and 1.25%
lower than the proposed model. This indicates that
the Source2context attention is necessary in the
proposed model.

4.7 Case Study

In this section, we use a review sentence “Harumi
Sushi has the freshest and most delicious array of
sushi in NYC” and the target “array of sushi” from
the Restaurant dataset as a case study. We apply our
HAPN to model the sentence and the target, and
obtain the correct sentiment polarity: positive. In
Figure 2, we give the visualization of the attention
weights (Source2context) on this sentence
computed by HAPN.

The meaning of the example sentence in the
case study is that the “array of sushi” is good.
Obviously, the words “freshest” and “most
delicious” play an important role in judging the
sentiment polarity of “array of sushi”. From
Figure 2, we can observe that those words are paid
much attention as we expect. And it is worth noting
that the word “freshest” obtains as much attention
as “delicious”, although “freshest” is much farther
from the target than “delicious”. This shows that
our model doesn’t reduce a word’s weight only
according to the long distance from the target. This
may be because that our HAPN embeds the
position information and can consider the
influence of position in combination with semantic
information instead of simply weighting.

5 Discussion

Experimental results show that our proposed
method has better performance than state-of-the-
art approaches. The detailed analysis for
improvement is as follows:

(1) Position embeddings

Figure 2: Attention visualizations of an example sentence.

Dataset Restaurant (%) Laptop (%)

HAPN 82.23 77.27

No- S2A-Attention 81.34 76.49

Table 5: The performance of models with or
without Source2aspect attention.

187

As discussed in Section 1, position information
is important when modelling the sentence. When
there are several aspects in a sentence, it is easy to
pay attention to the adjectives of another aspect by
error. In this case, the relevant position between a
word and the target can help to understand the
structure of sentences. We introduce position
embeddings as a part of inputs when modelling the
sentence. Therefore, we can achieve the position-
aware representations of each word and the model
will learn to exploit both the semantic information
and the position clues of each word. As shown in
Table 3, the introduction of position embeddings
bring a performance improvement of 0.62% and
2.67% on two datasets respectively, which
illustrates the effectiveness of the position
embeddings.

(2) Hierarchical attention based fusion operation
Compared with the traditional sentiment

analysis task, the aspect-level sentiment analysis is
more fine-grained and need the information of
specific target. As described in Section 3.3, we
introduce a hierarchical attention based fusion
layer to generate the target-specific representation
of each word. By exploiting the specific
representations to further compute the attention
value and generate the final sentence
representation, the model can obtain more target
clues. As shown in Table 4 and Table 5, the
experimental results show that the hierarchical
attention based information fusion operation can
bring performance improvement to this task.

(3) Bi-GRU based encoder
In this paper, we employ a Bi-GRU based

encoder to model the sentence. GRU has been
shown to achieve comparable performance with
less parameters than LSTM (Chung et al., 2014;
Jozefowicz et al., 2015). And we run two parallel
GRUs to obtain richer semantic information and
position clues. The experimental results in Table 2
also show that Bi-GRU can achieve better
performance in this task.

6 Conclusions

In this paper, we propose a hierarchical attention
based position-aware network for aspect-level
sentiment analysis. This architecture introduces
position embeddings as a part of inputs to further
generate position-aware representations. Further-
more, we propose a succinct hierarchical attention
based mechanism to fuse the information of targets
and the contextual words, and achieve the final

sentence representation. Experimental results
show that our approach achieves state-of-the-art
performance on the Semeval 2014 dataset.

Acknowledgments

This paper is supported by the National Natural
Science Foundation of China under
NO.61672126. We thank anonymous reviewers
for their valuable comments.

References

Peng Chen, Zhongqian Sun, Lidong Bing, and Wei
Yang. 2017. Recurrent attention network on
memory for aspect sentiment analysis. In
Proceedings of EMNLP, pages 463-472.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk and Yoshua Bengio. 2014.
Learning phrase representations using rnn encoder-
decoder for statistical machine translation.
Computer Science.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Binxuan Huang, Yanglan Ou and Kathleen M. Carley.
2018. Aspect Level Sentiment Classification with
Attention-over-Attention Neural Networks. arxiv
preprint arXiv:1804.06536.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter
sentiment classification. In Proceedings of ACL:
Human Language Technologies-Volume1, pages
151-160.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of
recurrent network architectures. In ICML, pages
2342-2350.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif Mohammad. 2014. Nrc-canada-2014:
Detecting aspects and sentiment in customer
reviews. In Proceedings of SemEval, pages 437-442

Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng
Wang. 2017. Interactive attention networks for
aspect-level sentiment classification. In
Proceedings of IJCAI, pages 4068-4074.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in Neural
Information Processing Systems, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher
D. Manning. 2014. Glove: Global vectors for word

188

representation. In Proceedings of EMNLP, pages
1532-1543.

Maria Pontiki, Dimitrios Galanis, John Pavlopoulos,
Haris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4:
Aspect based sentiment analysis. In
SemEval@COLING, pages 27-35, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2017. DiSAN:
Directional Self-Attention Network for RNN/CNN-
Free Language Understanding. arXiv preprint arXiv:
1709.04696.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.
2016a. Effective lstms for target-dependent
sentiment classification. In Proceedings of
COLING, pages 3298-3307.

Duyu Tang, Bing Qin, and Ting Liu. 2016b. Aspect
level sentiment classification with deep memory
network. In Proceedings of EMNLP, pages 214-224.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2017.
Learning to attend via word-aspect associative
fusion for aspect-based sentiment analysis. arXiv
preprint arXiv:1712.05403.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop. In COURSERA: Neural networks for
machine learning.

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent
twitter sentiment classification with rich automatic
features. In Proceedings of IJCAI, pages 1347-1353.

Joachim Wagner, Piyush Arora, Santiago Cortes, Utsab
Barman, Dasha Bogdanova, Jennifer Foster, and
Lamia Tounsi. 2014. Dcu: Aspect-based polarity
classification for semeval task 4. In Proceedings of
SemEval, pages 223-229.

Yequan Wang, Minlie Huang, xiaoyan zhu, and Li
Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of EMNLP,
pages 606-615.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
preprint arXiv: 1409.2329.

Shiliang Zheng and Rui Xia. 2018. Left-Center-Right
Separated Neural Network for Aspect-based
Sentiment Analysis with Rotatory Attention. arxiv
preprint arXiv:1802.00892.

189

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 190–199
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Bidirectional Generative Adversarial Networks for Neural
Machine Translation

Zhirui Zhang†∗, Shujie Liu§, Mu Li¶, Ming Zhou§, Enhong Chen†
†University of Science and Technology of China, Hefei, China

§Microsoft Research Asia
†zrustc11@gmail.com †cheneh@ustc.edu.cn

§{shujliu,mingzhou}@microsoft.com ¶limugx@outlook.com

Abstract

Generative Adversarial Network (GAN) has
been proposed to tackle the exposure bias
problem of Neural Machine Translation
(NMT). However, the discriminator typically
results in the instability of the GAN train-
ing due to the inadequate training problem:
the search space is so huge that sampled
translations are not sufficient for discrimina-
tor training. To address this issue and stabi-
lize the GAN training, in this paper, we pro-
pose a novel Bidirectional Generative Adver-
sarial Network for Neural Machine Transla-
tion (BGAN-NMT), which aims to introduce
a generator model to act as the discriminator,
whereby the discriminator naturally considers
the entire translation space so that the inade-
quate training problem can be alleviated. To
satisfy this property, generator and discrimina-
tor are both designed to model the joint prob-
ability of sentence pairs, with the difference
that, the generator decomposes the joint prob-
ability with a source language model and a
source-to-target translation model, while the
discriminator is formulated as a target lan-
guage model and a target-to-source transla-
tion model. To further leverage the symme-
try of them, an auxiliary GAN is introduced
and adopts generator and discriminator mod-
els of original one as its own discriminator and
generator respectively. Two GANs are alter-
nately trained to update the parameters. Exper-
iment results on German-English and Chinese-
English translation tasks demonstrate that our
method not only stabilizes GAN training but
also achieves significant improvements over
baseline systems.

1 Introduction

The past several years have witnessed the rapid de-
velopment of Neural Machine Translation (NMT)

∗This work was done when the first author was the intern
at Microsoft Research Asia.

(Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2014), from catching up with Statistical Ma-
chine Translation (SMT) (Koehn et al., 2003; Chi-
ang, 2007) to outperforming it by significant mar-
gins on many languages (Sennrich et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017; Has-
san et al., 2018). The most common approach
to training NMT is to maximize the conditional
log-probability of the correct translation given the
source sentence. However, as argued in Bengio
et al. (2015), the Maximum Likelihood Estimation
(MLE) principle suffers from so-called exposure
bias in the inference stage: the model predicts next
token conditional on its previously predicted ones
that may be never observed in the training data. To
address this problem, much recent work attempts
to reduce the inconsistency between training and
inference, such as adopting sequence-level objec-
tives and directly maximizing BLEU scores (Ben-
gio et al., 2015; Ranzato et al., 2015; Shen et al.,
2016; Wiseman and Rush, 2016).

Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) is another promising frame-
work for alleviating exposure bias problem and re-
cently shows remarkable promise in NMT (Yang
et al., 2017; Wu et al., 2017). Formally, GAN
consists of two ”adversarial” models: a generator
and a discriminator. In machine translation, NMT
model is used as the generator that produces trans-
lation candidates given a source sentence, and an-
other neural network is introduced to serve as the
discriminator, which takes sentence pairs as input
and distinguishes whether a given sentence pair is
real or generated. Adversarial training between
the two models involves optimizing a min-max ob-
jective, in which, the discriminator learns to dis-
tinguish whether a given data instance is real or
fake, and the generator learns to confuse the dis-
criminator by generating high-quality translation
candidates. Since the generated data is based on

190

discrete symbols (words), we usually adopt policy
gradient method (Yu et al., 2017) to update model
parameters of the generator. Specifically, given a
bunch of translation candidates sampled from the
generator, confidence scores calculated by the dis-
criminator are employed as rewards to update the
generator.

However, in this training process, the discrim-
inator typically suffers from inadequate training
problem, leading to the instability of GAN train-
ing. In practice, sampling large translation candi-
dates is time-consuming for NMT system, so we
only use a few samples to train the discriminator.
For a given source sentence, there is usually only
one positive example (real target sentence). If the
sampled negative examples are also few, the dis-
criminator will easily overfit to the data. This is
the inadequate training problem for the discrimi-
nator. In such a case, rewards calculated by the
discriminator could be biased, especially for unob-
served samples. These biased rewards will provide
a wrong signal to the generator and make it up-
date incorrectly, resulting in performance degra-
dation of the generator. Since such issue can oc-
cur repeatedly throughout the entire training pro-
cess, GAN training becomes unstable and the per-
formance of generator will drop drastically.

On the other hand, the generator has well-
designed properties that benefit the discriminator,
since it models the probability distribution over
the entire translation space so that the genera-
tor does not overfit to observed samples, while
prior knowledge for unobserved samples is natu-
rally considered. At the same time, the generator
also exhibits a certain ability to identify whether
a given data instance is good enough. For ex-
ample, target-to-source translation model serves
as the discriminator to improve source-to-target
translation model (He et al., 2016; Tu et al., 2017).
Inspired by this, we propose a novel Bidirectional
Generative Adversarial Network for Neural Ma-
chine Translation (aka BGAN-NMT), which em-
ploys a generator model to perform the role of
the discriminator so as to handle inadequate train-
ing problem and stabilize GAN training. To sat-
isfy this property, both generator and discriminator
of original GAN are designed to model the joint
probability of sentence pairs, with the difference
that, the generator model A is decomposed into
a source language model and a source-to-target
translation model, while the discriminator model

B is formulated as a target language model and a
target-to-source translation model. Intuitively, we
can also leverage A to act as the discriminator to
improve B, and then improved B reversely serves
as a better discriminator to guide the training ofA.
To make use of this symmetry, we bring in an aux-
iliary GAN that adopts generator and discrimina-
tor models of original one as its own discriminator
and generator respectively. Then we design a joint
training algorithm to alternately utilize these two
GANs to update the source-to-target and target-to-
source translation models.

Our experiments are conducted on German-
English and Chinese-English translation data sets.
Experimental results demonstrate that our BGAN-
NMT not only achieves the stability of GAN train-
ing but also significantly improves translation per-
formance over baseline systems.

2 Background

2.1 Neural Machine Translation

Attention-based NMT model (Bahdanau et al.,
2014) is adopted as the source-to-target and target-
to-source translation models used in our BGAN-
NMT. The attention-based NMT system is im-
plemented as an encoder-decoder framework with
recurrent neural networks (RNN), which can be
Gated Recurrent Unit (GRU) (Cho et al., 2014)
or Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) networks in practice.

2.1.1 Encoder-Decoder Framework
The encoder reads the source sentence x =
(x1, x2, ... , xT) and transforms it into a sequence
of hidden states h = (h1, h2, ... , hT) using a bi-
directional RNN. The decoder uses another RNN
to generate the translation y = (y1, y2, ... , yT ′)
based on the hidden states h. At each time stamp
i, the conditional probability of each word yi from
a target vocabulary Vy is computed with

p(yi|y<i, h) = g(yi−1, zi, ci), (1)

where zi is the ith hidden state of the decoder,
which is calculated conditioned on the previous
hidden state zi−1, previous word yi−1 and the
source context vector ci:

zi = RNN(zi−1, yi−1, ci), (2)

The source context vector ci is a weighted sum of
the hidden states (h1, h2, ... , hT) with the coeffi-

191

cients α1, α2, ... , αT calculated with

αt =
exp (a(ht, zi−1))∑
k exp (a(hk, zi−1))

(3)

where a is a feed-forward neural network with a
single hidden layer.

2.1.2 MLE Training
NMT systems are usually trained to maximize the
conditional log-probability of the correct transla-
tion given a source sentence with respect to the
parameters θ of the model:

θ∗ = argmax
θ

N∑

n=1

|yn|∑

i=1

log p(yni |yn<i, xn) (4)

where N is size of the training corpus, and |yn|
is the length of the target sentence yn. However,
MLE training suffers from exposure bias prob-
lem: in training stage, the history of any target
word is correct and has been observed in the train-
ing data, while during testing, the model predicts
next token conditioned on its previously predicted
ones that may be never observed in the training
data. To solve this problem, reinforcement learn-
ing methods are used to sample translation candi-
dates, based on which, rewards are calculated and
utilized to update the parameters. GAN follows
the same way to solve exposure bias problem and
rewards are computed by the discriminator.

2.2 Generative Adversarial Network

As a new paradigm of training generative models,
GAN (Goodfellow et al., 2014) has been success-
fully applied in computer vision tasks (Radford
et al., 2015; Arjovsky et al., 2017). Conceptu-
ally, GAN consists of two “adversarial” models:
a generator G that captures the data distribution,
and a discriminator D that estimates the probabil-
ity that a sample is sampled from the training data
rather than from G. When GAN is used for NMT,
NMT model is employed as G, and CNN-based
or RNN-based neural networks serve as D (Yang
et al., 2017; Wu et al., 2017). During adversarial
training,G andD play a two-player minmax game
with the following value function V (D,G):

min
G

max
D

V (D,G) = E(x,y)∼Pd(x,y) [logD(x, y)]

+ E(x,y′)∼PG(x,y)
[
log(1−D(x, y′))

]

(5)

where (x, y) is a sentence pair, Pd represents the
data distribution and PG denotes the generator dis-
tribution. With this objective function, the dis-
criminator learns to distinguish whether sentence
pair is real (sampled from bilingual corpus) or fake
(generated by G), and the generator tries to con-
fuse the discriminator by generating high-quality
translation samples.

In practice, policy gradient method (Yu et al.,
2017) is usually used to calculate gradients for the
generator due to discrete symbols (words). To up-
date the generator model, translation candidates
are firstly sampled, for which rewards are cal-
culated using the discriminator. With these re-
wards, we can compute gradients and run back-
propagation to update the generator. In such a
training process, real target sentence and sampled
translation candidates are used as positive and neg-
ative examples of discriminator training respec-
tively. Due to the computation cost, we cannot
generate many negative examples, so that the dis-
criminator is easy to overfit. The overfitted dis-
criminator will give biased signals to the generator
and make it update incorrectly, leading to the in-
stability of the generator training. Wu et al. (2017)
found that combining adversarial training objec-
tive with MLE can significantly improve the sta-
bility of generator training, which is also reported
in language model and neural dialogue generation
(Lamb et al., 2016; Li et al., 2017). Actually, al-
though this method leverages real translation sig-
nal to guide the generator and alleviate the effect
of overfitted discriminator, it cannot deal with the
inadequate training problem of the discriminator,
which essentially plays a more important role in
GAN training.

3 Bidirectional Generative Adversarial
Network

In GAN for NMT, the generator does not suffer
from the inadequate training problem, because the
generator is proposed to model probability distri-
bution over the entire translation space (maximiz-
ing probability of one translation candidate means
minimizing probabilities of the others). At the
same time, the generator exhibits a certain ability
to discriminate good sentence pairs, for example,
target-to-source translation model is used to score
samples generated from source-to-target transla-
tion model. Thus, introducing a generator model
to perform the role of the discriminator is expected

192

𝑃(𝑥|𝑦)

(𝑥, 𝑦1)

(𝑥, 𝑦𝑚)
…

NMT

LM𝑃(𝑦)

𝑃(𝑦|𝑥) NMT

LM𝑃(𝑥)

SamplesData

Source 𝑥

(𝑥, 𝑦)

𝑃(𝑥|𝑦)NMT

LM 𝑃(𝑦)

Target 𝑦

Samples
(𝑥1, 𝑦)

(𝑥𝑚, 𝑦)
… Data

(𝑥, 𝑦)

𝑃(𝑦|𝑥)NMT

LM 𝑃(𝑥)

Discriminator 𝐷

Generator 𝐺

GAN1

Generator 𝐺′

Discriminator 𝐷′
GAN2

rewards rewards

Figure 1: The architecture of BGAN-NMT consisting of two GANs. The dotted line represents that
GAN2 adopts both generator and discriminator models of GAN1 but interchanges their roles.

to address the inadequate training problem and sta-
bilize GAN training. Based on these observations,
we design a Bidirectional Generative Adversarial
Network for Neural Machine Translation, named
as BGAN-NMT.

As illustrated in Figure 1, the overall archi-
tecture of BGAN-NMT consists of an original
GAN (GAN1) and an auxiliary GAN (GAN2).
Both generator and discriminator of original GAN
are defined to model the joint probability of sen-
tence pairs P (x, y). Formally, P (x, y) can be
decomposed in two equivalent ways: P (x, y) =
P (x)P (y|x) and P (x, y) = P (y)P (x|y), and
they are used as generator G and discriminator
D for GAN1 respectively. Further, the generator
model can be decomposed into a source language
model and a source-to-target translation model,
while the discriminator can be formulated as a tar-
get language model and a target-to-source trans-
lation model. Auxiliary GAN (GAN2) employs
G and D of GAN1 as its own discriminator D′

and generator G′ to better exploit the symmetry
between G and D. The following of this section
details the objective function and joint training al-
gorithm for BGAN-NMT.

3.1 Training Objective

As G and D are defined as P (x)P (y|x) and
P (y)P (x|y) respectively, the adversarial training
objective V (D,G) ofGAN1 in Equation 5 can be

rewritten as

min
G

max
D

V (D,G) = E(x,y)∼Pd(x,y) [logP (x|y)P (y)]

+ Ex∼Pd(x),y
′∼P (y|x)

[
log(1− P (x|y′)P (y′))

]

(6)

which means, given a source sentence x, source-
to-target translation model P (y|x) tries to gener-
ate high quality translation y′ to fool the discrimi-
nator P (x|y)P (y), while target-to-source transla-
tion model P (x|y) and language model P (y) learn
to distinguish translation candidates from real sen-
tence pairs. In our implementations, two language
models P (x) and P (y) are fixed to reduce training
complexity.

For discriminator D, D is trained with the
ground-truth sentence pair (x, y) and the gener-
ated sample (x, y′) from G, respectively as posi-
tive and negative examples. Formally, the objec-
tive function of D is to maximize V (D,G):

LD = E(x,y)∼Pd(x,y) [logP (x|y)P (y)]

+ Ex∼Pd(x),y
′∼P (y|x)

[
log

(
1− P (x|y′)P (y′)

)] (7)

Since P (y) is fixed, the gradient of parameter θD
for the target-to-source translation model P (x|y)
is calculated as:

∂LD
∂θD

= E(x,y)∼Pd(x,y)

[
∂ logP (x|y)

∂θD

]

+ Ex∼Pd(x),y
′∼P (y|x)[(

1− 1

1− P (x|y′)P (y′)

)
∂ logP (x|y′)

∂θD

]

(8)

193

in which ∂ logP (x|y)
∂θD

is the gradient specified with
standard sequence-to-sequence NMT network.

For generator G, following Goodfellow (2016),
the objective of training G is to maximize the ex-
pected rewards (probability of D) instead of di-
rectly minimizing V (D,G):

LG = Ex∼Pd(x),y
′∼P (y|x)

[
P (x|y′)P (y′)

]
(9)

Since the output of the generator G is a sequence
of discrete symbols (words), policy gradient is
used to update the parameters, and then the gra-
dient of parameter θG for source-to-target transla-
tion model P (y|x) can be calculated as:

∂LG
∂θG

= Ex∼Pd(x),y
′∼P (y|x)

[
P (x|y′)P (y′)

∂ logP (y′|x)
∂θG

]

(10)

By exchanging generator and discriminator
models of GAN1, we introduce GAN2, in which
the original G is used as the discriminator D′

and original D serves as the generator G′. Sim-
ilarly, the adversarial training objective V (D′, G′)
of GAN2 is defined as:

min
G′

max
D′

V (D′, G′) = E(x,y)∼Pd(x,y) [logP (y|x)P (x)]

+ Ey∼Pd(y),x
′∼P (x|y)

[
log(1− P (y|x′)P (x′))

]

(11)
According to this adversarial training objective,
the objective functions of D′ and G′ are defined
as following:

LD′ = E(x,y)∼Pd(x,y) [logP (y|x)P (x)]

+ Ey∼Pd(y),x
′∼P (x|y)

[
log(1− P (y|x′)P (x′))

]

(12)

LG′ = Ey∼Pd(y),x
′∼P (x|y)

[
P (y|x′)P (x′)

]
(13)

where the gradients of parameters θD′ = θG for
P (y|x) and θG′ = θD for P (x|y) can be respec-
tively calculated as:

∂LD′

∂θG
= E(x,y)∼Pd(x,y)

[
∂ logP (y|x)

∂θG

]

+ Ey∼Pd(y),x
′∼P (x|y)

[(1− 1

1− P (y|x′)P (x′)
)
∂ logP (y|x′)

∂θG
]

(14)

∂LG′

∂θD
= Ey∼Pd(y),x

′∼P (x|y)[P (y|x′)P (x′)
∂ logP (x′|y)

∂θD
]

(15)

3.2 Joint Training Algorithm
In our approach, G and D actually act as discrim-
inator systems for each other in a joint training
process: the generator G can be improved with
the discriminator D in GAN1, and then the en-
hanced G serves as a better discriminator to guide

Algorithm 1: Joint Training Algorithm for
BGAN-NMT

Input : Bilingual corpus T = {(x, y)}Nn=1;
Pre-trained source-side language model P (x);
Pre-trained target-side language model P (y);

Output: Well-trained models P (y|x) and P (x|y)
1 Pre-train P (y|x) and P (x|y) on T with MLE principle ;
2 for number of training iterations do
3 for k steps do
4 Get m samples {(x, y)}mi=1 from T ;
5 Generate m samples {(x, y′)}mi=1 using

P (y|x) given source sentences of
{(x, y)}mi=1;

6 Update the parameter θD with Equation 8 ;
7 Generate m samples {(x′, y)}mi=1 using

P (x|y) given target sentences of
{(x, y)}mi=1;

8 Update the parameter θG with Equation 14 ;
9 end

10 Get m samples {(x, y)}mi=1 from T ;
11 Generate m samples {(x, y′)}mi=1 using P (y|x)

given source sentences of {(x, y)}mi=1;
12 Update the parameter θG with Equation 10 ;
13 Generate m samples {(x′, y)}mi=1 using P (x|y)

given target sentences of {(x, y)}mi=1;
14 Update the parameter θD with Equation 15 ;
15 end

the training of D in GAN2. This training pro-
cess can be iteratively carried out to obtain further
improvements because after each iteration both G
and D are expected to be improved with adver-
sarial training. To simultaneously optimize these
two models, we design a joint training algorithm
to learn the parameters (θG and θD) shared in two
GANs of BGAN-NMT (GAN1 and GAN2).

As shown in Algorithm 1, the whole algorithm
is mainly divided into two steps. Firstly, given
parallel corpora T = {(x, y)}Nn=1, we pre-train
P (y|x) and P (x|y) with MLE principle, while
source and target language models P (x) and P (y)
are pre-trained with corresponding sentences of
bilingual data. Next, based on these pre-trained
models, we implement the two player minmax
game using an iterative approach, in which, we
alternate between k (equals to 5 in our experi-
ments) steps of optimizing all discriminators (D
and D′) and one step of optimizing all generators
(G and G′). The iterative training continues until
the performance of a development data set is not
increased.

4 Experiments

4.1 Setup
To examine the effectiveness of our proposed ap-
proach, we conduct experiments on translation

194

tasks with two language pairs: German-English
(De-En for in short) and Chinese-English (Zh-En
for in short). In all experiments, BLEU (Papineni
et al., 2002) is adopted as the automatic metric for
translation quality evaluation and computed using
Moses multi-bleu.perl script.

4.1.1 Dataset
For German-English translation task, following
previous work (Ranzato et al., 2015; Bahdanau
et al., 2016), we select data from German-English
machine translation track of IWSLT2014 evalua-
tion tasks, which consists of sentence-aligned sub-
titles of TED and TEDx talks. We closely follow
the pre-processing as described in Ranzato et al.
(2015). The training corpus contains 153k sen-
tence pairs with 2.83M English words and 2.68M
German words. The validation set comprises of
6,969 sentence pairs taken from the training data,
and the test set is a combination of dev2010,
dev2012, tst2010, tst2011 and tst2012 with total
number of 6,750 sentence pairs.

For Chinese-English translation task, training
data consists of a set of LDC datasets1, which has
around 2.6M sentence pairs with 65.1M Chinese
words and 67.1M English words respectively. Any
sentence longer than 80 words is removed from
training data. NIST OpenMT 2006 evaluation set
is used as the validation set, and NIST 2005, 2008,
2012 datasets as test sets. We limit the vocabu-
lary to contain up to 50K most frequent words on
both source and target sides, and convert remain-
ing words into the <unk> token.

4.1.2 Model Architecture
RNNSearch model proposed by Bahdanau et al.
(2014) is leveraged to be the translation model,
but it should be noted that our BGAN-NMT is
independent of the NMT network structure. We
use a single layer GRU for encoder and decoder.
For Zh-En, the size of word embedding (for both
source and target words) is 256 and the size of hid-
den layer is set to 1024. For De-En, in order to
compare with previous work (Ranzato et al., 2015;
Bahdanau et al., 2016), the size of word embed-
ding and GRU hidden state are both set to 256. In
addition, P (x) and P (y) are designed as a single-
layer GRU language model, which is pre-trained

1 LDC2002E17, LDC2002E18, LDC2003E07,
LDC2003E14, LDC2005E83, LDC2005T06, LDC2005T10,
LDC2006E17, LDC2006E26, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2006T06, LDC2004T08, LDC2005T10

Methods Baseline Model
MIXER (Ranzato et al., 2015) 20.10 21.81
MRT (Shen et al., 2016) - 25.84
BSO (Wiseman and Rush, 2016) 24.03 26.36
Adversarial-NMT (Wu et al., 2017) - 27.94
A-C (Bahdanau et al., 2016) 27.56 28.53
Softmax-Q (Ma et al., 2017) 27.66 28.77
Adversarial-NMT* 27.63 28.03
BGAN-NMT 27.63 29.17

Table 1: Comparison with previous work on
IWSLT2014 German-English translation task.
The “Baseline” means the performance of pre-
trained model used to warmly start training.

to compute the marginal probability of a sentence,
and the size of word embedding and GRU hidden
state are the same as RNNSearch model.

4.1.3 Training Details
For the training of BGAN-NMT, parameters are
firstly initialized using a normal distribution with
a mean of 0 and a variance of

√
6/(drow + dcol),

where drow and dcol are the number of rows
and columns in the structure (Glorot and Ben-
gio, 2010). Then we pre-train NMT and lan-
guage models with MLE principle to convergence,
and select the best model according to the per-
formances on the validation set, where BLEU
scores and the perplexity are adopted as evaluation
metrics for NMT and language models respec-
tively. Both generator and discriminator models in
BGAN-NMT are warmly started with those pre-
trained models, and optimized using the vanilla
SGD algorithm with mini-batch 32 for De-En and
128 for Zh-En. We re-normalize gradients if their
norm exceeds 2.0. The initial learning rate is set
as 0.2 for De-En and 0.02 for Zh-En, and it is
halved when BLEU scores on the validation set do
not increase for 20,000 batches. To generate the
synthetic bilingual data, beam search strategy with
beam size 4 is adopted for both De-En and Zh-En.
At test time, beam search is employed to find the
best translation with beam size 8 and translation
probabilities normalized by the length of the can-
didate translations. Follow Luong et al. (2015),
<unk> is replaced with the corresponding target
word in a post processing step.

4.2 Results on German-English Translation

For German-English translation task, in addition
to the baseline system which is used to warmly
start our BGAN-NMT training, we also include

195

System NIST2006 NIST2005 NIST2008 NIST2012 Average
HPSMT 32.46 32.42 25.23 26.20 29.08

RNNSearch 38.61 38.31 30.04 28.48 33.86
Adversarial-NMT* 39.79 38.81 31.86 30.19 35.16

BGAN-NMT 40.74 39.20 33.55 31.30 36.19

Table 2: Case-insensitive BLEU scores (%) on Chinese-English translation. The “Average” denotes the
average results of all datasets.

22

23

24

25

26

27

28

29

30

31

32

10000 20000 30000 40000 50000 60000 70000 80000 90000

B
LE
U

Mini-Batches

RNNSearch Adversarial-NMT* BGAN-NMT

Figure 2: The BLEU score changes on IWSLT2014
German-English validation set for RNNSearch,
Adversarial-NMT* and BGAN-NMT as training
progresses.

results of other existing NMT systems, includ-
ing MIXER (Ranzato et al., 2015), MRT (Shen
et al., 2016)2, BSO (Wiseman and Rush, 2016),
Adversarial-NMT (Wu et al., 2017), A-C (Bah-
danau et al., 2016) and Softmax-Q (Ma et al.,
2017). Besides, following Wu et al. (2017),
we also implement Adversarial-NMT* system
which combines adversarial training objective
with MLE. All the results are reported based on
case-sensitive BLEU.

From Table 1, we can see that our BGAN-
NMT achieves significant improvements over the
baseline RNNSearch system. It demonstrates that
GAN framework can alleviate exposure bias prob-
lem and improve the robustness of NMT sys-
tems. Our BGAN-NMT also obtains satisfac-
tory translation quality against other existing NMT
systems. In particular, our BGAN-NMT outper-
forms Adversarial-NMT* by 1.14 BLEU points.
Adversarial-NMT* adopts MLE to stabilize the
training of generator but gains limited improve-
ment due to the inadequate training problem of the
discriminator, while our BGAN-NMT can effec-
tively handle this issue and obtain significant im-
provement.

2The result of MRT method is taken from Wu et al. (2017)

To better analyze training process of the differ-
ent methods, we compare the BLEU score changes
on IWSLT2014 German-English validation set
for RNNSearch, Adversarial-NMT* and BGAN-
NMT during the entire training. As illustrated
in Figure 2, initialized with the best RNNSearch
model, Adversarial-NMT* and BGAN-NMT can
continually improve the translation performance.
In addition, our BGAN-NMT steadily performs
much better than Adversarial-NMT* in the whole
training process. It confirms that our proposed ap-
proach not only stabilizes GAN training but also
achieves better results.

4.3 Results on Chinese-English Translation

We also conduct experiments on Chinese-English
translation task with strong SMT and NMT base-
lines: HPSMT, RNNSearch and Adversarial-
NMT*. HPSMT is an in-house implementation of
the hierarchical phrase-based MT system (Chiang,
2007), where a 4-gram language model is trained
using the modified Kneser-Ney smoothing algo-
rithm over the target data from bilingual data.

Table 2 shows the evaluation results of differ-
ent models on NIST datasets. All the results
are reported based on case-insensitive BLEU. We
can observe that RNNSearch significantly outper-
forms HPSMT by 4.78 BLEU points on average,
and BGAN-NMT can further improve the perfor-
mances, with 2.33 BLEU points on average. Ad-
ditionally, our BGAN-NMT gains better perfor-
mances than Adversarial-NMT* with 1.03 BLEU
points on average. These experimental results con-
firm the effectiveness of our proposed approach,
similar as shown in the German-English transla-
tion task.

4.4 Effect on Long Sentences

Longer source sentence implies longer translation
that more easily suffers from exposure bias prob-
lem. In this subsection, we group source sen-
tence of similar length together and calculate the

196

20

22

24

26

28

30

32

34

36

38

40

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60)

B
LE
U

Source sentence length

RNNSearch Adversarial-NMT* BGAN-NMT

(a) German-English Translation

20

22

24

26

28

30

32

34

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60)

B
LE
U

Source sentence length

RNNSearch Adversarial-NMT* BGAN-NMT

(b) Chinese-English Translation

Figure 3: Performance of the generated translations with respect to the length of source sentences on
different datasets. For Chinese-English, we merge all NIST datasets in this experiment. For German-
English, we only use test datasets.

BLEU score for each group. As shown in Fig-
ure 3, we can view that our approach outperforms
RNNSearch and Adversarial-NMT* in all length
segments, especially achieving notable improve-
ments on long sentences. These results further
demonstrate that our approach can better handle
this problem and yield higher quality translations.

4.5 Effect of Discriminative Loss
We also perform an ablation experiment in order
to quantify the effect of the discriminative loss on
our models. As shown in Table 3, the discrimi-
native loss can bring 0.58 and 0.73 BLEU score
improvements on English-German and Chinese-
English dataset respectively. This result proves
that the discriminative loss can improve the dis-
criminative ability of bidirectional NMT models,
which can give more accurate rewards for the gen-
erator training in GAN framework.

5 Related Work

As a new paradigm of machine translation, NMT
typically suffers from the exposure bias problem
due to MLE training. To handle this issue, many
methods have been proposed, including designing
new training objectives (Shen et al., 2016; Wise-
man and Rush, 2016) and adopting reinforcement
learning approaches (Ranzato et al., 2015; Bah-
danau et al., 2016). Shen et al. (2016) proposed
to directly minimize expected loss (maximize the
expected BLEU) with Minimum Risk Training
(MRT). Wiseman and Rush (2016) adopted a
beam-search optimization algorithm to reduce in-
consistency between training and inference. Be-
sides, Ranzato et al. (2015) proposed a mixture
training method to perform a gradual transition

Model DE-EN ZH-EN
BGAN-NMT 29.17 36.19
-Discriminative Loss 28.59 35.46

Table 3: Translation performance of BGAN-NMT
without discriminative loss on German-English
(DE-EN) and Chinese-English (ZH-EN) transla-
tions. The BLEU score for Chinese-English trans-
lation is the average results of all datasets we used
in the experiment.

from maximum likelihood learning into optimiz-
ing BLEU scores using reinforcement algorithm.
Bahdanau et al. (2016) designed an actor-critic
algorithm for sequence prediction, in which the
NMT system is the actor, and a critic network is
proposed to predict the value of output tokens. Re-
cently, Yang et al. (2017) and Wu et al. (2017)
proposed to leverage GAN framework to deal with
the exposure bias problem, in which NMT model
is employed as the generator, and CNN-based or
RNN-based model is used as the discriminator.
Different from their work, both generator and dis-
criminator in our approach are designed to model
the joint probability of sentence pairs and then we
design an auxiliary GAN to take advantage of the
symmetry of them.

Another similar research in NMT is to leverage
bidirectional dependency to improve translation
quality. Tu et al. (2017) designed a re-constructor
module for NMT in order to make the target repre-
sentation contain the complete source information
which can reconstruct back to the source sentence.
Cheng et al. (2016) and He et al. (2016) proposed
to reconstruct monolingual data by auto-encoder,

197

in which bidirectional translation models form a
closed loop and are jointly updated. Recently, this
similar idea is used in unsupervised machine trans-
lation tasks(Artetxe et al., 2017; Lample et al.,
2018).

6 Conclusion

In this paper, we have presented a Bidirectional
Generative Adversarial Network for Neural Ma-
chine Translation, consisting of an original GAN
and an auxiliary GAN. Both generator and dis-
criminator in original GAN are designed to model
the joint probability of sentence pairs. Auxiliary
GAN adopts generator and discriminator models
of original one but exchanges their roles to full uti-
lize the symmetry of them. Then these two GANs
are alternately updated using joint training algo-
rithm. Experimental results on German-English
and Chinese-English translation tasks demonstrate
that our proposed approach not only stabilizes
GAN training but also leads to significant im-
provements. In the future, we plan to extend this
method to other sequence-to-sequence NLP tasks.

Acknowledgments

We appreciate Dongdong Zhang, Shuangzhi Wu,
Wenhu Chen and Guanlin Li for the fruitful dis-
cussions. We also thank the anonymous reviewers
for their careful reading of our paper and insightful
comments.

References
Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.

2017. Wasserstein gan. CoRR, abs/1701.07875.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. CoRR, abs/1710.11041.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2016. An actor-
critic algorithm for sequence prediction. CoRR,
abs/1607.07086.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In NIPS.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
In ACL.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33:201–228.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gulçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann Dauphin. 2017. Convolutional se-
quence to sequence learning. In ICML.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In AISTATS.

Ian J. Goodfellow. 2016. Nips 2016 tutorial: Genera-
tive adversarial networks. CoRR, abs/1701.00160.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014. Gen-
erative adversarial nets. In NIPS.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Renqian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on auto-
matic chinese to english news translation. CoRR,
abs/1803.05567.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning
for machine translation. In NIPS.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In HLT-
NAACL.

Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng
Zhang, Aaron C. Courville, and Yoshua Bengio.
2016. Professor forcing: A new algorithm for train-
ing recurrent networks. In NIPS.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. CoRR, abs/1804.07755.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and
Daniel Jurafsky. 2017. Adversarial learning for neu-
ral dialogue generation. In EMNLP.

198

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Addressing
the rare word problem in neural machine translation.
In ACL.

Xuezhe Ma, Pengcheng Yin, Jingzhou Liu, Gra-
ham Neubig, and Eduard H. Hovy. 2017. Soft-
max q-distribution estimation for structured predic-
tion: A theoretical interpretation for raml. CoRR,
abs/1705.07136.

Kishore Papineni, Salim E. Roucos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In ACL.

Alec Radford, Luke Metz, and Soumith Chintala.
2015. Unsupervised representation learning with
deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR,
abs/1511.06732.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In ACL.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2017. Neural machine translation with
reconstruction. In AAAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In EMNLP.

Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin,
Jian-Huang Lai, and Tie-Yan Liu. 2017. Adversarial
neural machine translation. CoRR, abs/1704.06933.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2017.
Improving neural machine translation with condi-
tional sequence generative adversarial nets. CoRR,
abs/1703.04887.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI.

199

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 200–210
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Latent Entities Extraction:
How to Extract Entities that Do Not Appear in the Text?

Eylon Shoshan1, Kira Radinsky1,2

{eylonsho999,kirar}@cs.technion.ac.il

1Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel
2eBay Research, Israel

Abstract
Named-entity Recognition (NER) is an impor-
tant task in the NLP field , and is widely used
to solve many challenges. However, in many
scenarios, not all of the entities are explicitly
mentioned in the text. Sometimes they could
be inferred from the context or from other in-
dicative words. Consider the following sen-
tence: “CMA can easily hydrolyze into free
acetic acid.” Although water is not mentioned
explicitly, one can infer that H2O is an en-
tity involved in the process. In this work, we
present the problem of Latent Entities Extrac-
tion (LEE). We present several methods for
determining whether entities are discussed in
a text, even though, potentially, they are not
explicitly written. Specifically, we design a
neural model that handles extraction of multi-
ple entities jointly. We show that our model,
along with multi-task learning approach and
a novel task grouping algorithm, reaches high
performance in identifying latent entities. Our
experiments are conducted on a large biolog-
ical dataset from the biochemical field. The
dataset contains text descriptions of biological
processes, and for each process, all of the in-
volved entities in the process are labeled, in-
cluding implicitly mentioned ones. We believe
LEE is a task that will significantly improve
many NER and subsequent applications and
improve text understanding and inference.

1 Introduction

Named entity recognition (NER) is an impor-
tant building block in many natural-language-
processing algorithms and applications. For ex-
ample, representing texts as a knowledge graph,
where nodes are extracted entities, has been
proved to be effective for question answering (Be-
rant and Clark, 2014) as well as for summarization
tasks (Ganesan et al., 2010). Other applications,
such as semantic annotation (Marrero et al., 2013)
require recognition of entities in the text as well.

Babych and Hartley (2003) have also shown that
identifying named entities correctly, has an effect
both on the global syntactic and lexical structure,
additionally to the local and immediate context.

NER today focuses on extracting existing enti-
ties in the text. However, many texts, contain “hid-
den” entities, which are not mentioned explicitly
in the text, but might be inferred from the context.
For example, special verbs could help a human
reader infer the discussed entity implicitly. Con-
sider the following textual passage of a biochemi-
cal reaction:

“At the plasma membrane, phos-
phatidylcholine is hydrolyzed, removing
one of its acyl groups, to 1-acyl
lysophosphatidylcholine by membrane-
associated phospholipase b1. ”

The words water or H2O are not mentioned.
Nonetheless, one could easily infer that water is
involved in the process, since the word hydrolyzed
refers to water. Therefore, water is a latent entity
in this case. Other contexts, do not involve only
indicating verbs. Consider the following sentence:

“The conversion of Testosterone to
Estradiol is catalyzed by Aromatase as-
sociated with the endoplasmic reticulum
membrane.”

Here, Oxygen is a latent entity. Aromatase is an
enzyme that belongs to the Monooxygenases fam-
ily. This family is characterized by requiring Oxy-
gen when performing catalyzation.

Latent entities do not only play a prominent role
in biochemical and medical fields, but are also
common in other domains. For example, consider
the following snippet as published in business sec-
tion, New York Times magazine in January 2017:

“The free app, which Facebook owns, is
offering another vehicle to advertisers,

200

who since late 2015 have been buying
space on its original photo feed.”

To an average human reader who is familiar
with contemporary norms and trends, it is quite
clear that Instagram app is discussed in the textual
passage above. However, it is not explicitly writ-
ten, thus it is practically a latent entity.

Identifying latent entities in texts, and gaining
the ability to infer them from a context, will signif-
icantly enrich our ability to comprehend and per-
form inference over complex texts.

In this work, we formulate the novel problem
of Latent-Entities Extraction (LEE). We study sev-
eral deep and non-deep models for this task, that
learn to extract latent entities from texts and over-
come the fact that these are not mentioned explic-
itly. Specifically, we study a model that combines
a neural recurrent network (Bi-GRUs) and multi-
task learning, showing that joint prediction of cor-
related entities could refine the performance. We
present a novel algorithm for task grouping in the
multi-task learning setting for LEE. The algorithm
chooses which latent entities to learn together. We
show this approach reaches the best performance
for LEE.

The contribution of our works is threefold:
(1) We formulate a novel task of LEE, where
the goal is to extract entities which are implic-
itly mentioned in the text. (2) We present a
large labeled biological dataset to study LEE.
(3) We present several algorithms for this task.
Specifically, we find that learning multiple la-
tent entities in a multi-task learning setting,
while selecting the correct entities to learn to-
gether, reaches the best results for LEE. We
share our code and data with the community
to enable the community to develop additional
algorithms for LEE: https://github.com/
EylonSho/LatentEntitiesExtraction

2 Related Work

Entities Recognition Named-entity recognition
(NER) aims at identifying different types of enti-
ties, such as people names, companies, locations,
organizations, etc. within a given text. Such de-
duced information is necessary for many appli-
cation, e.g. summarization tasks (Ganesan et al.,
2010), data mining (Chen et al., 2004), and trans-
lation (Babych and Hartley, 2003).

This problem has been widely researched. Sev-
eral benchmark data sets such as CoNLL-2003

(Tjong Kim Sang and De Meulder, 2003) and
OntoNotes 5.0 (Hovy et al., 2006; Pradhan et al.,
2013) were published. Traditional approaches la-
bel each token in texts as part of named-entity,
and achieve high performance (Ratinov and Roth,
2009; Passos et al., 2014; Chiu and Nichols, 2016).

However, these approaches are relying on the
assumption that entities are necessarily mentioned
in the text. To the best of our knowledge, the
problem of latent entities extraction, where enti-
ties could potentially not be mentioned in the text
at all, is yet to be researched.

Multi-Task Learning Multitask learning (Caru-
ana, 1998) was extensively used across many NLP
fields, including neural speech translation (Anas-
tasopoulos and Chiang, 2018), neural machine
translation (Domhan and Hieber, 2017), and sum-
marization tasks (Isonuma et al., 2017). In this
work we study several approaches for LEE, in-
cluding multi-task learning. We observe that the
vanilla approach of multi-task learning is reaching
limited results in our setting (Section 6). Previ-
ous work (Liu and Pan, 2017; Zhong et al., 2016;
Jeong and Jun, 2018) have suggested that multi-
task learning should be applied on related tasks.
We present an extension to the multi-task learning
setting by performing clustering to related tasks to
improve performance.

3 The Reactome Dataset

It is quite common to have implicit entities in texts
in the biomedical field. Reactome (Croft et al.) is
a large publicly-available biological dataset of hu-
man biological pathways and reactions. The data
consists of 9,333 biochemical reaction diagrams
and their textual description. Each reaction is la-
beled by experts regarding its reactants and prod-
ucts. We consider each reactant or product of a
reaction as an entity. If an entity is not mentioned
in the textual description, it will be considered as
a latent entity. In more than 90% of the reac-
tions, there are 3–5 involved entities. We have
performed an exploration to find latent frequency,
i.e., how many times the entity was found as latent,
among all of its occurrences in the dataset. We
identify that 97.53% of the texts contain at least
one latent entity and that 80.65% of the entities
are latent at least 10% of the times. The analy-
sis results for several entities are shown in Table
1. We observe an interesting phenomena – several
entities, such as ATP, mostly appear as a latent en-

201

Entity Times
Not

Men-
tioned

Total
Occur-
rences

Latent
Fre-

quency
(%)

ATP 1177 1448 81.28
ADP 1221 1326 92.08
H2O 949 1087 87.30

PI 249 492 50.61
H+ 296 487 60.78
O2 159 275 57.82

NADPH 145 254 57.09
NADP+ 175 253 69.17
COA-SH 123 191 64.40

PPI 105 190 55.26
ADOMET 120 181 66.30

GTP 40 181 22.10
GDP 60 179 33.52

ADOHCY 155 169 91.72
UB 0 157 0.00

CO2 75 145 51.72
NAD+ 56 134 41.79
AMP 53 128 41.41

NADH 46 112 41.07
NA+ 23 94 24.47
2OG 33 93 35.48

L-GLU 66 82 80.49
AC-COA 43 75 57.33

Table 1: Latent frequency of top common entities

tity in the descriptions, i.e., most of the times they
are not mentioned explicitly in the text.

4 One-vs-all Algorithms for LEE

Given a single entity which frequently tends to be
latent, we need to classify whether it is involved
within a given text. We train a classifier per entity
using multiple techniques. We then apply the clas-
sifier on each text passage that may discuss several
latent entities, and output their prediction in a one-
vs-all approach.

We present several models which predict
whether a given entity is implicitly (or explicitly)
involved in a textual paragraph. We construct a
classifier per entity which detects the entity in
texts, and overcomes the cases where it is latent.
We devise a few simple yet relatively powerful al-
gorithms presented in Sections 4.1 – 4.5.

4.1 Bag-of-words (TF-IDF)
To tackle the LEE problem, we try to leverage the
context to infer latent entities. We transform a text
to a TF-IDF vector representation (applied on bi-
grams). Using these vectors we train several su-
pervised classification models. We did not observe
a significant difference between the models, and
present results for Support Vector Machine (SVM)
model (Cortes and Vapnik, 1995) that have shown

the highest performance on a validation set. The
models are trained to predict whether a given en-
tity is involved or not. As can be observed in Table
1, most of the entities are latent enough, thus this
data set is appropriate to the LEE task.

4.2 Weighted Document Embedding
One of the state-of-the-art approaches for mod-
eling text was presenting by Arora et al. (2017).
We leverage pre-trained word embedding vectors
(Chiu et al., 2016) to generate an embedding for a
text which might contain implicit entities. Based
on these embeddings, a supervised classifier per
entity is trained as before, i.e., we create a clas-
sifier per entity to predict whether it is implicitly
mentioned in the text.

4.3 Element-Wise Document Embedding
We study several additional methods of represent-
ing a document using several word embedding
compositions (De Boom et al., 2016). We lever-
age pre-trained word embedding vectors, that were
trained on Pubmed data (Chiu et al., 2016), and
suggest the following composition techniques: (1)
We compute the element-wise maximum vector
of each word from the text, denoted as vmax; (2)
We compute the element-wise minimum vector of
word embedding, denoted as vmin. (3) We com-
pute the element-wise mean vector, denoted as
vavg.

We concatenate these three vectors into the final
document representation: v = [vmax; vmin; vavg].
This is the feature vector which is fed as an input
to the SVM classifier, built for each entity sepa-
rately.

4.4 Combined Document Embedding
In this approach, we attempt to combine several
ways of representing a document into a single rep-
resentation. We concatenate the feature vectors for
each document as generated in sections 4.2, 4.3. A
classification model is then trained similarly to the
previous sections and applied on the new represen-
tation.

4.5 Deep Document Embedding
Instead of disregarding word order as in the pre-
vious approaches (Sections 4.2 – 4.4), we lever-
age pre-trained word embedding vectors that were
trained on Pubmed data (Chiu et al., 2016),
and learn an unsupervised deep model to pro-
duce a document embedding. We experiment

202

with several deep models, including Bi-LSTM
and Bi-GRU unit: each textual description is
translated to sequence of pre-trained embeddings.
That sequence is fed into a Bi-Directional Long
Short Term Memory (Bi-LSTM) (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997)
or Bi-GRU (Cho et al., 2014), and based on the
final cell state, we perform a binary prediction
whether the given entity is implicitly mentioned
or not.

5 Multi-Task-Learning Algorithms for
LEE

Given a predefined list of entities, we wish to clas-
sify whether one entity or more from that list, are
involved in a given text passage. We train a sin-
gle multi-task-learning classifier that outputs the
set of latent entities relevant to the text. Intuitively,
the model might capture correlation of entities that
tend to be involved (or not) together, and therefore
their latent behavior might be similar. For each en-
tity which is listed in a predefined list, the model
will output a probability as an estimation for its
likelihood to be involved in a given text.

5.1 Multi-Task-Learning Model Architecture

Figure 1 illustrates the general design of our ar-
chitecture: an embedding layer, a Bi-GRU com-
ponents that are fed by the embedding, and ulti-
mately a prediction layer containing as many out-
puts as the total number of latent entities to be ex-
tracted.

Embedding The embedding layer first embeds a
sequence of words into a sequence of embedding
vectors of 200 dimension.

Bidirectional GRU The output vectors from the
last layer are fed into a RNN unit to capture con-
text out of the text. This unit is capable of ana-
lyzing context that is spanned over sub-sequences
in texts. This is done when the RNN component
is sequentially fed by the embedding vectors {vt},
and iteratively compute a hidden state vector {ht}
based on the previous hidden state and the cur-
rent input embedding vector, using some function
f . Moreover, the output of this unit {ot} in each
timestamp t, is computed based on the current hid-
den state using a function g.

Specifically we use a GRU unit as a RNN as
presented by Cho et al. (2014). Hidden state’s
dimension is set to 200, with sigmoid as an ac-

tivation function. Additionally, we use the bidi-
rectional version (Schuster and Paliwal, 1997) of
GRU.

We also apply natural dropout (Srivastava et al.,
2014) of 0.5 on the input embedding vectors. An-
other refinement is dropout that is applied on the
recurrent neural network hidden layers, as Gal and
Ghahramani (2016) have suggested. This recur-
rent dropout is set to 0.25.

Classifier The outputs of the Bi-GRU unit, of
the first and last cell, are considered during clas-
sification phase. The classifier unit is a fully con-
nected layer with a sigmoid activation layer with
k outputs, where k is the number of all tasks, i.e.,
entities being predicted.

Loss Function We define a loss function to ad-
dress the multi-task learning approach. Currently,
we present a loss function for multi-task predic-
tion that joins all of the entities together into a sin-
gle prediction unit. Denote m as the number of
training samples, and k as the number of latent en-
tities that are intended to be extracted. We define
the following loss function:

L(y, ŷ) =

− 1

m

m∑

i=1

k∑

j=1

(
y
(i)
j log ŷ

(i)
j +

(
1− y

(i)
j

)
log
(
1− ŷ

(i)
j

))

where y and ŷ are the labeled and predicted val-
ues, respectively. Practically, we aggregate the
log-losses over all of the training samples and la-
tent entities, and then averaging to get the final
loss.

Note that we address all of the entities as they
were related in here, since the loss is calculated
based on them all with no exceptions.

Training Model optimization was carried out
using standard backpropagation and an Adam op-
timizer (Kingma and Ba, 2014). We have trained
our model with 300 epochs and a batch size of 128.
Backpropagation is allowed through all layers, ex-
cept the embedding layer, which is set using pre-
trained embeddings.

Word Embedding Initialization We use pre-
trained word embedding to represent each text
passage. Note that fine-tuning as well as learn-
ing embedding from scratch are not practical due
to data scarcity, hence we directly use word2vec

203

Figure 1: The multi-task model architecture for latent entities extraction. Word embeddings are fed to
several Bi-GRU units which are connected via a multi-task learning approach to numerous outputs, each
representing a different latent entity prediction

trained vectors1. These were trained over large
corpora, the PubMed archive of the biochemical,
biological and medical field by Chiu et al. (2016).
We fit this choice to the nature of our data set, Re-
actome, which is consisted of biochemical reac-
tions and biological processes.

5.2 Task-Grouping Model Architecture
The common approach in multi-task learning is
handle all tasks altogether (Evgeniou and Pontil,
2004; Rai and Daume III, 2010). Therefore, a
possible approach could possibly suggest that all
of the entities should be predicted together as a
single multi-task classification process. However,
this method is based on the assumption that all en-
tities are necessarily related to one another (as pre-
sented in section 5.1).

Several studies have shown that separation of
tasks into disjoint groups could boost classifica-
tion performance. Intuitively, multi-task learn-
ing among tasks that are mutually related reduces
noise in prediction (Liu and Pan, 2017; Zhong
et al., 2016; Jeong and Jun, 2018). We present an
algorithm that divides all of the tasks, i.e., all enti-
ties predictions, into task groups according to their
inherent relatedness. Capturing these connections
is performed using a co-occurrence matrix that we
compute based on training-set information and be-
havior. Conceptually, latent entities that are la-
beled many times together in processes would be
considered as related, thus grouped together in a

1Trained embedding is available online at: https://
github.com/cambridgeltl/BioNLP-2016

joint multi-task classification unit.
Our tasks are divided into groups based on a co-

occurrence matrix M which is computed as fol-
lows:

Mij =
mutual occurrences of ei, ej

occurrences of ei

where ei is the i-th latent entity that should be
predicted. Additionally, note the elements of M
are normalized. Figure 2 presents an example of
such a co-occurrence matrix for 5 sampled enti-
ties.

After generating the co-occurrence matrix, we
leverage it to select task groups. We denote α as a
minimum threshold in order to group a pairwise of
tasks together (0 ≤ α ≤ 1). Then, two prediction
tasks (a pair of entities) ei and ej will be grouped
together if Mij > α or Mji > α. Later, we would
like to avoid from multi-task group that contains
one task only. Therefore, if any singletons remain,
we attach each one of them to its most related en-
tity’s group, according to the same co-occurrence
distribution. This reunion phase comes with the
exception of α/2 as a minimum threshold rather
than α as was done previously.

Clusters of tasks are computed according to
α = 0.65. This value is chosen empirically such
that groups are divided fairly, in terms of size, both
subjectively and objectively.

This process induces a division of the tasks to
T disjoint groups of tasks, where each group is
consisted of kr prediction tasks (a task per latent
entity), where r ∈ {1, 2, . . . , T}. Note that each
group is potentially of different size, i.e., kr is not

204

Figure 2: An example of co-occurrence matrix
which describes the relatedness of entities to one
another. Numbers in parentheses next to entities’
names are an indication for their frequency in the
training-set. As follows from the distribution, ATP
and ADP are high correlated. AMP also tends to
co-exist with ATP (not reciprocally though). Sim-
ilarly, ADOHCY and ADOMET are quite related
to one another.

fixed. Ultimately, these groups are going to repre-
sent as the multi-task units of classification in our
model.

Figure 3 illustrates the design of our architec-
ture along with the task-grouping layer. It con-
tains an embedding layer, a Bi-GRU components
that are fed by the embedding, and ultimately T
multi-task classification units, one per task group.

Classifier Similarly to the classifier in Section
5.1, the first and last cell of the GRU are con-
nected to several disjoint groups of prediction
tasks. These outputs represent the features for sev-
eral multi-task classifier units, one such unit per a
group of tasks. For the r-th (r ∈ {1, 2, ..., T}) task
group, we define a classifier unit as a fully con-
nected layer with a sigmoid activation layer with
kr outputs, where kr is the size of the r-th task
group.

Loss Function As opposed to the loss function
previously presented, here we would like to pre-
serve relatedness among prediction tasks when
they are actually related only. Therefore, we use
task grouping feature to recognize T disjoint sets
of entities as prediction task groups. For each
task group, we force the preservation of entities’
known correlation using a unique loss function
that is designated for the classifier of that spe-

cific group. Denote m as the number of train-
ing samples, and kr as the number of entities
that are grouped in the r-th task-group (r ∈
{1, 2, . . . , T}). The need for latent entities from
the same task group to retain their relatedness, will
be forced using the following loss function:

L(y, ŷ) =

− 1

m

m∑

i=1

kr∑

j=1

(
y
(i)
j log ŷ

(i)
j +

(
1− y

(i)
j

)
log
(
1− ŷ

(i)
j

))

where y and ŷ are the labeled and predicted val-
ues, respectively. Whereas the concept is similar
to the presented loss function in the vanilla multi-
task approach, now each task group classifier has
a customized loss function that learns the behavior
of its relevant entities it is responsible of.

Note that the penalty for each predicted value is
equal while in the same task group, whereas, be-
tween different task-groups the loss value may be
different. In that way, we refine the classification
per each task-group, and thus per each latent en-
tity.

6 Experimental Results

In this section, we evaluate the algorithms for
LEE. We first show the performance of the algo-
rithms for a single entity extraction, focusing on
the ATP entity. We then present results for the
general task of LEE, extracting multiple entities
from a text. We then conclude this section by
a few qualitative examples illustrating the feature
importance considered for the LEE task over sev-
eral texts.

6.1 Single Latent Entity Extraction

We start by exploring the performance of the dif-
ferent classifiers for the task of identifying a single
latent entity. As a representative test-case we con-
sider the extraction of the ATP entity. The entity
is considered of high importance to many biologi-
cal processes. Additionally, it has the highest fre-
quency in the dataset, i.e., there are many data ex-
amples (biochemical reactions) where ATP is in-
volved in. In more than 81% of its existences in
reactions, it is not explicitly mentioned in the text,
which practically makes it to a pure latent entity.

The results of all the algorithms for the predic-
tion of the latent entity ATP are shown in Table 2.
We emphasize that here, training, validating and
testing were all performed on pure latent samples,

205

Figure 3: Multi-Task model architecture for latent entities extraction, based on task grouping approach.
Word embeddings are fed to several Bi-GRU units which are connected via a multi-task learning ap-
proach to numerous groups of tasks, each representing a different group of related latent entities sharing
a similar loss.

i.e., texts that did contain the examined entity were
filtered out. The last row stands for the multi-task
approach with grouping, where ADP was selected
to be in the same prediction task group along with
ATP (ADP is known to be high correlated with
ATP as also can be deduced from Figure 2). The
improved empirical results in that experiment sug-
gest that using multi-task learning for related tasks
could be beneficial for the performance.

6.2 Multiple Latent Entities Extraction

In this section, we consider the full problem of
LEE of extracting multiple entities jointly. The re-
sults are presented in Table 4.

We measure the performance in two metrics:
micro-average and macro-average. Whereas mi-
cro method is considered to be a measurement for
the quality of all the predictions altogether, macro
stands for the performance of predictions per each
task. Note that the average is calculated over the
number of latent entities to extract.

Among the one-vs-all possible methods (Sec-
tion 4), the most successful method, in terms of
macro metric, is the bag-of-words & SVM model
(section 4.1). At first sight, it could be surprising
that such a simple approach outperforms more so-
phisticated methods, and mainly the deep-learning
techniques. We speculate that this is an outcome
of the data-set imbalance. That imbalance holds
in the sense that different entities could occur in
different frequencies in data examples. For ex-
ample, there are quite many training examples of

ATP and ADP (both are involved in more than
14% of the reactions), while other entities may be
significantly less frequent (e.g. Oxygen, NADPH,
NADP+ and more occurs in less than 3% of the re-
actions). Therefore, many classes of entities have
very little training examples. This does not al-
low deep-learning models to train well, and there-
fore the macro score of SVM methods tends to
be higher. The reason the SVM with BOW per-
forms better than the more semantic embeddings
(Section 4.2–4.4) with SVM might also be due to
the low amount of training examples that cause the
contribution of semantics to be limited for the LEE
task in this dataset.

The vanilla multi-task approach as described in
Section 5.1, performs well according to micro-
averaging metric, but fails in terms of macro mea-
surement.

Ultimately, our proposed multi-task GRU based
model with task-grouping (Section 5.2), outper-
forms all other baselines in both metrics: micro
and macro. Thus, not only generally extracting
entities with high performance, but also preserv-
ing fairness among different prediction tasks. We
conclude that selecting the tasks to learn together
in the a multi-task approach is critical for the LEE
task.

Further, we present Area Under the Curve
(AUC) scores of performance per entity, for top
frequent entities in the dataset in Table 3. The re-
sults are shown for the two best performing classi-
fiers (bag-of-words embedding with SVM classi-

206

Model Precision Recall F1
Bag-of-Words (TF-IDF) & SVM (Section 4.1) 0.803 0.873 0.837

Weighted-average Embedding & SVM (Section 4.2) 0.770 0.746 0.758
Element-wise Document Embedding & SVM (Section 4.3) 0.817 0.817 0.817

Combined Document Embedding & SVM (Section 4.4) 0.823 0.810 0.816
Pre-Trained PubMed Word Embedding & Bi-LSTM (Section 4.5) 0.888 0.867 0.877
Pre-Trained PubMed Word Embedding & Bi-GRU (Section 4.5) 0.899 0.836 0.866

Multitask - Embedding based Bi-GRU (Section 5.1) 0.869 0.883 0.876
Multitask - Embedding based Bi-LSTM (Section 5.1) 0.869 0.883 0.876

Multitask with Grouping - Embedding based Bi-LSTM (Section 5.2) 0.909 0.859 0.884
Multitask with Grouping - Embedding based Bi-GRU (Section 5.2) 0.914 0.828 0.869

Table 2: Extraction of ATP as a latent entity. Statistically significant results are shown in bold.

Entity Bag-of-Words AUC Grouped-MTL AUC
ATP 0.906 0.938
ADP 0.910 0.965
H2O 0.864 0.928

PI 0.872 0.937
H+ 0.924 0.889
O2 0.904 0.928

NADPH 0.917 0.998
NADP+ 0.918 0.972
COA-SH 0.960 0.998

Table 3: AUC scores for bag-of-words vectors
& SVM baseline performance compared to the
multi-task learner with task-grouping. The results
are shown for top frequent entities in the data set.
Statistically significant results are shown in bold.

fication and multi task with grouping).

6.3 Multi-Task Approach Contribution in
Multiple Latent Entity Extraction

It should be noted that multi-task learning ap-
proach is much more effective in the multiple
latent entity extraction (Table 4) compared to
the single latent entity extraction case (Table 2).
Specifically, multi-task learning approach along
with task-grouping performs much better than the
other baselines. Naturally, the wins are significant
in terms of macro-metric, as our loss-function (as
defined in Section 5.2) is aimed for macro opti-
mization. However, we notice that the method also
improves performance in terms of micro-metric.
To motivate this, consider an example of a sen-
tence with water as a latent entity. Let us assume
water is not appearing many times in the corpora,
but appears many times in the data with Oxygen.
As water is not appearing in many sentences it
would be hard to learn indicative features in a sen-
tence to predict it. However, in many cases it is
possible to infer Oxygen. The prior of having an

Oxygen as latent entity in the sentence can be con-
sidered as an indicative feature that also helps to
predict water as a latent entity. As those entities
do not appear many times in the corpus, learning
the indicative features for a multi-task learner is
hard. However, when only grouping relevant en-
tities, we then overcome this issue and scores are
improved.

Table 2 provides results on the extraction of the
ATP entity only, which is the most common la-
tent entity in the Reactome dataset. Since there
are many training examples for this entity in the
corpus (most frequent latent entity), it is possible
to learn indicative features even in non-multitask
models, which therefore perform well. Thus, there
is a small difference between multitask and non-
multitask approaches in Table 2. On the other
hand, in Table 4 we examine the performance over
the top-40 frequent entities, including very fre-
quent entities (such ATP and ADP), and less fre-
quent (such Oxygen, NADPH, NADP+ and wa-
ter) as well. This leads to the results over all enti-
ties both frequent and infrequent to be much better
in multitask learning settings with task-grouping
specifically.

6.4 Qualitative Examples
To help understand the LEE problem, we present
several examples of prominent words that con-
tribute to the prediction of a latent entity. We lever-
age LIME algorithm (Ribeiro et al., 2016) to ex-
plain the multi task learning algorithm and present
feature importance for ATP and NADPH in Figure
4.

The model inferred that words such as phospho-
rylation or phosphorylates are good indicators for
the existence of ATP. Phosphorylation is the pro-
cess through which a phosphate group, which is
usually provided by ATP, is transferred from one

207

micro macro

Model Prec. Rec. F1 Prec. Rec. F1
Bag-of-Words (TF-IDF) & SVM (Section 4.1) 0.784 0.746 0.795 0.785 0.750 0.754

Weighted-average Embedding & SVM (Section 4.2) 0.682 0.649 0.665 0.636 0.565 0.580
Element-wise Document Embedding & SVM (Section 4.3) 0.740 0.728 0.734 0.696 0.647 0.648

Combined Document Embedding & SVM (Section 4.4) 0.743 0.729 0.736 0.707 0.651 0.656
Pre-Trained PubMed Word Embedding & Bi-LSTM (Section 4.5) 0.817 0.773 0.794 0.707 0.645 0.664
Pre-Trained PubMed Word Embedding & Bi-GRU (Section 4.5) 0.798 0.817 0.808 0.707 0.690 0.687

Multitask - Embedding based Bi-GRU (Section 5.1) 0.798 0.820 0.809 0.671 0.664 0.662

Multitask & Task-Grouping - Embedding based Bi-GRU (Section 5.2) 0.822 0.849 0.835 0.809 0.839 0.811

Table 4: Results of multiple latent entities extraction of top 40 frequent entities. Left side is micro metric
based, while the right side is according to macro metric. Statistically significant results are shown in
bold.

molecule to a protein.
To infer NADPH, the algorithm gives a high im-

portance to the words P450 and reductase. Cy-
tochrome P450 are proteins that use a variety of
molecules as substrates in enzymatic reactions.
They usually serve as oxidase enzymes in elec-
tron transfer chains. One of the common system
they are involved in are microsomal P450 systems,
where electrons are transferred from NADPH via
cytochrome P450 reductase.

(a) ATP Extraction Top Features

(b) NADPH Extraction Top Features

Figure 4: An example of prominent words when
inferring latent entities.

7 Conclusions

In this paper, we presented a new task of latent
entities extraction from text, which gives a new
insight over the original named-entity recognition
task. Specifically, we focus on how to extract an
entity when it is not explicitly mentioned in the
text, but rather implicitly mentioned in the context.

We developed several methods to detect ex-
istence of such entities in texts, and present a
large labeled dataset for exploring the LEE task,
and perform an extensive evaluation of our meth-
ods. We explore one-vs-all methods with several
methods to embed the text and a multi-task learn-
ing approach that attempts to predict several en-
tities at once. We observe that learning highly-
relevant entities together when during LEE predic-
tion substantially boosts detection performance.
We present several explanations of the classifica-
tion, as they are taken into account behind the
scenes of the best-performing classifier for LEE.

For future work, we consider learning the LEE
in an end-to-end fashion, learning to weight which
tasks to group together to improve LEE.

We believe the LEE task would spur additional
research in the field to improve NER when entities
are implicitly mentioned and help better compre-
hend complex texts.

References
Antonios Anastasopoulos and David Chiang. 2018.

Tied multitask learning for neural speech translation.
CoRR, abs/1802.06655.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings.

208

Bogdan Babych and Anthony Hartley. 2003. Im-
proving machine translation quality with automatic
named entity recognition. In Proceedings of the
7th International EAMT workshop on MT and other
Language Technology Tools, Improving MT through
other Language Technology Tools: Resources and
Tools for Building MT, pages 1–8. Association for
Computational Linguistics.

Jonathan Berant and Peter Clark. 2014. Modeling Bio-
logical Processes for Reading Comprehension. Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1499–1510.

Rich Caruana. 1998. Multitask learning. In Learning
to learn, pages 95–133. Springer.

Hsinchun Chen, Wingyan Chung, Jennifer Jie Xu,
Gang Wang, Yi Qin, and Michael Chau. 2004.
Crime data mining: a general framework and some
examples. computer, 37(4):50–56.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to Train Good Word
Embeddings for Biomedical NLP. pages 166–174.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Kyunghyun Cho, Bart van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

David Croft, Gavin O ’kelly, Guanming Wu, Robin
Haw, Marc Gillespie, Lisa Matthews, Michael
Caudy, Phani Garapati, Gopal Gopinath, Bijay Jas-
sal, Steven Jupe, Irina Kalatskaya, Shahana Maha-
jan, Bruce May, Nelson Ndegwa, Esther Schmidt,
Veronica Shamovsky, Christina Yung, Ewan Birney,
Henning Hermjakob, Peter D ’eustachio, and Lin-
coln Stein. Reactome: a database of reactions, path-
ways and biological processes.

Cedric De Boom, Steven Van Canneyt, Thomas De-
meester, and Bart Dhoedt. 2016. Representation
learning for very short texts using weighted word
embedding aggregation. Pattern Recognition Let-
ters, 80(C):150–156.

Tobias Domhan and Felix Hieber. 2017. Using target-
side monolingual data for neural machine translation
through multi-task learning. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1500–1505.

Theodoros Evgeniou and Massimiliano Pontil. 2004.
Regularized multi–task learning. In Proceedings of
the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 109–
117. ACM.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: A graph-based approach to ab-
stractive summarization of highly redundant opin-
ions. pages 340–348.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In Proceedings of the human lan-
guage technology conference of the NAACL, Com-
panion Volume: Short Papers, pages 57–60. Associ-
ation for Computational Linguistics.

Masaru Isonuma, Toru Fujino, Junichiro Mori, Yutaka
Matsuo, and Ichiro Sakata. 2017. Extractive sum-
marization using multi-task learning with document
classification. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2101–2110.

Jun-Yong Jeong and Chi-Hyuck Jun. 2018. Variable
selection and task grouping for multi-task learning.
arXiv preprint arXiv:1802.04676.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Sulin Liu and Sinno Jialin Pan. 2017. Adaptive group
sparse multi-task learning via trace lasso. In Pro-
ceedings of the 26th International Joint Conference
on Artificial Intelligence, pages 2358–2364. AAAI
Press.

Mónica Marrero, Julián Urbano, Sonia Sánchez-
Cuadrado, Jorge Morato, and Juan Miguel Gómez-
Berbı́s. 2013. Named entity recognition: fallacies,
challenges and opportunities. Computer Standards
& Interfaces, 35(5):482–489.

Alexandre Passos, Vineet Kumar, and Andrew D Mc-
Callum. 2014. Lexicon infused phrase embeddings
for named entity resolution. In CoNLL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152.

209

Piyush Rai and Hal Daume III. 2010. Infinite predictor
subspace models for multitask learning. In Proceed-
ings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 613–620.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, pages 147–
155. Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135–1144. ACM.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Shi Zhong, Jian Pu, Yu-Gang Jiang, Rui Feng, and
Xiangyang Xue. 2016. Flexible multi-task learn-
ing with latent task grouping. Neurocomputing,
189:179–188.

210

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 211–220
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Generalizing Procrustes Analysis for Better Bilingual Dictionary
Induction

Yova Kementchedjhieva3 Sebastian Ruder♠♣ Ryan Cotterell♥ Anders Søgaard3

3University of Copenhagen, Copenhagen, Denmark
♠Insight Research Centre, National University of Ireland, Galway, Ireland

♣Aylien Ltd., Dublin, Ireland
♥University of Cambridge, Cambridge, UK

{yova|soegaard}@di.ku.dk,sebastian@ruder.io,ryan.cotterell@gmail.com,

Abstract

Most recent approaches to bilingual dictionary
induction find a linear alignment between the
word vector spaces of two languages. We
show that projecting the two languages onto
a third, latent space, rather than directly onto
each other, while equivalent in terms of ex-
pressivity, makes it easier to learn approximate
alignments. Our modified approach also al-
lows for supporting languages to be included
in the alignment process, to obtain an even bet-
ter performance in low resource settings.

1 Introduction

Several papers recently demonstrated the poten-
tial of very weakly supervised or entirely unsuper-
vised approaches to bilingual dictionary induction
(BDI) (Barone, 2016; Artetxe et al., 2017; Zhang
et al., 2017; Conneau et al., 2018; Søgaard et al.,
2018), the task of identifying translational equiva-
lents across two languages. These approaches cast
BDI as a problem of aligning monolingual word
embeddings. Pairs of monolingual word vector
spaces can be aligned without any explicit cross-
lingual supervision, solely based on their distri-
butional properties (for an adversarial approach,
see Conneau et al. (2018)). Alternatively, weak
supervision can be provided in the form of nu-
merals (Artetxe et al., 2017) or identically spelled
words (Søgaard et al., 2018). Successful unsu-
pervised or weakly supervised alignment of word
vector spaces would remove much of the data bot-
tleneck for machine translation and push horizons
for cross-lingual learning (Ruder et al., 2018).

In addition to an unsupervised approach to
aligning monolingual word embedding spaces
with adversarial training, Conneau et al. (2018)
present a supervised alignment algorithm that as-
sumes a gold-standard seed dictionary and per-
forms Procrustes Analysis (Schönemann, 1966).

Søgaard et al. (2018) show that this approach,
weakly supervised with a dictionary seed of cross-
lingual homographs, i.e. words with identical
spelling across source and target language, is su-
perior to the completely unsupervised approach.
We therefore focus on weakly-supervised Pro-
crustes Analysis (PA) for BDI here.

The implementation of PA in Conneau et al.
(2018) yields notable improvements over earlier
work on BDI, even though it learns a simple lin-
ear transform of the source language space into the
target language space. Seminal work in supervised
alignment of word vector spaces indeed reported
superior performance with linear models as com-
pared to non-linear neural approaches (Mikolov
et al., 2013). The relative success of the simple
linear approach can be explained in terms of iso-
morphism across monolingual semantic spaces,1

an idea that receives support from cognitive sci-
ence (Youn et al., 1999). Word vector spaces are
not perfectly isomorphic, however, as shown by
Søgaard et al. (2018), who use a Laplacian graph
similarity metric to measure this property. In this
work, we show that projecting both source and
target vector spaces into a third space (Faruqui
and Dyer, 2014), using a variant of PA known as
Generalized Procrustes Analysis (Gower, 1975),
makes it easier to learn the alignment between two
word vector spaces, as compared to the single lin-
ear transform used in Conneau et al. (2018).

Contributions We show that Generalized Pro-
crustes Analysis (GPA) (Gower, 1975), a method
that maps two vector spaces into a third, latent
space, is superior to PA for BDI, e.g., improving
the state-of-the-art on the widely used English-
Italian dataset (Dinu et al., 2015) from a P@1
score of 66.2% to 67.6%. We compare GPA to PA

1Two vector spaces are isomorphic if there is an invertible
linear transformation from one to the other.

211

on aligning English with five languages represent-
ing different language families (Arabic, German,
Spanish, Finnish, and Russian), showing that GPA
consistently outperforms PA. GPA also allows for
the use of additional support languages, aligning
three or more languages at a time, which can boost
performance even further. We present experiments
with multi-source GPA on an additional five low-
resource languages from the same language fam-
ilies (Hebrew, Afrikaans, Occitan, Estonian, and
Bosnian), using their bigger counterpart as a sup-
port language. Our code is publicly available.2

2 Procrustes Analysis

Procrustes Analysis is a graph matching algo-
rithm, used in most mapping-based approaches to
BDI (Ruder et al., 2018). Given two graphs, E
and F , Procrustes finds the linear transformation
T that minimizes the following objective:

arg min
T
||TE − F ||2 (1)

thus minimizing the trace between each two cor-
responding rows of the transformed space TE and
F . We build E and F based on a seed dictio-
nary of N entries, such that each pair of corre-
sponding rows in E and F , (en, fn) for n =
1, . . . , N consists of the embeddings of a trans-
lational pair of words. In order to preserve the
monolingual quality of the transformed embed-
dings, it is beneficial to use an orthogonal ma-
trix T for cross-lingual mapping purposes (Xing
et al., 2015; Artetxe et al., 2017). Conveniently,
the orthogonal Procrustes problem has an analyti-
cal solution, based on Singular Value Decomposi-
tion (SVD):

F>E = UΣV >

T = V U>
(2)

3 Generalized Procrustes Analysis

Generalized Procrustes Analysis (Gower, 1975)
is a natural extension of PA that aligns k vec-
tor spaces at a time. Given embedding spaces
E1, . . . , Ek, GPA minimizes the following objec-
tive:

arg min
{T1,...,Tk}

k∑

i<j

||TiEi − TjEj)||2 (3)

2https://github.com/YovaKem/
generalized-procrustes-MUSE

(a) Procrustes Analysis

(b) Generalized Procrustes Analysis

Figure 1: Visualization of the difference between PA,
which maps the source space directly onto the target
space, and GPA, which aligns both source and target
spaces with a third, latent space, constructed by aver-
aging over the two language spaces.

For an analytical solution to GPA, we compute
the average of the embedding matrices E1...k after
transformation by T1...k:

G = k−1
k∑

i=1

EiTi (4)

thus obtaining a latent space, G, which captures
properties of each of E1...k, and potentially addi-
tional properties emerging from the combination
of the spaces. On the very first iteration, prior to
having any estimates of T1...k, we set G = Ei for
a random i. The new values of T1...k are then ob-
tained as:

G>Ei = UΣV >

Ti = V U> for i in 1 . . . k
(5)

Since G is dependent on T1...k (see Eq.4), the so-
lution of GPA cannot be obtained in a single step
(as is the case with PA), but rather requires that
we loop over subsequent updates of G (Eq.4) and
T1...k (Eq.5) for a fixed number of steps or until
satisfactory convergence. We observed little im-
provement when performing more than 100 up-
dates, so we fixed that as the number of updates.

Notice that for k = 2 and with the orthogonal-
ity constraint in place, the objective for General-
ized Procrustes Analysis (Eq. 3) reduces to that for

212

High-resource AR DE ES FI RU

575k 2,183k 1,412k 437k 1,474k

Low-resource HE AF OC ET BS

224k 49k 84k 175k 77k

Table 1: Statistics for Wikipedia corpora.

simple Procrustes (Eq. 1):

arg min
{T1,T2}

||T1E1 − T2E2||2

= arg min
T
||TE1 − E2||2

where T = T1T
T
2

(6)

Here T itself is also orthogonal. Yet, the solution
found with GPA may differ from the one found
with simple Procrustes: the former maps E1 and
E2 onto a third space, G, which is the average
of the two spaces, instead of mapping E1 directly
onto E2. To understand the consequences of this
difference, consider a single step of the GPA al-
gorithm where after updating G according to Eq.4
we are recomputing T1 using SVD. Due to the fact
that G is partly based on E1, these two spaces are
bound to be more similar to each other than E1

and E2 are.3 Finding a good mapping between E1

and G, i.e. a good setting of T1, should therefore
be easier than finding a good mapping from E1 to
E2 directly. In this sense, by mapping E1 onto G,
rather than ontoE2 (as PA would do), we are solv-
ing an easier problem and reducing the chance of
a poor solution.

4 Experiments

In our experiments, we generally use the same
hyper-parameters as used in Conneau et al. (2018),
unless otherwise stated. When extracting dictio-
naries for the bootstrapping procedure, we use
cross-domain local scaling (CSLS, see Conneau
et al. (2018) for details) as a metric for ranking
candidate translation pairs, and we only use the
ones that rank higher than 15,000. We do not
put any restrictions on the initial seed dictionaries,
based on cross-lingual homographs: those vary
considerably in size, from 17,012 for Hebrew to
85,912 for Spanish. Instead of doing a single train-
ing epoch, however, we run PA and GPA with
early stopping, until five epochs of no improve-
ment in the validation criterion as used in Conneau

3A theoretical exception being the case there E1 and E2

are identical.

et al. (2018), i.e. the average cosine similarity be-
tween the top 10,000 most frequent words in the
source language and their candidate translations
as induced with CSLS. Our metric is Precision at
k×100 (P@k), i.e. percentage of correct transla-
tions retrieved among the k nearest neighbor of
the source words in the test set (Conneau et al.,
2018). Unless stated otherwise, experiments were
carried out using the publicly available pre-trained
fastText embeddings, trained on Wikipedia data,4

and bilingual dictionaries—consisting of 5000 and
1500 unique word pairs for training and testing,
respectively—provided by Conneau et al. (2018)5.

4.1 Comparison of PA and GPA

High resource setting We first present a direct
comparison of PA and GPA on BDI from En-
glish to five fairly high-resource languages: Ara-
bic, Finnish, German, Russian, and Spanish. The
Wikipedia corpus sizes for these languages are re-
ported in Table 1. Results are listed in Table 2.
GPA improves over PA consistently for all five
languages. Most notably, for Finnish it scores
2.5% higher than PA.

Common benchmarks For a more extensive
comparison with previous work, we include re-
sults on English–{Finnish, German, Italian} dic-
tionaries used in Conneau et al. (2018) and Artetxe
et al. (2018)—the second best approach to BDI
known to us, which also uses Procrustes Analysis.
We conduct experiments using three forms of su-
pervision: gold-standard seed dictionaries of 5000
word pairs, cross-lingual homographs, and numer-
als. We use train and test bilingual dictionaries
from Dinu et al. (2015) for English-Italian and
from Artetxe et al. (2017) for English-{Finnish,
German}. Following Conneau et al. (2018), we
report results with a set of CBOW embeddings
trained on the WaCky corpus (Barone, 2016), and
with Wikipedia embeddings.

Results are reported in Table 3. We observe that
GPA outperforms PA consistently on Italian and
German with the WaCky embeddings, and on all
languages with the Wikipedia embeddings. No-
tice that once more, Finnish benefits the most from
a switch to GPA in the Wikipedia embeddings set-
ting, but it is also the only language to suffer from

4https://github.com/facebookresearch/
fastText

5https://github.com/facebookresearch/
MUSE

213

AR DE ES FI RU Ave
k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

PA 34.73 61.87 73.67 91.73 81.67 92.93 45.33 75.53 47.00 79.00 56.48 80.21

GPA 35.33 64.27 74.40 91.93 81.93 93.53 47.87 76.87 48.27 79.13 57.56 81.15

Table 2: Bilingual dictionary induction performance, measured in P@k, of PA and GPA across five language pairs.

IT DE FI

5000 Identical Numerals 5000 Identical Numerals 5000 Identical Numerals

WACKY

Artetxe et al. (2018) 45.27* 38.33 39.40* 44.27* 40.73 40.27* 32.94* 27.39 26.47*

PA 44.90 45.47 01.13 47.26 47.20 45.93 33.50 31.46 01.05

GPA 45.33 45.80 45.93 48.46 47.60 47.60 31.39 31.04 28.93

WIKIPEDIA

PA 66.24 66.39 - 65.33 64.77 - 36.77 35.40 -

GPA 67.60 67.14 - 66.21 65.81 - 38.14 37.87 -

Table 3: Results on standard benchmarks, measured in P@1. * Results as reported in the original paper. Notes:
Conneau et al. (2018) report 63.7 on Italian with Wikipedia embeddings; results with different embedding sets
are not comparable due to a non-zero out-of-vocabulary rate on the test set for Wikipedia embeddings; Wikipedia
embeddings are trained on corpora with removed numerals, so supervision from numerals cannot be applied.

that switch in the WaCky setup.

Interestingly, PA fails to learn a good alignment
for Italian and Finnish when supervised with nu-
merals, while GPA performs comparably with nu-
merals as with other forms of supervision. Con-
neau et al. (2018) point out that improvement from
subsequent iterations of PA is generally negligible,
which we also found to be the case. We also found
that while PA learned a slightly poorer alignment
than GPA, it did so faster. With our criterion for
early stopping, PA converged in 5 to 10 epochs,
while GPA did so within 10 to 15 epochs6 . In the
case of Italian and Finnish alignment supervised
by numerals, PA converged in 8 and 5 epochs,
respectively, but clearly got stuck in local min-
ima. GPA took considerably longer to converge:
27 and 74 epochs, respectively, but also managed
to find a reasonable alignment between the lan-
guage spaces. This points to an important differ-
ence in the learning properties of PA and GPA—
unlike PA, GPA has a two-fold objective of op-
posing forces: it is simultaneously aligning each
embedding space to two others, thus pulling it in
different directions. This characteristic helps GPA
avoid particularly adverse local minima.

6Notice that one epoch with both PA and GPA takes less
than half a minute, so the slower convergence of GPA is in no
way prohibitive.

4.2 Multi-support GPA

In these experiments, we perform GPA with k =
3, including a third, linguistically-related support-
ing language in the alignment process. To best
evaluate the benefits of the multi-support setup,
we use as targets five low-resource languages:
Afrikaans, Bosnian, Estonian, Hebrew and Occ-
itan (see statistics in Table 1)7. Three-way dic-
tionaries, both the initial one (consisting of cross-
lingual homographs) and subsequent ones, are ob-
tained by assuming transitivity between two-way
dictionaries: if two pairs of words, em–en and em–
el, are deemed translational pairs, then we con-
sider en–em–el a translational triple.

We report results in Table 4 with multi-support
GPA in two settings: a three-way alignment
trained for 10 epochs (MGPA), and a three-way
alignment trained for 10 epochs, followed by 5
epochs of two-way fine-tuning (MGPA+). We ob-
serve that at least one of our new methods always
improves over PA. GPA always outperforms PA
and it also outperforms the multi-support settings
on three out of five languages. Yet, results for
Hebrew and especially for Occitan, are best in a

7Occitan dictionaries were not available from the
MUSE project, so we extracted a test dictionary of
911 unique word pairs from an English-Occitan lexi-
con available at http://www.occitania.online.
fr/aqui.comenca.occitania/en-oc.html.

214

AF BS ET HE OC Ave
k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

PA 28.87 50.53 22.40 48.40 30.00 57.93 37.53 67.27 17.12 33.26 27.18 51.48
GPA 29.93 50.67 24.20 50.20 31.87 60.07 38.93 68.93 17.12 34.91 28.41 52.96
MGPA 28.93 49.20 21.00 48.60 30.73 59.53 37.53 66.47 23.82 40.18 28.40 52.80
MGPA+ 28.80 49.20 23.46 48.87 31.27 59.80 40.40 68.80 22.83 38.53 29.35 53.04

Table 4: Results for low-resource languages with PA, GPA and two multi-support settings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch

1k

2k

3k

4k

Si
ze

 o
f i

nd
uc

ed
 d

ic
tio

na
ry

GPA oc
MGPA+ oc

(a) Occitan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch

1k

2k

3k

4k

Si
ze

 o
f i

nd
uc

ed
 d

ic
tio

na
ry

GPA he
MGPA+ he

(b) Hebrew

Figure 2: Progression of dictionary size during GPA
and MGPA+ training. The dotted line marks the bound-
ary between MGPA and fine-tuning.

multi-support setting—we thus mostly focus on
these two languages in the following subsections.

MGPA has variable performance: for four lan-
guages precision suffers from the addition of a
third language, e.g. compare 38.93 for Hebrew
with GPA to 37.53 with MGPA; for Occitan, how-
ever, the most challenging target language in our
experiments, MGPA beats all other approaches by
a large margin: 17.12 with GPA versus 23.81 with
MGPA. This pattern relates to the effect a sup-
porting language has on the size of the induced
seed dictionary. Figure 2 visualizes the progres-
sion of dictionary size during training with and
without a supporting language for Occitan and He-
brew. The portion of the purple curves to the
left of the dotted line corresponds to MGPA: no-
tice how the curves are swapped between the two
plots. Spanish actually provides support for the

English-Occitan alignment, by contributing to an
increasingly larger seed dictionary—this provides
better anchoring for the learned alignment. Hav-
ing Arabic as support for English-Hebrew align-
ment, on the other hand, causes a considerable re-
duction in the size of the seed dictionaries, giv-
ing GPA less anchor points and thus damaging
the learned alignment. The variable effect of a
supporting language on dictionary size, and con-
sequently on alignment precision, relates to the
quality of alignment of the support language with
English and with the target language: referring
back to Table 2, English-Spanish, for example,
scores at 81.93, while English-Arabic precision
is 35.33. Notice that despite our linguistically-
motivated choice to pair related low- and high-
resource languages for multi-support training, it is
not necessarily the case that those should align es-
pecially well, as that would also depend on practi-
cal factors, such as embeddings quality and train-
ing corpora similarity (Søgaard et al., 2018).

MGPA+ applies two-way fine-tuning on top of
MGPA. This leads to a drop in precision for Occi-
tan, due to the removed support of Spanish and the
consequent reduction in size of the induced dic-
tionary (observe the fall of the purple curve after
the dotted line in Figure 2 (a)). Meanwhile, pre-
cision for Hebrew is highest with MGPA+ out of
all methods included. While Arabic itself is not a
good support language, its presence in the three-
way MGPA alignment seems to have resulted in
a good initialization for the English-Hebrew two-
way fine-tuning, thus helping the model reach an
even better minimum along the loss curve.

5 Discussion: Why it works

If word vector spaces were completely isomor-
phic, the introduction of a third (or fourth) space,
and the application of GPA, would lead to the
same alignment as the alignment learned by PA,
projecting the source language E into the target
space F . This follows from the transitivity of iso-

215

morphism: if E is isomorphic to G and G is iso-
morphic to F , then E is isomorphic to F , via the
isomorphism obtained by composing the isomor-
phisms from E to G and from G to F . So why do
we observe improvements?

Søgaard et al. (2018) have shown that word
vector spaces are often relatively far from being
isomorphic, and approximate isomorphism is not
transitive. What we observe therefore appears to
be an instance of the Poincaré Paradox (Poincaré,
1902). While GPA is not more expressive than
PA, it may still be easier to align each monolin-
gual space to an intermediate space, as the lat-
ter constitutes a more similar target (albeit a non-
isomorphic one); for example, the loss landscape
of aligning a source and target language word em-
bedding with an average of the two may be much
smoother than when aligning source directly with
target. Our work is in this way similar in spirit to
Raiko et al. (2012), who use simple linear trans-
forms to make learning of non-linear problems
easier.

5.1 Error Analysis

Table 5 lists example translational pairs as induced
from alignments between English and Bosnian,
learned with PA, GPA and MGPA+. For inter-
pretability, we query the system with words in
Bosnian and seek their nearest neighbors in the
English embedding space. P@1 over the Bosnian-
English test set of Conneau et al. (2018) is 31.33,
34.80, and 34.47 for PA, GPA and MGPA+, re-
spectively. The examples are grouped in three
blocks, based on success and failure of PA and
GPA alignments to retrieve a valid translation.

It appears that a lot of the difference in perfor-
mance between PA and GPA concerns morpho-
logically related words, e.g. campaign v. cam-
paigning, dialogue v. dialogues, merger v. merg-
ing etc. These word pairs are naturally confusing
to a BDI system, due to their related meaning and
possibly identical syntactic properties (e.g. merger
and merging can both be nouns). Another com-
mon mistake we observed in mismatches between
PA and GPA predictions, was the wrong choice
between two antonyms, e.g. stable v. unstable
and visible v. unnoticeable. Distributional word
representations are known to suffer from limita-
tions with respect to capturing opposition of mean-
ing (Mohammad et al., 2013), so it is not surpris-
ing that both PA- and GPA-learned alignments can

fail in making this distinction. While it is not the
case that GPA always outperforms PA on a query-
to-query basis in these rather challenging cases,
on average GPA appears to learn an alignment
more robust to subtle morphological and seman-
tic differences between neighboring words. Still,
there are cases where PA and GPA both choose the
wrong morphological variant of an otherwise cor-
rectly identified target word, e.g. transformation
v. transformations.

Notice that many of the queries for which both
algorithms fail, do result in a nearly synonymous
word being predicted, e.g. participant for at-
tendee, earns for gets, footage for video, etc. This
serves to show that the learned alignments are gen-
erally good, but they are not sufficiently precise.
This issue can have two sources: a suboptimal
method for learning the alignment and/or a ceil-
ing effect on how good of an alignment can be ob-
tained, within the space of orthogonal linear trans-
formations.

5.2 Procrustes fit

To explore the latter issue and to further compare
the capabilities of PA and GPA, we perform a Pro-
crustes fit test, where we learn alignments in a
fully supervised fashion, using the test dictionar-
ies of Conneau et al. (2018)8 for both training and
evaluation9. In the ideal case, i.e. if the subspaces
defined by the words in the seed dictionaries are
perfectly alignable, this setup should result in pre-
cision of 100%.

We found the difference between the fit with
PA and GPA to be negligible, 0.20 on average
across all 10 languages (5 low-resource and 5
high-source languages). It is not surprising that PA
and GPA results in almost equivalent fits—the two
algorithms both rely on linear transformations, i.e.
they are equal in expressivity. As pointed out ear-
lier, the superiority of GPA over PA stems from its
more robust learning procedure, not from higher
expressivity. Figure 3 thus only visualizes the Pro-
crustes fit as obtained with GPA.

The Procrustes fit of all languages is indeed
lower than 100%, showing that there is a ceil-
ing on the linear alignability between the source
and target spaces. We attribute this ceiling ef-

8For Occitan, we use our own test dictionary.
9In this experiment, we only run a single epoch of each

alignment algorithm, as that is guaranteed to give us the best
Procrustes fit for the particular set of training word pairs we
would then evaluate on.

216

QUERY GOLD PA GPA MGPA+

PA
7

,G
PA

3
variraju vary varies vary varies
kanjon canyon headwaters canyon headwaters
dijalog dialogue dialogues dialogue dialogue
izjava statement deniable statement statements
plazme plasma conduction plasma microspheres
raunari computers minicomputers computers mainframes
aparat apparatus duplex apparatus apparatus
sazvijea constellations asterisms constellations constellations
uspostavljanje establishing reestablishing establishing establishing
industrijska industrial industry industrial industrial
stabilna stable unstable stable stable
disertaciju dissertation habilitation dissertation thesis
protivnici opponents opposing opponents opponents
pozitivni positive negative positive positive
instalacija installation installations installation installation
duhana tobacco liquors tobacco tobacco

PA
3

,G
PA

7

hor choir choir musicum choir
crijevo intestine intestine intestines intestine
vidljiva visible visible unnoticeable visible
temelja foundations foundations superstructures pillars
kolonijalne colonial colonial colonialists colonialists
spajanje merger merger merging merging
suha dry dry humid dry
janez janez janez mariza janez
kampanju campaign campaign campaigning campaign
migracije migration migration migrations migrations
sobu room room bathroom bathroom
predgrau suburb suburb outskirts suburb
specijalno specially specially specialist specially
hiv hiv hiv meningococcal hiv
otkrije discover discover discovers discover
proizlazi arises arises differentiates deriving
tajno secretly secretly confidentially secretly

PA
7

,G
PA

7

odred squad reconnoitre stragglers skirmished
uesnik attendee participant participant participant
saznao learned confided confided confided
dobiva gets earns earns earns
harris harris guinn zachary zachary
snimke videos footage footages footage
usne lips ear ear toes
ukinuta lifted abolished abolished abolished
objave posts publish publish publish
obiljeje landmark commemorates commemorates commemorates
molim please appologize thank kindly
vrste solid concretes concretes concretes
intel intel genesys motorola transputer
transformacije transformations transformation transformation transformation

Table 5: Example translations from Bosnian into English.

217

af bs et he oc de ru fi ar es
Language

20

40

60

80

100
P@

1x
10

0

Figure 3: Procrustes fit test. Circles mark the results from fitting and evaluating GPA on the test dictionaries to
measure the Procrustes fit. xs mark the weakly-supervised results reported in Tables 2 and 4.

fect to variable degrees of linguistic difference
between source and target language and possi-
bly to differences in the contents of cross-lingual
Wikipedias (recall that the embeddings we use are
trained on Wikipedia corpora). An apparent corre-
lation emerges between the Procrustes fit and pre-
cision scores for weakly-supervised GPA, i.e. be-
tween the circles and the xs in the plot. The only
language that does not conform here is Occitan,
which has the highest Procrustes fit and the lowest
GPA precision out of all languages, but this result
has an important caveat: our dictionary for Oc-
citan comes from a different source and is much
smaller than all the other dictionaries.

For some of the high-resource languages,
weakly-supervised GPA takes us rather close to
the best possible fit: e.g. for Spanish GPA
scores 81.93%, and the Procrustes fit is 90.07%.
While low-resource languages do not necessarily
have lower Procrustes fits than high-resource ones
(compare Estonian and Finnish, for example), the
gap between the Procrustes fit and GPA precision
is on average much higher within low-resource
languages than within high-resource ones (52.4610

compared to 25.47, respectively). This finding is
in line with the common understanding that the
quality of distributional word vectors depends on
the amount of data available—we can infer from
these results that suboptimal embeddings results
in suboptimal cross-lingual alignments.

5.3 Multilinguality

Finally, we note that there may be specific ad-
vantages to including support languages for which
large monolingual corpora exist, as those should,
theoretically, be easier to align with English (also
a high-resource language): variance in vector di-

10Even if we leave Occitan out as an outlier, this number is
still rather high: 47.10.

rectionality, as studied in Mimno and Thompson
(2017), increases with corpus size, so we would
expect embedding spaces learned from corpora
comparable in size, to also be more similar in
shape.

6 Related work

Bilingual embeddings Many diverse cross-
lingual word embedding models have been pro-
posed (Ruder et al., 2018). The most popular
kind learns a linear transformation from source to
target language space (Mikolov et al., 2013). In
most recent work, this mapping is constrained to
be orthogonal and solved using Procrustes Analy-
sis (Xing et al., 2015; Artetxe et al., 2017, 2018;
Conneau et al., 2018; Lu et al., 2015). The ap-
proach most similar to ours, Faruqui and Dyer
(2014), uses canonical correlation analysis (CCA)
to project both source and target language spaces
into a third, joint space. In this setup, simi-
larly to GPA, the third space is iteratively updated,
such that at timestep t, it is a product of the two
language spaces as transformed by the mapping
learned at timestep t−1. The objective that drives
the updates of the mapping matrices is to max-
imize the correlation between the projected em-
beddings of translational equivalents (where the
latter are taken from a gold-standard seed dictio-
nary). In their analysis of the transformed em-
bedding spaces, Faruqui and Dyer (2014) focus on
the improved quality of monolingual embedding
spaces themselves and do not perform evaluation
of the task of BDI. They find that the transformed
monolingual spaces better encode the difference
between synonyms and antonyms: in the orig-
inal monolingual English space, synonyms and
antonyms of beautiful are all mapped close to each
other in a mixed fashion; in the transformed space
the synonyms of beautiful are mapped in a clus-

218

ter around the query word and its antonyms are
mapped in a separate cluster. This finding is in
line with our observation that GPA-learned align-
ments are more precise in distinguishing between
synonyms and antonyms.

Multilingual embeddings Several approaches
extend existing methods to space alignments be-
tween more than two languages (Ammar et al.,
2016; Ruder et al., 2018). Smith et al. (2017)
project all vocabularies into the English space. In
some cases, multilingual training has been shown
to lead to improvements over bilingually trained
embedding spaces (Vulić et al., 2017), similar to
our findings.

7 Conclusion

Generalized Procrustes Analysis yields benefits
over simple Procrustes Analysis for Bilingual Dic-
tionary Induction, due to its smoother loss land-
scape. In line with earlier research, benefits
from the introduction of a common latent space
seem to relate to a better distinction of synonyms
and antonyms, and of syntactically-related words.
GPA also offers the possibility to include multi-
lingual support for inducing a larger seed dictio-
nary during training, which better anchors the En-
glish to target language alignment in low-resource
scenarios.

Acknowledgements

Sebastian is supported by Irish Research
Council Grant Number EBPPG/2014/30 and
Science Foundation Ireland Grant Number
SFI/12/RC/2289, co-funded by the European
Regional Development Fund.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A. Smith.
2016. Massively Multilingual Word Embeddings.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, pages 451–462.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
Generalizing and Improving Bilingual Word Em-
bedding Mappings with a Multi-Step Framework of
Linear Transformations. In Proceedings of AAAI
2018.

Antonio Valerio Miceli Barone. 2016. Towards cross-
lingual distributed representations without parallel
text trained with adversarial autoencoders. Proceed-
ings of the 1st Workshop on Representation Learning
for NLP, pages 121–126.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word Translation Without Parallel Data. In Pro-
ceedings of ICLR 2018.

Georgiana Dinu, Angeliki Lazaridou, and Marco Ba-
roni. 2015. Improving Zero-Shot Learning by Miti-
gating the Hubness Problem. ICLR 2015 Workshop
track, pages 1–10.

Manaal Faruqui and Chris Dyer. 2014. Improving Vec-
tor Space Word Representations Using Multilingual
Correlation. Proceedings of the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 462 – 471.

John C Gower. 1975. Generalized procrustes analysis.
Psychometrika, 40(1):33–51.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel,
and Karen Livescu. 2015. Deep Multilingual Cor-
relation for Improved Word Embeddings. In HLT-
NAACL.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013.
Exploiting Similarities among Languages for Ma-
chine Translation.

David Mimno and Laure Thompson. 2017. The strange
geometry of skip-gram with negative sampling. In
Proceedings of EMNLP.

Saif M. Mohammad, Bonnie J. Dorr, Graeme Hirst, and
Peter D. Turney. 2013. Computing lexical contrast.
Computational Linguistics, 39(3):555–590.

Henri Poincaré. 1902. La Science et 1’ Hypothese.
Flammario, Paris, France.

Tapani Raiko, Harri Valpola, and Yann LeCun. 2012.
Deep learning made easier by linear transformations
in perceptrons. In AISTATS.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2018. A Survey of Cross-lingual Word Embedding
Models. Journal of Artificial Intelligence Research.

Peter H Schönemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31(1):1–10.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Bilingual word
vectors, orthogonal transformations and the inverted
softmax. In Proceedings of ICLR.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
2018. On the Limitations of Unsupervised Bilingual
Dictionary Induction. In Proceedings of ACL 2018.

219

Ivan Vulić, Nikola Mrkšić, and Anna Korhonen.
2017. Cross-Lingual Induction and Transfer of Verb
Classes Based on Word Vector Space Specialisation.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Chao Xing, Chao Liu, Dong Wang, and Yiye Lin.
2015. Normalized Word Embedding and Orthog-
onal Transform for Bilingual Word Translation.
NAACL-2015, pages 1005–1010.

Hyejin Youn, Logan Sutton, Eric Smith, Cristopher
Moore, Jon F. Wilkins, Ian Maddieson, William
Croft, and Tanmoy Bhattacharya. 1999. On the
universal structure of human lexical semantics. In
NIPS.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017. Adversarial Training for Unsupervised
Bilingual Lexicon Induction. In Proceedings of
ACL.

220

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 221–229
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Simple Unsupervised Keyphrase Extraction using Sentence Embeddings

Kamil Bennani-Smires1, Claudiu Musat1, Andreaa Hossmann1,
Michael Baeriswyl1, Martin Jaggi2

1Data, Analytics & AI, Swisscom AG
firstname.lastname@swisscom.com

2Machine Learning and Optimization Laboratory, EPFL
martin.jaggi@epfl.ch

Abstract
Keyphrase extraction is the task of automat-
ically selecting a small set of phrases that
best describe a given free text document. Su-
pervised keyphrase extraction requires large
amounts of labeled training data and gener-
alizes very poorly outside the domain of the
training data. At the same time, unsuper-
vised systems have poor accuracy, and often
do not generalize well, as they require the in-
put document to belong to a larger corpus also
given as input. Addressing these drawbacks,
in this paper, we tackle keyphrase extrac-
tion from single documents with EmbedRank:
a novel unsupervised method, that leverages
sentence embeddings. EmbedRank achieves
higher F-scores than graph-based state of the
art systems on standard datasets and is suit-
able for real-time processing of large amounts
of Web data. With EmbedRank, we also ex-
plicitly increase coverage and diversity among
the selected keyphrases by introducing an
embedding-based maximal marginal relevance
(MMR) for new phrases. A user study includ-
ing over 200 votes showed that, although re-
ducing the phrases’ semantic overlap leads to
no gains in F-score, our high diversity selec-
tion is preferred by humans.

1 Introduction

Document keywords and keyphrases enable faster
and more accurate search in large text collections,
serve as condensed document summaries, and are
used for various other applications, such as cate-
gorization of documents. In particular, keyphrase
extraction is a crucial component when gleaning
real-time insights from large amounts of Web and
social media data. In this case, the extraction must
be fast and the keyphrases must be disjoint. Most
existing systems are slow and plagued by over-
generation, i.e. extracting redundant keyphrases.
Here, we address both these problems with a new
unsupervised algorithm.

Unsupervised keyphrase extraction has a series
of advantages over supervised methods. Super-
vised keyphrase extraction always requires the ex-
istence of a (large) annotated corpus of both doc-
uments and their manually selected keyphrases to
train on - a very strong requirement in most cases.
Supervised methods also perform poorly outside
of the domain represented by the training corpus
- a big issue, considering that the domain of new
documents may not be known at all. Unsupervised
keyphrase extraction addresses such information-
constrained situations in one of two ways: (a) by
relying on in-corpus statistical information (e.g.,
the inverse document frequency of the words), and
the current document; (b) by only using informa-
tion extracted from the current document.

We propose EmbedRank - an unsupervised
method to automatically extract keyphrases from
a document, that is both simple and only requires
the current document itself, rather than an entire
corpus that this document may be linked to. Our
method relies on notable new developments in
text representation learning (Le et al., 2014; Kiros
et al., 2015; Pagliardini et al., 2017), where doc-
uments or word sequences of arbitrary length are
embedded into the same continuous vector space.
This opens the way to computing semantic relat-
edness among text fragments by using the induced
similarity measures in that feature space. Using
these semantic text representations, we guarantee
the two most challenging properties of keyphrases:
informativeness obtained by the distance between
the embedding of a candidate phrase and that of
the full document; diversity expressed by the dis-
tances among candidate phrases themselves.

In a traditional F-score evaluation, EmbedRank
clearly outperforms the current state of the art
(i.e. complex graph-based methods (Mihalcea and
Tarau, 2004; Wan and Xiao, 2008; Rui Wang, Wei
Liu, 2015)) on two out of three common datasets

221

for keyphrase extraction. We also evaluated the
impact of ensuring diversity by conducting a user
study, since this aspect cannot be captured by the
F-score evaluation. The study showed that users
highly prefer keyphrases with the diversity prop-
erty. Finally, to the best of our knowledge, we
are the first to present an unsupervised method
based on phrase and document embeddings for
keyphrase extraction, as opposed to standard in-
dividual word embeddings.

The paper is organized as follows. Related work
on keyphrase extraction and sentence embeddings
is presented in Section 2. In Section 3 we present
how our method works. An enhancement of the
method allowing us to gain a control over the re-
dundancy of the extracted keyphrases is then de-
scribed in Section 4. Section 5 contains the dif-
ferent experiments that we performed and Section
6 outlines the importance of Embedrank in real-
world examples.

2 Related Work

A comprehensive, albeit slightly dated survey on
keyphrase extraction is available (Hasan and Ng,
2011). Here, we focus on unsupervised methods,
as they are superior in many ways (domain inde-
pendence, no training data) and represent the state
of the art in performance. As EmbedRank relies
heavily on (sentence) embeddings, we also discuss
the state of the art in this area.

2.1 Unsupervised Keyphrase Extraction

Unsupervised keyphrase extraction comes in two
flavors: corpus-dependent (Wan and Xiao, 2008)
and corpus-independent.

Corpus-independent methods, including our
proposed method, require no other inputs than the
one document from which to extract keyphrases.
Most such existing methods are graph-based,
with the notable exceptions of KeyCluster (Liu
et al., 2009) and TopicRank (Bougouin et al.,
2013). In graph-based keyphrase extraction, first
introduced with TextRank (Mihalcea and Tarau,
2004), the target document is a graph, in which
nodes represent words and edges represent the co-
occurrence of the two endpoints inside some win-
dow. The edges may be weighted, like in Sin-
gleRank (Wan and Xiao, 2008), using the num-
ber of co-occurrences as weights. The words (or
nodes) are scored using some node ranking met-
ric, such as degree centrality or PageRank (Page,

1998). Scores of individual words are then ag-
gregated into scores of multi-word phrases. Fi-
nally, sequences of consecutive words which re-
spect a certain sequence of part-of-speech tags
are considered as candidate phrases and ranked
by their scores. Recently, WordAttractionRank
(Rui Wang, Wei Liu, 2015) followed an approach
similar to SingleRank, with the difference of us-
ing a new weighting scheme for edges between
two words, to incorporate the distance between
their word embedding representation. Florescu
and Caragea (2017) use node weights, favoring
words appearing earlier in the text.

Scoring a candidate phrase as the aggregation
of its words score (Mihalcea and Tarau, 2004;
Wan and Xiao, 2008; Florescu and Caragea, 2017)
can lead to over-generation errors. This happens
as several candidate phrases can obtain a high
score because one of their consitutent words has
a high score. This behavior leads to uninforma-
tive keyphrase with one important word present
but lacking informativeness as a whole. In addi-
tion focusing on individual words hurts the diver-
sity of the results.

2.1.1 Diversifying results
Ensuring diversity is important in the presenta-
tion of results to users in the information retrieval
literature. Examples include MMR (Goldstein,
1998), IA-Select (Agrawal et al., 2009) or Max-
Sum Diversification (Borodin et al., 2012). We
used MMR in this work because of its simplicity
in terms of both implementation and, more impor-
tantly, interpretation.
The following methods directly integrate a di-
versity factor in the way they are selecting
keyphrases. Departing from the popular graph ap-
proach, KeyCluster (Liu et al., 2009) introduces
a clustering-based approach. The words present
in the target document are clustered and, for each
cluster, one word is selected as an “exemplar
term”. Candidate phrases are filtered as before,
using the sequence of part-of-speech tags and, fi-
nally, candidates which contain at least one exem-
plar term are returned as the keyphrases.

TopicRank (Bougouin et al., 2013) combines
the graph and clustering-based approaches. Can-
didate phrases are first clustered, then a graph
where each node represents a cluster is created.
TopicRank clusters phrases based on the percent-
age of shared words, resulting in e.g., “fantastic
teacher” and “great instructor” not being clus-

222

tered together, despite expressing the same idea.
In the follow-up work using multipartite graphs
(Boudin, 2018), the authors encode topical infor-
mation within a multipartite graph structure.

In contrast, EmbedRank represents both the
document and candidate phrases as vectors in a
high-dimensional space, leveraging novel seman-
tic document embedding methods beyond simple
averaging of word vectors. In the resulting vector
space, we can thus compute meaningful distances
between a candidate phrase and the document (for
informativeness), as well as the semantic distance
between candidates (for diversity).

2.2 Word and Sentence Embeddings

Word embeddings (Mikolov et al., 2013) marked a
very impactful advancement in representing words
as vectors in a continuous vector space. Repre-
senting words with vectors in moderate dimen-
sions solves several major drawbacks of the classic
bag-of-words representation, including the lack of
semantic relatedness between words and the very
high dimensionality (size of the vocabulary).

Different methods are needed for represent-
ing entire sentences or documents. Skip-
Thought (Kiros et al., 2015) provides sentence
embeddings trained to predict neighboring sen-
tences. Paragraph Vector (Le et al., 2014) finds
paragraph embeddings using an unordered list of
paragraphs.The method can be generalized to also
work on sentences or entire documents, turning
paragraph vectors into more generic document
vectors (Lau and Baldwin, 2016).

Sent2Vec (Pagliardini et al., 2017) uses word
n-gram features to produce sentence embeddings.
It produces word and n-gram vectors specifi-
cally trained to be additively combined into a
sentence vector, as opposed to general word-
vectors. Sent2Vec features much faster inference
than Paragraph Vector (Le et al., 2014) or Skip-
Thought (Kiros et al., 2015). Similarly to recent
word and document embeddings, Sent2Vec re-
flects semantic relatedness between phrases when
using standard similarity measures on the corre-
sponding vectors. This property is at the core of
our method, as we show it outperforms competing
embedding methods for keyphrase extraction.

3 EmbedRank: From Embeddings to
Keyphrases

In this and the next section, we introduce and
describe our novel keyphrase extraction method,
EmbedRank 1. The method consists of three main
steps, as follows: (1) We extract candidate phrases
from the text, based on part-of-speech sequences.
More precisely, we keep only those phrases that
consist of zero or more adjectives followed by one
or multiple nouns (Wan and Xiao, 2008). (2) We
use sentence embeddings to represent (embed),
both the candidate phrases and the document itself
in the same high-dimensional vector space (Sec.
3.1). (3) We rank the candidate phrases to se-
lect the output keyphrases (Sec. 3.2). In addition,
in the next section, we show how to improve the
ranking step, by providing a way to tune the diver-
sity of the extracted keyphrases.

3.1 Embedding the Phrases and the
Document

State-of-the-art text embeddings (word, sentence,
document) capture semantic relatedness via the
distances between the corresponding vector rep-
resentations within the shared vector space. We
use this property to rank the candidate phrases ex-
tracted in the previous step, by measuring their
distance to the original document. Thus, seman-
tic relatedness between a candidate phrase and its
document becomes a proxy for informativeness of
the phrase.

Concretely, this second step of our keyphrase
extraction method consists of:

(a) Computing the document embedding. This in-
cludes a noise reduction procedure, where we
keep only the adjectives and nouns contained
in the input document.

(b) Computing the embedding of each candidate
phrase separately, again with the same algo-
rithm.

To determine the impact the document embed-
ding method may have on the final outcome, we
evaluate keyphrases obtained using both the pop-
ular Doc2Vec (Lau and Baldwin, 2016) (denoted
EmbedRank d2v) and ones based on the newer
Sent2vec (Pagliardini et al., 2017) (denoted Em-

1https://github.com/swisscom/
ai-research-keyphrase-extraction

223

(a) EmbedRank (without diversity) (b) EmbedRank++ (with diversity)

Figure 1: Embedding space2 of a scientific abstract entitled “Using molecular equivalence numbers to
visually explore structural features that distinguish chemical libraries”

bedRank s2v). Both embedding methods al-
low us to embed arbitrary-length sequences of
words. To embed both phrases and documents,
we employ publicly available pre-trained models
of Sent2Vec3 and Doc2vec4. The pre-computed
Sent2vec embeddings based on words and n-
grams vectors have Z = Zs = 700 dimensions,
while for Doc2vec Z = Zd = 300. All embed-
dings are trained on the large English Wikipedia
corpus.5 EmbedRank s2v is very fast, since
Sent2vec infers a document embedding from the
pre-trained model, by averaging the pre-computed
representations of the text’s components (words
and n-grams), in a single linear pass through the
text. EmbedRank d2v is slower, as Doc2vec uses
the embedding network to infer a vector for the
whole document. Both methods provide vectors
comparable in the same semantic space, no mat-
ter if the input ”document” is a word, a phrase, a
sentence or an entire document.

After this step, we have one Z-dimensional
vector representing our document and a Z-
dimensional vector for each of our candidate
phrases, all sharing the same reference space.
Figure 1 shows a concrete example, using Em-

2Visualization based on multidimensional scaling with
cosine distance on the original Z = Zs = 700 dimensional
embeddings.

3https://github.com/epfml/sent2vec
4https://github.com/jhlau/doc2vec
5The generality of this corpus, as well as the unsupervised

embedding method itself ensure that the computed text rep-
resentations are general-purpose, thus domain-independent.

bedRank s2v, from one of the datasets we used
for evaluation (scientific abstracts). As can be
seen by comparing document titles and candidate
phrases, our initial assumption holds in this exam-
ple: the closer a phrase is to the document vector,
the more informative that phrase is for the doc-
ument. Therefore, it is sensible to use the cosine
similarity between the embedding of the candidate
phrase and the document embedding as a measure
of informativeness.

3.2 Selecting the Top Candidates
Based on the above, we select the top keyphrases
out of the initial set, by ranking the candidate
phrases according to their cosine distance to the
document embedding. In Figure 1, this results in
ten highlighted keyphrases, which are clearly in
line with the document’s title.

Nevertheless, it is notable that there can be sig-
nificant redundancy in the set of top keyphrases.
For example, “molecular equivalence numbers”
and “molecular equivalence indices” are both se-
lected as separate keyphrases, despite expressing
the same meaning. This problem can be elegantly
solved by once again using our phrase embeddings
and their cosine similarity as a proxy for semantic
relatedness. We describe our proposed solution to
this in the next section.

Summarizing this section, we have proposed an
unsupervised step-by-step method to extract infor-
mative keyphrases from a single document by us-
ing sentence embeddings.

224

Dataset Documents Avg tok Avg cand Keyphrases Avg kp Missing kp in doc Missing kp in cand Missing due to cand

Inspec 500 134.63 26.39 4903 9.81 21.52% 39.85% 18.34%
DUC 308 850.02 138.47 2479 8.05 2.18% 12.38% 10.21%
NUS 209 8448.55 765.56 2272 10.87 14.39% 30.85% 16.46%

Table 1: The three datasets we use. Columns are: number of documents; average number of tokens
per document; average number of unique candidates per document; total number of unique keyphrases;
average number of unique keyphrases per document; percentage of keyphrases not present in the docu-
ments; percentage of keyphrases not present in the candidates; percentage of keyphrases present in the
document, but not in the candidates. These statistics were computed after stemming the candidates, the
keyphrases and the document.

4 EmbedRank++: Increasing Keyphrase
Diversity with MMR

By returning the N candidate phrases closest to
the document embedding, EmbedRank only ac-
counts for the phrase informativeness property,
leading to redundant keyphrases. In scenarios
where users directly see the extracted keyphrases
(e.g. text summarization, tagging for search), this
is problematic: redundant keyphrases adversely
impact the user’s experience. This can deterio-
rate to the point in which providing keyphrases be-
comes completely useless.

Moreover, if we extract a fixed number of top
keyphrases, redundancy hinders the diversifica-
tion of the extracted keyphrases. In the docu-
ment from Figure 1, the extracted keyphrases in-
clude {topological shape, topological shapes} and
{molecular equivalence number, molecular equiv-
alence numbers, molecular equivalence indices}.
That is, four out of the ten keyphrase “slots” are
taken by redundant phrases.

This resembles search result diversifica-
tion (Drosou and Pitoura, 2010), where a search
engine balance query-document relevance and
document diversity. One of the simplest and
most effective solutions to this is the Maximal
Marginal Relevance (MMR) (Goldstein, 1998)
metric, which combines in a controllable way the
concepts of relevance and diversity. We show
how to adapt MMR to keyphrase extraction, in
order to combine keyphrase informativeness with
dissimilarity among selected keyphrases.

The original MMR from information retrieval
and text summarization is based on the set of all
initially retrieved documents, R, for a given input
query Q, and on an initially empty set S repre-
senting documents that are selected as good an-
swers for Q. S is iteratively populated by comput-
ing MMR as described in (1), where Di and Dj

are retrieved documents, and Sim1 and Sim2 are
similarity functions.

MMR := argmax
Di∈R\S

[
λ · Sim1(Di, Q)

−(1− λ) max
Dj∈S

Sim2(Di, Dj)

] (1)

When λ = 1 MMR computes a standard,
relevance-ranked list, while when λ = 0 it com-
putes a maximal diversity ranking of the docu-
ments in R. To use MMR here, we adapt the orig-
inal equation as:

MMR := argmax
Ci∈C\K

[
λ · ˜cossim(Ci, doc)

−(1− λ) max
Cj∈K

˜cossim(Ci, Cj)
]
,

(2)

where C is the set of candidate keyphrases, K is
the set of extracted keyphrases, doc is the full doc-
ument embedding, Ci and Cj are the embeddings
of candidate phrases i and j, respectively. Finally,
˜cossim is a normalized cosine similarity (Mori and

Sasaki, 2003), described by the following equa-
tions. This ensures that, when λ = 0.5, the rel-
evance and diversity parts of the equation have
equal importance.

˜cossim(Ci, doc) = 0.5+

ncossim(Ci, doc)− ncossim(C, doc)
σ(ncossim(C, doc))

.
(3a)

ncossim(Ci, doc) =
cossim(Ci, doc)− min

Cj∈C
cossim(Cj , doc)

max
Cj∈C

cossim(Cj , doc)
(3b)

We apply an analogous transformation for the
similarities between candidate phrases.

225

Summarizing, the method in the previous sec-
tion is equivalent to using MMR for keyphrase ex-
traction from Equation (2) with λ = 1. The gen-
eralized version of the algorithm, EmbedRank++,
remains the same, except for the last step, where
we instead use Equation (2) to perform the final
selection of the N candidates, therefore returning
simultaneously relevant and diverse keyphrases,
tuned by the trade-off parameter λ.

5 Experiments and results

In this section we show that EmbedRank outper-
forms the graph-based state-of-the-art schemes on
the most common datasets, when using traditional
F-score evaluation. In addition, we report on the
results of a sizable user study showing that, al-
though EmbedRank++ achieves slightly lower F-
scores than EmbedRank, users prefer the seman-
tically diverse keyphrases it returns to those com-
puted by the other method.

5.1 Datasets

Table 1 describes three common datasets for
keyphrase extraction.
The Inspec dataset (Hulth, 2003) consists of 2 000
short documents from scientific journal abstracts.
To compare with previous work (Mihalcea and Ta-
rau, 2004; Hasan and Ng, 2010; Bougouin et al.,
2013; Wan and Xiao, 2008), we evaluated our
methods on the test dataset (500 documents).
DUC 2001 (Wan and Xiao, 2008) consists of 308
medium length newspaper articles from TREC-9.
The documents originate from several newspapers
and are organized in 30 topics. For keyphrase ex-
traction, we used exclusively the text contained in
the first <TEXT> tags of the original documents
(we do not use titles and other metadata).
NUS (Nguyen and Kan, 2007) consists of 211 long
documents (full scientific conference papers), of
between 4 and 12 pages. Each document has sev-
eral sets of keyphrases: one created by the authors
and, potentially, several others created by annota-
tors. Following Hasan and Ng (2010), we evaluate
on the union of all sets of assigned keyphrases (au-
thor and annotator(s)). The dataset is very similar
to the SemEval dataset which is also often used
for keyphrase extraction. Since our results on Se-
mEval are very similar to NUS, we omit them due
to space constraints.

As shown in Table 1, not all assigned
keyphrases are present in the documents (missing

kp in doc). It is thus impossible to achieve a recall
of 100%. We show in the next subsection that our
method beats the state of the art on short scientific
documents and clearly outperforms it on medium
length news articles.

5.2 Performance Comparison

We compare EmbedRank s2v and d2v (no diver-
sity) to five state-of-the-art, corpus-independent
methods6: TextRank (Mihalcea and Tarau, 2004),
SingleRank (Wan and Xiao, 2008), WordAttrac-
tionRank (Rui Wang, Wei Liu, 2015), Topi-
cRank7 (Bougouin et al., 2013) and Multipar-
tite (Boudin, 2018).

For TextRank and SingleRank, we set the win-
dow size to 2 and to 10 respectively, i.e. the values
used in the respective papers. We used the same
PoS tagged text for all methods. For both under-
lying d2v and s2v document embedding methods,
we use their standard settings as described in Sec-
tion 3. We followed the common practice to stem
- with the Porter Stemmer (Porter, 1980) - the ex-
tracted and assigned keyphrases when computing
the number of true positives.

As shown in Table 2, EmbedRank outperforms
competing methods on two of the three datasets
in terms of precision, recall, and Macro F1 score.
In the context of typical Web-oriented use cases,
most data comes as either very short documents
(e.g. tweets) or medium ones (e.g. news articles).
The expected performance for Web applications is
thus closer to the one observed on the Inspec and
DUC2001 datasets, rather than on NUS.

However, on long documents, Multipartite out-
performs all other methods. The most plausible
explanation is that Multipartite, like TopicRank in-
corporates positional information about the candi-
dates. Using this feature leads to an important gain
on long documents – not using it can lead to a 90%
relative drop in F-score for TopicRank. We ver-
ify this intuition in the context of EmbedRank by
naively multiplying the distance of a candidate to
the document by the candidate’s normalized off-
set position. We thus confirm the ”positional bias”
hypothesis, with EmbedRankpositional matching
the TopicRank scores on long documents and ap-
proaching the Multipartite ones. The Multipartite

6TextRank, SingleRank, WordAttractionRank were
implemented using the graph-tool library https:
//graph-tool.skewed.de. We reset the co-occurence
window on new sentence.

7https://github.com/boudinfl/pke

226

N Method
Inspec DUC NUS

P R F1 P R F1 P R F1

5
TextRank 24.87 10.46 14.72 19.83 12.28 15.17 5.00 2.36 3.21
SingleRank 38.18 23.26 28.91 30.31 19.50 23.73 4.06 1.90 2.58
TopicRank 33.25 19.94 24.93 27.80 18.28 22.05 16.94 8.99 11.75
Multipartite 34.61 20.54 25.78 29.49 19.42 23.41 19.23 10.18 13.31
WordAttractionRank 38.55 23.55 29.24 30.83 19.79 24.11 4.09 1.96 2.65
EmbedRank d2v 41.49 25.40 31.51 30.87 19.66 24.02 3.88 1.68 2.35
EmbedRank s2v 39.63 23.98 29.88 34.84 22.26 27.16 5.53 2.44 3.39
EmbedRank++ s2v (λ = 0.5) 37.44 22.28 27.94 24.75 16.20 19.58 2.78 1.24 1.72
EmbedRankpositional s2v 38.84 23.77 29.49 39.53 25.23 30.80 15.07 7.80 10.28

10
TextRank 22.99 11.44 15.28 13.93 16.83 15.24 6.54 6.59 6.56
SingleRank 34.29 39.04 36.51 24.74 30.97 27.51 5.22 5.04 5.13
TopicRank 27.43 30.8 29.02 21.49 27.26 24.04 13.68 13.94 13.81
Multipartite 28.07 32.24 30.01 22.50 28.85 25.28 16.51 17.36 16.92
WordAttractionRank 34.10 38.94 36.36 25.06 31.41 27.88 5.15 5.12 5.14
EmbedRank d2v 35.75 40.40 37.94 25.38 31.53 28.12 3.95 3.28 3.58
EmbedRank s2v 34.97 39.49 37.09 28.82 35.58 31.85 5.69 5.18 5.42
EmbedRank++ s2v (λ = 0.5) 30.31 34.29 32.18 18.27 23.34 20.50 1.91 1.69 1.79
EmbedRankpositional s2v 32.46 36.61 34.41 32.23 39.95 35.68 13.50 13.36 13.43

15
TextRank 22.80 11.50 15.29 11.25 19.21 14.19 6.14 9.16 7.35
SingleRank 30.91 48.92 37.88 21.20 38.77 27.41 5.42 8.24 6.54
TopicRank 24.51 37.45 29.62 17.78 32.92 23.09 11.04 16.47 13.22
Multipartite 25.38 41.32 31.44 19.72 36.87 25.7 14.13 21.86 17.16
WordAttractionRank 30.74 48.62 37.66 21.82 40.05 28.25 5.11 7.41 6.05
EmbedRank d2v 31.06 48.80 37.96 22.37 40.48 28.82 4.33 5.89 4.99
EmbedRank s2v 31.48 49.23 38.40 24.49 44.20 31.52 5.34 7.06 6.08
EmbedRank++ s2v (λ = 0.5) 27.24 43.25 33.43 14.86 27.64 19.33 1.59 2.06 1.80
EmbedRankpositional s2v 29.44 46.25 35.98 27.38 49.73 35.31 12.27 17.63 14.47

Table 2: Comparison of our method with state of the art on the three datasets. Precision (P), Recall (R),
and F-score (F1) at 5, 10, 15 are reported. Two variations of EmbedRank with λ = 1 are presented: s2v
uses Sent2Vec embeddings, while d2v uses Doc2Vec.

results underline the importance of explicitly rep-
resenting topics for long documents. This does not
hold for short and medium documents, where the
semantic information is successfully captured by
the topology of the embedding space.

EmbedRankpositional also outperforms on
medium-length documents but, as the assumption
that the keyphrases appear in a decreasing order
of importance is very strong for the general case,
we gray out the results, to stress the importance of
the more generic EmbedRank variants.

The results also show that the choice of doc-
ument embeddings has a high impact on the
keyphrase quality. Compared to EmbedRank
d2v, EmbedRank s2v is significantly better for
DUC2001 and NUS, regardless of how many
phrases are extracted. On Inspec however, chang-
ing the embeddings from doc2vec to sent2vec
made almost no difference. A possible explanation
is that, given the small size of the original text, the

extracted keyphrases have a high likelihood of be-
ing single words, thus removing the advantage of
having better embeddings for word groups. In all
other cases, the results show a clear accuracy gain
of Sent2Vec over Doc2Vec, adding to the practical
advantage of improved inference speed for very
large datasets.

5.3 Keyphrase Diversity and Human
Preference

In this section, we add EmbedRank++ to the eval-
uation using the same three datasets. We fixed λ
to 0.5 in the adapted MMR equation (2), to en-
sure equal importance to informativeness and di-
versity. As shown in Figure 1b, EmbedRank++ re-
duces the redundancy we faced with EmbedRank.
However, EmbedRank++ surprisingly results in a
decrease of the F-score, as shown in Table 2.

We conducted a user study where we asked
people to choose between two sets of extracted

227

Figure 2: User study among 20 documents from
Inspec and 20 documents from DUC2001. Users
were asked to choose their preferred set of
keyphrases between the one extracted with Em-
bedRank++ (λ = 0.5) and the one extracted with
EmbedRank (λ = 1).

keyphrases: one generated with EmbedRank (λ =
1) and another with EmbedRank++ (λ = 0.5). We
set N to the number of assigned keyphrases for
each document. During the study, we provided the
annotators with the original text, and ask them to
choose between the two sets.

For this user study, we randomly selected 20
documents from the Inspec and 20 documents
from the DUC2001 dataset, collected 214 binary
user preference votes. The long scientific papers
(NUS) were included in the study, as the full pa-
pers were considered too long and too difficult for
non-experts to comprehend and summarize.

As shown in Figure 2, users largely prefer the
keyphrase extracted with EmbedRank++ (λ =
0.5). This is a major finding, as it is in contradic-
tion with the F-scores given in Table 2. If the result
is confirmed by future tests, it casts a shadow on
using solely F-score as an evaluation measure for
keyphrase quality. A similar issue was shown to
be present in Information Retrieval test collections
(Tonon et al., 2015), and calls for research on new
evaluation methodologies. We acknowledge that
the presented study is a preliminary one and does
not support a strong claim about the usefulness of
the F-score for the given problem. It does however
show that people dislike redundancy in summaries
and that the λ < 1 parameter in EmbedRank is a
promising way of reducing it.

Our intuition behind this novel result is that the
EmbedRank method (λ = 1), as well as WordAt-
tractionRank, SingleRank and TextRank can suf-
fer from an accumulation of redundant keyphrases
in which a true positive is present. By restrict-

Figure 3: Keyphrase Grouping in news articles

ing the redundancy with EmbedRank++, we can
select a keyphrase that is not present in the gold
keyphrases, but expresses the same idea. The cur-
rent F-score evaluation penalizes us as if we had
chosen an unrelated keyphrase.

6 Discussion

The usefulness of the corpus-free approach is in
that we can extract keyphrases in any environ-
ment, for instance for news articles. In Figure 3
we show the keyphrases extracted from a sample
article. The EmbedRank keyphrase extraction is
fast, enabling real time computation and visual-
ization. The disjoint nature of the EmbedRank
keyphrases make them highly readable, creating a
succinct summary of the original article.

By performing the analysis at phrase instead
of word level, EmbedRank opens the possibil-
ity of grouping candidates with keyphrases be-
fore presenting them to the user. Phrases within
a group have similar embeddings, like additional
social assistance benefits, employment support al-
lowance and government assistance benefits. Mul-
tiple strategies can be employed to select the most
visible phrase - for instance the one with the high-
est score or the longest one. This grouping coun-
ters the over-generation problem.

7 Conclusion

In this paper we presented EmbedRank and Em-
bedRank++, two simple and scalable methods for
keyphrase extraction from a single document, that
leverage sentence embeddings. Both methods are
entirely unsupervised, corpus-independent, and
they only require the current document itself,
rather than the entire corpus to which it belongs

228

(that might not exist at all). They both depart
from traditional methods for keyphrase extraction
based on graph representations of the input text,
and fully embrace sentence embeddings and their
ability to model informativeness and diversity.

EmbedRank can be implemented on top of any
underlying document embeddings, provided that
these embeddings can encode documents of arbi-
trary length. We compared the results obtained
with Doc2Vec and Sent2Vec, the latter one being
much faster at inference time, which is important
in a Web-scale setting. We showed that on short
and medium length documents, EmbedRank based
on Sent2Vec consistently improves the state of the
art. Additionally, thanks to a fairly large user study
that we run, we showed that users appreciate diver-
sity of keyphrases, and we raised questions on the
reliability of evaluations of keyphrase extraction
systems based on F-score.

References
Rakesh Agrawal, Sreenivas Gollapudi, Alan Halver-

son, and Samuel Ieong. 2009. Diversifying search
results. In Proceedings of the Second ACM Inter-
national Conference on Web Search and Data Min-
ing, WSDM ’09, pages 5–14, New York, NY, USA.
ACM.

Allan Borodin, Hyun Chul Lee, and Yuli Ye. 2012.
Max-sum diversification, monotone submodular
functions and dynamic updates. In Proceedings
of the 31st ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS ’12,
pages 155–166, New York, NY, USA. ACM.

Florian Boudin. 2018. Unsupervised keyphrase
extraction with multipartite graphs. CoRR,
abs/1803.08721.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. TopicRank : Graph-Based Topic Ranking
for Keyphrase Extraction. Proc. IJCNLP 2013,
(October):543–551.

Marina Drosou and Evaggelia Pitoura. 2010. Search
result diversification. SIGMOD Rec., 39(1):41–47.

Corina Florescu and Cornelia Caragea. 2017. A
position-biased pagerank algorithm for keyphrase
extraction. In AAAI Student Abstracts, pages 4923–
4924.

Jade Goldstein. 1998. The Use of MMR , Diversity-
Based Reranking for Reordering Documents and
Producing Summaries. pages 335–336.

Kazi Saidul Hasan and Vincent Ng. 2010. Conundrums
in Unsupervised Keyphrase Extraction : Making
Sense of the State-of-the-Art.

Kazi Saidul Hasan and Vincent Ng. 2011. Automatic
Keyphrase Extraction: A Survey of the State of
the Art. Association for Computational Linguistics
Conference (ACL), pages 1262–1273.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’03,
pages 216–223, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-Thought Vectors.
(786):1–11.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. ACL 2016,
page 78.

Quoc Le, Tomas Mikolov, and Tmikolov Google Com.
2014. Distributed Representations of Sentences and
Documents. ICML, 32.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to Find Exemplar Terms for
Keyphrase Extraction. Language, 1:257–266.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing Order into Texts. Proceedings of EMNLP,
85:404–411.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. pages 1–12.

Tatsunori Mori and Takuro Sasaki. 2003. Information
Gain Ratio meets Maximal Marginal Relevance.

Thuy Dung Nguyen and Min-yen Kan. 2007.
Keyphrase Extraction in Scientific Publications.

L Page. 1998. The PageRank Citation Ranking: Bring-
ing Order to the Web.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised Learning of Sentence Embed-
dings using Compositional n-Gram Features.

Martin F. Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Chris McDonald Rui Wang, Wei Liu. 2015. Corpus-
independent Generic Keyphrase Extraction Using
Word Embedding Vectors.

Alberto Tonon, Gianluca Demartini, and Philippe
Cudré-Mauroux. 2015. Pooling-based continuous
evaluation of information retrieval systems. Inf.
Retr. Journal, 18(5):445–472.

Xiaojun Wan and Jianguo Xiao. 2008. Single Doc-
ument Keyphrase Extraction Using Neighborhood
Knowledge. pages 855–860.

229

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 230–240
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

A Temporally Sensitive Submodularity Framework for Timeline
Summarization

Sebastian Martschat∗
Knowledge Architecture & Innovation

BASF SE
67056 Ludwigshafen am Rhein, Germany
sebastian.martschat@basf.com

Katja Markert
Institute of Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

markert@cl.uni-heidelberg.de

Abstract

Timeline summarization (TLS) creates an
overview of long-running events via dated
daily summaries for the most important dates.
TLS differs from standard multi-document
summarization (MDS) in the importance of
date selection, interdependencies between
summaries of different dates and by having
very short summaries compared to the num-
ber of corpus documents. However, we show
that MDS optimization models using submod-
ular functions can be adapted to yield well-
performing TLS models by designing objec-
tive functions and constraints that model the
temporal dimension inherent in TLS. Impor-
tantly, these adaptations retain the elegance
and advantages of the original MDS mod-
els (clear separation of features and inference,
performance guarantees and scalability, little
need for supervision) that current TLS-specific
models lack. An open-source implementation
of the framework and all models described in
this paper is available online.1

1 Introduction

There is an abundance of reports on events, crises
and disasters. Timelines (see Table 1) summarize
and date these reports in an ordered overview. Au-
tomatic Timeline Summarization (TLS) constructs
such timelines from corpora that contain articles
about the corresponding event.

In contrast to standard multi-document sum-
marization (MDS), in TLS we need to explic-
itly model the temporal dimension of the task,
specifically we need to select the most important
dates for a long-running event and summarize each
of these dates. In addition, TLS deals with a
much larger number of documents to summarize,

∗Work conducted while the author was a researcher at
the Institute of Computational Linguistics, Heidelberg Uni-
versity.

1http://smartschat.de/software

2011-03-16
Security forces break up a gathering in Marjeh Square in
Damascus of 150 protesters holding pictures of imprisoned
relatives. Witnesses say 30 people are arrested.
2011-03-24
President Bashar al-Assad orders the formation of a com-
mittee to study how to raise living standards and lift the law
covering emergency rule, in place for 48 years.
2011-03-29
Government resigns.

Table 1: Excerpt from a Syrian War Reuters timeline.

enhancing scalability and redundancy problems.
These differences have significant consequences
for constraints, objectives, compression rates and
scalability (see Section 2.2).

Due to these differences, most work on TLS
has been separate from the MDS community.2 In-
stead, approaches to TLS start from scratch, opti-
mizing task-specific heuristic criteria (Chieu and
Lee, 2004; Yan et al., 2011b; Wang et al., 2016,
inter alia), often with manually determined param-
eters (Chieu and Lee, 2004; Yan et al., 2011b) or
needing supervision (Wang et al., 2016). As fea-
tures and architectures are rarely reused or indeed
separated from each other, it is difficult to assess
reported improvements. Moreover, none of these
approaches give performance guarantees for the
task, which are possible in MDS models based on
function optimization (McDonald, 2007; Lin and
Bilmes, 2011) that yield state-of-the art models for
MDS (Hong et al., 2014; Hirao et al., 2017).

In this paper we take a step back from the dif-
ferences between MDS and TLS and consider the
following question: Can MDS optimization mod-
els be expanded to yield scalable, well-performing
TLS models that take into account the temporal
properties of TLS, while keeping MDS advantages

2The TLS systems in (Yan et al., 2011b; Tran et al.,
2013a) are compared to some simple MDS systems as base-
lines, but not to state-of-the art ones.

230

such as modularity and performance guarantees?
In particular, we make the following contributions:
• We adapt the submodular function model of

Lin and Bilmes (2011) to TLS (Section 3).
This framework is scalable and modular, al-
lowing a “plug-and-play” approach for dif-
ferent submodular functions. It needs little
supervision or parameter tuning. We show
that even this straightforward MDS adapta-
tion equals or outperforms two strong TLS
baselines on two corpora for most metrics.
• We modify the MDS-based objective func-

tion by adding temporal criteria that take
date selection and interdependencies between
daily summaries into account (Section 4).
• We then add more complex temporal con-

straints, going beyond the simple cardinal-
ity constraints in MDS (Section 5). These
new constraints specify the uniformity of the
timeline daily summaries and date distribu-
tion. We also give the first performance guar-
antees for TLS using these constraints.
• We propose a TLS evaluation framework, in

which we study the effect of temporal objec-
tive functions and constraints. We show per-
formance improvements of our temporaliza-
tions (Section 6). We also present the first or-
acle upper bounds for the problem and study
the impact that timeline properties, such as
compression rates, have on performance.

2 Timeline Summarization

Given a query (such as Syrian war) TLS needs to
(i) extract the most important events for the query
and their corresponding dates and (ii) obtain con-
cise daily summaries for each selected date (Al-
lan et al., 2001; Chieu and Lee, 2004; Yan et al.,
2011b; Tran et al., 2015a; Wang et al., 2016).

2.1 Task Definition and Notation

A timeline is a sequence (d1, v1), . . . , (dk, vk)
where the di are dates and the vi are summaries
for the dates di. Given are a query q and an asso-
ciated corpus C that contains documents relevant
to the query. The task of timeline summarization
is to generate a timeline t based on C. The num-
ber of dates in t as well as the length of the daily
summaries are typically controlled by the user.

We denote with U the set of sentences in C. We
assume that each sentence in U is dated (either by
a date expression appearing in the sentence or by

the publication date of the article it appears in).
For a sentence s we write d(s) for the date of s.

2.2 Relation to MDS

In MDS, we also need to generate a (length-
limited) summary of texts in a corpus C (with an
optional query q used to retrieve the corpus). In
the traditional DUC multi-document summariza-
tion tasks3, most tasks are either not event-based at
all or concentrate on one single event. In contrast,
in TLS, the corpus describes an event that consists
of several subevents that happen on different days.

This difference has substantial effects. In MDS,
criteria (such as coverage and diversity) and length
constraints apply on a global level. In TLS, the
whole summary is naturally divided into per-day
summaries. Criteria and constraints apply on a
global level as well as on a per-day level.

Even for the small number of DUC tasks that
do focus on longer-running events, several differ-
ences to TLS still hold. First, the temporal dimen-
sion in the DUC gold standard summaries and sys-
tem outputs is playing a minor role, with few ex-
plicit datings of events and a non-temporal struc-
ture of the output, leading again to the above-
mentioned differences in constraints and criteria.
The ROUGE evaluation measures used in MDS
(Lin, 2004) also do not take into account temporal-
ity and do not explicitly penalize wrong datings.
Second, corpora in TLS typically contain thou-
sands of documents per query (Tran et al., 2013b,
2015a). This is magnitudes larger than the cor-
pora usually considered for MDS (Over and Yen,
2004). This leads to a low compression rate4 and
requires approaches to be scalable.

3 Casting TLS as MDS

In the introduction, we identified several issues in
existing TLS research, including lack of modular-
ity, insufficient separation between features and
model, and the lack of performance guarantees.
Global constrained optimization frameworks used
in MDS (McDonald, 2007; Lin and Bilmes, 2011)
do separate constraints, features and inference and
allow for optimal solutions or solutions with per-
formance guarantees. They also can be used in an
unsupervised manner. We now cast TLS as MDS,
employing constraints and criteria used for stan-

3https://duc.nist.gov/
4Compression rate is the length of the summary divided

by the length of the source (Radev et al., 2004).

231

dard MDS (Lin and Bilmes, 2011). While this ig-
nores the temporal dimension of TLS, it will give
us a baseline and a starting point for systematically
incorporating temporal information.

3.1 Problem Statement and Inference
We can understand summarization as an optimiza-
tion of an objective function that evaluates sets of
sentences over constraints. Hence, let U be a set
of sentences in a corpus and let f : 2U → R≥0 be
a function that measures the quality of a summary.
Let I ⊆ {X | X ∈ 2U} be a set of constraints5.
We then consider the optimization problem

S∗ = argmax
S⊆U,S∈I

f(S). (1)

Solving Equation 1 exactly does not scale well
(McDonald, 2007) and is therefore inappropriate
for the large-scale data used in TLS. The greedy
Algorithm 1 that iteratively constructs an output
solves the equation approximately (also used in
McDonald (2007) and Lin and Bilmes (2011)).

Algorithm 1 Greedy algorithm.
Input: A set of sentences U , a function f , a set of

constraints I
function GREEDY(U , f , I)

Set S = ∅, K = U
while K 6= ∅ do

s = argmaxt∈K f(S ∪ {t})− f(S)
if S ∪ {s} ∈ I then

S = S ∪ {s}
K = K \ {s}

Output: A summary S

3.2 Monotonicity and Submodularity
The results obtained by GREEDY can be arbitrarily
bad. However, there are performance guarantees if
the objective function f and the constraints I are
“sufficiently nice” (Calinescu et al., 2011). Many
results rely on objective functions that are mono-
tone and submodular. A function f is monotone if
A ⊆ B implies that f(A) ≤ f(B). A function f is
submodular if it possesses a “diminishing returns
property”, i.e. if for A ⊆ B ⊂ U and v ∈ U \ B
we have f(A∪{v})−f(A) ≥ f(B∪{v})−f(B).

From now on we assume that the function f is
of the form f ≡∑m

i=1 fi with monotone submod-

5An example are length constraints, which can be ex-
pressed as I = {X | |X| ≤ m,X ∈ 2U} for some m.

ular fi : U → [0, 1] (i ∈ {1, . . . ,m}). We normal-
ize all fi to [0, 1]. By closure properties of mono-
tonicity and submodularity, f is also submodular.

3.3 MDS Constraints

Constraints help to define a summary’s struc-
ture, and the performance guarantee of the greedy
algorithm depends on them. In MDS, typi-
cal constraints are upper bounds in the num-
ber of sentences or words, corresponding to car-
dinality (|S| ≤ m) or knapsack constraints
(
∑

s∈S |words(s)| ≤ m) for some upper boundm.
When optimizing a submodular monotone func-
tion under such constraints, GREEDY has a per-
formance guarantee of ≈ 0.63 and ≈ 0.39 re-
spectively (Calinescu et al., 2011; Lin and Bilmes,
2011). That is, for cardinality constraints, the out-
put is at least 0.63 as good as the optimal solution
in terms of objective function value.

3.4 MDS Objective Functions

In MDS, approaches typically try to maximize
coverage and diversity. In its simplest form, Lin
and Bilmes (2011) model coverage as

fCov(S) =
∑

s∈S

∑

v∈U
sim(s, v), (2)

where sim : U×U → R≥0 is a sentence similarity
function, e.g. cosine of word vectors.

Lin and Bilmes (2011) model diversity via

fDiv(S) =
k∑

i=1

√ ∑

s∈Pi∩S
r(s) (3)

where P1, . . . , Pk is a partition of U (e.g. obtained
by semantic clustering) and r : U → R≥0 is a sin-
gleton reward function. We get diminished reward
for adding additional sentences from one cluster.

3.5 Application to TLS

Applying this MDS model to TLS as-is may not
be adequate. For example, since the length con-
straints only limit the total number of sentences,
some days in the timeline could be overrepre-
sented. Furthermore, if objective functions ignore
temporal information, we may not be able to ex-
tract sentences that describe very important events
lasting only for short time periods. Instead, nat-
ural units for TLS are both the whole timeline as
well as individual dates, so criteria and constraints
for TLS should accommodate both units.

232

4 Temporalizing Objective Functions

We now systematically add temporal information
to the objective function by (i) temporalizing cov-
erage functions, (ii) temporalizing diversity func-
tions, and (iii) adding date selection functions. We
prove the monotonicity and submodularity of all
functions in the supplementary material.

4.1 Temporalizing Coverage

MDS coverage functions (Equation 2) ignore
temporal information, computing coverage on a
corpus-wide level. We temporalize them by mod-
ifying the similarity computation. This is a mini-
mal but fundamental modification. Previous work
in TLS noted that coverage for candidate sum-
maries for a day d should look mainly at the
temporally local neighborhood, i.e. at sentences
whose dates are close to d (Chieu and Lee, 2004;
Yan et al., 2011b). We investigate two variants of
this idea. The first uses a hard cutoff (Chieu and
Lee, 2004), restricting similarity computations to
sentences that are at most p days apart:

simp(s, t) =

{
sim(s, t) |d(s)− d(t)| ≤ p
0 |d(s)− d(t)| > p

(4)

The second uses a soft variant (Yan et al., 2011b).
Let g : N→ R>0 be monotone with g(0) = 1. We
set simg(s, t) = sim(s, t)/g(|d(s)− d(t)|). Thus,
all date differences are penalized, and greater date
differences are penalized more.

4.2 Temporalizing Diversity

As with coverage, standard MDS diversity func-
tions (Equation 3) ignore temporal information. If
the singleton reward r in fDiv relies on sim, as is
the case with many implementations, then tempo-
ralizing sim implicitly temporalizes diversity. We
now go beyond such an implicit temporalization.

In TLS, we want to apply diversity on a tem-
poral basis: we do not want to concentrate the
summary on very few, albeit important dates, but
we want date (and subevent) diversity. fDiv, how-
ever, typically uses only a semantic criterion to
obtain a partition, e.g. by k-means clustering of
sentence vector representations (Lin and Bilmes,
2011). This may wrongly conflate events, such
as two unrelated protests on different dates. We
can instead employ a temporal partition. The
simplest method is to partition the sentences by
their date, i.e. for a temporalized diversity function

fTempDiv we have the same form as in Equation 3,
but Pi contains all sentences with date di, where
d1, . . . , dk are all sentence dates.

4.3 Date Selection Criteria
An important part of TLS is date selection. Ded-
icated algorithms for date selection use frequency
and patterns in date referencing to determine date
importance (Tran et al., 2015b). Most date impor-
tance measures can be integrated into the objec-
tive function to allow for joint date selection and
summary generation.6 One well-performing date
selection baseline is to measure for each date how
many sentences refer to it. This objective can be
described by the monotone submodular function

fDateRef(S) =
∑

d∈d(S)
|{u ∈ U | u refers to d}| .

4.4 Combining Criteria
We combine coverage, diversity and date impor-
tance via unweighted sums for our final objective
functions. An alternative would be to combine
them via weighted sums learned from training data
(Lin and Bilmes, 2011, 2012) but since there are
only few datasets available for training and testing
TLS algorithms we choose the unweighted sum to
estimate as few parameters as possible from data.

5 Temporalizing Constraints

The MDS knapsack/cardinality constraints are too
simple for TLS as an overall sentence limit does
not constrain a timeline to have daily summaries
of roughly similar length or enforce other unifor-
mity properties. We introduce constraints going
beyond simple cardinality, and prove performance
guarantees of GREEDY under such constraints.

5.1 Definition of Constraints
Typically, we have two requirements on the time-
line: the total number of days should not exceed a
given number ` and the length of the daily sum-
mary (in sentences) should not exceed a given
number k (for every day). Let d be the func-
tion that assigns each sentence its date. For a set
S ⊆ U , the requirements can be formalized as

|{d(s) | s ∈ S}| ≤ ` (5)

and, for all s ∈ S,
∣∣{s′ | s′ ∈ S, d(s′) = d(s)}

∣∣ ≤ k. (6)
6Our framework can also be extended to accommodate

pipelined date selection. We leave this to future work.

233

5.2 Performance Guarantees

While the constraints expressed by Equations 5
and 6 are more complex than constraints used in
MDS, they have a property in common: if a set S
fulfills the constraints (i.e. S ∈ I), then also any
subset T ⊆ S fulfills the constraints (i.e. T ∈ I).
In combinatorics, such constraints are called inde-
pendence systems (Calinescu et al., 2011).

Definition 1. Let V be some set and I ⊂ 2V be
a collection of subsets of V . The tuple (V, I) is
called an independence system if (i) ∅ ∈ I and
(ii) B ∈ I and A ⊆ B implies A ∈ I.

Optimization theory shows that GREEDY also
has performance guarantees when generalizing
cardinality/knapsack constraints to “sufficiently
nice” independence systems. Based on these re-
sults, we prove Lemma 1 (see the suppl. material):

Lemma 1. Let I be the set of subsets of U that
fulfill Equations 5 and 6. Then GREEDY has a
performance guarantee of 1/(k + 1).

The lemma implies that for small k that is typi-
cal in TLS (e.g. k = 2), we obtain a good approxi-
mation with reasonable constraints. However, our
performance guarantees are still weaker than for
MDS (for example, 0.33 for k = 2 compared
to 0.63 in MDS). The reason for this is that our
constraints are more complex, going beyond the
simple well-studied cardinality and knapsack con-
straints. We also observe that this is a worst-case
bound: in practice the performance of the algo-
rithm may approach the exact solution (as Lin and
Bilmes (2010) show for MDS). However, such an
analysis is out of scope for our paper, since com-
puting the exact solution is intractable in TLS.7

6 Experiments

We evaluate the performance of modeling TLS as
MDS and the effect of various temporalizations.

6.1 Data and Preprocessing

We run experiments on timeline17 (Tran et al.,
2013b) and crisis (Tran et al., 2015a). Both data
sets consist of (i) journalist-generated timelines on
events such as the Syrian War as well as (ii) cor-
responding corpora of news articles on the topic
scraped via Google News. They are publically

7McDonald (2007) and Lin and Bilmes (2010) already re-
port scalability issues for obtaining exact solutions for MDS,
which is of smaller scale and has simpler constraints than our
task.

Name Topics TLs Docs Sentences
Total Filtered

timeline17 9 19 4,622 273,432 56,449
crisis 4 22 18,246 689,165 121,803

Table 2: Data set statistics.

No Start End Dates Avg. Daily
Summ. Length

1 2010-04-20 2010-05-02 13 4
2 2010-04-20 2012-11-15 16 2
3 2010-04-20 2010-10-15 12 2
4 2010-04-20 2010-09-19 48 2
5 2010-04-20 2011-01-06 102 3

Table 3: Properties for the BP oil spill timelines in
timeline17. The corpus contains documents for 218
dates from 2010-04-01 to 2011-01-31.

available8 and have been used in previous work
(Wang et al., 2016).9 Table 2 shows an overview.

In the data sets, even timelines for the same
topic have considerable variation. Table 3 shows
properties for the five BP oil spill timelines in
timeline17. There is substantial variation in range,
granularity and average daily summary length.

Following previous work (Chieu and Lee, 2004;
Yan et al., 2011b), we filter sentences in the cor-
pus using keywords. For each topic we manually
define a set of keywords. If any of the keywords
appears in a sentence, the sentence is retained.

We identify temporal expressions with Heidel-
Time (Strötgen and Gertz, 2013). If a sentence s
contains a time expression that can be mapped to
a day d via HeidelTime we set the date of s to d
(if there are multiple expressions we take the first
one). Otherwise, we set the date of s to the publi-
cation date of the article which contains s.10

6.2 Evaluation Metrics

Automatic evaluation of TLS is done by ROUGE
(Lin, 2004). We report ROUGE-1 and ROUGE-
2 F1 scores for the concat, agreement and align+
m:1 metrics for TLS we presented in Martschat
and Markert (2017). These metrics perform eval-
uation by concatenating all daily summaries, eval-
uating only matching days and evaluating aligned

8http://www.l3s.de/˜gtran/timeline/
9The datasets used in Chieu and Lee (2004) or Nguyen

et al. (2014) are not available.
10This procedure is in line with previous TLS work (Chieu

and Lee, 2004). The focus of the current paper is not on fur-
ther improving date assignment.

234

dates based on date and content similarity, respec-
tively. We evaluate date selection using F1 score.

6.3 Experimental Settings

TLS has no established settings. Ideally, reference
and predicted timelines should be given the same
compression parameters, such as overall length or
number of days.11 Since there is considerable vari-
ation in timeline parameters (Table 3), we evaluate
against each reference timeline individually, pro-
viding systems with the parameters they need via
extraction from the reference timeline, including
range and needed length constraints. We set m to
the number of sentences in the reference timeline,
` to the number of dates in the timeline, and k to
the average length of the daily summaries.

Most previous work uses different or unreported
settings, which makes comparison difficult. For
instance, Tran et al. (2013b) do not report how
they obtain timeline length. Wang et al. (2015,
2016) create a constant-length summary for each
day that has an article in the corpus, thereby com-
paring reference timelines with few days with pre-
dicted timelines that have summaries for each day.

6.4 Baselines

Past work on crisis generated summaries from
headlines (Wang et al., 2016) or only used manual
evaluation (Tran et al., 2015a). Past work on time-
line17 evaluates with ROUGE (Tran et al., 2013b;
Wang et al., 2016) but suffers from the fact that
parameters for presented systems, baselines and
reference timelines differ or are not reported (see
above). Therefore, we reimplement two baselines
that were competitive in previous work (Yan et al.,
2011b; Wang et al., 2015, 2016).

Chieu. Our first baseline is CHIEU, the unsuper-
vised approach of Chieu and Lee (2004). It oper-
ates in two stages. First, it ranks sentences based
on similarity: for each sentence s, similarities to
all sentences in a 10-day window around the date
of s are summed up12. This yields a ranked list
of sentences, sorted by highest to lowest summed
up similarities. Using this list, a timeline contain-
ing one-sentence daily summaries is constructed

11This would mirror settings in MDS, where reference and
predicted summary have the same length constraint.

12This corresponds to the Interest ranking proposed by
Chieu and Lee (2004). We do not use the more complex
Burstiness measure since Interest was found to perform at
least as well in previous work when evaluated with ROUGE-
based measures (Wang et al., 2015, p.c.)

as follows: iterating through the ranked sentence
list, a sentence is added to the timeline depend-
ing on the extent of the sentences already in the
timeline. Extent of a sentence s is defined as the
smallest window of days such that the total simi-
larity of s to sentences in this window reaches at
least 80% of the similarity to the sentences in the
full 10-day window. If the candidate sentence does
not fall into the extent of any sentence already in
the timeline, it is added to the timeline.

As we can see, the model and parameters such
as daily summary length are intertwined in this ap-
proach. We therefore reimplement CHIEU exactly
instead of giving it reference timeline parameters.
As we describe below, we use the same sentence
similarity function as Chieu and Lee (2004).

Regression. Our second baseline is REG, a su-
pervised linear regression model (Tran et al.,
2013b; Wang et al., 2015). We represent each
sentence with features describing its length, num-
ber of named entities, unigram features, and aver-
aged/summed tf-idf scores. During training, for
each sentence, standard ROUGE-1 F1 w.r.t. the
reference summary of the sentence’s date is com-
puted. The model is trained to predict this score.13

During prediction, sentences are selected greedily
according to predicted F1 score, respecting tempo-
ral constraints defined by the reference timeline.

6.5 Model Parameters

For all submodular models and for CHIEU we use
sparse inverse-date-frequency sentence represen-
tations (Chieu and Lee, 2004)14. This yields a vec-
tor representation vs for each sentence s. We set
sim(s, t) = cos(vs, vt). We did not tune any fur-
ther parameters but re-used settings from previous
work. For modifications to sim when temporaliz-
ing coverage and diversity (Section 4), we use a
cutoff of 10 (as Chieu and Lee (2004)), and con-
sider g(x) =

√
x+ 1 for reweighting. We choose

the square root since it quickly provides strong pe-
nalizations for date differences but then saturates.
Following Lin and Bilmes (2011), we set singleton
reward for fDiv to r(s) =

∑
u∈U sim(s, u) and ob-

tain the partition P1, . . . , Pk by k-means clustering
with k = 0.2 · |U |. We obtain a temporalization
fTempDiv of diversity by considering a partition of
sentences induced by their dates (see Section 4).

13We use per-topic cross-validation (Tran et al., 2013b).
14In preliminary experiments, results using such sparse

representations were higher than results using dense vectors.

235

6.6 Results
Results are displayed in Table 4. The numbers
are averaged over all timelines in the respective
corpus. We test for significant differences using
an approximate randomization test (Noreen, 1989)
with a p-value of 0.05.

Baselines. Overall, performance on crisis is
much lower than on timeline17. This is because (i)
the corpora in crisis contain articles for more days
over a larger time span and (ii) average percentage
of article publication dates for which a summary in
a corresponding reference timeline exists is 11%
for timeline17 and 3% for crisis. This makes date
selection more difficult. On crisis, CHIEU outper-
forms REG except for date selection. On time-
line17, REG outperforms CHIEU for four out of
seven metrics. Timelines in crisis contain fewer
dates and shorter daily summaries than timelines
in timeline17, which aligns well with CHIEU’s re-
dundancy post-processing.

TLS as MDS. The model ASMDS uses stan-
dard length constraints from MDS and an ob-
jective function combining non-temporalized fCov
and fDiv. It allows us to evaluate how well stan-
dard MDS ports to TLS. Except for concat and
date selection on crisis, this model outperforms
both baselines, while providing the advantages of
modularity, non-supervision and feature/inference
separation discussed throughout the paper.

Temporalizing Constraints. The model
TLSCONSTRAINTS uses the temporal constraints
described in Section 5, but has the same objective
function as ASMDS. Compared to ASMDS, there
are improvements on all metrics on timeline17
and similar performance on crisis.

Temporalizing Criteria. We temporalize
ASMDS objective functions (Section 4) via
modifications of the similarity function (cut-
offs/reweightings), replacing diversity by tempo-
ral diversity fTempDiv, and adding date selection
fDateRef. Constraints are kept non-temporal. If
modifications improve over ASMDS we also
check for cumulative improvements. Modifying
similarity is not effective, results drop or stay
roughly the same according to most metrics. The
other modifications improve performance w.r.t.
most metrics, especially for date selection.

Temporalizing Constraints and Criteria.
Lastly, we evaluate the joint contribution of

temporalized constraints and criteria.15 Modifi-
cations to the similarity function have a positive
effect, especially reweighting. fDateRef provides
information about date importance not encoded in
the constraints, improving results on crisis.

Oracle Results. Previous research in MDS com-
puted oracle upper bounds (e.g. Hirao et al.
(2017)). To estimate TLS difficulty and our
limitations, we provide the first oracle upper
bound for TLS: For each sentence s, we compute
ROUGE-1 F1 gs w.r.t. the reference summary for
the sentence’s date. We then run GREEDY for
fOracle(S) =

∑
s∈S gs, employing the same con-

straints as TLSCONSTRAINTS (see Table 7).
Scores of the models are most similar to oracle

results for the temporally insensitive concat met-
ric, with gaps comparable to gaps in MDS (Hirao
et al., 2017). The biggest gap is in date selection
F1. This also leads to higher differences in the
scores of temporally sensitive metrics, highlight-
ing the importance of temporal information.

6.7 Analysis
We now investigate where and how temporal infor-
mation helps compared to ASMDS. We have al-
ready identified two potential weaknesses of mod-
eling TLS as MDS: the low compression rate (Sec-
tion 2) and the likely case that ASMDS overrep-
resents certain dates in a timeline (Section 3). We
now analyze the behavior of AsMDS w.r.t. these
points and discuss the effect of temporal informa-
tion. To avoid clutter, we restrict analysis to time-
line17 and report only align+ m:1 ROUGE-1 F1.

Effect of Compression Rate. We hypothesize
that difficulty increases as compression rate de-
creases. We measure compression rate in two
ways. We first adopt the definition from MDS
and define corpus compression rate as the num-
ber of sentences in a reference timeline divided
by the number of sentences in the (unfiltered) cor-
responding corpus. Second, we define a TLS-
specific notion called spread as the number of
dates in the reference timeline divided by the max-
imum possible number of dates given its start and
end date. For example, the timeline from Table 1
in the introduction has spread 3/14. We see that
timelines with lowest compression rate/spread are
indeed the hardest (Table 5). Temporal informa-
tion leads to improvements in all categories.

15We do not evaluate fTempDiv, since the temporal con-
straints already capture temporal diversity.

236

concat agree align+ m:1 Date Sel.
Model R1 R2 R1 R2 R1 R2 F1

timeline17

Baselines
CHIEU 0.296 0.072 0.039 0.016 0.066 0.019 0.251
REG 0.336 0.065 0.063 0.014 0.074 0.016 0.491

Non-temporal Submodular Models
ASMDS 0.351† 0.088∗ 0.071† 0.019 0.086† 0.022 0.452†

Temporalizing Constraints
TLSCONSTRAINTS 0.368† 0.090†∗ 0.082†∗ 0.022 0.098†∗ 0.025∗ 0.482†

Temporalizing Criteria
ASMDS+cutoff 0.338x 0.083∗ 0.065† 0.021 0.077 0.024 0.393†∗x

ASMDS+reweighting 0.329x 0.081x 0.063† 0.019 0.075x 0.022 0.390†∗x

ASMDS+fDateRef 0.357† 0.092†∗x 0.082†∗x 0.022∗ 0.095†∗x 0.025∗ 0.529†x

ASMDS+fTempDiv 0.347 0.088∗ 0.088†∗x 0.026†∗ 0.103†∗x 0.029†∗x 0.526†x

ASMDS+fTempDiv+fDateRef 0.347 0.090∗ 0.092†∗x 0.027†∗x 0.105†∗x 0.030†∗x 0.544†∗x
Temporalizing Constraints and Criteria

TLSCONSTRAINTS+cutoff 0.366† 0.085∗ 0.091†∗x 0.023∗ 0.105†∗x 0.026∗ 0.505†x

TLSCONSTRAINTS+reweighting 0.371† 0.088†∗ 0.091†∗x 0.026†∗x 0.106†∗x 0.028†∗x 0.506†x

TLSCONSTRAINTS+fDateRef 0.371†∗x 0.090†∗ 0.089†∗x 0.023∗ 0.103†∗x 0.026∗ 0.517†x

TLSCONSTRAINTS+fDateRef+reweighting 0.370†∗ 0.091†∗ 0.090†∗x 0.024∗ 0.104†∗x 0.027∗ 0.515†x

crisis

Baselines
CHIEU 0.374 0.070 0.029 0.008 0.052 0.012 0.142
REG 0.271 0.034 0.014 0.001 0.028 0.003 0.189

Non-temporal Submodular Models
ASMDS 0.309†∗ 0.064∗ 0.037∗ 0.009∗ 0.060∗ 0.014∗ 0.183†

Temporalizing Constraints
TLSCONSTRAINTS 0.339†∗x 0.066∗ 0.035∗ 0.008∗ 0.058∗ 0.012∗ 0.180†

Temporalizing Criteria
ASMDS+cutoff 0.283†x 0.061†∗ 0.036∗ 0.011∗ 0.050∗ 0.014∗ 0.186
ASMDS+reweighting 0.294†∗ 0.061†∗ 0.039∗ 0.011∗ 0.056∗ 0.015∗ 0.212†∗

ASMDS+fDateRef 0.314†∗ 0.067∗ 0.042†∗ 0.009∗ 0.065†∗x 0.014∗ 0.248†∗x

ASMDS+fTempDiv 0.311† 0.062∗ 0.034∗ 0.007∗ 0.058∗ 0.012∗x 0.196†∗

ASMDS+fTempDiv+fDateRef 0.311†∗ 0.064∗ 0.039†∗ 0.008∗ 0.063†∗ 0.012∗ 0.233†∗x

Temporalizing Constraints and Criteria
TLSCONSTRAINTS+cutoff 0.323†∗x 0.068∗ 0.046†∗ 0.011∗ 0.066†∗ 0.015∗ 0.242†x

TLSCONSTRAINTS+reweighting 0.332†∗x 0.071∗x 0.044†∗ 0.009∗ 0.068†∗ 0.014∗ 0.237†x

TLSCONSTRAINTS+fDateRef 0.333†∗x 0.069∗x 0.045†∗x 0.009∗ 0.067†∗x 0.013∗ 0.248†∗x

TLSCONSTRAINTS+fDateRef+reweighting 0.333†∗x 0.072∗x 0.054†∗x 0.012†∗ 0.075†∗x 0.016∗ 0.281†∗x

Table 4: Results. Highest values per column/dataset are boldfaced. For the submodular models, † denotes sign.
difference to CHIEU, ∗ to REG, x to ASMDS.

(Over)representation of Dates. We hypothe-
sized that ASMDS may overrepresent certain
dates. We test this hypothesis by measuring the
length (in sentences) of the longest daily summary
in a timeline, and computing mean and median
over all timelines (Table 6). The numbers confirm
the hypothesis: When modeling TLS as MDS,
some daily summaries tend to be very long. By
construction of the constraints employed, the ef-
fect does not occur or is much weaker for CHIEU,
REG and TLSCONSTRAINTS. Temporal objective
functions (as in ASMDS+fTempDiv+fDateRef) also
weaken the effect substantially.

7 Related Work

The earliest work on TLS is Allan et al. (2001),
who introduce the concepts of usefulness (concep-
tually similar to coverage) and novelty (similar to
diversity), using a simple multiplicative combina-
tion. However, both concepts are not temporal-
ized. The notion of usefulness is developed fur-
ther as “interest” by Chieu and Lee (2004), which
we use as one of our baselines. Chieu and Lee
(2004) compute interest/coverage in a static lo-
cal date-based window, instead of using global
optimization as we do. They handle redundancy
only during post-processing s.t. the interplay be-
tween coverage and diversity is not adequately
modeled. Further optimization criteria are intro-

237

Name Compression rate r Spread s
r ∈ [0, 0.001] r ∈ (0.001, 0.01] r ∈ (0.01, 0.1] s ∈ [0, 1/3] s ∈ (1/3, 2/3] s ∈ (2/3, 1]

CHIEU 0.06 0.08 0.07 0.06 0.08 0.04
REG 0.04 0.09 0.07 0.05 0.11 0.11
ASMDS 0.05 0.10 0.09 0.07 0.10 0.10
TLSCONSTRAINTS 0.08 0.10 0.10 0.08 0.12 0.14
ASMDS+fTempDiv+fDateRef 0.09 0.11 0.12 0.09 0.13 0.13

Table 5: Results (align+ m:1 ROUGE-1 F1) by compression rate and spread on timeline17.

Name Max. Length
Mean Median

Reference 5.6 ± 2.7 5

CHIEU 1.0 ± 0.0 1
REGRESSION 2.3 ± 1.7 2
ASMDS 23.7 ± 41.2 8
TLSCONSTRAINTS 2.3 ± 1.7 2
ASMDS+fTempDiv+fDateRef 3.8 ± 5.3 1

Table 6: Length of longest daily summary, mean and
median over all timelines on timeline18.

concat agree align+ m:1 Date
Corpus R1 R2 R1 R2 R1 R2 F1

tl17 0.50 0.18 0.30 0.14 0.30 0.14 0.87
crisis 0.49 0.16 0.34 0.14 0.35 0.14 0.95

Table 7: Oracle results optimizing per-day R1 F1.

duced by Yan et al. (2011b,a) and Nguyen et al.
(2014), but their frameworks suffer from a lack of
modularity or from an unclear separation of fea-
tures and architecture. Wang et al. (2015) devise a
local submodular model for predicting daily sum-
maries in TLS, but they do not model the whole
timeline generation as submodular function opti-
mization under suitable constraints.

Wang et al. (2016) tackle only the task of gener-
ating daily summaries without date selection using
a supervised framework, greedily optimizing per-
day predicted ROUGE scores, using images and
text. In contrast, Kessler et al. (2012) and Tran
et al. (2015b) only tackle date selection but do not
generate any summaries. We consider the full task,
including date selection and summary generation.

TLS is related to standard MDS. We discussed
differences in Section 2. Our framework is in-
spired by Lin and Bilmes (2011) who cast MDS as
optimization of submodular functions under car-
dinality and knapsack constraints. We go beyond
their work by modeling temporally-sensitive ob-
jective functions as well as more complex con-
straints encountered in TLS.

A related task is TREC real-time summarization
(RTS) (Lin et al., 2016).16. In contrast to TLS, this
task requires online summarization by presenting
the input as a stream of documents and emphasizes
novelty detection and lack of latency. In addition,
RTS focuses on social media and has a very fine-
grained temporal granularity. TLS also has an em-
phasis on date selection and dating for algorithms
and evaluation which is not present in RTS as the
social media messages are dated a priori.

8 Conclusions

We show that submodular optimization models
for MDS can yield well-performing models for
TLS, despite the differences between the tasks.
Therefore we can port advantages such as mod-
ularity and separation between features and in-
ference, which current TLS models lack. In ad-
dition, we temporalize these MDS-based mod-
els to take into account TLS-specific properties,
such as timeline uniformity constraints, impor-
tance of date selection and temporally sensitive
objectives. These temporalizations increase per-
formance without losing the mentioned advan-
tages. We prove that the ensuing functions are still
submodular and that the more complex constraints
still retain performance guarantees for a greedy al-
gorithm, ensuring scalability.

Acknowledgments

We thank the anonymous reviewers and our col-
league Josef Ruppenhofer for feedback on earlier
drafts of this paper.

References
James Allan, Rahul Gupta, and Vikas Khandelwal.

2001. Temporal summaries of new topics. In Pro-
ceedings of the 24th Annual International ACM SI-
GIR Conference on Research and Development in

16Predecessors of this task were the update and temporal
summarization tasks (Aslam et al., 2015)

238

Information Retrieval, New Orleans, Louis., 9–12
September 2001, pages 49–56.

Javed A. Aslam, Fernando Diaz, Matthew Ekstrand-
Abueg, Richard McCreadie, Virgil Pavlu, and Tes-
tuya Sakai. 2015. TREC 2015 temporal summa-
rization track overview. In Proceedings of the
Twenty-Fourth Text REtrieval Conference, Gaithers-
burg, Md., 17–20 November 2015.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan
Vondrák. 2011. Maximizing a monotone submodu-
lar function subject to a matroid constraint. SIAM
Journal on Computing, 40(6):1740–1766.

Hai Leong Chieu and Yoong Keok Lee. 2004. Query
based event extraction along a timeline. In Proceed-
ings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, New York, N.Y., 25–29 July 2004,
pages 425–432.

Tsutomu Hirao, Masaaki Nishino, Jun Suzuki, and
Masaaki Nagata. 2017. Enumeration of extractive
oracle summaries. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, volume 1: Long Pa-
pers, Valencia, Spain, 3–7 April 2017, pages 386–
396.

Kai Hong, John M. Conroy, Benoit Favre, Alex
Kulesza, Hui Lin, and Ani Nenkova. 2014. A repos-
itory of state of the art and competitive baseline sum-
maries for generic news summarization. In Proceed-
ings of the 9th International Conference on Lan-
guage Resources and Evaluation, Reykjavik, Ice-
land, 26–31 May 2014, pages 1608–1616.

Remy Kessler, Xavier Tannier, Carloine Hagège,
Véronique Moriceau, and André Bittar. 2012. Find-
ing salient dates for building thematic timelines. In
Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Jeju Island, Korea, 8–14 July 2012,
pages 730–739.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Proceedings of
the Text Summarization Branches Out Workshop at
ACL ’04, Barcelona, Spain, 25–26 July 2004, pages
74–81.

Hui Lin and Jeff Bilmes. 2010. Multi-document sum-
marization via budgeted maximization of submodu-
lar functions. In Proceedings of Human Language
Technologies 2010: The Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, Los Angeles, Cal., 2–4 June
2010, pages 912–920.

Hui Lin and Jeff Bilmes. 2011. A class of submodular
functions for document summarization. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Portland, Oreg., 19–24 June 2011, pages 510–
520.

Hui Lin and Jeff Bilmes. 2012. Learning mixtures
of submodular shells with application to document
summarization. In Proceedings of the 28th Con-
ference on Uncertainty in Artificial Intelligence,
Catalina Island, CA, USA, 14–18 July 2012, pages
479–490.

Jimmy Lin, Adam Roegiest, Luchen Tan, Richard Mc-
Creadie, Ellen Voorhees, and Fernando Diaz. 2016.
Overview of the TREC 2016 real-time summariza-
tion track. In Proceedings of the Twenty-Fifth Text
REtrieval Conference, 2016.

Sebastian Martschat and Katja Markert. 2017. Improv-
ing ROUGE for timeline summarization. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, volume 2: Short Papers, Valencia, Spain,
3–7 April 2017, pages 285–290.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Pro-
ceedings of the European Conference on Informa-
tion Retrieval, Rome, Italy, 2-5 April 2007, pages
557–564.

Kiem-Hieu Nguyen, Xavier Tannier, and Véronique
Moriceau. 2014. Ranking multidocument event de-
scriptions for building thematic timelines. In Pro-
ceedings of the 25th International Conference on
Computational Linguistics, Dublin, Ireland, 23–29
August 2014, pages 1208–1217.

Eric W. Noreen. 1989. Computer-Intensive Methods
for Testing Hypotheses. An Introduction. Wiley,
New York.

Paul Over and James Yen. 2004. An introduction to
DUC 2004: Intrinsic evaluation of generic news
text summarization systems. In Proceedings of
the 2004 Document Understanding Conference held
at the Human Language Technology Conference of
the North American Chapter of the Association for
Computational Linguistics, Boston, Mass., 6–7 May
2004, pages 1–21.

Dragomir R. Radev, Hongyan Jing, Małgorzata Styś,
and Daniel Tam. 2004. Centroid-based summariza-
tion of multiple documents. Information Processing
and Management, 40:919–938.

Jannik Strötgen and Michael Gertz. 2013. Multilingual
and cross-domain temporal tagging. Language Re-
sources and Evaluation, 47(2):269–298.

Giang Tran, Mohammad Alrifai, and Eelco Herder.
2015a. Timeline summarization from relevant head-
lines. In Proceedings of the 37th European Confer-
ence on Information Retrieval, Vienna, Austria, 29
March – 2 April 2015, pages 245–256.

Giang Tran, Mohammad Alrifai, and Dat Quoc
Nguyen. 2013a. Predicting relevant news events for
timeline summaries. In Proceedings of the 22nd
World Wide Web Conference, Rio de Janeiro, Brasil,
13–17 May, 2013, pages 91–92.

239

Giang Tran, Eelco Herder, and Katja Markert. 2015b.
Joint graphical models for date selection in timeline
summarization. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Beijing, China,
26–31 July 2015, pages 1598–1607.

Giang Tran, Tuan Tran, Nam-Khanh Tran, Mohammad
Alrifai, and Nattiya Kanhabua. 2013b. Leveraging
learning to rank in an optimization framework for
timeline summarization. In Proceedings of the SI-
GIR 2013 Workshop on Time-aware Information Ac-
cess (TAIA-13), Dubling, Ireland, 1 August 2013.

Lu Wang, Claire Cardie, and Galen Marchetti. 2015.
Socially-informed timeline generation for complex
events. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Denver, Col., 31 May – 5 June 2015, pages
1055–1065.

William Yang Wang, Yashar Mehdad, Dragomir R.
Radev, and Amanda Stent. 2016. A low-rank ap-
proximation approach to learning joint embeddings
of news stories and images for timeline summariza-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego, Cal., 12 – 17 June 2016, pages
58–68.

Rui Yan, Liang Kong, Congrui Huang, Xiajun Wan,
Xiaoming Li, and Yan Zhang. 2011a. Timeline gen-
eration through evolutionary trans-temporal summa-
rization. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, Edinburgh, Scotland, U.K., 27–29 July 2011,
pages 433–443.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaming Li, and Yan Zhang. 2011b. Evolution-
ary timeline summarization: a balanced optimiza-
tion framework via iterative substitution. In Pro-
ceedings of the 34th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, Beijing, China, 25–29 July
2011, pages 745–754.

240

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 241–250
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Chinese Poetry Generation with a Salient-Clue Mechanism
Xiaoyuan Yi1,2,3, Ruoyu Li5, Maosong Sun1,2,4∗

1Department of Computer Science and Technology, Tsinghua University
2Institute for Artificial Intelligence, Tsinghua University

3State Key Lab on Intelligent Technology and Systems, Tsinghua University
4Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University

56ESTATES PTE LTD, Singapore
yi-xy16@mails.tsinghua.edu.cn, liruoyu@6estates.com,

sms@mail.tsinghua.edu.cn

Abstract

As a precious part of the human cultural her-
itage, Chinese poetry has influenced people for
generations. Automatic poetry composition is
a challenge for AI. In recent years, significant
progress has been made in this area benefit-
ing from the development of neural networks.
However, the coherence in meaning, theme or
even artistic conception for a generated poem
as a whole still remains a big problem. In this
paper, we propose a novel Salient-Clue mech-
anism for Chinese poetry generation. Differ-
ent from previous work which tried to exploit
all the context information, our model selects
the most salient characters automatically from
each so-far generated line to gradually form a
salient clue, which is utilized to guide succes-
sive poem generation process so as to elimi-
nate interruptions and improve coherence. Be-
sides, our model can be flexibly extended to
control the generated poem in different as-
pects, for example, poetry style, which further
enhances the coherence. Experimental results
show that our model is very effective, outper-
forming three strong baselines.

1 Introduction

As a fascinating literary form starting from the
Pre-Qin Period, Chinese poetry has influenced
people for generations and thus influenced Chi-
nese culture and history in thousands of years. Po-
ets often write poems to record interesting events
and express their feelings. In fact, the ability to
create high-quality poetry has become an indicator
of knowledge, wisdom and elegance of a person in
China.

Generally, a Chinese poem should meet two
kinds of requirements. One is from the perspec-
tive of form: it must obey some structural and
phonological rules strictly. For example (as shown
in Figure 1), quatrain (Jueju in Chinese), one of
the most popular types of Chinese poetry, contains

∗ Corresponding author: sms@mail.tsinghua.edu.cn.

Figure 1: A Wujue generated by our model. The tone
of each character is given in parentheses, where P and
Z represent Ping (level tone) and Ze (oblique tone) re-
spectively. Rhyming characters are underlined. The
left part is an artistic illustration of the salient clue.

four lines with each consisting of five or seven
characters (called Wujue and Qijue respectively);
characters with particular tone must be in partic-
ular positions to make the poem cadenced and
full of rhythmic beauty; and, the last character of
the first (optional), second and fourth lines must
rhyme. The other one is from the perspective of
content, concerning: (1) if each line of the poem
is adequate syntactically and semantically; (2) if
the association between two adjacent lines is rea-
sonable; and (3) if the poem as a whole is coherent
in meaning, theme or even in artistic conception.
Obviously, the second requirement is much more
complicated and difficult than the first one.

In this paper, we investigate on automatic Chi-
nese poetry generation, with emphasis on qua-
trains. We believe the form requirement is com-
paratively easy for a computer to deal with by
some constraint checking. For the content re-
quirement, point (1) and (2) can be also handled
well owing to the use of powerful sequence-to-
sequence neural networks (Sutskever et al., 2014),
which are capable of producing well-formed tar-

241

get sentence given a source sentence. A chal-
lenging problem which remains unresolved for re-
searchers is the point (3), where inter-lines associ-
ations are ‘global’ throughout a poem, rather than
‘local’ in point (2). The relevant experience tells
us this is a major reason for the distinct gap be-
tween computer-generated poems and those writ-
ten by poets. In fact, most previous models don’t
tackle this problem well and will produce incoher-
ences and inconsistencies in generated poems.

Inter-lines coherence is the main concern of this
paper. Intuitively, there should be a clear clue to
keep the theme of a poem consistent. However,
setting a fixed pattern of the clue in advance, e.g,
pre-determining keywords for each line, may lose
the flexibility and imagination, which are essen-
tial for poetry. When writing a poem, human po-
ets will focus on some salient parts of the context
to ignore distractions and create relevant content.
During this process, poets gradually build a salient
clue (or framework) of the poem (Zhang, 2015),
allowing not only coherence but also some flexi-
bility.

Inspired by this, we propose a novel Salient-
Clue Mechanism for poetry generation. Different
from previous models which tried to exploit all the
context, our model chooses a few salient charac-
ters out of each previously generated line, form-
ing a vital clue for generating succeeding lines, so
as to maintain the coherence of the whole poem
to the maximum extent. In addition, owing to the
flexible structure of our model, extra useful infor-
mation (e.g., the user intent and poetry style) can
be incorporated with the salient clue to control the
generation process, further enhancing coherence.

Contributions of this work are as follows:

• To the best of our knowledge, we first pro-
pose to utilize the salient partial context to
guide the poetry generation process.

• We extend our model to combine user in-
tent and control the style of generated poems,
which further enhance coherence.

• Experimental results show that our model
outperforms three strong baselines.

2 Related Work

The research on automatic poetry generation has
lasted for decades. The early approaches are based
on rules and templates, such as the ASPERA sys-
tem (Gervás, 2001) and Haiku system (Wu et al.,

2009). Genetic algorithms are exploited to im-
prove the quality of generated poems (Manurung,
2003; Levy, 2001). Other approaches are also
tried, for instance, Yan et al. (2013) adopt the
automatic summarization method. Following the
work that successfully applies the Statistical Ma-
chine Translation approach (SMT) to the task of
Chinese classical couplets generation (Jiang and
Zhou, 2008), He et al. (2012) further extend SMT
to Chinese classical poetry generation.

In recent years, a big change in research
paradigm occurred in this field, that is, the adop-
tion of neural network-based approaches, which
have shown great advantages in both English po-
etry (Hopkins and Kiela, 2017; Ghazvininejad
et al., 2017) and Chinese poetry generation, as
well as other generation tasks. Context coher-
ence is essential for text generation. In some re-
lated tasks, researchers have taken a step towards
this goal, for example, the discourse Neural Ma-
chine Translation (NMT) (Tiedemann and Scher-
rer, 2017; Maruf and Haffari, 2017; Jean et al.,
2017). For poetry generation, some neural mod-
els have also recognized the importance of poem
coherence. The fundamental issue here is how to
define and use the context of a poem properly.

Zhang and Lapata (2014) first propose to gener-
ate Chinese poems incrementally with Recurrent
Neural Network (RNN), which packs the full con-
text into a single vector by a Convolutional Sen-
tence Model. To enhance coherence, their model
needs to be interpolated with two SMT features,
as the authors state. Yan (2016) generates Chi-
nese quatrains using two RNNs with an iterative
polishing schema, which tries to refine the poem
generated in one pass for several times. Yi et al.
(2017) utilize neural Encoder-Decoder with atten-
tion mechanism (Bahdanau et al., 2015) and trains
different models to generate lines in different posi-
tions of a poem. Wang et al. (2016) propose a two-
stage Chinese classical poetry generation method
which at first plans the sub-keywords of the poem,
then generates each line sequentially with the allo-
cated sub-keyword. However, the beforehand ex-
tracted planning patterns bring some explicit con-
straints, which may take a risk of losing some de-
gree of flexibility as discussed in Section 1.

These neural network-based approaches are
very promising, but there is still large room for ex-
ploration. For instance, whether packing the full
context into a single vector really represents the

242

‘full’ context as well as expected? Can we do bet-
ter to represent the inter-lines context more prop-
erly in pursuing better coherence of the entire gen-
erated poem? Our work tries to respond to these
questions.

3 Model Design

We begin by formalizing our problem. Suppose
a poem P consists of n lines, P = L1L2 . . . Ln.
Given previous i-1 lines L1:i−1, we need to gen-
erate the i-th line which is coherent with the con-
text in theme and meaning. Since our model and
most baselines are based on a powerful framework
first proposed in NMT, that is, the Bidirectional
LSTM (Schuster and Paliwal, 1997; Hochreiter
and Schmidhuber, 1997) Encoder-Decoder with
attention mechanism (Bahdanau et al., 2015),
we first denote X a line in Encoder, X =
(x1x2 . . . xT), and Y a generated line in Decoder,
Y = (y1y2 . . . yT). T is the length of a line. ht

and ht
′

represent the Encoder and Decoder hidden
states respectively. emb(yt−1) is the word embed-
ding of yt−1. The probability distribution of each
character to be generated in the i-th line is calcu-
lated by:1

h
′
t = LSTM(h

′
t−1, emb(yt−1), ct), (1)

p(yt|y1:t−1, L1:i−1) = g(h
′
t, emb(yt−1), ct, v),

(2)

where g is a normalization function, softmax
with a maxout layer (Goodfellow et al., 2013) in
this paper. y1:t−1 means y1, . . . , yt−1 (similar to
L1:i−1). ct is the local context vector in atten-
tion mechanism. v is a global context vector. To
avoid confusion, in the remainder of this paper
when it comes to the word ‘context’, we all mean
the global context, that is, so-far generated lines
L1:i−1.

Now the key point lies in how to represent and
utilize the context for the sake of better coherence.
Before presenting the proposed method, we first
introduce two basic formalisms of utilizing full
context.

3.1 Basic Models
nLto1L
We call the first formalism nLto1L, where poetry
generation is regarded as a process similar to ma-
chine translation. The difference is that the pair in

1For brevity, we omit biases and use ht to represent the
combined state of bidirectional LSTM Encoder.

Figure 2: A graphical illustration of the proposed
Salient-Clue mechanism. vi is the salient-clue vector
and e is the extension vector. We design two strate-
gies for updating the salient clue. SDU: vi is kept at
the same size; SSI: the size of vi increases during the
generation process.

the parallel corpus for NMT models, is changed to
the pair of <preceding lines in a poem, a line in a
poem> here, which is semantically related rather
than semantically equivalent.

The ‘n’ in nLto1L means at most n preceding
lines are concatenated as a long sequence and used
simultaneously in Encoder, corresponding to the
preceding-lines-in-poem part in the pair, to gener-
ate a line in Decoder. In this case, the context is
captured by ct without extra v. (Wang et al., 2016)
and (Yi et al., 2017) both belong to this formalism.

The nLto1L formalism is effective, but it has
two drawbacks. For one thing, as ‘n’ increases
in nLto1L, more global context can be exploited
explicitly by attention, but the number of train-
ing pairs decreases, which hurts the generaliza-
tion performance. For instance, from each qua-
train, only one 3Lto1L pair (but two 2Lto1L pairs)
can be extracted. For another, when the input se-
quence is too long, the performance of NMT mod-
els will still degrade, even with an attention mech-
anism (Shen et al., 2016). We find this problem
more prominent in poetry generation, since atten-
tion may fail to capture all important parts of the
context. Our preliminary experiment shows that,
regarding generating the fourth line, both for Yi’s
model and Wang’s model, more than 70% of the
top three attention values fall into just the third line
area and thus neglect other lines, which validates
our assumption.

243

Figure 3: An example of calculating the saliency score
of each character (in the x-axis) from the attention ma-
trix (0:black, 1:white), in the naive Salient-Clue. The
scores are normalized to interval [0,1] here.

Packing Full Context
Another formalism is to pack the full context into a
single vector v, which is used to generate succes-
sive lines (Zhang and Lapata, 2014; Yan, 2016).
Usually, v is updated by the vector of each gener-
ated line in a poem. This formalism is not as pow-
erful as we expected. There is still much room
for improvement. A single vector doesn’t have
enough capacity to store all context. Moreover,
meaningful words and noises (e.g., stop words) are
mixed in one vector, which results in the implicit
and indiscriminate utilization of the context.

3.2 The Proposed Salient-Clue Mechanism

As discussed, using the full context directly can-
not necessarily lead to the best performance. It
becomes clear that we still need to develop a new
mechanism to exploit the context in a proper way.
Our design philosophy is ignoring the uninforma-
tive parts (e.g., stop words) and using some salient
characters in context to represent the full context
and form a salient clue, which is used to guide the
generation process. Following this idea, we pro-
pose our Salient-Clue Model.

Naive Salient-Clue
As illustrated in Figure 2, to generate Li, our
model uses standard attention mechanism to ex-
ploit Li−1 so as to capture short-distance rele-
vance. And it utilizes a salient-clue vector, vi, to
exploit long-distance context. After generating Li,
our model selects up to K (K is 2 for Wujue and

Algorithm 1 Saliency Selection Algorithm
Inputs: The saliency scores of characters in the

preceding line, r1:T ; K;
Outputs: The number of finally selected salient

characters, N ; The indices of selected charac-
ters in the preceding line, m1:N ;

1: Calculate the mean value of r1:T , avg;
2: Calculate the standard deviation of r1:T , std;
3: Get sorted indices i1:T in descending order of

r1:T ;
4: k = 1; val = avg + 0.5 ∗ std;
5: while (rik ≥ val) and (k ≤ K) do
6: mk = ik; val = val ∗ 0.618 (the golden

ratio); k = k + 1;
7: end while
8: N = k − 1;
9: return N , m1:N ;

3 for Qijue in this work) most salient characters
from Li−1 according to the attention values, and
uses their corresponding Encoder hidden states to
update the salient clue vector vi. Thanks to the
bidirectional LSTM, even if we only focus on part
of the context characters, the information of those
unselected won’t be lost completely.

Concretely, let A denote the attention align-
ment matrix in the attention mechanism (Bah-
danau et al., 2015) between the preceding line
Li−1 and the current generated line Li. We cal-
culate the saliency score of j-th character in Li,
rj , by:

rj =

∑T
i=1 Aij∑T

j′=1

∑T
i=1 Aij

′
, (3)

where Aij is the element in i-th row and j-th
column of A. Figure 3 depicts an example. The
most salient character is “ping” (nuphar, a kind of
plant, a symbol of loneliness) and the second one
is “qi” (seven), according to their saliency scores
r(ping) = 0.53 and r(qi) = 0.17.

The character “ping” is very informative for
the generated poem but “qi” isn’t, as signaled by
the sharp distinction between their saliency scores.
So we design the Saliency Selection Algorithm
1 to further filter out characters with quite low
saliency scores, like “qi” here. We define this al-
gorithm as a function SSal(r1:T , K), which takes
the saliency scores and the maximum number of
selected characters as inputs and outputs the num-
ber of finally selected characters and their indices.

244

Figure 4: The comparison of saliency scores obtained
by the naive model and the tf-idf weighting improved
model: an example.

Then we update the salient-clue vector vi as fol-
lows:

N, m1:N = SSal(r1:T ,K), (4)

s =

∑N
k=1 rmk

∗ hmk∑N
k′ rm

k
′

, (5)

vi = σ(vi−1, s), v0 = 0⃗, (6)

where σ is a non-linear layer. vi−1 is used to
predict next character to be generated by formula
(2). Please note that in formula (4), N may be
smaller than K since we want to further ignore rel-
atively less salient characters even though they are
already in the list of the K most salient ones.

By the generation process presented above,
each generated line is guided by the salient clue
and therefore is coherent with it. Meanwhile, in-
formative parts of each generated line are selected
and maintained in the salient clue. As a result, the
salient clue vector always keeps a coherent infor-
mation flow, playing a role of a dynamically and
incrementally built framework (skeleton) for the
generated poem.

TF-IDF Weighted Attention
Observe an example in Figure 4. The scores r1:T

given by the Naive Salient-Clue are very close
to each other, not distinguishable in saliency. To
cope with this, we further take into account the im-
portance of characters both in the preceding line

and the current generated line, by the traditional
tf-idf scheme in Information Retrieval:

rj = [(wout ∗ A) ⊙ win]j , (7)

where ⊙ is element-wise multiplication and [·]j
is the j-th element in a vector. win ∈ R1∗T is the
tf-idf vector of preceding (input) line and the i-th
element of it is the tf-idf value of i-th character.
Similarly, wout is the tf-idf vector of the current
generated (output) line. Elements in win and wout

are normalized to [0,1].
As shown in Figure 4, by tf-idf weighting, two

informative characters “hong yan” (wild goose, a
symbol of autumn) are selected correctly, which
leads to the generation of word “qiu xing” (sad-
ness in autumn) in the fourth line in Figure 1.

Two Strategies for Salient-Clue
As shown in Figure 2, we use two strategies to
form and utilize the salient-clue vector vi. The
first is called Saliency Dynamic Update (SDU)
by formula (5) and (6), which means that hidden
states of selected salient characters are packed into
vi. Thus vi is kept at the same size and is updated
dynamically after each line is generated.

The second one is the concatenation of these
hidden states:

vi = [vi−1; hm1 ; ...; hmN], (8)

where [;] means vector concatenation. The size
of vi will increase in the generation process. We
call this Saliency Sensitive Identity (SSI), be-
cause the identity of each hidden state is kept in-
dependent, without being merged as one.

3.3 Extensions of Salient-Clue
Above we design different methods to select the
salient partial context. Since the proposed model
is quite flexible, aside from the selected characters,
other information can be also utilized to form the
salient clue, so as to further improve coherence. In
this paper, we tried and evaluated two extensions:
user intent and poetry style. This extra informa-
tion is vectorized as an extension vector e and then
concatenated to the salient clue vector:

p(yt|y1:t−1, L1:i−1) =

g(h
′
t, emb(yt−1), ct, [vi−1; e]).

(9)

Intent Salient-Clue. The poem is generated
with a user intent keyword. Taking user intent into

245

Models Wujue Qijue

Different Planning 0.460 0.554
iPoet 0.502 0.591

Models seq2seqPG 0.466 0.620
SC 0.532 0.669

Different naive-TopK-SDU 0.442 0.608
naive-SSal-SDU 0.471 0.610

Strategies tfidf-SSal-SDU 0.533 0.648

of SC tfidf-SSal-SSI 0.530 0.667
tfidf-SSal-SSI-intent 0.532 0.669

Table 1: BLEU evaluation results. The scores are cal-
culated by the multi-bleu.perl script.

account can prevent later generated lines diverging
from earlier generated ones in a poem. In detail,
we feed the keyword into Encoder, then vector e
is calculated by a non-linear transformation of the
average of their hidden states.

Style Salient-Clue. The style of generated po-
ems can also benefit coherence. Here we simply
use a style embedding as the vector e, which pro-
vides a high-level indicator of style and is learned
during the training process. It is noteworthy that
Zhang et al. (2017) achieve style transfer with
the help of an external memory, which stores hun-
dreds of poems (thus thousands of hidden states).
By contrast, our Style extension is simpler but still
achieves comparable performance.

4 Experiments and Evaluations

4.1 Data and Setups

Our corpus contains 165,800 poems (half Wujue
and half Qijue). We use 4,000 of them for valida-
tion, 4,000 for testing and other ones for training.
From each poem, a keyword is extracted by tf-idf.

The sizes of word embedding, hidden state,
saline-clue vector, intent vector and style embed-
ding are set to 256, 512, 512, 128 and 64 respec-
tively. For SSI, to reduce the model size, we map
each hidden state to a 100-d vector by a non-linear
transformation. Encoder and Decoder share the
same word embedding. All different strategies of
Salient-Clue are used both in training and genera-
tion. The optimization objective is standard cross
entropy errors of the predicted character distribu-
tion and the actual one. Adam (Kingma and Ba,
2015) with shuffled mini-batches (batch size 64)
is used. Then we use beam search (beam size 20)
to generate each poem, with a keyword as input.
For fairness, all baselines use the same configura-
tion.

For Style Salient-Clue model, we first use LDA

(Blei et al., 2003) to train the whole corpus (with
15 topics). We select three main styles in Chi-
nese poetry: Pastoral, Battlefield and Romantic
and find the corresponding topics manually. Then
all poems are labeled by LDA inference. We select
5,000 poems for each style, together with other
5,000 non-style poems (20,000 in total), to fine-
tune a pre-trained normal Salient-Clue model.

4.2 Models for Comparisons
We compare: iPoet (Yan, 2016), seq2seqPG (Yi
et al., 2017), Planning (Wang et al., 2016), SC
(our model, tfidf-SSal-SSI-intent, which is the best
configure under BLEU evaluation), Style-SC (the
style extension of our model) and Human (poems
created by human poets). We choose these three
previous models as our baselines, because they all
achieve satisfactory performance and the authors
have done thorough comparisons with other mod-
els, such as RNNPG (Zhang and Lapata, 2014)
and SMT (He et al., 2012), and prove that their
models outperform baselines. Besides, the three
models can be classified into the two formalisms
in Section 3.1.

4.3 Evaluation Design
To demonstrate the effectiveness of our model, we
conduct four evaluations:

BLEU Evaluation. Following (He et al., 2012;
Zhang and Lapata, 2014; Yan, 2016), we use
BLEU (Papineni et al., 2002) to evaluate our
model. BLEU isn’t a perfect metric for generated
poems, but in the scenario of pursuing better co-
herence, it still makes sense to some extent. Be-
cause higher BLEU scores indicate that the model
can generate more n-grams of ground-truth, which
certainly have better coherence.

Human Evaluation. Following (Manurung,
2003; Zhang and Lapata, 2014), we design five
criteria: Fluency (are the lines fluent and well-
formed?), Coherence (is the theme of the whole
quatrain consistent?), Meaningfulness (does the
poem convey some certain messages?), Poetic-
ness (does the poem have some poetic features?),
Entirety (the reader’s general impression on the
poem). Each criterion needs to be scored in a 5-
point scale ranging from 1 to 5.

We select 20 typical keywords and generate two
quatrains (one Wujue and one Qijue) for each key-
word using these models. For Human, we select
quatrains containing the given keywords. There-
fore, we obtain 240 quatrains (20*6*2) in total.

246

Models Fluency Coherence Meaningfulness Poeticness Entirety
Wujue Qijue Wujue Qijue Wujue Qijue Wujue Qijue Wujue Qijue

Planning 2.56 2.84 2.50 2.64 2.49 2.64 2.59 2.88 2.39 2.66
iPoet 3.13 3.45 2.89 2.91 2.60 2.80 2.79 3.05 2.54 2.85
seq2seqPG 3.54 3.65 3.31 3.16 3.15 3.01 3.26 3.29 3.06 3.08
SC 4.01∗∗ 4.04∗∗ 3.85∗∗ 3.86∗∗ 3.55∗∗ 3.63∗∗ 3.74∗∗ 3.69∗ 3.63∗∗ 3.70∗∗

Style-SC 4.03∗∗ 4.16∗∗ 3.90∗∗ 4.01∗∗ 3.68∗∗ 3.75∗∗ 3.61∗ 3.68∗ 3.65∗∗ 3.70∗∗

Human 4.09 4.43 3.90 4.33+ 3.94 4.35++ 3.83 4.24++ 3.81 4.24++

Table 2: Human evaluation results. Diacritics * (p < 0.05) and ** (p < 0.01) indicates SC models significantly
outperform the three baselines; + (p < 0.05) and ++ (p < 0.01) indicates Human is significantly better than all
the five models. The Intraclass Correlation Coefficient of the four groups of scores is 0.596, which indicates an
acceptable inter-annotator agreement.

We invite 12 experts on Chinese poetry to evalu-
ate these quatrains, who are Chinese literature stu-
dents or members of a poetry association. Experts
are divided into four groups and required to fo-
cus on the quality as objectively as possible, even
if they recognize the human-authored ones. Each
group completes the evaluation of all poems and
we use the average scores.

Style-SC is not suitable for BLEU, because we
can’t expect LDA to predict a correct style label
by a short keyword. Thus Style-SC is only tested
under Human Evaluation. We label each keyword
with an appropriate style manually, which is used
to guide the generation.

Style Control Evaluation. Poetry style is usu-
ally coupled with content. Not all keywords are
compatible with every style. Therefore we select
ten normal keywords without obvious style (e.g.,
moon and wind). We use SC to generate one poem
and use Style-SC to generate three poems with the
three specified styles. The experts are asked to
identify the style of each poem from four options
(Unknown, Battlefield, Romantic and Pastoral).

Saliency Selection Evaluation. The main idea
of our method is to select the salient partial con-
text to guide successive generation. To evaluate
the reasonableness of selected characters, we ran-
domly select 20 Wujues and 20 Qijues from the
test set. Then three experts are asked to select up
to K salient characters from each line. When ex-
perts have different opinions, they stop and discuss
until reaching an agreement. Jaccard similarity
is used to measure the overlap of human-selected
characters and the model-selected ones.

4.4 Evaluation Results and Discussion
As shown in Table 1, our SC outperforms other
models under BLEU evaluation. We also compare
different strategies of SC. As we expected, tfidf-
SC models outperform the naive ones, because

tf-idf values lower the weights of uninformative
characters. We also compare our SSal 1 with TopK
(just select top K salient characters) and SSal gets
better results. Please note that, from naive-TopK-
SDU to tfidf-SSal-SDU, BLEU scores are getting
higher without any increase of model size (Table
4). SSI is better on Qijue, but performs slightly
worse than SDU on Wujue. We use SSI for Hu-
man evaluation here, but SDU is more suitable for
longer poetry, e.g., Chinese Song Iambics. Be-
sides, the intent extension makes a little bit of im-
provement, not as prominent as we expected. We
think the reason may lie in that the keyword se-
lected by tf-idf can’t accurately represent the user
intent. Generally, the results show both for pack-
ing and concatenation formalisms, the proper uti-
lization of partial salient context (SDU and SSI)
can be better than the improper utilization of full
context (Packing Full Context and nLto1L).

Table 2 gives human evaluation results. SC and
Style-SC achieve better results than other mod-
els and get close to Human, though there is still
a gap. Especially on Coherence, our Style-SC
gets the same score as Human for Wujue. More-
over, Style-SC makes a considerable improvement
on Coherence compared to SC (+0.05 for Wu-
jue and +0.15 for Qijue), which demonstrates that
consistent style can actually enhance the coher-
ence, though it’s not easy to predict an appropriate
style automatically. Interestingly, Style-SC out-
performs SC on most criteria, except for Poetic-
ness. We believe this is mainly because that style
control forces the model to always generate some
style-related words, which limits the imagination
and thus hurts the Poeticness.

Besides, as we can see, seq2seqPG outper-
forms other two baselines, but at the expense
that it is three times the model size of iPoet (Ta-
ble 4). Surprisingly, Planning gets the worst re-

247

Figure 5: Style control evaluation results. The values
are ratios that generated poems are identified as differ-
ent styles by human experts.

Models Wujue Qijue
Random 0.271 0.247
tf-idf 0.417 0.378
naive-TopK SC 0.347 0.415
naive-SSal SC 0.431 0.441
tfidf-SSal SC 0.525 0.461

Table 3: Saliency selection results. Random: randomly
select K characters for three times and use the average
Jaccard values. tf-idf: directly select K characters in
terms of tf-idf, without SC.

sults. This is because that Planning uses a neu-
ral language model to generate the planned sub-
keywords, which performs poorly on our corpus
and thus hurts fluency and coherence.

Figure 5 gives style control evaluation results.
Incorporating one style vector with the salient-
clue, our Style-SC achieves comparable perfor-
mance with (Zhang et al., 2017). The good results
partially lie in that we only use those non-style
keywords, such as moon, wind, water and so on,
for this experiment. Empirically, transferring from
a keyword with obvious style to arbitrary style is
intractable, e.g., from the word ‘army’ to Pastoral
style, which may need more complicated model
design. Even so, our results still show that rough
style control is not as difficult as we thought.

Table 3 shows the effectiveness of our salient
character selection methods. tfidf-SSal achieves
about 50% overlap of human-selected salient char-
acters, which is notably higher than Random and
tf-idf. With only attention values, naive-TopK per-
forms worse than tf-idf on Wujue. Combining tf-
idf and SSal makes notable improvement.

Models Innovation Param Speed
Planning 0.039 15.1 2.49
iPoet 0.044 11.0 1.76
seq2seqPG 0.047 37.1 1.85
SC Model 0.041 13.6 1.57
naive-TopK-SDU 0.058 13.7 1.49
naive-SSal-SDU 0.056 13.7 1.51
tfidf-SSal-SDU 0.042 13.7 1.52
tfidf-SSal-SSI 0.043 13.1 1.48
tfidf-SSal-SSI-intent 0.041 13.6 1.57

Table 4: Extra comparisons of different models. In-
novation, Param (million parameters) and Speed (sec-
onds per poem) are compared. The generation speed is
tested on an Intel CORE i5 4-core CPU.

4.5 Extra Comparisons and Case Study

Besides the metrics above, we also compare inno-
vation, model size and generation speed of differ-
ent models. The innovation is measured by Jac-
card similarity of generated poems (3,000 for each
model). Intuitively, the basic requirement for in-
novation is that poems generated with different
keywords should be different with each other.

As shown in Table 4, SC makes a good bal-
ance on quality, innovation, generation speed and
model size. The iPoet has the smallest size, but the
generation is slow, since it may polish the poem
for several times, costing more time than other
one-pass-generation models. For SC, the use of
tf-idf significantly improves innovation. Due to
planned sub-keywords, Planning achieves the best
innovation but the worst quality, which shows pur-
suing innovation takes the risk of abruptness and
incoherence.

Figure 6 shows two Wujues generated by
seq2seqPG and SC respectively, with the same in-
put “Yangzhou City”. A word “moon” is gener-
ated by seq2seqPG in the first line, which deter-
mines the time (at night) of the whole poem. How-
ever, in the fourth line, seq2seqPG still generates
an inconsistent word “sunset”. For the poem gen-
erated by SC, the word “autumn” in the second
line is selected for successive generation. As a
result, a word “fallen leaves” is generated in the
fourth line. Furthermore, in the second line, ex-
cept for “autumn”, other four uninformative char-
acters, which have quite low saliency scores, are
filtered out by SSal 1 as shown at the bottom of
Figure 6.

5 Conclusion and Future Work

In this paper, we address the problem of the con-
text coherence in poetry generation. How to prop-

248

Figure 6: Two Wujues generated with the same input.
Green boxes and arrows show consistencies, and the
red ones show inconsistencies. Automatically selected
charcters by SC are underlined.

erly treat the global context is a key factor to con-
sider. We propose a Salient-Clue mechanism2.
Our model selects highly salient characters in pre-
ceding generated lines to form a representation of
the so-far context, which can be considered as a
dynamically and incrementally built framework,
then uses it to guide the successive generation.
Both automatic and human evaluations demon-
strate that our model can effectively improve the
global coherence of meaning, theme and artistic
conception of generated poems. This implies the
proper treatment of a partial context could be bet-
ter than the improper treatment of the full context.

Furthermore, our model can be flexibly com-
bined with different auxiliary information and we
show the utilization of style and user intent can
further enhance coherence.

There still exists a gap between our model and
human poets, which indicates that there are lots
to do in the future. Though we experimented on
Chinese corpus, the proposed model is genre-free.
We also plan to extend our model to generate other
types of poetry, such as Chinese Regulated Verse
and English sonnet. Besides, we also want to de-
sign some explicit supervisory signals or utilize
external knowledge to improve the saliency selec-
tion algorithm.

Acknowledgments

We would like to thank Cheng Yang, Jiannan
Liang, Zhipeng Guo, Huimin Chen, Wenhao Li

2Based on this work, we build an online poetry generation
system, Jiuge: https://jiuge.thunlp.cn.

and anonymous reviewers for their insightful com-
ments. This research is funded by Major Project of
the National Social Science Foundation of China
(No. 13&ZD190). It is also partially supported by
the NExT++ project, the National Research Foun-
dation, Prime Ministers Office, Singapore under
its IRC@Singapore Funding Initiative.

References
Dzmitry Bahdanau, KyungHyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
2015 International Conference on Learning Repre-
sentations, San Diego, CA.

David Blei, Andrew Ng, and Michael Jordan. 2003.
Latent dirichlet allocation. machine Learning re-
search, (3):993–1022.

Pablo Gervás. 2001. An Expert System for the Compo-
sition of Formal Spanish Poetry. Springer London.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48. Association
for Computational Linguistics.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning, pages
1319–1327, Atlanta, USA.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing chinese classical poems with statistical machine
translation models. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, pages 1650–
1656, Toronto, Canada.

Sepp Hochreiter and Juärgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jack Hopkins and Douwe Kiela. 2017. Automatically
generating rhythmic verse with neural networks. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 168–178. Association for Com-
putational Linguistics.

Sebastien Jean, Stanislas Lauly, Orhan Firat, and
Kyunghyun Cho. 2017. Does neural machine trans-
lation benefit from larger context? arXiv preprint
arXiv:1704.05135.

Long Jiang and Ming Zhou. 2008. Generating chinese
couplets using a statistical mt approach. In Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics, pages 377–384, Manchester,
UK.

249

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization.

Robert P. Levy. 2001. A computational model of poetic
creativity with neural network as measure of adap-
tive fitness. In Proceedings of the ICCBR-01 Work-
shop on Creative Systems.

Hisar Maruli Manurung. 2003. An evolutionary algo-
rithm approach to poetry generation. Ph.D. thesis,
University of Edinburgh.

Sameen Maruf and Gholamreza Haffari. 2017. Docu-
ment context neural machine translation with mem-
ory networks. arXiv preprint arXiv:1711.03688.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683–1692. Association for Compu-
tational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In In Advances in Neural Information Pro-
cessing Systems 2014, Montreal, Canada.

Jörg Tiedemann and Yves Scherrer. 2017. Neural ma-
chine translation with extended context. In Proceed-
ings of the Third Workshop on Discourse in Machine
Translation, pages 82–92, Copenhagen, Denmark.

Zhe Wang, Wei He, Hua Wu nad Haiyang Wu, Wei
Li, Haifeng Wang, and Enhong Chen. 2016. Chi-
nese poetry generation with planning based neu-
ral network. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics:Technical Papers, pages 1051–1060, Os-
aka, Japan.

Xiaofeng Wu, Naoko Tosa, and Ryohei Nakatsu. 2009.
New hitch haiku: An interactive renku poem com-
position supporting tool applied for sightseeing nav-
igation system. In Proceedings of the 8th Inter-
national Conference on Entertainment Computing,
pages 191–196, Paris, France.

Rui Yan. 2016. i,poet:automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence, pages 2238–2244, New York, USA.

Rui Yan, Han Jiang, Mirella Lapata, Shou-De
Lin, Xueqiang Lv, and Xiaoming Li. 2013. I,
poet:automatic chinese poetry composition through
a generative summarization framework under con-
strained optimization. In Proceedings of the 23rd
International Joint Conference on Artificial Intelli-
gence, pages 2197–2203, Beijing, China.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2017. Gen-
erating chinese plassical poems with rnn encoder-
decoder. In Proceedings of the Sixteenth Chinese
Computational Linguistics, pages 211–223, Nan-
jing, China.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang.
2017. Flexible and creative chinese poetry gener-
ation using neural memory. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1364–1373. Association for Computational Linguis-
tics.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks.
In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages
670–680, Doha, Qatar.

Yingzhong Zhang. 2015. How to Create Chinese Clas-
sical Poetry. The Commercial Press.

250

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 251–259
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Multi-modal Sequence Fusion via Recursive Attention
for Emotion Recognition

Rory Beard1,∗ Ritwik Das2,∗ Raymond W. M. Ng1,∗ P. G. Keerthana Gopalakrishnan2

Luka Eerens2 Pawel Swietojanski1 Ondrej Miksik1

1Emotech Labs 2Carnegie Mellon University

Abstract

Natural human communication is nuanced and
inherently multi-modal. Humans possess spe-
cialised sensoria for processing vocal, visual,
and linguistic, and para-linguistic information,
but form an intricately fused percept of the
multi-modal data stream to provide a holistic
representation. Analysis of emotional content
in face-to-face communication is a cognitive
task to which humans are particularly attuned,
given its sociological importance, and poses a
difficult challenge for machine emulation due
to the subtlety and expressive variability of
cross-modal cues.

Inspired by the empirical success of re-
cent so-called End-To-End Memory Net-
works (Sukhbaatar et al., 2015), we propose
an approach based on recursive multi-attention
with a shared external memory updated over
multiple gated iterations of analysis. We eval-
uate our model across several large multi-
modal datasets and show that global contextu-
alised memory with gated memory update can
effectively achieve emotion recognition.

1 Introduction

Multi-modal sequential data pose interesting chal-
lenges for learning machines that seek to derive
representations. This constitutes an increasingly
relevant sub-field of multi-view learning (Ngiam
et al., 2011; Baltrusaitis et al., 2017). Exam-
ples of such modalities include visual, audio and
textual data. Uni-modal observations are typi-
cally complementary to each other and hence they
can reveal a fuller and more context-rich pic-
ture with better generalisation ability when used
together. Through its complementary perspec-
tive, each view can unburden sub-modules spe-
cific to another modality of some of its modelling
onus, which might otherwise learn implicit hidden

∗ Equal contribution.

causes that are over-fitted to training data idiosyn-
crasies in order to explain the training labels.

On the other hand, multi-modal data introduces
many difficulties to model designing and train-
ing due to the distinct inherent dynamics of each
modality. For instance, combining modalities with
different temporal resolution is an open problem.
Other challenges include deciding where and how
modalities are combined, leveraging the weak dis-
criminative power of training label and the pres-
ence of variability and noise or dealing with com-
plex situations such as modelling the emotion of
sarcasm, where cues among modalities contradict.

In this paper, we address multi-modal sequence
fusion for automatic emotion recognition. We be-
lieve, that a strong model should enable:
(i) Specialisation of modality-specific sub-
modules exploiting the inherent properties of
its data stream, tapping into the mode-specific
dynamics and characteristic patterns.
(ii) Weak (soft) data alignment dividing heteroge-
neous sequences into segments with co-occuring
events across modalities without alignment to a
common time axis. This overcomes limitations of
hard alignments which often introduce spurious
modelling assumptions and data inefficiencies
(e.g. re-sampling) which must be performed again
from scratch if views are added or removed.
(iii) Information exchange for both view-specific
information and statistical strength for learning
shared representations.
(iv) Scalability of the approach to many modal-
ities using (a) parallelisable computation over
modalities, and (b) a parameter set size growing
(at most) linearly with the number of modalities.

In the present work, we detail a recursively
attentive modelling approach. Our model ful-
fills the desiderata above and performs multiple
sweeps of globally-contextualised analysis so that
one modality-specific representation cues the at-

251

tention of the next and vice-versa. We evalu-
ate our approach on three large-scale multi-modal
datasets to verify its suitability.

2 Related work

2.1 Multi-modal analysis

Most approaches to multi-modal analysis (Ngiam
et al., 2011) focus on designing feature repre-
sentations, co-learning mechanisms to transfer in-
formation between modalities, and fusion tech-
niques to perform a prediction or classification.
These models typically perform either “early” (in-
put data are concatenated and pushed through a
common model) or “late” (outputs of the last layer
are combined together through linear or non-linear
weighting) fusion. In contrast, our model does not
fall into any of these categories directly as it is “it-
erative” in the sense that there are multiple fusions
per decision, with an evolving belief state – the
memory. In addition to that, our model is also “ac-
tive” since feature extraction from one modality
can influence the nature of the feature extraction
from another modality in the next time step via the
shared memory.

For instance, Kim et al. (2013) used low-
level hand crafted features such as pitch, energy
and mel-frequency filter banks (MFBs) capturing
prosodic and spectral acoustic information and Fa-
cial Animation Parameters (FAP) describing the
movement of face using distances between facial
landmarks. In contrast, our model allows for an
end-to-end training of feature representation.

Zhang et al. (2017) learnt motion cues in videos
using 3D-CNNs from both spatial and temporal
dimensions. They performed deep multi-modal
fusion using a deep belief network that learnt
non-linear relations across modalities and then
used a linear SVM to classify emotions. Simi-
larly, Vielzeuf et al. (2017) explored VGG-LSTM
and 3DCNN-LSTM architectures and introduced a
weighted score to prioritise the most relevant win-
dows during learning. In our approach, exchange
of information between different modalities is not
limited to the last layer of the model, but due to
memory component, each modality can influence
every other in the following time steps.

Co-training and co-regularisation approaches of
multi-view learning (Xu et al., 2013; Sindhwani
and Niyogi, 2005) seek to leverage unlabelled data
via a semi-supervised loss that encodes a con-
sensus and complementarity principles. The for-

mer encodes the assertion that predictions made
be each view-specific learner should largely agree,
and the latter encodes the assumption that each
view contains useful information that is hidden
from others, until exchange of information is al-
lowed to occur.

2.2 Memory Networks

End-To-End Memory Networks (Sukhbaatar et al.,
2015) represent a fully differentiable alternative
to the strong supervision-dependent Memory Net-
works (Weston, 2017). To bolster attention-based
recurrent approaches to language modelling and
question answering, they introduced a mechanism
performing multiple hops of updates to a “mem-
ory” representation to provide context for next
sweep of attention computation.

Dynamic Memory Networks (DMN) (Xiong
et al., 2016) integrate an attention mechanism with
a memory module and multi-modal bilinear pool-
ing to combine features across views and predict
attention over images for visual question answer-
ing task. Nam et al. (2017) iterated on this de-
sign to allow the memory update mechanism to
reason over previous dual-attention outputs, in-
stead of forgetting this information, in the subse-
quent sweep. The present work extends the multi-
attention framework to leverage neural-based in-
formation flow control by dynamically routing it
with neural gating mechanisms.

The very recent work (Zadeh et al., 2018a) also
approaches multi-view learning with recourse to a
system of recurrent encoders and attention medi-
ated by global memory fusion. However, fusion
takes place at the encoder cell level, requires hard
alignment, and is performed online in one sweep
so it cannot be informed by upstream context. The
analysis window of the global memory is limited
to the current and previous cell memories of each
LSTM encoder, whereas our approach abstracts
the shared memory update dynamics away from
the ties of the encoding dynamics. Therefore our
approach enables post-fusion and retrospective re-
analysis of the entire cell memory history of all
encoders at each analysis iteration.

3 Recursive Recurrent Neural Networks

Our approach is tailored to videos of single speak-
ers, each divided into segments that roughly span
one uttered sentence. We treat each segment as
an independent datum constituting an individual

252

multi-modal event with its own annotation, such
that there is no temporal dependence across any
two segments. In the following exposition, each
of the various mechanisms we describe (encoding,
attention, fusion, and memory update) act on each
segment in isolation of all others. We will use the
terms “view” and “modality” interchangeably.

We refer to our recursively attentive analysis
model as a Recursive Recurrent Neural Network
(RRNN) since it resembles an RNN, but the hid-
den state and the next cell input are coupled in a
recursion. At each step of the cell update there
is no new incoming information; rather the same
original inputs are re-weighted by a new attention
query to form the new cell inputs (see discussion
in Section 3.5 for more details).

3.1 Independent recurrent encoding
The major modelling assumption herein, is that
a single, independent recurrent encoding of each
segment of each modality is sufficient to cap-
ture a range of semantic representations that can
be tapped by several shared external memory
queries. Each memory query is formed in a sepa-
rate stage of an iterated analysis over the recurrent
codes. Concretely, modality-specific attention-
weighted summaries (a(τ),v(τ), t(τ)) at analysis
iteration τ contribute to the update of a shared
dense memory/context vector m(τ), which in turn
serves as a differentiable attention query at iter-
ation τ + 1 (cf. Fig. 1). This provides a recur-
sive mechanism for sharing information within
and across sequences, so the recurrent represen-
tations of one view can be revisited in light of
cross-modal cues gleaned from previous sweeps of
other views. This is an efficient alternative to re-
encoding each view on every sweep, and is more
modular and generalisable than routing informa-
tion across views at the recurrent cell level.

For each multi-modal sequence segment xn =
{xna ,xnv ,xnt }, a view-specific encoding is realised
via a set of independent bi-directional LSTMs
(Hochreiter and Schmidhuber, 1997), run over
segments n ∈ [1, N]:

hfwds [n, ks] = LSTM(xns [ks],h
fwd
s [n, ks − 1])

(1)

hbwds [n, ks] = LSTM(xns [ks],h
bwd
s [n, ks + 1])

(2)

hs[n, ks] = [hfwds [n, ks];h
bwd
s [n, ks]] (3)

Here, s ∈ {a, v, t} denotes respectively audio, vi-

Visual
Attention

Audio
Attention

Textual
Attention

ha hv ht

m

a v t

W

τ τ τ

mτ + 1

τ

τ

Figure 1: Schematic overview of the proposed neural
architecture. Shared memory mτ is updated with with
the contextualised embeddings from aτ , vτ and tτ .

sual and textual modalities, and ks ∈ {1, ...,Ks}
are view-specific state indices.

The number of recurrent steps is view-specific
(i.e. Ka 6= Kv 6= Kt) and is governed by the
feature representation and sampling rate for the
given view, e.g. number of word (embeddings) in a
the text contained within a time-stamped segment.
This is in contrast to Zadeh et al. (2018a), where
the information in different views was grounded
to a common time axis or the number of steps in
an early stage, either via up-sampling or down-
sampling. Thus the extracted representations in
our approach preserve the inherent time-scales of
each modality and avoid the need for hard align-
ment, satisfying desiderata (i) and (ii) outlined in
Section 1. Note that the input sequences x(n)

s may
refer to either raw or pre-processed data (see Sec-
tion 4 for details). In the remainder, we drop the
segment id n to reduce notational clutter.

3.2 Globally-contextualised attention

We used a view-specific attention-based weighting
mechanism to compute a contextualised embed-
ding cs for a view s. Encoder output hs is stacked
along time to form matrices Hs ∈ R(D×Ks).
A shared dense memory m(τ=0) is initialised by
summing the time-average of the Hs across three
modalities. M(τ) is then constructed by repeating
the shared memory, m(τ) , Ks times such that it
has the same size as the corresponding context Hs,

253

i.e. Hs,M ∈ R(D×Ks). An alignment function
then scores how well Hs and M(τ) are matched

α̃(τ)
s = align(Hs,M

(τ)). (4)

The alignment mechanism entails a feedforward
neural network with Hs and M(τ) as inputs. A
softmax is applied on the network output to derive
the attention strength α. This architecture resem-
bles that in Bahdanau et al. (2014); concretely

R(τ)=tanh
(
W

(τ)
s1 Hs

)
� tanh

(
W

(τ)
s2 M(τ)

)
, (5)

α̃(τ)
s =w

(τ)
s3

TR(τ), (6)

α(τ)
s [ks] =

α̃
(τ)
s [ks]∑
l α̃

(τ)
s [l]

. (7)

In Eq. (5), W(τ)
s (where s∈{s1, s2}) are square or

fat matrices in the first layer of the alignment net-
work, containing parameters governing the self-
influence within view s and influence from the
shared memory M. For the majority of our ex-
periments, we used the multiplicative method of
Nam et al. (2017) to combine the two activa-
tion terms, but similar results were also obtained
with the concatenative approach of Bahdanau et al.
(2014). In eq. (6), w(τ)

s3
T is a vector projecting an

un-normalised attention weight R onto an align-
ment vector α̃, which has the same dimensions as
Ks. Finally, eq. (7) applies the softmax operation
along the time step ks.

Parameters Ws1,Ws2,ws3 for deriving atten-
tion strength αs are in general distinct parameters
for each memory update step, τ . However, they
could also be tied across steps. In the standard
attention schemes, attention weight αs is a vec-
tor spanning across Ks. Note, that w(τ)

s3 in eq. (6)
could be replaced by a matrix-form W

(τ)
s3 to pro-

duce a multi-head attention weight (Vaswani et al.,
2017). Alternatively, the transposition of network
inputs can be performed such that attention scales
each dimension, D, instead of each time step k.
This can be seen as a variant of key-value attention
(Daniluk et al., 2017), where the values differ from
their keys by a linear transformation with weights
governed by the alignment scores.

Each globally-contextualised view representa-
tion cs is defined as the convex combination of the
view-specific encoder outputs weighted by atten-
tion strength

c(τ+1)
s =

∑

k

α(τ)
s [ks]hs[ks]. (8)

3.3 Shared memory update

The previous section described how the current
shared memory state is used to modulate the
attention-based re-analysis of the (encoded) in-
puts. Here we detail how the outcome of the re-
analysis is used to update the shared memory state.

In contrast to the memory update employed in
Nam et al. (2017), our approach includes a set of
coupled gating mechanisms outlined below, and
depicted schematically in Fig. 2:

g(τ)
w = σ

(
Wwmm

(τ−1)+Wwww
(τ) + bw

)
(9)

g(τ)
c = σ

(
Wcmm

(τ−1)+Wcww
(τ) + bc

)
(10)

g(τ)
s = σ

(
Wsmm

(τ−1)+Wssc
(τ)
s + bs

)

∀s ∈ {a, v, t} (11)

u(τ) = tanh
(
Wumm

(τ−1)+

Wuwg
(τ)
w �w(τ) + bu

)
(12)

m(τ) =
(
1− g(τ)

c

)
�m(τ−1) + g(τ)

c � u(τ),
(13)

where w(τ) = [a(τ);v(τ); t(τ)], m(0) = 0 and σ()
denotes an element-wise sigmoid non-linearity.
The function of the view context gate defined in
eq. (9) and invoked in eq. (12), is to block cor-
rupted or uninformative view segments from influ-
encing the proposed shared memory update con-
tent, u(τ). The attention mechanism, outlined in
eq. (5)-(7), cannot fulfill this task alone since the
full attention divided over a view segment must
sum to 1 even if no part of that segment is per-
tinent/salient. The utility of this gating will be
empirically demonstrated in noise-injection exper-
iments in Section 5.
The new memory content u(τ) is written to the
memory state according to eq. (12), subject to the
action of the memory update gate defined in eq.
(10). This update gate determines how much of
the past global information should be passed on
to contextualise subsequent stages of re-analysis.
If parameters Ws1, Ws2, ws3 are untied across
each re-analysis step, this update gate addition-
ally accommodates short-cut or “highway” routing
(Srivastava et al., 2015) of regression error gra-
dients from the end of the multi-hop procedure
back through the parameters of the earlier atten-
tion sweeps.

254

Figure 2: A detailed schematic of the proposed RRNN cell (left) and its legend (right). The routing above the
dashed black line resembles that of a (non-recursive) GRU cell, where the concatenated attention output constitutes
the cell’s input. In this case, the cell’s input at time τ is available only once the cell’s state at time τ − 1 has been
computed. When the static representations {ha,hv,ht} are instead viewed as the cell’s input, then the cell forms
a recursive RNN, which subsumes the attention mechanism as a cell sub-component.

ha hv ht

m —1τ m τ m +1τ

Figure 3: Two consecutive cells of a Recursive Recur-
rent Neural Network. Note that the cells share a com-
mon input, in contrast with a typical RNN which has a
separate input to each cell.

3.4 Final Projection

After τ iterations of fusion and re-analysis, the re-
sulting memory state m(τ) is passed through a fi-
nal fully-connected layer to yield the output cor-
responding to a particular task (regression predic-
tions or logits in case of classification). In our ex-
periments we found that increasing τ yields mean-
ingful performance gains (up to τ = 3).

3.5 Recursive RNN: another perspective

The proposed gated memory update corresponds
to maintaining an external recurrent cell memory
that is recurrent in the consecutive analysis hops,
τ , rather than the actual time-steps of the given
modality, ks. This allows the relevant memories
of older hops to persist for use in the subsequent
analysis hops.

The memory update equations (9)-(13) strongly
resemble the GRU cell update (Cho et al., 2014);
we treat concatenated view context vectors as
the GRUs inputs, one at each analysis hop, τ .
When viewed as a recurrent encoding of inputs
{hs}, we refer to this architecture as a recursive
recurrent neural net (RRNN), due to the recursive
relationship between the cell’s recurrent state and
the attention-based re-weighting of the inputs.
From this perspective, the attention mechanism
forms a sub-component of the RRNN cell.

The key distinction from a typical GRU cell is
that the reset or relevance gate gw in a GRU typ-
ically gates the recurrent state (m(τ) in our case),
whereas we use it to gate the input, allowing for

255

uninformative view contexts to be excluded from
the memory update. Gating the recurrent state
is essential for avoiding vanishing gradients over
long sequences, which is not such a concern for
our recursion lengths of ≈ 3. One could of course
reinstate the gating of the recurrent state, should
recursions grow to more appreciable lengths.
A further distinction is that here the GRU “inputs”
(view contexts {a(τ),v(τ), t(τ)} in our case) are
computed online as the memory state recurs, un-
like the standard case where they are data or pre-
extracted features available before the RNN begins
to operate. Figure 3 depicts 2 consecutive RRNN
cells, illustrating the recycling of the same cell in-
puts. Figure 2 shows the details of a single cell,
which subsumes the globally-contextualised atten-
tion mechanism detailed in Section 3.2.

4 Experimental setup

Datasets. We evaluated our approach on
CREMA-D (Cao et al., 2014), RAVDESS (Living-
stone and Russo, 2012) and CMU-MOSEI (Zadeh
et al., 2018b) datasets for multimodal emotion
analysis. The first two datasets provide audio
and visual modalities while CMU-MOSEI adds
also text transcriptions. The CREMA-D dataset
contains ∼7400 clips of 91 actors covering 6
emotions. The RAVDESS is a speech and song
database comprising of ∼7300 files of 24 actors
covering 8 emotional classes (including two
canonical classes for “neutral” and “calm”). The
CMU-MOSEI dataset consists of ∼3300 long
clips segmented into ∼23000 short clips. In
addition to audio and visual data, it contains
also text transcriptions allowing evaluation of
tri-modal models.

These datasets are annotated by a continuous-
valued vector corresponding to multi-class emo-
tion labels. The ground-truth labels were gen-
erated by multiple human transcribers with score
normalisation and agreement analysis. For further
details, refer to respective references.

Test conditions and baselines. Since each
dataset consists of different emotion classification
schema, we trained and evaluated all models sep-
arately for each of them. The training was per-
formed in an end-to-end manner with L2 loss de-
fined over multi-class emotion labels.

To establish a baseline, we evaluated a naive
classifier predicting the test-set empirical mean in-
tensities (with MSE loss function) for each output

regression dimension. Similar baselines were ob-
tained for other loss functions by training a model
with just one parameter per output dimension on
that loss, where the model has an access to the
training labels but not the training inputs.

Evaluation. For CREMA-D and RAVDESS, we
report the accuracy scores as these datasets contain
labels for multiclass classification task.

For CMU-MOSEI, we report the result of the
6-way emotion recognition. Recursive models as
described in Sec. 3 predicted the 6-dimensional
emotion vectors. Their values represent the emo-
tion intensity of the six emotion classes and
are continuous-valued. Following Zadeh et al.
(2018b), these predictions were evaluated against
the reference emotions using the criteria of mean
square error (MSE) and mean absolute error
(MAE), summing across 6 classes. In addition, an
acceptance threshold 0.1 was set for each dimen-
sion/emotion, and weighted accuracy (Tong et al.,
2017) was computed.

Complementary views across modality. All
experiments in this paper use independent recur-
rent encoding (Sec. 3.1). The encoding scheme
differs for every modality. COVAREP (De-
gottex et al., 2014) was used for the audio
modality. OpenFace (Amos et al., 2016) and
FACET (iMotion, 2017) were used for visual one
and Glove (Pennington et al., 2014) was used for
encoding the text features.

Independent recurrent encoding used bi-
directional view-specific encoders with 2×128 di-
mensional outputs on CREMA-D and RAVDESS
and 2 × 512 on CMU-MOSEI. The comple-
mentary effects of multiple views from different
modalities would be illustrated by controlling the
available input views to different systems.

Attention. Global contextualised attention
(GCA) was implemented for the emotion recogni-
tion systems. Global and view-specific memory
were projected to the alignment space (Eq. (5)).
The attention weights were computed (Eq. (6)-
Eq. (7)) and the contextual view representation
was derived (Eq. (8)). For more details, refer to
Sec. 3.2. The encoder-decoder used a 128 dimen-
sional (or 512 for CMU-MOSEI) fully-connected
layer. A final linear layer mapped the decoder
output to multi-class targets.

GCA was compared to standard “early” and
“late” fusion strategies. In early fusion, encoders

256

Model Modality Accuracy
Human performance Audio 40.9

COVAREP Features + LSTM Decoder Audio 41.5
OpenFace Features + LSTM Decoder Vision 52.5

Human performance Vision 58.2
Human performance Vision+Audio 63.6

(OpenFace features + LSTM) + (COVAREP Features + LSTM) + Dual Attention Vision+Audio 65.0

Table 1: Results on the CREMA-D dataset across 8 emotions

Modality Feature Encoder Attention Accuracy
Audio COVAREP LSTM Nil 41.25
Vision OpenFace LSTM Nil 52.08

Audio + Vision COVAREP, OpenFace LSTM GCA 58.33

Table 2: Results on the RAVDESS dataset across 8 emotions for normal speech mode

1 2 3 4

text
audio
vision

Time (seconds)

I think

finances

for

some
reasons

has

been

a

very delicate

issue

between
couples.

Most

Figure 4: Visualisation of view-specific attention
across time. Attention in the text modality focuses on
the words “very” and “delicate” as cues for emotion
recogntion. Also, the difference in oscillation rates be-
tween the audio and visual modalities is noted.

outputs across all views are resampled to their
highest temporal resolution (i.e. audio, at 100Hz),
and resulting (aligned) outputs are concatenated
across views. We used similar encoder-decoder
structure to one described in Sec 3.2 (Fig. 1), ex-
cept that the three parallel blocks for modalities
were reduced to one. In late fusion, the final-step
encoder outputs from all modalities were inde-
pendently processed by 1-layer feed-forward net-
works (Sec 3.4) and view-specific multi-class tar-
gets were combined using linear weighting.

Memory updates and ablation study. GCA
was enhanced with the extra gating functions
(cf. Eq. (9)-(13), Sec. 3.3) . The extended system
was compared with the GCA system on CMU-
MOSEI data. To this end, we perform an abla-
tion study using the test data corrupted by additive
Gaussian white noise added to the visual modality.

5 Results

Table 1 and 2 show the results of emotion recog-
nition on the CREMA-D and RAVDESS dataset
respectively. Audio, visual and the joint use of
bi-modal information were compared using iden-
tification accuracy. Models trained on the vi-
sual modality consistently outperformed models
that use solely audio data. Highest accuracy
was achieved when the audio and visual modal-
ity were jointly modelled, giving 65% and 58.33%
on the two datasets. Interestingly, the joint bi-
modal system outperformed human performance
on CREMA-D (Cao et al., 2014) by 1.4%.

On CMU-MOSEI, the errors between the refer-
ence and hypothesis six-dimensional emotion vec-
tors were computed and the results were shown in
Table 3.

The use of visual modality resulted in the lowest
mean square error (MSE). Meanwhile, when eval-
uated by mean absolute error (MAE) and weighted
accuracy (WA), text modality gave the best perfor-
mance. Basic techniques in combining informa-
tion among modalities was not very effective, as
indicated by the neglible gain in early and late fu-
sion model.

Globally contextualised attention (GCA) gave
an MSE of 0.4696. Gating on global and view-
specific memory updates led to further improve-
ments to 0.4691. The improvement in terms of
MAE is even more significant (from 0.9412 to
0.8705).

Figure 4 visualises the attention weights in dif-
ferent modalities on a CMU-MOSEI test sentence.
The x-axis denotes time t and y-axis is the mag-
nitude of attention αs(t) in different views s ∈
{a, v, t}. The transcribed text was added along-
side the attention profile of the textual modality
to align the attention weights with the recording.
It can be seen that the GCA emotion recognition

257

Modality Feature Encoder Attention/Fusion Corruption MSE MAE WA
Text (T) Word-vec LSTM Nil Nil 0.6326 0.9830 0.5485

Audio (A) COVAREP LSTM Nil Nil 0.6049 1.0562 0.5249
Vision (V) FACET LSTM Nil Nil 0.5026 0.9909 0.5476

T+A+V COVAREP, FACET, Word-vec LSTM Early fusion Nil 0.5319 0.7694 0.5188
T+A+V COVAREP, FACET, Word-vec LSTM Late fusion Nil 0.5047 0.9825 0.5889
T+A+V COVAREP, FACET, Word-vec LSTM GCA Nil 0.4696 0.9412 0.6163
T+A+V COVAREP, FACET, Word-vec LSTM GCA Vision 0.5034 0.9920 0.6068
T+A+V COVAREP, FACET, Word-vec LSTM GCA + Gating Nil 0.4691 0.8705 0.5765
T+A+V COVAREP, FACET, Wrod-vec LSTM GCA + Gating Vision 0.4742 0.8857 0.5688

Table 3: Results on CMU-MOSEI dataset

system was trained to attend dynamically to fea-
tures of varying importance across the time, unlike
systems performing early or late fusion. Attention
weights of text modality show a clear jump for the
words “very” and “delicate”. The word “very”,
combined with an adjective, is often a strong cue
to sentiment analysis, resulting in a spike in atten-
tion. The subject in this clip was speaking mostly
in a neutral tone, with a nod and slight frowning
towards the beginning of the sentence. This may
correspond to the first peak in the attention trajec-
tory of visual data. The weight of audio modal-
ity exhibited a higher oscillation rate compared to
the counterpart on visual data. COVAREP features
had 4× higher temporal frequency than FACET.

Finally, we verified contribution of the gating
system to the GCA using the corrupted visual data.
When the GCA system is used without the gat-
ing mechanism, corrupted data results in increased
MSE (from 0.4696 to 0.5034) and MAE (from
0.9412 to 0.9920). This is in contrast to the full
system with gating (GCA + Gating in Table 3).
The system cancels the effects of additive visual
noise, which is evidenced by the small gap in MSE
(0.4691 vs 0.4742) and MAE (0.8705 vs 0.8857)
between clean and noisy data.

6 Conclusion

We have presented an approach for combining se-
quential, heterogeneous data. An external mem-
ory state is updated recursively, using globally-
contextualised attention over a set of recurrent
view-specific state histories. Our model was tested
on the challenging tasks of emotion recognition
from audio, visual, and textual data on three large-
scale datasets. The complementary effect of joint
modelling of emotions using multi-modal data
was consistently shown across experiments with
multiple datasets. Importantly this approach es-
chews hard alignment of the data streams, allow-
ing view-specific encoders to respect the inher-

ent dynamics of its input sequence. Encoder state
histories are fused into cross-modal features via
an attention mechanism that is modulated by a
shared, external memory. The control of infor-
mation flow in this fusion is further enhanced by
using a GRU-like gating mechanism, which can
persist shared memory through multiple iterations
while blocking corrupted or uninformative view-
specific features. In future study, it would be inter-
esting to investigate more structured fusion opera-
tions such as sparse tensor multilinear maps (Ben-
younes et al., 2017).

References
Brandon Amos, Bartosz Ludwiczuk, and Mahadev

Satyanarayanan. 2016. Openface: A general-
purpose face recognition library with mobile appli-
cations. Technical report, CMU-CS-16-118, CMU
School of Computer Science.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-
Philippe Morency. 2017. Multimodal machine
learning: A survey and taxonomy. CoRR,
abs/1705.09406.

Hedi Ben-younes, Rémi Cadène, Matthieu Cord, and
Nicolas Thome. 2017. MUTAN: multimodal tucker
fusion for visual question answering. CoRR,
abs/1705.06676.

Houwei Cao, David G. Cooper, and Michael K. Keut-
mann. 2014. CREMA-D: Crowd-sourced emotional
multimodal actors dataset. IEEE Transactions on
Affective Computing.

Kyunghyun Cho, Bart van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP.

Michal Daniluk, Tim Rocktäschel, Johannes Welbl,
and Sebastian Riedel. 2017. Frustratingly short at-

258

tention spans in neural language modeling. CoRR,
abs/1702.04521.

Gilles Degottex, John Kane, Thomas Drugman, Tuomo
Raitio, and Stefan Scherer. 2014. COVAREP – a
collaborative voice analysis repository for speech
technologies. In ICASSP.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. In Neural Computation.

iMotion. 2017. Facial expression analysis.

Yelin Kim, Honglak Lee, and Emily Mower Provost.
2013. Deep learning for robust feature generation in
audiovisual emotion recognition. In ICASSP.

S. R. Livingstone and F. A. Russo. 2012. The ryer-
son audio-visual database of emotional speech and
song (RAVDESS): A dynamic, multimodal set of fa-
cial and vocal expressions in north american english.
PloS one.

Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim.
2017. Dual attention networks for multimodal rea-
soning and matching. CVPR.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan
Nam, Honglak Lee, and Andrew Y. Ng. 2011. Mul-
timodal deep learning. In ICML.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. EMNLP.

Vikas Sindhwani and Partha Niyogi. 2005. A co-
regularized approach to semi-supervised learning
with multiple views. In Proceedings of the ICML
Workshop on Learning with Multiple Views.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Training very deep networks.
In NIPS.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks.
In NIPS.

Edmund Tong, Amir Zadeh, Cara Jones, and Louis-
Philippe Morency. 2017. Combining human traf-
ficking with multimodal deep models. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, and
Lukasz Kaiser. 2017. Attention is all you need.
NIPS.

Valentin Vielzeuf, Stéphane Pateux, and Frédéric
Jurie. 2017. Temporal multimodal fusion for
video emotion classification in the wild. CoRR,
abs/1709.07200.

Jason Weston. 2017. Memory networks for recommen-
dation. In RecSys.

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and
textual question answering. In ICML.

Chang Xu, Dacheng Tao, and Chao Xu. 2013. A sur-
vey on multi-view learning. CoRR, abs/1304.5634.

Amir Zadeh, Paul Pu Liang, Navonil Mazumder,
Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. 2018a. Memory fusion network for multi-
view sequential learning. CoRR, abs/1802.00927.

Amir Zadeh, Paul Pu Liang, Jonathan Vanbriesen, Sou-
janya Poria, Emdund Tong, Erik Cambria, Minghai
Chen, and Louis-Philippe Morency. 2018b. Multi-
modal language analysis in the wild: CMU-MOSEI
dataset and interpretable dynamic fusion graph. In
ACL.

Shiqing Zhang, Shiliang Zhang, Tiejun Huang, Wen
Gao, and Qi Tian. 2017. Learning Affective Fea-
tures with a Hybrid Deep Model for Audio-Visual
Emotion Recognition. IEEE Transactions on Cir-
cuits and Systems for Video Technology.

259

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 260–270
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Using sparse semantic embeddings learned from multimodal text and
image data to model human conceptual knowledge

Steven Derby1 Paul Miller1 Brian Murphy1,2 Barry Devereux1

1 Queen’s University Belfast, Belfast, United Kingdom
2 BrainWaveBank Ltd., Belfast, United Kingdom

{sderby02, p.miller, brian.murphy, b.devereux}@qub.ac.uk

Abstract

Distributional models provide a convenient
way to model semantics using dense embed-
ding spaces derived from unsupervised learn-
ing algorithms. However, the dimensions of
dense embedding spaces are not designed to
resemble human semantic knowledge. More-
over, embeddings are often built from a sin-
gle source of information (typically text data),
even though neurocognitive research suggests
that semantics is deeply linked to both lan-
guage and perception. In this paper, we com-
bine multimodal information from both text
and image-based representations derived from
state-of-the-art distributional models to pro-
duce sparse, interpretable vectors using Joint
Non-Negative Sparse Embedding. Through in-
depth analyses comparing these sparse models
to human-derived behavioural and neuroimag-
ing data, we demonstrate their ability to pre-
dict interpretable linguistic descriptions of hu-
man ground-truth semantic knowledge.

1 Introduction

Distributional Semantic Models (DSMs) are used
to represent semantic information about concepts
in a high-dimensional vector space, where each
concept is represented as a point in the space
such that concepts with more similar meanings are
closer together. Unsupervised learning algorithms
are regularly employed to produce these models,
where learning depends on statistical regularities
in the distribution of words, exploiting a theory
in linguistics called the distributional hypothe-
sis. Recent developments in deep learning have
resulted in weakly-supervised prediction-based
methods, where, for example, a neural network
is trained to predict words from surrounding con-
texts, and the network parameters are interpreted
as vectors of the distributional model (Mikolov
et al., 2013). Like their counterparts in machine
vision, neural network algorithms for DSMs au-
tomate feature extraction from highly complex

data without prior feature selection (Krizhevsky
et al., 2012; Mikolov et al., 2013; Karpathy and
Li, 2015; Antol et al., 2015). Such deep learn-
ing techniques have led to state-of-the-art perfor-
mance in many domains, though this is often at
the expense of the interpretability and cognitive
plausibility of the learned features (Murphy et al.,
2012; Zeiler and Fergus, 2013). Furthermore,
these compact, dense embeddings are structurally
dissimilar to the way in which humans conceptu-
alise the meanings of words (McRae et al., 2005).
One way of drawing interpretability from highly
latent data is by transforming it into a sparse repre-
sentation (Faruqui et al., 2015; Senel et al., 2017).
Moreover, the design of distributional models has
been for the most part unimodal, typically relying
on text corpora, even though studies in psychol-
ogy have shown that human semantic processing
is deeply linked with visual perception.

In cognitive neuroscience, research demon-
strates that representations of high-level concepts
corresponding to the meanings of nouns and vi-
sual objects are widely distributed and overlapping
across the cortex (Haxby et al., 2001; Devereux
et al., 2013), which has opened up research into
exploiting machine learning for neurosemantic
prediction tasks using distributed semantic mod-
els (Mitchell et al., 2008; Huth et al., 2016; Clarke
et al., 2015; Devereux et al., 2018). Such research
has helped with both the construction and eval-
uation of semantic distributional embeddings in
computer science (Devereux et al., 2010; Søgaard,
2016). In this paper, we utilise a matrix factorisa-
tion algorithm known as Non-Negative Sparse Em-
bedding (NNSE) (Murphy et al., 2012), and an ex-
tension known as Joint Non-Negative Sparse Em-
bedding (JNNSE) (Fyshe et al., 2014) to produce
joint sparse multimodal distributions from text and
image data. Furthermore, we show that this joint
multimodal semantic embedding approach offers a
more faithful and parsimonious description of se-

260

mantics as exhibited in human cognitive knowl-
edge and neurocognitive processing, when com-
pared with dense embeddings learned from the
same data.

2 Related Work

Much of the research aimed at the sparse decom-
position of dense vector spaces is closely asso-
ciated with the work of Hoyer (2002), who pro-
posed a Non-Negative Matrix Factorization tech-
nique (NMF) known as Non-Negative Sparse Cod-
ing (NNSC) which produces a sparse represen-
tation of the original compact matrix. With the
use of new optimisation techniques (Mairal et al.,
2010), Murphy et al. (2012) later implemented a
variation of this approach that forces an L1 penalty
on the new sparse matrix, yielding Non-Negative
Sparse Embedding (NNSE). The purpose of the
NNSE algorithm is to generate an embedding that
attains the desirable qualities of effectiveness and
interpretability (Murphy et al. (2012)). Building
upon this approach, Fyshe et al. (2014) extended
NNSE to incorporate other sources of semantic in-
formation using an extension of NNSE known as
Joint Non-Negative Sparse Embedding (JNNSE).
Their experiments made use of neuroimaging data
as an additional source of semantic information,
and recent work has seen a push for the incorpo-
ration of a broader range of semantic knowledge
into DSMs, including semantic knowledge derived
from visual image information.

Bruni et al. (2014) combined embeddings
from text and co-occurrence statistics from data
via mining techniques derived from pictures us-
ing a procedure known as Visual Bag-of-Words
(VBOW). Later this approach was extended by
Kiela and Bottou (2014) who incorporated the
penultimate layer of modified Convolutional Neu-
ral Networks (CNN) to forge a more grounded,
semantically faithful model that improved on the
state-of-the-art. Lazaridou et al. (2015) extend
the architecture of the skip-gram model associated
with Word2Vec (Mikolov et al., 2013) to incorpo-
rate a measure of visual semantic information by
forcing the network to learn linguistic and visual-
based features. Instead of performing a context-
based prediction task, Ngiam et al. (2011) com-
bine multimodal information from both audio and
image-based information using a stacked autoen-
coder to reconstruct both modalities with a shared
representation layer in the middle of the network.

Modality Source Embeddings #D #S
Text GloVe 1000 200
Text Word2Vec 1000 200
Image CNN-Mean 6144 1000
Image CNN-Max 6144 1000
Both CNN-Mean + GloVe 7144 200
Both CNN-Max + GloVe 7144 200
Both CNN-Mean + Word2Vec 7144 200
Both CNN-Max + Word2Vec 7144 200

Table 1: List of all dense (D) and sparse (S) models
used in this paper, and the number of dimensions
(#) in each model.

Silberer et al. (2017) similarly combine informa-
tion from multiple modalities from both visual
and linguistic data sources by using a stacked au-
toencoder to reconstruct both types of informa-
tion separately with a shared representation layer,
and a softmax layer connected to the representa-
tion layer used to predict the concept characterised
by these representations. Rather than trying to
construct each modality separately, Collell et al.
(2017) make use of a simple perceptron and a neu-
ral network to reconstruct the visual modality from
pretrained linguistic representations.

Criticism towards traditional distributional
models and the benchmarks used to evaluate
them (Batchkarov et al., 2016) are now com-
pelling more researchers to consider evaluation
techniques that analyse how well distributional
models encode different aspects of grounded
meaning (Lucy and Gauthier, 2017; Collell and
Moens, 2016; Gladkova and Drozd, 2016). In
particular, one aspect of cognitive plausibility
that is lacking in dense representations is in
their interpretability, something that could be
solved using sparsity (Faruqui et al., 2015; Senel
et al., 2017). In this paper, we combine both
text and image-based data in conjunction with
matrix factorisation strategies to build sparse
and multimodal distributional models, with the
goal of demonstrating that these models are more
interpretable with respect to human semantic
knowledge about concepts. In particular, we show
that these models attain a structural composition
and semantic representation that is closer to the
way humans represent concepts, evaluated using
human similarity judgements, human semantic
feature knowledge, and neuroimaging data.

261

3 Multimodal Representation

In total, we used sixteen distributional seman-
tic models, eight of which are dense and eight
of which are their sparse counterparts. These
models are summarized in Table 1, which de-
scribes the eight sources of semantic information
(two text-based, two image-based, and four mul-
timodal image+text-based) used to construct both
the dense and sparse embedding models. Con-
struction of the eight dense models largely fol-
lowed Kiela and Bottou (2014), with eight cor-
responding sparse models later constructed using
JNNSE.

3.1 Text-based models

We implemented two state-of-the-art text-based
embedding models, Word2Vec and GloVe, to act
as initialisers for our sparse models, following a
similar approach to Faruqui et al. (2015). Both
text-based models were trained on 4.5 gigabytes
of preprocessed Wikipedia data, with fixed context
windows of size 5 and 1000 embedding dimen-
sions. The Wikipedia preprocessing was standard
and included removal of Wikipedia markup, stop
words and non-words, as well as lemmatisation
(implemented using standard NLTK tools). Af-
ter model training, the embeddings for each word
were normalised to mean zero and unit length, us-
ing the L2 norm. Vector normalisation was carried
out to ensure magnitudes of the text-based vectors
were in line with the image-based vectors, which
are normalised by default.

GloVe. Global Vector for Word Representa-
tion (Pennington et al., 2014) is an unsupervised
learning algorithm that captures fine-grained se-
mantic information using co-occurrence statistics.
It achieves this by constructing real vector embed-
dings using bilinear logistic regression with non-
zero word co-occurrences in the training corpus
within a specific context. Our model was trained
using a learning rate of 0.05 over 100 epochs.

Word2Vec. Word2Vec (Mikolov et al., 2013)
uses shallow neural networks with negative sam-
pling techniques, which are trained to predict ei-
ther the word from the context or the context from
the word using a fixed window of words as the
context. In particular, we choose the CBOW ver-
sion (predict the word using the context) of this
model which was trained using the gensim pack-
age with the minimum word count threshold set to
0 (i.e., a vector representation was created for all

words in the corpus).

3.2 Image models

We make use of the image embeddings con-
structed by Kiela and Bottou (2014). In their pa-
per, the AlexNet (Krizhevsky et al., 2012) CNN
was extended from 1000 output units to 1512 out-
puts, using the additional 512 object label cate-
gories chosen by Oquab et al. (2014) and retrained
using transfer learning (Oquab et al., 2014). This
new network was trained using the 2012 version
of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) competition dataset with ex-
tra images from 512 other categories, which was
then later used to gather embeddings for the ESP
game image dataset (Von Ahn and Dabbish, 2004).
After training, the network was sliced to remove
the final fully-connected softmax layer, in order
to retrieve the activation vectors for each image
on the penultimate layer. There are systematic
differences in the kinds of images that appear in
the ImageNet and ESP game training sets. The
ImageNet dataset (Deng et al., 2009) consists of
12.5 million images over 22K different object cat-
egories, with each image typically corresponding
to a single labelled object (i.e. images do not tend
to be cluttered with several objects). In contrast,
the ESP game dataset consists of 100000 images
with many labelled objects present in each image.

To retrieve activation vectors for object cate-
gories from the ESP dataset, Kiela and Bottou
(2014) used a fair proportional sampling tech-
nique: for each object category label, 1000 images
were sampled according to the WordNet (Miller,
1995) subtree for that concept. If sampling up
to 1000 images was not possible, then the subtree
of the concepts hypernym parent node was further
sampled until 1000 images were retrieved. The ac-
tivation vector for each of these images was then
obtained from the truncated CNN. To retrieve the
final embedding vectors for each object label from
the sampled activation vectors, Kiela and Bottou
(2014) combined the 1000 activation vectors for
each label using two techniques, described below.

CNN-Max. Each word embedding was pro-
duced by taking the elementwise maximum value
over all 1000 CNN activation vectors obtained for
the sampled images with the same label word.

CNN-Mean. Each word embedding was pro-
duced by taking the elementwise average of all
1000 activation vectors associated with the same

262

label word.
All image embeddings are of size 6144, corre-

sponding to the size of the penultimate layer of
the CNN. The embeddings used in our paper cor-
respond to the ESP game labels (which uses a
larger number of images, more natural images, and
more labels than ImageNet), and all embeddings
are normalised to mean zero and L2 unit length
before downstream analysis.

3.3 Multimodal models
Again following Kiela and Bottou (2014), we pro-
duce four new dense models from combinations of
text and image embeddings by simply concatenat-
ing the embedding vectors of each model corre-
sponding to each word to create new multimodal
text+image embeddings:

V ecmulti = α× V ectext || (1− α)× V ecimage
(1)

Here, α is a mixing parameter that determines the
relative contribution of each modality to the com-
bined semantic space. We set α = 0.5, so that text
and image sources contribute equally to the com-
bined embeddings.

4 Sparse matrix factorization

Following Faruqui et al. (2015), we use the dense
text and image model embeddings as initialisers
for corresponding sparse embedding spaces. The
embedding vectors are concatenated into an em-
bedding matrix for each model, with the number
of rows corresponding to the number of words
in their respective lexicons, and the number of
columns corresponding to the embedding dimen-
sionality.

To produce the new sparse representations, we
use the NNSE matrix factorisation technique 1

(Murphy et al. (2012)) which maps a dense word-
feature matrix X to a non-negative sparse matrix
A with an identical lexicon. Let X ∈ Rw×k be
an embedding matrix, where w is the number of
words, and k is the embedding dimension size.
NNSE factorisesX into two matrices, a dictionary
transformation matrix D ∈ Rp×k and the sparse
matrix A ∈ Rw×p by minimising the objective
function:

argmin
D,A

w∑

i=1

||Xi,: −Ai,: ×D||2 + λ||Ai,:||1 (2)

1 Non-Negative Sparse Embedding code was kindly pro-
vided by Partha Talukdar.

subject to the constraints

Di,:D
T
i,: ≤ 1, ∀ 1 ≤ i ≤ p

Ai,j ≥ 0, ∀ 1 ≤ i ≤ w, ∀ 1 ≤ j ≤ p

which ensure sparse and non-trivial solutions for
A (Murphy et al. (2012)).

NNSE has been extended as a method to com-
bine multiple dense word-feature matrices X ∈
Rwx×k and Y ∈ Rwy×n into a single non-
negative sparse matix, an extension called Joint
Non-Negative Sparse Embedding (JNNSE; Fyshe
et al. (2014)). Although JNNSE can be used with
feature matrices with different lexicons, in this pa-
per we take only the w rows of the two matrices
that correspond to the intersection of words used
to build the two embedding models and a set of
2234 unique concept words taken from the four
similarity evaluation datasets discussed in the next
section. JNNSE gives a new joint sparse feature
matrix A ∈ Rw×p by minimising the objective
function:

arg min
D(x),D(y),A

w∑

i=1

||Xi,: −Ai,: ×D(x)||2

+

w∑

i=1

||Yi,: −Ai,: ×D(y)||2 + λ||Ai,:||1
(3)

where

D
(x)
i,: D

(x)T

i,: ≤ 1, ∀ 1 ≤ i ≤ p

D
(y)
i,: D

(y)T

i,: ≤ 1, ∀ 1 ≤ i ≤ p
Ai,j ≥ 0, ∀ 1 ≤ i ≤ w, ∀ 1 ≤ j ≤ p

For the NNSE factorization of each of the
four initial dense unimodal text and image mod-
els (GloVe, Word2Vec, CNN-Mean and CNN-
Max), the sparsity parameter λ was set to 0.05
and each model’s dimensionality (p) was reduced
down from its original size by a factor of approxi-
mately 5; the text embedding size was reduced to
200 and both image model embedding sizes were
reduced to 1000 (see Table 1).

To create sparse multimodal models corre-
sponding to the concatenated multimodal dense
models, four new models were produced using
Equation 3. These models were constructed by
combining all combinations of pruned image and
text-based models through JNNSE to produce
sparse embeddings of size 200 from their original
dimensions of 6144 and 1000 respectively. The

263

Figure 1: Results for the dense and sparse embeddings for the three semantic similarity benchmarks, for
the eight unimodal models (left panel) and the eight multimodal image+text models (right panel).

sparsity parameter λ was set to 0.025. Though all
sparse embedding matrices are calculated over a
smaller lexicon and have a much smaller embed-
ding size compared to the original dense embed-
dings, in the next section, we investigate how these
models still produce competitive results on seman-
tic evaluation benchmarks, including neurocogni-
tive data.

5 Experiments
The aim of our experiments is to compare the qual-
ity of the dense and sparse unimodal and multi-
modal embedding models, with a focus on their
ability to explain human-derived semantic data.
We use several qualitatively different analyses of
how well the models explain human-derived mea-
sures of semantic representation and processing.
In the results that follow, we first demonstrate that
sparse multimodal models are competitive with
larger dense embedding models on standard se-
mantic similarity evaluation benchmarks. We then
investigate whether the underlying representations
of the sparse, multimodal models are more easily
interpreted in terms of human semantic property
knowledge about familiar concepts, by evaluating
the models’ ability to predict predicates describ-
ing property knowledge found in human property
norm data. Finally, we evaluate the models’ ability
to predict human brain activation data.

5.1 Semantic similarity benchmarks
A widely used evaluation technique for distribu-
tional models is the comparison with human se-

mantic similarity rating benchmarks. We evaluate
our models on three popular datasets which each
reflect slightly different intuitions about semantic
similarity.

WordSim353 (Finkelstein et al., 2001) consists
of 353 word pairs with human ratings indicating
how related the two concepts in each pair are. The
definition of similarity is left quite ambiguous for
the human annotators, and words which share any
kind of association tend to receive high scores.

MEN (Bruni et al., 2012) consists of 3000 word
pairs with human ratings of how semantically re-
lated each pair of concepts are. Pairs with high
scores tend to be linked more by semantic relat-
edness than by similarity; for example, the words
“coffee” and “cup” are semantically related (even
though a cup is not similar to coffee). Seman-
tic relatedness often corresponds to meronym or
holonym concept pairings (e.g. “finger” - “hand”).

SimLex999. (Hill et al., 2015) is a compre-
hensive and modern benchmark consisting of 999
pairs of words with human ratings of semantic
similarity. Semantic similarity tends to reflect
words with shared hypernym relations between
concept pairs (e.g. “coffee” & “tea” are more sim-
ilar than “coffee” & “cup”).

In evaluating against the benchmarks, we use
the intersection of the words occurring in the
benchmarks and the words used in creating our
embeddings. Not all words used in the similarity
benchmarks appear in our word embedding mod-

264

Model Encyclo-
pedic

Functional Taxonomic Visual Other Perceptual Overall

CNN-Mean 23.479 28.309 45.756 31.256 26.467 29.244
CNN-Max 22.878 28.765 50.140 32.843 27.508 30.202
GloVe 30.870 37.176 61.517 35.909 38.385 36.984
Word2Vec 27.494 30.372 55.455 32.298 32.800 32.363
GloVe NNSE 31.171 34.645 59.497 35.066 36.738 35.880
Word2Vec NNSE 29.662 34.320 55.073 35.302 33.261 34.956
CNN-Max NNSE 15.320 17.138 26.263 19.646 17.453 18.279
CNN-Mean NNSE 15.996 18.297 27.330 20.954 18.376 19.339
CNN-Max + GloVe 30.669 37.404 63.887 35.790 36.077 36.760
CNN-Mean + GloVe 31.560 38.441 64.459 36.675 36.625 37.637
CNN-Max + Word2Vec 22.114 24.653 51.471 27.566 27.332 27.088
CNN-Mean + Word2Vec 22.057 24.780 51.926 27.527 27.407 27.124
CNN-Max + GloVe JNNSE 32.481 38.787 63.669 39.848 36.245 39.080
CNN-Mean + GloVe JNNSE 31.104 38.009 64.866 40.267 35.998 38.784
CNN-Max + Word2Vec JNNSE 32.718 38.601 61.493 39.663 36.496 38.901
CNN-Mean + Word2Vec JNNSE 31.084 36.939 57.659 38.145 33.436 37.057

Table 2: Average cross-validation F1 ×100 scores for each model. The blue highlighting indicates the
model that scores the highest on each property class.

els, although the overlap is quite high2. Evalua-
tions in the next section are based on the subsets
of word-pairs for which we have embedding vec-
tors for each word.

5.2 Semantic Similarity Results
Figure 1 shows the results for all 16 models on
the three evaluation datasets. Even with their sig-
nificant dimensionality reduction and forced spar-
sity regularisation, the sparse (NNSE) unimodal
text and image-based models perform compara-
tively with their original dense counterparts, with
better results for the sparse unimodal models on
several of the benchmarks. The JNNSE mod-
els perform comparably to their dense counter-
parts, with performance on MEN slightly im-
proved, performance on WordSem353 marginally
worse, and performance on SimLex999 approxi-
mately the same (in spite of the JNNSE models
having less than 1/35 times the number dimen-
sions of their sparse counterparts)3. Finally, the
combined text+image multimodal embeddings are
better than unimodal models overall at fitting the
similarity rating data. The results on these con-

2Atleast 83% for SimLex999, 81% WordSim353 and
94% for MEN.

3In order to ensure that the dense models were not disad-
vantaged by having more dimensions, we also trained dense
text models with 200 dimensions and found that these did
not perform better than the 1000-dimensional models. Fur-
thermore, we applied SVD to each of the 1000-dimensional
dense models to reduce the number of dimensions to 200 but
again found the results to be worse than the results for both
the 1000-dimensional dense models and the sparse models.

ventional benchmarks suggest redundancy in the
dense embedding representations, with the sparse
embeddings providing a parsimonious representa-
tion of semantics that retains information about se-
mantic similarity. Moreover, multimodal models
combining both linguistic and perceptual experi-
ence better account for human similarity judge-
ments.

5.3 Property norm prediction
Following Collell and Moens (2016) and Lucy
and Gauthier (2017), we make use of a dataset of
human-derived property norms for a set of con-
cepts and analyse how well our distributional mod-
els can predict human-elicited property knowledge
for words. We use the CSLB property norms (De-
vereux et al. (2014)), a dataset of semantic features
for a set of 541 noun concepts, elicited by partici-
pants in a large-scale property norming study. (For
example, for “apple”, properties include is-a-fruit,
is-red, grows-on-trees, has-seeds, is-round, etc.).
For each embedding model, we train an L2 regu-
larised logistic regression classifier for each prop-
erty that predicts whether the property is true for a
given concept.

The human-elicited property×concept matrix is
sparse; most properties are not true of most con-
cepts. For the logistic regression model trained for
each semantic property, we therefore balance posi-
tive and negative training items by weighting coef-
ficients inversely proportional to the frequency of
the two classes. Properties which are true of less

265

than five concepts (across the set of concepts ap-
pearing in both the CSLB norms and our embed-
ding models) were removed, to ensure sufficient
positive and negative training cases across con-
cepts. To evaluate the logistic regression models’
ability to predict human property knowledge for
held-out concepts, we used 5-fold cross-validation
with stratified sampling to ensure that at least one
positive case occurred in each test set. Using the
embedding dimensions as training data, we train
on the 4 folds and test on the final fold, and eval-
uate the logistic regression classifier by taking the
average F1 score over all the test folds. For subse-
quent analysis of the fitted regression models for
each property, the semantic properties were parti-
tioned into the five general classes given in Dev-
ereux et al. (2014). These property classes were
visual (e.g. is-green; is-round), functional (e.g.
is-eaten; used-for-cutting), taxonomic (e.g. is-a-
fruit; is-a-tool), encyclopedic (has-vitimans; uses-
fuel), and other-perceptual (e.g. is-tasty; is-loud).
We hypothesised that properties of different types
would differ in how accurately they could be pre-
dicted from the different embedding models, given
the different sources of information available in
the models (for example, visual properties may be
more predictable from models trained with image
data; see also Collell and Moens (2016)).

Table 2 shows the average F1 scores over-
all properties and over each of the five property
categories. Since the dense and sparse models
trained on the same source data (text, images,
or text+images) encode similar information, they
perform similarly on the task of predicting human
semantic property knowledge. However, sparse
multimodal models (the last four rows of the ta-
ble) are the top scoring models for four of the five
property categories, and over the full set of proper-
ties (last column of Table 2) the top three models
are all sparse and multimodal. These results in-
dicate that sparse multimodal embeddings are su-
perior to their single modality and dense counter-
parts in their ability to predict interpretable seman-
tic properties corresponding to elements of human
conceptual knowledge.

5.4 Interpretating embedding dimensions in
terms of semantic properties

Information about a specific semantic property can
be stored latently over the dimensions of a seman-
tic embedding model, such that the semantic prop-

erty can be reliably decoded given an embedding
vector, as tested in the previous section. However,
a stronger test of how closely an embedding model
relates to human-elicited conceptual knowledge is
to investigate whether the embedding dimensions
encode interpretable, human-like semantic prop-
erties directly. In other words, does an embedding
model learn a set of basis vectors for the semantic
space that corresponds to verbalisable, human se-
mantic properties like is-round, is-a-fruit, and so
on? To address this question, we evaluated how
the dense and sparse embeddings differ in their
degree of correspondence to the property norms
by analysing the fitted parameters of our property
prediction logistic regression classifiers. For each
embedding model and semantic property, we aver-
age the fitted parameters in the logistic regression
models across cross-validation iterations and ex-
tract the 20 parameters with the highest average
magnitude. For each property, we store these 20
parameters in a vector sorted by decreasing mag-
nitude. If a particular semantic property is decod-
able directly from only one (or very few) embed-
ding dimensions, then the magnitude of the first
element (or few elements) of the sorted parameter
vector will be very high. Over all properties, we
then apply element-wise averaging of the sorted
parameter vectors. Figure 2 shows the magnitudes
of these 20 averaged parameters for the dense
and sparse multimodal GloVe+CNN-Mean mod-
els4. As we can see, the dense model has a more
uniform distribution, indicating that the informa-
tion is highly diffuse over the dimensions of the
dense embedding space. Conversely, the top few
parameters for the sparse model have very high
magnitude, indicating that, on average, informa-
tion about semantic properties tend to be strongly
associated with a small number of dimensions in
the sparse space.

As a further test of how well dimensions of
embedding models correspond to human semantic
knowledge, we calculated pairwise correlations,
across concepts, between embedding dimensions
and properties. For a given semantic property, we
can test which of two embedding models best en-
code that semantic property in a single dimension
– an embedding model that more directly matches
the property norm data will tend to have a di-
mension that correlates more strongly with that

4The results are similar for all other pairs of sparse and
dense models.

266

GloVe Word2Vec CNN-Max CNN-Mean CNN-Max
+ GloVe

CNN-Mean
+ GloVe

CNN-Max
+ Word2Vec

CNN-Mean
+ Word2Vec

fMRI (S) 0.654 0.652 0.641 0.647 0.662 0.686 0.649 0.671
fMRI (D) 0.670 0.676 0.654 0.651 0.673 0.677 0.676 0.676
MEG (S) 0.664 0.669 0.651 0.641 0.671 0.668 0.675 0.665
MEG (D) 0.680 0.664 0.654 0.643 0.684 0.684 0.664 0.664

Table 3: Results of all sparse (S) and dense (D) models on 2 vs. 2 tests against the fMRI and MEG
neuroimaging data, averaged over participants.

Figure 2: The ranking of the top 20 model coeffi-
cients for the logistic regression classifiers trained
on each feature, for the dense GloVe + CNN-Mean
model (blue bars), and the joint sparse GloVe +
CNN-Mean model (red bars).

property than any dimension of a model that en-
codes information about that property more la-
tently. For this analysis, we first filtered the set
of concepts in the dense models to include only
the concepts in the CSLB norms, and recalculated
the (J)NNSE sparse models over these concepts
only. We tuned the sparsity parameter so that the
sparsity of the sparse embedding models closely
matched the sparsity of CSLB concept-property
matrix (97% sparse), and kept the dimensionality
of the sparse embeddings the same as our original
sparse models. Let vP be the values for a property
P for each concept in the CSLB norms, and letMd

and Ms represent the set of embedding columns
for a dense model and its sparse counterpart re-
spectively. Then for each property P , we evaluate
the inequality

maxc∈Md
(ρ(c, vP)) < maxc∈Ms(ρ(c, vP))

where ρ is the Spearman correlation. We count the
proportion of times the inequality is true across all
properties in the norms, repeat this for each of the
eight dense models and their sparse counterparts,

and calculate the average. The results show that
the sparse models have the most correlated dimen-
sion 63.2% of the time. In order to ensure that the
dense models were not disadvantaged by having
more dimensions (and to test that the sparsity con-
straint rather than dimensionality reduction was
the reason for the superior performance of the
sparse models), we used SVD on all dense models
to reduce the dimensions down to the same size as
their sparse counterparts and reran the test. Here
the results show that the sparse models have the
most correlated dimension 81.1% of the time, in-
dicating that the sparse models do learn semantics-
encoding dimensions from the dense models that
more closely correspond to human-derived prop-
erty knowledge.

5.5 Evaluation on brain data

For our final set of analysis, we tested how closely
each of the eight dense and eight sparse models
relate to neurocognitive processing in the human
brain. We used BrainBench (Xu et al., 2016), an
evaluation benchmark for semantic models that al-
lows us to evaluate each model’s ability to predict
patterns of activation in neuroimaging data. The
BrainBench dataset includes brain activation data
recorded using two complementary neuroimaging
modalities: fMRI (which measures cerebral blood
oxygenation and which has relatively good spa-
tial resolution but poor temporal resolution) and
MEG (which measures aggregate magnetic field
changes induced by neural activity and which has
good temporal resolution but poorer spatial reso-
lution). The neuroimaging data in both modalities
are taken from nine participants that viewed pic-
tures of 60 different concepts.

The first step is to transform the embedding ma-
trices and the brain activation data into a format
that more readily facilitates comparison of these
two very different kinds of data. For each distri-
butional model, we calculated the pairwise corre-
lation between concepts to produce the 60 × 60

267

GloVe Word2Vec CNN-Max CNN-Mean CNN-Max
+ GloVe

CNN-Mean
+ GloVe

CNN-Max
+ Word2Vec

CNN-Mean
+ Word2Vec

fMRI (D) 0.162 0.164 0.145 0.151 0.150 0.152 0.152 0.155
fMRI (S) 0.138 0.136 0.140 0.144 0.139 0.140 0.154 0.168
MEG (D) 0.163 0.161 0.163 0.158 0.162 0.158 0.168 0.162
MEG (S) 0.168 0.152 0.149 0.149 0.152 0.157 0.145 0.147

Table 4: Average RSA results (Spearman’s ρ) for all sparse (S) and dense (D) models.

similarity matrix M where each element Mi,j in
the matrix is the correlation between the embed-
ding vectors of the distributional model for the i-
th and j-th concepts. In Brainbench, the brain data
is already preprocessed and transformed into such
a representation for both the fMRI and MEG neu-
roimaging modalities, giving a 60 × 60 similar-
ity matrix for each participant for both modalities.
The next step for BrainBench evaluation is to per-
form a “2 vs. 2” test between each distributional
model and the brain data. Let MD and MB be the
similarity matrices associated with a distributional
semantic model and a participant’s brain data re-
spectively. Let r be the Pearson correlation func-
tion, then a 2 vs. 2 test is a positive case for any
two pairs of concepts w1 and w2 if

r(MD(w1),MB(w1)) + r(MD(w2),MB(w2))

> r(MD(w1),MB(w2)) + r(MD(w2),MB(w1))

where MD(w1) and MD(w2) denote the rows
of values corresponding to the concepts w1 and
w2 respectively, omitting the columns that cor-
respond to the correlation between w1 and w2.
This 2 vs. 2 test is performed on all pairs of
the 60 concepts, to obtain the proportion of pos-
itive cases for the pair MD and MB . The dis-
tributional models are evaluated against all brain-
based representations and averaged by imaging
modality. The results for both sparse and dense
models are displayed in Table 3. For the fMRI
data, the model with the highest average 2 vs. 2
test score is the sparse multimodal GloVe+CNN-
Max embedding, whilst on the MEG data the
highest scoring model is a tie between the dense
multimodal GloVe+CNN-Max embedding and the
dense multimodal GloVe+CNN-Mean embedding.
The results demonstrate that semantic distribu-
tional models that encode a range of different in-
formation are better at making statistically signifi-
cant predictions on brain data. In general, the mul-
timodal models do better than the unimodal text
and image models at fitting the brain data.

Finally, we computed the direct correlation be-

tween the representations MD and MB , using the
technique of Representational Semantic Analsy-
sis (RSA) (Kriegeskorte et al., 2008) commonly
employed in cognitive neuroscience. Given that
MD and MB have the same number of words and
word indexing (words associated with certain rows
and columns are shared across representations),
we take the Spearman’s correlation between the
flattened upper triangular similarity matrices of
these two representations for each pair of DSM
and brain dataset5.

For a given distributional model, we average all
Spearman correlation values across the nine par-
ticipants for each imaging modality; the results
are presented in Table 4. The results show that
sparse models give the closest representation to
both fMRI and MEG data, with the multimodal
sparse word2vec+CNN-Mean model best fitting
the fMRI data, and the sparse GloVe model best
fitting the MEG data. These results indicate that
semantic model sparsity is an important property
reflected in neurocognitive semantic representa-
tions.

6 Conclusion

In this paper, we have demonstrated the repre-
sentational potential of sparse multimodal distri-
butional models using several qualitatively dif-
ferent and complimentary evaluation tasks that
are derived from human data: semantic similar-
ity ratings, conceptual property knowledge, and
neuroimaging data. We show that both sparse
and multimodal embeddings achieve a more faith-
ful representation of human semantics than dense
models constructed from a single information
source.

5Usually RSA is performed on a new matrix produced by
subtracting an N × N matrix of all 1’s from these concept
matrices MD and MB , where N is the number of shared
concepts. Such a representation is known as a Representa-
tional Dissimilarity Matrix (RDM), although here we follow
Xu et al. (2016) and use similarities.

268

7 Acknowledgements

We would like to thank Partha Talukdar for gen-
erously providing us with the code for the Non-
Negative Sparse Embedding algorithm. We would
also like to thank Alona Fyshe for providing the
Joint Non-Negative Sparse Embedding code.

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433.

Miroslav Batchkarov, Thomas Kober, Jeremy Reffin,
Julie Weeds, and David Weir. 2016. A critique of
word similarity as a method for evaluating distribu-
tional semantic models.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 136–145. Asso-
ciation for Computational Linguistics.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Alex Clarke, Barry J. Devereux, Billi Randall, and Lor-
raine K. Tyler. 2015. Predicting the time course
of individual objects with meg. Cerebral Cortex,
25(10):3602–3612.

Guillem Collell and Marie-Francine Moens. 2016. Is
an image worth more than a thousand words? on the
fine-grain semantic differences between visual and
linguistic representations. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2807–2817. The COLING 2016 Organizing Com-
mittee.

Guillem Collell, Ted Zhang, and Marie-Francine
Moens. 2017. Imagined visual representations as
multimodal embeddings. In AAAI, pages 4378–
4384.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hi-
erarchical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 248–255. IEEE.

Barry Devereux, Colin Kelly, and Anna Korhonen.
2010. Using fmri activation to conceptual stim-
uli to evaluate methods for extracting conceptual
representations from corpora. In Proceedings of
the NAACL HLT 2010 First Workshop on Compu-
tational Neurolinguistics, pages 70–78. Association
for Computational Linguistics.

Barry J Devereux, Alex Clarke, Andreas Marouchos,
and Lorraine K Tyler. 2013. Representational sim-
ilarity analysis reveals commonalities and differ-
ences in the semantic processing of words and
objects. Journal of Neuroscience, 33(48):18906–
18916.

Barry J Devereux, Alex Clarke, and Lorraine K Tyler.
2018. Integrated deep visual and semantic attrac-
tor neural networks predict fmri pattern-information
along the ventral object processing pathway. Scien-
tific Reports, 8:10636.

Barry J Devereux, Lorraine K Tyler, Jeroen Geertzen,
and Billi Randall. 2014. The centre for speech, lan-
guage and the brain (cslb) concept property norms.
Behavior research methods, 46(4):1119–1127.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414. ACM.

Alona Fyshe, Partha P Talukdar, Brian Murphy, and
Tom M Mitchell. 2014. Interpretable semantic vec-
tors from a joint model of brain-and text-based
meaning. In Proceedings of the conference. Asso-
ciation for Computational Linguistics. Meeting, vol-
ume 2014, page 489. NIH Public Access.

Anna Gladkova and Aleksandr Drozd. 2016. Intrinsic
evaluations of word embeddings: What can we do
better? In RepEval@ACL.

James V Haxby, M Ida Gobbini, Maura L Furey, Alu-
mit Ishai, Jennifer L Schouten, and Pietro Pietrini.
2001. Distributed and overlapping representations
of faces and objects in ventral temporal cortex. Sci-
ence, 293(5539):2425–2430.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Patrik O Hoyer. 2002. Non-negative sparse coding. In
Neural Networks for Signal Processing, 2002. Pro-
ceedings of the 2002 12th IEEE Workshop on, pages
557–565. IEEE.

Alexander G Huth, Wendy A de Heer, Thomas L Grif-
fiths, Frédéric E Theunissen, and Jack L Gallant.
2016. Natural speech reveals the semantic maps that
tile human cerebral cortex. Nature, 532(7600):453–
458.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference

269

on computer vision and pattern recognition, pages
3128–3137.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 36–45.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Ban-
dettini. 2008. Representational similarity analysis-
connecting the branches of systems neuroscience.
Frontiers in systems neuroscience, 2:4.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015. Combining language and vision with
a multimodal skip-gram model. arXiv preprint
arXiv:1501.02598.

Li Lucy and Jon Gauthier. 2017. Are distributional
representations ready for the real world? evaluat-
ing word vectors for grounded perceptual meaning.
arXiv preprint arXiv:1705.11168.

Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro. 2010. Online learning for matrix
factorization and sparse coding. Journal of Machine
Learning Research, 11(Jan):19–60.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carl-
son, Kai-Min Chang, Vicente L Malave, Robert A
Mason, and Marcel Adam Just. 2008. Predicting
human brain activity associated with the meanings
of nouns. science, 320(5880):1191–1195.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable semantic
models using non-negative sparse embedding. Pro-
ceedings of COLING 2012, pages 1933–1950.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan
Nam, Honglak Lee, and Andrew Y Ng. 2011. Multi-
modal deep learning. In Proceedings of the 28th in-
ternational conference on machine learning (ICML-
11), pages 689–696.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef
Sivic. 2014. Learning and transferring mid-level im-
age representations using convolutional neural net-
works. In Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pages 1717–
1724. IEEE.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yucesoy, Aykut
Koc, and Tolga Cukur. 2017. Semantic structure and
interpretability of word embeddings. arXiv preprint
arXiv:1711.00331.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2017. Visually grounded meaning representations.
IEEE transactions on pattern analysis and machine
intelligence, 39(11):2284–2297.

Anders Søgaard. 2016. Evaluating word embeddings
with fmri and eye-tracking. In Proceedings of the
1st Workshop on Evaluating Vector-Space Represen-
tations for NLP, pages 116–121.

Luis Von Ahn and Laura Dabbish. 2004. Labeling im-
ages with a computer game. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 319–326. ACM.

Haoyan Xu, Brian Murphy, and Alona Fyshe. 2016.
Brainbench: A brain-image test suite for distribu-
tional semantic models. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2017–2021.

Matthew D. Zeiler and Rob Fergus. 2013. Visualizing
and understanding convolutional networks. CoRR,
abs/1311.2901.

270

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 271–281
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Similarity dependent Chinese Restaurant Process for Cognate
Identification in Multilingual Wordlists

Taraka Rama
Department of Informatics
University of Oslo, Norway
tarakark@ifi.uio.no

Abstract

We present and evaluate two similarity depen-
dent Chinese Restaurant Process (sd-CRP) al-
gorithms at the task of automated cognate de-
tection. The sd-CRP clustering algorithms do
not require any predefined threshold for de-
tecting cognate sets in a multilingual word list.
We evaluate the performance of the algorithms
on six language families (more than 750 lan-
guages) and find that both the sd-CRP variants
performs as well as InfoMap and better than
UPGMA at the task of inferring cognate clus-
ters. The algorithms presented in this paper
are family agnostic and can be applied to any
linguistically under-studied language family.

1 Introduction

Cognates are related words across languages that
have descended from a common ancestral lan-
guage. Identification of cognates is an important
step in historical linguistics while establishing ge-
netic relations between languages that are hypoth-
esized to have descended from a single language
that existed in the past. For instance, English
hound and German Hund “dog” are cognates that
go back to the Proto-Germanic stage. Cognate
identification requires great amount of scholarly
effort and is available for some language families
such as Indo-European, Dravidian, Austronesian,
and Uralic which have a long tradition of compara-
tive linguistic research that involves decades (Dra-
vidian family) to centuries (Indo-European fam-
ily) of scholarly effort. Automatic detection of
cognates with high accuracy is very much desired
for reducing the effort required in analyzing under-
studied language families of the world.

Typically, expert annotated cognate sets are em-
ployed to infer phylogenetic trees showing lan-
guage relationships that can be used to test hy-
potheses about temporal and spatial evolution of
language families (Bouckaert et al., 2012; Chang

et al., 2015), linguistic reconstruction of ancestral
states on a tree (Jäger and List, 2017), or lexical re-
construction (Bouchard-Côté et al., 2013). Rama
et al. (2018) showed that cognates inferred from
automated methods of cognate detection can be
used to infer high quality phylogenetic trees. The
authors noted that there is a need for more research
towards developing highly accurate cognate iden-
tification methods that can be applied to the data of
not so well-studied language families which will
be of assistance to historical linguists to automate
parts if not the whole of the comparative method.

The last decades have seen a large amount
of computational effort towards automatizing the
process of cognate identification since the work
of Covington (1996) and Kondrak (2002). The
computational effort involved devising new se-
quence alignment algorithms (Kondrak, 2005,
2009), novel sound transition matrices which
are linguistically guided (Kondrak, 2001; List,
2012b) or data-driven (Jäger, 2013; Rama et al.,
2013, 2017; List, 2012a), and machine learning
approaches (Hauer and Kondrak, 2011; Rama,
2015, 2016; Jäger et al., 2017) to identify cog-
nates within multilingual word lists (see table 1;
Swadesh, 1952) belonging to different language
families and dictionaries (St Arnaud et al., 2017).

Most of the above cognate identification meth-
ods involve a workflow consisting of computation
of distances between all the word pairs that have
the same meaning using a machine learning al-
gorithm or a sequence alignment algorithm; and,
then clustering the pairwise distance matrix using
a clustering algorithm such as InfoMap (Rosvall
and Bergstrom, 2008) or UPGMA (Unweighted
Pair Group Method with Arithmetic Mean; Sokal
and Michener, 1958).

Both InfoMap and UPGMA require a pre-
defined threshold that is either set heuristically or
through tuned to obtain to obtain optimal perfor-

271

Language ALL AND . . .

English ol1 End1 . . .
German al31 unt1 . . .
French tu2 e2 . . .
Spanish to8o2 i2 . . .
Swedish ala1 ok3 . . .

Table 1: Excerpt of the Indo-European word list
(from our dataset) in ASJP code for five languages
belonging to Germanic (English, German, and
Swedish) and Romance (Spanish and French) sub-
families. Cognates are indicated with the same su-
perscript.

mance at identifying cognate clusters on a held-
out expert annotated cognate dataset(s). The clus-
tering threshold is a single number that is tuned
for all the meanings and not separately for each of
the meanings. A single global threshold can lead
to poor performance since the number of cognate
sets vary a lot across meanings for different lan-
guage families. For instance, the Indo-European
dataset has cognate cluster sizes ranging from 37
for meaning because to 1 for meaning name.

On the other hand, a non-parametric clustering
method such as Chinese Restaurant Process (CRP;
Gershman and Blei 2012) can form clusters di-
rectly from the data without the need for tuning
the threshold. CRP has found application in dif-
ferent NLP tasks such as morphological segmen-
tation (Goldwater et al., 2006), language model-
ing (Goldwater et al., 2011), machine translation
(Ravi and Knight, 2011), part-of-speech induction
(Blunsom and Cohn, 2011; Sirts et al., 2014), and
language decipherment (Snyder et al., 2010).

In this paper, we present two clustering algo-
rithms inspired from similarity dependent Chinese
Restaurant Process for the purpose of inferring
cognate clusters. Our CRP based clustering algo-
rithms take a word pair similarity matrix as input
and infer cognate clusters automatically without
needing any threshold. The sd-CRP algorithms
have a hyperparameter α that allows us to form
new clusters. We compare the performance of the
CRP algorithms on six different language families
and find that the CRP algorithms better than UP-
GMA and yields better or competing performance
against InfoMap. We sample α so that the algo-
rithms are robust to the initial value of α.

The paper is organized as follows. We describe

related work in section 2. In section 3, we de-
scribe the word similarity features used to train the
SVM model. We describe sd-CRP, UPGMA, and
InfoMap algorithms in section 4. We describe the
evaluation metrics and datasets in section 5. We
present the results of our experiments in section
6. We discuss the results by analyzing the effect
of features on SVM model, initial α values, and
missing data on the performance of clustering in
section 7. Finally, we conclude and present direc-
tions for future work in section 8.

2 Related work

Most of the automated cognate identification work
mentioned in the previous section employed ei-
ther UPGMA or InfoMap algorithms. Hauer and
Kondrak (2011) were the first to apply UPGMA
clustering algorithm to infer cognate sets from
Swadesh lists. The authors trained a SVM classi-
fier based on string similarity features to calculate
word distances between all word pairs for a mean-
ing. The pair-wise distance matrix is supplied to
UPGMA with a predefined threshold for inferring
word clusters. The UPGMA algorithm is simple
and yields reasonable results across various lan-
guage families (List, 2012a). However, UPGMA
clustering algorithm is dependent on the threshold
that needs to be tuned to obtain optimal perfor-
mance (List et al., 2017b).

The cognate identification work of Hall and
Klein (2011) and Bouchard-Côté et al. (2013) re-
quires the phylogenetic tree of the language fam-
ily to be known beforehand which is an unrealistic
assumption for large number of world’s language
families. In another work, List et al. (2016) em-
ploy a weighted variant of Levenshtein distance
known as SCA (see section 3) for calculating simi-
larity between two words. Then, they apply a com-
munity detection algorithm known as InfoMap for
the purpose of discovering partial cognate sets in
multiple groups of Sino-Tibetan language family.
The authors find that the InfoMap algorithm works
better than UPGMA when tuned for threshold. In
this paper, we compare the CRP clustering algo-
rithms against InfoMap and the similarity variant
of UPGMA algorithm described in section 4.3.

3 Word similarity model

In this section, we present the word similarity fea-
tures used to train our SVM model at the binary

272

task of classifying if a word pair is cognate or non-
cognate.

String similarity features We use length nor-
malized edit distance, number of common bi-
grams, common prefix length, individual word
lengths, and absolute difference between the word
lengths as features for training a SVM classifier
(Hauer and Kondrak, 2011). We refer to this fea-
ture set as HK.

Point-wise Mutual Information (PMI) We in-
clude PMI weighted Needleman-Wunsch (Needle-
man and Wunsch, 1970) word similarity score
(Jäger, 2013) as an additional feature for train-
ing the SVM classifier. The (unweighted or
vanilla) Needleman-Wunsch algorithm is the sim-
ilarity counterpart of the Levenshtein distance.
The vanilla Needleman-Wunsch algorithm assigns
equal negative weight to a common sound corre-
spondence such as /s/ ∼ /h/ and a highly improb-
able sound correspondence such as /p/ ∼ /r/. The
PMI weighted sound pair matrix inferred in Jäger
(2013) assigns a positive weight to common sound
correspondences and a negative weight to the lat-
ter ones. The PMI weight for two sounds i and j is
defined as log p(i,j)

q(i)·q(j) where, p(i, j) is the relative
frequency of i, j occurring at the same position in
the aligned word pairs and q(.) is the relative fre-
quency of a sound in the whole word list. The
similarity score for a word pair is computed using
PMI-weighted Needleman-Wunsch algorithm. We
transform the word similarity score using sigmoid
function to yield a score between 0 and 1.0.

SCA We experimented with SCA (Sound Class
Based Phonetic Alignment) word distance score
(List et al., 2016) as an additional feature in our
SVM model and found that inclusion of this fea-
ture improves the performance of cognate cluster-
ing systems. The SCA distance score is computed
using the LingPy library (List et al., 2017a).

All the above features are widely used in cog-
nate identification papers cited in sections 1 and
2. All the string similarity features are computed
on words represented in ASJP code consisting of
symbols on standard QWERTY keyboard. The
ASJP code consists of 41 symbols that is used
to represent common sounds of the world’s lan-
guages. As such it collapses some distinctions be-
tween similar sounds such as using a single ‘r’
symbol for all the rhotic sounds. In this paper,
we used LingPy library to convert IPA symbols

to ASJP symbols. Our SVM model is imple-
mented using scikit-learn (Buitinck et al., 2013).
The trained SVM model is then used to predict the
confidence scores for all the word pairs having the
same meaning.

4 Clustering algorithms

In this section, we motivate and describe the two
sd-CRP algorithms followed by InfoMap and UP-
GMA clustering algorithms.

4.1 Motivation for CRP
In the traditional CRP, the probability that a new
customer i sits at a table already filled with cus-
tomers is proportional to the number of customers
sitting at the table. The probability that the new
customer sits at a new table is proportional to
α. Blei and Frazier (2011) extended the tradi-
tional CRP model to a distance-dependent CRP
model (dd-CRP) where customer i sits with a dif-
ferent customer j with a probability proportional
to f(dij) where f is a decay function and dij is the
distance between customers i and j. The new cus-
tomer can sit by itself with a probability propor-
tional to α. The dd-CRP formulation forms clus-
ters through connections between the customers.
This property to form clusters depending on the
data is directly relevant for inferring cognate clus-
ters from a word pair distance matrix.

In a later paper, Socher et al. (2011) introduced
a similarity dependent CRP (sd-CRP) algorithm
that can handle arbitrary similarities between two
customers. Socher et al. (2011) showed that their
sd-CRP variant performs better than dd-CRP when
clustering MNIST digits dataset and Newsgroup
articles. A customer is a word in the context of
cognate identification. We describe the two vari-
ants of sd-CRP – ns-CRP and sb-CRP – that work
directly with a similarity matrix S in the next sec-
tion.

4.2 sd-CRP algorithms
Given a word similarity matrix S ∈ RN×N and
α, the CRP algorithm clusters N elements into K
clusters where 1 <= K <= N .

4.2.1 ns-CRP
The algorithm starts by placing each word into
its own cluster. At each step, the algorithm as-
sign a word wi to the cluster C that has the high-
est net similarity with wi which gives the name
to the algorithm. We define net similarity as

273

Algorithm 1 ns-CRP

Input: S, α
Ouput: Cluster assignments

1. Initialize each word into its own cluster and set α to
0.1.

2. Repeat until convergence:
• For each word wi

– Remove wi from its cluster.
– Compute the net similarity sik between
wi to all words in a cluster k.

– If argmax
k

sik < αS(wi, wi) assign wi

to a new cluster.
– Else, assignwi to the cluster k where k =

argmax
k

sik.

• Sample α using a Metropolis-Hastings step

∑|C|
j=1 S(wi, wj). We call the algorithm ns-CRP

after the net similarity criterion used to perform
cluster assignments. wi is assigned to a new clus-
ter if αS(wi, wi) is greater than any of the similar-
ities with the existing clusters. Any empty clusters
remaining at the end of an iteration are removed.
The cluster inference procedure is summarized in
Algorithm 1.

Algorithm 2 sb-CRP

Input: S, α
Ouput: Cluster assignments

1. Initialize each word to its own cluster and set α to
0.1.

2. Repeat until convergence:
• For each word wi

– Remove the outgoing link from wi.
– Compute the net similarity sik between
wi and the words in the set returned by
SitBehind(wk).

– If argmax
k

sik < αS(wi, wi) assign wi

to a new cluster.
– Else, link wi to a word wk where k =

argmax
k

sik.

• Sample α using a Metropolis-Hastings step

4.2.2 sb-CRP
The sd-CRP variant of Socher et al. (2011) forms
a directed link from word wi to a different word
w−i based on the SITBEHIND function. We call
this variant of sd-CRP algorithm as sb-CRP after
SitBehind function. The function SitBehind(wi)
is recursive in nature and returns the set of words
from which there is a path to wi including itself.
A directed link between wi to itself indicates that
there is no path from wi to any other word and

fiS

kaSag

piskis

paiS3
fiskur

pwaso

kasalga

riba

pe8

fiskir

fEsg

peska8o

masa

riba

fiskr
fisk

fisk

fisk

ikhthis

r3ba

ruba

fesgh

fisker

m3Chli

r3ba

r3ba

peS

riba

maTh

riba

rib3

riba

fisk

r3ba

i3sk

fiS

fisk

riba

vis

maTho

r3ba

psari

peSSe

Figure 1: sb-CRP clustering for meaning fish. Ver-
tices (words) with the same color are cognates.

that wi is in its own cluster. The probability of
forming a directed link from wi and wj is propor-
tional to the sum of the similarity between wi and
all the words in the set returned by SitBehind(wj).
The weight for linking wi to itself is computed as
αS(wi, wi). The sb-CRP is summarized in Algo-
rithm 2.

We present the result of application of sb-CRP
algorithm to meaning fish in figure 1. The algo-
rithm places the words correctly in their own clus-
ters. The algorithm forms singleton clusters by
forming self-loops. For instance, the algorithm
links Ancient Greek ikhthis to itself thus, plac-
ing the word in its own cluster. When two words
belonging to Bihari and Oriya are highly similar
maTh∼ maTho then, the algorithm links both the
words to each other forming a cycle.

4.2.3 Underlying objective
Given K clusters out of which n are non-
singleton, algorithm 1 maximizes the following
objective where k is the cluster index.

n∑

k=1

∑

(i,j)∈k
S(wi, wj)−

K∑

k=n+1,i∈k
αS(wi, wi) (1)

In the initial step, the objective in equation 1 is
−α∑i S(wi, wi) which increases until there is no
change in the cluster reassignments. The objec-
tive for algorithm 2 is similar to equation 1 and
only differs in the positive part due to SitBehind
function. We use the above objective to sample
α which is explained below. We observe that the
objective function given in equation 1 is similar to
the CRP extension to K-Means (DP-Means) pro-
posed by Kulis and Jordan (2011) who show that

274

the DP-means algorithm converges to a local opti-
mum.

4.2.4 Sampling α

We sample α using a Metropolis-Hastings step.
We will assume an exponential prior for α with
rate parameter 10. We assume an exponential prior
since α should be greater than zero and the sup-
port for the exponential distribution is R+. α is
sampled through a Metropolis-Hastings step at the
end of each iteration. We use an asymmetric mul-
tiplier proposal q(α∗|α) = α · eε(u−0.5) where
u(∈ [0, 1]) is a uniform random number to pro-
pose a new α∗. The Hastings ratio for a multiplier
proposal is ε(u− 0.5) where ε (= 1) is the tuning
parameter that controls the range of proposed α∗

(Lakner et al., 2008). Since we sample α on fixed
cluster assignments, the likelihood ratio is equal to
α∗
α . The prior ratio is equal to exp(α∗)

exp(α) .
In this paper, we run both the sd-CRP algo-

rithms by setting the initial value of α to 0.1 and
running the algorithms for 100 iterations. We
found that the algorithm converges within the first
ten iterations (see section 7.4). The algorithms
take less than three hours to run for the Austrone-
sian language family. We report the final itera-
tion’s B-cubed F-scores and ARI scores (see sec-
tion 5.2) for each dataset.

4.3 Other Clustering algorithms

UPGMA The variant of St Arnaud et al. (2017)
applied a ReLU transformation (max(0, s)) to the
pairwise similarity matrix S such that the matrix
consists only of positive similarity scores. In the
initial step, each word is placed in its own cluster.
The mutual score between two clusters is com-
puted as the average of the similarity scores be-
tween all the word pairs. In each step, the algo-
rithm merges two clusters with the highest pair-
wise score. The merging process is only stopped
when no two clusters have positive average simi-
larity score.

InfoMap is an information-theoretic based clus-
tering algorithm that uses random walks to de-
tect clusters in a network (Rosvall and Bergstrom,
2008). We transform the similarity matrix into a
distance matrix by applying a sigmoid transforma-
tion then subtracting the matrix values from 1.0.
Then, we apply a pre-defined threshold to form a
disconnected graph. Finally, we supply the dis-
connected graph as input to the InfoMap algorithm

to infer clusters. We also experimented with the
threshold during cross-validation experiments on
the training dataset and found that a threshold of
0.57 yielded slightly higher performance than a
threshold of 0.5.

5 Materials and Evaluation

In this section, we describe the datasets and cluster
evaluation metrics.

5.1 Datasets
Training dataset Wichmann and Holman
(2013) and List (2014) compiled cognacy an-
notated multilingual word lists for subsets of
families from various scholarly sources such as
comparative handbooks and historical linguistics’
articles. The detailed references to all the datasets
are given in Jäger et al. (2017). Below, we provide
the number of languages/number of meanings in
each language group in parantheses.
• Afrasian (21/40), Kadai (12/40), Kamasau

(8/36), Lolo-Burmese (15/40), Mayan
(30/100), Miao-Yao (6/36), Mixe-Zoque
(10/100), Mon-Khmer (16/100), Bai dialects
(9/110), Chinese dialects (18/180), Japanese
(10/200), ObUgrian (21/110; Hungarian
excluded from Ugric sub-family).

We extracted a total of 48,389 cognate pairs
(positive) and 51,452 non-cognate pairs (negative)
for training our SVM model.

Test datasets We test our clustering algorithms
on word lists belonging to four language families
given in table 2.

Dataset Meanings Languages Source

Austronesian 210 395 Gray et al. (2009)
Austro-Asiatic 200 122 Sidwell (2015)
Indo-European 208 52 Bouckaert et al. (2012)
Central Asian dialects 183 88 Mennecier et al. (2016)

Table 2: The second, third, and fourth columns show the
number of number of meanings, languages, and the source of
each dataset respectively.

5.2 Evaluation
We use B-cubed F-score (Amigó et al., 2009) and
Adjusted Rand Index (Hubert and Arabie, 1985)
to evaluate the quality of the inferred clusters.

B-cubed F-scores are defined for each individ-
ual item (word) as follows. The precision for an
item is defined as the ratio between the number of
cognates in its cluster to the total number of items

275

UPGMA InfoMap ns-CRP sb-CRP

0.2

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP

0.2

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP
0.2

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP
0.0

0.2

0.4

0.6

0.8

1.0

(a) Austronesian

UPGMA InfoMap ns-CRP sb-CRP
0.0

0.2

0.4

0.6

0.8

1.0

(b) Austro-Asiatic

UPGMA InfoMap ns-CRP sb-CRP

0.0

0.2

0.4

0.6

0.8

1.0

(c) Indo-European

UPGMA InfoMap ns-CRP sb-CRP
0.0

0.2

0.4

0.6

0.8

1.0

(d) Central Asian

Figure 2: The B-cubed F-scores are shown in the top row. The bottom row shows the ARI scores for each
of the datasets. The horizontal bar shows the median score and the mean of the scores is shown by .

in its cluster. The recall for an item is defined as
the ratio between the number of cognates in its
cluster to the total number of expert labeled cog-
nates. Finally, the B-cubed F-score for a meaning
is computed as the harmonic mean of the items’
average precision and recall. The B-cubed F-score
for the whole dataset is computed as the average
of the B-cubed F-scores across all the meanings.

Adjusted Rand Index (ARI) is a chance cor-
rected version of rand index (Hubert and Arabie,
1985). The ARI scores are in the range of −1
to +1. A score of 0 indicates that the obtained
clusters are randomly labelled whereas a score +1
indicates perfect match between the two clusters.
The ARI score is zero whenever the gold standard
groups all the words belonging to the same mean-
ing slot (e.g. words for meaning name are cognate
across the daughter Indo-European languages) as
one cluster, whereas the B-cubed F-score is not
zero in such a case.

6 Results

6.1 F-scores and ARI
We visualize the B-cubed F-scores and ARI scores
in figure 2. The spread of the F-scores and ARI
scores suggest that InfoMap and sd-CRP variants
are better than UPGMA in the case of all the
datasets except for the Central Asian dataset. The
box plots for InfoMap are similar to the box plots
of sd-CRP variants across all the language fami-

lies. InfoMap and sd-CRP variants have shorter
width boxes than those of UPGMA across all the
families. All the algorithms show the lowest per-
formance in terms of both F-scores and ARI scores
on the Austro-Asiatic dataset. Based on mean F-
scores and ARI scores across all the four language
families, we determine the ns-CRP algorithm to be
the winner.

6.2 Size of inferred clusters

Method Austro-Asiatic Austronesian Central Asian Indo-European

UPGMA 0.194 0.186 0.722 0.659
InfoMap 0.438 0.617 0.8 0.753
ns-CRP 0.609 0.77 0.833 0.816
sb-CRP 0.564 0.716 0.833 0.817

Table 3: Pearson’s R between number of predicted
clusters and number of clusters in the gold stan-
dard data. The best correlation for each language
family is shaded in light gray.

Apart from evaluating the cluster quality using
B-cubed F-scores and ARI scores, we compare
the number of inferred clusters by each algorithm
against the number of clusters given in the gold
standard data using Pearson’s R. We present the
results of Pearson’s correlation in table 3. The
Pearson’s correlation between the number of pre-
dicted clusters and the number of gold clusters
shows that the sd-CRP variants are successful at
retrieving the right number of clusters when com-
pared to UPGMA. InfoMap comes close to both

276

sd-CRP variants’ performance only in the case of
the Central Asian languages dataset. The ns-CRP
algorithm is the winner at being the best predictor
of cluster sizes since it predicts clusters of sizes
close to those given in the gold standard in the case
of Austro-Asiatic and Austronesian datasets and
shows same performance as sb-CRP in the case of
the Central Asian dialects dataset.

7 Discussion

In this section, we discuss the effect of feature se-
lection and initial value of α on the performance
of sd-CRP algorithms. We verify the effect of
missing data on all the clustering algorithms and
present the results. Finally, we analyze the work-
ing of sd-CRP algorithms.

7.1 Feature ablation

To ascertain which word similarity features con-
tribute the most to the performance of the ns-CRP
algorithm, we trained three simpler SVM models
and evaluated the quality of the inferred clusters
using these models. The first model HK uses only
orthographic features. The second model uses the
PMI word similarity as an additional feature to the
HK model. The third model uses SCA word sim-
ilarity as an additional feature to the HK model.
The results presented in previous section showed
that ns-CRP performs the worst on Austronesian
and Austro-Asiatic datasets.

Therefore, we present the cluster evaluation re-
sults only for these two datasets in table 4. The HK
model yields high F-scores for both the datasets.
Addition of PMI or SCA as an additional feature
always improves both F-scores and ARI scores.
In fact, including both PMI and SCA as features
yields the best results even if the improvement is
marginal in the case of the Austro-Asiatic dataset.
We note that we observe similar trends for the rest
of the datasets. We do not present the results for
other datasets due to space constraints. Finally, the
ablation experiments suggest that including both
data-driven PMI and linguistically guided SCA as
features gives the best results at cognate cluster-
ing.

7.2 Effect of lexical coverage

In this subsection, we investigate the effect of
missing data on the clustering algorithms. In the
case of the Austronesian dataset, less than 50% of
the languages have word forms attested in 70% of

System
F-score ARI

Austronesian

HK 0.675 ± 0.111 0.416 ± 0.189
HK+PMI 0.706 ± 0.126 0.489 ± 0.20
HK+SCA 0.683 ± 0.111 0.443 ± 0.193
HK+PMI+SCA 0.715 ± 0.111 0.509 ± 0.193

Austro-Asiatic

HK 0.638 ± 0.117 0.389 ± 0.185
HK+PMI 0.651 ± 0.139 0.435 ± 0.219
HK+SCA 0.666 ± 0.117 0.441 ± 0.197
HK+PMI+SCA 0.672 ± 0.127 0.467 ± 0.213

Table 4: Results of feature ablation experiments on
Austronesian and Austro-Asiatic datasets.

the meanings. The situation is slightly better in the
case of Austro-Asiatic with more than 80% of the
languages having meanings attested in 70% of the
meanings.

In a separate paper, Rama et al. (2018) pre-
sented pruned datasets for five different language
families – Pama-Nyungan and Sino-Tibetan in ad-
dition to Austronesian, Austro-Asiatic, and Indo-
European – consisting of only those languages that
show the highest mutual lexical coverage. For
each dataset, the authors pruned any language
which has less than 75% mutual attestations with
the rest of the languages. We attempted to prune
the Central Asian dataset but found that we could
only exclude a single dialect which has less than
50% attestation. Therefore, we did not include
the Central Asian dataset in our experiments. The
statistics of the pruned datasets is given in table 5.

Family Meanings Languages

Austronesian 210 45
Austro-Asiatic 200 58
Indo-European 208 42
Pama-Nyungan 183 67
Sino-Tibetan 110 64

Table 5: The dataset shows the number of mean-
ings and languages in the pruned datasets.

The results of this experiment are visualized in
figure 3. The sd-CRP algorithms perform better
than UPGMA and InfoMap in the case of Pama-
Nyungan and Austro-Asiatic datasets. There

277

UPGMA InfoMap ns-CRP sb-CRP

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP

0.2

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP

0.2

0.4

0.6

0.8

UPGMA InfoMap ns-CRP sb-CRP

0.4

0.6

0.8

1.0

UPGMA InfoMap ns-CRP sb-CRP

0.0

0.2

0.4

0.6

0.8

1.0

(a) Austronesian

UPGMA InfoMap ns-CRP sb-CRP
0.0

0.2

0.4

0.6

0.8

1.0

(b) Austro-Asiatic

UPGMA InfoMap ns-CRP sb-CRP

0.0

0.2

0.4

0.6

0.8

1.0

(c) Indo-European

UPGMA InfoMap ns-CRP sb-CRP

0.2

0.4

0.6

0.8

(d) Pama-Nyungan

UPGMA InfoMap ns-CRP sb-CRP

0.4

0.6

0.8

1.0

(e) Sino-Tibetan

Figure 3: The top row shows the B-cubed F-scores and the bottom row shows the ARI scores for pruned
datasets of five language families.

seems to be no difference in the performance of
all the algorithms in the case of the Sino-Tibetan
dataset. There is no difference between sd-CRP
and InfoMap algorithms in the case of the Aus-
tronesian dataset. Although the mean B-cubed F-
scores indicate that there is no difference between
the algorithms in the case of the Indo-European
dataset, the spread of the box plots suggests that
non-UPGMA algorithms perform better than UP-
GMA. The B-cubed F-scores are not decisive in
the case of the Indo-European dataset, whereas the
ARI score clearly shows that non-UPGMA per-
form better than UPGMA. In conclusion, both the
sd-CRP algorithms perform at least as good or bet-
ter than InfoMap algorithm in the case of pruned
datasets.

7.3 Effect of initial alpha

Family F-score ARI

Austro-Asiatic 0.735 ± 0.119 0.524 ± 0.217
Austronesian 0.805 ± 0.109 0.609 ± 0.242
Indo-European 0.8 ± 0.135 0.62 ± 0.278
Pama-Nyungan 0.655 ± 0.141 0.354 ± 0.174
Sino-Tibetan 0.569 ± 0.114 0.276 ± 0.17

Table 6: The mean and standard deviation of the F-scores
and ARI scores for α = 0.001 on pruned datasets.

In this experiment, we test the sensitivity of ns-
CRP algorithm to the initial α by initializing α
to 0.001, 0.01, and 1.0. We hypothesize that our
sampling step makes the algorithm robust to the
initial value of α. We run the ns-CRP clustering
algorithm for 100 iterations for different starting

values of α on each of the pruned datasets. The
results of the experiment are given in table 6 for
α = 0.001. The B-cubed F-scores and ARI scores
are quite similar for other initial values of α, and
therefore we do not present those results to avoid
repetition. These results suggest that the ns-CRP
algorithm is not sensitive to the value of initial α.

7.4 Convergence of ns-CRP

0 20 40 60 80 100

0.6

0.7

0.8

0.9

1.0

Figure 4: Plot showing the convergence of the sd-
CRP algorithm for 30 meanings from the Indo-
European dataset.

Here, we investigate the stability of the ns-CRP
algorithm by plotting the B-cubed F-scores against
the number of iterations for 30 random mean-
ings from the Indo-European dataset in figure 4.
The plot shows that the ns-CRP algorithm quickly
moves from an initial configuration with low F-
score to a configuration that has high F-scores
within the first 20 iterations. We observe similar
behaviour of ns-CRP in the case of other language
families. In conclusion, the plot shows that the

278

quality of the clusters inferred by the ns-CRP algo-
rithm achieves a high F-score. Moreover, the clus-
ter quality does not change drastically after reach-
ing a local optimum.

7.5 Analysis of sd-CRP algorithms

In this subsection, we analyze the difference in the
behaviours of sd-CRP algorithms. If wi and wj
are cognate andwj andwk are cognate, then all the
three words are cognate with each other which fol-
lows from the definition of cognacy. The sb-CRP
algorithm captures this cognacy relation through
the SitBehind function. During cluster formation,
wi only has to connect to a word that might have
no other words other than itself sitting behind it.
We hypothesize that the sb-CRP algorithm would
be more efficient at identifying partial cognates
where only part of the lexical material is cognate
with another word. An example of a partial cog-
nate is the meaning of meat in sweetmeat which
is cognate with Swedish mat ‘food’ (Campbell,
2004). In contrast, the ns-CRP algorithm is stricter
than sb-CRP algorithm in that a word is assigned
to the cluster with which it has the highest net sim-
ilarity. If a word has net similarity of zero with all
the existing clusters, then, the word would form its
own cluster since αS(wi, wi) is always positive.

8 Conclusion

We presented and compared the performance of
two similarity dependent Chinese Restaurant pro-
cess algorithms at the task of automated cognate
detection for six different language families. The
sensitivity experiments suggested that the sd-CRP
algorithms is not sensitive to initial α and miss-
ing data. The feature ablation experiments sug-
gest that the inclusion of PMI and SCA features
improve the performance of the sd-CRP algo-
rithms. We conclude that the sd-CRP algorithms
perform better than the existing clustering algo-
rithms across multiple settings.

As future work, we plan to include language re-
latedness as features into SVM training and also
train the SVM classifier in an unsupervised fash-
ion using the sd-CRP algorithms.

Acknowledgments

The author thanks the anonymous reviewers for
the comments which helped improved the paper.
The author is supported by BIGMED project (a
Norwegian Research Council LightHouse grant,

see bigmed.no). The algorithms were designed
when the author took part in the ERC Advanced
Grant 324246 EVOLAEMP project led by Ger-
hard Jäger. All these sources of support are grate-
fully acknowledged.

References
Enrique Amigó, Julio Gonzalo, Javier Artiles, and

Felisa Verdejo. 2009. A comparison of extrinsic
clustering evaluation metrics based on formal con-
straints. Information retrieval, 12(4):461–486.

David M Blei and Peter I Frazier. 2011. Distance de-
pendent chinese restaurant processes. Journal of
Machine Learning Research, 12(Aug):2461–2488.

Phil Blunsom and Trevor Cohn. 2011. A hierarchical
pitman-yor process hmm for unsupervised part of
speech induction. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 865–874. Association for Computational Lin-
guistics.

Alexandre Bouchard-Côté, David Hall, Thomas L.
Griffiths, and Dan Klein. 2013. Automated recon-
struction of ancient languages using probabilistic
models of sound change. Proceedings of the Na-
tional Academy of Sciences, 110(11):4224–4229.

Remco Bouckaert, Philippe Lemey, Michael Dunn,
Simon J. Greenhill, Alexander V. Alekseyenko,
Alexei J. Drummond, Russell D. Gray, Marc A.
Suchard, and Quentin D. Atkinson. 2012. Mapping
the origins and expansion of the Indo-European lan-
guage family. Science, 337(6097):957–960.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Ma-
chine Learning, pages 108–122.

Lyle Campbell. 2004. Historical Linguistics: An Intro-
duction. Edinburgh University Press, Edinburgh.

Will Chang, Chundra Cathcart, David Hall, and An-
drew Garrett. 2015. Ancestry-constrained phyloge-
netic analysis supports the Indo-European steppe hy-
pothesis. Language, 91(1):194–244.

Michael A. Covington. 1996. An algorithm to align
words for historical comparison. Computational
Linguistics, 22(4):481–496.

Samuel J Gershman and David M Blei. 2012. A tuto-
rial on bayesian nonparametric models. Journal of
Mathematical Psychology, 56(1):1–12.

279

Sharon Goldwater, Thomas L Griffiths, and Mark John-
son. 2006. Contextual dependencies in unsuper-
vised word segmentation. In Proceedings of the 21st
International Conference on Computational Lin-
guistics and the 44th annual meeting of the Associa-
tion for Computational Linguistics, pages 673–680.
Association for Computational Linguistics.

Sharon Goldwater, Thomas L Griffiths, and Mark John-
son. 2011. Producing power-law distributions and
damping word frequencies with two-stage language
models. Journal of Machine Learning Research,
12(Jul):2335–2382.

Russell D Gray, Alexei J Drummond, and Simon J
Greenhill. 2009. Language phylogenies reveal ex-
pansion pulses and pauses in pacific settlement. sci-
ence, 323(5913):479–483.

David Hall and Dan Klein. 2011. Large-scale cognate
recovery. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 344–354. Association for Computational Lin-
guistics.

Bradley Hauer and Grzegorz Kondrak. 2011. Clus-
tering semantically equivalent words into cognate
sets in multilingual lists. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 865–873, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Lawrence Hubert and Phipps Arabie. 1985. Compar-
ing partitions. Journal of classification, 2(1):193–
218.

Gerhard Jäger. 2013. Phylogenetic inference from
word lists using weighted alignment with empiri-
cally determined weights. Language Dynamics and
Change, 3(2):245–291.

Gerhard Jäger and Johann-Mattis List. 2017. Using
ancestral state reconstruction methods for onoma-
siological reconstruction in multilingual word lists.
Forthcoming, Language Dynamics and Change.

Gerhard Jäger, Johann-Mattis List, and Pavel
Sofroniev. 2017. Using support vector ma-
chines and state-of-the-art algorithms for phonetic
alignment to identify cognates in multi-lingual
wordlists. In Proceedings of the 15th Conference
of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,
pages 1205–1216. Association for Computational
Linguistics.

Grzegorz Kondrak. 2001. Identifying cognates by pho-
netic and semantic similarity. In North American
Chapter Of The Association For Computational Lin-
guistics, pages 1–8. Association for Computational
Linguistics Morristown, NJ, USA.

Grzegorz Kondrak. 2002. Algorithms for language re-
construction. Ph.D. thesis, University of Toronto,
Ontario, Canada.

Grzegorz Kondrak. 2005. Cognates and word align-
ment in bitexts. In Proceedings of the Tenth Ma-
chine Translation Summit (MT Summit X), pages
305–312.

Grzegorz Kondrak. 2009. Identification of cognates
and recurrent sound correspondences in word lists.
Traitement Automatique des Langues et Langues
Anciennes, 50(2):201–235.

Brian Kulis and Michael I Jordan. 2011. Revisiting k-
means: New algorithms via Bayesian nonparamet-
rics. arXiv preprint arXiv:1111.0352.

Clemens Lakner, Paul Van Der Mark, John P Huelsen-
beck, Bret Larget, and Fredrik Ronquist. 2008. Ef-
ficiency of Markov chain Monte Carlo tree propos-
als in Bayesian phylogenetics. Systematic biology,
57(1):86–103.

Johann-Mattis List. 2012a. LexStat: Automatic de-
tection of cognates in multilingual wordlists. In
Proceedings of the EACL 2012 Joint Workshop
of LINGVIS & UNCLH, pages 117–125, Avignon,
France. Association for Computational Linguistics.

Johann-Mattis List. 2012b. SCA: phonetic alignment
based on sound classes. In New Directions in Logic,
Language and Computation, pages 32–51. Springer.

Johann-Mattis List. 2014. Sequence comparison in
historical linguistics. Düsseldorf University Press,
Düsseldorf.

Johann-Mattis List, Simon Greenhill, and Robert
Forkel. 2017a. Lingpy. a python library for quan-
titative tasks in historical linguistics.

Johann-Mattis List, Simon J. Greenhill, and Russell D.
Gray. 2017b. The potential of automatic word
comparison for historical linguistics. PLOS ONE,
12(1):1–18.

Johann-Mattis List, Philippe Lopez, and Eric Bapteste.
2016. Using sequence similarity networks to iden-
tify partial cognates in multilingual wordlists. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 599–605, Berlin, Germany. As-
sociation for Computational Linguistics.

Philippe Mennecier, John Nerbonne, Evelyne Heyer,
and Franz Manni. 2016. A central asian language
survey. Language Dynamics and Change, 6(1):57–
98.

Saul B. Needleman and Christian D. Wunsch. 1970.
A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453.

Taraka Rama. 2015. Automatic cognate identification
with gap-weighted string subsequences. In Proceed-
ings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies., pages
1227–1231.

280

Taraka Rama. 2016. Siamese convolutional networks
for cognate identification. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
1018–1027.

Taraka Rama, Prasant Kolachina, and Sudheer Ko-
lachina. 2013. Two methods for automatic identi-
fication of cognates. QITL, 5:76.

Taraka Rama, Johann-Mattis List, Johannes Wahle, and
Gerhard Jäger. 2018. Are automatic methods for
cognate detection good enough for phylogenetic re-
construction in historical linguistics? In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2
(Short Papers), volume 2, pages 393–400.

Taraka Rama, Johannes Wahle, Pavel Sofroniev, and
Gerhard Jäger. 2017. Fast and unsupervised meth-
ods for multilingual cognate clustering. arXiv
preprint arXiv:1702.04938.

Sujith Ravi and Kevin Knight. 2011. Deciphering for-
eign language. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 12–21. Association for Computational Lin-
guistics.

Martin Rosvall and Carl T Bergstrom. 2008. Maps of
random walks on complex networks reveal commu-
nity structure. Proceedings of the National Academy
of Sciences, 105(4):1118–1123.

Paul Sidwell. 2015. Austroasiatic lexical data set for
phylogenetic analyses 2015 version.

Kairit Sirts, Jacob Eisenstein, Micha Elsner, and
Sharon Goldwater. 2014. Pos induction with dis-
tributional and morphological information using a
distance-dependent chinese restaurant process. In
ACL (2), pages 265–271.

Benjamin Snyder, Regina Barzilay, and Kevin Knight.
2010. A statistical model for lost language deci-
pherment. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1048–1057. Association for Computa-
tional Linguistics.

Richard Socher, Andrew L Maas, and Christopher D
Manning. 2011. Spectral chinese restaurant pro-
cesses: Nonparametric clustering based on similari-
ties. In AISTATS, pages 698–706.

Robert R Sokal and Charles D Michener. 1958. A
statistical method for evaluating systematic rela-
tionships. University of Kansas Science Bulletin,
38:1409–1438.

Adam St Arnaud, David Beck, and Grzegorz Kondrak.
2017. Identifying cognate sets across dictionaries of
related languages. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2509–2518.

Morris Swadesh. 1952. Lexico-statistic dating of pre-
historic ethnic contacts: with special reference to
North American Indians and Eskimos. Proceedings
of the American philosophical society, 96(4):452–
463.

Søren Wichmann and Eric W Holman. 2013. Lan-
guages with longer words have more lexical change.
In Approaches to Measuring Linguistic Differences,
pages 249–281. Mouton de Gruyter.

A Supplemental Material

The code and data used in this paper are up-
loaded as a zip file along with this paper.
In addition, they are available for download
at: https://github.com/PhyloStar/
sd-CRP-cognates

281

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 282–291
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Uncovering divergent linguistic information in word embeddings
with lessons for intrinsic and extrinsic evaluation

Mikel Artetxe, Gorka Labaka, Iñigo Lopez-Gazpio, Eneko Agirre
IXA NLP Group

University of the Basque Country (UPV/EHU)
{mikel.artetxe,gorka.labaka,inigo.lopez,e.agirre}@ehu.eus

Abstract
Following the recent success of word embed-
dings, it has been argued that there is no such
thing as an ideal representation for words, as
different models tend to capture divergent and
often mutually incompatible aspects like se-
mantics/syntax and similarity/relatedness. In
this paper, we show that each embedding
model captures more information than directly
apparent. A linear transformation that adjusts
the similarity order of the model without any
external resource can tailor it to achieve bet-
ter results in those aspects, providing a new
perspective on how embeddings encode diver-
gent linguistic information. In addition, we ex-
plore the relation between intrinsic and extrin-
sic evaluation, as the effect of our transforma-
tions in downstream tasks is higher for unsu-
pervised systems than for supervised ones.

1 Introduction

Word embeddings have recently become a central
topic in natural language processing. Several un-
supervised methods have been proposed to effi-
ciently train dense vector representations of words
(Mikolov et al., 2013; Pennington et al., 2014; Bo-
janowski et al., 2017) and successfully applied in a
variety of tasks like parsing (Bansal et al., 2014),
topic modeling (Batmanghelich et al., 2016) and
document classification (Taddy, 2015).

While there is still an active research line to bet-
ter understand these models from a theoretical per-
spective (Levy and Goldberg, 2014c; Arora et al.,
2016; Gittens et al., 2017), the fundamental idea
behind all of them is to assign a similar vector
representation to similar words. For that purpose,
most embedding models build upon co-occurrence
statistics from large monolingual corpora, follow-
ing the distributional hypothesis that similar words
tend to occur in similar contexts (Harris, 1954).

Nevertheless, the above argument does not for-
malize what “similar words” means, and it is not

entirely clear what kind of relationships an em-
bedding model should capture in practice. For
instance, some authors distinguish between gen-
uine similarity1 (as in car - automobile) and relat-
edness2 (as in car - road) (Budanitsky and Hirst,
2006; Hill et al., 2015). From another perspec-
tive, word similarity could focus on semantics (as
in sing - chant) or syntax (as in sing - singing)
(Mikolov et al., 2013). We refer to these two as-
pects as the two axes of similarity with two ends
each: the semantics/syntax axis and the similar-
ity/relatedness axis.

In this paper, we propose a new method to tai-
lor any given set of embeddings towards a spe-
cific end in these axes. Our method is inspired
by the work on first order and second order co-
occurrences (Schütze, 1998), generalized as a con-
tinuous parameter of a linear transformation ap-
plied to the embeddings that we call similarity
order. While there have been several proposals
to learn specialized word embeddings (Levy and
Goldberg, 2014a; Kiela et al., 2015; Bojanowski
et al., 2017), previous work explicitly altered the
training objective and often relied on external re-
sources like knowledge bases, whereas the pro-
posed method is applied as a post-processing of
any pre-trained embedding model and does not re-
quire any additional resource. As such, our work
shows that standard embedding models are able to
encode divergent linguistic information but have
limits on how this information is surfaced, and an-
alyzes the implications that this has in both intrin-
sic evaluation and downstream tasks. This paper
makes the following contributions:

1. We propose a linear transformation with
a free parameter that adjusts the perfor-

1Also referred to as functional similarity or just similarity.
2Also referred to as associative similarity, topical simi-

larity or domain similarity.

282

mance of word embeddings in the similar-
ity/relatedness and semantics/syntax axes, as
measured in word analogy and similarity
datasets.

2. We show that the performance of embeddings
as used currently is limited by the impossi-
bility of simultaneously surfacing divergent
information (e.g. the aforementioned axes).
Our method uncovers the fact that embed-
dings capture more information than what is
immediately obvious.

3. We show that standard intrinsic evaluation of-
fers a static and incomplete picture, and com-
plementing it with the proposed method can
offer a better understanding of what informa-
tion an embedding model truly encodes.

4. We show that the effect of our method also
carries out to downstream tasks, but its effect
is larger in unsupervised systems directly us-
ing embedding similarities than in supervised
systems using embeddings as input features,
as the latter have enough expressive power to
learn the optimal transformation themselves.

All in all, our work sheds light in how word em-
beddings represent divergent linguistic informa-
tion, analyzes the role that this plays in intrinsic
evaluation and downstream tasks, and opens new
opportunities for improvement.

The remaining of this paper is organized as fol-
lows. We describe our proposed post-processing
in Section 2. Section 3 and 4 then present the re-
sults in intrinsic and extrinsic evaluation, respec-
tively. Section 5 discusses the implications of our
work on embedding evaluation and their integra-
tion in downstream tasks. Section 6 presents the
related work, and Section 7 concludes the paper.

2 Proposed post-processing

Let X be the matrix of word embeddings in a
given language, so that Xi∗ is the embedding of
the ith word in the vocabulary. Such embeddings
are meant to capture the meaning of their corre-
sponding words in such a way that the dot prod-
uct sim(i, j) = Xi∗ · Xj∗ gives some measure of
the similarity between the ith and the jth word3.
Based on this, we can define the similarity matrix
M(X) = XXT so that sim(i, j) = M(X)ij .

3Note that the cosine similarity is the dot product of two
length normalized vectors.

Inspired by first order and second order co-
occurrences (Schütze, 1998), one can also define
a second order similarity measure on top of this
(first order) similarity. In second order similarity,
the similarity of two words is not assessed in terms
of how similar they directly are, but in terms of
how their similarity with third words agrees. For
instance, even if i and j are not directly similar,
they might both be similar to a third word k, which
would make them more similar in second order
similarity, and one could similarly define third,
fourth or nth order similarity. The idea that we
try to exploit next is that some of these similarity
orders can be better at capturing different aspects
of language as discussed in Section 1.

More formally, we define the second order sim-
ilarity matrix M2(X) = XXT XXT , so that
sim2(i, j) = M2(X)ij . Note that M2(X) =
M(M(X)), so second order similarity can be
seen as the similarity of the similarities across all
words, which is in line with the intuitive defini-
tion given above. More generally, we could de-
fine the nth order similarity matrix as Mn(X) =
(XXT)n, so that simn(i, j) = Mn(X)ij . We
next show that, instead of changing the similar-
ity measure, one can change the word embeddings
themselves through a linear transformation so they
directly capture this second or nth order similarity.

Let XT X = QΛQT be the eigendecomposi-
tion of XT X , so that Λ is a positive diagonal ma-
trix whose entries are the eigenvalues of XT X
and Q is an orthogonal matrix with their respec-
tive eigenvectors as columns4. We define the lin-
ear transformation matrix W = Q

√
Λ and apply it

to the original embeddings X , obtaining the trans-
formed embeddings X ′ = XW . As it can be triv-
ially seen, M(X ′) = M2(X), that is, such trans-
formed embeddings capture the second order sim-
ilarity as defined for the original embeddings.

More generally, we can define Wα = QΛα,
where α is a parameter of the transformation that
adjusts the desired similarity order. Following the
above definitions, such transformation would lead
to first order similarity as defined for the original
embeddings when α = 0, second order similarity
when α = 0.5 and, in general, nth order similarity
when α = (n−1)/2, that is, M(XW0) = M(X),
M(XW0.5) = M2(X) and M(XW(n−1)/2) =
Mn(X).

4Note that these constraints hold because XT X is a real
symmetric matrix by definition.

283

Note that the proposed transformation is rela-
tive in nature (i.e. it does not make any assump-
tion on the similarity order captured by the embed-
dings it is applied to) and, as such, negative values
of α can also be used to reduce the similarity or-
der. For instance, let X be the second order trans-
formed embeddings of some original embeddings
Z, so X = ZW0.5, where W0.5 was computed
over Z. It can be easily verified that W−0.25, as
computed over X , would recover back the origi-
nal embeddings, that is, M(XW−0.25) = M(Z).
In other words, assuming that the embeddings X
capture some second order similarity, it is possible
to transform them so that they capture the corre-
sponding first order similarity, and one can easily
generalize this to higher order similarities by sim-
ply using smaller values of α.

All in all, this means that the parameter α can
be used to either increase or decrease the similar-
ity order that we want our embeddings to capture.
Moreover, even if the similarity order is intuitively
defined as a discrete value, the parameter α is con-
tinuous, meaning that the transformation can be
smoothly adjusted to the desired level.

3 Intrinsic evaluation

In order to better understand the effect of the pro-
posed post-processing in the two similarity axes
introduced in Section 1, we adopt the widely used
word analogy and word similarity tasks, which of-
fer specific benchmarks for semantics/syntax and
similarity/relatedness, respectively.

More concretely, word analogy measures the
accuracy in answering questions like “what is the
word that is similar to France in the same sense as
Berlin is similar to Germany?” (semantic analogy)
or “what is the word that is similar to small in the
same sense as biggest is similar to big?” (syntac-
tic analogy) using simple word vector arithmetic
(Mikolov et al., 2013). The analogy resolution
method is commonly formalized in terms of vec-
tor additions and subtractions. Levy and Goldberg
(2014b) showed that this was equivalent to search-
ing for a word that maximizes a linear combina-
tion of three pairwise word similarities, so the pro-
posed post-processing has a direct effect on it. For
these experiments, we use the dataset published
as part of word2vec5, which consists of 8,869 se-
mantic and 10,675 syntactic questions of this type

5https://github.com/tmikolov/word2vec/
blob/master/questions-words.txt

(Mikolov et al., 2013).
On the other hand, word similarity measures

the correlation6 between the similarity scores pro-
duced by a model and a gold standard created by
human annotators for a given set of word pairs.
As discussed before, there is not a single defini-
tion of what human similarity scores should cap-
ture, which has lead to a distinction between gen-
uine similarity datasets and relatedness datasets.
In order to better understand the effect of our post-
processing in each case, we conduct our experi-
ments in SimLex-999 (Hill et al., 2015), a genuine
similarity dataset that consists of 999 word pairs,
and MEN (Bruni et al., 2012), a relatedness dataset
that consists of 3,000 word pairs7.

So as to make our evaluation more robust, we
run the above experiments for three popular em-
bedding methods, using large pre-trained models
released by their respective authors as follows:
Word2vec (Mikolov et al., 2013) is the original
implementation of the CBOW and skip-gram ar-
chitectures that popularized neural word embed-
dings. We use the pre-trained model published
in the project homepage8, which was trained on
about 100 billion words of the Google News
dataset and consists of 300-dimensional vectors
for 3 million words and phrases.
Glove (Pennington et al., 2014) is a global log-
bilinear regression model to train word embed-
dings designed to explicitly enforce the model
properties needed to solve word analogies. We
use the largest pre-trained model published by the
authors9, which was trained on 840 billion words
of the Common Crawl corpus and contains 300-
dimensional vectors for 2.2 million words.
Fasttext (Bojanowski et al., 2017) is an extension
of the skip-gram model implemented by word2vec
that enriches the embeddings with subword in-
formation using bags of character n-grams. We
use the largest pre-trained model published in the
project website10, which was trained on 600 bil-
lion tokens of the Common Crawl corpus and con-

6Following common practice, we report Spearman.
7These datasets were selected because the instructions

used to elicit human scores are clearly geared towards gen-
uine similarity and relatedness, respectively, and because they
have been already used in similar studies (Kiela et al., 2015)

8https://code.google.com/archive/p/
word2vec/

9http://nlp.stanford.edu/data/glove.
840B.300d.zip

10https://fasttext.cc/docs/en/
english-vectors.html

284

Word analogy Word similarity

Semantic Syntactic Similarity Relatedness
(SimLex-999) (MEN)

word2vec
Original 76.49 74.87 44.21 76.96
Best 81.00 α = -0.65 74.96 α = 0.10 47.81 α = -0.70 78.09 α = -0.30

glove
Original 83.17 76.19 40.70 80.06
Best 86.73 α = -0.85 76.51 α = -0.10 51.54 α = -0.85 84.00 α = -0.45

fasttext
Original 89.76 82.44 50.48 83.55
Best 90.85 α = -0.45 84.45 α = 0.25 51.55 α = -0.25 84.06 α = -0.15

Table 1: Results in intrinsic evaluation for the original embeddings and the best post-processed model with the
corresponding value of α. The evaluation measure is accuracy for word analogy and Spearman correlation for
word similarity.

tains 300-dimensional vectors for 2 million words.
Given that the above models were trained in

very large corpora and have an unusually large vo-
cabulary, we decide to restrict its size to the most
frequent 200,000 words in each case, leaving the
few resulting out-of-vocabularies outside evalua-
tion. In all the cases, we test the proposed post-
processing for all the values of the parameter α
in the [−1, 1] range in increments of 0.05. As the
goal of this paper is not to set the state-of-the-art
but to perform an empirical exploration, we report
results across all parameter values on test data.

3.1 Results on word analogy

Table 1 shows the results of the original embed-
dings (α = 0) and those of the best α, while Figure
1 shows the relative error reduction with respect to
the original embeddings for all α values11. As it
can be seen, the proposed post-processing brings
big improvements in word analogy, with a relative
error reduction of about 20% in semantic analo-
gies for word2vec and glove and a relative error
reduction of about 10% in both semantic and syn-
tactic analogies for fasttext.

The graphs in Figure 1 clearly reflect that,
within certain limits, smaller values of α (i.e.
lower similarity orders) tend to favor semantic
analogies, whereas larger values (i.e. higher simi-
larity orders) tend to favor syntactic analogies. In
this regard, both objectives seem mutually incom-
patible, in that every improvement in one type of
analogy comes at a cost of a degradation in the
other type. This suggests that standard embedding

11We choose to show relative error reduction in order to
have all curves in the same scale for easier illustration.

models already encode enough information to per-
form better than they do in word analogy resolu-
tion, yet this potential performance is limited by
the impossibility to optimize for both semantic and
syntactic analogies at the same time.

Apart from that, the results also show that,
while the general trend is the same for all embed-
ding models, their axes seem to be centered at dif-
ferent points. This is clearly reflected in the opti-
mal values of α for semantic and syntactic analo-
gies (-0.65 and 0.10 for word2vec, -0.85 and -
0.10 for glove, and -0.45 and 0.25 for fasttext):
the distance between them is very similar in all
cases (either 0.70 or 0.75), yet they are centered at
different points. This suggests that different em-
bedding models capture a different similarity order
and, therefore, obtain a different balance between
semantic and syntactic information in the original
setting (α = 0), yet our method is able to adjust it
to the desired level in a post-processing step.

3.2 Results on word similarity

As the results in Table 1 and Figure 2 show, the
proposed post-processing can bring big improve-
ments in word similarity as well, although there
are important differences among the different em-
bedding models tested. This way, we achieve an
improvement of about 11 and 4 points for SimLex-
999 and MEN in the case of glove, and only 1 and
0.5 points in the case of fasttext, while word2vec
is somewhat in between with 3.5 and 1 points.

Following the discussion in Section 3.1, this be-
havior seems clearly connected with the differ-
ences in the default similarity order captured by
different embedding models. In fact, the optimal

285

word2vec glove fasttext

●

●

●
●●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●
●●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●●●●●●

●●
●

●
●

●
●

●

●

●

●

●−20

−10

0

10

20

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

Alpha

R
e
la

ti
ve

 e
rr

o
r

re
d
u
c
ti
o
n
 (

%
)

Dataset

● Semantic

Syntactic

Figure 1: Results in word analogy as the relative error reduction with respect to the original embeddings (α=0) for
different values of α.

word2vec glove fasttext

●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

−10

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

Alpha

A
b
s
o
lu

te
 i
m

p
ro

ve
m

e
n
t
(S

p
e
a
rm

a
n
)

Dataset

● SimLex

MEN

Figure 2: Results in word similarity as the absolute improvement in Spearman correlation with respect to the
original embeddings (α=0) for different α. SimLex for genuine similarity, MEN for relatedness.

values of α reflect the same trend observed for
word analogy, with glove having the smallest val-
ues with -0.85 and -0.45, followed by word2vec
with -0.70 and -0.30, and fasttext with -0.25 and
-0.15. Moreover, the effect of this phenomenon is
more dramatic in this case: fasttext achieves sig-
nificantly better results than glove for the origi-
nal embeddings (a difference of nearly 10 and 3.5
points for SimLex-999 and MEN, respectively),
but this proves to be an illusion after adjusting the
similarity order with our post-processing, as both
models get practically the same results with differ-
ences below 0.1 points.

At the same time, although less pronounced
than with semantic/syntactic analogies12, the re-
sults show clear differences in the optimal config-
urations for genuine similarity (SimLex-999) and

12Agreeing with the fact that relatedness subsumes simi-
larity (Budanitsky and Hirst, 2006)

relatedness (MEN), with smaller values of α (i.e.
lower similarity levels) favoring the former.

4 Extrinsic evaluation

In order to better understand the effect of the pro-
posed post-processing in downstream systems, we
adopt the STS Benchmark dataset on semantic tex-
tual similarity (Cer et al., 2017)13. This task is
akin to word similarity, but instead of assessing
the similarity of individual word pairs, it is the
similarity of entire sentence pairs as scored by the
model that is compared against the gold standard
produced by human annotators14. This evaluation
is attractive for our purposes because, while the
state-of-the-art systems are supervised and based
on elaborated deep learning or feature engineer-

13http://ixa2.si.ehu.es/stswiki/index.
php/STSbenchmark

14Following common practice, we report Pearson.

286

Centroid DAM

word2vec
Original 65.77 72.65
Best 66.43 α = -0.30 73.08 α = 0.10

glove
Original 64.54 74.89
Best 68.96 α = -0.50 76.36 α = -0.70

fasttext
Original 69.84 77.33
Best 70.74 α = -0.20 77.33 α = 0.00

Table 2: Results in semantic textual similarity as measured by Pearson correlation for the original embeddings and
the best post-processed model with the corresponding value of α. The DAM scores are averaged across 10 runs.

word2vec glove fasttext

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●50

60

70

80

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

Alpha

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Method

● Centroid

DAM

Figure 3: Results in semantic textual similarity for different values of α. The DAM scores are averaged across 10
runs.

ing approaches, simpler embedding-based unsu-
pervised models are also highly competitive, mak-
ing it easier to analyze the effect of the proposed
post-processing when integrating the embeddings
in a larger model. This way, we test two such
systems in our experiments: a simple embedding-
based model that computes the cosine similar-
ity between the centroids of each sentence after
discarding stopwords, and the Decomposable At-
tention Model (DAM) proposed by Parikh et al.
(2016) and minimally adapted for the task15. The
centroid model is thus a simple but very com-
petitive baseline system where the proposed post-
processing has a direct effect, whereas DAM is a
prototypical deep learning model that uses fixed
pre-trained embeddings as input features, produc-
ing results that are almost at par with the state-of-
the-art in the task.

As the results in Table 2 and Figure 3 show,
the centroid method is much more sensitive to the
proposed post-processing than DAM. More con-
cretely, negative values of α are beneficial for the

15https://github.com/lgazpio/DAM_STS

centroid method up to certain point, bringing an
improvement of nearly 4.5 points for glove, and
the results clearly start degrading after that ceiling.
In contrast, DAM is almost unaffected by negative
values of α. Positive values do have a clear neg-
ative effect in both cases, but the centroid method
is much more severely affected than DAM. For in-
stance, for glove, the performance of the centroid
method drops 18.19 points when α = 0.50, in con-
trast with only 3.69 points for DAM.

This behavior can be theoretically explained by
the fact that the proposed post-processing con-
sists in a linear transformation. More concretely,
DAM also applies a linear transformation to the
input embeddings and, given that the product of
two linear transformations is just another linear
transformation, its global optimum is unaffected
by the linear transformation previously applied by
our method. Note, moreover, that the same ratio-
nale applies to the majority of machine learning
systems that use pre-trained embeddings as input
features, including both linear and deep learning
models. While there are many practical aspects

287

that can interfere with this theoretical reasoning
(e.g. regularization, the optional length normal-
ization of embeddings, the resulting difficulty of
the optimization problem...), and explain the vari-
ations observed in our experiments, this shows that
typical downstream systems are able to adjust the
similarity order themselves.

5 Discussion

Our experiments reveal that standard word embed-
dings encode more information than what is im-
mediately obvious, yet their potential performance
is limited by the impossibility of optimally sur-
facing divergent linguistic information at the same
time. This can be clearly seen in the word anal-
ogy experiments in Section 3.1, where we are able
to achieve significant improvements over the orig-
inal embeddings, yet every improvement in se-
mantic analogies comes at the cost of a degrada-
tion in syntactic analogies and vice versa. At the
same time, our work shows that the effect of this
phenomenon is different for unsupervised systems
that directly use embedding similarities and su-
pervised systems that use pre-trained embeddings
as features, as the latter have enough expressive
power to learn the optimal balance themselves.

We argue that our work thus offers a new per-
spective on how embeddings encode divergent lin-
guistic information and its relation with intrinsic
and extrinsic evaluation as follows:

• Standard intrinsic evaluation offers a static
and incomplete picture of the information en-
coded by different embedding models. This
can be clearly seen in the word similar-
ity experiments in Section 3.2, where fast-
text achieves significantly better results than
glove for the original embeddings, yet the
results for their best post-processed embed-
dings are at par. As a consequence, if one
simply looks at the results of the original em-
beddings, they might wrongly conclude that
fasttext is vastly superior to glove at encod-
ing semantic similarity information, but this
proves to be a mere illusion after applying our
post-processing. As such, intrinsic evaluation
combined with our post-processing provides
a more complete and dynamic picture of the
information that is truly encoded by different
embedding models.

• Supervised systems that use pre-trained em-

beddings as features have enough expressive
power to learn the optimal similarity order
for the task in question. While there are
practical aspects that interfere with this the-
oretical consideration, our experiments con-
firm that the proposed post-processing has a
considerably smaller effect in a prototypical
deep learning system. This reinforces the
previous point that standard intrinsic evalu-
ation offers an incomplete picture, as it is
severely influenced by an aspect that has a
much smaller effect in typical downstream
systems. For that reason, using our proposed
post-processing to complement intrinsic eval-
uation offers a better assessment of how each
embedding model might perform in a down-
stream task.

• Related to the previous point, while our work
shows that the default similarity order cap-
tured by embeddings has a relatively small
effect in larger learning systems as they are
typically used, this is not necessarily the best
possible integration strategy. If one believes
that a certain similarity order is likely to bet-
ter suit a particular downstream task, it would
be possible to design integration strategies
that encourage it to be so during training,
and we believe that this is a very interest-
ing research direction to explore in the future.
For instance, one could design regularization
methods that penalize large deviations from
this predefined similarity order.

6 Related work

There have been several proposals to learn word
embeddings that are specialized in certain lin-
guistic aspects. For instance, Kiela et al. (2015)
use a joint-learning approach and two variants
of retrofitting (Faruqui et al., 2015a) to special-
ize word embeddings for either similarity or re-
latedness. At the same time, Levy and Gold-
berg (2014a) propose a modification of skip-gram
that uses a dependency-based context instead of
a sliding windows, which produces embeddings
that are more tailored towards genuine similarity
than relatedness. Bansal et al. (2014) follow a
similar approach to train specialized embeddings
that are used as features for dependency pars-
ing. Finally, Mitchell and Steedman (2015) ex-
ploit morphology and word order information to
learn embeddings that decompose into orthogonal

288

semantic and syntactic subspaces. Note, however,
that all these previous methods alter the training
objective of specific embedding models and of-
ten require additional resources like knowledge
bases and syntactic annotations, while the pro-
posed method is a simple post-processing that can
be applied to any embedding model and does not
require any additional resource.

Other authors have also proposed post-
processing methods for word embeddings with
different motivations. For instance, Faruqui et al.
(2015b) transform word embeddings into more
interpretable sparse representations, obtaining
improvements in several benchmark tasks. Rothe
et al. (2016) propose an orthogonal transformation
to concentrate the information relevant for a task
in a lower dimensional subspace, and Rothe and
Schütze (2016) extend this work to decompose
embeddings into four subspaces specifically
capturing polarity, concreteness, frequency and
part-of-speech information. Finally, Labutov
and Lipson (2013) perform unconstrained opti-
mization with proper regularization to specialize
embeddings in a supervised task.

The proposed method is also connected to a
similar parameter found in traditional count-based
distributional models as introduced by Caron
(2001) and further analyzed by Bullinaria and
Levy (2012) and Turney (2012). More con-
cretely, these models work by factorizing some
co-occurrence matrix using singular value decom-
position, so given the co-occurrence matrix M =
USV T , the word vectors will correspond to the
first n dimensions of W = USα, where the pa-
rameter α plays a similar role as in our method.
Note, however, that our proposal is more general
and can be applied to any set of word vectors in
a post-processing step, including neural embed-
ding models that have superseded these traditional
count-based models as we in fact do in this paper.

Finally, there are others authors that have also
pointed limitations in the intrinsic evaluation of
word embeddings. For instance, Faruqui et al.
(2016) and Batchkarov et al. (2016) argue that
word similarity has many problems like the sub-
jectivity and difficulty of the task, the lack of sta-
tistical significance and the inability to account
for polysemy, warning that results should be in-
terpreted with care. Chiu et al. (2016) analyze
the correlation between results on word similarity
benchmarks and sequence labeling tasks, and con-

clude that most intrinsic evaluations are poor pre-
dictors of downstream performance. In relation to
that, our work explains how embeddings encode
divergent linguistic information and the different
effect this has in intrinsic evaluation and down-
stream tasks, showing that the proposed post-
processing can be easily used together with any
intrinsic evaluation benchmark to get a more com-
plete picture of the representations learned.

7 Conclusions and future work

In this paper, we propose a simple post-processing
to tailor word embeddings in the semantics/syntax
and similarity/relatedness axes without the need
of additional resources. By measuring the ef-
fect of our post-processing in word analogy and
word similarity, we show that standard embed-
ding models are able to encode more informa-
tion than what is immediately obvious, yet their
potential performance is limited by the impos-
sibility of optimally surfacing divergent linguis-
tic information. We analyze the different role
that this phenomenon plays in intrinsic and ex-
trinsic evaluation, concluding that intrinsic eval-
uation offers a static picture that can be comple-
mented with the proposed post-processing, and
prompting for better integration strategies for
downstream tasks. We release our implementa-
tion at https://github.com/artetxem/
uncovec, which allows to easily reproduce our
experiments for any given set of embeddings.

In the future, we would like to explore better in-
tegration strategies for machine learning systems
that use pre-trained embeddings as features, so
that downstream systems can better benefit from
previously adjusting the embeddings in the seman-
tics/syntax and similarity/relatedness axes. At the
same time, we would like to extend our analysis to
more specialized embedding models (Kiela et al.,
2015; Levy and Goldberg, 2014a) to get a more
complete picture of what information they capture.

Acknowledgments

This research was partially supported by the
Spanish MINECO (TUNER TIN2015-65308-C5-
1-R, MUSTER PCIN-2015-226 and TADEEP
TIN2015-70214-P, cofunded by EU FEDER), the
UPV/EHU (excellence research group), and the
NVIDIA GPU grant program. Mikel Artetxe and
Iñigo Lopez-Gazpio enjoy a doctoral grant from
the Spanish MECD.

289

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 809–
815, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Miroslav Batchkarov, Thomas Kober, Jeremy Reffin,
Julie Weeds, and David Weir. 2016. A critique of
word similarity as a method for evaluating distribu-
tional semantic models. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 7–12, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Kayhan Batmanghelich, Ardavan Saeedi, Karthik
Narasimhan, and Sam Gershman. 2016. Nonpara-
metric spherical topic modeling with word embed-
dings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 537–542, Berlin, Ger-
many. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Elia Bruni, Gemma Boleda, Marco Baroni, and
Nam Khanh Tran. 2012. Distributional semantics
in technicolor. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 136–145,
Jeju Island, Korea. Association for Computational
Linguistics.

Alexander Budanitsky and Graeme Hirst. 2006. Eval-
uating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics, 32(1):13–
47.

John A. Bullinaria and Joseph P. Levy. 2012. Ex-
tracting semantic representations from word co-
occurrence statistics: stop-lists, stemming, and svd.
Behavior Research Methods, 44(3):890–907.

John Caron. 2001. Computational information re-
trieval. chapter Experiments with LSA Scoring: Op-
timal Rank and Basis, pages 157–169. Society for
Industrial and Applied Mathematics.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic

Evaluation (SemEval-2017), pages 1–14, Vancou-
ver, Canada. Association for Computational Lin-
guistics.

Billy Chiu, Anna Korhonen, and Sampo Pyysalo. 2016.
Intrinsic evaluation of word vectors fails to predict
extrinsic performance. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 1–6, Berlin, Germany. Associ-
ation for Computational Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith.
2015a. Retrofitting word vectors to semantic lex-
icons. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1606–1615, Denver, Colorado. As-
sociation for Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation
of word embeddings using word similarity tasks.
In Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 30–
35, Berlin, Germany. Association for Computational
Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015b. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491–1500, Bei-
jing, China. Association for Computational Linguis-
tics.

Alex Gittens, Dimitris Achlioptas, and Michael W. Ma-
honey. 2017. Skip-gram - zipf + uniform = vector
additivity. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 69–76, Vancouver,
Canada. Association for Computational Linguistics.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2044–2048, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 489–493, Sofia, Bul-
garia. Association for Computational Linguistics.

290

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
302–308. Association for Computational Linguis-
tics.

Omer Levy and Yoav Goldberg. 2014b. Linguistic
regularities in sparse and explicit word representa-
tions. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 171–180. Association for Computational Lin-
guistics.

Omer Levy and Yoav Goldberg. 2014c. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems
27, pages 2177–2185.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Jeff Mitchell and Mark Steedman. 2015. Orthogonality
of syntax and semantics within distributional spaces.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1301–1310. Association for Computational Linguis-
tics.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255,
Austin, Texas. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 767–777, San Diego,
California. Association for Computational Linguis-
tics.

Sascha Rothe and Hinrich Schütze. 2016. Word
embedding calculus in meaningful ultradense sub-
spaces. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 512–517, Berlin,
Germany. Association for Computational Linguis-
tics.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational Linguistics Special Issue on
Word Sense Disambiguation, 24(1).

Matt Taddy. 2015. Document classification by inver-
sion of distributed language representations. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 45–49,
Beijing, China. Association for Computational Lin-
guistics.

Peter D. Turney. 2012. Domain and function: A
dual-space model of semantic relations and compo-
sitions. Journal of Artificial Intelligence Research,
44(1):533–585.

291

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 292–301
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Comparing Models of Associative Meaning: An Empirical Investigation of
Reference in Simple Language Games

Judy Hanwen Shen Matthias Hofer Bjarke Felbo Roger Levy
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

{judyshen, mhofer, felbo, rplevy}@mit.edu

Abstract

Simple reference games (Wittgenstein, 1953)
are of central theoretical and empirical im-
portance in the study of situated language
use. Although language provides rich, com-
positional truth-conditional semantics to fa-
cilitate reference, speakers and listeners may
sometimes lack the overall lexical and cog-
nitive resources to guarantee successful ref-
erence through these means alone. However,
language also has rich associational structures
that can serve as a further resource for achiev-
ing successful reference. Here we investigate
this use of associational information in a set-
ting where only associational information is
available: a simplified version of the popu-
lar game Codenames. Using optimal experi-
ment design techniques, we compare a range
of models varying in the type of associative
information deployed and in level of prag-
matic sophistication against human behavior.
In this setting we find that listeners’ behav-
ior reflects direct bigram collocational associ-
ations more strongly than word-embedding or
semantic knowledge graph-based associations
and that there is little evidence for pragmat-
ically sophisticated behavior by either speak-
ers or listeners of the type that might be pre-
dicted by recursive-reasoning models such as
the Rational Speech Acts theory. These results
shed light on the nature of the lexical resources
that speakers and listeners can bring to bear in
achieving reference through associative mean-
ing alone.

1 Introduction

In his 1953 book Philosophical Investigations,
Wittgenstein makes the argument for studying
simple reference games to learn about the nature
of language (Wittgenstein, 1953). Various ap-
plications of this idea in different fields, includ-
ing linguistics (Pietarinen, 2007), cognitive sci-
ence (Frank and Goodman, 2012), artificial in-

telligence (Lazaridou et al., 2016), and behavior-
based robotics (Steels, 1997) have validated this
fundamental insight and demonstrated the theo-
retical and empirical importance of studying lan-
guage learning and use in simplified contexts.
Here we describe a novel framework that uses a
simple reference game to study the semantic re-
sources speakers and listeners use to facilitate ref-
erence. In particular, placing strong constraints on
word choice and modes of interaction allows us
to better isolate specific aspects that contribute to-
wards the complexity of natural language seman-
tics. Language provides a multitude of different
resources for its users to cooperatively achieve
reference. In particular, language provides truth-
conditional semantic structures. These informa-
tion structures are characterized in terms of their
logical truth conditions and can be precisely stated
using formal logic. Across many cases, however,
successful reference cannot be guaranteed through
these means alone. Another possible source of se-
mantic information are associative resources (e.g.
the meaning associations of ‘nurse’ with ‘female
nurse’ rather than ‘male nurse’). The question of
how to best formally characterize these rich asso-
ciative structures to adequately account for our lin-
guistic abilities is still largely unresolved.

We compare the performance of different mod-
els in accounting for human behavior in a simple
reference game, a modified version of the popular
board game Codenames. Crucially, in this setting,
only associational information is available. To al-
low us to additionally address questions about pos-
sible pragmatic effects when playing the game, our
models are formulated in the context of the Ra-
tional Speech Act (RSA) framework (Frank and
Goodman, 2012). The candidate models of human
semantic reasoning we consider involve different
types of associative resources and different de-
grees of pragmatic sophistication by speaker and

292

listener. The models correspond to qualitatively
different sources of information, including collo-
cations, distributional similarity across contexts,
topic similarity, or common-sense conceptual re-
latedness.

In the closest predecessor to our work, Xu and
Kemp (2010) used observational data from the
television game Password, where the goal is to
guess a target word on an associated cue word
freely generated, to model whether speaker and
listener alignment based on their differential re-
liance on forward vs backward word associations
(estimated using the experimental norms of Nel-
son et al., 2004). They found that similar mix-
tures of forward and backward associations best
explained both speaker and hearer behaviors, sug-
gesting game participants are well calibrated and
cooperative with another, but did not investigate
the nature of the lexical knowledge accounting for
the associations underlying participant behavior.

In this paper, we construct a simplified refer-
ence game involving word associations where con-
strained sets of potential reference clues words and
reference target words are provided. We construct
a variety of different semantic association mea-
sures and conduct a series of experiments to test
which source of information humans use. Further-
more, we combine these measures with the RSA
framework to derive predictions about pragmatic
behavior on the task.

2 Experimental methods

We create a simplified version of the board game
Codenames (Chvátil, 2015) where the objective is
for a speaker to select a clue word that allows a
listener to correctly identify a set of target words.
Subjects play one scenario per turn. A scenario
consists of a set of codenames drawn from a list of
50 common nouns, two of which are targets while
the remaining nouns are non-targets. While both
listeners and speakers always see the set of code-
names, only the speaker knows which nouns are
targets and non-targets (see Figure 1A, the listener
views three identical black and white cards). We
refer to any combination of two nouns as a noun
pair. Each scenario also contains a set of clues
drawn from 100 descriptive adjectives. Through-
out the paper, we will interchangeably refer to co-
denames as nouns and to clues as adjectives. A
configuration is a scenario that additionally in-
cludes an index, either indicating the target noun

pair (speaker configuration) or the adjective that
was provided to the listener (listener configura-
tion). Thus, while scenarios are just lists of adjec-
tives and nouns, there are

(
#codenames

2

)
possible

speaker configurations and #clues possible lis-
tener configurations. Speakers and listeners partic-
ipated in separate versions of the experiment, but
were told that they would be teamed up with an-
other player to increase engagement with the task.
Subjects were either in the speaker role or in the
listener role. On each trial, depending on their
role, they were either given a speaker configura-
tion or a listener configuration, that is, a scenario
plus corresponding index. The speaker’s task is to
select a single adjective to best communicate the
target noun pair without including any non-target
nouns. For the listener task, participants are given
an adjective and asked to select the two nouns that
the adjective most likely refers to. To quantify the
difficulty of a particular configuration for partici-
pants, we additionally asked them to rate how con-
fident they were in their answer on a scale from 1
(least confident) to 5 (most confident). We con-
ducted four experiments for which we recruited
a total of 1460 subjects on Amazon’s Mechanical
Turk platform. Each subject completed 20 differ-
ent configurations, lasting approximately 7 − 10
minutes and were paid a fixed amount of $0.60 for
their participation. We make all data and analysis
code available 1.

2.1 Modeling word choice

Following previous work on linguistic reasoning
as Bayesian inference, subjects’ choices for a
given configuration are modeled using the Ratio-
nal Speech Acts (RSA) model. In the model, a
pragmatic listener L1 reasons recursively about a
pragmatic speaker S1 that in turn reasons about
a literal listener L0. Referents are noun pairs, p,
and utterances are adjectives, a. We assume a uni-
form prior over possible adjectives and over pos-
sible noun pairs. Communication costs are set to
0. Assuming that adjectives are chosen in propor-
tion to the degree of semantic association between
a noun pair and an adjective, denoted as sp,a, we
obtain the set of simplified equations shown in Ta-
ble 1. Experiments 1-3 in the following sections
will use PL0(p|a) and PS0(p|a) while Experiment
4 compares the two aforementioned literal agents

1https://github.com/heyyjudes/
codenames-language-game/

293

Listener Speaker

PL0(p|a) ∝ sp,a PS0(a|p) ∝ sp,a
PS1(a|p) ∝ [PL0(p|a)]α PL1(p|a) ∝ [PS0(a|p)]α
PL1(p|a) ∝ PS1(a|p) PS1(a|p) ∝ PL1(p|a)

Table 1: RSA equations for constructing literal and
pragmatic models from semantic metrics.

with the pragmatic versions using PL1(p|a) and
PS1(p|a).

2.2 Modeling semantic association strength

Our primary interest is understanding how peo-
ple reason about the semantic relatedness of arbi-
trary noun–adjective pairings, formally expressed
as different semantic association metrics sp,a. Un-
like in previous applications of RSA, where an ut-
terance is either true of a particular referent or not,
the relation between nouns and adjectives in the
present setting is one of associative strength: an
adjective can fit a noun to different degrees (Perea
and Rosa, 2002).2 Here we consider four differ-
ent types of models to quantify the semantic re-
latedness sn,a between a noun n and an adjective
a. This measure is extended to cover noun pairs
p = {n1, n2} by product aggregation: sp,a =
sn1,a · sn2,a.

2.2.1 Bigram semantic association

The first metric we consider is derived from the
bigram co-occurrence counts of noun–adjective
pairs zn,a, describing how relevant an adjective
a ∈ A is for a noun n ∈ N . We create one set
of these relationships using Google Ngram prob-
abilities averaged across the years 1990 to 2000
(Michel et al., 2011). A comparison set is ob-
tained from a real-world corpus containing 30B
messages from Twitter. The semantic association
is computed as:

sn,a =
P (a|n)
P (a)

(1)

Eqn. 1 captures how often an adjective occurs with
a noun while normalizing for the frequency of the
adjectives.

2The adjective ‘dirty’, for instance, is more strongly as-
sociated with the noun ‘pig’ than with the noun ‘slate’. In
contrast, ‘slate’ is more strongly associated with the adjec-
tive’s antonym ‘clean’, likely owing the widespread colloca-
tion ‘clean slate’.

2.2.2 Vector embedding cosine distance
Global Vectors for Word Representation (GloVe)
(Pennington et al., 2014) and skip-gram model
trained vectors (Word2Vec) provide vector rep-
resentations for words that encompass semantic
and linguistic similarity. We examine the Twit-
ter GloVe set (d = 200), the Wiki-GigaWord
GloVe set of (d = 200) (Pennington et al.,
2014), and Google News Word2Vec vectors (d =
300) (Mikolov et al., 2013). To calculate noun–
adjective similarities, we compute cosine distance
between each noun–adjective pair’s vector embed-
dings.

2.2.3 ConceptNet5 similarity
ConceptNet combines knowledge from a vari-
ety of sources, including Wiktionary 3, Verbosity
(Von Ahn et al., 2006), and WordNet (Miller,
1995), to create a comprehensive network of
common-sense relationships with crowd-sourced
human ratings (Speer and Havasi, 2013). Knowl-
edge about words is represented as a semantic
graph and relatedness of concepts are edges in this
graph. We use these relatedness scores to con-
struct noun–adjective associations.

2.2.4 Topic Modeling (LDA)
Topic models assume that words in a document
are generated from a mixture of topics, defined
as probability distributions over the lexicon. We
train a Latent Dirichlet Allocation (LDA) model
(Blei, Ng & Jordan, 2002) on the RCV1 news
corpus (Rose et al., 2002, 804k documents). A
noun–adjective similarity metric was obtained by
computing the Euclidean distance between each
word’s respective distribution over topics z.

2.3 Quantile normalization and correlations
between metrics

Across these seven different semantic association
metrics, distributions of scores varies from Gaus-
sian (GloVe, Word2Vec, ConceptNet5) to expo-
nential (Bigram). To standardize scores across
the set of 50 nouns and 100 adjectives, we used
quantile normalization into a standard uniform
distribution. Since metrics derived from similar
model classes (e.g. vector representations) were
highly correlated (Figure 1), we picked a subset
of association metrics that derive from qualita-
tively different model classes with the constraint
of being trained on similar corpora (e.g. news

3en.wiktionary.org

294

�

� �

�

Figure 1: A. Example of an experimental display in the speaker condition. The choice is between three
adjectives (gray) to best communicate the (blue) target words while avoiding the (red) non-target words.
B. Rank correlation between semantic association scores on the entire set of 5,000 noun–adjective pairs
that all experiments draw from. C. Each cell shows the mean top answer matches between model pairs
for the configurations used in a particular experiment (speaker and listener side). D. Here each cell
shows the mean Spearman’s correlation coefficient between model pairs for the configurations used in a
particular experiment (speaker and listener side).

and books) whenever possible. This resulted in a
choice of four measures, Bigram (Googe Ngram),
Word2Vec (Google News), ConceptNet (Concept-
Net5), and LDA, as candidate semantic models of
human word choices.4 Unless otherwise noted,
we will use ‘Bigram’ and ‘Word2Vec’ to refer to
those metrics based on Google Ngram and Google
News, respectively.

2.4 Optimal Experimental Design
Despite focusing on a relatively small set of nouns
and adjectives, the space of possible experimental
configurations is still too large to allow exhaustive
search. Furthermore, the model rank correlations
displayed in Figure 1 suggest that naively picking
configurations could result in strongly correlated
predictions. To generate experimental configura-
tions that are highly informative with respect to
discriminating between different semantic associ-
ation metrics, we employed Bayesian optimal ex-

4LDA was excluded in the final two rounds of experi-
ments. With the current training regime, its success in fit-
ting human responses was substantially smaller than the other
three semantic association measures we chose.

perimental design (OED) techniques (Cavagnaro
et al., 2010).

d∗ = argmax
c∈D

U(c) (2)

U(c) =
∑

y

u(y, c)P (y|c) (3)

Assuming that a particular response y is
recorded (a choice of noun pair or adjective), the
utility of an experimental configuration c, u(y, c),
is proportional to the mutual information between
the distributions over models M before and af-
ter obtaining datum y. Since response y has not
yet been observed, we compute the expectation
of u(y, c) with respect to y to obtain the desired
(global) utility of the configuration U(c). Assum-
ing a uniform prior distribution over models M ,
the equations simplify in the following way. Op-
timal designs were computed using Monte Carlo
methods for sampling-based stochastic optimiza-
tion (Müller, 2005).

Figure 2 illustrates a representative example
configuration obtained using OED. We can see

295

Answer:
empty

Answer:
insane

Answer:
rough

Clue (Adjective) Answer

0.0

0.2

0.4

0.6

0.8

1.0
An

sw
er

 p
ro

ba
bi

lit
y

Target Codenames: heart, phone
Non-Target Codenames: relationship

Bigram
Conceptnet
Word2Vec
Human

em
pty

ins
an

e
rou

gh

heart

phone

relationship

Co
de

na
m

es
 (n

ou
ns

) Bigram

em
pty

ins
an

e
rou

gh

Conceptnet

em
pty

ins
an

e
rou

gh

Word2Vec

0.0

0.2

0.4

0.6

0.8

1.0

Clues (adjectives)

Figure 2: This example speaker configuration
shows how different clues are preferred by dif-
ferent models: ‘empty’ most often co-occurs with
‘heart’ and ‘phone’ and is thus favored by the Bi-
gram model. ConceptNet assigns a high associa-
tion score to ‘heart’ and ‘empty’ but the adjective
‘rough’ fits the noun pair better overall when using
product aggregation. Similarly, since ‘insane’ ap-
pears most often in the context windows for both
‘heart’ and ‘phone’, it is the top prediction for
Word2Vec. We also show human data for the con-
figuration, which shows a strong preference for the
adjective preferred by the Bigram model.

that model predictions diverge strongly, with each
semantic measure predicting a different response
and little distributional overlap. The accompany-
ing matrices illustrate how the different models ar-
rive at those predictions.

2.5 Scoring

To evaluate how well a particular model accounts
for human responses we use two performance
scores: For each configuration, we count when a
model’s top prediction matches the most frequent
response given by participants and refer to this
score as top answer. When normalized by the to-
tal number of responses, chance performance is at
1/#answers. To additionally take into account in-
formation beyond the most probable answer, we
computed the Spearman’s rank correlation coeffi-
cient between model predictions, sorted by proba-
bility, and subjects’ choices, sorted by frequency.
Chance performance is zero for this measure.

Top answer Rank correlation
Mean SEM Mean SEM

Listener
Bigram 0.416 ± 0.056 0.384 ± 0.037
ConceptNet 0.208 ± 0.046 0.196 ± 0.046
Word2Vec 0.247 ± 0.055 0.253 ± 0.037
LDA 0.052 ± 0.050 -0.053 ± 0.045
Speaker
Bigram 0.418 ± 0.055 0.516 ± 0.033
ConceptNet 0.405 ± 0.055 0.346 ± 0.045
Word2Vec 0.278 ± 0.050 0.279 ± 0.043
LDA 0.089 ± 0.032 0.055 ± 0.045

Table 2: Comparison of semantic association mea-
sures in matching human responses in Experiment
1 (No OED). Chance performance is 0.1 (listener)
and 0.125 (speaker) for top answer and 0 for rank
correlation.

3 Results

3.1 Experiment 1: Comparing semantic
metrics using heuristic designs

In this experiment, configurations on each trial
consisted of five nouns and eight adjectives. Sub-
jects completed the task either in the speaker or
in the listener condition. OED was not used for
this first experiment, instead words were chosen
according to heuristic criteria, detailed in the sup-
plementary material. We did not collect confi-
dence scores for this experiment. Using the lit-
eral speaker and listener equations from Table 1
in combination with different semantic associa-
tion metrics, we derived probabilistic predictions
for each configuration. Predictions were scored
against human responses using the two perfor-
mance scores outlined above. We also explored
fits of pragmatic versions of the models to the data
but found that they were qualitatively similar.5

Table 2 shows that, while all models except
LDA perform above chance, the Bigram metric
performs best on both the listener task and the
speaker task. While the difference on the lis-
tener side is large, differences between Bigram
and ConceptNet on the speaker side are substan-
tially smaller. To gain insights into why the results
for Bigram and ConceptNet were so similar we
directly evaluated the models’ predictions against
each other, quantifying how often they make the
same top prediction (1C), or how rank correlated
their predictions are on average (1C). The bottom
left matrix in Figure 1C shows that the measure’s

5Full pragmatic model fits for all experiments are reported
in the supplementary material.

296

similarity on top answer and rank correlation on
the speaker task might in part stem from their over-
lapping predictions. This highlights a basic design
issue: The experimental designs we picked might
not allow us to fully distinguish the different mod-
els by capitalizing on the differences they make in
their predictions.

3.2 Experiment 2: Comparing semantic
metrics using OED

To remedy this shortcoming and obtain better dis-
criminability on the speaker side, we utilized op-
timal experiment design techniques (Section 2.4)
to overcome the limitations associated with Ex-
periment 1. The procedure was run for the four
designated models (Bigram, Word2Vec, Concept-
Net and LDA), separately for the listener and the
speaker side, for 100, 000 sampling iterations. We
reduced the number of nouns and adjectives to
three and four, respectively, significantly decreas-
ing search complexity. Since some high utility
configurations differed only by one or two words,
and some words generally occurred much more
frequently than others, we eliminated configura-
tions that differed from higher utility configura-
tions in less than two words and by limiting the
total occurrence of a word across configurations
to 20. This reduced the top 500 configurations for
each down to 119 speaker and 137 listener config-
urations. Results from prior experiments show that
the difficulty of a configuration, which is not ex-
plicitly operationalized and incorporated into our
search process, may significantly impact response
quality. To ensure that the selected configura-
tions generate meaningful responses from human
participants, we ran a preliminary experiment on
the filtered configurations and only admitted those
configurations to the main experiment whose con-
fidence rating was above mean (58 speaker and 67
listener configurations).

Model fits were again calculated using the lit-
eral speaker and listener equations in section 2.1.
Table 3 summarizes how well the four semantic
association measures fit human responses. For the
listener task, the Bigram association metric scores
marginally higher than Word2Vec in top answer
but strongly outperforms other models in rank
correlation. While ConceptNet (top answer) and
Word2Vec (rank correlation) win on the speaker
side, surprisingly, Bigram performs considerably
worse than in experiment 1. In terms of task diffi-

Top answer Rank correlation
Mean SEM Mean SEM

Listener
Bigram 0.561 ± 0.092 0.618 ± 0.044
ConceptNet 0.424 ± 0.080 0.164 ± 0.092
Word2Vec 0.545 ± 0.091 0.408 ± 0.084
LDA 0.106 ± 0.040 -0.461 ± 0.074
Speaker
Bigram 0.130 ± 0.044 -0.006 ± 0.068
ConceptNet 0.564 ± 0.098 0.170 ± 0.076
Word2Vec 0.491 ± 0.092 0.200 ± 0.077
LDA 0.091 ± 0.040 -0.083 ± 0.069

Table 3: Comparison of semantic association mea-
sures to human data from Experiment 2 (separate
speaker and listener OED). Chance performance
is 0.33 (listener) and 0.25 (speaker) for top answer
and 0 for rank correlation.

culty, speakers judged the task to be more difficult
than listeners (t = 8.27, p < 0.001).

The surprisingly low performance of the Bi-
gram model could be due to data sparsity that
was systematically exploited by OED. On average,
45% of the Bigram values for the noun–adjective
associations used in the experiment, which are
used to compute model predictions, were effec-
tively zero (i.e. zero counts are quantile normal-
ized to 1e−7). This level of sparsity is much
higher than both the total set of Bigram associa-
tions (17%) as well as in subsequent speaker con-
figurations (30%). In contrast, on the listener side,
the percentage of values with near zero probabil-
ity is similar between this set of configurations and
those in later experiments. To further explore the
data sparsity hypothesis, we computed model fits
using bigram associations derived from the Twitter
corpus, where only 5% of speaker configurations
are sparse. This raises the fit of the Bigram model
to human data to 0.37, even though the Twitter and
Google Bigram features are highly correlated.

Irrespective of how much of the bad perfor-
mance of the bigram model could be explained
away by data sparsity, the basic asymmetry be-
tween Bigram’s performance across the two exper-
imental conditions seems to hold. One likely con-
found in assessing speaker and listener resources
is that we searched for high utility configurations
independently, and that this difference in material
is driving the difference in performance. This hy-
pothesis was directly addressed in the next experi-
ment.

297

Top answer Rank Correlation
Mean SEM Mean SEM

Listener
Bigram 0.586 ± 0.072 0.496 ± 0.056
ConceptNet 0.207 ± 0.043 -0.050 ± 0.063
Word2Vec 0.441 ± 0.063 0.242 ± 0.064
Speaker
Bigram 0.505 ± 0.047 0.280 ± 0.062
ConceptNet 0.290 ± 0.051 -0.061 ± 0.066
Word2Vec 0.383 ± 0.059 0.041 ± 0.069

Table 4: Comparison of semantic association mea-
sures to human data from Experiment 3 (joint
speaker-listener OED). Chance performance is
0.33 (listener and speaker) for top answer and 0
for rank correlation.

3.3 Experiment 3: Comparing listeners and
speakers on the same scenarios

To further investigate potential asymmetries be-
tween the speaker and the listener condition, we
modified the design optimization procedure to
jointly optimize the geometric mean of all speaker
and listener configurations for the same scenario.
Our intention was to collect data for all possible
configurations of a scenario so that we could have
listeners and speakers engage with the identical
words. We then applied the same filtering proce-
dure to reduce our set to 120 scenarios (760 unique
configurations). Here we restrict ourselves to three
adjectives, matching the number of choices on the
speaker side and minimizing differences in task
difficulty. Due to its weak performance in the pre-
vious experiments, we eliminated LDA from the
comparison set for subsequent experiments.

Table 4 summarizes how well the remaining
three semantic association measures fit human re-
sponses. In contrast to Experiment 2, and in line
with the results from Experiment 1, we find that
Bigram associations perform best in both the lis-
tener and speaker condition. This difference is
more pronounced for the Rank correlation mea-
sure, where other models perform at chance with
the exception of Word2Vec in the listener task.
Based on this result, it appears likely that the dif-
ference in Experiment 2 was driven by choice of
scenario configurations. When adding the con-
straint of finding scenarios that are jointly in-
formative in discriminating between models on
the speaker side and on the listener side, Bigram
robustly outperforms other semantic association
measures. While reducing the number of adjec-
tives from 4 to 3 did not result in a significant de-

Top answer Rank Correlation
Mean SEM Mean SEM

Listener (Bigram)
Literal 0.744 ± 0.079 0.551 ± 0.053
Pra. α = 0.1 0.470 ± 0.046 0.159 ± 0.063
Pra. α = 1.0 0.521 ± 0.046 0.184 ± 0.065
Pra. α = 5.0 0.547 ± 0.046 0.242 ± 0.065
Speaker (Bigram)
Literal 0.652 ± 0.074 0.378 ± 0.057
Pra. α = 0.1 0.478 ± 0.046 0.069 ± 0.068
Pra. α = 1.0 0.496 ± 0.046 0.105 ± 0.066
Pra. α = 5.0 0.496 ± 0.046 0.144 ± 0.066

Table 5: Comparison of pragmatic RSA models
in predicting human responses in Experiment 4.
Chance performance is 0.33 (listener and speaker)
for top answer and 0 for rank correlation.

crease in difficulty, as measured by mean confi-
dence, the difference in difficulty between speaker
and listener task (t = 9.38, p < 0.0001) still re-
mains significant.

3.4 Experiment 4: Comparing literal and
pragmatic models

Since correlation matrices from the stimuli in Ex-
periment 3 (Figure 1), which was only optimized
to elicit differences between the semantic associ-
ation metrics, shows that the literal models’ pre-
dictions are highly correlated with their pragmatic
counterparts, we ran another design optimization
iteration to find configurations for which literal
and pragmatic models strongly disagree. We re-
stricted ourselves to the Bigram semantic associ-
ation metric because it was the highest perform-
ing model in nine out of twelve cases (across the
speaker/listener sides of three experiments, on two
performance scores). Again, we jointly optimized
over speaker and listener configurations, using the
literal version of the model and the correspond-
ing pragmatic model with α = 1 from applying
the RSA equations in Table 2.1. After filtering
for overlap and limiting word co-occurrence as in
the previous experiments, we select the highest
60 utility scenarios later reduced to 40 by high-
est mean confidence. In the experiment, we again
tested each scenario in all its six configurations.

Table 5 summarizes the top answer and rank
correlation scores for literal and pragmatic mod-
els of various degrees of pragmatic behavior (α =
[0.1, 1.0, 5.0]). We do not see strongly scalar in-
ferential behavior of the type predicted by RSA
when applied to our setting. The literal model
outperforms all pragmatic models by a large mar-

298

Answer:
wedding history

Answer:
wedding performance

Answer:
history performance

Codename (Noun) Pair Answer

0.0

0.2

0.4

0.6

0.8

1.0
An

sw
er

 p
ro

ba
bi

lit
y

Model Prediction
 Clue given: dying Other clues: violent , sleepy

Bigram Literal
Bigram Pragmatic
Human

wed
din

g

his
tor

y

wed
din

g

pe
rfo

rm
an

ce

his
tor

y

pe
rfo

rm
an

ce

dying

violent

sleepy

Cl
ue

s (
ad

je
ct

iv
es

) sp, a

wed
din

g

his
tor

y

wed
din

g

pe
rfo

rm
an

ce

his
tor

y

pe
rfo

rm
an

ce

L0

wed
din

g

his
tor

y

wed
din

g

pe
rfo

rm
an

ce

his
tor

y

pe
rfo

rm
an

ce

S1

wed
din

g

his
tor

y

wed
din

g

pe
rfo

rm
an

ce

his
tor

y

pe
rfo

rm
an

ce

L1

0.0

0.2

0.4

0.6

0.8

1.0

Codename (noun) pairs answers

Figure 3: Representative model predictions and
RSA probability matrices (α = 1) from a configu-
ration that illustrates the consequences of repeated
re-normalization on model predictions.

gin across both performance scores and experi-
mental conditions. As before, speakers judged the
task to be more difficult than listeners (t = 6.56,
p < 0.0001).

This stark difference between pragmatic and lit-
eral models is surprising. Figure 3 illustrates a
common pattern that helps to better interpret this
behavior. The literal model’s predictions are more
categorical and best reflect the probabilities from
the original association values after aggregation.
Through the recursive reasoning from RSA, small
differences in raw probabilities, which might be
non-obvious to humans, are magnified to sway
top pragmatic model prediction. For example,
‘history’ and ‘performance’ are initially the best
choice for the given adjective ‘dying’ (see top row
of matrices in Figure 3), the pair is an even bet-
ter choice for the adjective ‘violent’. The non-
obvious advantage that ‘dying’ has over ‘violent’
for the pair ‘wedding’ and ‘performance’ is be-
comes dominant in the S1 normalization where
this pair becomes the best pair for the clue ‘dy-
ing’.6

3.5 Evaluating Human Performance

For experiments 1, 3, and 4, where we obtained
data on matching speaker and listener scenarios,

6We replicated the findings with ConceptNet to find the
same pattern of pragmatic reasoning over-emphasizing small
differences between semantic measures which leads to poor
pragmatic model performance.

Avg. Success Random Success
Exp. 1 0.321 ± 0.0273 0.100
Exp. 3 0.427 ± 0.0257 0.333
Exp. 4 0.393 ± 0.0264 0.333

Table 6: Summary of average success on speakers
and listeners in human data.

we can quantify the average one-shot success that
would hold if a randomly selected speaker and lis-
tener were drawn from our experimental popula-
tion and played together. For a given scenario G,
adjective clue a, speaker noun pair configuration
c, listener choice L, and speaker choice S, the av-
erage success probability:

∑

a∈S
P (L = c|a,G)P (S = a|G) (4)

where we use relative frequency to estimate the
first term from our listener data and the second
term from our speaker data. This average success
is summarized in table 6. This shows that even
though OED (section 2.4) may create scenarios of
a wide range of difficulties, our results as seen in
Tables 4 and 5 show that our models still predict
human behavior well in these difficult scenarios.

4 Discussion

In a series of experiments, we investigated how as-
sociative information is recruited to resolve refer-
ence in language games when truth-conditional in-
formation is not available. Experiments 1-3 com-
pared different computational models of seman-
tics. We found that subjects’ word choices were
predominantly best described using a simple bi-
gram model, derived from Google Ngrams. Ex-
periment 4 contrasted a literal and several prag-
matic versions of the winning Bigram model and
found that the literal version best fit human an-
swers. Furthermore, despite providing speakers
and listeners with the same number of alternatives
to choose from, speakers consistently judged their
side of the game to be harder.

While employing optimal experimental design
techniques was generally helpful, especially in
deriving configurations for contrasting literal and
pragmatic models, the method worked to our dis-
advantage in experiment 2, where data sparsity in
the Bigram model was exacerbated. This illus-
trates that, despite its strength in finding good con-
figurations, the method might be especially prone

299

to exploiting cases of data sparsity (where mod-
els strongly predict that a noun–adjective pair does
not go together) that lead to a suboptimal choice of
configurations. In future extensions of this work,
taking into account uncertainty in the estimates se-
mantic associations within the OED process could
address these concerns.

With the exception of Experiment 2, our data in-
dicate that both speaker and listener behavior are
both best predicted by bigram statistics. Experi-
ment 4 further shows that both speaker and listener
behavior are best accounted for by models without
a recursive pragmatic inference component. These
results are consistent with the conclusion of Xu
and Kemp (2010) that speakers and listeners are
well calibrated to one another, bringing to bear the
same lexical resource and applying it using similar
principles.

Although our experiments do not provide sup-
port for RSA as a good model of pragmatic be-
havior for the scenarios that most sharply distin-
guish level-0 and level-1 RSA models, this does
not rule out the possibility that participants are not
engaged in any pragmatic behavior at all. In our
Experiment 4, optimal experiment design drew us
to cases where pragmatic agents can transform a
‘least-bad’ fit between a clue and target word pair
to a ‘best’ fit, through repeated renormalization
of speaker and listener probability distributions.
This transformation may simply be a more arbi-
trary overriding of direct associative fit than hu-
mans are prepared to consider. Furthermore, there
may be other types of pragmatic behavior that hu-
mans engage in for this task that we did not repre-
sent in our model space.

It is possible that, since participants in our ex-
periments spent 20 − 30 seconds on each ques-
tion, their responses are based on first instinct
while pragmatic decisions may require careful,
more time-consuming reasoning. We only col-
lected confidence ratings from participants and did
not ask for their reasoning behind the answers
given, thus limiting the interpretability of our find-
ings. Another limitation is that the use of prag-
matic devices in the current setup might require
people to have repeated interactions so that they
can align their resources more effectively. One in-
teresting future direction of study that would make
use of an interactive game design could investi-
gate how people coordinate their reference strate-
gies across repeated interactions.

There are scenarios that none of the models pre-
dict correctly. This could suggest other sources of
semantic information that we did not incorporate
in our study. Besides competing hypotheses about
the nature of the semantic knowledge deployed
during the task, we suggest that the metrics could
alternatively describe complementary sources of
information people might draw on when play-
ing the game. Another direction of future work
could focus on combining a mixture of different
semantic models in explaining human choices and
should focus on factors that will likely bring out
pragmatic reasoning in participants.

5 Conclusion

We model speaker and listener behavior through a
simplified version of the game Codenames and do
not find strong evidence for the sophisticated prag-
matic behavior of the type predicted by RSA-like
models (Experiment 4). This suggests that there
are limits on strong scalar inference in one-shot
associative settings. Furthermore, we find that
bigram lexical statistics (Google Bigrams) were
the strongest predictors of human behavior in our
task, especially for listeners. This finding suggests
that direct co-occurrence statistics are particularly
salient in associative settings such as ours. This
result may be a consequence of our restricting co-
denames and clues to be nouns and adjectives re-
spectively or may hold more generally. Finally,
our data suggest a potential discrepancy between
the information sources relied upon by speakers
and listeners: In some experiments (Experiment
2), different models performed best on the speaker
and on the listener side where we would intu-
itively expect that successful communication re-
quires that speakers and listeners semantic knowl-
edge be aligned. In addition, even when control-
ling for the number of choices per trial, mean an-
swer confidence in the listener condition is sig-
nificantly higher, suggesting that the speaker task
is intrinsically harder. Future research further ex-
ploring inference in language game settings could
investigate repeated rounds of interaction, or even
one-shot interaction in richer referential domains.

Acknowledgments

This work was supported by NSF grants BCS-
1456081 and BCS-1551866 to RPL. We’d like to
thank Iyad Rahwan and the Scalable Cooperation
group for their valuable input and support.

300

References
Daniel R Cavagnaro, Jay I Myung, Mark A Pitt,

and Janne V Kujala. 2010. Adaptive design opti-
mization: A mutual information-based approach to
model discrimination in cognitive science. Neural
Computation, 22(4):887–905.

Vladimı́r Chvátil. 2015. Codenames.

Michael C Frank and Noah D Goodman. 2012. Pre-
dicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2016. Multi-agent cooperation and
the emergence of (natural) language. arXiv preprint
arXiv:1612.07182.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P
Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig,
Jon Orwant, Steven Pinker, Martin A. Nowak, and
Erez Lieberman Aiden. 2011. Quantitative analysis
of culture using millions of digitized books. Sci-
ence, 331(6014):176–182.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
English. Communications of the ACM, 38(11):39–
41.

Peter Müller. 2005. Simulation based optimal design.
Handbook of Statistics, 25:509–518.

Douglas L Nelson, Cathy L McEvoy, and Thomas A
Schreiber. 2004. The university of south florida free
association, rhyme, and word fragment norms. Be-
havior Research Methods, Instruments, & Comput-
ers, 36(3):402–407.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Manuel Perea and Eva Rosa. 2002. The effects of asso-
ciative and semantic priming in the lexical decision
task. Psychological Research, 66(3):180–194.

Ahti-Veikko Pietarinen. 2007. Game theory and lin-
guistic meaning. Brill.

Tony Rose, Mark Stevenson, and Miles Whitehead.
2002. The Reuters corpus volume 1: from yester-
day’s news to tomorrow’s language resources. In
LREC, volume 2, pages 827–832. Las Palmas.

Robert Speer and Catherine Havasi. 2013. Conceptnet
5: A large semantic network for relational knowl-
edge. In The Peoples Web Meets NLP, pages 161–
176. Springer.

Luc Steels. 1997. The synthetic modeling of language
origins. Evolution of Communication, 1(1):1–34.

Luis Von Ahn, Mihir Kedia, and Manuel Blum. 2006.
Verbosity: a game for collecting common-sense
facts. In Proceedings of the CHI Conference on Hu-
man Factors in Computing Systems, pages 75–78.
ACM.

Ludwig Wittgenstein. 1953. Philosophical Investiga-
tions. London: Macmillan.

Yang Xu and Charles Kemp. 2010. Inference and
communication in the game of Password. In J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neu-
ral Information Processing Systems 23, pages 2514–
2522. Curran Associates, Inc.

301

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 302–312
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Sequence classification with human attention

Maria Barrett1 Joachim Bingel2
Nora Hollenstein3 Marek Rei4 Anders Søgaard2

1Department of Nordic Studies and Linguistics, University of Copenhagen, Denmark
2Department of Computer Science, University of Copenhagen, Denmark

3Department of Computer Science, ETH Zurich, Switzerland
4Department of Computer Science and Technology, University of Cambridge, United Kingdom

barrett@hum.ku.dk {bingel, soegaard}@di.ku.dk
noraho@ethz.ch marek.rei@cl.cam.ac.uk

Abstract
Learning attention functions requires large
volumes of data, but many NLP tasks sim-
ulate human behavior, and in this paper, we
show that human attention really does pro-
vide a good inductive bias on many atten-
tion functions in NLP. Specifically, we use
estimated human attention derived from eye-
tracking corpora to regularize attention func-
tions in recurrent neural networks. We show
substantial improvements across a range of
tasks, including sentiment analysis, grammat-
ical error detection, and detection of abusive
language.

1 Introduction

When humans read a text, they do not attend to all
its words (Carpenter and Just, 1983; Rayner and
Duffy, 1988). For example, humans are likely to
omit many function words and other words that
are predictable in context and focus on less pre-
dictable content words. Moreover, when they fix-
ate on a word, the duration of that fixation depends
on a number of linguistic factors (Clifton et al.,
2007; Demberg and Keller, 2008).

Since learning good attention functions for re-
current neural networks requires large volumes of
data (Zoph et al., 2016; Britz et al., 2017), and er-
rors in attention are known to propagate to classi-
fication decisions (Alkhouli et al., 2016), we ex-
plore the idea of using human attention, as esti-
mated from eye-tracking corpora, as an inductive
bias on such attention functions. Penalizing atten-
tion functions for departing from human attention
may enable us to learn better attention functions
when data is limited.

Eye-trackers provide millisecond-accurate
records on where humans look when they are
reading, and they are becoming cheaper and more
easily available by the day (San Agustin et al.,
2009). In this paper, we use publicly available

eye-tracking corpora, i.e., texts augmented with
eye-tracking measures such as fixation duration
times, and large eye-tracking corpora have ap-
peared increasingly over the past years. Some
studies suggest that the relevance of text can
be inferred from the gaze pattern of the reader
(Salojärvi et al., 2003) – even on word-level
(Loboda et al., 2011).

Contributions We present a recurrent neural
architecture with attention for sequence classi-
fication tasks. The architecture jointly learns
its parameters and an attention function, but
can alternate between supervision signals from
labeled sequences (with no explicit supervision
of the attention function) and from attention
trajectories. This enables us to use per-word
fixation durations from eye-tracking corpora
to regularize attention functions for sequence
classification tasks. We show such regularization
leads to significant improvements across a range
of tasks, including sentiment analysis, detection
of abusive language, and grammatical error
detection. Our implementation is made available
at https://github.com/coastalcph/
Sequence_classification_with_
human_attention.

2 Method

We present a recurrent neural architecture that
jointly learns the recurrent parameters and the at-
tention function, but can alternate between super-
vision signals from labeled sequences and from at-
tention trajectories in eye-tracking corpora. The
input will be a set of labeled sequences (sentences
paired with discrete category labels) and a set of
sequences, in which each token is associated with
a scalar value representing the attention human
readers devoted to this token on average.

The two input datasets, i.e., the target task train-

302

ing data of sentences paired with discrete cate-
gories, and the eye-tracking corpus, need not (and
will not in our experiments) overlap in any way.
Our experimental protocol, in other words, does
not require in-task eye-tracking recordings, but
simply leverages information from existing, avail-
able corpora.

Behind our approach lies the simple observa-
tion that we can correlate the token-level atten-
tion devoted by a recurrent neural network, even
if trained on sentence-level signals, with any mea-
sure defined at the token level. In other words,
we can compare the attention devoted by a recur-
rent neural network to various measures, including
token-level annotation (Rei and Søgaard, 2018)
and eye-tracking measures. The latter is particu-
larly interesting as it is typically considered a mea-
surement of human attention.

We go beyond this: Not only can we compare
machine attention with human attention, we can
also constrain or inform machine attention by hu-
man attention in various ways. In this paper, we
explore this idea, proposing a particular architec-
ture and training method that, in effect, uses hu-
man attention to regularize machine attention.

Our training method is similar to a standard ap-
proach to training multi-task architectures (Dong
et al., 2015; Søgaard and Goldberg, 2016; Bingel
and Søgaard, 2017), sometimes referred to as the
alternating training approach (Luong et al., 2016):
We randomly select a data point from our training
data or the eye-tracking corpus with some (poten-
tially equal) probability. If the data point is sam-
pled from our training data, we predict a discrete
category and use the computed loss to update our
parameters. If the data point is sampled from the
eye-tracking corpus, we still run the recurrent net-
work to produce a category, but this time we only
monitor the attention weights assigned to the input
tokens. We then compute the minimum squared
error between the normalized eye-tracking mea-
sure and the normalized attention score. In other
words, in multi-task learning, we optimize each
task for a fixed number of parameter updates (or
mini-batches) before switching to the next task
(Dong et al., 2015); in our case, we optimize for
a target task (for a fixed number of updates), then
improve our attention function based on human at-
tention (for a fixed number of updates), then return
to optimizing for the target task and continue iter-
ating.

2.1 Model

Our architecture is a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) that encodes word
representations xi into forward and backward rep-
resentations, and into combined hidden states
hi (of slightly lower dimensionality) at every
timestep. In fact, our model is a hierarchical model
whose word representations are concatenations of
the output of character-level LSTMs and word em-
beddings, following Plank et al. (2016), but we ig-
nore the character-level part of our architecture in
the equations below:

−→
hi = LSTM(xi,

−−→
hi−1) (1)

←−
hi = LSTM(xi,

←−−
hi+1) (2)

h̃i = [
−→
hi ;
←−
hi] (3)

hi = tanh(Whh̃i + bh) (4)

The final (reduced) hidden state is sometimes
used as a sentence representation s, but we instead
use attention to compute s by multiplying dynam-
ically predicted attention weights with the hidden
states for each time step. The final sentence pre-
dictions y are then computed by passing s through
two more hidden layers:

s =
∑

i

ãihi (5)

y = σ(Wy tanh(Wỹs+ bỹ) + by) (6)

From the hidden states, we directly predict token-
level raw attention scores ai:

ei = tanh(Wehi + be) (7)

ai =Waei + ba (8)

We normalize these predictions to attention
weights ãi:

ãi =
ai∑
k ak

(9)

Our model thus combines two distinct objectives:
one at the sentence level and one at the token level.
The sentence-level objective is to minimize the
squared error between output activations and true
sentence labels ŷ.

Lsent =
∑

j

(y(j) − ŷ(j))2 (10)

303

The token-level objective, similarly, is to mini-
mize the squared error for the attention not align-
ing with our human attention metric.

Ltok =
∑

j

∑

t

(a(j)(t) − â(j)(t))2 (11)

These are finally combined to a weighted sum, us-
ing λ (between 0 and 1) to trade off loss functions
at the sentence and token levels.

L = Lsent + λLtok (12)

Note again that our architecture does not require
the target task data to come with eye-tracking in-
formation. We instead learn jointly to predict sen-
tence categories and to attend to the tokens hu-
mans tend to focus on for longer. This requires
a training schedule that determines when to op-
timize for the sentence-level classification objec-
tive, and when to optimize the machine attention
at the token level. We therefore define an epoch to
comprise a fixed number of batches, and sample
every batch of training examples either from the
target task data or from the eye-tracking corpus,
as determined by a coin flip, the bias of which is
tuned as a hyperparameter. Specifically, we define
an epoch to consist of n batches, where n is the
number of training sentences in the target task data
divided by the batch size. This coin is potentially
weighted with data being drawn from the auxiliary
task with some probability or a decreasing proba-
bility of 1

E+1 , where E is the current epoch; see
Section 4 for hyper-parameters.

3 Data

As mentioned in the above, our architecture re-
quires no overlap between the eye-tracking cor-
pus and the training data for the target task. We
therefore rely on publicly available eye-tracking
corpora. For sentiment analysis, grammatical er-
ror detection, and hate speech detection, we use
publicly available research datasets that have been
used previously in the literature. All datasets were
lower-cased.

3.1 Eye-tracking corpora
For our experiments, we concatenate two publicly
available eye-tracking corpora, the Dundee Cor-
pus (Kennedy et al., 2003) and the reading parts
of the ZuCo Corpus (Hollenstein et al., 2018), de-
scribed below. Both corpora contain eye-tracking
measurements from several subjects reading the

same text. For every token, we compute the mean
duration of all fixations to this token as our mea-
sure of human attention, following previous work
(Barrett et al., 2016a; Gonzalez-Garduno and Sø-
gaard, 2018).

Dundee The English part of the Dundee corpus
(Kennedy et al., 2003) comprises 2,368 sentences
and more than 50,000 tokens. The texts were read
by ten skilled, adult, native speakers. The texts
are 20 newspaper articles from The Independent.
The reading was self-paced and as close to natural,
contextualized reading as possible for a laboratory
data collection. The apparatus was a Dr Bouis
Oculometer Eyetracker with a 1000 Hz monocu-
lar (right) sampling. At most five lines were shown
per screen while subjects were reading.

ZuCo The ZuCo corpus (Hollenstein et al.,
2018) is a combined eye-tracking and EEG
dataset. It contains approximately 1,000 individ-
ual English sentences read by 12 adult, native
speakers. Eye movements were recorded with
the infrared video-based eye tracker EyeLink 1000
Plus at a sampling rate of 500 Hz. The sentences
were presented at the same position on the screen,
one at a time. Longer sentences spanned mul-
tiple lines. The subjects used a control pad to
switch to the next sentence and to answer the con-
trol questions, which allowed for natural reading
speed. The corpus contains both natural reading
and reading in a task-solving context. For compat-
ibility with the Dundee corpus, we only use the
subset of the data, where humans were encour-
aged to read more naturally. This subset contains
700 sentences. This part of the Zuco corpus con-
tains positive, negative or neutral sentences from
the Stanford Sentiment Treebank (Socher et al.,
2013) for passive reading, to analyze the elicita-
tion of emotions and opinions during reading. As
a control condition, the subjects sometimes had to
rate the quality of the described movies; in approx-
imately 10% of the cases. The Zuco corpus also
contains instances where subjects were presented
with Wikipedia sentences that contained seman-
tic relations such as employer, award and job_title
(Culotta et al., 2006). The control condition for
this tasks consisted of multiple-choice questions
about the content of the previous sentence; again,
approximately 10% of all sentences were followed
by a question.

304

TASK TRAINS SET DEV. SET TEST SET

DOMAIN n SENT DOMAIN n SENT DOMAIN n SENT

Sentiment
SEMEVAL TWITTER 7,177 SEMEVAL TWITTER 1,205

SEMEVAL TWITTER 2,870
Sentiment SEMEVAL SMS 2,094
Grammatical error FCE 28,731 FCE 2,222 FCE 2,720
Abusive language WASEEM (2016) 5,529 WASEEM (2016) 690 WASEEM (2016) 690
Abusive language WASEEM AND HOVY (2016) 11,225 WASEEM AND HOVY (2016) 1,403 WASEEM AND HOVY (2016) 1,403

Table 1: Overview of the tasks and datasets used.

Preprocessing of eye-tracking data Mean fixa-
tion duration (MEAN FIX DUR) is extracted from
the Dundee Corpus. For Zuco, we divide to-
tal reading time per word token with the num-
ber of fixations to obtain mean fixation duration.
The mean fixation duration is selected empirically
among gaze duration (sum of all fixations in the
first pass reading of the a word) and total fixation
duration, and n fixations. Then we average these
numbers for all readers of the corpus to get a more
robust average processing time. Eye-tracking is
known to correlate with word frequency (Rayner
and Duffy, 1988). We include a frequency base-
line on the eye tracking text, BNC INV FREQ.
The word frequencies comes from the British Na-
tional Corpus (BNC) frequency lists (Kilgarriff,
1995). We use log-transformed frequency per mil-
lion. Before normalizing, we take the additive in-
verse of the frequency, such that rare words get a
high value, making it comparable to gaze.

MEAN FIX DUR and BNC INV FREQ are min-
max-normalized to a value in the range 0-1.
MEAN FIX DUR is normalized separately for the
two eye tracking corpora. We expect the experi-
mental bias – especially the fact that ZuCo con-
tains reading of isolated sentences and Dundee
contains longer texts – to influence the reading and
therefore separate normalization should preserve
the signal within each corpus better.

3.2 Sentiment classification

Table 1 presents an overview of all train, develop-
ment and test sets used in this paper.

Our first task is sentence-level sentiment clas-
sification. We note that many sentiment analysis
datasets contain document-level labels or include
more fine-grained annotation of text spans, say
phrases or words. For compatibility with our other
tasks, we focus on sentence-level sentiment anal-
ysis. We use the SemEval-2013 Twitter dataset
(Wilson et al., 2013; Rosenthal et al., 2015) for
training and development. For test, we use a same-
domain test set, the SemEval-2013 Twitter test

set (SEMEVAL TWITTER POS | NEG), and an
out-of-domain test set, SemEval-2013 SMS test
set (SEMEVAL SMS POS | NEG). The SemEval-
2013 sentiment classification task was a three-way
classification task with positive, negative and neu-
tral classes. We reduce the task to binary tasks
detecting negative sentences vs. non-negative and
vice versa for the positive class. Therefore the
dataset size is the same for POS and NEG experi-
ments.

3.3 Grammatical error detection

Our second task is grammatical error detection.
We use the First Certificate in English error detec-
tion dataset (FCE) (Yannakoudakis et al., 2011).
This dataset contains essays written by English
learners during language examinations, where any
grammatical errors have been manually annotated
by experts. Rei and Yannakoudakis (2016) con-
verted the dataset for a sequence labeling task
and we use their splits for training, development
and testing. Similarly to Rei and Søgaard (2018),
we perform sentence-level binary classification of
sentences that need some editing vs. grammati-
cally correct sentences. We do not use the token-
level labels for training our model.

3.4 Hate speech detection

Our third and final task is detection of abusive
language; or more specifically, hate speech detec-
tion. We use the datasets of Waseem (2016) and
Waseem and Hovy (2016). The former contains
6,909 tweets; the latter 14,031 tweets. They are
manually annotated for sexism and racism. In this
study, sexism and racism are conflated into one
category in both datasets. Both datasets are split
in train, development and test splits consisting of
80%, 10% and 10% of the tweets respectively.

4 Experiments

Models In our experiments, we compare three
models: (a) a baseline model with automatically
learned attention, (b) our model with an attention

305

BL BNC INV FREQ MEAN FIX DUR

TASK P R F1 P R F1 P R F1

SEMEVAL SMS NEG 43.55 45.41 43.77 45.82 48.65 45.24 47.15 46.98 45.77
SEMEVAL SMS POS 65.79 50.81 57.08 65.92 51.04 57.45 65.46 52.95 58.50
SEMEVAL TWITTER NEG 57.39 26.87 35.70 62.50 28.66 37.78 60.52 30.67 40.23
SEMEVAL TWITTER POS 77.96 53.88 63.63 79.66 54.66 64.78 78.77 55.35 64.96

FCE 79.01 89.33 83.84 79.18 89.26 83.89 79.03 90.28 84.28

WASEEM (2016) 76.42 62.07 68.29 77.20 61.71 68.54 77.20 63.06 69.30
WASEEM AND HOVY (2016) 76.23 72.23 74.16 76.33 74.70 75.48 76.95 74.43 75.61

MEAN 68.05 57.23 60.92 69.52 58.38 61.88 69.30 59.10 62.67

Table 2: Sentence classification results. P(recision), R(ecall) and F1. Averages over 10 random seeds. The best
average F1 score per task is shown in bold.

function regularized by information about human
attention, and finally, (c) a second baseline using
frequency information as a proxy for human atten-
tion and using the same regularization scheme as
in our human attention model.

Hyperparameters Basic hyper-parameters such
as number of hidden layers, layer size, and activa-
tion functions were following the settings of Rei
and Søgaard (2018). The dimensionality of our
word embedding layer was set to size 300, and we
use publicly available pre-trained Glove word em-
beddings (Pennington et al., 2014) that we fine-
tune during training. The dimensionality of the
character embedding layer was set to 100. The
recurrent layers in the character-level component
have dimensionality 100; the word-level recurrent
layers dimensionality 300. The dimensionality of
our feed-forward layer, leading to reduced com-
bined representations hi, is 200, and the attention
layer has dimensionality 100.

Three hyper-parameters, however, we tune for
each architecture and for each task, by measuring
sentence-level F1-scores on the development sets.
These are: (a) learning rate, (b) λ in Equation (12),
i.e., controlling the relative importance of the at-
tention regularization, and (c) the probability of
sampling data from the eye-tracking corpus dur-
ing training.

For all tasks and all conditions (baseline,
frequency-informed baseline, and our human at-
tention model), we perform a grid search over
learning rates [.01 .1 1.], Latt weight λ values
[.2 .4 .6 .8 1.], and probability of sampling from
the eye-tracking corpus [.125 .25 .5 1., decreasing
] – where decreasing means that the probability of

sampling from the eye-tracking corpus initially is
0.5, but drops linearly for each epoch (1

E+1 ; see
2.1. We apply the models with the best average F1

scores over three random seeds on the validation
data, to our test sets.

Initialization Our models are randomly initial-
ized. This leads to some variance in performance
across different runs. We therefore report averages
over 10 runs in our experiments below.

5 Results

Our performance metric across all our experiments
is the sentence-level F1 score. We report preci-
sion, recall and F1 scores for all tasks in Table 2.

Our main finding is that our human attention
model, based on regularization from mean fixa-
tion durations in publicly available eye-tracking
corpora, consistently outperforms the recurrent ar-
chitecture with learned attention functions. The
improvements over both baseline and BNC fre-
quency are significant (p < 0.01) using bootstrap-
ping (Calmettes et al., 2012) over all tasks, with
one seed. The mean error reduction over the base-
line is 4.5%.

Unsurprisingly, knowing that human atten-
tion helps guide our recurrent architecture, the
frequency-informed baseline is also better than the
non-informed baseline across the board, but the
human attention model is still significantly better
across all tasks (p < 0.01). For all tasks except
negative sentiment, we note that generally, most of
the improvements over the learned attention base-
line for the gaze-informed models, are due to im-
provements in recall. Precision is not worse, but
we do not see any larger improvements on preci-

306

sion either. For the negative SEMEVAL tasks, we
also see larger improvements for precision.

The observation that improvements are primar-
ily due to increased recall, aligns well with the
hypothesis that human attention serves as an effi-
cient regularization, preventing overfitting to sur-
face statistical regularities that can lead the net-
work to rely on features that are not there at test
time (Globerson and Roweis, 2006), at the ex-
pense of target class precision.

6 Analysis

We illustrate the differences between our baseline
models and the model with gaze-informed atten-
tion by the attention weights of an example sen-
tence. Though it is a single, cherry-picked exam-
ple, it is representative of the general trends we
observe in the data, when manually inspecting at-
tention patterns. Table 3 presents a coarse visu-
alization of the attention weights of six different
models, namely our baseline architecture and the
architecture with gaze-informed attention, trained
on three different tasks: hate speech detection,
negative sentiment classification, and error detec-
tion. The sentence is a positive hate speech exam-
ple from the Waseem and Hovy (2016) develop-
ment set. The words with more attention than the
sentence average are bold-faced.

First note that the baseline models only attend
to one or two coherent text parts. This pattern was
very consistent across all the sentences we exam-
ined. This pattern was not observed with gaze-
informed attention.

Our second observation is that the baseline
models are more likely to attend to stop words than
gaze-informed attention. This suggests that gaze-
informed attention has learned to simulate human
attention to some degree. We also see many dif-
ferences between the jointly learned task-specific,
gaze-informed attention functions.

The gaze-informed hate speech classifier, for
example, places considerable attention on BUT,
which in this case is a passive-aggressive hate
speech indicator. It also gives weight to double
standards and certain rules.

The gaze-informed sentiment classifier, on the
other hand, focuses more on sorry I am not sexist
which, in isolation, reads like an apologetic dis-
claimer. This model also gives weight to double
standards and certain rules

The gaze-informed grammatical error detection

model gives attention to standards, which is un-
grammatical, because of the morphological num-
ber disagreement with its determiner a; it also
gives attention to certain rules, which is disagree-
ing, again in number, with there’s. It also gives
attention to the non-word fem.

Overall, this, in combination with our results
in Table 3, suggests that the regularization effect
from human attention enables our architecture to
learn to better attend to the most relevant aspects
of sentences for the target tasks. In other words,
human attention provides the inductive bias that
makes learning possible.

7 Discussion and related work

Gaze in NLP It has previously been shown that
several NLP tasks benefit from gaze information,
including part-of-speech tagging (Barrett and Sø-
gaard, 2015b; Barrett et al., 2016a), prediction of
multiword expressions (Rohanian et al., 2017) and
sentiment analysis (Mishra et al., 2017b).

Gaze information and other measures from psy-
cholinguistics have been used in different ways in
NLP. Some authors have used discretized, single
features (Pate and Goldwater, 2011, 2013; Plank,
2016; Klerke et al., 2016), whereas others have
used multidimensional, continuous values (Bar-
rett et al., 2016a; Bingel et al., 2016). We follow
Gonzalez-Garduno and Søgaard (2018) in using a
single, continuous feature. We did not experiment
with other representations, however. Specifically,
we only considered the signal from token-level,
normalized mean fixation durations.

Fixation duration is a feature that carries an
enormous amount of information about the text
and the language understanding process. Carpen-
ter and Just (1983) show that readers are more
likely to fixate on open-class words that are not
predictable from context, and Kliegl et al. (2004)
show that a higher cognitive load results in longer
fixation durations. Fixations before skipped words
are shorter before short or high-frequency words
and longer before long or low-frequency words in
comparison with control fixations (Kliegl and En-
gbert, 2005). Many of these findings suggest cor-
relations with syntactic information, and many au-
thors have confirmed that gaze information is use-
ful to discriminate between syntactic phenomena
(Demberg and Keller, 2008; Barrett and Søgaard,
2015a,b).

Gaze data has also been used in the context of

307

FCE SEMEVAL TWITTER NEG WASEEM AND HOVY (2016)
BL MFD BL MFD BL MFD

@CharlesClassiqk: @CharlesClassiqk: @CharlesClassiqk: @CharlesClaqqqqqqqssiqk: @CharlesClassiqk: @CharlesClassiqk:
sorry sorry sorry sorry sorry sorry
I’m I’m I’m I’m I’m I’m
not not not not not not
sexist sexist sexist sexist sexist sexist
BUT BUT BUT BUT BUT BUT
there there there there there there
is is is is is is
a a a a a a
double double double double double double
standards standards standards standards standards standards
there’s there’s there’s there’s there’s there’s
certain certain certain certain certain certain
rules rules rules rules rules rules
for for for for for for
dudes dudes dudes dudes dudes dudes
and and and and and and
there’s there’s there’s there’s there’s there’s
certain certain certain certain certain certain
rules rules rules rules rules rules
for for for for for for
femâĂę femâĂę femâĂę femâĂę femâĂę femâĂę

Table 3: One sentence marked as containing sexism from Waseem and Hovy (2016) development set. Using
trained baseline (BL) and gaze model (MFD) for three tasks: error detection, sentiment classification, and hate
speech detection. Words with more attention than sentence average are boldfaced.

sentiment analysis before (Mishra et al., 2017b,a).
Mishra et al. (2017b) augmented a sentiment anal-
ysis system with eye-tracking features, including
first fixation durations and fixation counts. They
show that fixations not only have an impact in de-
tecting sentiment, but also improve sarcasm detec-
tion. They train a convolutional neural network
that learns features from both gaze and text and
uses them to classify the input text (Mishra et al.,
2017a). On a related note, Raudonis et al. (2013)
developed a emotion recognition system from vi-
sual stimulus (not text) and showed that features
such as pupil size and motion speed are relevant to
accurately detect emotions from eye-tracking data.
Wang et al. (2017) use variables shown to correlate
with human attention, e.g. surprisal, to guide the
attention for sentence representations.

Gaze has also been used in the context of gram-
maticality (Klerke et al., 2015a,b), as well as
in readability assessment (Gonzalez-Garduno and
Søgaard, 2018).

Gaze has either been used as features (Barrett
and Søgaard, 2015a; Barrett et al., 2016b) or as
a direct supervision signal in multi-task learning
scenarios (Klerke et al., 2016; Gonzalez-Garduno
and Søgaard, 2018). We are, to the best of our
knowledge, the first to use gaze to inform attention
functions in recurrent neural networks.

Human-inspired attention functions Ibraheem
et al. (2017), however, uses optimal attention to
simulate human attention in an interactive ma-
chine translation scenario, and Britz et al. (2017)
limit attention to a local context, inspired by find-
ings in studies of human reading. Rei and Søgaard
(2018) use auxiliary data to regularize attention
functions in recurrent neural networks; not from
psycholinguistics data, but using small amounts of
task-specific, token-level annotations. While their
motivation is very different from ours, technically
our models are very related. In a different context,
Das et al. (2017) investigated whether humans at-
tend to the same regions as neural networks solv-
ing visual question answering problems. Lindsey
(2017) also used human-inspired, unsupervised at-
tention in a computer vision context.

Other work on multi-purpose attention func-
tions While our work is the first to use gaze
data to guide attention in a recurrent architectures,
there has recently been some work on sharing at-
tention functions across tasks. Firat et al. (2016),
for example, share attention functions between
languages in the context of multi-way neural ma-
chine translation.

Sentiment analysis While sentiment analysis is
most often considered a supervised learning prob-
lem, several authors have leveraged other signals

308

than annotated data to learn sentiment analysis
models that generalize better. Felbo et al. (2017),
for example, use emoji prediction to pretrain their
sentiment analysis models. Mishra et al. (2018)
use several auxiliary tasks, including gaze predic-
tion, for document-level sentiment analysis. There
is a lot of previous work, also, leveraging informa-
tion across different sentiment analysis datasets,
e.g., Liu et al. (2016).

Error detection In grammatical error detection,
Rei (2017) used an unsupervised auxiliary lan-
guage modeling task, which is similar in spirit
to our second baseline, using frequency informa-
tion as auxiliary data. Rei and Yannakoudakis
(2017) go beyond this and evaluate the usefulness
of many auxiliary tasks, primarily syntactic ones.
They also use frequency information as an auxil-
iary task.

Hate speech detection In hate speech detection,
many signals beyond the text are often leveraged
(see Schmidt and Wiegand (2017) for an overview
of the literature). Interestingly, many authors have
used signals from sentiment analysis, e.g., Gitari
et al. (2015), motivated by the correlation between
hate speech and negative sentiment. This correla-
tion may also explain why we see the biggest im-
provements with gaze-informed attention on those
two tasks.

Human inductive bias Finally, our work relates
to other work on providing better inductive biases
for learning human-related tasks by observing hu-
mans (Tamuz et al., 2011; Wilson et al., 2015). We
believe this is a truly exciting line of research that
can help us push research horizons in many ways.

8 Conclusion

We have shown that human attention provides a
useful inductive bias on machine attention in re-
current neural networks for sequence classification
problems. We present an architecture that enables
us to leverage human attention signals from gen-
eral, publicly available eye-tracking corpora, to in-
duce better, more robust task-specific NLP mod-
els. We evaluate our architecture and show im-
provements across three NLP tasks, namely sen-
timent analysis, grammatical error detection, and
detection of abusive language. We observe that not
only does human attention help models distribute
their attention in a generally useful way; human

attention also seems to act like a regularizer pro-
viding more robust performance across domains,
and it enables better learning of task-specific at-
tention functions through joint learning.

References

Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Pe-
ter, Mohammed Hethnawi, Andreas Guta, and Her-
mann Ney. 2016. Alignment-based neural machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 54–65.

Maria Barrett, Joachim Bingel, Frank Keller, and An-
ders Søgaard. 2016a. Weakly supervised part-of-
speech tagging using eye-tracking data. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), volume 2,
pages 579–584.

Maria Barrett, Frank Keller, and Anders Søgaard.
2016b. Cross-lingual transfer of correlations be-
tween parts of speech and gaze features. In Pro-
ceedings of the 26th International Conference on
Computational Linguistics (COLING), pages 1330–
1339.

Maria Barrett and Anders Søgaard. 2015a. Reading be-
havior predicts syntactic categories. In Proceedings
of the nineteenth conference on computational natu-
ral language learning (CoNLL), pages 345–249.

Maria Barrett and Anders Søgaard. 2015b. Using read-
ing behavior to predict grammatical functions. In
Workshop on Cognitive Aspects of Computational
Language Learning (CogACLL), pages 1–5.

Joachim Bingel, Maria Barrett, and Anders Søgaard.
2016. Extracting token-level signals of syntactic
processing from fMRI-with an application to POS
induction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), volume 1, pages 747–755.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (EACL), vol-
ume 2, pages 164–169.

Denny Britz, Melody Y. Guan, and Minh-Thang Lu-
ong. 2017. Efficient attention using a fixed-size
memory representation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 392–400.

Guillaume Calmettes, Gordon B Drummond, and
Sarah L Vowler. 2012. Making do with what we
have: use your bootstraps. The Journal of physiol-
ogy, 590(15):3403–3406.

309

Patricia A Carpenter and Marcel Adam Just. 1983.
What your eyes do while your mind is reading. Eye
movements in reading: Perceptual and language
processes, pages 275–307.

Charles Clifton, Adrian Staub, and Keith Rayner. 2007.
Eye movements in reading words and sentences. In
Eye Movements: A Window on Mind and Brain,
pages 341–371. Elsevier, Amsterdam, The Nether-
lands.

Aron Culotta, Andrew McCallum, and Jonathan Betz.
2006. Integrating probabilistic extraction models
and data mining to discover relations and patterns in
text. In Proceedings of the main conference on Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, pages 296–303. Association for
Computational Linguistics.

Abhishek Das, Harsh Agrawal, Lawrence Zitnick, Devi
Parikh, and Dhruv Batra. 2017. Human attention in
visual question answering: Do humans and deep net-
works look at the same regions? Computer Vision
and Image Understanding, 163:90–100.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 1723–1732.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyan
Rahwan, and Sune. Lehmann. 2017. Using millions
of emoji occurrences to pretrain any-domain mod-
els for detecting emotion, sentiment, and sarcasm.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1615–1625.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
Proceedings of 14th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), pages 866–875.

Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura
Damien, and Jun Long. 2015. A lexicon-based
approach for hate speech detection. International
Journal of Multimedia and Ubiquitous Engineering,
10(4):215–230.

Amir Globerson and Sam Roweis. 2006. Nightmare
at test time: robust learning by feature deletion. In
Proceedings of the 23rd International Conference on
Machine Learning (ICML), pages 353–360.

Ana Gonzalez-Garduno and Anders Søgaard. 2018.
Learning to predict readability using eye-movement
data from natives and learners. In Proceedings of
the Thirty-Second Association for the Advancement
of Artificial Intelligence Conference (AAAI).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Nora Hollenstein, Jonathan Rotsztejn, Marius Troen-
dle, Andreas Pedroni, Ce Zhang, and Nicolas
Langer. 2018. ZuCo: A simultaneous EEG and eye-
tracking resource for natural sentence reading. Sci-
entific data, Under Review.

Samee Ibraheem, Nicholas Altieri, and John DeNero.
2017. Learning an interactive attention policy for
neural machine translation. In MTSummit.

Alan Kennedy, Robin Hill, and Joël Pynte. 2003. The
dundee corpus. In Proceedings of the 12th European
conference on eye movement.

Adam Kilgarriff. 1995. BNC database and word fre-
quency lists. Retrieved Dec. 2017.

Sigrid Klerke, Héctor Martínez Alonso, and Anders
Søgaard. 2015a. Looking hard: Eye tracking for de-
tecting grammaticality of automatically compressed
sentences. In Proceedings of the 20th Nordic Con-
ference of Computational Linguistics (NODALIDA
2015), pages 97–105.

Sigrid Klerke, Sheila Castilho, Maria Barrett, and An-
ders Søgaard. 2015b. Reading metrics for estimat-
ing task efficiency with MT output. In Proceedings
of the Sixth Workshop on Cognitive Aspects of Com-
putational Language Learning (CogACLL), pages
6–13.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. In Proceedings of 14th Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL),
pages 1528–1533.

Reinhold Kliegl and Ralf Engbert. 2005. Fixation du-
rations before word skipping in reading. Psycho-
nomic Bulletin & Review, 12(1):132–138.

Reinhold Kliegl, Ellen Grabner, Martin Rolfs, and Ralf
Engbert. 2004. Length, frequency, and predictabil-
ity effects of words on eye movements in reading.
European Journal of Cognitive Psychology, 16(1-
2):262–284.

Jack Lindsey. 2017. Pre-training attention mecha-
nisms. In NIPS Workshop on Cognitive Informed
Artificial Intelligence.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Deep multi-task learning with shared memory. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
118–127.

310

Tomasz D Loboda, Peter Brusilovsky, and Jöerg Brun-
stein. 2011. Inferring word relevance from eye-
movements of readers. In Proceedings of the 16th
international conference on intelligent user inter-
faces, pages 175–184. ACM.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task
sequence-to-sequence learning. In International
Conference on Learning Representations (ICLR).

Abhijit Mishra, Kuntal Dey, and Pushpak Bhat-
tacharyya. 2017a. Learning cognitive features from
gaze data for sentiment and sarcasm classification
using convolutional neural network. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 377–387.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2017b. Leverag-
ing cognitive features for sentiment analysis. In Pro-
ceedings of the 20th SIGNLL Conference on Com-
putational Natural Language Learning (CoNLL),
pages 156–166.

Abhijit Mishra, Srikanth Tamilselvam, Riddhiman
Dasgupta, Seema Nagar, and Kuntal Dey. 2018.
Cognition-cognizant sentiment analysis with mul-
titask subjectivity summarization based on annota-
tors’ gaze behavior. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI).

John K Pate and Sharon Goldwater. 2011. Unsuper-
vised syntactic chunking with acoustic cues: compu-
tational models for prosodic bootstrapping. In Pro-
ceedings of the 2nd Workshop on Cognitive Model-
ing and Computational Linguistics, pages 20–29.

John K Pate and Sharon Goldwater. 2013. Unsu-
pervised dependency parsing with acoustic cues.
Transactions of the Association for Computational
Linguistics (TACL), 1:63–74.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Barbara Plank. 2016. Keystroke dynamics as signal
for shallow syntactic parsing. In Proceedings of
the 25th International Conference on Computational
Linguistics (COLING), pages 609–618.

Barbara Plank, Yoav Goldberg, and Anders Søgaard.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 412–418.

Vidas Raudonis, Gintaras Dervinis, Andrius Vilka-
uskas, Agne Paulauskaite-Taraseviciene, and
Gintare Kersulyte-Raudone. 2013. Evaluation of
human emotion from eye motions. Evaluation, 4(8).

Keith Rayner and Susan A. Duffy. 1988. On-line com-
prehension processes and eye movements in reading.
In Reading research: Advances in theory and prac-
tice, pages 13–66, New York, NY, USA. Academic
Press.

Marek Rei. 2017. Semi-supervised multitask learn-
ing for sequence labeling. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), volume 1, pages 2121–
2130.

Marek Rei and Anders Søgaard. 2018. Zero-shot se-
quence labeling: Transferring knowledge from sen-
tences to tokens. Proceedings of the 16th Annual
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL 2018), pages 293–
302.

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 1181–1191.

Marek Rei and Helen Yannakoudakis. 2017. Auxiliary
objectives for neural error detection models. In Pro-
ceedings of the 12th Workshop on Innovative Use of
NLP for Building Educational Applications, pages
33–43.

Omid Rohanian, Shiva Taslimipoor, Victoria Yaneva,
and Le An Ha. 2017. Using gaze data to predict
multiword expressions. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing (RANLP), pages 601–609.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. Semeval-2015 Task 10: Sentiment analysis
in Twitter. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015),
pages 451–463.

Jarkko Salojärvi, Ilpo Kojo, Jaana Simola, and Samuel
Kaski. 2003. Can relevance be inferred from eye
movements in information retrieval. In Proceedings
of WSOM, volume 3, pages 261–266.

Javier San Agustin, Henrik Skovsgaard, John Paulin
Hansen, and Dan Witzner Hansen. 2009. Low-cost
gaze interaction: ready to deliver the promises. In
CHI’09 Extended Abstracts on Human Factors in
Computing Systems, pages 4453–4458. ACM.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models

311

for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, volume 2, pages 231–235.

Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir,
and Adam Tauman Kalai. 2011. Adaptively learning
the crowd kernel. In Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML),
pages 673–680.

Shaonan Wang, Jiajun Zhang, and Chengqing Zong.
2017. Learning sentence representation with guid-
ance of human attention. Proceedings of the Twenty-
Sixth International Joint Conference on Artificial In-
telligence, pages 4137–4143.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? Annotator influence on hate speech detec-
tion on Twitter. In Proceedings of the first workshop
on NLP and computational social science, pages
138–142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? Predictive features for hate
speech detection on Twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Andrew Wilson, Christoph Dann, Chris Lucas, and
Eric Xing. 2015. The human kernel. In Advances
in neural information processing systems (NIPS),
pages 2854–2862.

Theresa Wilson, Zornitsa Kozareva, Preslav Nakov,
Sara Rosenthal, Veselin Stoyanov, and Alan Ritter.
2013. Sentiment analysis in Twitter. In Proceedings
of the Seventh International Workshop on Semantic,
pages 312–320.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics (ACL), volume 1, pages 180–189. Asso-
ciation for Computational Linguistics.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1568–1575.

312

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 313–323
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Sentence-Level Fluency Evaluation:
References Help, But Can Be Spared!

Katharina Kann∗
Center for Data Science

New York University
New York, USA
kann@nyu.edu

Sascha Rothe
Google Research

Zurich, Switzerland
rothe@google.com

Katja Filippova
Google Research
Berlin, Germany

katjaf@google.com

Abstract

Motivated by recent findings on the proba-
bilistic modeling of acceptability judgments,
we propose syntactic log-odds ratio (SLOR),
a normalized language model score, as a met-
ric for referenceless fluency evaluation of nat-
ural language generation output at the sentence
level. We further introduce WPSLOR, a novel
WordPiece-based version, which harnesses a
more compact language model. Even though
word-overlap metrics like ROUGE are com-
puted with the help of hand-written references,
our referenceless methods obtain a signifi-
cantly higher correlation with human fluency
scores on a benchmark dataset of compressed
sentences. Finally, we present ROUGE-LM, a
reference-based metric which is a natural ex-
tension of WPSLOR to the case of available
references. We show that ROUGE-LM yields
a significantly higher correlation with human
judgments than all baseline metrics, including
WPSLOR on its own.

1 Introduction

Producing sentences which are perceived as natu-
ral by a human addressee—a property which we
will denote as fluency1 throughout this paper —is
a crucial goal of all natural language generation
(NLG) systems: it makes interactions more natu-
ral, avoids misunderstandings and, overall, leads
to higher user satisfaction and user trust (Martin-
dale and Carpuat, 2018). Thus, fluency evaluation
is important, e.g., during system development, or

∗*This research was carried out while the first author was
interning at Google.

1Alternative names include naturalness, grammaticality
or readability. Note that the exact definitions of all those
terms vary slightly throughout the literature.

If access to a synonym dictionary is
likely to be of use, then this package may 3
be of service.

Participants are invited to submit a set
pair do domain name that is already 1.6
taken along with alternative.

Even $15 was The HSUS. 1

Table 1: Example compressions from our dataset with
their fluency scores; scores in [1, 3], higher is better.

for filtering unacceptable generations at applica-
tion time. However, fluency evaluation of NLG
systems constitutes a hard challenge: systems are
often not limited to reusing words from the input,
but can generate in an abstractive way. Hence, it
is not guaranteed that a correct output will match
any of a finite number of given references. This
results in difficulties for current reference-based
evaluation, especially of fluency, causing word-
overlap metrics like ROUGE (Lin and Och, 2004)
to correlate only weakly with human judgments
(Toutanova et al., 2016). As a result, fluency eval-
uation of NLG is often done manually, which is
costly and time-consuming.

Evaluating sentences on their fluency, on the
other hand, is a linguistic ability of humans which
has been the subject of a decade-long debate
in cognitive science. In particular, the question
has been raised whether the grammatical knowl-
edge that underlies this ability is probabilistic or
categorical in nature (Chomsky, 1957; Manning,
2003; Sprouse, 2007). Within this context, Lau
et al. (2017) have recently shown that neural lan-

313

guage models (LMs) can be used for modeling hu-
man ratings of acceptability. Namely, they found
SLOR (Pauls and Klein, 2012)—sentence log-
probability which is normalized by unigram log-
probability and sentence length—to correlate well
with acceptability judgments at the sentence level.

However, to the best of our knowledge, these
insights have so far gone disregarded by the natu-
ral language processing (NLP) community. In this
paper, we investigate the practical implications of
Lau et al. (2017)’s findings for fluency evaluation
of NLG, using the task of automatic compression
(Knight and Marcu, 2000; McDonald, 2006) as an
example (cf. Table 1). Specifically, we test our
hypothesis that SLOR should be a suitable met-
ric for evaluation of compression fluency which
(i) does not rely on references; (ii) can naturally
be applied at the sentence level (in contrast to the
system level); and (iii) does not need human flu-
ency annotations of any kind. In particular the first
aspect, i.e., SLOR not needing references, makes
it a promising candidate for automatic evaluation.
Getting rid of human references has practical im-
portance in a variety of settings, e.g., if references
are unavailable due to a lack of resources for anno-
tation, or if obtaining references is impracticable.
The latter would be the case, for instance, when
filtering system outputs at application time.

We further introduce WPSLOR, a novel, Word-
Piece (Wu et al., 2016)-based version of SLOR,
which drastically reduces model size and training
time. Our experiments show that both approaches
correlate better with human judgments than tradi-
tional word-overlap metrics, even though the latter
do rely on reference compressions. Finally, inves-
tigating the case of available references and how
to incorporate them, we combine WPSLOR and
ROUGE to ROUGE-LM, a novel reference-based
metric, and increase the correlation with human
fluency ratings even further.

Contributions. To summarize, we make the fol-
lowing contributions:

1. We empirically show that SLOR is a good
referenceless metric for the evaluation of
NLG fluency at the sentence level.

2. We introduce WPSLOR, a WordPiece-based
version of SLOR, which disposes of a more
compact LM without a significant loss of per-
formance.

3. We propose ROUGE-LM, a reference-based
metric, which achieves a significantly higher
correlation with human fluency judgments
than all other metrics in our experiments.

2 On Acceptability

Acceptability judgments, i.e., speakers’ judgments
of the well-formedness of sentences, have been
the basis of much linguistics research (Chomsky,
1964; Schütze, 1996): a speakers intuition about
a sentence is used to draw conclusions about a
language’s rules. Commonly, “acceptability” is
used synonymously with “grammaticality”, and
speakers are in practice asked for grammatical-
ity judgments or acceptability judgments inter-
changeably. Strictly speaking, however, a sen-
tence can be unacceptable, even though it is gram-
matical – a popular example is Chomsky’s phrase
“Colorless green ideas sleep furiously.” (Chom-
sky, 1957) In turn, acceptable sentences can be
ungrammatical, e.g., in an informal context or in
poems (Newmeyer, 1983).

Scientists—linguists, cognitive scientists, psy-
chologists, and NLP researcher alike—disagree
about how to represent human linguistic abili-
ties. One subject of debates are acceptability judg-
ments: while, for many, acceptability is a bi-
nary condition on membership in a set of well-
formed sentences (Chomsky, 1957), others as-
sume that it is gradient in nature (Heilman et al.,
2014; Toutanova et al., 2016). Tackling this re-
search question, Lau et al. (2017) aimed at model-
ing human acceptability judgments automatically,
with the goal to gain insight into the nature of hu-
man perception of acceptability. In particular, they
tried to answer the question: Do humans judge ac-
ceptability on a gradient scale? Their experiments
showed a strong correlation between human judg-
ments and normalized sentence log-probabilities
under a variety of LMs for artificial data they had
created by translating and back-translating sen-
tences with neural models. While they tried dif-
ferent types of LMs, best results were obtained for
neural models, namely recurrent neural networks
(RNNs).

In this work, we investigate if approaches which
have proven successful for modeling acceptability
can be applied to the NLP problem of automatic
fluency evaluation.

314

3 Method

In this section, we first describe SLOR and the
intuition behind this score. Then, we introduce
WordPieces, before explaining how we combine
the two.

3.1 SLOR
SLOR assigns to a sentence S a score which con-
sists of its log-probability under a given LM, nor-
malized by unigram log-probability and length:

SLOR(S) =
1

|S|(ln(pM (S)) (1)

− ln(pu(S)))

where pM (S) is the probability assigned to the
sentence under the LM. The unigram probability
pu(S) of the sentence is calculated as

pu(S) =
∏

t∈S
p(t) (2)

with p(t) being the unconditional probability of a
token t, i.e., given no context.

The intuition behind subtracting unigram log-
probabilities is that a token which is rare on its
own (in contrast to being rare at a given position in
the sentence) should not bring down the sentence’s
rating. The normalization by sentence length is
necessary in order to not prefer shorter sentences
over equally fluent longer ones.2 Consider, for in-
stance, the following pair of sentences:

(i) He is a citizen of France.

(ii) He is a citizen of Tuvalu.

Given that both sentences are of equal length and
assuming that France appears more often in a
given LM training set than Tuvalu, the length-
normalized log-probability of sentence (i) under
the LM would most likely be higher than that of
sentence (ii). However, since both sentences are
equally fluent, we expect taking each token’s un-
igram probability into account to lead to a more
suitable score for our purposes.

We calculate the probability of a sentence
with a long-short term memory (LSTM,
Hochreiter and Schmidhuber (1997)) LM, i.e., a
special type of RNN LM, which has been trained
on a large corpus. More details on LSTM LMs

2Note that the sentence log-probability which is normal-
ized by sentence length corresponds to the negative cross-
entropy.

ILP NAMAS SEQ2SEQ T3
fluency 2.22 1.30 1.51 1.40

Table 2: Average fluency ratings for each compression
system in the dataset by Toutanova et al. (2016).

can be found, e.g., in Sundermeyer et al. (2012).
The unigram probabilities for SLOR are estimated
using the same corpus.

3.2 WordPieces

Sub-word units like WordPieces (Wu et al., 2016)
are getting increasingly important in NLP. They
constitute a compromise between characters and
words: On the one hand, they yield a smaller vo-
cabulary, which reduces model size and training
time, and improve handling of rare words, since
those are partitioned into more frequent segments.
On the other hand, they contain more information
than characters.

WordPiece models are estimated using a data-
driven approach which maximizes the LM like-
lihood of the training corpus as described in Wu
et al. (2016) and Schuster and Nakajima (2012).

3.3 WPSLOR

We propose a novel version of SLOR, by incorpo-
rating a LM which is trained on a corpus which has
been split by a WordPiece3 model. This leads to a
smaller vocabulary, resulting in a LM with less pa-
rameters, which is faster to train (around 12h com-
pared to roughly 5 days for the word-based version
in our experiments). We will refer to the word-
based SLOR as WordSLOR and to our newly pro-
posed WordPiece-based version as WPSLOR.

4 Experiment

Now, we present our main experiment, in which
we assess the performances of WordSLOR and
WPSLOR as fluency evaluation metrics.

4.1 Dataset

We experiment on the compression dataset by
Toutanova et al. (2016). It contains single sen-
tences and two-sentence paragraphs from the
Open American National Corpus (OANC), which
belong to 4 genres: newswire, letters, jour-
nal, and non-fiction. Gold references are man-
ually created and the outputs of 4 compression
systems (ILP (extractive), NAMAS (abstractive),

3https://github.com/google/sentencepiece

315

SEQ2SEQ (extractive), and T3 (abstractive); cf.
Toutanova et al. (2016) for details) for the test data
are provided. Each example has 3 to 5 independent
human ratings for content and fluency. We are in-
terested in the latter, which is rated on an ordinal
scale from 1 (disfluent) through 3 (fluent). We ex-
periment on the 2955 system outputs for the test
split.

Average fluency scores per system are shown in
Table 2. As can be seen, ILP produces the best
output. In contrast, NAMAS is the worst system
for fluency. In order to be able to judge the relia-
bility of the human annotations, we follow the pro-
cedure suggested by Pavlick and Tetreault (2016)
and used by Toutanova et al. (2016), and compute
the quadratic weighted κ (Cohen, 1968) for the hu-
man fluency scores of the system-generated com-
pressions as 0.337.

4.2 LM Hyperparameters and Training

We train our LSTM LMs on the English Giga-
word corpus (Parker et al., 2011), which consists
of news data.

The hyperparameters of all LMs are tuned us-
ing perplexity on a held-out part of Gigaword,
since we expect LM perplexity and final evalua-
tion performance of WordSLOR and, respectively,
WPSLOR to correlate. Our best networks con-
sist of two layers with 512 hidden units each, and
are trained for 2, 000, 000 steps with a minibatch
size of 128. For optimization, we employ ADAM
(Kingma and Ba, 2014).

4.3 Baseline Metrics

ROUGE-L. Our first baseline is ROUGE-L (Lin
and Och, 2004), since it is the most commonly
used metric for compression tasks. ROUGE-L
measures the similarity of two sentences based
on their longest common subsequence. Gener-
ated and reference compressions are tokenized and
lowercased. For multiple references, we only
make use of the one with the highest score for each
example.

N-gram-overlap metrics. We compare to the
best n-gram-overlap metrics from Toutanova et al.
(2016); combinations of linguistic units (bi-grams
(LR2) and tri-grams (LR3)) and scoring measures
(recall (R) and F-score (F)). With multiple ref-
erences, we consider the union of the sets of n-
grams. Again, generated and reference compres-
sions are tokenized and lowercased.

Negative cross-entropy. We further compare
to the negative LM cross-entropy, i.e., the log-
probability which is only normalized by sentence
length. The score of a sentence S is calculated as

NCE(S) = 1
|S| ln(pM (S)) (3)

with pM (S) being the probability assigned to the
sentence by a LM. We employ the same LMs as
for SLOR, i.e., LMs trained on words (WordNCE)
and WordPieces (WPNCE).

Perplexity. Our next baseline is perplexity,
which corresponds to the exponentiated cross-
entropy:

PPL(S) = exp(−NCE(S)) (4)

About BLEU. Due to its popularity, we also per-
formed initial experiments with BLEU (Papineni
et al., 2002). Its correlation with human scores
was so low that we do not consider it in our final
experiments.

4.4 Correlation and Evaluation Scores
Pearson correlation. Following earlier work
(Toutanova et al., 2016), we evaluate our metrics
using Pearson correlation with human judgments.
It is defined as the covariance divided by the prod-
uct of the standard deviations:

ρX,Y =
cov(X,Y)

σXσY
(5)

Mean squared error. Pearson cannot accurately
judge a metric’s performance for sentences of very
similar quality, i.e., in the extreme case of rating
outputs of identical quality, the correlation is ei-
ther not defined or 0, caused by noise of the evalu-
ation model. Thus, we additionally evaluate using
mean squared error (MSE), which is defined as the
squares of residuals after a linear transformation,
divided by the sample size:

MSEX,Y = min
f

1

|X|

|X|∑

i=1

(f(xi)− yi)2 (6)

with f being a linear function. Note that, since
MSE is invariant to linear transformations of X
but not of Y , it is a non-symmetric quasi-metric.
We apply it with Y being the human ratings. An
additional advantage as compared to Pearson is
that it has an interpretable meaning: the expected
error made by a given metric as compared to the
human rating.

316

metric refs Pearson MSE
WordSLOR 0 0.454 0.261
WPSLOR 0 0.437 0.267
WordNCE 0 0.403∗ 0.276∗

WPNCE 0 0.413∗ 0.273∗

WordPPL 0 0.325∗ 0.295∗

WPPPL 0 0.344∗ 0.290∗

ROUGE-L-mult 3− 5 0.429∗ 0.269
LR3-F-mult 3− 5 0.405∗ 0.275∗

LR2-F-mult 3− 5 0.375∗ 0.283∗

LR3-R-mult 3− 5 0.412∗ 0.273∗

ROUGE-L-single 1 0.406∗ 0.275∗

Table 3: Pearson correlation (higher is better) and
MSE (lower is better) for all metrics; best results in
bold; refs=number of references used to compute the
metric.

4.5 Results and Discussion

As shown in Table 3, WordSLOR and WPSLOR
correlate best with human judgments: Word-
SLOR (respectively WPSLOR) has a 0.025 (re-
spectively 0.008) higher Pearson correlation than
the best word-overlap metric ROUGE-L-mult,
even though the latter requires multiple reference
compressions. Furthermore, if we consider with
ROUGE-L-single a setting with a single given ref-
erence, the distance to WordSLOR increases to
0.048 for Pearson correlation. Note that, since
having a single reference is very common, this re-
sult is highly relevant for practical applications.
Considering MSE, the top two metrics are still
WordSLOR and WPSLOR, with a 0.008 and, re-
spectively, 0.002 lower error than the third best
metric, ROUGE-L-mult.

Comparing WordSLOR and WPSLOR, we find
no significant differences: 0.017 for Pearson and
0.006 for MSE. However, WPSLOR uses a more
compact LM and, hence, has a shorter training
time, since the vocabulary is smaller (16, 000 vs.
128, 000 tokens).

Next, we find that WordNCE and WPNCE per-
form roughly on par with word-overlap metrics.
This is interesting, since they, in contrast to tradi-
tional metrics, do not require reference compres-
sions. However, their correlation with human flu-
ency judgments is strictly lower than that of their
respective SLOR counterparts. The difference be-
tween WordSLOR and WordNCE is bigger than

*Significantly worse than best (bold) result with p <
0.05; one-tailed; Fisher-Z-transformation for Pearson, two
sample t-test for MSE.

that between WPSLOR and WPNCE. This might
be due to accounting for differences in frequencies
being more important for words than for Word-
Pieces. Both WordPPL and WPPPL clearly un-
derperform as compared to all other metrics in our
experiments.

The traditional word-overlap metrics all per-
form similarly. ROUGE-L-mult and LR2-F-mult
are best and worst, respectively.

4.6 Analysis I: Fluency Evaluation per
Compression System

The results per compression system (cf. Table 4)
look different from the correlations in Table 3:
Pearson and MSE are both lower. This is due to
the outputs of each given system being of compa-
rable quality. Therefore, the datapoints are sim-
ilar and, thus, easier to fit for the linear function
used for MSE. Pearson, in contrast, is lower due
to its invariance to linear transformations of both
variables. Note that this effect is smallest for ILP,
which has uniformly distributed targets (Var(Y) =
0.35 vs. Var(Y) = 0.17 for SEQ2SEQ).

Comparing the metrics, the two SLOR ap-
proaches perform best for SEQ2SEQ and T3. In
particular, they outperform the best word-overlap
metric baseline by 0.244 and 0.097 Pearson cor-
relation as well as 0.012 and 0.012 MSE, respec-
tively. Since T3 is an abstractive system, we can
conclude that WordSLOR and WPSLOR are ap-
plicable even for systems that are not limited to
make use of a fixed repertoire of words.

For ILP and NAMAS, word-overlap metrics
obtain best results. The differences in perfor-
mance, however, are with a maximum difference
of 0.072 for Pearson and ILP much smaller than
for SEQ2SEQ. Thus, while the differences are sig-
nificant, word-overlap metrics do not outperform
our SLOR approaches by a wide margin. Recall,
additionally, that word-overlap metrics rely on ref-
erences being available, while our proposed ap-
proaches do not require this.

4.7 Analysis II: Fluency Evaluation per
Domain

Looking next at the correlations for all models but
different domains (cf. Table 5), we first observe
that the results across domains are similar, i.e., we
do not observe the same effect as in Subsection
4.6. This is due to the distributions of scores being
uniform (Var(Y) ∈ [0.28, 0.36]).

317

Pearson MSE
refs ILP NAMAS S2S T3 ILP NAMAS S2S T3

samples 679 762 767 747 679 762 767 747
WordSLOR 0 0.363∗ 0.340∗ 0.257 0.343 0.307∗ 0.104 0.161 0.174
WPSLOR 0 0.417∗ 0.312∗ 0.201∗ 0.360 0.292∗ 0.106∗ 0.166 0.172
WordNCE 0 0.311∗ 0.270∗ 0.128∗ 0.342 0.319∗ 0.109∗ 0.170∗ 0.174
WPNCE 0 0.302∗ 0.258∗ 0.124∗ 0.357 0.322∗ 0.110∗ 0.170∗ 0.172
ROUGE-L-mult 3− 5 0.471 0.392 0.013∗ 0.256∗ 0.275 0.100 0.173∗ 0.184∗

LR3-F-mult 3− 5 0.489 0.266∗ 0.007∗ 0.234∗ 0.269 0.109∗ 0.173∗ 0.187∗

LR2-F-mult 3− 5 0.484 0.213∗ -0.013∗ 0.236∗ 0.271 0.112∗ 0.173∗ 0.186∗

LR3-R-mult 3− 5 0.473 0.246∗ -0.002∗ 0.232∗ 0.275∗ 0.111∗ 0.173∗ 0.187∗

ROUGE-L-single 1 0.363∗ 0.308∗ 0.008∗ 0.263∗ 0.307∗ 0.107∗ 0.173∗ 0.184∗

Table 4: Pearson correlation (higher is better) and MSE (lower is better), reported by compression system; best
results in bold; refs=number of references used to compute the metric.

Next, we focus on an important question: How
much does the performance of our SLOR-based
metrics depend on the domain, given that the re-
spective LMs are trained on Gigaword, which con-
sists of news data?

Comparing the evaluation performance for indi-
vidual metrics, we observe that, except for letters,
WordSLOR and WPSLOR perform best across all
domains: they outperform the best word-overlap
metric by at least 0.019 and at most 0.051 Pear-
son correlation, and at least 0.004 and at most
0.014 MSE. The biggest difference in correlation
is achieved for the journal domain. Thus, clearly
even LMs which have been trained on out-of-
domain data obtain competitive performance for
fluency evaluation. However, a domain-specific
LM might additionally improve the metrics’ cor-
relation with human judgments. We leave a more
detailed analysis of the importance of the training
data’s domain for future work.

5 Incorporation of Given References

ROUGE was shown to correlate well with ratings
of a generated text’s content or meaning at the
sentence level (Toutanova et al., 2016). We fur-
ther expect content and fluency ratings to be cor-
related. In fact, sometimes it is difficult to distin-
guish which one is problematic: to illustrate this,
we show some extreme examples—compressions
which got the highest fluency rating and the lowest
possible content rating by at least one rater, but the
lowest fluency score and the highest content score
by another—in Table 6. We, thus, hypothesize that
ROUGE should contain information about fluency
which is complementary to SLOR, and want to

make use of references for fluency evaluation, if
available. In this section, we experiment with two
reference-based metrics – one trainable one, and
one that can be used without fluency annotations,
i.e., in the same settings as pure word-overlap met-
rics.

5.1 Experimental Setup

First, we assume a setting in which we have the
following available: (i) system outputs whose flu-
ency is to be evaluated, (ii) reference generations
for evaluating system outputs, (iii) a small set of
system outputs with references, which has been
annotated for fluency by human raters, and (iv) a
large unlabeled corpus for training a LM. Note that
available fluency annotations are often uncommon
in real-world scenarios; the reason we use them is
that they allow for a proof of concept. In this set-
ting, we train scikit’s (Pedregosa et al., 2011) sup-
port vector regression model (SVR) with the de-
fault parameters on predicting fluency, given WP-
SLOR and ROUGE-L-mult. We use 500 of our
total 2955 examples for each of training and de-
velopment, and the remaining 1955 for testing.

Second, we simulate a setting in which we have
only access to (i) system outputs which should be
evaluated on fluency, (ii) reference compressions,
and (iii) large amounts of unlabeled text. In par-
ticular, we assume to not have fluency ratings for
system outputs, which makes training a regression
model impossible. Note that this is the standard
setting in which word-overlap metrics are applied.
Under these conditions, we propose to normalize
both given scores by mean and variance, and to
simply add them up. We call this new reference-

318

Pearson MSE
refs letters journal news non-fi letters journal news non-fi

samples 640 999 344 972 640 999 344 972
WordSLOR 0 0.452 0.453 0.403 0.484 0.258 0.250 0.234 0.278
WPSLOR 0 0.435∗ 0.415∗ 0.389 0.483 0.263 0.260 0.237 0.278
WordNCE 0 0.395∗ 0.412∗ 0.342∗ 0.425∗ 0.273∗ 0.261∗ 0.247 0.297∗

WPNCE 0 0.424∗ 0.398∗ 0.363 0.460 0.266∗ 0.265∗ 0.243 0.286
ROUGE-L-mult 3− 5 0.487 0.382∗ 0.384 0.451∗ 0.247 0.269∗ 0.238 0.289
LR3-F-mult 3− 5 0.404∗ 0.402∗ 0.278∗ 0.439∗ 0.271∗ 0.264∗ 0.258∗ 0.293
LR2-F-mult 3− 5 0.390∗ 0.363∗ 0.292∗ 0.395∗ 0.275∗ 0.273∗ 0.256∗ 0.306∗

LR3-R-mult 3− 5 0.420∗ 0.395∗ 0.272∗ 0.453 0.267∗ 0.266∗ 0.259∗ 0.288
ROUGE-L-single 1 0.453 0.347∗ 0.335∗ 0.450∗ 0.258∗ 0.277∗ 0.248 0.289

Table 5: Pearson correlation (higher is better) and MSE (lower is better), reported by domain of the original
sentence or paragraph; best results in bold; refs=number of references used to compute the metric.

model generated compression
ILP Objectives designed to lead incarcerated youth to an understanding of grief and loss

related influences on their behavior.
ILP In Forster’s A Passage to India is created.

SEQ2SEQ Jogged my thoughts back to Muscat Ramble.
SEQ2SEQ Between Sagres and Lagos, pleasant beach with fishing boats, and a market.

T3 Your support of the Annual Fund maintaining the core values in GSAS the ethics.

Table 6: Sentences for which raters were unsure if they were perceived as problematic due to fluency or content
issues, together with the model which generated them.

metric refs train? Pearson MSE
1 SVR: 3− 5 yes 0.594 0.217

ROUGE+WPSLOR
2 ROUGE-LM 3− 5 no 0.496 0.252
3 ROUGE-L-mult 3− 5 no 0.430 0.273
4 WPSLOR 0 no 0.439 0.270

Table 7: Combinations; all differences except for 3 and
4 are statistically significant; refs=number of references
used to compute the metric; ROUGE=ROUGE-L-mult;
best results in bold.

based metric ROUGE-LM. In order to make this
second experiment comparable to the SVR-based
one, we use the same 1955 test examples.

5.2 Results and Discussion

Results are shown in Table 7. First, we can see
that using SVR (line 1) to combine ROUGE-L-
mult and WPSLOR outperforms both individual
scores (lines 3-4) by a large margin. This serves
as a proof of concept: the information contained
in the two approaches is indeed complementary.

Next, we consider the setting where only refer-
ences and no annotated examples are available. In

contrast to SVR (line 1), ROUGE-LM (line 2) has
only the same requirements as conventional word-
overlap metrics (besides a large corpus for train-
ing the LM, which is easy to obtain for most lan-
guages). Thus, it can be used in the same settings
as other word-overlap metrics. Since ROUGE-
LM—an uninformed combination—performs sig-
nificantly better than both ROUGE-L-mult and
WPSLOR on their own, it should be the metric
of choice for evaluating fluency with given refer-
ences.

6 Related Work

6.1 Fluency Evaluation

Fluency evaluation is related to grammatical er-
ror detection (Atwell, 1987; Wagner et al., 2007;
Schmaltz et al., 2016; Liu and Liu, 2017) and
grammatical error correction (Islam and Inkpen,
2011; Ng et al., 2013, 2014; Bryant and Ng, 2015;
Yuan and Briscoe, 2016). However, it differs from
those in several aspects; most importantly, it is
concerned with the degree to which errors matter
to humans.

Work on automatic fluency evaluation in NLP

319

has been rare. Heilman et al. (2014) predicted
the fluency (which they called grammaticality)
of sentences written by English language learn-
ers. In contrast to ours, their approach is super-
vised. Stent et al. (2005) and Cahill (2009) found
only low correlation between automatic metrics
and fluency ratings for system-generated English
paraphrases and the output of a German sur-
face realiser, respectively. Explicit fluency eval-
uation of NLG, including compression and the
related task of summarization, has mostly been
performed manually. Vadlapudi and Katragadda
(2010) used LMs for the evaluation of summariza-
tion fluency, but their models were based on part-
of-speech tags, which we do not require, and they
were non-neural. Further, they evaluated longer
texts, not single sentences like we do. Toutanova
et al. (2016) compared 80 word-overlap metrics
for evaluating the content and fluency of compres-
sions, finding only low correlation with the latter.
However, they did not propose an alternative eval-
uation. We aim at closing this gap.

6.2 Compression Evaluation
Automatic compression evaluation has mostly had
a strong focus on content. Hence, word-overlap
metrics like ROUGE (Lin and Och, 2004) have
been widely used for compression evaluation.
However, they have certain shortcomings, e.g.,
they correlate best for extractive compression,
while we, in contrast, are interested in an approach
which generalizes to abstractive systems. Alter-
natives include success rate (Jing, 2000), simple
accuracy (Bangalore et al., 2000), which is based
on the edit distance between the generation and
the reference, or word accuracy (Hori and Furui,
2004), the equivalent for multiple references.

6.3 Criticism of Common Metrics for NLG
In the sense that we promote an explicit evaluation
of fluency, our work is in line with previous criti-
cism of evaluating NLG tasks with a single score
produced by word-overlap metrics.

The need for better evaluation for machine
translation (MT) was expressed, e.g., by Callison-
Burch et al. (2006), who doubted the meaningful-
ness of BLEU, and claimed that a higher BLEU
score was neither a necessary precondition nor a
proof of improved translation quality. Similarly,
Song et al. (2013) discussed BLEU being unreli-
able at the sentence or sub-sentence level (in con-
trast to the system-level), or for only one single

reference. This was supported by Isabelle et al.
(2017), who proposed a so-called challenge set ap-
proach as an alternative. Graham et al. (2016) per-
formed a large-scale evaluation of human-targeted
metrics for machine translation, which can be seen
as a compromise between human evaluation and
fully automatic metrics. They also found fully au-
tomatic metrics to correlate only weakly or moder-
ately with human judgments. Bojar et al. (2016a)
further confirmed that automatic MT evaluation
methods do not perform well with a single refer-
ence. The need of better metrics for MT has been
addressed since 2008 in the WMT metrics shared
task (Bojar et al., 2016b, 2017).

For unsupervised dialogue generation, Liu et al.
(2016) obtained close to no correlation with hu-
man judgements for BLEU, ROUGE and ME-
TEOR. They contributed this in a large part to
the unrestrictedness of dialogue answers, which
makes it hard to match given references. They em-
phasized that the community should move away
from these metrics for dialogue generation tasks,
and develop metrics that correlate more strongly
with human judgments. Elliott and Keller (2014)
reported the same for BLEU and image caption
generation. Dušek et al. (2017) suggested an RNN
to evaluate NLG at the utterance level, given only
the input meaning representation.

7 Future Work

The work presented in this paper brings up multi-
ple interesting next steps for future research.

First, in Subsection 4.7, we investigated the per-
formances of WordSLOR and WPSLOR in de-
pendence of the domain of the considered text.
We concluded that an application was possible
even for unrelated domains. However, we did
not experiment with alternative LMs, which leaves
the following questions unresolved: (i) Would
training LMs on specific domains improve Word-
SLOR’s and WPSLOR’s correlation with human
fluency judgments, i.e., to what degree are the
properties of the training data important? (ii) How
does the size of the training corpus influence per-
formance? Ultimatly, this research could lead to
answering the following question: Is it better to
train a LM on a small, in-domain corpus or on a
large corpus from another domain?

Second, we showed that, in certain settings,
Pearson correlation does not give reliable insight
into a metric’s performance. Since in general eval-

320

uation of evaluation metrics is hard, an important
topic for future research would be the investigation
of better ways to do so, or to study under which
conditions a metric’s performance can be assessed
best.

Last but not least, a straight-forward continua-
tion of our research would encompass the investi-
gation of SLOR as a fluency metric for other NLG
tasks or languages. While the results for com-
pression strongly suggest a general applicability
to a wider range of NLP tasks, this has yet to be
confirmed empirically. As far as other languages
are concerned, the question what influence a given
language’s grammar has would be an interesting
research topic.

8 Conclusion

We empirically confirmed the effectiveness of
SLOR, a LM score which accounts for the ef-
fects of sentence length and individual unigram
probabilities, as a metric for fluency evaluation
of the NLG task of automatic compression at
the sentence level. We further introduced WP-
SLOR, an adaptation of SLOR to WordPieces,
which reduced both model size and training time
at a similar evaluation performance. Our exper-
iments showed that our proposed referenceless
metrics correlate significantly better with fluency
ratings for the outputs of compression systems
than traditional word-overlap metrics on a bench-
mark dataset. Additionally, they can be applied
even in settings where no references are available,
or would be costly to obtain. Finally, for given
references, we proposed the reference-based met-
ric ROUGE-LM, which consists of a combination
of WPSLOR and ROUGE. Thus, we were able to
obtain an even more accurate fluency evaluation.

Acknowledgments

We would like to thank Sebastian Ebert and
Samuel Bowman for their detailed and helpful
feedback.

References

Eric Steven Atwell. 1987. How to detect grammatical
errors in a text without parsing it. In EACL.

Srinivas Bangalore, Owen Rambow, and Steve Whit-
taker. 2000. Evaluation metrics for generation. In
INLP.

Ondrej Bojar, Christian Federmann, Barry Haddow,
Philipp Koehn, Matt Post, and Lucia Specia. 2016a.
Ten years of WMT evaluation campaigns: Lessons
learnt. In Translation Evaluation: From Frag-
mented Tools and Data Sets to an Integrated Ecosys-
tem.

Ondřej Bojar, Yvette Graham, and Amir Kamran.
2017. Results of the WMT17 metrics shared task.
In WMT.

Ondřej Bojar, Yvette Graham, Amir Kamran, and
Miloš Stanojević. 2016b. Results of the WMT16
metrics shared task. In WMT.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammati-
cal error correction? In ACL-IJCNLP.

Aoife Cahill. 2009. Correlating human and automatic
evaluation of a german surface realiser. In ACL-
IJCNLP.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of BLEU in
machine translation research. In EACL.

Noam Chomsky. 1957. Syntactic structures. Walter de
Gruyter.

Noam Chomsky. 1964. Aspects of the Theory of Syn-
tax. MIT Press.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2017. Referenceless quality estimation for natural
language generation. arXiv:1708.01759.

Desmond Elliott and Frank Keller. 2014. Comparing
automatic evaluation measures for image descrip-
tion. In ACL.

Yvette Graham, Timothy Baldwin, Meghan Dowling,
Maria Eskevich, Teresa Lynn, and Lamia Tounsi.
2016. Is all that glitters in machine translation qual-
ity estimation really gold? In COLING.

Michael Heilman, Aoife Cahill, Nitin Madnani,
Melissa Lopez, Matthew Mulholland, and Joel
Tetreault. 2014. Predicting grammaticality on an or-
dinal scale. In ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Chiori Hori and Sadaoki Furui. 2004. Speech summa-
rization: An approach through word extraction and
a method for evaluation. IEICE Transactions on In-
formation and Systems, 87(1):15–25.

Pierre Isabelle, Colin Cherry, and George Foster. 2017.
A challenge set approach to evaluating machine
translation. In EMNLP.

321

Aminul Islam and Diana Inkpen. 2011. Correcting dif-
ferent types of errors in texts. In CAIAC.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In ANLP.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization – step one: Sentence compres-
sion. In AAAI.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probabil-
ity: A probabilistic view of linguistic knowledge.
Cognitive Science, 41(5):1202–1241.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In ACL.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An em-
pirical study of unsupervised evaluation metrics for
dialogue response generation. In EMNLP.

Zhuo-Ran Liu and Yang Liu. 2017. Exploiting un-
labeled data for neural grammatical error detec-
tion. Journal of Computer Science and Technology,
32(4):758–767.

Christopher D Manning. 2003. Probabilistic syntax.
Probabilistic linguistics.

Marianna J Martindale and Marine Carpuat. 2018. Flu-
ency over adequacy: A pilot study in measuring user
trust in imperfect MT. arXiv:1802.06041.

Ryan McDonald. 2006. Discriminative sentence com-
pression with soft syntactic evidence. In EACL.

Frederick J Newmeyer. 1983. Grammatical theory: Its
limits and its possibilities. University of Chicago
Press.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task on
grammatical error correction. In CoNLL.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In CoNLL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In ACL.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword fifth edi-
tion, Linguistic Data Consortium.

Adam Pauls and Dan Klein. 2012. Large-scale syntac-
tic language modeling with treelets. In ACL.

Ellie Pavlick and Joel Tetreault. 2016. An empiri-
cal analysis of formality in online communication.
TACL, 4:61–74.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Allen Schmaltz, Yoon Kim, Alexander M Rush, and
Stuart M Shieber. 2016. Sentence-level grammatical
error identification as sequence-to-sequence correc-
tion. arXiv:1604.04677.

M Schuster and K Nakajima. 2012. Japanese and Ko-
rean voice search. In ICASSP.

Carson T Schütze. 1996. The empirical base of lin-
guistics: Grammaticality judgments and linguistic
methodology. University of Chicago Press.

Xingyi Song, Trevor Cohn, and Lucia Specia. 2013.
BLEU deconstructed: Designing a better MT eval-
uation metric. International Journal of Computa-
tional Linguistics and Applications, 4(2):29–44.

Jon Sprouse. 2007. Continuous acceptability, categor-
ical grammaticality, and experimental syntax. Bi-
olinguistics, 1:123–134.

Amanda Stent, Matthew Marge, and Mohit Singhai.
2005. Evaluating evaluation methods for generation
in the presence of variation. In CICLing.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In ISCA.

Kristina Toutanova, Chris Brockett, Ke M Tran, and
Saleema Amershi. 2016. A dataset and evaluation
metrics for abstractive compression of sentences and
short paragraphs. In EMNLP.

Ravikiran Vadlapudi and Rahul Katragadda. 2010. On
automated evaluation of readability of summaries:
Capturing grammaticality, focus, structure and co-
herence. In NAACL-HLT SRW.

Joachim Wagner, Jennifer Foster, and Josef van Gen-
abith. 2007. A comparative evaluation of deep and
shallow approaches to the automatic detection of
common grammatical errors. In EMNLP-CoNLL.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144.

322

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
NAACL-HLT.

323

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 324–333
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Predefined Sparseness in Recurrent Sequence Models

Thomas Demeester, Johannes Deleu, Fréderic Godin, Chris Develder
Ghent University - imec

Ghent, Belgium
firstname.lastname@ugent.be

Abstract
Inducing sparseness while training neural net-
works has been shown to yield models with a
lower memory footprint but similar effective-
ness to dense models. However, sparseness is
typically induced starting from a dense model,
and thus this advantage does not hold during
training. We propose techniques to enforce
sparseness upfront in recurrent sequence mod-
els for NLP applications, to also benefit train-
ing. First, in language modeling, we show how
to increase hidden state sizes in recurrent lay-
ers without increasing the number of parame-
ters, leading to more expressive models. Sec-
ond, for sequence labeling, we show that word
embeddings with predefined sparseness lead to
similar performance as dense embeddings, at a
fraction of the number of trainable parameters.

1 Introduction

Many supervised learning problems today are
solved with deep neural networks exploiting large-
scale labeled data. The computational and mem-
ory demands associated with the large amount of
parameters of deep models can be alleviated by us-
ing sparse models. Applying sparseness can be
seen as a form of regularization, as it leads to a
reduced amount of model parameters1, for given
layer widths or representation sizes. Current suc-
cessful approaches gradually induce sparseness
during training, starting from densely initialized
networks, as detailed in Section 2. However, we
propose that models can also be built with pre-
defined sparseness, i.e., such models are already
sparse by design and do not require sparseness in-
ducing training schemes.

The main benefit of such an approach is mem-
ory efficiency, even at the start of training. Espe-
cially in the area of natural language processing, in

1The sparseness focused on in this work, occurs on the
level of trainable parameters, i.e., we do not consider data
sparsity.

line with the hypothesis by Yang et al. (2017) that
natural language is “high-rank”, it may be useful
to train larger sparse representations, even when
facing memory restrictions. For example, in order
to train word representations for a large vocabu-
lary using limited computational resources, prede-
fined sparseness would allow training larger em-
beddings more effectively compared to strategies
inducing sparseness from dense models.

The contributions of this paper are (i) a
predefined sparseness model for recurrent neu-
ral networks, (ii) as well as for word embed-
dings, and (iii) proof-of-concept experiments on
part-of-speech tagging and language modeling, in-
cluding an analysis of the memorization capacity
of dense vs. sparse networks. An overview of re-
lated work is given in the next Section 2. We sub-
sequently present predefined sparseness in recur-
rent layers (Section 3), as well as embedding lay-
ers (Section 4), each illustrated by experimental
results. This is followed by an empirical investi-
gation of the memorization capacity of language
models with predefined sparseness (Section 5).
Section 6 summarizes the results, and points out
potential areas of follow-up research.

The code for running the presented experiments
is publically available.2

2 Related Work

A substantial body of work has explored the bene-
fits of using sparse neural networks. In deep con-
volutional networks, common approaches include
sparseness regularization, e.g., using decompo-
sition (Liu et al., 2015) or variational dropout
(Molchanov et al., 2017)), pruning of connections
(Han et al., 2016, 2015; Guo et al., 2016) and low
rank approximations (Jaderberg et al., 2014; Tai
et al., 2016). Regularization and pruning often

2https://github.com/tdmeeste/SparseSeqModels

324

lead to mostly random connectivity, and therefore
to irregular memory accesses, with little practical
effect in terms of hardware speedup. Low rank
approximations are structured and thus do achieve
speedups, with as notable examples the works of
Wen et al. (2016) and Lebedev and Lempitsky
(2016).

Whereas above-cited papers specifically ex-
plored convolutional networks, our work focuses
on recurrent neural networks (RNNs). Similar
ideas have been applied there, e.g., see Lu et al.
(2016) for a systematic study of various new com-
pact architectures for RNNs, including low-rank
models, parameter sharing mechanisms and struc-
tured matrices. Also pruning approaches have
been shown to be effective for RNNs, e.g., by
Narang et al. (2017). Notably, in the area of audio
synthesis, Kalchbrenner et al. (2018) showed that
large sparse networks perform better than small
dense networks. Their sparse models were ob-
tained by pruning, and importantly, a significant
speedup was achieved through an efficient imple-
mentation.

For the domain of natural language processing
(NLP), recent work by Wang et al. (2016) pro-
vides an overview of sparse learning approaches,
and in particular noted that “application of sparse
coding in language processing is far from exten-
sive, when compared to speech processing”. Our
current work attempts to further fill that gap. In
contrast to aforementioned approaches (that either
rely on inducing sparseness starting from a denser
model, or rather indirectly try to impose sparse-
ness by enforcing constraints), we explore ways to
predefine sparseness.

In the future, we aim to design models where
predefined sparseness will allow using very large
representation sizes at a limited computational
cost. This could be interesting for training mod-
els on very large datasets (Chelba et al., 2013;
Shazeer et al., 2017), or for more complex applica-
tions such as joint or multi-task prediction scenar-
ios (Miwa and Bansal, 2016; Bekoulis et al., 2018;
Hashimoto et al., 2017).

3 Predefined Sparseness in RNNs

Our first objective is designing a recurrent network
cell with fewer trainable parameters than a stan-
dard cell, with given input dimension i and hidden
state size h. In Section 3.1, we describe one way
to do this, while still allowing the use of fast RNN

libraries in practice. This is illustrated for the task
of language modeling in Section 3.2.

3.1 Sparse RNN Composed of Dense RNNs

The weight matrices in RNN cells can be divided
into input-to-hidden matrices Whi ∈ Rh×i and
hidden-to-hidden matrices Whh ∈ Rh×h (assum-
ing here the output dimension corresponds to the
hidden state size h), adopting the terminology
used in (Goodfellow et al., 2016). A sparse RNN
cell can be obtained by introducing sparseness in
Whh and Whi. Note that our experiments make
use of the Long Short-Term Memory (LSTM) cell
(Hochreiter and Schmidhuber, 1997), but our dis-
cussion should hold for any type of recurrent net-
work cell. For example, an LSTM contains 4 ma-
trices Whh and Whi, whereas the Gated Recur-
rent Unit (GRU) (Chung et al., 2014) only has 3.

We first propose to organize the hidden dimen-
sions in several disjoint groups, i.e, N segments
with lengths sn (n = 1, . . . , N), with

∑
n sn = h.

We therefore reduce Whh to a block-diagonal ma-
trix. For example, a uniform segmentation would
reduce the number of trainable parameters in Whh

to a fraction 1/N . Figure 1 illustrates an exam-
ple Whh for N = 3. One would expect that
this simplification has a significant regularizing ef-
fect, given that the number of possible interactions
between hidden dimensions is strongly reduced.
However, our experiments (see Section 3.2) show
that a larger sparse model may still be more ex-
pressive than its dense counterpart with the same
number of parameters. Yet, Merity et al. (2017)
showed that applying weight dropping (i.e., Drop-
Connect, Wan et al. (2013)) in an LSTM’s Whh

matrices has a stronger positive effect on language
models than other ways to regularize them. Sparsi-
fying Whh upfront can hence be seen as a similar
way to avoid the model’s ‘over-expressiveness’ in
its recurrent weights.

As a second way to sparsify the RNN cell, we
propose to not provide all hidden dimensions with
explicit access to each input dimension. In each
row of Whi we limit the number of trainable pa-
rameters to a fraction γ ∈]0, 1]. Practically, we
choose to organize the γi trainable parameters in
each row within a window that gradually moves
from the first to the last input dimension, when ad-
vancing in the hidden (i.e., row) dimension. Fur-
thermore, we segment the hidden dimension of
Whi according to the segmentation of Whh, and

325

h i

h γi
Whh Whi

(a) (b)

s3

s2

s1

Figure 1: Predefined sparseness in hidden-to-
hidden (Whh) and input-to-hidden (Whi) matri-
ces in RNNs. Trainable parameters (yellow) vs.
zeros (white).

move the window of γi trainable parameters dis-
cretely per segment, as illustrated in Fig. 1(b).

Because of the proposed practical arrangement
of sparse and dense blocks in Whh and Whi,
the sparse RNN cell is equivalent to a composi-
tion of smaller dense RNN’s operating in paral-
lel on (partly) overlapping input data segments,
with concatenation of the individual hidden states
at the output. This will be illustrated at the end of
Section 5. As a result, fast libraries like CuDNN
(Chetlur et al., 2014) can be used directly. Fur-
ther research is required to investigate the poten-
tial benefit in terms of speed and total cell capac-
ity, of physically distributing computations for the
individual dense recurrent cells.

Note that this is only possible because of the ini-
tial requirement that the output dimensions are di-
vided into disjoint segments. Whereas inputs can
be shared entirely between different components,
joining overlapping segments in the h dimension
would need to be done within the cell, before ap-
plying the gating and output non-linearities. This
would make the proposed model less interesting
for practical use.

We point out two special cases: (i) dense Whi

matrices (γ = 1) lead to N parallel RNNs that
share the inputs but with separate contributions to
the output, and (ii) organizing Whi as a block ma-
trix (e.g., γ = 1/N for N same-length segments),
leads to N isolated parallel RNNs. In the latter
case, the reduction in trainable parameters is high-
est, for a given number of segments, but there is
no more influence from any input dimension in a
given segment to output dimensions in non-cor-
responding segments. We recommend option (i)
as the most rational way to apply our ideas: the

sparse RNN output is a concatenation of individ-
ual outputs of a number of RNN components con-
nected in parallel, all sharing the entire input.

3.2 Language Modeling with Sparse RNNs

We apply predefined sparse RNNs to language
modeling. Our baseline approach is the AWD-
LSTM model introduced by Merity et al. (2017).
The recurrent unit consists of a three-layer
stacked LSTM (Long Short-Term Memory net-
work (Hochreiter and Schmidhuber, 1997)), with
400-dimensional inputs and outputs, and interme-
diate hidden state sizes of 1150. Since the vo-
cabulary contains only 10k words, most trainable
parameters are in the recurrent layer (20M out of
a total of 24M). In order to cleanly measure the
impact of predefined sparseness in the recurrent
layer, we maintain the original word embedding
layer dimensions, and sparsify the recurrent layer.3

In this example, we experiment with increasing
dimensions in the recurrent layer while maintain-
ing the number of trainable parameters, whereas
in Section 4.2 we increase sparseness while main-
taining dimensions.

Specifically, each LSTM layer is made sparse
in such a way that the hidden dimension 1150 is
increased by a factor 1.5 (chosen ad hoc) to 1725,
but the embedding dimensions and total number of
parameters remain the same (within error margins
from rounding to integer dimensions for the dense
blocks). We use uniform segments. The number
of parameters for the middle LSTM layer can be
calculated as:4

params. LSTM layer 2

= 4(hd id + h2d + 2hd) (dense)

= 4N(
hs
N
γis +

h2s
N2

+ 2
hs
N

) (sparse)

in which the first expression represents the gen-
eral case (e.g., the dense case has input and state
sizes id = hd = 1150), and the second part is
the sparse case composed of N parallel LSTMs

3Alternative models could be designed for comparison,
with modifications in both the embedding and output layer.
Straightforward ideas include an ensemble of smaller inde-
pendent models, or a mixture-of-softmaxes output layer to
combine hidden states of the parallel LSTM components, in-
spired by (Yang et al., 2017).

4This follows from an LSTM’s 4 Whh and 4 Whi ma-
trices, as well as bias vectors. However, depending on the
implementation the equations may differ slightly in the con-
tribution from the bias terms. We assume the standard Py-
torch implementation (Paszke et al., 2017).

326

finetune test perplexity

(Merity et al., 2017) no 58.8
baseline no 58.8± 0.3
sparse LSTM no 57.9± 0.3

(Merity et al., 2017) yes 57.3
baseline yes 56.6± 0.2
sparse LSTM yes 57.0± 0.2

Table 1: Language modeling for PTB
(mean ± stdev).

with input size γis, and state size hs/N (with
is = hs = 1725). Dense and sparse variants have
the same number of parameters for N = 3 and
γ = 0.555. These values are obtained by identi-
fying both expressions. Note that the equality in
model parameters for the dense and sparse case
holds only approximately due to rounding errors
in (γis) and (hs/N).

Figure 1 displays Whh and Whi for the mid-
dle layer, which has close to 11M parameters out
of the total of 24M in the whole model. A dense
model with hidden size h = 1725 would require
46M parameters, with 24M in the middle LSTM
alone.

Given the strong hyperparameter dependence
of the AWD-LSTM model, and the known is-
sues in objectively evaluating language models
(Melis et al., 2017), we decided to keep all hy-
perparameters (i.e., dropout rates and optimiza-
tion scheme) as in the implementation from Mer-
ity et al. (2017)5, including the weight dropping
with p = 0.5 in the sparse Whh matrices. Ta-
ble 1 shows the test perplexity on a processed
version (Mikolov et al., 2010) of the Penn Tree-
bank (PTB) (Marcus et al., 1993), both with and
without the ‘finetune’ step6, displaying mean and
standard deviation over 5 different runs. With-
out finetuning, the sparse model consistently per-
forms around 1 perplexity point better, whereas af-
ter finetuning, the original remains slightly better,
although less consistently so over different ran-
dom seeds. We observed that the sparse model
overfits more strongly than the baseline, especially
during the finetune step. We hypothesize that the

5Our implementation extends https://github.
com/salesforce/awd-lstm-lm.

6The ‘finetune’ step indicates hot-starting the Averaged
Stochastic Gradient Descent optimization once more, after
convergence in the initial optimization step (Merity et al.,
2017).

regularization effect of a priori limiting interac-
tions between dimensions does not compensate for
the increased expressiveness of the model due to
the larger hidden state size. Further experimen-
tation, with tuned hyperparameters, is needed to
determine the actual benefits of predefined sparse-
ness, in terms of model size, resulting perplexity,
and sensitivity to the choice of hyperparameters.

4 Sparse Word Embeddings

Given a vocabulary with V words, we want to
construct vector representations of length k for
each word such that the total number of parame-
ters needed (i.e., non-zero entries), is smaller than
k V . We introduce one way to do this based on
word frequencies (Section 4.1), and present part-
of-speech tagging experiments (Section 4.2).

4.1 Word-Frequency based Embedding Size
Predefined sparseness in word embeddings
amounts to deciding which positions in the word
embedding matrix E ∈ RV×k should be fixed to
zero, prior to training. We define the fraction of
trainable entries in E as the embedding density
δE . We hypothesize that rare words can be
represented with fewer parameters than frequent
words, since they only appear in very specific
contexts. This will be investigated experimentally
in Section 4.2. Word occurrence frequencies have
a typical Zipfian nature (Manning et al., 2008),
with many rare and few highly frequent terms.
Thus, representing the long tail of rare terms with
short embeddings should greatly reduce memory
requirements.

In the case of a low desired embedding density
δE , we want to save on the rare words, in terms of
assigning trainable parameters, and focus on the
fewer more popular words. An exponential decay
in the number of words that are assigned longer
representations is one possible way to implement
this. In other words, we propose to have the num-
ber of words that receive a trainable parameter at
dimension j decrease with a factor αj (α ∈]0, 1]).
For a given fraction δE , the parameter α can be de-
termined from requiring the total number of non-
zero embedding parameters to amount to a given
fraction δE of all parameters:

embedding params. =
k−1∑

j=0

αjV = δE k V

and numerically solving for α.

327

1 10 20

embedding dimension

1

20k

40k

vo
ca

b
.

in
d

ex
LF

HF

δE = 0.5

δE = 0.2

δE = 0.1

Figure 2: Visualization of sparse embedding ma-
trices for different densities δE (with k = 20).
Colored region: non-zero entries. Rows represent
word indices, sorted from least frequent (LF) to
highly frequent (HF).

Figure 2 gives examples of embedding matrices
with varying δE . For a vocabulary of 44k terms
and maximum embedding length k = 20, the den-
sity δE = 0.2 leads to 25% of the words with
embedding length 1 (corresponding α = 0.75),
only 7.6% with length of 10 or higher, and with
the maximum length 20 for only the 192 most fre-
quent terms. The particular configurations shown
in Fig. 2 are used for the experiments in Sec-
tion 4.2.

In order to set a minimum embedding length for
the rarest words, as well as for computational ef-
ficiency, we note that this strategy can also be ap-
plied on M bins of embedding dimensions, rather
than per individual dimensions. The width of
the first bin then indicates the minimum embed-
ding length. Say bin m has width κm (for m =
0, . . . ,M − 1, and

∑
m κm = k). The multiplica-

tive decay factor α can then be obtained by solving

δE =
1

k

M−1∑

m=0

κmα
m, (1)

while numerically compensating for rounding er-
rors in the number V αm of words that are assigned
trainable parameters in the mth bin.

4.2 Part-of-Speech Tagging Experiments
We now study the impact of sparseness in word
embeddings, for a basic POS tagging model, and
report results on the PTB Wall Street Journal data.
We embed 43,815 terms in 20-dimensional space,

2 5 10 20

(average) embedding size

94

95

96

te
st

ac
cu

ra
cy

(%
)

dense

sparse

Figure 3: POS tagging accuracy on PTB data:
dense (red) vs. sparse (green). X-axis: embedding
size k for the dense case, and average embedding
size (or 20 δE) for the sparse case. Shaded bands
indicate stdev over 4 randomly seeded runs.

as input for a BiLSTM layer with hidden state
size 10 for both forward and backward directions.
The concatenated hidden states go into a fully
connected layer with tanh non-linearity (down
to dimension 10), followed by a softmax classi-
fication layer with 49 outputs (i.e., the number
of POS tags). The total number of parameters
is 880k, of which 876k in the embedding layer.
Although character-based models are known to
outperform pure word embedding based models
(Ling et al., 2015), we wanted to investigate the ef-
fect of sparseness in word embeddings, rather than
creating more competitive but larger or complex
models, risking a smaller resolution in the effect of
changing individual building blocks. To this end
we also limited the dimensions, and hence the ex-
pressiveness, of the recurrent layer.7 Our model is
similar to but smaller than the ‘word lookup’ base-
line by Ling et al. (2015).

Figure 3 compares the accuracy for variable
densities δE (for k = 20) vs. different embedding
sizes (with δE = 1). For easily comparing sparse
and dense models with the same number of em-
bedding parameters, we scale δE , the x-axis for
the sparse case, to the average embedding size of
20 δE .

7With LSTM state sizes of 50, the careful tuning of
dropout parameters gave an accuracy of 94.7% when reduc-
ing the embedding size to k = 2, a small gap compared to
96.8% for embedding size 50. The effect of larger sparse em-
beddings was therefore much smaller in absolute value than
the one visualized in Fig. 3, because of the much more ex-
pressive recurrent layer.

328

Training models with shorter dense embeddings
appeared more difficult. In order to make a fair
comparison, we therefore tuned the models over a
range of regularization hyperparameters, provided
in Table 2.

We observe that the sparse embedding layer
allows lowering the number of parameters in
E down to a fraction of 15% of the original
amount, with little impact on the effectiveness,
provided E is sparsified rather than reduced in
size. The reason for that is that with sparse 20-
dimensional embeddings, the BiLSTM still re-
ceives 20-dimensional inputs, from which a signif-
icant subset only transmits signals from a small set
of frequent terms. In the case of smaller dense em-
beddings, information from all terms is uniformly
present over fewer dimensions, and needs to be
processed with fewer parameters at the encoder in-
put.

Finally, we verify the validity of our hypothe-
sis from Section 4.1 that frequent terms need to be
embedded with more parameters than rare words.
Indeed, one could argue in favor of the opposite
strategy. It would be computationally more ef-
ficient if the terms most often encountered had
the smallest representation. Also, stop words are
the most frequent ones but are said to carry little
information content. However, Table 3 confirms
our initial hypothesis. Applying the introduced
strategy to sparsify embeddings on randomly or-
dered words (‘no sorting’) leads to a significant de-
crease in accuracy compared to the proposed sort-
ing strategy (‘up’). When the most frequent words
are encoded with the shortest embeddings (‘down’
in the table), the accuracy goes down even further.

5 Learning To Recite

From the language modeling experiments in Sec-
tion 3.2, we hypothesized that an RNN layer be-
comes more expressive, when the dense layer is
replaced by a larger layer with predefined sparse-
ness and the same number of model parameters.
In this section, we design an experiment to further
investigate this claim. One way of quantifying an
RNN’s capacity is in measuring how much infor-
mation it can memorize. We name our experimen-
tal setup learning to recite: we investigate to what
extent dense vs. sparse models are able to learn an
entire corpus by heart in order to recite it after-
wards. We note that this toy problem could have
interesting applications, such as the design of neu-

ral network components that keep entire texts or
even knowledge bases available for later retrieval,
encoded in the component’s weight matrices.8

5.1 Experimental Results

The initial model for our learning to recite exper-
iment is the baseline language model used in Sec-
tion 3.2 (Merity et al., 2017), with the PTB data.
We set all regularization parameters to zero, to fo-
cus on memorizing the training data. During train-
ing, we measure the ability of the model to cor-
rectly predict the next token at every position in
the training data, by selecting the token with high-
est predicted probability. When the model reaches
an accuracy of 100%, it is able to recite the entire
training corpus. We propose the following opti-
mization setup (tuned and tested on dense models
with different sizes): minibatch SGD (batch size
20, momentum 0.9, and best initial learning rate
among 5 or 10). An exponentially decaying learn-
ing rate factor (0.97 every epoch) appeared more
suitable for memorization than other learning rate
scheduling strategies, and we report the highest
accuracy in 150 epochs.

We compare the original model (in terms of net-
work dimensions) with versions that have less pa-
rameters, by either reducing the RNN hidden state
size h or by sparsifying the RNN, and similarly
for the embedding layer. For making the embed-
ding matrix sparse, M = 10 equal-sized segments
are used (as in eq. 1). Table 4 lists the results.
The dense model with the original dimensions has
24M parameters to memorize a sequence of in to-
tal ‘only’ 930k tokens, and is able to do so. When
the model’s embedding size and intermediate hid-
den state size are halved, the number of parameters
drops to 7M, and the resulting model now makes
67 mistakes out of 10k predictions. If h is kept,
but the recurrent layers are made sparse to yield
the same number of parameters, only 5 mistakes
are made for every 10k predictions. Making the
embedding layer sparse as well introduces new er-
rors. If the dimensions are further reduced to a
third the original size, the memorization capacity
goes down strongly, with less than 4M trainable
parameters. In this case, sparsifying both the re-
current and embedding layer yields the best re-
sult, whereas the dense model works better than

8It is likely that recurrent networks are not the best choice
for this purpose, but here we only wanted to measure the
LSTM-based model’s capacity to memorize with and with-
out predefined sparseness.

329

hyperparameter value(s)

optimizer Adam (Kingma and Ba, 2015)
learning rate 0.001
epochs 50
word level embedding dropout † [0.0, 0.1, 0.2]
variational embedding dropout † [0.0, 0.1, 0.2, 0.4]
DropConnect on Whh † [0.0, 0.2, 0.4]
batch size 20

Table 2: Hyperparameters for POS tagging model (†as introduced in (Merity et al., 2017)). A list indicates
tuning over the given values was performed.

δE = 1.0 δE = 0.25 δE = 0.1

params. (E; all) 876k; 880k 219k; 222k 88k ; 91k

up 96.1± 0.1 95.6± 0.1
no sorting 96.0± 0.3 94.3± 0.4 93.0± 0.3
down 89.8± 2.2 90.6± 0.5

Table 3: Impact of vocabulary sorting on POS accuracy with sparse embeddings: up vs. down (most fre-
quent words get longest vs. shortest embeddings, resp.) or not sorted, for different embedding densities
δE .

embeddings hidden state
parameters

memorization
size k, density δE size h accuracy (%)

dense model (orig. dims.) 400 1 1150 24.22M 100.0

dense model (see Fig. 4(a)) 200 1 575 7.07M 99.33
sparse RNN (see Fig. 4(b)) 200 1 1150 7.07M 99.95
sparse RNN + sparse emb. 400 1/2 1150 7.07M 99.74

dense model 133 1 383 3.59M 81.48
sparse RNN 133 1 1150 3.59M 76.37
sparse RNN + sparse emb. 400 1/3 1150 3.59M 89.98

Table 4: PTB train set memorization accuracies for dense models vs. models with predefined sparseness
in recurrent and embedding layers with comparable number of parameters.

the model with sparse RNNs only. A possible ex-
planation for that is the strong sparseness in the
RNNs. For example, in the middle layer only 1
out of 10 recurrent connections is non-zero. In this
case, increasing the size of the word embeddings
(at least, for the frequent terms) could provide an
alternative for the model to memorize parts of the
data, or maybe it makes the optimization process
more robust.

5.2 Visualization

Finally, we provide an illustration of the high-
level composition of the recurrent layers in two of

the models used for this experiment. Figure 4(a)
sketches the stacked 3-layer LSTM network from
the ‘dense RNN’ model (see Table 4) with k =
200 and h = 575. As already mentioned, our
proposed sparse LSTMs are equivalent to a well-
chosen composition of smaller dense LSTM com-
ponents with overlapping inputs and disjoint out-
puts. This composition is shown in Fig. 4(b) for
the model ‘sparse RNN’ (see Table 4), which in
every layer has the same number of parameters as
the dense model with reduced dimensions.

330

layer 1 layer 2 layer 3

(a)

k=200

h=575 h=575

k=200

R1 R2 R3

200→575 575→575 575→200

1.79M par. 2.65M par. 0.62M par.

(b)

k=200

h=1150 h=1150

k=200

R1,1

R1,2

R1,3

R1,4

R2,1

R2,2

R2,3

R2,4

R2,5

R3,1

R3,2

99→288
244→230

675→100

sparse R1

200→1150

sparse R2

1150→1150

sparse R3

1150→200

1.79M par. 2.65M par. 0.62M par.

Figure 4: Schematic overview of 3-layer stacked
(a) dense vs. (b) sparse LSTMs with the same
number of parameters (indicated with ‘par.’).
Sparse layers are effectively composed of smaller
dense LSTMs. ‘Ri,j’ indicates component j
within layer i, and ‘675→100’ indicates an LSTM
compoment with input size 675 and output size
100.

6 Conclusion and Future Work

This paper introduces strategies to design word
embedding layers and recurrent networks with
predefined sparseness. Effective sparse word rep-
resentations can be constructed by encoding less
frequent terms with smaller embeddings and vice
versa. A sparse recurrent neural network layer can
be constructed by applying multiple smaller recur-
rent cells in parallel, with partly overlapping in-
puts and concatenated outputs.

The presented ideas can be applied to build
models with larger representation sizes for a given
number of parameters, as illustrated with a lan-
guage modeling example. Alternatively, they can
be used to reduce the number of parameters for
given representation sizes, as investigated with a
part-of-speech tagging model.

We introduced ideas on predefined sparseness in
sequence models, as well as proof-of-concept ex-
periments, and analysed the memorization capac-
ity of sparse networks in the ‘learning to recite’
toy problem.

More elaborate experimentation is required to
investigate the benefits of predefined sparseness
on more competitive tasks and datasets in NLP.
For example, language modeling results on the
Penn Treebank rely on heavy regularization due
to the small corpus. Follow-up work could there-
fore investigate to what extent language models
for large corpora can be trained with limited com-
putational resources, based on predefined sparse-
ness. Other ideas for future work include the use
of predefined sparseness for pretraining word em-
beddings, or other neural network components be-
sides recurrent models, as well as their use in alter-
native applications such as sequence-to-sequence
tasks or in multi-task scenarios.

Acknowledgments

We thank the anonymous reviewers for their time
and effort, and the valuable feedback.

References
Giannis Bekoulis, Johannes Deleu, Thomas Demeester,

and Chris Develder. 2018. Joint entity recogni-
tion and relation extraction as a multi-head selec-
tion problem. Expert Systems with Applications,
114:34–45.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. 2014. cuDNN: Efficient primitives
for deep learning. arXiv:1410.0759.

Junyoung Chung, Çalar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv:1412.3555. Deep Learning workshop at
NIPS 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dy-
namic network surgery for efficient DNNs. In Proc.
30th International Conference on Neural Informa-
tion Processing Systems (NIPS 2016), NIPS’16,
pages 1387–1395.

331

Song Han, Huizi Mao, and William J. Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and Huff-
man coding. In Proc. 4th International Conference
on Learning Representations (ICLR 2016).

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning Both Weights and Connections for
Efficient Neural Networks. In Proc. 28th Interna-
tional Conference on Neural Information Processing
Systems (NIPS 2015), NIPS’15, pages 1135–1143.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple nlp
tasks. In Proc. Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1923–1933.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Speeding up convolutional neural net-
works with low rank expansions. In Proc. 27th
British Machine Vision Conference (BMVC 2014).
ArXiv: 1405.3866.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb
Noury, Norman Casagrande, Edward Lockhart, Flo-
rian Stimberg, Aäron van den Oord, Sander Diele-
man, and Koray Kavukcuoglu. 2018. Efficient neu-
ral audio synthesis. ArXiv: 1802.08435.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Interna-
tional Conference on Learning Representations, San
Diego, USA.

V. Lebedev and V. Lempitsky. 2016. Fast ConvNets
using group-wise brain damage. In Proc. 29th IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR 2016), pages 2554–2564.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520–1530, Lisbon, Portu-
gal. Association for Computational Linguistics.

Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and
M. Penksy. 2015. Sparse convolutional neural net-
works. In Proc. 28th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2015), pages
806–814.

Zhiyun Lu, Vikas Sindhwani, and Tara N. Sainath.
2016. Learning compact recurrent neural networks.
In Proc. 41st IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP
2016).

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York,
NY, USA.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Gbor Melis, Chris Dyer, and Phil Blunsom. 2017. On
the state of the art of evaluation in neural language
models. In Proc. 6th International Conference on
Learning Representations (ICLR 2017).

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing LSTM
language models. arXiv:1708.02182.

Tomas Mikolov, Martin Karafit, Luks Burget, Jan Cer-
nock, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, pages 1045–1048. ISCA.

Makoto Miwa and Mohit Bansal. 2016. End-to-end
relation extraction using LSTMs on sequences and
tree structures. In Proc. 54th Annual Meeting of the
Association for Computational Linguistics, pages
1105–1116.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. 2017. Variational dropout sparsifies deep
neural networks. In Proc. 35th International Con-
ference on Machine Learning (ICML 2017). ArXiv:
1701.05369.

Sharan Narang, Erich Elsen, Gregory Diamos, and
Shubho Sengupta. 2017. Exploring sparsity in
recurrent neural networks. In Proc. 5th Inter-
national Conference on Learning Representations
(ICLR 2017).

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In Proceedings of the Workshop on The future of
gradient-based machine learning software and tech-
niques, co-located with the 31st Annual Conference
on Neural Information Processing Systems (NIPS
2017).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In
Proc. International Conference on Learning Repre-
sentations (ICLR).

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and
Weinan E. 2016. Convolutional neural networks
with low-rank regularization. In Proc. 4th Inter-
national Conference on Learning Representations
(ICLR 2016). ArXiv: 1511.06067.

332

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun,
and Rob Fergus. 2013. Regularization of neural net-
works using dropconnect. In Proc. 30th Interna-
tional Conference on International Conference on
Machine Learning (ICML 2013), pages III–1058–
III–1066, Atlanta, GA, USA.

Dong Wang, Qiang Zhou, and Amir Hussain. 2016.
Deep and sparse learning in speech and language
processing: An overview. In Proc. 8th Interna-
tional Conference on (BICS2016), pages 171–183.
Springer, Cham.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity
in deep neural networks. In Proc. 30th Interna-
tional Conference on Neural Information Processing
Systems (NIPS 2016), NIPS’16, pages 2082–2090,
USA.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2017. Breaking the softmax bot-
tleneck: A high-rank rnn language model. ArXiv:
1711.03953.

333

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 334–344
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Learning to Actively Learn Neural Machine Translation

Ming Liu Wray Buntine
Faculty of Information Technology, Monash University

{ming.m.liu, wray.buntine, gholamreza.haffari} @ monash.edu

Gholamreza Haffari

Abstract

Traditional active learning (AL) methods for
machine translation (MT) rely on heuristics.
However, these heuristics are limited when the
characteristics of the MT problem change due
to e.g. the language pair or the amount of the
initial bitext. In this paper, we present a frame-
work to learn sentence selection strategies for
neural MT. We train the AL query strategy us-
ing a high-resource language-pair based on AL
simulations, and then transfer it to the low-
resource language-pair of interest. The learned
query strategy capitalizes on the shared char-
acteristics between the language pairs to make
an effective use of the AL budget. Our ex-
periments on three language-pairs confirms
that our method is more effective than strong
heuristic-based methods in various conditions,
including cold-start and warm-start as well as
small and extremely small data conditions.

1 Introduction

Parallel training bitext plays a key role in the
quality neural machine translation (NMT). Learn-
ing high-quality NMT models in bilingually low-
resource scenarios is one of the key challenges, as
NMT’s quality degrades severely in such setting
(Koehn and Knowles, 2017).

Recently, the importance of learning NMT
models in scarce parallel bitext scenarios has
gained attention. Unsupervised approaches try
to learn NMT models without the need for par-
allel bitext (Artetxe et al., 2017; Lample et al.,
2017a). Dual learning/backtranslation tries to start
off from a small amount of bilingual text, and
leverage monolingual text in the source and tar-
get language (Sennrich et al., 2015a; He et al.,
2016). Zero/few shot approach attempts to trans-
fer NMT learned from rich bilingual settings to
low-resource settings (Johnson et al., 2016; Gu
et al., 2018).

In this paper, we approach this problem from
the active learning (AL) perspective. Assuming
the availability of an annotation budget and a pool
of monolingual source text as well as a small
training bitext, the goal is to select the most use-
ful source sentences and query their translation
from an oracle up to the annotation budget. The
queried sentences need to be selected carefully to
get the value for the budget, i.e. get the highest
improvements in the translation quality of the re-
trained model. The AL approach is orthogonal to
the aforementioned approaches to bilingually low-
resource NMT, and can be potentially combined
with them.

We present a framework to learn the sentence
selection policy most suitable and effective for the
NMT task at hand. This is in contrast to the
majority of work in AL-MT where hard-coded
heuristics are used for query selection (Haffari
and Sarkar, 2009; Bloodgood and Callison-Burch,
2010). More concretely, we learn the query pol-
icy based on a high-resource language-pair shar-
ing similar characteristics with the low-resource
language-pair of interest. After trained, the policy
is applied to the language-pair of interest capital-
ising on the learned signals for effective query se-
lection. We make use of imitation learning (IL) to
train the query policy. Previous work has shown
that the IL approach leads to more effective pol-
icy learning (Liu et al., 2018), compared to rein-
forcement learning (RL) (Fang et al., 2017) . Our
proposed method effectively trains AL policies for
batch queries needed for NMT, as opposed to the
previous work on single query selection.

We conduct experiments on three language
pairs Finnish-English, German-English, and
Czech-English. Simulating low resource sce-
narios, we consider various settings, including
cold-start and warm-start as well as small and
extremely small data conditions. The experiments

334

show the effectiveness and superiority of our
policy query compared to strong baselines.

2 Learning to Actively Learn MT

Active learning is an iterative process: Firstly, a
model is built using some initially available data.
Then, the most worthwhile data points are selected
from the unlabelled set for annotation by the ora-
cle. The underlying model is then re-trained using
the expanded labeled data. This process is then
repeated until the budget is exhausted. The main
challenge is how to identify and select the most
beneficial unlabelled data points during the AL it-
erations.

The AL strategy can be learned by attempting
to actively learn on tasks sampled from a distri-
bution over the tasks (Bachman et al., 2017). We
simulate the AL scenario on instances of a low-
resource MT problem created using the bitext of
the resource-rich language pair, where the transla-
tion of some part of the bitext is kept hidden. This
allows to have an automatic oracle to reveal the
translations of the queried sentences, resulting in
an efficient way to quickly evaluate an AL strat-
egy. Once the AL strategy is learned on simula-
tions, it is then applied to real AL scenarios. The
more related are the low-resource language-pair in
the real scenario to those used to train the AL strat-
egy, the more effective the AL strategy would be.

We are interested to train a translation model
mφφφ which maps an input sentence from a source
language xxx ∈ X to its translation yyy ∈ Yxxx in a
target language, where Yxxx is the set of candidate
translations for the input xxx and φφφ is the parameter
vector of the translation model. Let D = {(xxx,yyy)}
be a support set of parallel corpus, which is ran-
domly partitioned into parallel bitext Dlab, mono-
lingual text Dunl, and evaluation Devl datasets.
Repeated random partitioning creates multiple in-
stances of the AL problem.

3 Hierarchical MDP Formulation

A crucial difference of our setting to the previous
work (Fang et al., 2017; Liu et al., 2018) is that
the AL agent receives the reward from the oracle
only after taking a sequence of actions, i.e. se-
lection of an AL batch which may correspond to
multiple training minibatches for the underlying
NMT model. This fulfils the requirements for ef-
fective training of NMT, as minibatch updates are
more effective than those of single sentence pairs.

Furthermore, it is presumably more efficient and
practical to query the translation of an untranslated
batch from a human translator, rather than one sen-
tence in each AL round.

At each time step t of an AL problem, the al-
gorithm interacts with the oracle and queries the
labels of a batch selected from the pool Dunl

t to
form bbbt. As the result of this sequence of ac-
tions to select sentences in bbbt, the AL algorithm
receives a reward BLEU(mφφφ, D

evl) which is the
BLEU score on Devl based on the retrained NMT
model using the batch mbbbt

φφφ .

Formally, this results in a hierarchical Markov
decision process (HMDP) for batch sentence se-
lection in AL. A state ssst := 〈Dlab

t , Dunl
t , bbbt,φφφt〉 of

the HMDP in the time step t consist of the bitext
Dlab
t , the monotext Dunl

t , the current text batch
bbbt, and the parameters of the currently trained
NMT model φφφt. The high-level MDP consists of
a goal set G := {retrain, haltHI}, where set-
ting a goal gt ∈ G corresponds to either halt-
ing the AL process, or giving the execution to
the low-level MDP to collect a new batch of bi-
text bbbt, re-training the underlying NMT model to
get the update parameters φφφt+1, receiving the re-
ward RHI(ssst, at, ssst+1) := BLEU(mφφφt+1

, Devl),
and updating the new state as ssst+1 = 〈Dlab

t ∪
bbbt, D

unl
t , ∅,φφφt+1〉. The haltHI goal is set in case

the full AL annotation budget is exhausted, other-
wise the re-train goal is set in the next time step.

The low-level MDP consists of primitive ac-
tions at ∈ Dunl

t ∪ {haltLO} corresponding to
either selecting of the monolingual sentences in
Dunl
t , or halting the low-level policy and giving

the execution back to the high-level MDP. The halt
action is performed in case the maximum amount
of source text is chosen for the current AL round,
when the oracle is asked for the translation of the
source sentences in the monolingual batch, which
is then replaced by the resulting bitext. The sen-
tence selection action, on the other hand, forms the
next state by adding the chosen monolingual sen-
tence to the batch and removing it from the pool
of monolingual sentences. The underlying NMT
model is not trained as a result of taking an action
in the low-level policy, and the reward function is
constant zero.

A trajectory in our HMDP consists of σ :=
(sss1, g1, τ1, r1, sss2, ..., sssH , gH , rH , sssH+1) which is
the concatenation of interleaved high-level trajec-
tory τHI := (sss1, g1, r1, sss2, .., sssH+1) and low-level

335

score

x
y

cccglobal

ccclocal

Figure 1: The policy network.

trajectories τ := (sss1, a1, sss2, a2, ..., sssT , aT , sssT+1).
Clearly, the intermediate goals set by the top-
level MDP into the σ are retrain, and only the
last goal gH is haltHI, where H is determined
by checking whether the total AL budget BHI is
exhausted. Likewise, the intermediate actions in
τh are sentence selection, and only the last action
aT is haltLO, where T is determined by checking
whether the round-AL budget BLO is exhausted.

We aim to find the optimal AL policy prescrib-
ing which datapoint needs to be queried in a given
state to get the most benefit. The optimal policy is
found by maximising the expected long-term re-
ward, where the expectation is over the choice of
the synthesised AL problems and other sources of
randomness, i.e. partioing of D into Dlab, Dunl,
and Devl. Following Bachman et al. (2017), we
maximise the sum of the rewards after each AL
round to encourage the anytime behaviour, i.e. the
model should perform well after each batch query.

4 Deep Imitation learning for AL-NMT

The question remains of how to train the policy
network to maximize the reward, i.e. the generali-
sation performance of the underlying NMT model.
As the policy for the high-level MDP is fixed, we
only need to learn the optimal policy for the low-
level MDP. We formulate learning the AL pol-
icy as an imitation learning problem. More con-
cretely, the policy is trained using an algorithmic
expert, which can generate a reasonable AL tra-
jectories (batches) for each AL state in the high-
level MDP. The algorithmic expert’s trajectories,
i.e. sequences of AL states paired with the expert’s
actions in the low-level MDP, are then used to train
the policy network. As such, the policy network is
a classifier, conditioned on a context summarising
both global and local histories, to choose the best
sentence (action) among the candidates. After the

AL policy is trained based on AL simulations, it is
then transferred to the real AL scenario.

For simplicity of presentation, the training algo-
rithms are presented using a fixed number of AL
iterations for the high-level and low-level MDPs.
This corresponds to AL with the sentence-based
budget. However, extending them for AL with
token-based budget is straightforward, and we ex-
periment with both versions in §5.

Policy Network’s Architecture The policy
scoring network is a fully-connected network with
two hidden layers (see Figure 1). The input in-
volves the representation for three elements: (i)
global context which includes all previous AL
batches, (ii) local context which summarises the
previous sentences selected for the current AL
batch, and (iii) the candidate sentence paired with
its translation generated by the currently trained
NMT model.

For each source sentencexxx paired with its trans-
lation yyy, we denote the representation by rep(xxx,yyy).
We construct it by simply concatenating the rep-
resentations of the source and target sentences,
each of which is built by summing the embed-
dings of its words. We found this simple method to
work well, compared to more complicated meth-
ods, e.g. taking the last hidden state of the decoder
in the underlying NMT model. The global context
(cccglobal) and local contexts (ccclocal) are constructed
by summing the representation of the previously
selected batches and sentence-pairs, respectively.

IL-based Training Algorithm The IL-based
training method is presented in Algorithm 1. The
policy network is initialised randomly, and trained
based T simulated AL problems (lines 3–20), by
portioning the available large bilingual corpus into
three sets: (i) Dlab as the growing training bi-
tex, (ii) Dunl as the pool of untranslated sentences
where we pretend the translations are not given,
and (iii) Devl as the evaluation set used by our al-
gorithmic expert.

For each simulated AL problem, Algorithm 1
executes THI iterations (lines 7–19) to collect AL
batches for training the underlying NMT model
and the policy network. An AL batch is obtained
either from the policy network (line 15) or from
the algorithmic expert (lines 10-13), depending on
tossing a coin (line 9). The latter also includes
adding the selected batch, the candidate batches,
and the relevant state information to the replay

336

Algorithm 1 Learning AL-NMT Policy
Input: Parallel corpus D, Iwidth the width of the constructed

search lattices, the coin parameter α, the number of sam-
pled AL batches K

Output: policy π
1: M ← ∅ . Replay Memory
2: Initialise π with a random policy
3: for T training iterations do
4: Dlab, Devl, Dunl ← randomPartition(D)
5: φφφ← trainModel(Dlab)
6: cccglobal ← 000
7: for t← 1 to THI do . MDPHI
8: S ← searchLattice(Dunl, Iwidth)
9: if coinToss(α) = Head then

10: BBB ← {samplePath(S,φφφ,cccglobal, π, β)}K1
11: BBB ← BBB + samplePath(S,φφφ,cccglobal, π, 0)

12: bbb← argmax
bbb′∈BBB

BLEU(mbbb′
φφφ , D

evl) . expert

13: M ←M ∪ {(cccglobal,φφφ,BBB,bbb)}
14: else
15: bbb← samplePath(S,φφφ,cccglobal, π, 0) . policy
16: Dlab ← Dlab + bbb
17: Dunl ← Dunl − {xxx s.t. (xxx,yyy) ∈ bbb}
18: φφφ← retrainModel(φφφ,Dlab)
19: cccglobal ← cccglobal ⊕ rep(bbb)
20: π ← updatePolicy(π,M,φφφ)

21: return π

Algorithm 2 samplePath (selecting an AL batch)
Input: Search lattice S, global context cccglobal, policy π,

perturbation probability β
Output: Selected AL batch bbb

1: bbb← ∅
2: ccclocal ← 000
3: for t← 1 to TLO do . MDPLO
4: if coinToss(β) = Head then
5: xxxt ← π0(S[t]) . perturbation policy
6: else
7: xxxt ← argmaxxxx∈S[t] π(cccglobal, ccclocal,xxx)

8: yyyt ← oracle(xxxt) . getting the gold translation
9: ccclocal ← ccclocal ⊕ rep(xxxt, yyyt)

10: bbb← bbb+ (xxxt, yyyt)

11: return bbb

memory M , based on which the policy will be re-
trained. The selected batch is then used to retrain
the underlying NMT model, update the training
bilingual corpus and pool of monotext, and update
the global context vector (lines 16–19).

The mixture of the policy network and algo-
rithmic expert in batch collection on simulated
AL problems is inspired by Dataset Aggregation
DAGGER (Ross and Bagnell, 2014). This makes
sure that the collected states-actions pairs in the
replay memory include situations encountered be-
yond executing only the algorithmic expert. This
informs the trained AL policy how to act reason-
ably in new situations encountered in the test time,
where only the network policy is in charge and the
expert does not exist.

⇡
⇡

S[1] S[TLO]....

⇡0

⇡0

Figure 2: The search lattice and the selection of a batch
based on the perturbed policy. Each circle denotes a
sentence from the pool of monotext. The number of
sentences at each time step, denoted by S[t], is Iwidth.
The black sentences are selected in this AL batch.

Algorithmic Expert At a given AL state, the al-
gorithmic expert selects a reasonable batch from
the pool, Dunl via:

argmax
bbb∈BBB

BLEU(mbbb
φφφ, D

evl) (1)

where mbbb
φφφ denotes the underlying NMT model φ

further retrained by incorporating the batch bbb, and
BBB denotes the possible batches from Dunl (Liu
et al., 2018). However, the number of possible
batches is exponential in the size Dunl, hence the
above optimisation procedure would be very slow
even for a moderately-sized pool.

We construct a search lattice S from which the
candidate batches in BBB are sampled (see Figure
2). The search lattice is constructed by sampling
a fixed number of candidate sentences Iwidth from
Dunl for each position in a batch, whose size is
TLO. A candidate AL batch is then be selected us-
ing Algorithm 2. It executes a mixture of the cur-
rent AL policy π and a perturbation policy π0 (e.g.
random sentence selection or any other heuristic)
in the lower-level MDP to sample a batch. After
several such batches are sampled to form BBB, the
best one is selected according to eqn 1.

We have carefully designed the search space to
be able to incorporate the current policy’s recom-
mended batch and sampled deviations from it in
BBB. This is inspired by the LOLS (Locally Opti-
mal Learning to Search) algorithm (Chang et al.,
2015), to invest efforts in the neighbourhood of
the current policy and improve it. Moreover, hav-
ing to deal with only Iwidth number of sentences
at each selection stage makes the batch formation
algorithm based on the policy fast and efficient.

Re-training the Policy Network To train our
policy network, we turn sentence preference
scores to probabilities over the candidate batches,

337

Algorithm 3 Policy Transfer
Input: Bitext Dlab, monotext Dunl, pre-trained policy π
Output: NMT model φφφ
1: Initialise φφφ with Dlab

2: cccglobal ← 000
3: for t← 1 to THI do
4: S ← searchLattice(Dunl, Iwidth)
5: bbb← samplePath(S,φφφ,cccglobal, π, 0)

6: Dlab ← Dlab + bbb
7: Dunl ← Dunl − {xxx s.t. (xxx,yyy) ∈ bbb}
8: φφφ← retrainModel(φφφ,Dlab)
9: cccglobal ← cccglobal ⊕ rep(bbb)

10: return φφφ

and optimise the parameters to maximise the log-
likelihood objective (Liu et al., 2018).

More specifically, let (cccglobal,BBB,bbb) be a training
tuple in the replay memory. We define the proba-
bility of the correct action/batch as

Pr(bbb|BBB,cccglobal) :=
score(bbb, cccglobal)∑

bbb′∈BBB score(bbb′, cccglobal)
.

The preference score for a batch is the sum of its
sentences’ preference scores,

score(bbb, cccglobal) :=

|bbb|∑

t=1

π(cccglobal, ccclocal<t, rep(xxxt, yyyt))

where ccclocal<t denotes the local context up to the
sentence t in the batch.

To form the log-likelihood, we use recent tuples
and randomly sample several older ones from the
replay memory. We then use stochastic gradient
descent (SGD) to maximise the training objective,
where the gradient of the network parameters are
calculated using the backpropagation algorithm.

Transfering the Policy We now apply the pol-
icy learnt on the source language pair to AL in the
target task (see Algorithm 3). To enable transfer-
ring the policy to a new language pair, we make
use of pre-trained multilingual word embeddings.
In our experiments, we either use the pre-trained
word embeddings from Ammar et al. (2016) or
build it based on the available bitext and monotext
in the source and target language (c.f. §5.2). To
retrain our NMT model, we make parameter up-
dates based on the mini-batches from the AL batch
as well as sampled mini-batches from the previous
iterations.

5 Experiment

Datasets Our experiments use the following
language pairs in the news domain based on

WMT2018: English-Czech (EN-CS), English-
German (EN-DE), English-Finnish (EN-FI). For
AL evaluation, we randomly sample 500K sen-
tence pairs from the parallel corpora in WMT2018
for each of the three language pairs, and take 100K
as the initially available bitext and the rest of 400K
as the pool of untranslated sentences, pretending
the translation is not available. During the AL it-
erations, the translation is revealed for the queried
source sentences in order to retrain the underlying
NMT model.

For pre-processing the text, we normalise the
punctuations and tokenise using moses1 scripts.
The trained models are evaluated using BLEU on
tokenised and cased sensitive test data from the
newstest 2017.

NMT Model Our baseline model consists of a
2-layer bi-directional LSTM encoder with an em-
beddings size of 512 and a hidden size of 512. The
1-layer LSTM decoder with 512 hidden units uses
an attention network with 128 hidden units. We
use a multiplicative-style attention attention archi-
tecture (Luong et al., 2015). The model is opti-
mized using Adam (Kingma and Ba, 2014) with
a learning rate of 0.0001, where the dropout rate
is set to 0.3. We set the mini-batch size to 200
and the maximum sentence length to 50. We train
the base NMT models for 5 epochs on the initially
available bitext, as the perplexity on the dev set do
not improve beyond more training epochs. After
getting new translated text in each AL iteration,
we further sample ×5 more bilingual sentences
from the previously available bitext, and make one
pass over this data to re-train the underlying NMT
model. For decoding, we use beam-search with
the beam size of 3.

Selection Strategies We compare our policy-
based sentence selection for NMT-AL with the
following heuristics:

• Random We randomly select monolingual
sentences up to the AL budget.

• Length-based We use shortest/longest
monolingual sentences up to the AL budget.

• Total Token Entropy (TTE) We sort
monolingual sentences based on their TTE
which has been shown to be a strong AL
heuristic (Settles and Craven, 2008) for

1http://www.statmt.org/moses

338

System EN→DE EN→FI EN→DE EN→CS EN→CS EN→FI
Base NMT (100K) 13.2 10.3 13.2 8.1 8.1 10.3

AL with 135K token budget
Random 13.9 11.2 13.9 8.3 8.3 11.2
Shortest 14.5 11.5 14.5 8.6 8.6 11.5
Longest 14.1 11.3 14.1 8.2 8.2 11.3
TTE 14.2 11.3 14.2 8.5 8.5 11.3
Token Policy 15.5 12.8 14.8 8.5 9.0 12.5

AL with 677K token budget
Random 15.9 13.5 15.9 9.2 9.2 13.5
Shortest 15.8 13.7 15.8 8.9 8.9 13.7
Longest 15.6 13.5 15.6 8.5 8.5 13.5
TTE 15.6 13.7 15.6 8.6 8.6 13.7
Token Policy 16.6 14.1 16.3 9.2 10.3 13.9
FULL bitext (500K) 20.5 18.3 20.5 12.1 12.1 18.3

Table 1: BLEU scores on tests sets with different selection strategies, the budget is at token level with annotation
for 135.45k tokens and 677.25k tokens respectively.

sequence-prediction tasks. Given a mono-
lingual sentence xxx, we compute the TTE as∑|ŷyy|

i=1 Entropy[Pi(.|ŷyy<i,xxx,φφφ)] where ŷyy is the
decoded translation based on the current un-
derlying NMT model φφφ, and Pi(.|ŷyy<i,xxx,φφφ)
is the distribution over the vocabulary words
for the position i of the translation given the
source sentence and the previously generated
words. We also experimented with the nor-
malised version of this measure, i.e. dividing
TTE by |ŷyy|, and found that their difference is
negligible. So we only report TTE results.

5.1 Translating from English

Setting We train the AL policy on a language-
pair treating it as high-resource, and apply it to
another language-pair treated as low-resource. To
transfer the policies across languages, we make
use of pre-trained multilingual word embeddings
learned from monolingual text and bilingual dic-
tionaries (Ammar et al., 2016). Furthermore, we
use these cross-lingual word embeddings to ini-
tialise the embedding table of the NMT in the low-
resource language-pair. The source and target vo-
cabularies for the NMT model in the low-resource
scenario are constructed using the initially avail-
able 100K bitext, and are expanded during the AL
iterations as more translated text becomes avail-
able.

Results Table 1 shows the results. The exper-
iments are performed with two limits on token
annotation budget: 135k and 677k corresponding
to select roughly 10K and 50K sentences in to-

System EN→DE EN→FI
Base NMT (100K) 13.2 10.3

AL with 10K sentence budget
Random 14.2 11.3
Shortest 13.9 11.0
Longest 14.7 11.8
TTE 14.3 11.2
Sent πEN→CS 14.5 11.5
Token πEN→CS 15.3 11.8

AL with 50K sentence budget
Random 16.1 13.5
Shortest 15.5 12.9
Longest 17.2 14.2
TTE 16.6 13.5
Sent πEN→CS 16.3 14.0
Token πEN→CS 17.0 14.1

Table 2: BLEU scores on tests sets for different lan-
guage pairs with different selection strategies, the bud-
get is at sentence level with annotation for 10k sen-
tences and 50k sentences respectively.

tal in AL2, respectively. The number of AL it-
erations is 50, hence the token annotation budget
for each round is 2.7K and 13.5K. As we can see
our policy-based AL method is very effective, and
outperforms the strong AL baselines in all cases
except, when transferring the policy trained on
EN → FI to EN → CS where it is on-par with
the best baseline.

Sentence vs Token Budget In our results in Ta-
ble 1, we have taken the number of tokens in the
selected sentences as a proxy for the annotation
cost. Another option to measure the annotation
cost is the number of selected sentences, which
admittedly is not the best proxy. Nonetheless, one

2These token limit budgets are calculated using random
selection of 10K and 50K sentences multiple times, and tak-
ing the average of the tokens across the sampled sets.

339

100K initial bitext 10K initial bitext
AL method cold-start warm-start cold-start warm-start
Base NMT 10.6/11.8 13.9/14.7 2.3/2.5 5.4/5.8
Random 12.9/13.3 15.1/16.2 5.5/5.6 9.3/9.6
Shortest 13.0/13.5 15.9/16.4 5.9/6.1 9.1/9.3
Longest 12.5/12.9 15.3/15.8 5.7/5.9 9.8/10.2
TTE 12.8/13.2 15.8/16.1 5.9/6.2 9.8/10.1
πCS→EN 13.9/14.2 16.8/17.3 6.3/6.5 10.5/10.9
πFI→EN 13.5/14.0 16.5/16.9 6.1/6.4 10.2/10.3
πEN→CS 13.3/13.6 16.4/16.5 5.1/5.7 10.3/10.5
πEN→FI 13.2/13.5 15.9/16.3 5.1/5.6 9.8/10.2
Ensemble
πCS,FI→EN 14.1/14.3 16.8/17.5 6.3/6.5 10.5/10.9
πEN→CS,FI 13.6/13.8 16.5/16.9 5.8/5.9 10.3/10.5

Full Model (500K) 20.5/20.6 22.3/22.5 - -

Table 3: BLEU scores on tests sets using different selection strategies. The token level annotation budget is 677K.

may be interested to see how different AL meth-
ods compare against each other based on this cost
measure.

Table 2 show the results based on the sentence-
based annotation cost. We train a policy on EN→
CS, and apply it to EN → DE and EN → FI
translation tasks. In addition to the token-based
AL policy from Table 1, we train another policy
based on the sentence budget. The token-based
policy is competitive in EN → DE, where the
longest sentence heuristic achieves the best perfor-
mance, presumably due to the enormous training
signal obtained by translation of long sentences.
The token-based policy is on par with longest sen-
tence heuristic in EN→ FI for both 10K and 100K
AL budgets to outperform the other methods.

5.2 Translating into English

Setting We investigate the performance of the
AL methods on DE → EN based on the policies
trained on the other language pairs. In addition to
100K training data condition, we assess the effec-
tiveness of the AL methods in an extremely low-
resource condition consisting of only 10K bilin-
gual sentences as the initial bitext.

In addition to the source word embedding ta-
ble that we initialised in the previous section’s
experiments using the cross lingual word embed-
dings, we are able further to initialise all of the
other NMT parameters for DE → EN transla-
tion. This includes the target word embedding ta-
ble and the decoder softmax, as the target language
is the same (EN) in the language-pairs used for

both policy training and policy testing. We refer to
this setting as warm-start, as opposed to cold-start
in which we only initialised the source embed-
ding table with the cross-lingual embeddings. For
the warm-start experiments, we transfer the NMT
trained on 500K CS-EN bitext, based on which
the policy is trained. We use byte-pair encoding
(BPE) (Sennrich et al., 2015b) with 30K opera-
tions to bpe the EN side. For the source side, we
use words in order to use the cross-lingual word
embeddings. All parameters of the transferred
NMT are frozen, except the ones corresponding
to the bidirectional RNN encoder and the source
word embedding table.

To make this experimental condition as realis-
tic as possible, we learn the cross-lingual word
embedding for DE using large amounts of mono-
lingual text and the initially available bitext, as-
suming a multilingual word embedding already
exists for the languages used in the policy train-
ing phase. More concretely, we sample 5M DE
text from WMT2018 data3, and train monolingual
word embeddings as part of a skip-gram language
model using fastText.4 We then create a bilin-
gual EN-DE word dictionary based on the initially
available bitext (either 100K or 10K) using word
alignments generated by fast align.5 The
bilingual dictionary is used to project the mono-
lingual DE word embedding space into that of EN,

3We make sure that it does not include the DE sentences
in the 400K pool used in the AL experiments.

4https://github.com/facebookresearch/fastText
5https://github.com/clab/fast align

340

hence aligning the spaces through the following
orthogonal projection:

argmax
QQQ

m∑

i=1

eee[yi]
T ·QQQ · eee[xi] s.t. QQQT ·QQQ = III

where {(yi, xi)}mi=1 is the bilingual dictionary
consisting of pairs of DE-EN words6, eee[yi] and
eee[xi] are the embeddings of the DE and EN words,
and QQQ is the orthogonal transformation matrix
aligning the two embedding spaces. We solve
the above optimisation problem using SVD as in
Smith et al. (2017). The cross-lingual word em-
bedding for a DE word y is then eee[y]T · QQQ. We
build two such cross-lingual embeddings based on
the two bilingual dictionaries constructed from the
10K and 100K bitext, in order to use in their cor-
responding experiments.

Results Table 3 presents the results, on two con-
ditions of 100K and 10K initial bilingual sen-
tences. For each of these data conditions, we ex-
periments with both cold-start and warm-start set-
tings using the pre-trained multilingual word em-
beddings from Ammar et al. (2016) or those we
have trained with the available bitext plus addi-
tional monotext. Firstly, the warm start strategy
to transfer the NMT system from CS → EN to
DE → EN has been very effective, particularly
on extremely low bilingual condition of 10K sen-
tence pairs. It is worth noting that our multilingual
word embeddings are very effective, even-though
they are trained using small bitext. Secondly, our
policy-based AL methods are more effective than
the baseline methods and lead to up to +1 BLEU
score improvements.

We further take the ensemble of multiple trained
policies to build a new AL query strategy. In the
ensemble, we rank sentences based on each of the
policies. Then we produce a final ranking by com-
bining these rankings. Specifically, we sum the
ranking of each sentence according to each pol-
icy to get a rank score, and re-rank the sentences
according to their rank score. Table 3 shows that
ensembling is helpful, but does not produce signif-
icant improvements compared to the best policy.

5.3 Analysis

Distribution of word frequency TTE is a com-
petitive heuristic-based strategy, as shown in the

6One can incorporate human curated bilingual lexicons to
the automatically curated dictionaries as well.

Figure 3: On the task of DE→EN, the plot shows the
log fraction of words vs the log frequency from the se-
lected data returned by different strategies, in which we
have a 677K token budget and do warm start with 100K
initial bitext. The AL policy here is πCS→EN .

above experiments. We compare the word fre-
quency distributions of the selected source text re-
turned by Random, TTE against our AL policy.
The policy we use here is πCS→EN and applied
on the task of DE→EN, which is conducted in the
warm-start scenario with 100K initial bitext and
677K token budget.

Fig. 3 is the log-log plot of the fraction of vo-
cabulary words (y axis) having a particular fre-
quency (x axis). Our AL policy is less likely to
select high-frequency words than other two meth-
ods when it is given a fixed token budget.

Weighted combination of heuristics In order
to get the intuition of which of the heuristics
our AL policy resorts to, we again use policy
πCS→EN and apply on the task of DE→EN,
which is conducted in the warm-start scenario
with 100K initial bitext and 677K token budget.
Meanwhile, we get the preference scores for the
sentences from the monolingual set. Then, we
fit a linear regression model based on the sen-
tences and their scores, in which the response
variable is the preference score and the predic-
tor variables are extracted features or heuristics
based on the sentences. The extracted features
are (length, TTE, f0, f1, f2, f3+), where fi is the
fraction of words in the sentence that appear i
times in the bitext. Table 4 shows the the coeffients
of these heuristics, their standard errors (SE) and
t values. We can see that our AL policy consid-
ers length and TTE in parallel as they have a close
range of coefficients, the policy also prefers low
frequency than high frequency words.

341

heuristics coefficient SE t value
length 0.0328 0.0105 3.1238
TTE 0.0357 0.0147 2.4285
f0 0.0223 0.0132 1.6893
f1 0.0105 0.0092 1.1413
f2 0.0052 0.0023 2.260
f3+ -0.0043 0.0006 -7.1667

Table 4: The table gives an estimation of the resorted
heuristics.

6 Related Work

For statistical MT (SMT), active learning is well
explored, e.g. see Haffari and Sarkar (2009);
Haffari et al. (2009), where several heuristics for
query sentence selection have been proposed, in-
cluding the entropy over the potential translations
(uncertainty sampling), query by committee, and a
similarity-based sentence selection method. How-
ever, active learning is largely under-explored for
NMT. The goal of this paper is to provide an
approach to learn an active learning strategy for
NMT based on a Hierarchical Markov Decision
Process (HMDP) formulation of the pool-based
AL (Bachman et al., 2017; Liu et al., 2018).

Expoliting monolingual data for nmt Mono-
lingual data play a key role in neural machine
translation systems, previous work have consid-
ered training a seperate language model on the tar-
get side (Jean et al., 2014; Gulcehre et al., 2015;
Domhan and Hieber, 2017). Rather than using ex-
plicit language model, Cheng et al. (2016) intro-
duced an auto-encoder-based approach, in which
the source-to-target and target-to-source transla-
tion models act as encoder and decoder respec-
tively. Moreover, back translation approaches
(Sennrich et al., 2015a; Zhang et al., 2018; Hoang
et al., 2018) show efficient use of monolingual
data to improve neural machine translation. Dual
learning (He et al., 2016) extends back transla-
tion by using a deep RL approach. More recently,
unsupervised approaches (Lample et al., 2017b;
Artetxe et al., 2017) and phrase-based NMT (Lam-
ple et al., 2018) learn how to translate when hav-
ing access to only a large amount of monolingual
corpora, these models also extend the use of back
translation and cross-lingual word embeddings are
provided as the latent semantic space for sentences
from monolingual corpora in different languages.

Meta-AL learning Several meta-AL ap-
proaches have been proposed to learn the AL
selection strategy automaticclay from data. These
methods rely on deep reinforcement learning
framework (Yue et al., 2012; Wirth et al., 2017) or
bandit algorithms (Nguyen et al., 2017). Bachman
et al. (2017) introduced a policy gradient based
method which jointly learns data representation,
selection heuristic as well as the model prediction
function. Fang et al. (2017) designed an active
learning algorithm based on a deep Q-network, in
which the action corresponds to binary annotation
decisions applied to a stream of data. Woodward
and Finn (2017) extended one shot learning
to active learning and combined reinforcement
learning with a deep recurrent model to make
labeling decisions. As far as we know, we are
the first one to develop the Meta-AL method to
make use of monolingual data for neural machine
translation, the method we proposed in this paper
can be applied at mini-batch level and conducted
in cross lingual settings.

7 Conclusion

We have introduced an effective approach for
learning active learning policies for NMT, where
the learner needs to make batch queries. We have
provides a hierarchical MDP formulation of the
problem, and proposed a policy network structure
capturing the context in both MDP levels. Our
policy training method uses imitation learning and
a search lattice to carefully collect AL trajecto-
ries for further improvement of the current policy.
We have provided experimental results on three
language pairs, where the policies are transferred
across languages using multilingual word embed-
dings. Our experiments confirms that our method
is more effective than strong heuristic-based meth-
ods in various conditions, including cold-start and
warm-start as well as small and extremely small
data conditions.

Acknowledgments

We would like to thank the feedback from anony-
mous reviewers. This work was supported by
computational resources from the Multi-modal
Australian ScienceS Imaging and Visualisation
Environment (MASSIVE) at Monash University,
and partly by an NVIDIA GPU grant.

342

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Philip Bachman, Alessandro Sordoni, and Adam
Trischler. 2017. Learning algorithms for active
learning. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages
301–310, International Convention Centre, Sydney,
Australia. PMLR.

Michael Bloodgood and Chris Callison-Burch. 2010.
Bucking the trend: Large-scale cost-focused active
learning for statistical machine translation. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 854–864.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daumé, III, and John Langford. 2015.
Learning to search better than your teacher. In
Proceedings of the 32Nd International Conference
on International Conference on Machine Learning,
pages 2058–2066.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
arXiv preprint arXiv:1606.04596.

Tobias Domhan and Felix Hieber. 2017. Using target-
side monolingual data for neural machine translation
through multi-task learning. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1500–1505.

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning
how to active learn: A deep reinforcement learning
approach. arXiv preprint arXiv:1708.02383.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor OK
Li. 2018. Universal neural machine translation for
extremely low resource languages. arXiv preprint
arXiv:1802.05368.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based
machine translation. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 415–423. As-
sociation for Computational Linguistics.

Gholamreza Haffari and Anoop Sarkar. 2009. Active
learning for multilingual statistical machine transla-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL, pages 181–189.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tieyan Liu, and Wei-Ying Ma. 2016. Dual learn-
ing for machine translation. In Advances in Neural
Information Processing Systems, pages 820–828.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large tar-
get vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Vigas, Martin Wattenberg, G.s Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39. Association for Compu-
tational Linguistics.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017a. Unsupervised
machine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017b. Unsupervised
machine translation using monolingual corpora
only. arXiv preprint arXiv:1711.00043.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. arXiv preprint arXiv:1804.07755.

Ming Liu, Wray Buntine, and Gholamreza Haffari.
2018. Learning how to actively learn: A deep im-
itation learning approach. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

343

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017. Reinforcement learning for bandit
neural machine translation with simulated human
feedback. arXiv preprint arXiv:1707.07402.

Stephane Ross and J Andrew Bagnell. 2014. Rein-
forcement and imitation learning via interactive no-
regret learning. arXiv preprint arXiv:1406.5979.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare
words with subword units. arXiv preprint
arXiv:1508.07909.

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks.
In Proceedings of the conference on empirical meth-
ods in natural language processing, pages 1070–
1079. Association for Computational Linguistics.

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. arXiv preprint arXiv:1702.03859.

Christian Wirth, Riad Akrour, Gerhard Neumann, and
Johannes Fürnkranz. 2017. A survey of preference-
based reinforcement learning methods. Journal of
Machine Learning Research, 18(136):1–46.

Mark Woodward and Chelsea Finn. 2017. Active one-
shot learning. arXiv preprint arXiv:1702.06559.

Yisong Yue, Josef Broder, Robert Kleinberg, and
Thorsten Joachims. 2012. The k-armed dueling ban-
dits problem. J. Comput. Syst. Sci., 78(5):1538–
1556.

Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and En-
hong Chen. 2018. Joint training for neural machine
translation models with monolingual data. arXiv
preprint arXiv:1803.00353.

344

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 345–355
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Upcycle Your OCR: Reusing OCRs for Post-OCR Text Correction in
Romanised Sanskrit

Amrith Krishna#, Bodhisattwa Prasad Majumder*, Rajesh Shreedhar Bhat**,
and Pawan Goyal#

#Dept. of Computer Science and Engineering, IIT Kharagpur,
*Dept. of Computer Science, University of California, San Diego

**Walmart Labs, India
amrith@iitkgp.ac.in, bmajumde@eng.ucsd.edu,

rajeshbhatpesit@gmail.com, pawang@cse.iitkgp.ernet.in

Abstract

We propose a post-OCR text correction ap-
proach for digitising texts in Romanised San-
skrit. Owing to the lack of resources our ap-
proach uses OCR models trained for other lan-
guages written in Roman. Currently, there ex-
ists no dataset available for Romanised San-
skrit OCR. So, we bootstrap a dataset of 430
images, scanned in two different settings and
their corresponding ground truth. For training,
we synthetically generate training images for
both the settings. We find that the use of copy-
ing mechanism (Gu et al., 2016) yields a per-
centage increase of 7.69 in Character Recog-
nition Rate (CRR) than the current state of the
art model in solving monotone sequence-to-
sequence tasks (Schnober et al., 2016). We
find that our system is robust in combating
OCR-prone errors, as it obtains a CRR of
87.01% from an OCR output with CRR of
35.76% for one of the dataset settings. A hu-
man judgement survey performed on the mod-
els shows that our proposed model results in
predictions which are faster to comprehend
and faster to improve for a human than the
other systems1.

1 Introduction

Sanskrit used to be the ‘lingua franca’ for the sci-
entific and philosophical discourse in ancient In-
dia with literature that spans more than 3 millen-
nia. Sanskrit primarily had an oral tradition, and
the script used for writing Sanskrit varied widely
across the time spans and regions. With the ad-
vent of printing press, Devanagari emerged as the
prominent script for representing Sanskrit. With
standardisation of Romanisation using IAST in
1894 (Monier-Williams, 1899), printing in San-
skrit was extended to roman scripts as well. There

1The data and the codes for our system are avail-
able here - https://github.com/majumderb/
sanskrit-ocr

has been a surge in digitising printed Sanskrit
manuscripts written in Roman such as the ones
currently digitised by the ‘Krishna Path’ project2.

In this work, we propose a model for post-
OCR text correction for Sanskrit written in Ro-
man. Post-OCR text correction, which can be seen
as a special case of spelling correction (Schnober
et al., 2016), is the task of correcting errors that
tend to appear in the output of the OCR in the pro-
cess of converting an image to text. The errors
incurred from OCR can be quite high due to nu-
merous factors including typefaces, paper quality,
scan quality, etc. The text can often be eroded,
can contain noises and the paper can be bleached
or tainted as well (Schnober et al., 2016). Fig-
ure 1 shows the sample images we have collected
for the task. Hence it is beneficial to perform a
post-processing on the OCR output to obtain an
improved text.

Figure 1: Sample images from our test set with dif-
ferent stylistic parameters

In the case of Indic OCRs, there have been con-
siderable efforts in collection and annotation of
data pertaining to Indic Scripts (Kumar and Jawa-
har, 2007; Bhaskarabhatla et al., 2004; Govin-
daraju and Setlur, 2009; Krishnan et al., 2014).
Earlier attempts on Indian scripts were primar-
ily based on handcrafted templates (Govindan and
Shivaprasad, 1990; Chaudhuri and Pal, 1997) or
features (Arora et al., 2010; Pal et al., 2009) which
extensively used the script and language-specific

2http://www.krishnapath.org/library/

345

information (Krishnan et al., 2014). Sequential la-
belling approaches were later proposed that take
the word level inputs and make character level pre-
dictions (Shaw et al., 2008; Hellwig, 2015). The
word based sequence labelling approaches were
further extended to use neural architectures, espe-
cially using RNNs and its variants such as LSTMs
and GRUs (Sankaran and Jawahar, 2012; Krish-
nan et al., 2014; Saluja et al.; Adiga et al., 2018;
Mathew et al., 2016). But, OCR is putative in ex-
hibiting few long-range dependencies (Schnober
et al., 2016). Singh and Jawahar (2015) find that
extending the neural models to process the text
at the sentence level (or a textline) leads to im-
provement in the performance of the OCR sys-
tems. This was further corroborated by Saluja
et al. where the authors found that using words
within a context window of 5 for a given input
word worked particularly well for the Post-OCR
text correction in Sanskrit. In the case of provid-
ing a text line as input, we are essentially pro-
viding more context about the input in compar-
ison to the word level models and the RNN (or
LSTM) cells are powerful enough to capture the
long-term dependencies. Particularly for Indian
languages, this decision is beyond a question of
performance. In Sanskrit, the word boundaries
are often obscured due to phonetic transformations
at the word boundaries known as Sandhi. Word
segmentation of Sanskrit constructions is a mat-
ter of research on its own (Krishna et al., 2016a;
Reddy et al., 2018). However, none of the existing
systems are equipped for incorrect spellings and
hence these systems may be brittle (Belinkov and
Bisk, 2018) when it comes to handling spelling
variations in the input. Hence, in our case, we as-
sume an unsegmented sequence as our input and
then we perform our Post-OCR text correction on
the text. We hypothesise that this will improve the
segmentation process and other downstream tasks
for Sanskrit in a typical NLP pipeline.

Our major contributions are:

1. Contrary to what is observed in Schnober
et al. (2016), an encoder-decoder model,
when equipped with copying mechanism (Gu
et al., 2016), can outperform a traditional se-
quence labelling model in a monotone se-
quence labelling task. Our model outper-
forms Schnober et al. (2016) in the Post-OCR
text correction for Romanised Sanskrit task
by 7.69 % in terms of CRR.

2. By making use of digitised Sanskrit texts, we
generate images as synthetic training data for
our models. We systematically incorporate
various distortions to those images so as to
emulate the settings of the original images.

3. Through a human judgement experiment, we
asked the participants to correct the mistakes
from a predicted output from the compet-
ing systems. We find that participants were
able to correct predictions from our system
more frequently and the corrections were
done much faster than the CRF model by
Schnober et al. (2016). We observe that pre-
dictions from our model score high on ac-
ceptability (Lau et al., 2015) than other meth-
ods as well.

2 Model Architecture

In principle, the output from any OCR which
recognises Romanised Sanskrit can be used as the
input to our model. Currently, there exist lim-
ited options for recognising Romanised Sanskrit
texts from scanned documents. Possibly, the com-
mercial OCR offering by Google as part of their
proprietary cloud vision API and SanskritOCR3

might be the only two viable options. Sanskri-
tOCR provides an online interface to the Tesseract
OCR, an open source multilingual OCR (Smith,
2007; Smith et al., 2009; Smith, 1987), trained
specifically for recognising Romanised Sanskrit.
Additionally, we trained an offline version of
Tesseract to recognise the graphemes in the Ro-
manised Sanskrit alphabet. In both the models we
find that many scanned images, especially similar
to the one shown in Figure 1b, were not recog-
nised by the system. We hypothesise this to be
due to lack of enough font styles available in our
collection, in spite of using a site with the rich-
est collection of Sanskrit fonts4. This leaves the
Google OCR as the only option.

Considering the fact that working with a com-
mercial offering from Google OCR may not be an
affordable option for various digitisation projects,
we chose to use Tesseract with models trained for
other languages written in Roman script. All the
Latin or Roman scripts in the pre-trained models

3https://sri.auroville.org/projects/
sanskrit-ocr/. It provides interface to tesseract and
Google OCR as well.

4More details about the training procedure in §1 of the
supplementary material

346

of Tesseract are trained on 400,000 text-lines span-
ning about 4500 fonts5.

Figure 2: Heatmap of occurrences of majorly con-
fusing character pairs between Ground Truth and
OCR

Use of OCR with pre-trained models for
other languages French alphabet has the high-
est grapheme overlap with that of the Sanskrit al-
phabet (37 of 50), while all other languages have
one less grapheme common with Sanskrit. Hence,
we arbitrarily take 5 of the languages in addition
to French and perform our analysis. Table 1 shows
the character recognition rate (CRR) for OCR us-
ing alphabets of different languages, when per-
formed on a dataset of 430 scanned images (§3.1).
The table also shows the count of error types made
by the OCR after alignment (Jiampojamarn et al.,
2007; D’hondt et al., 2016). All the languages
have a near similar CRR with English and French
leading the list. Based on our observations on the
OCR performance, we select English for our fur-
ther experiments.

Upcycling such a pre-trained model brings its
own challenges. For instance, the missing 14 San-
skrit graphemes6 in English are naturally mispre-
dicted to other graphemes. This leads to ambi-
guity as the correct and the mispredicted charac-
ters now share the same target. Figure 2 shows
the heat-map for such mis-predictions when we
used the OCR on the set of 430 scanned images.
Here, we zoom the relevant cases and show the

5https://github.com/tesseract-ocr/
tesseract/wiki/TrainingTesseract-4.00

6Detailed in §2 of the Supplementary Material

row-normalised proportion of predictions7.

2.1 System Descriptions
We formalise the task as a monotone seq2seq
model. We use an encoder-decoder framework
that takes in a character sequence as input and
the model finds embeddings at a sub-word level
both at the encoder and decoder side. Here the
OCR output forms input to the model. Keeping
the task in mind we make two design decisions for
the model. One is the use of copying mechanism
(Gu et al., 2016) and other is the use of Byte Pair
Encoding (BPE) (Sennrich et al., 2016) to learn a
new vocabulary for the model.

CopyNet (Gu et al., 2016): Since it is possible
that there will be reasonable overlap between the
input and output strings, we use the copying mech-
anism as mentioned in CopyNet (Gu et al., 2016).
The model essentially learns two probability dis-
tributions, one for generating an entry at the de-
coder and the other for copying the entry from the
encoder. The final prediction is based on the sum
of both the probabilities for the class. Given an
input sequence X = (x1, ...,xN) we define X ,
for all the unique entries in the input sequence.
We also define the vocabulary V = {v1, ..., vN}.
Let the out-of-vocabulary (OOV) words be repre-
sented with UNK. The probability of the generate
mode g and copy mode c are given by

p(yt, g|·)=

1

Z
eψg(yt), yt ∈ V
0, yt ∈ X − V

1

Z
eψg(UNK) yt 6∈ V ∪ X

p(yt, c|·)=
{ 1

Z

∑
j:xj=yt

eψc(xj), yt ∈ X
0 otherwise

where ψg(·) and ψc(·) are score functions for
generate-mode (g) and copy-mode (c), respec-
tively, and Z is the normalization term shared
by the two modes, Z =

∑
v∈V∪{UNK} e

ψg(v) +∑
x∈X eψc(x). The scoring function for both the

modes, respectively, are

ψg(yt = vi) = v>i Wost, vi ∈ V ∪ UNK

ψc(yt = xj) = σ
(
h>j Wc

)
st, xj ∈ X

where Wc ∈ Rdh×ds , and σ is a non-linear ac-
tivation function (Gu et al., 2016).

7A more detailed figure with all the cases are available in
the supplementary material in §3.

347

Language Bhagavad Gītā Sahaśranāma Combined
CRR Ins Del Sub CRR Ins Del Sub CRR

English 84.92 23 63 1868 64.06 73 696 1596 80.08
French 84.90 21 102 1710 63.91 91 702 1670 80.04
Finnish 82.61 15 141 1902 61.31 80 730 1821 78.81
Italian 83.45 20 73 1821 62.19 84 690 1673 79.03
Irish 84.52 12 78 1810 63.81 72 709 1841 79.93

German 84.40 33 72 1821 63.79 87 723 1874 79.12

Table 1: OCR performances for different languages with overall CRR, total Insertion, Deletion and Sub-
stitution errors.

BPE (Sennrich et al., 2016) : Sanskrit is a mor-
phologically rich language. A noun in Sanskrit
can have 72 different inflections and a verb may
have more than 90 inflections. Additionally, San-
skrit corpora generally express a compound rich
vocabulary (Krishna et al., 2016b). Hence, in a
typical Sanskrit corpus, the majority of the tokens
appear less than 5 times (§3.1). These are gener-
ally considered to be rare words in a corpus (Sen-
nrich et al., 2016). However, corpora dominated
by rare words are difficult to handle for a statis-
tical model like ours. To combat the sparsity of
the data, we convert the tokens into sub-word n-
grams using Byte Pair Encoding (BPE) (Sennrich
et al., 2016). Methods such as wordpiece (Schus-
ter and Nakajima, 2012) as well as Sennrich et al.
(2016) are means of obtaining a new vocabulary
for a given corpus. Every sequence in the cor-
pus is then re-written as a sequence of tokens in
terms of the sub-word units which forms the type
in the new vocabulary so obtained. These meth-
ods essentially use a data-driven approach to max-
imise the language-model likelihood of the train-
ing data, given an evolving word definition (Wu
et al., 2016).

We explicitly set the minimum count for a to-
ken in the new vocabulary to appear in the corpora
as 30. We learn a new vocabulary of size 82 with
22 of them having a length 1 and the rest with a
length 2. The IAST standardisation of the Roman-
ised Sanskrit contains 50 graphemes in Sanskrit
alphabet. About 12 of the graphemes are repre-
sented using 2 character roman character combi-
nations. Now, in the vocabulary learnt using BPE,
7 of the graphemes were not present. Hence, we
add them in addition to the 82 entries learnt as vo-
cabulary. This makes the total vocabulary to be 89.
By using the new vocabulary, it is guaranteed that
there will be no Out Of Vocabulary (OOV) words
in our model.

We use 3 stacked layers of LSTM at the encoder
and the decoder with the same settings as in Bah-

danau et al. (2015). To enable copying, we share
the embeddings of the source and the target vo-
cabulary. By eliminating OOV, we make sure that
copying always happens by virtue of the evidence
from the training data and not by the presence of
an OOV word.

3 Experiments

3.1 Dataset

Sanskrit is a low-resource language. It is ex-
tremely scarce to obtain datasets with scanned im-
ages and the corresponding aligned texts for Ro-
manised Sanskrit. We obtain 430 scanned images
as shown in Figure 1 and manually annotate the
corresponding text. We use this as our test dataset,
henceforth to be referred to as OCRTest. For train-
ing, we synthetically generate images from digi-
tised Sanskrit texts and use them as our training
set and development set. The images for train-
ing, OCRTrain, were generated by synthetically
adding distortions to those images to match the
settings of the real scanned documents.

OCRTest contains 430 images from 1) scanned
copy of Vishnu Sahaśranāma8 and 2) scanned
copy of Bhagavad Gı̄tā, a sample of each is shown
in Figure 1a and 1b. 140 out of these 430 are from
Sahaśranāma and the remaining are from Bha-
gavad Gı̄tā.

OCRTrain: Similar to Ul-Hasan and Breuel
(2013), we synthetically generate the images,
which are then fed to the OCR, to obtain our train-
ing data. We use the digitised text from Śrı̄mad
Bhāgavatam9 for generating the synthetic images.
The text contains about 14,094 verses in total, di-
vided into 50,971 text-lines. The dataset is divided
into 80-20 split as training set and development
set, respectively. The corpus contains a vocabulary
of 52,882 word types. 48,249 of the word types

8http://kirtimukha.com/
9https://www.vedabase.com/en/sb

348

in the vocabulary appear less than or equal to 5
times, of which 32,411 appear exactly once. This
is primarily due to the inflectional nature of San-
skrit. We find similar trends in the vocabulary of
Rāmāyan. a10 and Digital Corpus of Sanskrit (Hell-
wig, 2010-2016) as well.

3.2 Synthetic Generation of training set

Using the text-lines from Bhāgavatam, we gener-
ate synthetic images using ImageMagick11. The
images were generated with a quality of 60 Dots
Per Inch (DPI). The number of pixels along the
height for each textline was kept constant at 65
pixels. We add several distortions to the synthet-
ically generated images so as to visually match
with the same settings as that of OCRTest. Pre-
viously, Ul-Hasan and Breuel (2013) used the ap-
proach of synthetically generating training data for
multilingual OCR solution of theirs.

Table 2 shows the different parameters, namely,
gamma correction, noise addition, use of struc-
tural kernel for erosion and perspective distortion,
that we apply sequentially on the images so as
to distort and degrade the images (Chen et al.,
2014). We use grid search for the parameter es-
timation for these processes, where those param-
eters and the range of values experimented with
are provided in Table 2. Finally, we filter 7 (out
of 38,400 combinations) different configurations
based on the distribution of Character Recogni-
tion Rate (CRR) across the images compared with
that of the OCRTest using KL-divergence. Among
these seven configurations, four are closer to the
settings for Bhagavad Gı̄tā and the remaining three
for Sahaśranāma. Figure 3 shows the two differ-
ent settings (closer to each of the source textbook)
for the string “ajo durmars. an. ah. śāstā viśrutātmā
surārihā”, along with their corresponding param-
eter settings and KL-Divergence. Our training set
contains images from all the 7 settings for each of
the textline in OCRTrain12.

Evaluation Metrics We use three different met-
rics for evaluating all our models. We use Char-
acter Recognition Rate (CRR) and Word Recog-
nition Rate (WRR) averaged over each of the sen-
tences in the 430 lines in the test dataset (Sankaran

10https://sanskritdocuments.org/sites/
valmikiramayan/

11https://www.imagemagick.org/script/
index.php

12Samples of all the 7 seven configurations are shown in
the supplementary material in §4

Figure 3: Samples of synthetically generated im-
ages. The parameter settings for the distortions are
mentioned below the corresponding image.

and Jawahar, 2012). CRR is the fraction of char-
acters recognised correctly against the total num-
ber of characters in a line, whereas WRR is the
fraction of words correctly recognised against the
total number of words in a line. Additionally, we
use a sentence level metric, called the acceptabil-
ity score. The measure indicates the extent to
which a sentence is permissible or acceptable to
the speakers of the language (Lau et al., 2015).
From Lau et al. (2015), we use the NormLP formu-
lation for the task, as it is found to have a high cor-
relation with the human judgements in evaluating
acceptability. NormLP is calculated by obtaining
the likelihood of a predicted sentence as per the
model, and then normalising it by the likelihood of
the string as per a unigram language model trained
on a corpus with gold standard sentences. A nega-
tive sign is then given to the score. The higher the
score, the more acceptable the sentence is.

3.3 Baselines

Character Tagger - Sequence Labelling using
BiLSTMs This is a sequence labelling model
which uses BiLSTM cells and input is a character
sequence (Saluja et al.). We use categorical cross-
entropy as the loss function and softmax as the ac-
tivation function. For dropout, we employ spatial
dropout in our architecture. The model consists
of 3 layers with each layer having 128 cells. Em-
beddings of size 100 are randomly initialised and
the learnt representations are stored in a character
look-up table similar to Lample et al. (2016). In
addition to every phoneme in Sanskrit as a class,
we add an additional class ‘no change’ which sig-
nifies that the character remains as is. We also ex-
perimented with a variant where the final layer is
a CRF layer (Lafferty et al., 2001). We henceforth
refer to both the systems as BiLSTM and BiLSTM-
CRF, respectively.

Pruned CRFs (Schnober et al., 2016): They

349

Process Parameters Range Step
size

Gamma Correction (GM) gamma (γ) 4 64 4
Salt & Pepper Noise (SPN) (with 50% salt and 50%

pepper) percentage of pixels corrupted 0.1% 1% 0.1

Gaussian Noise (GN) (mean = 0) standard deviation 2.5 3.5 0.25
Erosion (E) (one iteration) kernel size (m × m) 2 5 1

Horizontal perspective distortion (HPD) image width by image height 0.3 1 0.05

Table 2: Image pre-processing steps and parameters

are higher order CRF models (Ishikawa, 2011)
that approximate the CRF objective function using
coarse-to-fine decoding. Schnober et al. (2016)
adapt the sequence labeling model as a seq2seq
model that can handle variable length input-output
pairs. Schnober et al. (2016) show that none of the
neural seq2seq models considered in their work
were able to outperform the Pruned CRF with
order-5. The features to the model are consecu-
tive characters within a window of size w in either
of the directions of the current position at which a
prediction is made. The model is designed to han-
dle 1-to-zero and 1-to-many matches, facilitated
by the use of alignment prior to training. We con-
sider all the three settings reported in Schnober
et al. (2016) and report the results for the best
setting. The order-5 model which uses 6-grams
within a window of 6 performs the best. Hence-
forth, this model is referred to as PCRF-seq2seq
(also referred to as PCRF interchangeably).

Encoder-Decoder Models: For the seq2seq
model (Sutskever et al., 2014), we use 3 stacked
layers of LSTM each at the encoder and the de-
coder. Each layer is of 128 dimensions and
weighted cross-entropy is used as the loss. We
also add residual connections among the layers in
a stack (Wu et al., 2016). To further capture the
entire input context for making each prediction at
the output, we make use of attention (Bahdanau
et al., 2015), specifically Luong’s attention mech-
anism (Luong et al., 2015). We experiment with
two variants where EncDec+Char uses character
level embeddings and EncDec+BPE uses embed-
dings with BPE.

CopyNet+BPE: The model discussed in §2. We
use CopyNet+BPE and CopyNet interchangeably
throughout the paper.

3.4 Results

Table 3 shows the results for all the competing
systems based on the predictions from OCRTest.
CopyNet performs the best among the competing

systems across all the three metrics and on both
the source texts. For the Gı̄tā dataset, the models
CopyNet and PCRF-Seq2Seq report similar per-
formances. However, Sahaśranāma is a noisier
dataset, and we find that CopyNet outperforms all
other models by a huge margin. The WRR for
the system is double that of the next best system
(EncDec) on this dataset.

System performances for various input lengths:
From Figure 4a, it can be observed that the perfor-
mance in terms of CRR for CopyNet and PCRF is
robust across all the lengths on strings from Gı̄tā
and never goes below 90%. For Sahaśranāma, as
shown in Figure 4b, CopyNet outperforms PCRF
across inputs of all the lengths except for one set-
ting. But, in the case of WRR, CopyNet is the best
performing model across all the lengths as shown
in Figure 4d.

30 40 43 44 45 46 50
(a) num of characters

80

90

100

M
ea

n
C
R
R

40 43 44 45 46 50
(b) num of characters

0

50

100
CopyNet PCRF EncDec(Char)

2 3 4 5 6
(c) num of words

25

50

75

100

M
ea

n
W
R
R

2 3 4 5 6
(d) num of words

0

25

50

75

Figure 4: (a) and (b) show CRR for Gı̄tā and
Sahaśranāma respectively, for the competing sys-
tems. (c) and (d) shows WRR for Gı̄tā and
Sahaśranāma, respectively. All the entries with in-
sufficient data-points were merged to the nearest
smaller number.

Error type analysis In Table 5, we analyse
the reduction in specific error types for PCRF

350

Model Bhagavad Gītā Sahaśranāma Combined
CRR WRR Norm LP CRR WRR Norm LP CRR WRR Norm LP

OCR 84.81% 64.40% – 35.76% 0.65% – 77.88% 23.84% –
BiLSTM 93.79% 68.60% -0.553 61.31% 7.28% -1.292 85.23% 45.60% -0.852

BiLSTM-CRF 94.68% 68.60% -0.548 65.31% 7.28% -1.281 85.82% 45.60% -0.847
PCRF-seq2seq 96.87% 70.56% -0.227 81.77% 9.34% -1.216 87.94% 57.17% -0.803
EncDec+Char 91.48% 68.00% -0.542 63.63% 15.74% -1.321 82.51% 47.37% -0.865
EncDec+BPE 90.92% 68.00% -0.496 61.53% 15.74% -1.384 83.14% 45.98% -0.842

CopyNet+BPE 97.01% 75.21% -0.165 87.01% 33.47% -0.856 89.65% 68.71% -0.551

Table 3: Performance in terms of CRR, WRR and Norm LP (acceptability) for all the competing models

CRR WRR
Bhagavad Gītā 96.80% 71.23%
Sahaśranāma 82.81% 26.01%

Combined 87.88% 60.91%

Table 4: Performance in terms of
CRR, WRR for Google OCR

Model Bhagavad Gītā Sahaśranāma System errors
Ins Del Sub Ins Del Sub Ins Del Sub

OCR 23 63 1868 73 696 1596 – – –
PCRF 22 57 641 72 663 932 0 73 209

CopyNet 22 45 629 72 576 561 10 5 52

Table 5: Insertion, Deletion and Substitution errors for OCR,
PCRF and CopyNet modes for both the datasets. The system er-
rors are extra errors added by the respective systems.

and CopyNet after the alignment of the predicted
string with that of the ground truth in terms of in-
sertion, deletion and substitution. We also report
the system induced errors, where a correct com-
ponent at the input (OCR output) is mispredicted
to a wrong output by the model. CopyNet outper-
forms PCRF in correcting the errors and it also in-
troduces lesser number of errors of its own. Both
CopyNet and PCRF (Schnober et al., 2016) are
seq2seq models and can handle varying length in-
put and output. Both the systems perform well in
handling substitution errors, the type which dom-
inated the strings in OCRTest, though neither of
the systems was able to correct the insertion er-
rors. Insertion can be seen as a special case of
1-to-many insertion matches, which both systems
are ideally capable of handling. We see that for
Sahaśranāma, CopyNet corrects about 17.24 % of
the deletion errors as against <5% of the deletion
errors corrected by PCRF.

Since there exist 14 graphemes in Sanskrit al-
phabet which are not present in the English alpha-
bet, all 14 of them get substituted to a different
grapheme by the OCR. While most of them get
substituted to an orthographically similar charac-
ter such as ā → a and h. → h, we find that ñ → i
does not fit the scheme, as shown in Figure 2. In
the majority of the cases, CopyNet predicts them
to the correct grapheme. But PCRF still fails to
correct the OCR induced confusion for ñ → i in
the majority of the instances. Additionally, we find
that PCRF introduces its own errors, for instance it
often mispredicts p→ s. Figure 5 shows the over-

all variations in both the systems as compared to
Figure 2 for OCR induced errors.

Copy or generate? For the 14 graphemes, miss-
ing at the encoder (input) but present at the de-
coder side during training, those predictions have
to happen with high values of generate probability
in general. We find that not only the average gen-
erate probability for such instances is high but also
the copy probability is extremely low. For the re-
maining cases, we find that both generate and copy
probability are higher. But it needs to be noted
that the prediction is made generally by summing
of both the distributions and the distributions are
not complementary to each other. A similar trend
can be observed in Figure 6 as well. For example
in the case of a→ ā, only the generate probability
is high. But, for a→ a, both the copy and generate
probability scores are high.

Effect of BPE and alphabet in the vocabulary
We further investigate the effect of our vocabulary
which is the union of the alphabet in Romanised
Sanskrit and what is learnt using BPE. We train
the model with only the alphabet as vocabulary
and find the CRR and WRR for the combined test
sentences to be 86.1% and 66.09%, respectively.
When using the original BPE vocabulary, we find
that there is a slight increase in the performance
than the current vocabulary with a CRR and WRR
of 89.53% and 68.11%, respectively13. We also
find that the current setting performs better than

13Please refer to §5 of the Supplementary material for the
performance table

351

(a)

(b)

Figure 5: Heatmap for occurrences of majorly con-
fusing character pairs between Ground Truth and
predictions of (a) PCRF model (b) CopyNet model

ā ū ṃ ṇ ñ ī
gen
copy

ṃū79 ṃū56 ṃū6 ṃū7ī ṃū59 ṃū7ī
ṃūṇ4 ṃūṇṇ ṃūṇī ṃūī ṃūṇ5 ṃūṇ8

ṃūṇ5 ṃū3ṃ ṃū45 ṃū6ṃ ṃū75

Figure 6: Heatmap of mean copy score (copy) and
mean generate score (gen), respectively for 6 (of
14) graphemes not present in the English alphabet.

a model that takes word level input. The word
level model shows a drop in the performance with
a CRR and WRR of 86.42% and 66.54%, respec-
tively.

a to a a to ā
gen
copy

0.87 0.92
0.89 0.34

s to s s to ṣ s to ś
0.87 0.97 0.98
0.9 0.ś2 0.ś9

0.4 0.5 0.6 0.7 0.8 0.9
āaṣ

0.ś5 0.30 0.45 0.60 0.75 0.90
ābṣ

Figure 7: mean copy and generate scores for differ-
ent predictions from (a) ‘a’ and (b) ‘s’.

Performance comparison to Google OCR:
Google OCR is probably the only available OCR
that can handle Romanised Sanskrit. We could
not find the architecture of the OCR or whether
the service employs post-OCR text correction. We
empirically compare the performance of Google
OCR on OCRTest with our model. Table 4 shows
the results for Google OCR. Overall we find that
CopyNet outperforms Google OCR across all the
metrics. We find that Google OCR reports a simi-
lar CRR for Gı̄tā with that of ours, but still reports
a lower WRR than ours. The system performs bet-
ter than PCRF in all the metrics other than CRR
for Gı̄tā.

Image quality: Our training set was generated
with a quality of 60 DPI for the images. We gener-
ate images corresponding to strings in OCRTrain
with DPI of 50 to 300 in step sizes of 50 for a sam-
ple of 500 images. We use noise settings as shown
in Figure 3. The OCR output of the said strings re-
mained as is with that of the one generated with a
DPI of 60. This experiment can be seen as a proxy
in evaluating the robustness of the OCR to various
scanning qualities of input. Our choice of DPI as
60 was based on the lowest setting we observed in
digitisation attempts in Sanskrit texts.

Effect of adding distortions to the synthetically
generated images: Table 3 shows the system
performance after training our model on data gen-
erated as per the procedure mentioned in Section
3.2. Here, we make an implicit assumption that
we can have access to a sample of textline im-
ages annotated with the corresponding text from
the manuscript for which the Post-OCR text cor-
rection needs to be performed. This also mandates
retraining the model for every new manuscript.
We attempted for a more generalised version of
our model, by using training data where the im-
age generation settings are not inspired from the
target manuscript for which the task needs to be
performed. Using the settings from (Chen et al.,
2014) for inducing noise, we generated 10 ran-
dom noise configurations. Here the step sizes were

352

fixed at values such that each parameter, except
erosion (E), can assume 5 values each uniformly
spread across the corresponding ranges consid-
ered. From a total of 2500 (5×5×5×5×4) con-
figuration options, 10 random settings were cho-
sen. Every textline was generated with each of the
10 different settings. The resulting model using
CopyNet produced a CRR of 89.02% (96.99% for
Gītā and 85.62% for Sahaśranāma) on the test set,
which is close to the reported CRR of 89.65 in Ta-
ble 3. The noise ranges chosen are used directly
from (Chen et al., 2014) and are not influenced by
the test data in hand.

We also experimented with a setting where no
noise was added to the synthetically generated im-
ages and the images were fed to the OCR. We ob-
tained a CRR of 80.12% from OCR, where the
errors arose mostly from the missing graphemes
in the alphabet getting mispredicted to a different
grapheme. CopyNet after training with the text so
generated reported a CRR of 86.81% (96.01% for
Gītā, 75.78% for Sahaśranāma) on the test data.

Human judgement survey: In this survey14, we
evaluate how often a human can recognise the
correct construction by viewing only the predic-
tion from one of the systems. We also evaluate
how fast a human can correct them. We selected
15 constructions from Sahaśranāma, and obtained
the system outputs from the OCR, CopyNet and
PCRF for each of these. The average length of a
sentence is 41.73 characters, all ranging between
23 and 47 characters. A respondent is shown a sys-
tem prediction (system identity anonymised) and
is asked to type the corrected string without re-
ferring to any sources. A respondent gets 15 dif-
ferent strings altogether, 5 each from each of the
three systems. We consider responses from 9 par-
ticipants where all of them at least have an under-
graduate degree in Sanskrit linguistics. Altogether
from 3 sets of questionnaires, we have 45 strings
(3 outputs for a given string). Every string ob-
tained 3 impressions. We find that a participant
on an average could identify 4.44 sentences out of
5 from the CopyNet, while it was only 3.56 for
PCRF and 3.11 for the OCR output. The average
time taken to complete the correction of a string
was 81.4 seconds, 106.6 seconds and 127.6 sec-
onds for CopyNet, PCRF and OCR, respectively.

14More details at §6 of Supplementary material

4 Conclusion

In this work, we proposed an OCR based solution
for digitising Romanised Sanskrit. Our work acts
as a Post-OCR text correction approach and is de-
void of any OCR-specific feature engineering. We
find that the use of copying mechanism in encoder-
decoder performs significantly better than other
seq2seq models for the task. Our model outper-
forms the commercially available Google OCR on
the Sahaśranāma texts. From our experiments, we
find that CopyNet performs stably even for OCR
outputs with a CRR as low as 36%. Our imme-
diate research direction will be to rectify insertion
errors which currently are not properly handled.
Also, there are 135 languages which directly share
the Roman alphabet but only 35 of them have OCR
system available. Our approach can be easily ex-
tended to provide a post-processed OCR for those
languages.

Acknowledgements

We are grateful to Amba Kulkarni, Arnab Bhat-
tacharya, Ganesh Ramakrishnan, Rohit Saluja,
Devaraj Adiga and Hrishikesh Terdalkar for help-
ful comments and discussions related to Indic
OCRs. We would like to thank Madhusoodan
Pai, Sanjeev Panchal, Ganesh Iyer and his students
for helping us with the human judgement survey.
We thank the anonymous reviewers for their con-
structive and helpful comments, which greatly im-
proved the paper.

References
Devaraj Adiga, Rohit Saluja, Vaibhav Agrawal, Ganesh

Ramakrishnan, Parag Chaudhuri, K Ramasubrama-
niam, and Malhar Kulkarni. 2018. Improving the
learnability of classifiers for sanskrit ocr corrections.
In The 17th World Sanskrit Conference, Vancouver,
Canada. IASS.

Sandhya Arora, Debotosh Bhattacharjee, Mita
Nasipuri, Dipak Kumar Basu, and Mahantapas
Kundu. 2010. Recognition of non-compound hand-
written devnagari characters using a combination
of mlp and minimum edit distance. International
Journal of Industrial Electronics and Electrical
Engineering.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
Third International Conference on Learning Repre-
sentation (ICLR), San Diego, CA, USA.

353

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and natural noise both break neural machine
translation. In The Sixth International Conference
on Learning Representations (ICLR), New Orleans,
USA.

Ajay S Bhaskarabhatla, Sriganesh Madhvanath,
MNSSKP Kumar, A Balasubramanian, and
CV Jawahar. 2004. Representation and annotation
of online handwritten data. In Ninth International
Workshop on Frontiers in Handwriting Recognition,
pages 136–141, Tokyo, Japan. IEEE.

BB Chaudhuri and U Pal. 1997. An ocr system to read
two indian language scripts: Bangla and devnagari
(hindi). In Proceedings of the Fourth International
Conference on Document Analysis and Recognition,
volume 2, pages 1011–1015, Ulm, Germany. IEEE.

Guang Chen, Jianchao Yang, Hailin Jin, Jonathan
Brandt, Eli Shechtman, Aseem Agarwala, and
Tony X Han. 2014. Large-scale visual font recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
3598–3605.

Eva D’hondt, Cyril Grouin, and Brigitte Grau. 2016.
Low-resource ocr error detection and correction in
french clinical texts. In Proceedings of the Seventh
International Workshop on Health Text Mining and
Information Analysis, pages 61–68, Auxtin, TX. As-
sociation for Computational Linguistics.

VK Govindan and AP Shivaprasad. 1990. Char-
acter recognitiona review. Pattern recognition,
23(7):671–683.

Venu Govindaraju and Srirangaraj Setlur. 2009. Guide
to OCR for Indic Scripts. Springer.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Oliver Hellwig. 2010-2016. DCS - The Digital Corpus
of Sanskrit. Berlin.

Oliver Hellwig. 2015. ind. senz–ocr software for hindi,
marathi, tamil, and sanskrit.

Hiroshi Ishikawa. 2011. Transformation of general bi-
nary mrf minimization to the first-order case. IEEE
transactions on pattern analysis and machine intel-
ligence, 33(6):1234–1249.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme
conversion. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;

Proceedings of the Main Conference, pages 372–
379, Rochester, New York. Association for Compu-
tational Linguistics.

Amrith Krishna, Bishal Santra, Pavankumar Satuluri,
Sasi Prasanth Bandaru, Bhumi Faldu, Yajuvendra
Singh, and Pawan Goyal. 2016a. Word segmen-
tation in sanskrit using path constrained random
walks. In Proceedings of COLING 2016, the 26th
International Conference on Computational Lin-
guistics: Technical Papers, pages 494–504, Osaka,
Japan. The COLING 2016 Organizing Committee.

Amrith Krishna, Pavankumar Satuluri, Shubham
Sharma, Apurv Kumar, and Pawan Goyal. 2016b.
Compound type identification in sanskrit: What
roles do the corpus and grammar play? In
Proceedings of the 6th Workshop on South and
Southeast Asian Natural Language Processing (WS-
SANLP2016), pages 1–10, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Praveen Krishnan, Naveen Sankaran, Ajeet Kumar
Singh, and CV Jawahar. 2014. Towards a robust
ocr system for indic scripts. In Eleventh IAPR Inter-
national Workshop on Document Analysis Systems
(DAS), pages 141–145, Tours, France. IEEE.

Anand Kumar and CV Jawahar. 2007. Content-level
annotation of large collection of printed document
images. In Ninth International Conference on Docu-
ment Analysis and Recognition (ICDAR), volume 2,
pages 799–803, Parana, Brazil. IEEE.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning (ICML),
volume 951, pages 282–289, Williamstown, MA,
USA.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Jey Han Lau, Alexander Clark, and Shalom Lap-
pin. 2015. Unsupervised prediction of acceptabil-
ity judgements. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1618–1628, Beijing, China. Associ-
ation for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the

354

2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Minesh Mathew, Ajeet Kumar Singh, and CV Jawa-
har. 2016. Multilingual ocr for indic scripts. In
Document Analysis Systems (DAS), 2016 12th IAPR
Workshop on, pages 186–191. IEEE.

Monier Monier-Williams. 1899. A sanskrit-english
dictionary.

Umapada Pal, Tetsushi Wakabayashi, and Fumitaka
Kimura. 2009. Comparative study of devnagari
handwritten character recognition using different
feature and classifiers. In Tenth International Con-
ference on Document Analysis and Recognition (IC-
DAR), pages 1111–1115. IEEE.

Vikas Reddy, Amrith Krishna, Vishnu Dutt Sharma,
Prateek Gupta, MR Vineeth, and Pawan Goyal.
2018. Building a word segmenter for sanskrit
overnight. In Eleventh Language Resources and
Evaluation Conference (LREC), Miyazaki, Japan.

Rohit Saluja, Devaraj Adiga, Parag Chaudhuri, Ganesh
Ramakrishnan, and Mark Carman. Error detection
and corrections in indic ocr using lstms. In 14th
IAPR International Conference on Document Anal-
ysis and Recognition (ICDAR).

Naveen Sankaran and CV Jawahar. 2012. Recognition
of printed devanagari text using blstm neural net-
work. In 21st International Conference on Pattern
Recognition (ICPR), pages 322–325, Tsukuba Sci-
ence City, JAPAN. IEEE.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string trans-
lation tasks. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1703–1714.

M. Schuster and K. Nakajima. 2012. Japanese and ko-
rean voice search. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5149–5152, Kyoto, Japan.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Bikash Shaw, Swapan Kumar Parui, and Malayap-
pan Shridhar. 2008. Offline handwritten devana-
gari word recognition: A holistic approach based
on directional chain code feature and hmm. In In-
ternational Conference on Information Technology
(ICIT), pages 203–208, Bhubaneswar, India. IEEE.

Ajeet Kumar Singh and CV Jawahar. 2015. Can
rnns reliably separate script and language at word
and line level? In 13th International Conference
on Document Analysis and Recognition (ICDAR),
pages 976–980. IEEE.

Ray Smith. 2007. An overview of the tesseract ocr en-
gine. In Ninth International Conference on Docu-
ment Analysis and Recognition, (ICDAR), volume 2,
pages 629–633. IEEE.

Ray Smith, Daria Antonova, and Dar-Shyang Lee.
2009. Adapting the tesseract open source ocr en-
gine for multilingual ocr. In Proceedings of the In-
ternational Workshop on Multilingual OCR, page 1.
ACM.

Raymond W Smith. 1987. The Extraction and Recog-
nition of Text from Multimedia Document Images.
Ph.D. thesis, University of Bristol.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Adnan Ul-Hasan and Thomas M. Breuel. 2013. Can
we build language-independent ocr using lstm net-
works? In Proceedings of the 4th International
Workshop on Multilingual OCR, MOCR ’13, pages
9:1–9:5, New York, NY, USA. ACM.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

355

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 356–367
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Weakly-supervised Neural Semantic Parsing with a Generative Ranker

Jianpeng Cheng and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

jianpeng.cheng@ed.ac.uk mlap@inf.ed.ac.uk

Abstract
Weakly-supervised semantic parsers are
trained on utterance-denotation pairs, treating
logical forms as latent. The task is chal-
lenging due to the large search space and
spuriousness of logical forms. In this paper
we introduce a neural parser-ranker system
for weakly-supervised semantic parsing. The
parser generates candidate tree-structured
logical forms from utterances using clues
of denotations. These candidates are then
ranked based on two criterion: their likelihood
of executing to the correct denotation, and
their agreement with the utterance semantics.
We present a scheduled training procedure
to balance the contribution of the two ob-
jectives. Furthermore, we propose to use
a neurally encoded lexicon to inject prior
domain knowledge to the model. Experiments
on three Freebase datasets demonstrate the
effectiveness of our semantic parser, achieving
results within the state-of-the-art range.

1 Introduction

Semantic parsing is the task of converting natural
language utterances into machine-understandable
meaning representations or logical forms. The
task has attracted much attention in the literature
due to a wide range of applications ranging from
question answering (Kwiatkowski et al., 2011;
Liang et al., 2011) to relation extraction (Krishna-
murthy and Mitchell, 2012), goal-oriented dialog
(Wen et al., 2015), and instruction understanding
(Chen and Mooney, 2011; Matuszek et al., 2012;
Artzi and Zettlemoyer, 2013).

In a typical semantic parsing scenario, a logical
form is executed against a knowledge base to pro-
duce an outcome (e.g., an answer) known as deno-
tation. Conventional semantic parsers are trained
on collections of utterances paired with annotated
logical forms (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney,

Figure 1: Overview of the weakly-supervised neu-
ral semantic parsing system.

2006; Kwiatkowksi et al., 2010). However, the la-
beling of logical forms is labor-intensive and chal-
lenging to elicit at a large scale. As a result, al-
ternative forms of supervision have been proposed
to alleviate the annotation bottleneck faced by se-
mantic parsing systems. One direction is to train
a semantic parser in a weakly-supervised setting
based on utterance-denotation pairs (Clarke et al.,
2010; Kwiatkowski et al., 2013; Krishnamurthy
and Mitchell, 2012; Cai and Yates, 2013), since
such data are relatively easy to obtain via crowd-
sourcing (Berant et al., 2013a).

However, the unavailability of logical forms
in the weakly-supervised setting, renders model
training more difficult. A fundamental challenge
in learning semantic parsers from denotations is
finding consistent logical forms, i.e., those which
execute to the correct denotation. This search
space can be very large, growing exponentially as
compositionality increases. Moreover, consistent
logical forms unavoidably introduce a certain de-
gree of spuriousness — some of them will acci-
dentally execute to the correct denotation without
reflecting the meaning of the utterance. These spu-
rious logical forms are misleading supervision sig-

356

nals for the semantic parser.
In this work we introduce a weakly-supervised

neural semantic parsing system which aims to
handle both challenges. Our system, shown in
Figure 1, mainly consists of a sequence-to-tree
parser which generates candidate logical forms for
a given utterance. These logical forms are subse-
quently ranked by two components: a log-linear
model scores the likelihood of each logical form
executing to the correct denotation, and an inverse
neural parser measures the degree to which the
logical form represents the meaning of the utter-
ance. We present a scheduled training scheme
which balances the contribution of the two com-
ponents and objectives. To further boost perfor-
mance, we propose to neurally encode a lexicon,
as a means of injecting prior domain knowledge
to the neural parameters.

We evaluate our system on three Freebase
datasets which consist of utterance denotation
pairs: WEBQUESTIONS (Berant et al., 2013a),
GRAPHQUESTIONS (Su et al., 2016), and SPADES

(Bisk et al., 2016). Experimental results across
datasets show that our weakly-supervised seman-
tic parser achieves state-of-the-art performance.

2 The Neural Parser-Ranker

Conventional weakly-supervised semantic parsers
(Liang, 2016) consist of two major compo-
nents: a parser, which is chart-based and non-
parameterized, recursively builds derivations for
each utterance span using dynamic programming.
A learner, which is a log-linear model, defines fea-
tures useful for scoring and ranking the set of can-
didate derivations, based on the correctness of exe-
cution results. As mentioned in Liang (2016), the
chart-based parser brings a disadvantage since it
does not support incremental contextual interpre-
tation. The dynamic programming algorithm re-
quires that features of a span are defined over sub-
derivations in that span.

In contrast to a chart-based parser, a parameter-
ized neural semantic parser decodes logical forms
with global utterance features. However, training
a weakly-supervised neural parser is challenging
since there is no access to gold-standard logical
forms for backpropagation. Besides, it should be
noted that a neural decoder is conditionally gener-
ative: decoding is performed greedily conditioned
on the utterance and the generation history—it
makes no use of global logical form features. In

this section, we introduce a parser-ranker frame-
work which combines the best of conventional
and neural approaches in the context of weakly-
supervised semantic parsing.

2.1 Parser
Our work follows Cheng et al. (2017b, 2018) in
using LISP-style functional queries as the logical
formulation. Advantageously, functional queries
are recursive, tree-structured and can naturally en-
code logical form derivations (i.e., functions and
their application order). For example, the utter-
ance “who is obama’s eldest daughter” is sim-
ply represented with the function-argument struc-
ture argmax(daughterOf(Obama), ageOf). Table
1 displays the functions we use in this work; a
more detailed specifications can be found in the
appendix.

To generate logical forms, our system adopts a
variant of the neural sequence-to-tree model pro-
posed in Cheng et al. (2017b). During generation,
the prediction space is restricted by the grammar
of the logical language (e.g., the type and the num-
ber of arguments required by a function) in order
to ensure that output logical forms are well-formed
and executable. The parser consists of a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoder and a stack-LSTM (Dyer et al., 2015) de-
coder, introduced as follows.

Bidirectional-LSTM Encoder The bidirec-
tional LSTM encodes a variable-length utterance
x = (x1, · · · , xn) into a list of token representa-
tions [h1, · · · , hn], where each representation is
the concatenation of the corresponding forward
and backward LSTM states.

Stack-LSTM Decoder After the utterance is en-
coded, the logical form is generated with a stack-
LSTM decoder. The output of the decoder consists
of functions which generate the logical form as a
derivation tree in depth-first order. There are three
classes of functions:

• Class-1 functions generate non-terminal tree
nodes. In our formulation, non-terminal
nodes include language-dependent functions
such as count and argmax, as described in
the first four rows of Table 1. A special
non-terminal node is the relation placeholder
relation.

• Class-2 functions generate terminal tree
nodes. In our formulation, terminal nodes in-

357

Function Utility Example
findAll returns the entity set of a given type find all mountains

findAll(mountain)
filter=

filter<
filter>

filters an entity set with constraints
all mountains in Europe
filter=(findAll(mountain),
mountain location, Europe)

count computes the cardinality of an entity set how many mountains are there
count(findAll(mountain))

argmax
argmin

finds the subset of an entity set whose certain property
is maximum (or minimum)

the highest mountain
argmax(findAll(mountain),
mountain altitude)

relation denotes a KB relation; in generation, relation acts as
placeholder for all relations

height of mountain
mountain altitude

entity denotes a KB entity; in generation, entity acts as
placeholder for all entities

Himalaya
Himalaya

Table 1: List of functions supported by our functional query language, their utility, and examples.

argmax

relation-ageOfrelation-daughterOf

entity-Barack Obama

Functions for generation (parser): argmax,
relation, entity, reduce, relation,
reduce

Functions for encoding (inverse parser): entity,
relation, reduce, relation, argmax,
reduce

Figure 2: Derivation tree for the utterance “who is
obama’s eldest daughter” (top), and corresponding
functions for generation and encoding (bottom).

clude the relation placeholder relation and
the entity placeholder entity.

• Class-3 function reduce completes a subtree.
Since generation is performed in depth-first
order, the parser needs to identify when the
generation of a subtree completes, i.e., when
a function has seen all its required arguments.

The functions used to generate the example
logical form argmax(daughterOf(Obama), ageOf)

are shown in Figure 2. The stack-LSTM makes
two types of updates based on the functions it pre-
dicts:

• Update-1: when a Class-1 or Class-2 func-
tion is called, a non-terminal or terminal to-
ken lt will be generated, At this point, the
stack-LSTM state, denoted by gt, is updated
from its older state gt−1 as in an ordinary
LSTM:

gt = LSTM(lt, gt−1) (1)

The new state is additionally pushed onto the
stack marking whether it corresponds to a
non-terminal or terminal.

• Update-2: when the reduce function is called
(Class-3), the states of the stack-LSTM are
recursively popped from the stack until a
non-terminal is encountered. This non-
terminal state is popped as well, after which
the stack-LSTM reaches an intermediate state
denoted by gt−1:t. At this point, we compute
the representation of the completed subtree zt
as:

zt = Wz · [pz : cz] (2)

where pz denotes the parent (non-terminal)
embedding of the subtree, and cz denotes the
average embedding of the children (terminals
or already-completed subtrees). Wz is the
weight matrix. Finally, zt serves as input for
updating gt−1:t to gt:

gt = LSTM(zt, gt−1:t) (3)

Prediction At each time step of the decoding,
the parser first predicts a subsequent function ft+1

conditioned on the decoder state gt and the en-
coder states h1 · · ·hn. We apply standard soft at-
tention (Bahdanau et al., 2015) between gt and the
encoder states h1 · · ·hn to compute a feature rep-
resentation h̄t:

uit = V tanh(Whhi +Wggt) (4)

ait = softmax(uit) (5)

h̄t =

n∑

i=1

aithi (6)

358

where V , Wh, and Wg are all weight parameters.
The prediction of the function ft+1 is computed
with a softmax classifier, which takes the concate-
nated features h̄t and gt as input:

ft+1 ∼ softmax(Wy tanh(Wf [h̄t, gt])) (7)

where Wy and Wf are weight parameters.
When ft+1 is a language-dependent function (first
four rows in Table 1, e.g., argmax), it is directly
used as a non-terminal token lt+1 to construct the
logical form. However, when ft+1 is a relation or
entity placeholder, we further predict the specific
relation or entity lt+1 with another set of neural
parameters:

lt+1 ∼ softmax(Wy′ tanh(Wl[h̄t, gt])) (8)

where Wy′ and Wl′ are weight matrices.
Note that in the weakly supervised setting, the

parser decodes a list of candidate logical forms Y
with beam search, instead of outputting the most
likely logical form y. During training, candidate
logical forms are executed against a knowledge
base to find those which are consistent (denoted
by Yc(x)) and lead to the correct denotation. Then,
the parser is trained to maximize the total log like-
lihood of these consistent logical forms:

∑

y∈Yc(x)
log p(y|x) =

∑

y∈Yc(x)
log p(f1, · · · , fk, l1, · · · , lo|x)

(9)

where k denotes the number of functions used to
generate the logical form, and o (smaller than k)
denotes the number of tree nodes in the logical
form.

2.2 Ranker
It is impractical to rely solely on a neural decoder
to find the most likely logical form at run time in
the weakly-supervised setting. One reason is that
although the decoder utilizes global utterance fea-
tures for generation, it cannot leverage global fea-
tures of the logical form since a logical form is
conditionally generated following a specific tree-
traversal order. To this end, we follow previous
work (Berant et al., 2013b) and introduce a ranker
to the system. The role of the ranker is to score the
candidate logical forms generated by the parser;
at test time, the logical form receiving the high-
est score will be used for execution. The ranker

is a discriminative log-linear model over logical
form y given utterance x:

logθ p(y|x) =
exp(φ(x, y)T θ)∑

y′∈Y (x) exp(φ(x, y′)T θ)
(10)

where Y (x) is the set of candidate logical forms;
φ is the feature function that maps an utterance-
logical form pair onto a feature vector; and θ de-
notes the weight parameters of the model.

Since the training data consists only of
utterance-denotation pairs, the ranker is trained
to maximize the log-likelihood of the correct an-
swer z by treating logical forms as a latent vari-
able:

log p(z|x) = log
∑

y∈Yc(x)
p(y|x)p(z|x, y) (11)

where Yc(x) denotes the subset of candidate logi-
cal forms which execute to the correct answer; and
p(z|x, y) equates to 1 in this case.

Training of the neural parser-ranker system in-
volves the following steps. Given an input ut-
terance, the parser first generates a list of candi-
date logical forms via beam search. The logical
forms are then executed and those which yield the
correct denotation are marked as consistent. The
parser is trained to optimize the total likelihood of
consistent logical forms (Equation (9)), while the
ranker is trained to optimize the marginal likeli-
hood of denotations (Equation (11)). The search
space can be further reduced by performing entity
linking which restricts the number of logical forms
to those containing only a small set of entities.

3 Handling Spurious Logical Forms

The neural parser-ranker system relies on beam
search to find consistent logical forms that exe-
cute to the correct answer. These logical forms are
then used as surrogate annotations and provide su-
pervision to update the parser’s parameters. How-
ever, some of these logical forms will be mislead-
ing training signals for the neural semantic parser
on account of being spurious: they coincidentally
execute to the correct answer without matching the
utterance semantics.

In this section we propose a method of remov-
ing spurious logical forms by validating how well
they match the utterance meaning. The intuition
is that a meaning-preserving logical form should
be able to reconstruct the original utterance with

359

high likelihood. However, since spurious logical
forms are not annotated either, a direct maximum
likelihood solution does not exist. To this end, we
propose a generative model for measuring the re-
construction likelihood.

The model assumes utterance x is generated
from the corresponding logical form y, and only
the utterance is observable. The objective is there-
fore to maximize the log marginal likelihood of x:

log p(x) = log
∑

y

p(x, y) (12)

We adopt neural variational inference (Mnih and
Gregor, 2014) to solve the above objective, which
is equivalent to maximizing an evidence lower
bound:

(13)log p(x) = log
q(y|x)p(x|y)p(y)

q(y|x)

≥ Eq(y|x) log p(x|y) + Eq(y|x) log
p(y)

q(y|x)

Since our semantic parser always outputs well-
formed logical forms, we assume a uniform con-
stant prior p(y). The above objective can be thus
reduced to:

Eq(y|x) log p(x|y)−Eq(y|x) log q(y|x) = L(x) (14)

where the first term computes the reconstruction
likelihood p(x|y); and the second term is the en-
tropy of the approximated posterior q(y|x) for
regularization. Specifically, we use the seman-
tic parser to compute the approximated posterior
q(y|x).1 The reconstruction likelihood p(x|y) is
computed with an inverse parser which recovers
utterance x from its logical form y. We use p(x|y)
to measure how well the logical form reflects the
utterance meaning; details of the inverse parser are
described as follows.

Stack-LSTM Encoder To reconstruct utter-
ance x, logical form y is first encoded with a stack-
LSTM encoder. To do that, we deterministically
convert the logical form into a sequence of Class-1
to Class-3 functions, which correspond to the cre-
ation of tree nodes and subtrees. Slightly different
from the top-down generation process, the func-
tions here are obtained in a bottom-up order to fa-
cilitate encoding. Functions used to encode the ex-
ample logical form argmax(daughterOf(Obama),

ageOf) are shown in Figure 2.
1In Section 2.1, we used a different notation for the output

distribution of the semantic parser as p(y|x).

The stack-LSTM sequentially processes the
functions and updates its states based on the class
of each function, following the same principle
(Update-1 and Update-2) described in Section 2.1.
We save a list of terminal, non-terminal and sub-
tree representations [g1, · · · , gs], where each rep-
resentation is the stack-LSTM state at the cor-
responding time step of encoding. The list es-
sentially contains the representation of every tree
node and the representation of every subtree (the
total number of representations is denoted by s).

LSTM Decoder Utterance x is reconstructed
with a standard LSTM decoder attending to tree
nodes and subtree representations. At each time
step, the decoder applies attention between de-
coder state rt and tree fragment representations
[g1, · · · , gs]:

vit = V ′ tanh(Wg′gi +Wrrt) (15)

bit = softmax(vit) (16)

ḡt =
s∑

i=1

bitgi (17)

and predicts the probability of the next word as:

x′t+1 ∼ softmax(Wx′ tanh(Wf ′ [ḡt, rt])) (18)

where W s and V ′ are all weight parameters.

Gradients The training objective of the genera-
tive model is given in Equation (14). The param-
eters of the neural network include those of the
original semantic parser (denoted by θ) and the in-
verse parser (denoted by φ). The gradient of Equa-
tion (14) with respect to φ is:

∂L(x)

∂φ
= Eq(y|x)

∂ log p(x|y)

∂φ
(19)

and the gradient with respect to θ is:

(20)

∂L(x)

∂θ
= Eq(y|x)[(log p(x|y)− log q(y|x))

× ∂ log q(y|x)

∂θ
]

Both gradients involve expectations which we
estimate with Monte Carlo method, by sampling
logical forms from the distribution q(y|x). Recall
that in the parser-ranker framework these samples
are obtained via beam search.

360

4 Scheduled Training

Together with the inverse parser for removing spu-
rious logical forms, the proposed system consists
of three components: a parser which generates
logical forms from an utterance, a ranker which
measures the likelihood of a logical form execut-
ing to the correct denotation, and an inverse parser
which measures the degree to which logical forms
are meaning-preserving using reconstruction like-
lihood. Our semantic parser is trained following
a scheduled training procedure, balancing the two
objectives.

• Phase 1: at the beginning of training when
all model parameters are far from optimal,
we train only the parser and the ranker as
described in Section 2; the parser generates
a list of candidate logical forms, we find
those which are consistent and update both
the parser and the ranker.

• Phase 2: we turn on the inverse parser and
update all three components in one epoch.
However, the reconstruction loss is only used
to update the inverse parser and we pre-
vent it from back-propagating to the semantic
parser. This is because at this stage of train-
ing the parameters of the inverse parser are
sub-optimal and we cannot obtain an accurate
approximation of the reconstruction loss.

• Phase 3: finally, we allow the reconstruc-
tion loss to back-propagate to the parser, and
all three components are updated as normal.
Both training objectives are enabled, the sys-
tem maximizes the likelihood of consistent
logical forms and the reconstruction likeli-
hood.

5 Neural Lexicon Encoding

In this section we further discuss how the seman-
tic parser presented so far can be enhanced with a
lexicon. A lexicon is essentially a coarse mapping
between natural language phrases and knowledge
base relations and entities, and has been widely
used in conventional chart-based parsers (Berant
et al., 2013a; Reddy et al., 2014). Here, we show
how a lexicon (either hard-coded or statistically-
learned (Krishnamurthy, 2016)) can be used to
benefit a neural semantic parser.

The central idea is that relations or entities
can be viewed as a single-node tree-structured

logical form. For example, based on the lex-
icon, the natural language phrase “is influ-
enced by” can be parsed to the logical form
influence.influence node.influenced by. We
can therefore pretrain the semantic parser (and the
inverse parser) with these basic utterance-logical
form pairs which act as important prior knowl-
edge for initializing the distributions q(y|x) and
p(x|y). With pre-trained word embeddings cap-
turing linguistic regularities on the natural lan-
guage side, we also expect the approach to help
the neural model generalize to unseen natural lan-
guage phrases quickly. For example, by encod-
ing the mapping between the natural language
phrase “locate in” and the Freebase predicate
fb:location.location.containedby, the parser
can potentially link the new phrase “located at”
to the same predicate. We experimentally assess
whether the neural lexicon enhances the perfor-
mance of our semantic parser.

6 Experiments

In this section we evaluate the performance our se-
mantic parser. We introduce the various datasets
used in our experiments, training settings, model
variants used for comparison, and finally present
and analyze our results.

6.1 Datasets

We evaluated our model on three Freebase
datasets: WEBQUESTIONS (Berant et al., 2013a),
GRAPHQUESTIONS (Su et al., 2016) and SPADES

(Bisk et al., 2016). WEBQUESTIONS con-
tains 5,810 real questions asked by people on
the web paired by answers. GRAPHQUESTIONS

contains 5,166 question-answer pairs which were
created by showing 500 Freebase graph queries
to Amazon Mechanical Turk workers and asking
them to paraphrase them into natural language.
SPADES contains 93,319 question-answer pairs
which were created by randomly replacing entities
in declarative sentences with a blank symbol.

6.2 Training

Across training regimes, the dimensions of word
vector, logical form token vector, and LSTM hid-
den states (for the semantic parser and the inverse
parser) are 50, 50, and 150, respectively. Word
embeddings were initialized with Glove embed-
dings (Pennington et al., 2014). All other em-
beddings were randomly initialized. We used one

361

LSTM layer in the forward and backward direc-
tions. Dropout was used before the softmax acti-
vation (Equations (7), (8), and (18)). The dropout
rate was set to 0.5. Momentum SGD (Sutskever
et al., 2013) was used as the optimization method
to update the parameters of the model.

As mentioned earlier, we use entity linking to
reduce the beam search space. Entity mentions
in SPADES are automatically annotated with Free-
base entities (Gabrilovich et al., 2013). For WE-
BQUESTIONS and GRAPHQUESTIONS we per-
form entity linking following the procedure de-
scribed in Reddy et al. (2016). We identify po-
tential entity spans using seven handcrafted part-
of-speech patterns and associate them with Free-
base entities obtained from the Freebase/KG API.2

We use a structured perceptron trained on the enti-
ties found in WEBQUESTIONS and GRAPHQUES-
TIONS to select the top 10 non-overlapping entity
disambiguation possibilities. We treat each possi-
bility as a candidate entity and construct candidate
utterances with a beam search of size 300.

Key features of the log-linear ranker introduced
in Section 2 include the entity score returned by
the entity linking system, the likelihood score of
the relation in the logical form predicted by the
parser, the likelihood score of the the logical form
predicted by the parser, the embedding similarity
between the relation in the logical form and the
utterance, the similarity between the relation and
the question words in the utterance, and the an-
swer type as indicated by the last word in the Free-
base relation (Xu et al., 2016). All features are
normalized across candidate logical forms. For all
datasets we use average F1 (Berant et al., 2013a)
as our evaluation metric.

6.3 Model Variants

We experiment with three variants of our model.
We primarily consider the neural parser-ranker
system (denoted by NPR) described in Section 2
which is trained to maximize the likelihood of con-
sistent logical forms. We then compare it to a sys-
tem augmented with a generative ranker (denoted
by GRANKER), introducing the second objective
of maximizing the reconstruction likelihood. Fi-
nally, we examine the impact of neural lexicon en-
coding when it is used for the generative ranker,
and also when it is used for the entire system.

2http://developers.google.com/
freebase/

Models F1
Berant et al. (2013a) 35.7
Berant and Liang (2014) 39.9
Berant and Liang (2015) 49.7
Reddy et al. (2016) 50.3
Yao and Van Durme (2014) 33.0
Bast and Haussmann (2015) 49.4
Bordes et al. (2014) 39.2
Dong et al. (2015) 40.8
Yih et al. (2015) 52.5
Xu et al. (2016) 53.3
Cheng et al. (2017b) 49.4
NPR 50.1

+ GRANKER 50.2
+ lexicon encoding on GRANKER 51.7
+ lexicon encoding on parser and GRANKER 52.5

Table 2: WEBQUESTIONS results.

6.4 Results

Experimental results on WEBQUESTIONS are
shown in Table 2. We compare the performance of
NPR with previous work, including conventional
chart-based semantic parsing models (e.g., Berant
et al. (2013a); first block in Table 2), informa-
tion extraction models (e.g., Yao and Van Durme
(2014); second block in Table 2), and more recent
neural question-answering models (e.g., Dong
et al. (2015); third block in Table 2). Most neural
models do not generate logical forms but instead
build a differentiable network to solve a specific
task such as question-answering. An exception is
the neural sequence-to-tree model of Cheng et al.
(2017b), which we extend to build the vanilla NPR

model. A key difference of NPR is that it employs
soft attention instead of hard attention, which is
Cheng et al. (2017b) use to rationalize predictions.

As shown in Table 2, the basic NPR system
outperforms most previous chart-based semantic
parsers. Our results suggest that neural networks
are powerful tools for generating candidate logical
forms in a weakly-supervised setting, due to their
ability of encoding and utilizing sentential context
and generation history. Compared to Cheng et al.
(2017b), our system also performs better. We be-
lieve the reason is that it employs soft attention
instead of hard attention. Soft attention makes the
parser fully differentiable and optimization easier.
The addition of the inverse parser (+GRANKER) to
the basic NPR model yields marginal gains while

362

Models F1
SEMPRE (Berant et al., 2013a) 10.80
PARASEMPRE (Berant and Liang, 2014) 12.79
JACANA (Yao and Van Durme, 2014) 5.08
SCANNER (Cheng et al., 2017b) 17.02
UDEPLAMBDA (Reddy et al., 2017) 17.70
NPR 17.30

+ GRANKER 17.33
+ lexicon encoding on GRANKER 17.67
+ lexicon encoding on parser and GRANKER 18.22

Table 3: GRAPHQUESTIONS results.

Models F1
Unsupervised CCG (Bisk et al., 2016) 24.8
Semi-supervised CCG (Bisk et al., 2016) 28.4
Supervised CCG (Bisk et al., 2016) 30.9
Rule-based system (Bisk et al., 2016) 31.4
Sequence-to-tree (Cheng et al., 2017b) 31.5
Memory networks (Das et al., 2017) 39.9
NPR 32.4

+ GRANKER 33.1
+ lexicon encoding on GRANKER 35.5
+ lexicon encoding on parser and GRANKER 37.6

Table 4: SPADES results.

the addition of the neural lexicon encoding to the
inverse parser brings performance improvements
over NPR and GRANKER. We hypothesize that this
is because the inverse parser adopts an unsuper-
vised training objective, which benefits substan-
tially from prior domain-specific knowledge used
to initialize its parameters. When neural lexicon
encoding is incorporated in the semantic parser
as well, system performance can be further im-
proved. In fact, our final system (last row in Ta-
ble 2) outperforms all previous models except that
of Xu et al. (2016), which uses external Wikipedia
resources to prune out erroneous candidate an-
swers.

Tables 3 and 4 present our results on
GRAPHQUESTIONS and SPADES, respectively.
Comparison systems for GRAPHQUESTIONS in-
clude two chart-based semantic parsers (Berant
et al., 2013a; Berant and Liang, 2014), an informa-
tion extraction model (Yao and Van Durme, 2014),
a neural sequence-to-tree model with hard atten-
tion (Cheng et al., 2017b) and a model based on
universal dependency to logical form conversion
(Reddy et al., 2017). On SPADES we compare

with the method of Bisk et al. (2016) which parses
an utterance into a syntactic representation which
is subsequently grounded to Freebase; and also
with Das et al. (2017) who employ memory net-
works and external text resources. Results on both
datasets follow similar trends as in WEBQUES-
TIONS. The best performing NPR variant achieves
state-of-the-art results on GRAPHQUESTIONS and
it comes close to the best model on SPADES with-
out using any external resources.

One of the claims put forward in this paper
is that the extended NPR model reduces the im-
pact of spurious logical forms during training.
Table 5 highlights examples of spurious logical
forms which are not semantically correct but are
nevertheless assigned higher scores in the vanilla
NPR (red colour). These logical forms become
less likely in the extended NPR, while the scores
of more semantically faithful representations (blue
colour) are boosted.

6.5 Discussion

The vanilla NPR model is optimized with con-
sistent logical forms which lead to correct de-
notations. Although it achieves competitive re-
sults compared to chart-based parsers, the train-
ing of this model can be misled by spurious logi-
cal forms. The introduction of the inverse parser
aims to alleviate the problem by scoring how a
logical form reflects the utterance semantics. Al-
though the inverse parser is not directly used to
rank logical forms at test time, the training ob-
jective it adopts encourages the parser to gener-
ate meaning-preserving logical forms with higher
likelihood. These probabilities are used as features
in the log-linear ranker, and therefore the inverse
parser affects the ranking results, albeit implicitly.

However, we should point out that the unsu-
pervised training objective is relatively difficult to
optimize, since there are no constraints to reg-
ularize the latent logical forms. This motivates
us to develop a scheduled training procedure; as
our results show, when trained properly the in-
verse parser and the unsupervised objective bring
performance gains. Moreover, the neural lexicon
encoding method we applied essentially produces
synthetic data to further regularize the latent space.

7 Related Work

Various types of supervision have been explored
to train semantic parsers. Early semantic parsers

363

which baseball teams were coached by dave eiland
baseball.batting statistics.player:baseball.batting statistics.team(ent.m.0c0x6v)

baseball.historical coaching tenure.baseball coach:baseball.historical coaching tenure.

baseball team(ent.m.0c0x6v)

who are coca-cola’s endorsers
food.nutrition fact.food:food.nutrition fact.nutrient(ent.m.01yvs)

business.product endorsement.product:business..product endorsement.endorser(ent.m.01yvs)

what are the aircraft models that are comparable to airbus 380
aviation.aviation incident aircraft relationship.flight destination:aviation.aviation

incident aircraft relationship.aircraft model(ent.m.0qn2v)

aviation.comparable aircraft relationship(ent.m.018rl2)

Table 5: Comparison between logical forms preferred by NPR before and after the addition of the inverse
parser. Spurious logical forms (red color) receive higher scores than semantically-correct ones (blue
color). The scores of these spurious logical forms decrease when they are explicitly handled.

have used annotated training data consisting of
sentences and their corresponding logical forms
(Kate and Mooney, 2006; Kate et al., 2005; Lu
et al., 2008; Kwiatkowksi et al., 2010). In or-
der to scale semantic parsing to open-domain
problems, weakly-supervised semantic parsers are
trained on utterance-denotation pairs (Liang et al.,
2011; Krishnamurthy and Mitchell, 2012; Berant
et al., 2013b; Choi et al., 2015; Krishnamurthy and
Mitchell, 2015; Pasupat and Liang, 2016; Gard-
ner and Krishnamurthy, 2017; Reddy et al., 2017).
Most previous work employs a chart-based parser
to produce logical forms from a grammar which
combines domain-general aspects with lexicons.

Recently, neural semantic parsing has attracted
a great deal of attention. Previous work has mostly
adopted fully-supervised, sequence-to-sequence
models to generate logical form strings from nat-
ural language utterances (Dong and Lapata, 2016;
Jia and Liang, 2016; Kočiský et al., 2016). Other
work explores the use of reinforcement learning
to train neural semantic parsers from question-
answer pairs (Liang et al., 2016) or from user
feedback (Iyer et al., 2017). More closely related
to our work, Goldman et al. (2018) adopt a neu-
ral semantic parser and a discriminative ranker
to solve a visual reasoning challenge. They at-
tempt to alleviate the search space and spurious-
ness challenges with abstractive examples. Yin
et al. (2018) adopt a tree-based variational au-
toencoder for semi-supervised semantic parsing.
Neural variational inference has also been used
in other NLP tasks including relation discovery
(Marcheggiani and Titov, 2016), sentence com-
pression (Miao and Blunsom, 2016), and parsing

(Cheng et al., 2017a).

8 Conclusions

In this work we proposed a weakly-supervised
neural semantic parsing system trained on
utterance-denotation pairs. The system employs a
neural sequence-to-tree parser to generate logical
forms for a natural language utterance. The logi-
cal forms are subsequently ranked with two com-
ponents and objectives: a log-linear model which
scores the likelihood of correct execution, and a
generative neural inverse parser which measures
whether logical forms are meaning preserving. We
proposed a scheduled training procedure to bal-
ance the two objectives, and a neural lexicon en-
coding method to initialize model parameters with
prior knowledge. Experiments on three semantic
parsing datasets demonstrate the effectiveness of
our system. In the future, we would like to train
our parser with other forms of supervision such as
feedback from users (He et al., 2016; Iyer et al.,
2017) or textual evidence (Yin et al., 2018).

Acknowledgments This research is supported
by a Google PhD Fellowship and an AdeptMind
Scolar Fellowship to the first author. We also
gratefully acknowledge the financial support of
the European Research Council (award number
681760; Lapata).

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1(1):49–62.

364

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR 2015, San Diego, California.

Hannah Bast and Elmar Haussmann. 2015. More ac-
curate question answering on freebase. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management, pages
1431–1440. ACM.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013a. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013b. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1415–1425, Baltimore, Maryland.

Jonathan Berant and Percy Liang. 2015. Imitation
learning of agenda-based semantic parsers. Trans-
actions of the Association for Computational Lin-
guistics, 3:545–558.

Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hock-
enmaier, and Mark Steedman. 2016. Evaluating in-
duced CCG parsers on grounded semantic parsing.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2022–2027, Austin, Texas.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 615–620, Doha, Qatar.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 423–433, Sofia,
Bulgaria.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial IntelligenceAAAI,
volume 2, pages 859–865, San Francisco, Califor-
nia.

Jianpeng Cheng, Adam Lopez, and Mirella Lapata.
2017a. A generative parser with a discriminative
recognition algorithm. In Proceedings of the 55th

Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
118–124, Vancouver, Canada.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2017b. Learning structured natural
language representations for semantic parsing. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 44–55, Vancouver, Canada.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2018. Learning an executable neural
semantic parser. Computational Linguistics.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettle-
moyer. 2015. Scalable semantic parsing with par-
tial ontologies. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1311–1320, Beijing, China.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In Proceedings of the 14th Con-
ference on Computational Natural Language Learn-
ing, pages 18–27, Uppsala, Sweden.

Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew
McCallum. 2017. Question answering on knowl-
edge bases and text using universal schema and
memory networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 358–365.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015.
Question answering over Freebase with multi-
column convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 260–269,
Beijing, China.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. FACC1: Freebase anno-
tation of ClueWeb corpora, version 1 (release date
2013-06-26, format version 1, correction level 0).

365

Matt Gardner and Jayant Krishnamurthy. 2017. Open-
Vocabulary Semantic Parsing with both Distribu-
tional Statistics and Formal Knowledge. In Pro-
ceedings of the 31st AAAI Conference on Artificial
Intelligence, pages 3195–3201, San Francisco, Cali-
fornia.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir
Globerson, and Jonathan Berant. 2018. Weakly su-
pervised semantic parsing with abstract examples.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1809–1819, Melbourne, Aus-
tralia.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2337–2342, Austin, Texas.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
Jayant Krishnamurthy, and Luke Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 963–973, Vancouver,
Canada.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany.

Rohit J Kate and Raymond J Mooney. 2006. Us-
ing string-kernels for learning semantic parsers. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics, pages 913–920, Sydney, Australia.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to Transform Natural to
Formal Languages. In Proceedings for the 20th Na-
tional Conference on Artificial Intelligence, pages
1062–1068, Pittsburgh, Pennsylvania.

Tomáš Kočiský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1078–
1087, Austin, Texas.

Jayant Krishnamurthy. 2016. Probabilistic models for
learning a semantic parser lexicon. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
606–616.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
754–765, Jeju Island, Korea.

Jayant Krishnamurthy and Tom M Mitchell. 2015.
Learning a compositional semantics for freebase
with an open predicate vocabulary. Transactions
of the Association for Computational Linguistics,
3:257–270.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1223–1233, Cambridge, MA.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1545–1556, Seattle,
Washington, USA.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1512–1523, Edinburgh, Scotland.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D
Forbus, and Ni Lao. 2016. Neural symbolic
machines: Learning semantic parsers on Free-
base with weak supervision. arXiv preprint
arXiv:1611.00020.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Com-
munications of the ACM, 59(9):68–76.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 590–599, Port-
land, Oregon.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S
Zettlemoyer. 2008. A generative model for pars-
ing natural language to meaning representations. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 783–
792, Honolulu, Hawaii.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-
state variational autoencoders for joint discovery and
factorization of relations. Transactions of the Asso-
ciation for Computational Linguistics, 4:231–244.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint

366

model of language and perception for grounded at-
tribute learning. In Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12),
pages 1671–1678, Edinburgh, Scotland.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 319–328, Austin, Texas.

Andriy Mnih and Karol Gregor. 2014. Neural vari-
ational inference and learning in belief networks.
In Proceedings of the 31st International Conference
on Machine Learning, pages 1791–1799, Bejing,
China.

Panupong Pasupat and Percy Liang. 2016. Inferring
logical forms from denotations. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 23–32, Berlin, Germany.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377–392.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics, 4:127–140.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark
Steedman, and Mirella Lapata. 2017. Universal se-
mantic parsing. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 89–101, Copenhagen, Denmark.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Gur, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
qa evaluation. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 562–572, Austin, Texas.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning, pages 1139–1147, Atlanta, Georgia.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal.

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Con-
ference, pages 439–446, New York City, USA.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering
on Freebase via relation extraction and textual ev-
idence. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2326–2336, Berlin,
Germany.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with Freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
956–966, Baltimore, Maryland.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321–1331, Beijing, China.

Pengcheng Yin, Chunting Zhou, Junxian He, and Gra-
ham Neubig. 2018. StructVAE: Tree-structured la-
tent variable models for semi-supervised semantic
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 754–765, Mel-
bourne, Australia.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the 13th National
Conference on Artificial Intelligence, pages 1050–
1055, Portland, Oregon.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to Map Sentences to Logical Form: Struc-
tured Classification with Probabilistic Categorial
Grammars. In Proceedings of 21st Conference in
Uncertainilty in Artificial Intelligence, pages 658–
666, Edinburgh, Scotland.

367

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 368–379
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Modeling Composite Labels for Neural Morphological Tagging

Alexander Tkachenko
Institute of Computer Science

University of Tartu
Tartu, Estonia

aleksandr.tkatsenko@ut.ee

Kairit Sirts
Institute of Computer Science

University of Tartu
Tartu, Estonia

kairit.sirts@ut.ee

Abstract

Neural morphological tagging has been re-
garded as an extension to POS tagging task,
treating each morphological tag as a mono-
lithic label and ignoring its internal structure.
We propose to view morphological tags as
composite labels and explicitly model their
internal structure in a neural sequence tag-
ger. For this, we explore three different neural
architectures and compare their performance
with both CRF and simple neural multiclass
baselines. We evaluate our models on 49 lan-
guages and show that the neural architecture
that models the morphological labels as se-
quences of morphological category values per-
forms significantly better than both baselines
establishing state-of-the-art results in morpho-
logical tagging for most languages.1

1 Introduction

The common approach to morphological tagging
combines the set of word’s morphological fea-
tures into a single monolithic tag and then, sim-
ilar to POS tagging, employs multiclass sequence
classification models such as CRFs (Müller et al.,
2013) or recurrent neural networks (Labeau et al.,
2015; Heigold et al., 2017). This approach, how-
ever, has a number of limitations. Firstly, it ig-
nores the intrinsic compositional structure of the
labels and treats two labels that differ only in
the value of a single morphological category as
completely independent; compare for instance la-
bels [POS=NOUN,CASE=NOM,NUM=SG] and
[POS=NOUN,CASE=NOM,NUM=PL] that only
differ in the value of the NUM category. Secondly,
it introduces a data sparsity issue as the less fre-
quent labels can have only few occurrences in the

1The source code is available at
https://github.com/AleksTk/seq-morph-tagger

training data. Thirdly, it excludes the ability to pre-
dict labels not present in the training set which can
be an issue for languages such as Turkish where
the number of morphological tags is theoretically
unlimited (Yuret and Türe, 2006).

To address these problems we propose to treat
morphological tags as composite labels and explic-
itly model their internal structure. We hypothesise
that by doing that, we are able to alleviate the spar-
sity problems, especially for languages with very
large tagsets such as Turkish, Czech or Finnish, and
at the same time also improve the accuracy over a
baseline using monolithic labels. We explore three
different neural architectures to model the compo-
sitionality of morphological labels. In the first ar-
chitecture, we model all morphological categories
(including POS tag) as independent multiclass clas-
sifiers conditioned on the same contextual word
representation. The second architecture organises
these multiclass classifiers into a hierarchy—the
POS tag is predicted first and the values of morpho-
logical categories are predicted conditioned on the
value of the predicted POS. The third architecture
models the label as a sequence of morphological
category-value pairs. All our models share the
same neural encoder architecture based on bidirec-
tional LSTMs to construct contextual representa-
tions for words (Lample et al., 2016).

We evaluate all our models on 49 UD version
2.1 languages. Experimental results show that our
sequential model outperforms other neural coun-
terparts establishing state-of-the-art results in mor-
phological tagging for most languages. We also
confirm that all neural models perform significantly
better than a competitive CRF baseline. In short,
our contributions can be summarised as follows:

1) We propose to model the compositional in-
ternal structure of complex morphological la-

368

bels for morphological tagging in a neural
sequence tagging framework;

2) We explore several neural architectures for
modeling the composite morphological labels;

3) We find that tag representation based on the
sequence learning model achieves state-of-the
art performance on many languages.

4) We present state-of-the-art morphological tag-
ging results on 49 languages on the UDv2.1
corpora.

2 Related Work

Most previous work on modeling the internal struc-
ture of complex morphological labels has occurred
in the context of morphological disambiguation—a
task where the goal is to select the correct analy-
sis from a limited set of candidates provided by a
morphological analyser. The most common strat-
egy to cope with a large number of complex labels
has been to predict all morphological features of a
word using several independent classifiers whose
predictions are later combined using some scoring
mechanism (Hajič and Hladká, 1998; Hajič, 2000;
Smith et al., 2005; Yuret and Türe, 2006; Zalmout
and Habash, 2017; Kirov et al., 2017). Inoue et al.
(2017) combined these classifiers into a multitask
neural model sharing the same encoder, and pre-
dicted both POS tag and morphological category
values given the same contextual representation
computed by a bidirectional LSTM. They showed
that the multitask learning setting outperforms the
combination of several independent classifiers on
tagging Arabic. In this paper, we experiment with
the same architecture, termed as multiclass mul-
tilabel model, on many languages. Additionally,
we extend this approach and explore a hierarchical
architecture where morphological features directly
depend on the POS tag.

Another previously adopted approach involves
modeling complex morphological labels as se-
quences of morphological feature values (Hakkani-
Tur et al., 2000; Schmid and Laws, 2008). In neural
networks, this idea can be implemented with recur-
rent sequence modeling. Indeed, one of our pro-
posed models generates morphological tags with
an LSTM network. Similar idea has been applied
for the morphological reinflection task (Kann and
Schütze, 2016; Faruqui et al., 2016) where the se-
quential model is used to generate the spellings of
inflected forms given the lemma and the morpho-
logical label of the desired form. In morphological

tagging, however, we generate the morphological
labels themselves.

Another direction of research on modeling the
structure of complex morphological labels involves
structured prediction models (Müller et al., 2013;
Müller and Schütze, 2015; Malaviya et al., 2018;
Lee et al., 2011). Lee et al. (2011) introduced
a factor graph model that jointly infers morpho-
logical features and syntactic structures. Müller
et al. (2013) proposed a higher-order CRF model
which handles large morphological tagsets by de-
composing the full label into POS tag and mor-
phology part. Malaviya et al. (2018) proposed a
factorial CRF to model pairwise dependencies be-
tween individual features within morphological la-
bels and also between labels over time steps for
cross-lingual transfer. Recently, neural morpholog-
ical taggers have been compared to the CRF-based
approach (Heigold et al., 2017; Yu et al., 2017).
While Heigold et al. (2017) found that their neu-
ral model with bidirectional LSTM encoder sur-
passes the CRF baseline, the results of Yu et al.
(2017) are mixed with the convolutional encoder
being slightly better or on par with the CRF but the
LSTM encoder being worse than the CRF baseline.

Most previous work on neural POS and morpho-
logical tagging has shared the general idea of using
bidirectional LSTM for computing contextual fea-
tures for words (Ling et al., 2015; Huang et al.,
2015; Labeau et al., 2015; Ma and Hovy, 2016;
Heigold et al., 2017). The focus of the previous
work has been mostly on modeling the inputs by ex-
ploring different character-level representations for
words (Heigold et al., 2016; Santos and Zadrozny,
2014; Ma and Hovy, 2016; Inoue et al., 2017; Ling
et al., 2015; Rei et al., 2016). We adopt the general
encoder architecture from these works, construct-
ing word representations from characters and using
another bidirectional LSTM to encode the context
vectors. In contrast to these previous works, our
focus is on modeling the compositional structure
of the complex morphological labels.

The morphologically annotated Universal De-
pendencies (UD) corpora (Nivre et al., 2017) offer
a great opportunity for experimenting on many lan-
guages. Some previous work have reported results
on several UD languages (Yu et al., 2017; Heigold
et al., 2017). Morphological tagging results on
many UD languages have been also reported for
parsing systems that predict POS and morphologi-
cal tags as preprocessing (Andor et al., 2016; Straka

369

et al., 2016; Straka and Straková, 2017). Since UD
treebanks have been in constant development, these
results have been obtained on different UD versions
and thus are not necessarily directly comparable.
We conduct experiments on all UDv2.1 languages
and we aim to provide a baseline for future work
in neural morphological tagging.

3 Neural Models

We explore three different neural architectures for
modeling morphological labels: multiclass multi-
label model that predicts each category value sep-
arately, hierarchical multiclass multilabel model
where the values of morphological features depend
on the value of the POS, and a sequence model
that generates morphological labels as sequences
of feature-value pairs.

3.1 Notation

Given a sentencew1, . . . , wn consisting of nwords,
we want to predict the sequence t1, . . . , tn of mor-
phological labels for that sentence. Each label
ti = {fi0, fi1, . . . , fim} consists of a POS tag
(fi0 ≡ POS) and a sequence of m category val-
ues. For each word wi, the encoder computes a
contextual vector hi, which captures information
about the word and its left and right context.

3.2 Decoder Models

Multiclass Multilabel model (MCML) This
model formulates the morphological tagging as a
multiclass multilabel classification problem. For
each morphological category, a separate multiclass
classifier is trained to predict the value of that cate-
gory (Figure 1 (a)). Because not all categories are
always present for each POS (e.g., a noun does not
have a tense category), we extend the morphologi-
cal label of each word by adding all features that
are missing from the annotated label and assign
them a special value that marks the category as
“off”. Formally, the model can be described as:

p(t|h)MCML =

M∏

j=0

p(fj |h), (1)

whereM is the total number of morphological cate-
gories (such as case, number, tense, etc.) observed
in the training corpus. The probability of each
feature value is computed with a softmax function:

p(fj |h)MCML = softmax(Wjh+ bj),

where Wj and bj are the parameter matrix and
bias vector for the jth morphological feature (j =
0, . . . ,M). The final morphological label for a
word is obtained by concatenating predictions for
individual categories while filtering out off-valued
categories.

Hierarchical Multiclass Multilabel model
(HMCML) This is a hierarchical version of the
MCML architecture that models the values of
morphological categories as directly dependent on
the POS tag (Figure 1 (b)):

p(t|h)HMCML = p(POS|h)
M∏

j=1

p(fj |POS, h) (2)

The probability of the POS is computed from the
context vector h using the respective parameters:

p(POS|h) = softmax(WPOSh+ bPOS)

The POS-dependent context vector l is obtained by
concatenating the context vector h with the unnor-
malised log probabilities of the POS:

l = [h;WPOSh+ bPOS]

The probabilities of the morphological features are
computed using the POS-dependent context vector:

p(fj |POS, h) = softmax(Wjl+bj) j = 1, . . . ,M

Sequence model (SEQ) The SEQ model predicts
complex morphological labels as sequences of cate-
gory values. This approach is inspired from neural
sequence-to-sequence models commonly used for
machine translation (Cho et al., 2014; Sutskever
et al., 2014). For each word in a sentence, the
decoder uses a unidirectional LSTM network (Fig-
ure 1 (c)) to generate a sequence of morphological
category-value pairs based on the context vector h
and the previous predictions. The probability of a
morphological label t is under this model:

p(t|h)SEQ =

m∏

j=0

p(fj |f0, . . . , fj−1, h) (3)

Decoding starts by passing the start-of-sequence
symbol as input. At each time step, the decoder
computes the label context vector gj based on the
previously predicted category value, previous label
context vector and the word’s context vector.

gj = LSTM([fj−1;h], gj−1)

370

POS=VERB|Mood=Ind|Tense=Pres

h1

h2

h3

MC

POS=NOUNh1

h2

h3

POS=VERB Mood=Ind Tense=Pres <END>

<START>

h1

h2

h3

POS=NOUN|Number=Sing

POS=VERB
MC-POS

MC-Mood

MC-Tense

(d)

(c)(a)

l o v e

I

c a t s

POS=NOUN

h1

h2

h3

POS=VERB

MC-POS

MC-Mood

MC-Tense

(b)

⊕
log probsl o v e

I

c a t s

Mood=Sub

Mood=Ind

Tense=Past

Tense=Pres

Tense=Past

Tense=Pres

Mood=Sub

Mood=Ind

Figure 1: Neural architectures for modeling complex morphological labels: a) Multiclass Multilabel model
(MCML), b) Hierarchical Multiclass Multilabel model (HMCML), c) Sequence model (SEQ) and d) Multiclass
baseline model (MC). Correct labels are shown with a green border, incorrect labels have a red dotted border.

The probability of each morphological feature-
value pair is then computed with a softmax.

p(fj |gj)SEQ = softmax(WSEQgj + bSEQ)

At training time, we feed correct labels as inputs
while at inference time, we greedily emit the best
prediction from the set of all possible feature-value
pairs. The decoding terminates once the end-of-
sequence symbol is produced.

3.3 Encoder

We adopt a standard sequence tagging encoder ar-
chitecture for all our models. It consists of a bidi-
rectional LSTM network that maps words in a sen-
tence into context vectors using character and word-
level embeddings. Character-level word embed-
dings are constructed with a bidirectional LSTM
network and they capture useful information about
words’ morphology and shape. Word level em-
beddings are initialised with pre-trained embed-
dings and fine-tuned during training. The character
and word-level embeddings are concatenated and
passed as inputs to the bidirectional LSTM encoder.
The resulting hidden states hi capture contextual
information for each word in a sentence. Similar en-
coder architectures have been applied recently with
notable success to morphological tagging (Heigold
et al., 2017; Yu et al., 2017) as well as several other
sequence tagging tasks (Lample et al., 2016; Chiu
and Nichols, 2016; Ling et al., 2015).

4 Experimental Setup

This section details the experimental setup. We
describe the data, then we introduce the baseline
models and finally we report the hyperparameters
of the models.

4.1 Data

We run experiments on the Universal Dependencies
version 2.1 (Nivre et al., 2017). We excluded cor-
pora that did not include train/dev/test split, word
form information2, or morphological features3. Ad-
ditionally, we excluded corpora for which pre-
trained word embeddings were not available.4 The
resulting dataset contains 69 corpora covering 49
different languages. Tagsets were constructed by
concatenating the POS and morphological annota-
tions of the treebanks. Table 1 gives corpus statis-
tics. We present type and token counts for both
training and test sets. For training set, we also
show the average and maximum number of tags
per word type and the size of the morphological
tagset. For the test set, we report the proportion
of out-of-vocabulary (OOV) words as well as the
number of OOV tag tokens and types.

In the encoder, we use fastText word embed-
dings (Bojanowski et al., 2017) pre-trained on
Wikipedia.5 Although these embeddings are un-
cased, our model still captures case information by

2French-FTB and Arabic-NYUAD
3Japanese
4Ancient Greek and Coptic
5
https://github.com/facebookresearch/fastText

371

Dataset
Train set Test set

Tokens Types Tags per word % Emb # Tags Tokens Types % OOV OOV Tags
Avg Max Tokens Types

Afrikaans 33894 5080 1.1 4 62.7 61 10065 2476 13.8 3 3
Arabic 254340 33225 1.8 10 90.1 349 32128 8754 9.8 6 6
Basque 72974 19222 1.4 13 53.8 884 24374 8896 17.8 71 61
Belarusian 5217 2303 1.4 6 74.6 346 1382 708 39.7 48 32
Bulgarian 124336 25047 1.1 7 65.7 432 15724 5974 12.3 4 3
Catalan 418494 31544 1.2 8 62.0 267 58017 9832 5.2 3 3
Chinese 98608 17610 1.3 6 65.8 31 12012 4055 12.5 1 1
Croatian 169283 34968 1.6 19 66.0 1105 13228 5513 14.1 13 13
Czech 1175374 125358 1.7 25 59.7 2630 174252 37727 7.0 127 94
Czech-CAC 473622 66272 1.7 21 72.4 1746 10900 4499 12.6 17 17
Czech-CLTT 27005 4336 1.5 21 73.3 418 4126 1169 17.2 39 30
Czech-FicTree 134059 25943 1.4 58 72.9 1464 16761 5691 12.8 46 43
Danish 80378 16330 1.2 5 62.3 157 10023 3424 15.3 3 2
Dutch 186046 26665 1.2 6 59.8 62 11046 3054 13.7 23 1
Dutch-LassySmall 81243 14622 1.1 5 54.7 60 10080 3573 7.4 0 0
English 204607 19672 1.4 10 58.3 117 25097 5630 9.1 3 3
English-LinES 50095 7436 1.2 4 79.8 17 15623 3530 10.3 0 0
English-ParTUT 43545 6963 1.3 8 74.7 133 3412 1136 9.3 3 3
Estonian 85567 23055 1.3 7 58.0 662 10618 4928 18.6 28 24
Finnish 162827 49210 1.1 9 59.4 2052 21070 9112 23.7 144 119
Finnish-FTB 127845 39755 1.2 8 59.3 1762 16311 8011 23.0 83 76
French 366371 42268 1.2 10 53.5 228 10298 3284 5.8 1 1
French-ParTUT 24922 3815 1.3 10 87.3 197 2693 831 11.2 2 2
French-Sequoia 51924 8463 1.2 5 73.2 200 10360 3023 8.9 0 0
Galician 86676 13236 1.1 4 73.5 27 32390 7169 9.9 3 2
Galician-TreeGal 5262 1873 1.3 9 77.7 173 10900 3182 26.8 81 41
German 268145 49472 2.3 38 25.3 684 16537 5406 11.7 28 26
Gothic 35024 6787 1.4 12 1.5 623 10182 2827 12.4 28 23
Greek 43440 9049 1.3 15 74.4 349 10922 3370 16.4 9 6
Hebrew 169360 29638 1.3 8 87.8 521 15134 5115 16.1 7 6
Hindi 281057 16974 2.4 55 79.3 939 35430 5335 4.6 23 23
Hungarian 20166 7767 1.4 5 75.7 580 10448 4558 37.1 108 85
Indonesian 97531 19223 1.2 6 45.3 21 11780 4354 13.8 0 0
Irish 3183 1257 1.5 8 62.3 236 10138 3245 36.1 276 113
Italian 288750 28915 1.2 11 70.1 278 11153 3533 5.6 0 0
Italian-ParTUT 52390 8323 1.1 6 82.0 205 3929 1318 9.1 1 1
Italian-PoSTWITA 53725 12363 1.2 9 48.7 201 6778 2550 17.3 6 4
Kazakh 547 343 1.2 2 73.2 72 10142 4559 71.9 2371 371
Korean 52328 27714 1.1 4 68.8 11 10926 7060 37.5 0 0
Latin 8018 3854 1.4 7 64.6 347 10954 4996 45.8 153 76
Latin-ITTB 270403 12526 1.5 13 63.1 985 10561 1642 2.2 14 12
Latin-PROIEL 147044 22258 1.4 21 50.6 993 12152 4331 9.8 15 13
Latvian 62397 17745 1.3 30 64.0 742 14490 5467 23.9 46 36
Lithuanian 3210 1522 1.2 3 73.2 297 1060 625 54.7 72 57
Marathi 3253 969 1.6 70 78.1 261 448 199 26.3 19 15
Norwegian-Bokmaal 243887 30072 1.2 6 61.8 203 29966 6616 11.3 4 3
Norwegian-Nynorsk 245330 29133 1.3 8 50.0 184 24773 5963 11.1 3 2
Old_Church_Slavonic 37432 7745 1.4 11 2.2 859 10031 3243 14.1 87 66
Persian 122180 13859 1.1 5 89.7 162 16122 3945 8.5 3 2
Polish 63070 21230 1.5 12 72.3 991 10906 5107 24.2 30 26
Portuguese 222070 27396 1.4 35 61.9 375 10942 3417 8.2 3 3
Portuguese-BR 273176 29944 1.2 8 58.5 22 33638 8047 6.8 0 0
Romanian 185113 30970 1.2 6 69.3 451 16324 5755 10.4 7 6
Russian 75964 25708 1.5 15 66.6 693 11548 5717 26.4 31 23
Russian-SynTagRus 871082 107891 1.4 12 74.7 723 117470 29078 9.5 14 14
Serbian 65764 14713 1.4 12 59.4 539 10891 4038 16.2 8 8
Slovak 80575 21104 1.4 39 63.7 1199 13028 6049 35.8 72 58
Slovenian 112530 29390 1.4 7 67.2 1101 14077 5856 19.9 20 19
Slovenian-SST 9487 2672 1.4 5 90.5 500 10000 2812 21.6 202 132
Spanish 389703 46979 1.4 12 56.7 399 12267 4114 7.4 3 3
Spanish-AnCora 446145 38456 1.2 8 68.3 295 52801 10615 5.6 4 2
Swedish 66645 12911 1.2 8 70.3 202 20377 5127 14.9 12 8
Swedish-LinES 48325 9659 1.2 6 77.3 168 15029 4150 15.0 875 16
Tamil 6849 3040 1.1 4 78.7 201 2183 1132 44.3 20 15
Telugu 5082 1743 1.1 4 0.3 14 721 387 25.0 0 0
Turkish 39169 14576 1.2 9 67.5 972 10256 5139 26.4 87 82
Ukrainian 75054 23970 1.4 23 72.6 1197 14939 6337 27.2 72 60
Urdu 108690 9547 2.7 52 73.9 1001 14806 2949 6.4 27 21
Vietnamese 20285 3625 1.2 4 33.7 15 11955 2684 17.1 1 1

Table 1: Descriptive statistics for all UDv2.1 datasets. For training sets we report the number of word tokens and types, the
average (Avg) and maximum (Max) tags per word type, the proportion of word types for which pre-trained embeddings were
available (% Emb) and the size of the morphological tagset (# Tags). For the test sets, we also give the total number of tokens
and types, the proportion of OOV words (% OOV) and the number of OOV tag tokens and types.

372

means of character-level embeddings. In Table 1,
we also report for each language the proportion of
word types for which the pre-trained embeddings
are available.

4.2 Baseline Models

We use two models as baseline: the CRF-based
MARMOT (Müller et al., 2013) and the regular
neural multiclass classifier.

MarMoT (MMT) MARMOT6 is a CRF-based
morphological tagger which has been shown to
achieve competitive performance across several
languages (Müller et al., 2013). MARMOT approx-
imates the CRF objective using a pruning strategy
which enables training higher-order models and
handling large tagsets. In particular, the tagger first
predicts the POS part of the label and based on that,
constrains the set of possible morphological labels.
Following the results of Müller et al. (2013), we
train second-order models. We tuned the regular-
ization type and weight on German development
set and based on that, we use L2 regularization with
weight 0.01 in all our experiments.

Neural Multiclass classifier (MC) As the sec-
ond baseline, we employ the standard multiclass
classifier used by both Heigold et al. (2017) and
Yu et al. (2017). The proposed model consists
of an LSTM-based encoder, identical to the one
described above in section 3.3, and a softmax clas-
sifier over the full tagset. The tagset sizes for each
corpora are shown in Table 1. During preliminary
experiments, we also added CRF layer on top of
softmax, but as this made the decoding process con-
siderably slower without any visible improvement
in accuracy, we did not adopt CRF decoding here.
The multiclass model is shown in Figure 1 (d).

The inherent limitation of both baseline models
is their inability to predict tags that are not present
in the training corpus. Although the number of such
tags in our data set is not large, it is nevertheless
non-zero for most languages.

4.3 Training and Parametrisation

Since tuning model hyperparameters for each of
the 69 datasets individually is computationally de-
manding, we optimise parameters on Finnish—a
morphologically complex language with a reason-
able dataset size—and apply the resulting values to

6http://cistern.cis.lmu.de/marmot/

SEQ OTHER NN

Encoder
Word embedding size 300 300
Character embedding size 100 100
Character LSTM hidden layer size 150 150
Word embedding dropout 0.5 0.5
LSTM layers 1 1
LSTM hidden state size 400 400
LSTM input dropout 0.5 0.5
LSTM state dropout 0.3 0.3
LSTM output dropout 0.5 0.5

Decoder
LSTM hidden state size 800 800
Tag embedding size 150 –

Training
Initial learning rate 1.0 1.0
Batch size 5 20
Maximum epochs 400 400
Learning rate decay factor – 0.98

Table 2: Hyperparameters for neural models.

other languages. We first tuned the character em-
bedding size and character-LSTM hidden layer size
of the encoder on the SEQ model and reused the
obtained values with all other models. We tuned
the batch size, the learning rate and the decay fac-
tor for the SEQ and MC models separately since
these models are architecturally quite different. For
the MCML and HMCML models we reuse the val-
ues obtained for the MC model. The remaining
hyperparameter values are fixed. Table 2 lists the
hyperparameters for all models.

We train all neural models using stochastic gra-
dient descent for up to 400 epochs and stop early
if there has been no improvement on development
set within 50 epochs. For all models except SEQ,
we decay the learning rate by a factor of 0.98 after
every 2500 batch updates. We initialise biases with
zeros and parameter matrices using Xavier uniform
initialiser (Glorot and Bengio, 2010).

Words in training sets with no pre-trained em-
beddings are initialised with random embeddings.
At test time, words with no pre-trained embedding
are assigned a special UNK-embedding. We train
the UNK-embedding by randomly substituting the
singletons in a batch with the UNK-embedding
with a probability of 0.5.

5 Results

Table 3 presents the experimental results. We re-
port tagging accuracy for all word tokens and also
for OOV tokens only. A full morphological tag is
considered correct if both its POS and all morpho-
logical features are correctly predicted.

373

Full tag (all words) Full tag (OOV words) POS (all words)
Dataset MMT Mc McMl HMcMl Seq MMT Mc McMl HMcMl Seq MMT Mc McMl HMcMl Seq

Afrikaans 94.17 95.17 94.46 94.65 95.45 79.77 84.67 81.93 82.72 84.88 96.47 97.40 97.62 97.48 97.66
Arabic 90.96 93.39 93.25 93.23 93.84 81.25 86.06 85.24 85.14 87.14 95.22 96.01 96.18 96.20 96.22
Basque 87.15 89.92 89.96 90.15 90.33 63.67 72.65 71.61 71.86 71.95 93.87 95.25 96.00 96.00 95.89
Belarusian 73.66 71.35 72.29 75.54 78.15 48.18 46.35 47.81 52.92 59.12 90.38 86.54 91.53 93.42 93.20
Bulgarian 95.90 97.03 96.76 96.76 97.04 82.62 88.74 86.66 86.72 88.22 98.04 98.64 98.76 98.82 98.79
Catalan 96.60 97.52 97.39 97.36 97.59 89.21 91.95 91.75 91.35 92.28 98.05 98.63 98.68 98.65 98.70
Chinese 90.91 92.97 92.79 92.47 93.27 77.90 82.24 81.71 81.17 82.91 91.89 93.84 93.70 93.44 94.11
Croatian 84.99 88.66 88.96 88.96 89.24 66.11 74.87 75.89 76.48 76.37 96.47 97.25 97.54 97.41 97.45
Czech 93.00 95.81 95.06 95.05 95.39 73.07 82.92 80.81 80.53 79.70 98.56 98.95 99.00 98.99 98.88
Czech-CAC 90.46 95.19 94.74 94.72 95.14 69.39 82.25 80.13 79.91 81.59 98.65 99.06 99.17 99.28 99.05
Czech-CLTT 89.21 89.63 90.45 91.01 91.37 73.00 77.78 78.48 78.20 80.03 98.01 97.99 98.91 99.05 98.67
Czech-FicTree 91.24 93.93 94.54 94.48 94.64 75.32 83.96 84.48 83.87 85.46 97.55 98.14 98.57 98.51 98.38
Danish 93.90 95.73 95.26 95.46 95.97 78.74 85.24 83.03 83.68 85.96 95.79 97.26 97.30 97.44 97.51
Dutch 91.84 94.62 93.70 93.81 94.73 70.49 81.23 77.65 77.52 80.57 94.39 96.23 96.22 96.11 96.35
Dutch-LassySmall 97.09 97.05 97.33 97.29 97.54 80.73 83.96 83.15 82.35 84.10 97.82 97.83 98.41 98.36 98.26
English 93.03 94.92 94.40 94.36 94.80 76.22 85.43 83.33 83.38 84.69 94.54 96.13 96.09 95.96 96.06
English-LinES 95.03 96.52 96.36 96.39 96.36 83.72 90.34 89.41 90.09 89.23 95.03 96.52 96.36 96.39 96.36
English-ParTUT 92.32 93.76 93.17 93.17 94.17 70.22 76.49 73.35 73.67 81.82 93.87 95.43 96.10 96.07 95.87
Estonian 91.40 93.28 93.17 93.25 93.30 79.25 84.78 84.42 84.32 85.13 95.54 96.61 96.74 96.85 96.68
Finnish 91.41 93.13 93.18 93.29 93.41 78.35 84.05 84.79 84.71 84.71 95.68 96.55 97.02 97.05 96.79
Finnish-FTB 90.59 93.91 94.13 93.88 91.93 76.06 84.65 85.50 85.24 80.85 93.36 95.73 96.28 96.19 94.56
French 95.68 96.36 95.97 96.17 96.39 82.67 87.02 86.36 85.19 87.85 96.93 97.48 97.43 97.50 97.49
French-ParTUT 92.91 93.50 93.28 92.94 93.95 71.10 73.42 70.10 70.10 72.43 95.77 96.10 96.77 96.73 96.77
French-Sequoia 95.99 96.66 96.51 96.31 96.91 76.99 83.64 80.82 80.39 82.23 97.68 98.06 98.33 98.17 98.32
Galician 96.97 97.65 97.72 97.70 97.76 84.94 88.66 88.98 88.85 89.01 97.10 97.80 97.87 97.84 97.90
Galician-TreeGal 86.31 83.83 85.00 85.31 86.61 68.40 66.77 67.83 68.28 71.80 90.13 88.36 91.99 92.00 91.48
German 80.81 87.98 87.11 87.16 88.32 63.12 78.53 75.00 76.14 78.37 92.60 94.47 94.56 94.62 94.35
Gothic 87.09 86.49 86.25 86.86 87.99 69.70 65.59 60.84 62.03 65.27 95.47 94.48 95.45 96.02 95.59
Greek 91.00 92.63 93.85 93.58 94.14 73.17 78.42 80.55 79.32 81.89 96.74 97.21 97.80 97.74 97.73
Hebrew 93.19 95.05 94.73 94.60 95.09 81.05 87.90 86.87 86.63 88.02 96.15 97.59 97.59 97.53 97.56
Hindi 89.00 91.78 91.47 91.34 91.75 62.35 72.37 69.99 68.77 71.70 96.20 97.00 97.32 97.22 97.03
Hungarian 71.47 80.96 82.89 82.45 84.12 49.42 67.14 70.08 68.87 72.01 92.78 93.94 95.30 95.31 95.44
Indonesian 93.56 93.79 93.73 93.74 93.65 88.22 88.04 88.53 88.16 87.67 93.57 93.81 93.81 93.85 93.69
Irish 67.99 60.73 62.02 61.95 65.81 35.48 28.05 29.50 28.70 34.50 83.62 79.10 84.01 84.22 83.63
Italian 97.06 97.53 97.31 97.31 97.61 86.61 88.87 86.61 86.29 88.71 97.74 98.16 98.19 98.32 98.26
Italian-ParTUT 96.13 97.12 96.79 96.84 97.12 80.22 90.81 86.35 85.79 88.30 97.28 97.86 98.14 98.12 98.12
Italian-PoSTWITA 91.92 93.79 93.23 93.36 93.69 75.85 82.34 80.20 80.80 81.83 93.54 95.32 95.72 95.68 95.16
Kazakh 37.19 31.63 28.84 28.70 34.35 20.97 13.52 10.45 10.38 17.84 52.73 48.94 52.38 54.74 54.57
Korean 93.98 95.82 95.55 95.49 95.87 90.48 93.51 93.12 92.90 93.33 93.98 95.82 95.55 95.50 95.87
Latin 64.94 64.10 65.35 65.88 67.45 41.05 42.54 42.58 43.30 46.99 80.73 80.97 84.84 85.57 84.81
Latin-ITTB 92.98 95.18 95.60 95.57 95.27 68.26 74.78 75.65 74.35 72.61 97.30 98.12 98.30 98.34 98.17
Latin-PROIEL 88.37 90.64 90.20 90.13 89.66 68.43 78.39 74.46 73.20 71.69 95.78 96.68 96.80 96.72 95.94
Latvian 85.59 87.67 87.14 87.14 87.79 67.91 73.59 71.94 71.94 73.88 92.80 94.38 94.87 94.88 94.55
Lithuanian 65.00 58.02 64.91 63.58 67.92 44.66 36.72 43.79 43.10 51.03 73.87 70.00 81.60 79.25 81.70
Marathi 66.07 68.75 64.06 64.96 70.09 39.83 49.15 33.05 36.44 44.92 82.14 82.81 84.15 84.82 84.60
Norwegian-Bokmaal 94.99 96.37 96.13 95.94 96.54 80.14 84.53 83.11 82.54 84.68 97.33 98.24 98.39 98.26 98.44
Norwegian-Nynorsk 94.65 96.25 95.69 95.69 96.07 81.32 85.30 81.93 82.11 83.82 97.08 98.12 98.22 98.14 98.08
Old_Church_Slavonic 87.58 86.96 87.01 86.87 87.96 60.31 60.59 57.49 57.13 58.83 94.98 94.40 95.38 95.61 94.94
Persian 95.84 96.75 96.38 96.38 96.79 79.36 86.09 84.04 83.67 85.43 96.39 97.13 97.11 97.10 97.30
Polish 86.04 90.46 90.99 90.78 90.99 69.13 81.21 79.36 79.81 80.87 96.65 97.73 98.25 98.11 98.04
Portuguese 94.21 95.59 95.34 95.59 95.75 79.48 86.66 86.66 86.77 86.43 97.21 97.72 98.06 97.95 98.04
Portuguese-BR 97.59 98.20 98.20 98.14 98.21 92.30 95.20 95.56 95.03 95.16 97.60 98.20 98.21 98.16 98.22
Romanian 96.30 97.00 96.72 96.61 97.16 85.15 89.51 88.10 87.92 89.75 97.18 97.61 97.74 97.78 97.77
Russian 85.99 90.21 90.73 90.93 91.05 66.91 77.85 78.24 78.90 79.26 95.42 96.43 96.72 96.84 96.50
Russian-SynTagRus 94.44 96.78 96.48 96.58 96.67 78.91 88.50 87.21 87.48 86.98 98.51 98.84 98.92 98.93 98.94
Serbian 91.17 93.25 93.32 93.58 93.93 77.32 83.22 82.20 82.48 83.50 97.47 97.89 98.25 98.17 98.19
Slovak 81.72 87.50 88.16 88.54 88.46 68.42 78.66 78.98 79.24 79.69 94.62 95.85 96.49 96.34 96.46
Slovenian 89.39 94.32 94.05 93.98 94.62 73.14 86.34 83.94 83.58 86.41 97.07 98.15 98.29 98.39 98.42
Slovenian-SST 78.71 75.75 79.18 80.02 80.44 45.45 44.06 48.40 49.88 52.24 88.44 87.54 92.04 92.38 90.99
Spanish 94.33 95.05 94.82 94.81 94.90 77.34 82.95 82.29 82.18 81.52 95.88 96.89 96.95 96.98 96.83
Spanish-AnCora 97.13 97.67 97.54 97.58 97.63 90.26 93.22 93.09 93.19 93.36 98.25 98.64 98.75 98.78 98.68
Swedish 94.28 95.41 95.07 95.25 95.65 82.72 86.11 84.20 84.07 86.37 96.38 97.49 97.69 97.72 97.66
Swedish-LinES 85.24 86.38 85.99 85.98 86.47 64.01 68.33 66.28 65.79 67.26 95.00 96.17 96.69 96.65 96.25
Tamil 81.40 82.18 83.05 81.26 85.75 67.87 71.90 72.42 70.56 75.83 86.39 87.49 91.07 90.24 90.75
Telugu 92.23 90.43 89.04 89.32 91.26 80.00 75.56 70.00 71.67 78.33 92.23 90.43 89.04 89.32 91.26
Turkish 86.09 89.47 90.69 90.51 90.70 63.97 74.85 79.83 79.02 79.13 92.86 94.67 95.54 95.51 95.19
Ukrainian 85.33 88.98 89.94 89.96 89.81 69.19 78.89 79.24 79.34 79.36 95.97 96.40 97.23 97.06 97.03
Urdu 77.37 80.09 79.52 78.54 80.66 54.99 64.54 60.30 61.68 65.07 92.56 93.29 93.87 93.71 93.81
Vietnamese 86.13 88.66 88.51 88.22 88.44 55.19 70.81 70.46 69.29 68.70 86.15 88.67 88.58 88.34 88.46

Average (>100K) 92.18 94.37 94.12 94.07 94.37 76.65 84.03 82.67 82.47 83.42 96.49 97.37 97.52 97.50 97.40
Average (50K-100K) 91.27 93.36 93.36 93.40 93.66 76.96 83.46 82.39 82.43 83.40 95.39 96.43 96.71 96.67 96.65
Average (20K-50K) 87.56 89.42 89.69 89.66 90.43 66.35 72.55 71.76 71.47 73.84 94.37 95.13 95.83 95.86 95.69
Average (<20K) 71.35 68.68 69.37 69.65 72.78 49.19 47.46 46.58 47.52 53.26 82.07 80.22 84.27 84.60 84.70

Overall average 88.18 89.58 89.61 89.64 90.42 71.12 76.74 75.62 75.64 77.52 93.76 94.27 95.11 95.14 95.08

Table 3: Morphological tagging accuracies on UDv2.1 test sets for MarMot (MMT) and MC baselines as well as for MCML,
HMCML and SEQ compositional models. The left section shows the full POS+MORPH tag results, the middle section gives
accuracies for OOV words only, the right-most section shows the POS tagging accuracy. The best result in each section for each
language is in bold. The languages are color-coded according to the training set size, lighter color denotes larger training set:
cyan (<20K), violet (20K-50K), magenta (50K-100K), pink (>100K).

374

Feature SEQ MC # Feature SEQ MC #

POS 91.03 90.20 69 NumType 89.68 87.82 54
Number 94.02 93.05 63 Polarity 93.83 92.86 54
VerbForm 91.29 89.86 61 Degree 87.44 84.12 48
Person 89.02 87.52 60 Poss 94.52 93.60 44
Tense 92.96 91.31 59 Voice 88.40 82.85 42
PronType 89.83 88.81 58 Definite 95.26 94.10 37
Mood 87.34 85.40 58 Aspect 89.76 87.71 29
Gender 89.31 87.78 55 Animacy 86.22 83.73 19
Case 88.90 87.04 55 Polite 75.76 80.48 10

Table 4: Performance of SEQ and MC models on indi-
vidual features reported as macro-averaged F1-scores.

First of all, we can confirm the results of Heigold
et al. (2017) that the performance of neural morpho-
logical tagging indeed exceeds the results of a CRF-
based model. In fact, all our neural models perform
significantly better than MARMOT (p < 0.001).7

The best neural model on average is the SEQ

model, which is significantly better from both the
MC baseline as well as the other two compositional
models, whereby the improvement is especially
well-pronounced on smaller datasets. We do not
observe any significant differences between MCML

and HMCML models neither on all words nor OOV
evaluation setting.

We also present POS tagging results in the right-
most section of Table 3. Here again, all neural
models are better than CRF which is in line with the
results presented by Plank et al. (2016). For POS
tags, the HMCML is the best on average. It is also
significantly better than the neural MC baseline,
however, the differences with the MCML and SEQ

models are insignificant.
In addition to full-tag accuracies, we assess the

performance on individual features. Table 4 reports
macro-averaged F1-cores for the SEQ and the MC

models on universal features. Results indicate that
the SEQ model systematically outperforms the MC

model on most features.

6 Analysis and Discussion

OOV label accuracy Our models are able to pre-
dict labels that were not seen in the training data.
Figure 2 presents the accuracy of test tokens with
OOV labels obtained with our best performing SEQ

model plotted against the number of OOV label
types. The datasets with zero accuracy are omitted.
The main observation is that although the OOV la-
bel accuracy is zero for some languages, it is above
zero on ca. half of the datasets—a result that would
be impossible with MARMOT or MC baselines.

7As indicated by Wilcoxon signed-rank test.

0 20 40 60 80 100 120
Number of OOV label types

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 o
n

OO
V

la
be

ls

af

ar

eube

hr

cs

cs

cs

cs

fi

fi

gl
de

el

hu

gala

la

lv

lt

mr cu

fa

pl

ru

ru

sr

sk
sl

sl

tr

uk

Figure 2: OOV label accuracies of the SEQ model.

Ca
se

Ge
nd

er

Nu
m

be
r

Ve
rb

Fo
rm

Te
ns

e

Pe
rs

on

De
gr

ee

As
pe

ct

Vo
ice

De
fin

ite

M
oo

d

Pr
on

Ty
pe

Morphological category

0

1

2

3

4

5
Av

er
ag

e
er

ro
r r

at
e

(%
)

55

55

63

61
59 60 48 29 42 37

57 58

Seq
MultiClass

Figure 3: Average error rates of distinct morphological
categories for SEQ and MC models.

Error Analysis Figure 3 shows the largest error
rates for distinct morphological categories for both
SEQ and MC models averaged over all languages.
We observe that the error patterns are similar for
both models but the error rates of the SEQ model
are consistently lower as expected.

Stability Analysis To assess the stability of our
predictions, we picked five languages from differ-
ent families and with different corpus size, and
performed five independent train/test runs for each
language. Table 5 summarises the results of these
experiments and demonstrates a reasonably small
variance for all languages. For all languages, ex-
cept for Finnish, the worst accuracy of the SEQ

model was better than the best accuracy of the MC

model, confirming our results that in those lan-
guages, the SEQ model is consistently better than
the MC baseline.

375

Dataset SEQ MC

Finnish 93.24 ± 0.12 93.20 ± 0.07
German 88.45 ± 0.21 87.74 ± 0.17
Hungarian 84.51 ± 0.54 80.68 ± 0.48
Russian 91.08 ± 0.18 90.13 ± 0.15
Turkish 90.29 ± 0.24 89.16 ± 0.27

Table 5: Mean accuracy with standard deviation over
five independent runs for SEQ and MC models.

Hyperparameter Tuning It is possible that the
hyperparameters tuned on Finnish are not optimal
for other languages and thus, tuning hyperparame-
ters for each language individually would lead to
different conclusions than currently drawn. To shed
some light on this issue, we tuned hyperparameters
for the SEQ and MC models on the same subset of
five languages. We first independently optimised
the dropout rates on word embeddings, encoder’s
LSTM inputs and outputs, as well as the number of
LSTM layers. We then performed a grid search to
find the optimal initial learning rate, the learning
rate decay factor and the decay step. Value ranges
for the tuned parameters are given in Table 6.

Parameter Values

Word embedding dropout {0, 0.1, . . . , 0.5}
LSTM input dropout {0, 0.1, . . . , 0.5}
LSTM input dropout {0, 0.1, . . . , 0.5}
Number of LSTM layers {1, 2}
Initial learning rate {0.01, 0.1, 1, 2}
Learning rate decay factor {0.97, 0.98, 0.99, 1}
Decay step {1250, 2500, 5000}

Table 6: The grid values for hyperparameter tuning.

Table 7 reports accuracies for the tuned models
compared to the mean accuracies reported in Ta-
ble 5. As expected, both tuned models demonstrate
superior performance on all languages, except for
German with the SEQ model. Hyperparameter tun-
ing has a greater overall effect on the MC model,
which suggests that it is more sensitive to the choice
of parameters than the SEQ model. Still, the tuned
SEQ model performs better or at least as good as
the MC model on all languages.

Comparison with Previous Work Since UD
datasets have been in rapid development and differ-
ent UD versions do not match, direct comparison
of our results to previously published results is diffi-
cult. Still, we show the results taken from Heigold
et al. (2017), which were obtained on UDv1.3, to
provide a very rough comparison. In addition, we
compare our SEQ model with a neural tagger pre-
sented by Dozat et al. (2017), which is similar to

Dataset SEQ Gain MC Gain

Finnish 93.44 +0.20 93.43 +0.23
German 88.35 −0.10 88.14 +0.40
Hungarian 85.56 +1.05 82.29 +1.61
Russian 91.44 +0.36 90.74 +0.61
Turkish 90.56 +0.27 89.32 +0.16

Table 7: Accuracies of the tuned SEQ and MC models
compared to the mean accuracies in Table 5.

Dataset SEQ Dozat Heigold

Arabic 93.84 92.85 93.78
Bulgarian 97.04 97.25 95.14
Czech 95.39 95.22 96.32
English 94.80 94.81 93.32
Estonian 93.30 93.90 94.25
Finnish 93.41 93.73 93.52
French 96.39 95.90 94.91
Hindi 91.75 92.36 90.84
Hungarian 84.12 82.84 77.59
Romanian 97.16 97.20 94.12
Russian-SynTagRus 96.67 96.20 96.45
Turkish 90.70 90.22 89.12

Average 93.71 93.54 92.45

Table 8: Accuracies for the SEQ model, Dozat et al.
(2017) and Heigold et al. (2017).

our MC model, but employs a more sophisticated
encoder. We train this model on UDv2.1 on the
same set of languages used by Heigold et al. (2017).

Table 8 reports evaluation results for the three
models. The SEQ model and Dozat’s tagger demon-
strate comparable performance. This suggests that
the SEQ model can be further improved by adopting
a more advanced encoder from Dozat et al. (2017).

7 Conclusion
We hypothesised that explicitly modeling the inter-
nal structure of complex labels for morphological
tagging improves the overall tagging accuracy over
the baseline with monolithic tags. To test this hy-
pothesis, we experimented with three approaches
to model composite morphological tags in a neural
sequence tagging framework. Experimental results
on 49 languages demonstrated the advantage of
modeling morphological labels as sequences of cat-
egory values, whereas the superiority of this model
is especially pronounced on smaller datasets. Fur-
thermore, we showed that, in contrast to baselines,
our models are capable of predicting labels that
were not seen during training.

Acknowledgments

This work was supported by the Estonian Research
Council (grants no. 2056, 1226 and IUT34-4).

376

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics, volume 1 (Long Pa-
pers), pages 2442–2452. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5:135–146.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association of Computational Linguis-
tics, 4:357–370.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of the Eighth Workshop
on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111. Association for Com-
putational Linguistics.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Proceedings of the conll 2017 shared task:
Multilingual parsing from raw text to universal de-
pendencies. In CoNLL 2017 Shared Task." Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20–30.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 634–643.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 249–256.

Jan Hajič. 2000. Morphological tagging: Data vs. dic-
tionaries. In Proceedings of the 1st Conference of
the North American Chapter of the Association of
Computational Linguistics, pages 94–101. Associa-
tion for Computational Linguistics.

Jan Hajič and Barbora Hladká. 1998. Tagging inflec-
tive languages: Prediction of morphological cate-
gories for a rich, structured tagset. In Proceedings
of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International
Conference on Computational Linguistics, volume 1,
pages 483–490. Association for Computational Lin-
guistics.

Diiek Z Hakkani-Tur, Kemal Oflazer, and Gokhan Tur.
2000. Statistical morphological disambiguation for
agglutinative languages. In Proceedings of the 18th
International Conference on Computational Linguis-
tics, volume 1.

Georg Heigold, Josef van Genabith, and Günter Neu-
mann. 2016. Scaling character-based morphological
tagging to fourteen languages. In 2016 IEEE Inter-
national Conference on Big Data, pages 3895–3902.
IEEE.

Georg Heigold, Guenter Neumann, and Josef van Gen-
abith. 2017. An extensive empirical evaluation of
character-based morphological tagging for 14 lan-
guages. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, volume 1 (Long Papers), pages
505–513.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Go Inoue, Hiroyuki Shindo, and Yuji Matsumoto. 2017.
Joint prediction of morphosyntactic categories for
fine-grained arabic part-of-speech tagging exploit-
ing tag dictionary information. In Proceedings of
the 21st Conference on Computational Natural Lan-
guage Learning, pages 421–431.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, volume 2, pages 555–560. As-
sociation for Computational Linguistics.

Christo Kirov, John Sylak-Glassman, Rebecca
Knowles, Ryan Cotterell, and Matt Post. 2017. A
rich morphological tagger for english: Exploring
the cross-linguistic tradeoff between morphology
and syntax. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, volume 2, pages
112–117.

Matthieu Labeau, Kevin Löser, and Alexandre Al-
lauzen. 2015. Non-lexical neural architecture for
fine-grained pos tagging. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 232–237.

Guillaume Lample, Miguel Ballesteros, Kazuya
Kawakami, Sandeep Subramanian, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

John Lee, Jason Naradowsky, and David A Smith. 2011.
A discriminative model for joint morphological dis-
ambiguation and dependency parsing. In Proceed-
ings of the 49th Annual Meeting of the Association

377

for Computational Linguistics: Human Language
Technologies-Volume 1, pages 885–894. Association
for Computational Linguistics.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520–1530. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, volume 1,
pages 1064–1074. Association for Computational
Linguistics.

Chaitanya Malaviya, Matthew R. Gormley, and Gra-
ham Neubig. 2018. Neural factor graph models for
cross-lingual morphological tagging. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2653–2663. Association for Computa-
tional Linguistics.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order crfs for morphological
tagging. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 322–332.

Thomas Müller and Hinrich Schütze. 2015. Robust
morphological tagging with word representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 526–536.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Victo-
ria Bobicev, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Aljoscha Burchardt, Marie
Candito, Gauthier Caron, Gülşen Cebiroğlu Ery-
iğit, Giuseppe G. A. Celano, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Silvie Cinková, Çağrı Çöl-
tekin, Miriam Connor, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Arantza
Diaz de Ilarraza, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Ali Elkahky, Tomaž Erjavec, Richárd
Farkas, Hector Fernandez Alcalde, Jennifer Fos-
ter, Cláudia Freitas, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Moa Gärdenfors, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Ma-
tias Grioni, Normunds Grūzı̄tis, Bruno Guillaume,

Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ,
Kim Harris, Dag Haug, Barbora Hladká, Jaroslava
Hlaváčová, Florinel Hociung, Petter Hohle, Radu
Ion, Elena Irimia, Tomáš Jelínek, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hi-
roshi Kanayama, Jenna Kanerva, Tolga Kayade-
len, Václava Kettnerová, Jesse Kirchner, Natalia
Kotsyba, Simon Krek, Veronika Laippala, Lorenzo
Lambertino, Tatiana Lando, John Lee, PhÆřÆąng
Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, Nikola Ljubešić, Olga Loginova, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Cătălina Mărănduc, David Mareček, Katrin Marhei-
necke, Héctor Martínez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo
Mendonça, Niko Miekka, Anna Missilä, Cătălin
Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shinsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Kaili
Müürisep, Pinkey Nainwani, Anna Nedoluzhko,
Gunta Nešpore-Bērzkalne, LÆřÆąng Nguyễn Thi.,
Huyền Nguyễn Thi. Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Robert Östling,
Lilja Øvrelid, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Guy Perrier, Slav Petrov,
Jussi Piitulainen, Emily Pitler, Barbara Plank, Mar-
tin Popel, Lauma Pretkalnin, a, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexandre
Rademaker, Loganathan Ramasamy, Taraka Rama,
Vinit Ravishankar, Livy Real, Siva Reddy, Georg
Rehm, Larissa Rinaldi, Laura Rituma, Mykhailo
Romanenko, Rudolf Rosa, Davide Rovati, Benoît
Sagot, Shadi Saleh, Tanja Samardžić, Manuela San-
guinetti, Baiba Saulı̄te, Sebastian Schuster, Djamé
Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Dmitry Sichinava, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, Anto-
nio Stella, Milan Straka, Jana Strnadová, Alane
Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji,
Takaaki Tanaka, Trond Trosterud, Anna Trukhina,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit,
Sowmya Vajjala, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Lars Wallin, Jonathan North
Washington, Mats Wirén, Tak-sum Wong, Zhuoran
Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Ze-
man, and Hanzhi Zhu. 2017. Universal dependen-
cies 2.1. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
page 412. Association for Computational Linguis-
tics.

378

Marek Rei, Gamal Crichton, and Sampo Pyysalo. 2016.
Attending to characters in neural sequence labeling
models. In Proceedings of the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 309–318.

Cicero D Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31st International
Conference on Machine Learning, pages 1818–
1826.

Helmut Schmid and Florian Laws. 2008. Estimation
of conditional probabilities with decision trees and
an application to fine-grained pos tagging. In Pro-
ceedings of the 22nd International Conference on
Computational Linguistics, volume 1, pages 777–
784. Association for Computational Linguistics.

Noah A Smith, David A Smith, and Roy W Tromble.
2005. Context-based morphological disambiguation
with random fields. In Proceedings of the 2005 Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
pages 475–482. Association for Computational Lin-
guistics.

Milan Straka, Jan Hajic, and Jana Straková. 2016.
Udpipe: Trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation.

Milan Straka and Jana Straková. 2017. Tokenizing, pos
tagging, lemmatizing and parsing ud 2.0 with udpipe.
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 88–99.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112.

Xiang Yu, Agnieszka Falenska, and Ngoc Thang Vu.
2017. A general-purpose tagger with convolutional
neural networks. In Proceedings of the First Work-
shop on Subword and Character Level Models in
NLP, pages 124–129.

Deniz Yuret and Ferhan Türe. 2006. Learning morpho-
logical disambiguation rules for turkish. In Proceed-
ings of the main conference on Human Language
Technology Conference of the North American Chap-
ter of the Association of Computational Linguistics,
pages 328–334. Association for Computational Lin-
guistics.

Nasser Zalmout and Nizar Habash. 2017. Don’t throw
those morphological analyzers away just yet: Neu-
ral morphological disambiguation for arabic. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 704–
713.

379

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 380–391
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Evolutionary Data Measures: Understanding the Difficulty of Text
Classification Tasks

Edward Collins
Wluper Ltd.

London, United Kingdom
ed@wluper.com

Nikolai Rozanov
Wluper Ltd.

London, United Kingdom
nikolai@wluper.com

Bingbing Zhang
Wluper Ltd.

London, United Kingdom
bingbing@wluper.com

Abstract

Classification tasks are usually analysed and
improved through new model architectures or
hyperparameter optimisation but the underly-
ing properties of datasets are discovered on an
ad-hoc basis as errors occur. However, under-
standing the properties of the data is crucial
in perfecting models. In this paper we anal-
yse exactly which characteristics of a dataset
best determine how difficult that dataset is for
the task of text classification. We then propose
an intuitive measure of difficulty for text clas-
sification datasets which is simple and fast to
calculate. We show that this measure gener-
alises to unseen data by comparing it to state-
of-the-art datasets and results. This measure
can be used to analyse the precise source of
errors in a dataset and allows fast estimation
of how difficult a dataset is to learn. We
searched for this measure by training 12 clas-
sical and neural network based models on 78
real-world datasets, then use a genetic algo-
rithm to discover the best measure of difficulty.
Our difficulty-calculating code1 and datasets2

are publicly available.

1 Introduction

If a machine learning (ML) model is trained on a
dataset then the same machine learning model on
the same dataset but with more granular labels will
frequently have lower performance scores than the
original model (see results in Zhang et al. (2015);
Socher et al. (2013a); Yogatama et al. (2017);
Joulin et al. (2016); Xiao and Cho (2016); Con-
neau et al. (2017)). Adding more granularity to
labels makes the dataset harder to learn - it in-
creases the dataset’s difficulty. It is obvious that
some datasets are more difficult for learning mod-
els than others, but is it possible to quantify this

1https://github.com/Wluper/edm
2http://data.wluper.com

difficulty? In order to do so, it would be neces-
sary to understand exactly what characteristics of
a dataset are good indicators of how well models
will perform on it so that these could be combined
into a single measure of difficulty.

Such a difficulty measure would be useful as an
analysis tool and as a performance estimator. As
an analysis tool, it would highlight precisely what
is causing difficulty in a dataset, reducing the time
practitioners need spend analysing their data. As
a performance estimator, when practitioners ap-
proach new datasets they would be able to use this
measure to predict how well models are likely to
perform on the dataset.

The complexity of datasets for ML has been
previously examined (Ho and Basu, 2002; Man-
silla and Ho, 2004; Bernadó-Mansilla and Ho,
2005; Maci et al., 2008), but these works focused
on analysing feature space data ∈ IRn. These
methods do not easily apply to natural language,
because they would require the language be em-
bedded into feature space in some way, for exam-
ple with a word embedding model which intro-
duces a dependency on the model used. We ex-
tend previous notions of difficulty to English lan-
guage text classification, an important component
of natural language processing (NLP) applicable
to tasks such as sentiment analysis, news cate-
gorisation and automatic summarisation (Socher
et al., 2013a; Antonellis et al., 2006; Collins et al.,
2017). All of our recommended calculations de-
pend only on counting the words in a dataset.

1.1 Related Work

One source of difficulty in a dataset is mislabelled
items of data (noise). Brodley and Friedl (1999)
showed that filtering noise could produce large
gains in model performance, potentially yielding
larger improvements than hyperparameter optimi-
sation (Smith et al., 2014). We ignored noise in

380

this work because it can be reduced with proper
data cleaning and is not a part of the true signal
of the dataset. We identified four other areas of
potential difficulty which we attempt to measure:

Class Interference. Text classification tasks to
predict the 1 - 5 star rating of a review are more
difficult than predicting whether a review is posi-
tive or negative (Zhang et al., 2015; Socher et al.,
2013a; Yogatama et al., 2017; Joulin et al., 2016;
Xiao and Cho, 2016; Conneau et al., 2017), as re-
views given four stars share many features with
those given five stars. Gupta et al. (2014) de-
scribe how as the number of classes in a dataset
increases, so does the potential for ”confusabil-
ity” where it becomes difficult to tell classes apart,
therefore making a dataset more difficult. Previous
work has mostly focused on this confusability - or
class interference - as a source of difficulty in ma-
chine learning tasks (Bernadó-Mansilla and Ho,
2005; Ho and Basu, 2000, 2002; Elizondo et al.,
2009; Mansilla and Ho, 2004), a common tech-
nique being to compute a minimum spanning tree
on the data and count the number of edges which
link different classes.

Class Diversity. Class diversity provides infor-
mation about the composition of a dataset by mea-
suring the relative abundances of different classes
(Shannon, 2001). Intuitively, it gives a measure of
how well a model could do on a dataset without
examining any data items and always predicting
the most abundant class. Datasets with a single
overwhelming class are easy to achieve high accu-
racies on by always predicting the most abundant
class. A measure of diversity is one feature used
by Bingel and Søgaard (2017) to identify datasets
which would benefit from multi-task learning.

Class Balance. Unbalanced classes are a known
problem in machine learning (Chawla et al., 2004,
2002), particularly if classes are not easily separa-
ble (Japkowicz, 2000). Underrepresented classes
are more difficult to learn because models are not
exposed to them as often.

Data Complexity. Humans find some pieces of
text more difficult to comprehend than others.
How difficult a piece of text is to read can be
calculated automatically using measures such as
those proposed by Mc Laughlin (1969); Senter and
Smith (1967); Kincaid et al. (1975). If a piece of
text is more difficult for a human to read and un-

derstand, the same may be true for an ML model.

2 Method

We used 78 text classification datasets and trained
12 different ML algorithms on each of the datasets
for a total of 936 models trained. The highest
achieved macro F1 score (Powers, 2011), on the
test set for each model was recorded. Macro F1
score is used because it is valid under imbalanced
classes. We then calculated 48 different statis-
tics which attempt to measure our four hypothe-
sised areas of difficulty for each dataset. We then
needed to discover which statistic or combination
thereof correlated with model F1 scores.

We wanted the discovered difficulty measure to
be useful as an analysis tool, so we enforced a re-
striction that the difficulty measure should be com-
posed only by summation, without weighting the
constituent statistics. This meant that each diffi-
culty measure could be used as an analysis tool by
examining its components and comparing them to
the mean across all datasets.

Each difficulty measure was represented as a bi-
nary vector of length 48 - one bit for each statistic
- each bit being 1 if that statistic was used in the
difficulty measure. We therefore had 248 possible
different difficulty measures that may have corre-
lated with model score and needed to search this
space efficiently.

Genetic algorithms are biologically inspired
search algorithms and are good at searching large
spaces efficiently (Whitley, 1994). They maintain
a population of candidate difficulty measures and
combine them based on their ”fitness” - how well
they correlate with model scores - so that each
”parent” can pass on pieces of information about
the search space (Jiao and Wang, 2000). Using a
genetic algorithm, we efficiently discovered which
of the possible combinations of statistics corre-
lated with model performance.

2.1 Datasets

We gathered 27 real-world text classification
datasets from public sources, summarised in Table
1; full descriptions are in Appendix A.

We created 51 more datasets by taking two or
more of the original 27 datasets and combining
all of the data points from each into one dataset.
The label for each data item was the name of the
dataset which the text originally came from. We
combined similar datasets in this way, for example

381

Dataset Name Num. Class. Train Size Valid Size Test Size
AG’s News (Zhang et al., 2015) 4 108000 12000 7600
Airline Twitter Sentiment (FigureEight, 2018) 3 12444 - 2196
ATIS (Price, 1990) 26 9956 - 893
Corporate Messaging (FigureEight, 2018) 4 2650 - 468
ClassicLit 4 40489 5784 11569
DBPedia (wiki.dbpedia.org, 2015) 14 50400 5600 7000
Deflategate (FigureEight, 2018) 5 8250 1178 2358
Disaster Tweets (FigureEight, 2018) 2 7597 1085 2172
Economic News Relevance (FigureEight, 2018) 2 5593 799 1599
Grammar and Product Reviews (Datafiniti, 2018) 5 49730 7105 14209
Hate Speech (Davidson et al., 2017) 3 17348 2478 4957
Large Movie Review Corpus (Maas et al., 2011) 2 35000 5000 10000
London Restaurant Reviews (TripAdvisor3) 5 12056 1722 3445
New Year’s Tweets (FigureEight, 2018) 10 3507 501 1003
New Year’s Tweets (FigureEight, 2018) 115 3507 501 1003
Paper Sent. Classification (archive.ics.uci.edu, 2018) 5 2181 311 625
Political Social Media (FigureEight, 2018) 9 3500 500 1000
Question Classification (Li and Roth, 2002) 6 4906 546 500
Review Sentiments (Kotzias et al., 2015) 2 2100 300 600
Self Driving Car Sentiment (FigureEight, 2018) 6 6082 - 1074
SMS Spam Collection (Almeida and Hidalgo, 2011) 2 3901 558 1115
SNIPS Intent Classification (Coucke, 2017) 7 13784 - 700
Stanford Sentiment Treebank (Socher et al., 2013a) 3 236076 1100 2210
Stanford Sentiment Treebank (Socher et al., 2013a) 2 117220 872 1821
Text Emotion (FigureEight, 2018) 13 34000 - 6000
Yelp Reviews (Yelp.com, 2018) 5 29250 3250 2500
YouTube Spam (Alberto et al., 2015) 2 1363 194 391

Table 1: The 27 different publicly available datasets we gathered with references.

two different datasets of tweets, so that the classes
would not be trivially distinguishable - there is no
dataset to classify text as either a tweet or Shake-
speare for example as this would be too easy for
models. The full list of combined datasets is in
Appendix A.2.

Our datasets focus on short text classification by
limiting each data item to 100 words. We demon-
strate that the difficulty measure we discover with
this setup generalises to longer text classification
in Section 3.1. All datasets were lowercase with
no punctuation. For datasets with no validation
set, 15% of the training set was randomly sampled
as a validation set at runtime.

2.2 Dataset Statistics

We calculated 12 distinct statistics with differ-
ent n-gram sizes to produce 48 statistics of each
dataset. These statistics are designed to increase in
value as difficulty increases. The 12 statistics are
described here and a listing of the full 48 is in Ap-
pendix B in Table 5. We used n-gram sizes from
unigrams up to 5-grams and recorded the average
of each statistic over all n-gram sizes. All proba-
bility distributions were count-based - the proba-
bility of a particular n-gram / class / character was
the count of occurrences of that particular entity

divided by the total count of all entities.

2.2.1 Class Diversity
We recorded the Shannon Diversity Index and
its normalised variant the Shannon Equitability
(Shannon, 2001) using the count-based probabil-
ity distribution of classes described above.

2.2.2 Class Balance
We propose a simple measure of class imbalance:

Imbal =

C∑

c=1

∣∣∣∣
1

C
− nc
TDATA

∣∣∣∣ (1)

C is the total number of classes, nc is the count
of items in class c and TDATA is the total number
of data points. This statistic is 0 if there are an
equal number of data points in every class and the
upper bound is 2

(
1− 1

C

)
and is achieved when

one class has all the data points - a proof is given
in Appendix B.2.

2.2.3 Class Interference
Per-class probability distributions were calculated
by splitting the dataset into subsets based on the
class of each data point and then computing count-
based probability distributions as described above
for each subset.

382

Hellinger Similarity One minus both the aver-
age and minimum Hellinger Distance (Le Cam
and Yang, 2012) between each pair of classes.
Hellinger Distance is 0 if two probability distri-
butions are identical so we subtract this from 1
to give a higher score when two classes are sim-
ilar giving the Hellinger Similarity. One minus
the minimum Hellinger Distance is the maximum
Hellinger Similarity between classes.

Top N-Gram Interference Average Jaccard
similarity (Jaccard, 1912) between the set of the
top 10 most frequent n-grams from each class. N-
grams entirely composed of stopwords were ig-
nored.

Mutual Information Average mutual informa-
tion (Cover and Thomas, 2012) score between the
set of the top 10 most frequent n-grams from each
class. N-grams entirely composed of stopwords
were ignored.

2.2.4 Data Complexity
Distinct n-grams : Total n-grams Count of dis-
tinct n-grams in a dataset divided by the total num-
ber of n-grams. Score of 1 indicates that each n-
gram occurs once in the dataset.

Inverse Flesch Reading Ease The Flesch Read-
ing Ease (FRE) formula grades text from 100 to 0,
100 indicating most readable and 0 indicating dif-
ficult to read (Kincaid et al., 1975). We take the
reciprocal of this measure.

N-Gram and Character Diversity Using the
Shannon Index and Equitability described by
Shannon (2001) we calculate the diversity and eq-
uitability of n-grams and characters. Probability
distributions are count-based as described at the
start of this section.

2.3 Models
To ensure that any discovered measures did not
depend on which model was used (i.e. that they
were model agnostic), we trained 12 models on ev-
ery dataset. The models are summarised in Table
2. Hyperparameters were not optimised and were
identical across all datasets. Specific implemen-
tation details of the models are described in Ap-
pendix C. Models were evaluated using the macro
F1-Score. These models used three different rep-
resentations of text to learn from to ensure that the
discovered difficulty measure did not depend on
the representation. These are:

Word Embeddings Our neural network mod-
els excluding the Convolutional Neural Net-
work (CNN) used 128-dimensional FastText (Bo-
janowski et al., 2016) embeddings trained on the
One Billion Word corpus (Chelba et al., 2013)
which provided an open vocabulary across the
datasets.

Term Frequency Inverse Document Frequency
(tf-idf) Our classical machine learning mod-
els represented each data item as a tf-idf vector
(Ramos et al., 2003). This vector has one entry
for each word in the vocab and if a word occurs in
a data item, then that position in the vector is the
word’s tf-idf score.

Characters Our CNN, inspired by Zhang et al.
(2015), sees only the characters of each data item.
Each character is assigned an ID and the list of IDs
is fed into the network.

2.4 Genetic Algorithm

The genetic algorithm maintains a population of
candidate difficulty measures, each being a binary
vector of length 48 (see start of Method section).
At each time step, it will evaluate each member
of the population using a fitness function. It will
then select pairs of parents based on their fitness,
and perform crossover and mutation on each pair
to produce a new child difficulty measure, which
is added to the next population. This process is
iterated until the fitness in the population no longer
improves.

Population The genetic algorithm is non-
randomly initialised with the 48 statistics de-
scribed in Section 2.2 - each one is a difficulty
measure composed of a single statistic. 400 pairs
of parents are sampled with replacement from
each population, so populations after this first time
step will consist of 200 candidate measures. The
probability of a measure being selected as a parent
is proportional to its fitness.

Fitness Function The fitness function of each
difficulty measure is based on the Pearson corre-
lation (Benesty et al., 2009). Firstly, the Pearson
correlation between the difficulty measure and the
model test set score is calculated for each individ-
ual model. The Harmonic mean of the correlations
of each model is then taken, yielding the fitness of
that difficulty measure. Harmonic mean is used
because it is dominated by its lowest constituents,

383

Word Embedding Based tf-idf Based Character Based
LSTM-RNN Adaboost 3 layer CNN
GRU-RNN Gaussian Naive Bayes (GNB) -
Bidirectional LSTM-RNN 5-Nearest Neighbors -
Bidirectional GRU-RNN (Multinomial) Logistic Regression -
Multilayer Perceptron (MLP) Random Forest -
- Support Vector Machine -

Table 2: Models summary organised by which input type they use.

so if it is high then correlation must be high for
every model.

Crossover and Mutation To produce a new dif-
ficulty measure from two parents, the constituent
statistics of each parent are randomly intermin-
gled, allowing each parent to pass on information
about the search space. This is done in the follow-
ing way: for each of the 48 statistics, one of the
two parents is randomly selected and if the parent
uses that statistic, the child also does. This pro-
duces a child which has features of both parents.
To introduce more stochasticity to the process and
ensure that the algorithm does not get trapped in
a local minima of fitness, the child is mutated.
Mutation is performed by randomly adding or tak-
ing away each of the 48 statistics with probability
0.01. After this process, the child difficulty mea-
sure is added to the new population.

Training The process of calculating fitness, se-
lecting parents and creating child difficulty mea-
sures is iterated until there has been no improve-
ment in fitness for 15 generations. Due to the
stochasticity in the process, we run the whole evo-
lution 50 times. We run 11 different variants of
this evolution, leaving out different statistics of the
dataset each time to test which are most impor-
tant in finding a good difficulty measure, in total
running 550 evolutions. Training time is fast, av-
eraging 79 seconds per evolution with a standard
deviation of 25 seconds, determined over 50 runs
of the algorithm on a single CPU.

3 Results and Discussion

The four hypothesized areas of difficulty - Class
Diversity, Balance and Interference and Data
Complexity - combined give a model agnostic
measure of difficulty. All runs of the genetic al-
gorithm produced different combinations of statis-
tics which had strong negative correlation with
model scores on the 78 datasets. The mean cor-
relation was −0.8795 and the standard deviation

was 0.0046. Of the measures found through evo-
lution we present two of particular interest:

1. D1: Distinct Unigrams : Total Unigrams +
Class Imbalance + Class Diversity + Top
5-Gram Interference + Maximum Unigram
Hellinger Similarity + Unigram Mutual Info.
This measure achieves the highest correlation
of all measures at −0.8845.

2. D2: Distinct Unigrams : Total Unigrams +
Class Imbalance + Class Diversity + Max-
imum Unigram Hellinger Similarity + Uni-
gram Mutual Info. This measure is the short-
est measure which achieves a higher correla-
tion than the mean, at−0.8814. This measure
is plotted against model F1 scores in Figure 1.

Figure 1: Model F1 scores against difficulty measure
D2 for each of the three input types.

We perform detailed analysis on difficulty mea-
sure D2 because it relies only on the words of the
dataset and requires just five statistics. This sim-
plicity makes it interpretable and fast to calculate.
All difficulty measures which achieved a correla-
tion better than −0.88 are listed in Appendix D,
where Figure 3 also visualises how often each met-
ric was selected.

384

Model AG Sogou Yelp
P.

Yelp
F.

DBP Yah
A.

Amz.
P.

Amz.
F.

Corr.

D2 3.29 3.77 3.59 4.42 3.50 4.51 3.29 4.32 -
char-CNN (Zhang et al., 2015) 87.2 95.1 94.7 62 98.3 71.2l 95.1 59.6 -0.86
Bag of Words (Zhang et al.,
2015)

88.8 92.9 92.2 57.9 96.6 68.9 90.4 54.6 -0.87

Discrim. LSTM (Yogatama
et al., 2017)

92.1 94.9 92.6 59.6 98.7 73.7 - - -0.87

Genertv. LSTM (Yogatama
et al., 2017)

90.6 90.3 88.2 52.7 95.4 69.3 - - -0.88

Kneser-Ney Bayes (Yogatama
et al., 2017)

89.3 94.6 81.8 41.7 95.4 69.3 - - -0.79

FastText Lin. Class. (Joulin
et al., 2016)

91.5 93.9 93.8 60.4 98.1 72 91.2 55.8 -0.86

Char CRNN (Xiao and Cho,
2016)

91.4 95.2 94.5 61.8 98.6 71.7 94.1 59.2 -0.88

VDCNN (Conneau et al., 2017) 91.3 96.8 95.7 64.7 98.7 73.4 95.7 63 -0.88
Harmonic Mean -0.86

Table 3: Difficulty measure D2 compared to recent results from papers on large-scale text classification. The
correlation column reports the correlation between difficulty measure D2 and the model scores for that row.

3.1 Does it Generalise?

A difficulty measure is useful as an analysis and
performance estimation tool if it is model agnos-
tic and provides an accurate difficulty estimate on
unseen datasets.

When running the evolution, the F1 scores of
our character-level CNN were not observed by
the genetic algorithm. If the discovered difficulty
measure still correlated with the CNN’s scores de-
spite never having seen them during evolution, it
is more likely to be model agnostic. The CNN has
a different model architecture to the other mod-
els and has a different input type which encodes
no prior knowledge (as word embeddings do) or
contextual information about the dataset (as tf-idf
does). D1 has a correlation of −0.9010 with the
CNN and D2 has a correlation of −0.8974 which
suggests that both of our presented measures do
not depend on what model was used.

One of the limitations of our method was that
our models never saw text that was longer than 100
words and were never trained on any very large
datasets (i.e. >1 million data points). We also per-
formed no hyperparameter optimisation and did
not use state-of-the-art models. To test whether
our measure generalises to large datasets with text
longer than 100 words, we compared it to some
recent state-of-the-art results in text classification
using the eight datasets described by Zhang et al.
(2015). These results are presented in Table 3 and
highlight several important findings.

The Difficulty Measure Generalises to Very
Large Datasets and Long Data Items. The

smallest of the eight datasets described by Zhang
et al. (2015) has 120 000 data points and the
largest has 3.6 million. As D2 still has a strong
negative correlation with model score on these
datasets, it seems to generalise to large datasets.
Furthermore, these large datasets do not have an
upper limit of data item length (the mean data
item length in Yahoo Answers is 520 words), yet
D2 still has strong negative correlation with model
score, showing that it does not depend on data item
length.

The Difficulty Measure is Model and Input
Type Agnostic. The state-of-the-art models pre-
sented in Table 3 have undergone hyperparame-
ter optimisation and use different input types in-
cluding per-word learned embeddings (Yogatama
et al., 2017), n-grams, characters and n-gram em-
beddings (Joulin et al., 2016). As D2 still has
a strong negative correlation with these models’
scores, we can conclude that it has accurately mea-
sured the difficulty of a dataset in a way that is
useful regardless of which model is used.

The Difficulty Measure Lacks Precision. The
average score achieved on the Yahoo Answers
dataset is 69.9% and its difficulty is 4.51. The av-
erage score achieved on Yelp Full is 56.8%, 13.1%
less than Yahoo Answers and its difficulty is 4.42.
In ML terms, a difference of 13% is significant
yet our difficulty measure assigns a higher diffi-
culty to the easier dataset. However, Yahoo An-
swers, Yelp Full and Amazon Full, the only three
of Zhang et al. (2015)’s datasets for which the
state-of-the-art is less than 90%, all have difficulty

385

scores > 4, whereas the five datasets with scores
> 90% all have difficulty scores between 3 and
4. This indicates that the difficulty measure in its
current incarnation may be more effective at as-
signing a class of difficulty to datasets, rather than
a regression-like value.

3.2 Difficulty Measure as an Analysis Tool

Statistic Mean Sigma
Distinct Words : Total Words 0.0666 0.0528
Class Imbalance 0.503 0.365
Class Diversity 0.905 0.759
Max. Unigram Hellinger Similarity 0.554 0.165
Top Unigram Mutual Info 1.23 0.430

Table 4: Means and standard deviations of the con-
stituent statistics of difficulty measure D2 across the
78 datasets from this paper and the eight datasets from
Zhang et al. (2015).

As our difficulty measure has no dependence
on learned weightings or complex combinations of
statistics - only addition - it can be used to analyse
the sources of difficulty in a dataset directly. To
demonstrate, consider the following dataset:

Stanford Sentiment Treebank Binary Classifi-
cation (SST 2) (Socher et al., 2013b) SST is a
dataset of movie reviews for which the task is to
classify the sentiment of each review. The current
state-of-the-art accuracy is 91.8% (Radford et al.,
2017).

Figure 2: Constituents of difficulty measure D2 for
SST, compared to the mean across all datasets.

Figure 2 shows the values of the constituent statis-
tics of difficulty measure D2 for SST and the mean
values across all datasets. The mean (right bar)

also includes an error bar showing the standard de-
viation of statistic values. The exact values of the
means and standard deviations for each statistic in
measure D2 are shown in Table 4.

Figure 2 shows that for SST 2 the Mutual Infor-
mation is more than one standard deviation higher
than the mean. A high mutual information score
indicates that reviews have both positive and neg-
ative features. For example, consider this review:
”de niro and mcdormand give solid performances
but their screen time is sabotaged by the story s in-
ability to create interest” which is labelled ”pos-
itive”. There is a positive feature referring to the
actors’ performances and a negative one referring
to the plot. A solution to this would be to treat the
classification as a multi-label problem where each
item can have more than one class, although this
would require that the data be relabelled by hand.
An alternate solution would be to split reviews like
this into two separate ones: one with the positive
component and one with the negative.

Furthermore, Figure 2 shows that the Max.
Hellinger Similarity is higher than average for
SST 2, indicating that the two classes use simi-
lar words. Sarcastic reviews use positive words to
convey a negative sentiment (Maynard and Green-
wood, 2014) and could contribute to this higher
value, as could mislabelled items of data. Both
of these things portray one class with features of
the other - sarcasm by using positive words with
a negative tone and noise because positive exam-
ples are labelled as negative and vice versa. This
kind of difficulty can be most effectively reduced
by filtering noise (Smith et al., 2014).

To show that our analysis with this difficulty
measure was accurately observing the difficulty in
SST, we randomly sampled and analysed 100 mis-
classified data points from SST’s test set out of 150
total misclassified. Of these 100, 48 were reviews
with both strong positive and negative features and
would be difficult for a human to classify, 22 were
sarcastic and 8 were mislabelled. The remaining
22 could be easily classified by a human and are
misclassified due to errors in the model rather than
the data items themselves being difficult to inter-
pret. These findings show that our difficulty mea-
sure correctly determined the source of difficulty
in SST because 78% of the errors are implied by
our difficulty measure and the remaining 22% are
due to errors in the model itself, not difficulty in
the dataset.

386

3.3 The Important Areas of Difficulty

We hypothesized that the difficulty of a dataset
would be determined by four areas not including
noise: Class Diversity, Class Balance, Class Inter-
ference and Text Complexity. We performed mul-
tiple runs of the genetic algorithm, leaving statis-
tics out each time to test which were most impor-
tant in finding a good difficulty measure which re-
sulted in the following findings:

No Single Characteristic Describes Difficulty
When the Class Diversity statistic was left out
of evolution, the highest achieved correlation was
−0.806, 9% lower than D1 and D2. However,
on its own Class Diversity had a correlation of
−0.644 with model performance. Clearly, Class
Diversity is necessary but not sufficient to estimate
dataset difficulty. Furthermore, when all measures
of Class Diversity and Balance were excluded,
the highest achieved correlation was −0.733 and
when all measures of Class Interference were ex-
cluded the best correlation was −0.727. These
three expected areas of difficulty - Class Diversity,
Balance and Interference - must all be measured to
get an accurate estimate of difficulty because ex-
cluding any of them significantly damages the cor-
relation that can be found. Correlations for each
individual statistic are in Table 6, in Appendix D.

Data Complexity Has Little Affect on Diffi-
culty Excluding all measures of Data Complex-
ity from evolution yielded an average correlation
of −0.869, only 1% lower than the average when
all statistics were included. Furthermore, the only
measure of Data Complexity present in D1 and D2
is Distinct Words : Total Words which has a mean
value of 0.067 and therefore contributes very little
to the difficulty measure. This shows that while
Data Complexity is necessary to achieve top cor-
relation, its significance is minimal in comparison
to the other areas of difficulty.

3.4 Error Analysis

3.4.1 Overpowering Class Diversity
When a dataset has a large number of balanced
classes, then Class Diversity dominates the mea-
sure. This means that the difficulty measure is not
a useful performance estimator for such datasets.

To illustrate this, we created several fake
datasets with 1000, 100, 50 and 25 classes. Each
dataset had 1000 copies of the same randomly
generated string in each class. It was easy for mod-

els to overfit and score a 100% F1 score on these
fake datasets.

For the 1000-class fake data, Class Diversity is
6.91, which by our difficulty measure would indi-
cate that the dataset is extremely difficult. How-
ever, all models easily achieve a 100% F1 score.
By testing on these fake datasets, we found that the
limit for the number of classes before Class Diver-
sity dominates the difficulty measure and renders
it inaccurate is approximately 25. Any datasets
with more than 25 classes with an approximately
equal number of items per class will be predicted
as difficult regardless of whether they actually are
because of this diversity measure.

Datasets with more than 25 unbalanced classes
are still measured accurately. For example, the
ATIS dataset (Price, 1990) has 26 classes but be-
cause some of them have only 1 or 2 data items,
it is not dominated by Class Diversity. Even when
the difficulty measure is dominated by Class Di-
versity, examining the components of the difficulty
measure independently would still be useful as an
analysis tool.

3.4.2 Exclusion of Useful Statistics

One of our datasets of New Year’s Resolution
Tweets has 115 classes but only 3507 data points
(FigureEight, 2018). An ML practitioner knows
from the number of classes and data points alone
that this is likely to be a difficult dataset for an ML
model.

Our genetic algorithm, based on an unweighted,
linear sum, cannot take statistics like data size into
account currently because they do not have a con-
venient range of values; the number of data points
in a dataset can vary from several hundred to sev-
eral million. However, the information is still use-
ful to practitioners in diagnosing the difficulty of a
dataset.

Given that the difficulty measure lacks precision
and may be better suited to classification than re-
gression as discussed in Section 3.1, cannot take
account of statistics without a convenient range
of values and that the difficulty measure must be
interpretable, we suggest that future work could
look at combining statistics with a white-box, non-
linear algorithm like a decision tree. As opposed
to summation, such a combination could take ac-
count of statistics with different value ranges and
perform either classification or regression while
remaining interpretable.

387

3.5 How to Reduce the Difficulty Measure
Here we present some general guidelines on how
the four areas of difficulty can be reduced.

Class Diversity can only be sensibly reduced by
lowering the number of classes, for example by
grouping classes under superclasses. In academic
settings where this is not possible, hierarchical
learning allows grouping of classes but will pro-
duce granular labels at the lowest level (Kowsari
et al., 2017). Ensuring a large quantity of data in
each class will also help models to better learn the
features of each class.

Class Interference is influenced by the amount
of noise in the data and linguistic phenomena like
sarcasm. It can also be affected by the way the data
is labelled, for example as shown in Section 3.2
where SST has data points with both positive and
negative features but only a single label. Filtering
noise, restructuring or relabelling ambiguous data
points and detecting phenomena like sarcasm will
help to reduce class interference. Easily confused
classes can also be grouped under one superclass
if practitioners are willing to sacrifice granularity
to gain performance.

Class Imbalance can be addressed with data
augmentation such as thesaurus based methods
(Zhang et al., 2015) or word embedding perturba-
tion (Zhang and Yang, 2018). Under- and over-
sampling can also be utilised (Chawla et al., 2002)
or more data gathered. Another option is transfer
learning where knowledge from high data domains
can be transferred to those with little data (Jaech
et al., 2016).

Data Complexity can be managed with large
amounts of data. This need not necessarily be la-
belled - unsupervised pre-training can help mod-
els understand the form of complex data before
attempting to use it (Halevy et al., 2009). Cur-
riculum learning may also have a similar effect to
pre-training (Bengio et al., 2009).

3.6 Other Applications of the Measure
Model Selection Once the difficulty of a dataset
has been calculated, a practitioner can use this to
decide whether they need a complex or simple
model to learn the data.

Performance Checking and Prediction Practi-
tioners will be able to compare the results their
models get to the scores of other models on
datasets of an equivalent difficulty. If their mod-
els achieve lower results than what is expected ac-

cording to the difficulty measure, then this could
indicate a problem with the model.

4 Conclusion

When their models do not achieve good results,
ML practitioners could potentially calculate thou-
sands of statistics to see what aspects of their
datasets are stopping their models from learning.
Given this, how do practitioners tell which statis-
tics are the most useful to calculate? Which ones
will tell them the most? What changes could they
make which will produce the biggest increase in
model performance?

In this work, we have presented two measures of
text classification dataset difficulty which can be
used as analysis tools and performance estimators.
We have shown that these measures generalise to
unseen datasets. Our recommended measure can
be calculated simply by counting the words and
labels of a dataset and is formed by adding five
different, unweighted statistics together. As the
difficulty measure is an unweighted sum, its com-
ponents can be examined individually to analyse
the sources of difficulty in a dataset.

There are two main benefits to this difficulty
measure. Firstly, it will reduce the time that
practitioners need to spend analysing their data
in order to improve model scores. As we have
demonstrated which statistics are most indicative
of dataset difficulty, practitioners need only calcu-
late these to discover the sources of difficulty in
their data. Secondly, the difficulty measure can
be used as a performance estimator. When practi-
tioners approach new tasks they need only calcu-
late these simple statistics in order to estimate how
well models are likely to perform.

Furthermore, this work has shown that for text
classification the areas of Class Diversity, Balance
and Interference are essential to measure in order
to understand difficulty. Data Complexity is also
important, but to a lesser extent.

Future work should firstly experiment with non-
linear but interpretable methods of combining
statistics into a difficulty measure such as deci-
sion trees. Furthermore, it should apply this dif-
ficulty measure to other NLP tasks that may re-
quire deeper linguistic knowledge than text clas-
sification, such as named entity recognition and
parsing. Such tasks may require more advanced
features than simple word counts as were used in
this work.

388

References
Túlio C Alberto, Johannes V Lochter, and Tiago A

Almeida. 2015. Tubespam: Comment spam filter-
ing on youtube. In Machine Learning and Applica-
tions (ICMLA), 2015 IEEE 14th International Con-
ference on, pages 138–143. IEEE. [Online; accessed
22-Feb-2018].

Tiago A. Almeida and Jos Mara Gmez Hidalgo. 2011.
Sms spam collection v. 1. [Online; accessed 25-Feb-
2018].

Ioannis Antonellis, Christos Bouras, and Vassilis
Poulopoulos. 2006. Personalized news categoriza-
tion through scalable text classification. In Asia-
Pacific Web Conference, pages 391–401. Springer.

archive.ics.uci.edu. 2018. Sentence classification data
set. https://archive.ics.uci.edu/ml/
datasets/Sentence+Classification.
[Online; accessed 20-Feb-2018].

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-
rael Cohen. 2009. Pearson correlation coefficient.
In Noise reduction in speech processing, pages 1–4.
Springer.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning, pages 41–48. ACM.

Ester Bernadó-Mansilla and Tin Kam Ho. 2005. Do-
main of competence of xcs classifier system in com-
plexity measurement space. IEEE Transactions on
Evolutionary Computation, 9(1):82–104.

Joachim Bingel and Anders Søgaard. 2017. Identi-
fying beneficial task relations for multi-task learn-
ing in deep neural networks. arXiv preprint
arXiv:1702.08303.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Carla E Brodley and Mark A Friedl. 1999. Identifying
mislabeled training data. Journal of artificial intel-
ligence research, 11:131–167.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Nitesh V Chawla, Nathalie Japkowicz, and Aleksander
Kotcz. 2004. Special issue on learning from imbal-
anced data sets. ACM Sigkdd Explorations Newslet-
ter, 6(1):1–6.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Ed Collins, Isabelle Augenstein, and Sebastian Riedel.
2017. A supervised approach to extractive sum-
marisation of scientific papers. In Proceedings of
the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 195–205.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, volume 1, pages 1107–1116.

Alice Coucke. 2017. Benchmarking natural lan-
guage understanding systems: Google, facebook,
microsoft, amazon, and snips. [Online; accessed 7-
Feb-2018].

Thomas M Cover and Joy A Thomas. 2012. Elements
of information theory. John Wiley & Sons.

Datafiniti. 2018. Grammar and online product reviews.
[Online; accessed 26-Feb-2018].

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

D. A. Elizondo, R. Birkenhead, M. Gamez, N. Gar-
cia, and E. Alfaro. 2009. Estimation of classification
complexity. In 2009 International Joint Conference
on Neural Networks, pages 764–770.

FigureEight. 2018. Data for everyone. https:
//www.figure-eight.com/data-for-
everyone/. [Online; accessed 25-Feb-2018].

Maya R Gupta, Samy Bengio, and Jason Weston. 2014.
Training highly multiclass classifiers. The Journal
of Machine Learning Research, 15(1):1461–1492.

Alon Halevy, Peter Norvig, and Fernando Pereira.
2009. The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2):8–12.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou.
2009. Multi-class adaboost. Statistics and its Inter-
face, 2(3):349–360.

Tin Kam Ho and M. Basu. 2000. Measuring the com-
plexity of classification problems. In Proceedings
15th International Conference on Pattern Recogni-
tion. ICPR-2000, volume 2, pages 43–47 vol.2.

Tin Kam Ho and M. Basu. 2002. Complexity mea-
sures of supervised classification problems. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 24(3):289–300.

389

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jin-Hyuk Hong and Sung-Bae Cho. 2008. A proba-
bilistic multi-class strategy of one-vs.-rest support
vector machines for cancer classification. Neuro-
computing, 71(16-18):3275–3281.

Paul Jaccard. 1912. The distribution of the flora in the
alpine zone. New phytologist, 11(2):37–50.

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks for
natural language understanding. arXiv preprint
arXiv:1604.00117.

Nathalie Japkowicz. 2000. The class imbalance prob-
lem: Significance and strategies. In Proc. of the Intl
Conf. on Artificial Intelligence.

Licheng Jiao and Lei Wang. 2000. A novel genetic
algorithm based on immunity. IEEE Transactions
on Systems, Man, and Cybernetics-part A: systems
and humans, 30(5):552–561.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Mikael Kågebäck, Olof Mogren, Nina Tahmasebi, and
Devdatt Dubhashi. 2014. Extractive summariza-
tion using continuous vector space models. In Pro-
ceedings of the 2nd Workshop on Continuous Vector
Space Models and their Compositionality (CVSC),
pages 31–39.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Technical report, Naval
Technical Training Command Millington TN Re-
search Branch.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dimitrios Kotzias, Misha Denil, Nando De Freitas, and
Padhraic Smyth. 2015. From group to individual la-
bels using deep features. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 597–606.
ACM.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S Ger-
ber, and Laura E Barnes. 2017. Hdltex: Hierar-
chical deep learning for text classification. In Ma-
chine Learning and Applications (ICMLA), 2017
16th IEEE International Conference on, pages 364–
371. IEEE.

Lucien Le Cam and Grace Lo Yang. 2012. Asymptotics
in statistics: some basic concepts. Springer Science
& Business Media.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

N. Maci, A. Orriols-Puig, and E. Bernad-Mansilla.
2008. Genetic-based synthetic data sets for the anal-
ysis of classifiers behavior. In 2008 Eighth Inter-
national Conference on Hybrid Intelligent Systems,
pages 507–512.

E. B. Mansilla and Tin Kam Ho. 2004. On classi-
fier domains of competence. In Proceedings of the
17th International Conference on Pattern Recogni-
tion, 2004. ICPR 2004., volume 1, pages 136–139
Vol.1.

Diana Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Lrec,
pages 4238–4243.

G Harry Mc Laughlin. 1969. Smog grading-a new
readability formula. Journal of reading, 12(8):639–
646.

David Martin Powers. 2011. Evaluation: from pre-
cision, recall and f-measure to roc, informedness,
markedness and correlation.

Patti J Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of
the first instructional conference on machine learn-
ing, volume 242, pages 133–142.

Jason D Rennie, Lawrence Shih, Jaime Teevan, and
David R Karger. 2003. Tackling the poor assump-
tions of naive bayes text classifiers. In Proceed-
ings of the 20th international conference on machine
learning (ICML-03), pages 616–623.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

RJ Senter and Edgar A Smith. 1967. Automated
readability index. Technical report, CINCINNATI
UNIV OH.

390

Claude Elwood Shannon. 2001. A mathematical the-
ory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55.

Michael R Smith, Tony Martinez, and Christophe
Giraud-Carrier. 2014. The potential benefits of fil-
tering versus hyper-parameter optimization. arXiv
preprint arXiv:1403.3342.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013a. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013b. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Darrell Whitley. 1994. A genetic algorithm tutorial.
Statistics and computing, 4(2):65–85.

wiki.dbpedia.org. 2015. Data set 2.0. http:
//wiki.dbpedia.org/data-set-20. [On-
line; accessed 21-Feb-2018].

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by combin-
ing convolution and recurrent layers. arXiv preprint
arXiv:1602.00367.

Yelp.com. 2018. Yelp dataset challenge. http://
www.yelp.com/dataset_challenge. [On-
line; accessed 23-Feb-2018].

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text clas-
sification with recurrent neural networks. arXiv
preprint arXiv:1703.01898.

Dongxu Zhang and Zhichao Yang. 2018. Word embed-
ding perturbation for sentence classification. arXiv
preprint arXiv:1804.08166.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

391

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 392–401
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Vectorial semantic spaces do not encode human judgments of intervention
similarity

Paola Merlo and Francesco Ackermann
Department of Linguistics

University of Geneva
5 Rue de Candolle, CH-1211 Genève 4

paola.merlo@unige.ch, francesco.ackermann@unige.ch

Abstract

Despite their practical success and impres-
sive performances, neural-network-based and
distributed semantics techniques have often
been criticized as they remain fundamentally
opaque and difficult to interpret. In a vein sim-
ilar to recent pieces of work investigating the
linguistic abilities of these representations, we
study another core, defining property of lan-
guage: the property of long-distance depen-
dencies. Human languages exhibit the abil-
ity to interpret discontinuous elements distant
from each other in the string as if they were
adjacent. This ability is blocked if a similar,
but extraneous, element intervenes between
the discontinuous components. We present re-
sults that show, under exhaustive and precise
conditions, that one kind of word embeddings
and the similarity spaces they define do not en-
code the properties of intervention similarity
in long-distance dependencies, and that there-
fore they fail to represent this core linguistic
notion.

1 Introduction

Despite their practical success and impressive per-
formances, neural-network-based and distributed
semantics techniques have often been criticized as
they remain fundamentally opaque and difficult to
interpret.

To cast light on what linguistic information is
learnt and encoded in these representations, sev-
eral pieces of work have recently studied core
properties of language in syntax (Linzen et al.,
2016; Bernardy and Lappin, 2017; Gulordava
et al., 2018; Linzen and Leonard, 2018; van
Schijndel and Linzen, 2018), semantics (Herbelot
and Ganesalingam, 2013; Erk, 2016), morphology
(Cotterell and Schütze, 2015). In a similar vein,
we study another core, defining property of human
languages: the property of long-distance depen-
dencies.

Human languages exhibit the ability to interpret
discontinuous elements distant from each other in
the string as if they were adjacent.1 Sentence (1a)
is a question about the object of the verb buy,
whose canonical position is shown in angle brack-
ets, thus connecting the first and last element in the
sentence.2 Sentence (2a) is a relative clause where
the object of the verb wash is also the semantic
object of the verb show, connecting two distant
elements. Sentence (3a) is also a relative clause
where the word étudiant (student) is the semantic
object of the verb endort (put to sleep).

(1a) What do you wonder John bought<what> ?

(2a) Show me the elephant that the lion is wash-
ing <the elephant>.

(3a) Jules sourit aux étudiants que l’orateur endort
< étudiants> sérieusement depuis le début.

’Jules smiles to the students who the speaker
is putting seriously to sleep from the begin-
ning.’

Long-distance dependencies are not all equally
acceptable. The precise description of the facts
involving long-distance dependencies is complex,
and is one of the major topics of research in current
linguistic theory, with many competing proposals

1To clarify the perhaps confusing terminology: the term
long-distance dependencies is a technical term that refers
to discontinuous constructions where two elements in the
string receive the same interpretation. Long-distance de-
pendency constructions are wh-questions, relative clauses,
right-node raising, among others (Rimell et al., 2009; Nivre
et al., 2010; Merlo, 2015). Not all long-distance are actually
long, for example subject-oriented relative clauses, and not
all long dependencies are long-distance dependencies, for ex-
ample, long subject-verb agreement as studied in Linzen et al.
(2016); Bernardy and Lappin (2017); Gulordava et al. (2018)
is usually not considered a long-distance dependency.

2The unpronounced element(s) in the long-distance rela-
tion are indicated by < >.

392

(Rizzi, 1990; Gibson, 1998). We will adopt an in-
tuitive and simple explanation, called intervention
theory, some aspects of which will be explained in
more detail below (Rizzi, 1990, 2004). In a nut-
shell, a long-distance dependency between two el-
ements in a sentence is difficult or even impossi-
ble if a similar element intervenes. For example,
sentence (1a) is acceptable while (2a) causes trou-
ble for children (Friedmann et al., 2009) and (3a)
triggers agreement errors, because in (1a) there is
no sufficiently similar intervener (John is animate
and is not a question word while what introduces
a question and is not animate), while in (2) and (3)
there is (lion is animate like elephant and étudiants
(students) is animate like orateur (speaker)).

We present results that show, under precise con-
ditions, that one kind of word embeddings and the
similarity spaces they define do not encode the
notion of intervention similarity involved in long-
distance dependencies, but probably only seman-
tic associations.

2 Long-distance phenomena and word
embeddings

All languages allow some form of long-distance
dependencies under restrictive conditions: for ex-
ample, (1a) is allowed, but (1b) is not allowed
(sentences like (1b) are called weak islands, we
keep this terminology),3 (2a) is hard for children,
while (2b) is not, and neither of them is hard for
adults, (3a), repeated here as (3b) often triggers
agreement mistakes, as shown.

(1b) * What do you wonder who bought
<what>?

(2b) Show me the elephant that <the elephant> is
washing the lion.

(3b) Jules sourit aux étudiants que l’orateur
<étudiants> endort/*endorment
<étudiants> sérieusement depuis le début.

’Jules smiles to the students who the speaker
is/*were putting seriously to sleep from the
beginning.’

Core to the explanation of these facts is the no-
tion of intervener. An intervener is an element
that is similar to the two elements that are in a
long-distance relation, and structurally intervenes

3As always, * means ungrammatical.

a. What do you wonder who bought?
b. Which book do you wonder who bought?
c. Which book do you wonder which linguist
bought?
Figure 1: Weak islands (< means better). Accept-
ability judgments: c < b < a.

between the two, blocking the relation. In our ex-
amples, potential interveners are shown in bold.4

This explains why (1a) is ok, since there is a po-
tential intervener, but John and what are not simi-
lar, but (1b) is not ok, since there is an intervener,
and who and what are similar, as they are both wh-
words. Sentence (2a) is hard for children as the
lion intervenes between the two positions that give
meaning to the elephant, but sentence (2b) is not,
because nothing intervenes. Sentence (3b) triggers
agreement mistakes because the intermediate posi-
tion of étudiants intervenes between the word and
the verb, causing interference.

Detailed investigations have shown that long-
distance dependencies exhibit gradations of ac-
ceptability depending on which features are in-
volved (Rizzi, 2004; Grillo, 2008; Friedmann
et al., 2009). For example, all other things being
equal, in complex question environments (weak
islands), we have the gradation of judgments
shown in Figure 1, where long-distance depen-
dency involving a lexically restricted wh-phrase
(which book or which linguist) is more accept-
able than extraction of a bare wh-element (who or
what), which is not very good. Experiments on
weak islands and relative clauses also show that
number triggers intervention effects (Belletti et al.,
2012; Bentea, 2016). Thus, results from theoreti-
cal linguistics, acquisition and sentence process-
ing point to a definition of intervener based on

4Notice that here and in all the following, intervention
is defined structurally and not linearly. Linear intervention
that does not structurally hierarchically dominate (techni-
cally c-command) does not matter as shown by the contrast
*When do you wonder who won?/You wonder who won at
five compared to When did the uncertainty about who won
dissolve?/The uncertainty about who won dissolved at five.
(Rizzi, 2013) Also, intervention can be visible in the string,
like in (1) and (2), or understood, as in (3). The intermedi-
ate step in relating the two elements of the long-distance de-
pendency in (3) is postulated on theoretical grounds (see for
example (Chomsky, 2001), and receives confirmation by par-
ticipial agreement in languages like French (Kayne, 1989),
or the agreement mistakes in the article we use here (Franck
et al., 2015). See also Gibson and Warren (2004) for exper-
imental evidence for the role of intermediate steps in long-
distance dependencies.

393

syntactically-relevant features.5 The status of a
lexical-semantic feature such as animacy remains
more controversial; some results argue in favor
of an ameliorative effect (Brandt et al., 2009),
some suggest animacy has no effect (Adani, 2012).
Some recent studies show a clear effect of animacy
as an intervention feature in wh-islands (Franck
et al., 2015; Villata and Franck, 2016).

We are going to focus on those features for
which relevant data is available, and there’s reason
to think they could be captured in lexical (seman-
tic) vectors because they are properties of words
(in contrast to the more discourse-oriented fea-
tures, such as +Top.) In particular, we focus on
lexical restriction, number and animacy in the def-
inition of intervention similarity.

Sophisticated definition of lexical proximity in
feature spaces, called word embeddings, have
been defined recently in computational linguistics.
These embeddings are the vectorial representation
of the meaning of a word, defined as the usage of
a word in its context (Wittgenstein, 1953 [2001];
Harris, 1954; Firth, 1957). Tasks that confirm
this interpretation are association, analogy, lexi-
cal similarity, entailment (Mikolov et al., 2013a,b;
Pennington et al., 2014; Bojanowski et al., 2016;
Henderson and Popa, 2016).

We can, therefore, investigate whether the sim-
ilarity spaces defined by word embeddings cap-
ture the notion of intervention similarity at work
in long-distance dependencies. If they do, this
means that they encode this core linguistic notion;
if they don’t this means that word embeddings se-
mantic spaces capture association-based similar-
ities based on world knowledge and textual co-
occurrence, but not this more syntax-internal no-
tion of intervention similarity.

3 The question

We investigate whether the popular notion of word
embeddings and the notion of vector space sim-
ilarity built on it are sensitive to the linguistic
properties that are used to describe long-distance
phenomena. These properties are the explanatory
variables of the observed grammaticality judg-

5Villata (2017, 8) summarizes that the relevant features
have been identified as being morphosyntactic features that
have the potential to trigger movement, such as [+Q], for wh-
elements, [+R(el)], for the head of the relative clause, [+Top],
for the elements in a topic position, [+Foc], for the focalized
elements, and the [+N] feature associated with lexically re-
stricted wh-elements (e.g., which NP).

ments derived by intuitive or experimental accept-
ability judgments. If word embeddings encode the
linguistic properties that explain grammaticality
judgment in long-distance dependencies, then they
should also be effective predictors of the grammat-
icality of these same sentences.

More precisely, let C and C ′ be the two el-
ements linked by a long-distance dependency in
sentence F . Let I be the intervener. Let S(C, I)
be a similarity score indicating how similar I is
to C.6 Let GF be a score representing the gram-
maticality of F , as measured numerically by psy-
cholinguistic controlled experiments. Intervention
locality theory tells us that high S(C, I) yields un-
grammaticality. Then S(C, I) is correlated to GF .

We can encode this theory in vectorial space.
Let wC be the word embedding of C and wI the
word embedding of I . Let s(wC , wI) be the sim-
ilarity score S measured as a distance in vecto-
rial space. Then s(wC , wI) is correlated to GF , if
the similarity notion encoded in word embeddings
is the similarity notion that has been shown to be
active in long-distance dependencies. If instead
word embeddings do not encode an intervention-
sensitive notion of similarity, we should find no
correlation.

For example, consider the weak island exam-
ples in Figure 2. Clearly, both the pair (class, stu-
dent) and the pair (professor, student) are close in
a semantic space that simply measures semantic
field and association-based similarity. If however,
word embeddings learn intervention-relevant no-
tions of similarity, then (professor, student) should
be more similar, since they are both animate, com-
pared to (class, student), a pair with a mismatch in
animacy.

Note that it is crucial here to compute word em-
beddings in a way that does not encode grammat-
ical, and especially syntactic, information in some
other way, to control for effects of syntactic sim-
ilarity. This could yield positive results for the
wrong reasons. This is why we use syntax-lean
vectors, as explained below, and not the more dy-
namic word embeddings calculated in the process
of training a neural parser, for example, or a lan-
guage model (Linzen et al., 2016; Bernardy and
Lappin, 2017; Gulordava et al., 2018).

6C and C′ are fundamentally the same, so we will con-
sider only C here.

394

Weak islands, ANIMACY MISMATCH

Quel cours te demandes-tu quel étudiant a apprécié?
[+Q,+N,-A] [+Q,+N,+A]

Which class do you wonder which student appreciated?

Weak islands, ANIMACY MATCH

Quel professeur te demandes-tu quel étudiant a apprécié?
[+Q,+N,+A] [+Q,+N,+A]

Which professor do you wonder which student appreciated?

Object relatives, NUMBER MATCH

Jules sourit à l’ étudiant que l’ orateur <étudiant>2 endort
<étudiant>1 sérieusement depuis le début.

Jules smiles to the student who the speaker is putting seri-
ously to sleep from the beginning.

Object relatives, NUMBER MISMATCH

Jules sourit aux étudiants que l’ orateur <étudiants>2 en-
dorment <étudiants>1 sérieusement depuis le début.

Jules smiles to the students who the speaker is putting seri-
ously to sleep from the beginning.

Figure 2: The linguistic constructions and experi-
mental materials

4 The experiments

In what follows, we describe the multiple steps
necessary to construct the materials of our experi-
ments. To verify our hypothesis, we need two sets
of materials: the experimental measures reflecting
the grammaticality of a sentence and the word em-
beddings to calculate a vector space of similarities.
We describe these in turn. We refer to the sen-
tences in Figure 2 as examples.

4.1 Materials

For grammaticality measures, we use the carefully
controlled stimuli of three psycholinguistics ex-
periments, kindly provided to us by S. Villata and
J. Franck (Franck et al., 2015; Villata and Franck,
2016). The language studied is French. Subjects
were not the same across the tasks. Stimuli are
exemplified in Figure 2.

From Franck et al. (2015) we only consider
the first experiment, comprising 24 experimental
items crossing structure (object relative clauses vs.
complement clauses) and the number of the object
(singular vs. plural).7

7All subject head nouns (e.g. orateur) were singular. Sub-
jects and objects were all animate. An adverb followed by a
locative phrase were added after the verb in order to mea-
sure potential spillover effects. All test sentences were gram-
matical with respect to subject-verb agreement. Each sen-
tence was followed by a yes/no comprehension question that
probed participants interpretation of the thematic relations in

The experimental data is constituted by on-line
reading times (milliseconds). Interference is ex-
amined on the agreement of the verb in the sub-
ordinate clause. We use the reading time corre-
sponding to the critical region, the verb following
the intervener word, endort or endorment in our
examples in Figure 2, as was done in the analysis
of results in the original experiments. The results
show a speed-up effect of number in number mis-
matches configurations.

From Villata and Franck (2016), we consider
both experiments, both manipulating wh-islands.
Experiment 1 manipulated the lexical restriction
of the wh-elements (both bare vs. both lexi-
cally restricted), and the match in animacy be-
tween the extracted wh-element and the interven-
ing wh-element (animacy match, where both are
animate vs. animacy mismatch, where the ex-
tracted wh-element is inanimate and the interven-
ing wh-element is animate). All verbs required an-
imate subjects. Experiment 2 manipulated the lex-
ical restriction of the wh-elements (both bare vs.
both lexically restricted), and the reversibility of
thematic roles (reversible vs. non-reversible). All
wh-elements were animate.

The data collected are acceptability judgments
collected off-line from several subjects, on a
seven-point Likert scale.8 The results show a clear
effect of animacy match and reversibility of the-
matic role match for lexically restricted phrases
and less so for bare wh-phrases.

Notice that these stimuli ensure that the effects,
or, more importantly, null effects, that we might
find are not limited to a single type of construction
and lexical relation, since we test two very differ-
ent sets of constructions. In the same spirit of test-
ing for a wide set of effects, in one case, we look
at effects expressed as offline acceptability, and in
the other at online reading times.

4.2 Methods

Calculating the word and phrase vectors The
pairs of words or phrases indicated in bold in the
examples in Figure 2 were used to collect the
vector-based similarity space.

For each of these words we recover a word em-
bedding. We use French word embeddings, from

the sentence. Instructions encouraged both rapid reading and
correctness in answering the questions (48 fillers, 72 subject).

8Subjects (42) were instructed that there were no time
constraints. The stimulus set consisted of 32 experimental
items that gave rise to 128 sentences and 132 fillers.

395

Facebook Research. These publicly available vec-
tors have been obtained on a 5-word window, for
300 resulting dimensions, on Wikipedia data us-
ing the skip-gram model described in Bojanowski
et al. (2016).9 Every word is represented as an
n-grams of characters, for n training between 3
and 6. Each n-gram is represented by a vector and
the sum of these vectors forms the vector repre-
senting the given word. This technique has been
conceived to account for morphological similari-
ties between words. Taking into consideration the
fact that words may share morphological proper-
ties can improve the quality of the embeddings,
and is important in a language like French, that
has rich nominal and verbal inflectional morphol-
ogy. The quality of a sample of these embedding
vectors were checked by the two authors, profi-
cient in French, by verifying that the words that
are proposed as similar are consistent with intu-
ition. Figure 3 shows the most similar words for
two of the words whose word embeddings we cal-
culated.

As shown in the examples in Figure 2, we
need to measure the vector-based distance be-
tween phrases. Once the word vectors of indi-
vidual words such as quel and professeur, are cal-
culated, we calculate the embeddings of the noun
phrases in which the single words combine, such
as quel professeur. The vectorial representation of
noun phrases is calculated by a composition oper-
ation. We used a simple vectorial sum. Since word
embeddings are representations of lexical proper-
ties, we also report below results using only the
bare head word of the noun phrase.

Calculating the similarity Once these vectors
are calculated, we still have several options of
which operator to use to calculate the distance be-
tween the vectors representing the two phrases C
and I .

The similarity operators Beside the lexical
specification of the vectors and their composition,
the operator used to measure similarity also pro-
vides a dimension of experimental variation. The
cosine is a well-known and efficient measure of
vector similarity. It is based on a rescaling of the
dot product of the vectors and it is a symmetric
measure. It has been shown to capture associative
and analogical semantic similarity in vector space

9https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

POLICIER (policeman)
cambrioleur (burglar)
kidnappeur (kidnapper)
chauffeur (driver)
criminel (offender)
détective (detective)

ETUDIANT (student)
enseignant (teacher)
professeur (professor)
chercheur (researcher)
doctorant (doctoral student)
camarade (fellow)

Figure 3: Five most similar words for word policier
and étudiant.

(Mikolov et al., 2013a,b; Pennington et al., 2014;
Bojanowski et al., 2016).

Once the distance between the vectors is calcu-
lated, in the final step, we correlate the calculated
word embedding similarities with the psycholin-
guistic acceptability judgments.10

5 Results and discussion

Recall that in weak islands (see Figure 2), the ex-
pected outcome is an inverse proportionality be-
tween the two variables: the higher the seman-
tic similarity, the stronger the interference, and
consequently, the lower the average acceptability
score of the sentence. In the case of object rela-
tive clauses (see Figure 2), we expected to observe
a direct proportionality between the two variables:
the higher the semantic similarity, the stronger the
interference, and consequently the longer the aver-
age reading time devoted to the verb in the relative
clause.

Results with the cosine operator Figures 4a
and 4b show the (lack of) correlations between
s(wC , wI) and the grammaticality judgments of
the experiments on weak islands, both with bare
nouns and composed noun phrases. Figures 5a
and 5b show the (lack of) correlations between
s(wC , wI) and the reaction times of the critical re-
gion, the verb, both with bare nouns and composed
noun phrases, in object relative clauses. Regres-
sion values are shown in Table 1.

Results clearly show no correlations in all con-
ditions. This is converging evidence that word em-
beddings do not represent the intervention notion
of similarity, but they encode similarities based
on associations and world knowledge. More ex-
plicitly, take the two examples of weak islands in
Figure 2. Human judgments differentiate clearly
the two sentences, the first being more acceptable
than the second. In the first sentence, Quel cours
te demandes-tu quel étudiant a apprécié? (Which

10The list of words and the detailed experimental results
are given in the supplementary materials.

396

(a) Bare nouns (b) Composed phrases
Figure 4: Weak islands, cosine operator.

Op Conf Args m r p
ss WI b1, b2 0.02 0.08 0.61
ss WI whp1, whp2 0.01 0.17 0.26
ss OR b1, b2 -5.83x10-5 -0.19 0.40
ss OR (b1,v),(b2,v) 2.42x10-5 0.08 0.72
as WI b1, b2 -0.97 -0.12 0.43
as OR b1, b2 -4x10-3 -0.22 0.33

Table 1: Regressions (m), correlations (Pear-
son r) and p-values. ss=semantic similarity
(cosine); as=asymmetric similarity (lexical en-
tailment); WI=weak island; OR=object relative
clauses; b1/2=bare noun 1/2; whp1/2=wh-phrase
1/2; v=verb.

class do you wonder which student appreciated?),
the two target words, in bold, do not match in
animacy, hence the intervener does not block the
long-distance relation as strongly as in the second
sentence, Quel professeur te demandes-tu quel
étudiant a apprécié? (Which professor do you
wonder which student appreciated?), where they
do. People are sensitive to this difference, even if
cours, professor and étudiant are all words belong-
ing to the same semantic field and closely con-
nected by semantic association. The word embed-
dings we have tested here fail to capture this dif-
ference.

Analysis of results The lack of correlation
prompts a more detailed analysis of the results.
In particular, notice that in the experimental work
a binary (not continuous) distinction – animate
vs. inanimate, plural vs. singular – was manip-
ulated and correlated to the acceptability and re-

action times. We are, instead, requiring a corre-
lation between similarity and acceptability in the
animacy case and similarity and number in the re-
action times. That is, we are imposing a stricter
correspondence, which requires the level of simi-
larity to continuously vary with all the experimen-
tal results. We verify then if weaker forms of cor-
relation give us more positive results.

First of all, we can require the similarity mea-
sure to make only a binary distinction. For the ex-
periment manipulating animacy in wh-islands, we
do find the expected inverse correlation between
mean similarity and mean acceptability depending
on the value of the animacy factor. 11 For the ex-
periment manipulating number in relative clauses,
instead, we do not find the expected direct corre-
lation between mean similarity and mean reading
time depending on the value of the number fac-
tor.12

Another less stringent way of looking for corre-
spondences is to take the manipulated binary fac-
tor into account, and verify if there is a partial cor-
relation. In both cases, the correlation is weak.13

11Animate relative head (match condition): mean similar-
ity=0.394, mean acceptability=3.65; inanimate relative head
(mismatch condition): mean similarity=0.293, mean accept-
ability=4.00).

12 Singular relative head (match condition): mean simi-
larity=0.678, mean reading time=962.96; plural relative head
(mismatch condition): mean similarity=0.705, mean reading
time=896.03). Notice in fact, that the lack of correspondence
could be even more basic, as the average similarity score for
the number match condition is lower than for the number mis-
match condition.

13 A multiple regression of accuracy on animacy and sim-
ilarity yields accuracy= 0.46 anim=inanimate + 0.83 sim-
ilarity + 3.33 with correlation coefficient 0.229; a multi-
ple regression of reading times on number and similarity
yields reading times= 72.48 num=plural + 203.53 similar-

397

(a) Bare nouns (b) Composed phrases
Figure 5: Object relative clauses, cosine operator.

Results with asymmetric operator It could
also be pointed out that while the null results were
confirmed across construction types (weak islands
and object relatives), experimental methodolo-
gies (off-line grammaticality judgments and on-
line reading times), only the cosine operator was
used to calculate similarity. The two vectors that
are being compared, wC and wI , correspond, lin-
guistically to C and I above. It has been shown
that, from a linguistic point of view, the grammat-
icality judgments differ depending on whether the
feature set of C is properly included or properly
includes I. If the features of C are a superset of
the features of I, sentences are judged more ac-
ceptable (Rizzi, 2004). Independently of the ex-
act details of the linguistic explanation, these fine-
grained differences in grammaticality judgments
suggest that it might be more appropriate to calcu-
late similarity with an asymmetric operator.

The asymmetric measure we use here has been
developed to capture the notion of entailment. It
captures the idea that the values in a distributed
semantic vector do not represent presence or ab-
sence of a property (true or false), but knowledge
or lack of knowledge about a property of the ref-
erent entity of the noun whose meaning the vector
represents: A entails B iff when I know A I know
everything about B. This operator has been shown
to learn the notion of hyponymy better than other
methods (Henderson and Popa, 2016). 14

Since this operator has so far only been applied
to English, we need to develop the training and de-
velopment sets for French. For our experiments,

ity + 752.45, with correlation coefficient: -0.499.
14 The operators are calculated by the following formula,

where y, x are word embeddings vectors with length d, being

we translated all the word pairs from English to
French.15 We kept the same configurations of the
training sets of word pairs, as described in the ex-
periments by Henderson and Popa. The system
uses these pairs coupled with the gold answer (1
if the entailment is true, 0 if it is not) to train on
hyponymy-hypernymy relations. The data used
for training are noun-noun word pairs that include
positive hyponymy pairs, negative pairs consist-
ing of different hyponymy pairs reversed, pairs in
other semantic relations, and some random pairs.

We modify the operator (we use unk dup, >©), so
that it does not to give us a binary decision (x en-
tails y yes/no), but so that it outputs a real value,
indicating how much x entails y, or rather how
much x is asymmetrically similar to y.

With this operator, we produce the results
shown in Figures 6a and 6b, for bare noun
phrases.16 Figure 6a shows the (lack of) corre-
lations between s(wC , wI) and the grammatical-
ity judgments of the experiments on weak islands.
Figure 6b shows the (lack of) correlations between

projected in a different space.

log(P (y⇒x)) ≈
(σ(−(y−1)) · log σ(−(x−1))
+ σ(−(−y−1)) · log σ(−(−x−1)))/d (1)

The first dot product stands for the true-versus-unknown
interpretation of the vectors and the second dot product repre-
sents the false-versus-unknown interpretation. σ is the logis-
tic sigmoid function 1

1+exp(−x) , and the log and σ functions
are applied componentwise.

15We use WordReference online multilingual dictionary,
available at www.wordreference.com.

16Given the null results discussed below, we do not test
another configuration, where we would have used the entail-
ment operator on the composed noun phrase stimuli.

398

s(wC , wI) and the reaction times of the critical re-
gion in object relative clauses. Regression values
are shown in Table 1.

These results also confirm a lack of correla-
tion. The convergence of these results is impor-
tant as null effects are always hard to confirm and
explain, and care must be taken to show that al-
ternative explanations are not possible. In this
case, all experiments, across constructions (weak
island and object relative clauses), across type of
noun phrase (bare or composed), across measure-
ment method of the experimental dependent vari-
able (off-line grammaticality judgments and on-
line reaction times), and across operators (sym-
metric and asymmetric) show a consistent lack of
correlation between measurements collected in ex-
periments that manipulated the similarity of the
elements, and the notion of similarity encoded in
word embeddings.

This consistent lack of effect allows us to
conclude that while current word embeddings,
i.e. dictionaries in a multi-dimensional vectorial
space, clearly encode a notion of similarity, as
shown by many experiments on analogical tasks
and textual and lexical similarity, they do not how-
ever encode the notion of similarity that has been
shown in many human experiments to be at work
and to be definitional in long-distance dependen-
cies. They do not encode therefore this core notion
of intervention similarity.

6 Related work

This work is situated in a rich body of com-
putational research that attempts to establish the
boundaries of what distributed semantic represen-
tations and neural networks can learn. These stud-
ies have concentrated on structural grammatical
competence, exemplified by long-distance agree-
ment, a task thought to require hierarchical, and
not only linear, information. The first study,
(Linzen et al., 2016), has tested recursive neu-
ral network (RNN) language models and found
that RNNs can learn to predict English subject-
verb agreement, if provided with explicit supervi-
sion. In a follow up paper, Bernardy and Lappin
(2017) find that RNNs are better at long-distance
agreement if they can use large vocabularies to
form rich lexical representations to learn struc-
tural patterns. This finding suggests that RNNs
learn syntactic patterns through rich lexical em-
beddings, based both on semantic and syntactic

evidence. Gulordava et al. (2018) revisit previ-
ous work, and extend the work on long-distance
agreement to four languages of different linguis-
tic properties (Italian, English, Hebrew, Russian).
They use the technique of developing counterfac-
tual data, typical of theoretical and experimental
work and already used for parsing in Gulordava
and Merlo (2016) and train the system on nonsen-
sical sentences. Their model makes accurate pre-
dictions and compares well with humans, thereby
suggesting that the networks learn deeper gram-
matical competence.

On the linguistic and psycholinguistic side, this
work contributes to the investigation of the formal
encoding of long-distance dependencies, follow-
ing the theoretical lines laid in the first formulation
of intervention theory of long-distance dependen-
cies (Rizzi, 1990), made gradual and more fine-
grained in subsequent work (Rizzi, 2004), and ver-
ified experimentally in both sentence processing
and acquisition (Franck et al., 2015; Villata and
Franck, 2016; Friedmann et al., 2009).

7 Conclusions

Human languages exhibit the ability to interpret
discontinuous elements distant from each other in
the string as if they were adjacent, but this long-
distance relation can be disrupted by a similar in-
tervening element. Speakers report lower accept-
ability and longer reading times. In this paper, we
have presented results that show that the similarity
spaces defined by one kind of word embeddings
do not encode this notion of intervention similar-
ity in long-distance dependencies.

Future work requires investigating more di-
rectly the grammatical aspects of the nature of the
similar and dissimilar words in the embeddings
and extend the experimentation to other kinds of
vector spaces, a much larger dataset, and replica-
tion in more constructions and more languages.

8 Acknowledgments

We thank Julie Franck and Sandra Villata for shar-
ing the data they have collected in their experi-
ments, and James Henderson and Diana Nicoleta
Popa for sharing with us their hyponymy detection
script.

399

(a) Weak islands (b) Object relatives
Figure 6: Asymmetric operator.

References
Flavia Adani. 2012. Some notes on the acquisition of

relative clauses: new data and open questions. In
ENJOY LINGUISTICS! Papers offered to Luigi Rizzi
on the occasion of his 60th birthday, pages 6–13.
CISCLPress.

Adriana Belletti, Naama Friedmann, Dominique
Brunato, and Luigi Rizzi. 2012. Does gender make a
difference? Comparing the effect of gender on chil-
dren’s comprehension of relative clauses in Hebrew
and Italian. Lingua, 122(10):1053–1069.

Anamaria Bentea. 2016. Intervention effects in lan-
guage acquisition: the comprehension of A-bar de-
pendencies in French and Romanian. Ph.D. thesis,
University of Geneva.

Jean-Philippe Bernardy and Shalom Lappin. 2017. Us-
ing deep neural networks to learn syntactic agree-
ment. Linguistic Issues in Language Technology,
15(2):1–15.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Silke Brandt, Evan Kidd, Elena Lieven, and Michael
Tomasello. 2009. The discourse bases of rela-
tivization: An investigation of young German and
English-speaking children’s comprehension of rela-
tive clauses. Cognitive Linguistics, 20(3):539–570.

Noam Chomsky. 2001. Derivation by phase. In
Michael Kenstowicz, editor, Ken Hale: A Life in
Language, pages 1–52. MIT Press, Cambridge,MA.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In Proceedings of the
2015 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 1287–1292,
Denver, Colorado. Association for Computational
Linguistics.

Katrin Erk. 2016. What do you know about an alligator
when you know the company it keeps? Semantics
and Pragmatics, 9(17):1–63.

John Rupert Firth. 1957. A synopsis of linguistic the-
ory 1930-1955. In Studies in linguistic analysis,
pages 1–32. Blackwell, Oxford.

Julie Franck, S. Colonna S., and Luigi Rizzi. 2015.
Task-dependency and structure dependency in num-
ber interference effects in sentence comprehension.
Frontiers in Psychology, 6.

Naama Friedmann, Adriana Belletti, and Luigi Rizzi.
2009. Relativized relatives: Types of intervention
in the acquisition of A-bar dependencies. Lingua,
119(1):67 – 88.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68:1–76.

Edward Gibson and Tessa Warren. 2004. Reading
time evidence for intermediate linguistic structure in
long-distance dependencies. Syntax, pages 55–78.

Nino Grillo. 2008. Generalized minimality: Syntactic
underspecification in Broca’s aphasia. Ph.D. thesis,
University of Utrecht.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205. Associ-
ation for Computational Linguistics.

Kristina Gulordava and Paola Merlo. 2016. Multi-
lingual dependency parsing evaluation: a large-scale
analysis of word order properties using artificial
data. Transactions of the Association for Compu-
tational Linguistics.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146–162.

400

James Henderson and Diana Popa. 2016. A vector
space for distributional semantics for entailment. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2052–2062, Berlin, Germany.
Association for Computational Linguistics.

Aurélie Herbelot and Mohan Ganesalingam. 2013.
Measuring semantic content in distributional vec-
tors. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 440–445, Sofia, Bul-
garia. Association for Computational Linguistics.

Richard Kayne. 1989. Romance clitics,verb movement
and PRO. Linguistic Inquiry, 22(4):647–686.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Tal Linzen and Brian Leonard. 2018. Distinct patterns
of syntactic agreement errors in recurrent networks
and humans. In Proceedings of the 40th Annual
Conference of the Cognitive Science Society.

Paola Merlo. 2015. Evaluation of two-level depen-
dency representations of argument structure in long-
distance dependencies. In Proceedings of the Third
International Conference on Dependency Linguis-
tics (Depling 2015), pages 221–230.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111–
3119.

Joakim Nivre, Laura Rimell, Ryan McDonald, and
Carlos Gómez Rodrı́guez. 2010. Evaluation of de-
pendency parsers on unbounded dependencies. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
833–841, Beijing, China.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In Proceedings of the 2009 Conference

on Empirical Methods in Natural Language Pro-
cessing, pages 813–821, Singapore. Association for
Computational Linguistics.

Luigi Rizzi. 1990. Relativized Minimality. MIT Press,
Cambridge, MA.

Luigi Rizzi. 2004. Locality and left periphery. In
Adriana Belletti, editor, The cartography of syntac-
tic structures, number 3 in Structures and beyond,
pages 223–251. Oxford University Press, New York.

Luigi Rizzi. 2013. Locality. Lingua, 130(1):69 – 86.

Marten van Schijndel and Tal Linzen. 2018. Modeling
garden path effects without explicit hierarchical syn-
tax. In Proceedings of the 40th Annual Conference
of the Cognitive Science Society.

Sandra Villata. 2017. Intervention effects in sentence
processing. Ph.D. thesis, Universite de Geneve.
Https://archive-ouverte.unige.ch/unige:101927.

Sandra Villata and Julie Franck. 2016. Seman-
tic similarity effects on weak islands acceptabil-
ity. In 41st Incontro di Grammatica Genera-
tiva Conference, Perugia, Italy. Https://archive-
ouverte.unige.ch/unige:82418.

Ludwig Wittgenstein. (1953) [2001]. Philosophical In-
vestigations. Blackwell Publishing.

401

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 402–412
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Lessons learned in multilingual grounded language learning

Ákos Kádár
Tilburg University
a.kadar@uvt.nl

Desmond Elliott∗
University of Copenhagen

de@di.ku.dk

Marc-Alexandre Côté
Microsoft Research Montreal
macote@microsoft.com

Grzegorz Chrupała
Tilburg University

g.chrupala@uvt.nl

Afra Alishahi
Tilburg University

a.alishahi@uvt.nl

Abstract

Recent work has shown how to learn better
visual-semantic embeddings by leveraging im-
age descriptions in more than one language.
Here, we investigate in detail which conditions
affect the performance of this type of grounded
language learning model. We show that multi-
lingual training improves over bilingual train-
ing, and that low-resource languages benefit
from training with higher-resource languages.
We demonstrate that a multilingual model can
be trained equally well on either translations or
comparable sentence pairs, and that annotating
the same set of images in multiple language en-
ables further improvements via an additional
caption-caption ranking objective.

1 Introduction

Multimodal representation learning is largely mo-
tivated by evidence of perceptual grounding in hu-
man concept acquisition and representation (Barsa-
lou et al., 2003). It has been shown that visually
grounded word and sentence-representations (Kiela
et al., 2014; Baroni, 2016; Elliott and Kádár, 2017;
Kiela et al., 2017; Yoo et al., 2017) improve perfor-
mance on the downstream tasks of paraphrase iden-
tification, semantic entailment, and multimodal ma-
chine translation (Dolan et al., 2004; Marelli et al.,
2014; Specia et al., 2016). Multilingual sentence
representations have also been successfully applied
to many-languages-to-one character-level machine
translation (Chung et al., 2016) and multilingual
dependency parsing (Ammar et al., 2016).

Recently, Gella et al. (2017) proposed to learn
both bilingual and multimodal sentence represen-
tations using images paired with captions indepen-
dently collected in English and German. Their
results show that bilingual training improves image-
sentence ranking performance over a monolingual

∗Work carried out at the University of Edinburgh.

baseline, and it improves performance on semantic
textual similarity benchmarks (Agirre et al., 2014,
2015). These findings suggest that it may be benefi-
cial to consider another language as another modal-
ity in a monolingual grounded language learning
model. In the grounded learning scenario, descrip-
tions of an image in multiple languages can be
considered as multiple views of the same or closely
related data. These additional views can help over-
come the problems of data sparsity, and have prac-
tical implications for efficiently collecting image-
text datasets in different languages. In real-life
applications, many tasks and domains can involve
code switching (Barman et al., 2014), which is
easier to deal with using a multilingual model. Fur-
thermore, it is more convenient to maintain a single
multilingual system than one system for each con-
sidered language. However, there is a need for
a systematic exploration of the conditions under
which it is useful to add additional views of the
data. We investigate the impact of the following
conditions on the performance of a multilingual
grounded language learning model in sentence and
image retrieval tasks:

Additional languages. Multilingual models have
not been explored yet in a multimodal set-
ting. We investigate the contribution of adding
more than one language by performing bilin-
gual experiments on English and German
(Section 5) as well as adding French and
Czech captioned images (Section 6).

Data alignment: We assess the performance of a
multilingual models trained using either cap-
tions that are translations of each other, or
captions that are independently collected in
different languages for the same set of im-
ages. The two scenarios are illustrated in Fig-
ure 1. Additionally we consider the setup
when non-overlapping sets of images and their

402

En: A group of people are eating noodles.
De: Eine Gruppe von Leuten isst Nudeln.
Fr: Un groupe de gens mangent des nouilles.
Cs: Skupina lidí jedí nudle.

(a) A translation tuple

En: Several asian people eating around a table.
De: Drei Männer und zwei Frauen südostasiatischen
Aussehens sitzen, aus Schälchen essend, an einem
schwarzen, Tisch, auf dem sich u.a. auch Pappbecher
und eine Tasche befinden, im Hintergrund sind
weitere Personen und Tische.1

(b) A comparable pair

Figure 1: An example taken from the Translation and Comparable portions of the Multi30K dataset. The
translation portion (a) contains professional translations of the English captions into German, French, and
Czech. The comparable portion (b) consists of five independently crowdsourced English and German
descriptions, given only the image. Note that the sentences in (b) convey different information from the
English–German translation pair in (a).

captions are collected in different languages.
Such disjoint settings have been explored in
pivot-based multimodal representation learn-
ing (Funaki and Nakayama, 2015; Rajendran
et al., 2015) or zero-shot multi-modal machine
translation (Nakayama and Nishida, 2017).
We compare translated vs. independently col-
lected captions in Sections 5.2 and 6.1, and
overlapping vs. disjoint images in Section 5.3.

High-to-low resource transfer: In Section 6.2
we investigate whether low-resource lan-
guages benefit from jointly training on larger
data sets from higher-resource languages.
This type of transfer has previously been
shown to be effective in machine translation
(e.g., Zoph et al., 2016).

Training objective: In addition to learning to map
images to sentences, we study the effect of
also learning relationships between captions
of the same image in different languages Gella
et al. (2017). We assess the contribution
of such a caption–caption ranking objective
throughout our experiments.

Our results show that multilingual joint train-

ing improves upon bilingual joint training, and
that grounded sentence representations for a low-
resource language can be substantially improved
with data from different high-resource languages.
Our results suggest that independently-collected
captions are more useful than translated captions,
for the task of learning multilingual multimodal
sentence embeddings. Finally, we recommend to
collect captions for the same set of images in multi-
ple languages, due to the benefits of the additional
caption–caption ranking objective function.

2 Related work

Learning visually grounded word-representations
has been an active area of research in the fields of
multi-modal semantics and cross-situational word-
learning. Such perceptually-grounded word repre-
sentations have been shown to lead to higher corre-
lation with human judgements on word-similarity
benchmarks such as WordSim353 (Finkelstein
et al., 2001) or SimLex999 (Hill et al., 2015) com-
pared to uni-modal representations (Kádár et al.,

1Gloss: Three men and two women with a South-East
Asian appearance eat out of bowls at a black table, on which
there are, among other things, paper cups and a bag; in the
background there are other people and tables.

403

2015; Bruni et al., 2014; Kiela and Bottou, 2014).

Grounded representations of sentences that are
learned from image–caption data sets also improve
performance on a number of sentence-level tasks
(Kiela et al., 2017; Yoo et al., 2017) when used as
additional features to skip-thought vectors (Kiros
et al., 2015). The model architectures used for
these studies have the same overall structure as our
model and coincide with image–sentence retrieval
systems (Kiros et al., 2014; Karpathy and Fei-Fei,
2015): a pre-trained CNN is fixed or fine-tuned
as image feature extractor, followed by a learned
transformation, while sentence representations are
learned by a randomly initialized recurrent neural
network. These models are trained to push the true
image–caption pairs closer together, and the false
image–caption pairs further from each other, in a
joint embedding space.

In addition to learning grounded representations
for image-sentence ranking, joint vision and lan-
guage systems have been proposed to solve a wide
range of tasks across modalities such as image cap-
tioning (Mao et al., 2014; Vinyals et al., 2015; Xu
et al., 2015), visual question answering (Antol et al.,
2015; Fukui et al., 2016; Jabri et al., 2016), text-to-
image synthesis (Reed et al., 2016) and multimodal
machine translation (Libovicky and Helcl, 2017;
Elliott and Kádár, 2017).

Our work is also closely related to multilingual
joint representation learning. In this scenario, a sin-
gle model is trained to solve a task across multiple
languages. Ammar et al. (2016) train a multilin-
gual dependency parser on the Universal Depen-
dencies treebank (Nivre et al., 2015) and show that
on average the single multilingual model outper-
forms the monolingual baselines. Johnson et al.
(2016) present a zero-shot neural machine transla-
tion model that is jointly trained on language pairs
A ↔ B and B ↔ C and show that the model is
capable of performing well on the unseen language
pairA↔ C. Lee et al. (2017) find that jointly train-
ing a many-languages-to-one translation model on
unsegmented character sequences improves BLEU
scores compared to monolingual training. They
also show evidence that the model can handle intra-
sentence code-switching. Peters et al. (2017) train
a multilingual sequence-to-sequence translation ar-
chitecture on grapheme-to-phoneme conversion us-
ing more than 300 languages. They report better
performance when adding multiple languages, even
those which are not present in the test data. Finally,

Require: p: task switching probability.
Dc2i: datasets D1 . . . Dk of image-caption pairs

< c, i > for all k languages.
Dc2c: data set of all possible caption pairs

< ca, cb > for all k languages.
φ(c, θφ): caption encoder
ψ(i, θφ): image encoder

while not stopping criterion do
T ∼ Bern(p)
if T = 1 then

Dn ∼ Dc2i
< c, i >∼ Dn

a← φ(c, θφ)
b← ψ(i, θψ)

else
< ca, cb >∼ Dc2c

a← φ(ca, θφ)
b← φ(cb, θφ)

end if
[θφ; θψ]← SGD(∇[θφ;θψ]J (a,b))

end while

Figure 2: Pseudo-code of the training procedure
used to train our multilingual multi-task model.

massively multilingual language representations
trained on over 900 languages have been shown
to resemble language families (Östling and Tiede-
mann, 2016) and can successfully predict linguistic
typology features (Malaviya et al., 2017).

In the vision and language domain, multilingual-
multimodal sentence representation learning has
been limited so far to two languages. The joint
training of models on English and German data has
been shown to outperform monolingual baselines
on image-sentence ranking and semantic textual
similarity tasks (Gella et al., 2017; Calixto et al.,
2017). Recently Harwath et al. (2018) also showed
the benefit of joint bilingual training in the domain
of speech-to-image and image-to-speech retrieval
using English and Hindi data.

3 Multilingual grounded learning

We train a standard model of grounded language
learning which projects images and their textual
descriptions into the same space (Kiros et al., 2014;
Karpathy and Fei-Fei, 2015). The training pro-
cedure is illustrated by the pseudo-code in Fig-
ure 2. Images i are encoded by a fixed pre-trained
CNN followed by a learned affine transformation

404

ψ(i, θψ), and captions c are encoded by a randomly
initialized RNN φ(c, θφ). The model learns to min-
imize the distance between pairs <a, b> using a
max-of-hinges ranking loss (Faghri et al., 2017):

J (a, b) = max
<â,b>

[max(0, α− s(a, b) + s(â, b))] +

max
<a,b̂>

[max(0, α− s(a, b) + s(a, b̂))]

where < a, b > are the true pairs, and < a, b̂ >
and < â, b > are all possible contrastive pairs in
the mini-batch. The pairs either consists of image-
caption pairs < i, c >, where the model solves a
caption-image c2i ranking task, or pairs of captions
in multiple languages belonging to the same im-
age < ca, cb >, where the model solves a caption-
caption c2c ranking task (Gella et al., 2017). Our
monolingual models are trained to minimize the
caption-image ranking objective c2i on the training
set. The multilingual models are trained to mini-
mize the ranking loss for the set of all languages
L in the collection: at each iteration the model is
either updated for the c2i objective or the caption-
caption c2c objective given either < cl, i > or a
< cka, c

m
b > pair in languages l, k,m, . . . ∈ L. All

models are trained by first selecting a task, either
c2i or c2c. In the c2i case, a language is sampled
at random followed by sampling a random batch;
in the c2c case, all possible < ca, cb > pairs across
all languages are treated as a single data set. All
of the model parameters are shared across all tasks
and languages.

Implementation. We build our model on the Py-
Torch implementation of the VSE++ model (Faghri
et al., 2017). Images are represented by the 2048D
average-pool features extracted from the ResNet50
architecture (He et al., 2016) trained on ImageNet
(Deng et al., 2009); this is followed by a trained
linear layer WI ∈ R2048×1024. Other implementa-
tion details follow (Faghri et al., 2017): sentences
are represented as the final hidden state of a GRU
(Chung et al., 2014) with 1024 units and 300 di-
mensional word-embeddings trained from scratch.
We use a single word embedding matrix containing
the union of all words in all considered languages.
The similarity function s in the ranking loss is co-
sine similarity. We `2 normalize both the caption
and image representations. The model is trained
with the Adam optimizer (Kingma and Ba, 2014)
using default parameters and learning-rate of 2e-4.
We train the model with an early stopping crite-

En De Fr Cz

En 1.0 0.04 0.06 0.02

De – 1.0 0.03 0.01

Fr – – 1.0 0.01

Cz – – – 1.0

Table 1: Vocabulary overlap as measured by the
Jaccard coefficient between the different languages
on the translation portion of the Multi30K dataset.

rion, which is to maximise the sum of the image–
sentence recall scores R@1, R@5, R@10 on the
validation set with patience of 10 evaluations. In
the monolingual setting the stopping criterion is
evaluated at the end of each epoch, whereas in the
multilingual setup it is evaluated every 500 itera-
tions. The probability of switching between the
c2i and c2c tasks is set to 0.5. Batches from all
data sets are sampled by shuffling the full dataset,
going through each batch and re-shuffling when
exhausted. The sentence-pair dataset used to train
the c2c ranking model for ` languages is generated
as follows. For a given image i, a set of languages
1 · · · `, and a set of captions Ci1, . . . , C

i
` associated

with an image i, we generate the set of all possible
combinations of size 2 from caption sets Ci and add
the Cartesian product between all resulting pairs
Cim × Cin in Ci to the training set.

4 Experimental setup2

Datasets. We train and evaluate our models on
the translation and comparable portions of the
Multi30K dataset (Elliott et al., 2016, 2017). The
translation portion (a low-resource dataset) con-
tains 29K images, each described in one English
caption with German, French, and Czech transla-
tions. The comparable portion (a higher-resource
dataset) contains the same 29K images paired with
five English and five German descriptions collected
independently. Figure 1 presents an example of the
translation and comparable portions of the data.
We used the preprocessed version of the dataset,
in which the text is lowercased, punctuation is nor-
malized, and the text is tokenized3. To reduce the
vocabulary size of the joint models, we replace all
words occurring fewer than four times with a spe-

2Code to reproduce our results is available at
https://github.com/kadarakos/mulisera.

3https://github.com/multi30k/dataset

405

cial “UNK” symbol. Table 1 shows the overlap be-
tween the vocabularies of the translation portion of
the Multi30K dataset. The total number of tokens
across all four languages is 17,571, and taking the
union of the tokens in these four languages results
in vocabulary of 16,553 tokens – a 6% reduction
in vocabulary size. On the comparable portion of
the dataset, the total vocabulary between English
and German contains 18,337 tokens, with a union
of 17,667, which is a 4% reduction in vocabulary
size.

Evaluation. We evaluate our models on the 1K
images of the 2016 test set of Multi30K either using
the 5K captions from the comparable data or the
1K translation pairs. We evaluate on image-to-text
(I→ T) and text-to-image (T→ I) retrieval tasks.
For most experiments we report Recall at 1 (R@1),
5 (R@5) and 10 (R@10) scores averaged over 10
randomly initialised models. However, in Section 6
we only report R@10 due to space limitations and
because it has less variance than R@1 or R@5.

5 Bilingual Experiments

5.1 Reproducing Gella et al. (2017)

We start by attempting to reproduce the findings
of Gella et al. (2017). In these experiments
we train our multi-task learning model on the
comparable portion of Multi30K. Our models re-
implement their setups used for VSE (Monolin-
gual) and bilingual models Pivot-Sym (Bilin-
gual) and Parallel-Sym (Bilingual + c2c). The
OE, Pivot-Asym and Parallel-Asym mod-
els are trained using the asymmetric similarity mea-
sure introduced for the order-embeddings (Vendrov
et al., 2015). The main differences between our
models and Gella et al. (2017) is that they use
VGG-19 image features, whereas we use ResNet50
features, and we use the max-of-hinges loss instead
of the more common sum-of-hinges loss.

Table 2 shows the results on the English compa-
rable 2016 test set. Overall our scores are higher
than Gella et al. (2017), which is most likely due
to the different image features (Faghri et al. (2017)
also report a large performance gain when they use
the ResNet instead of the VGG image features).
Nevertheless, our results show a similar trend to
the symmetric cosine similarity models from Gella
et al. (2017): our best results are achieved with
bilingual joint training with the added c2c objective.
Their models trained with an asymmetric similarity

measure show a different trend: the monolingual
model is stronger than the bilingual model, and the
c2c loss provides no clear improvement.

Table 3 presents the German results. Once again,
our implementation outperforms Gella et al. (2017),
and this is likely due to the different visual features
and max-of-hinges loss. However, our Bilingual
model with the additional c2c objective performs
the best for German, whereas Gella et al. (2017)
reports the overall best results for the monolingual
baseline VSE. Their models that use the asymmet-
ric similarity function are clearly better than the
Monolingual OE model. In general, the results
from Gella et al. (2017) indicate the benefits of
bilingual joint training, however, they do not find
a clear pattern between the model configurations
across languages. In our implementation, we only
focused on the symmetric cosine similarity func-
tion and found a systematic pattern across both
languages: bilingual training improves results on
all performance metrics for both languages, and
the additional c2c objective always provides fur-
ther improvements.

5.2 Translations vs. independent captions

We now study whether the model can be trained
on either translation pairs or independently col-
lected bilingual captions. Gella et al. (2017) only
conducted experiments on independently collected
captions. However, it is known that humans have
equally strong preference for translated or indepen-
dently collected captions of images (Frank et al.,
2018), which has implications for the difficulty
and cost of collecting training data. Our baseline
is a Monolingual model trained on 29K single-
captioned images in the translation portion of
Multi30K. The Bi-translation model is trained on
both German and English, with shared parame-
ters. Table 4 shows that there is a substantial im-
provement in performance for both languages in
the bilingual setting. However, the additional c2c
loss degrades performance here. This could be
because we only have one caption per image in
each language and it is easier to find a relationship
between these views of the translation pairs.

In the Bi-comparable setting, we randomly select
an English and a German sentence for each image
in the comparable portion of Multi30K. We only
find a minor difference in performance between
the Bi-translation and Bi-comparable models for
English, but the German results are improved. Cru-

406

I→T T→I

R@1 R@5 R@10 R@1 R@5 R@10

Sy
m

m
et

ri
c VSE 31.6 60.4 72.7 23.3 53.6 65.8

Pivot-Sym 31.6 61.2 73.8 23.5 53.4 65.8
Parallel-Sym 31.7 62.4 74.1 24.7 53.9 65.7

A
sy

m
m

et
ri

c OE 34.8 63.7 74.8 25.8 56.5 67.8

Pivot-Asym 33.8 62.8 75.2 26.2 56.4 68.4
Parallel-Asym 31.5 61.4 74.7 27.1 56.2 66.9

Monolingual 42.4 69.9 79.8 30.5 57.8 67.9

Bilingual 42.7 70.7 80.1 30.6 58.1 68.3

+ c2c 43.8 71.8 81.4 32.3 59.9 70.2

Table 2: English Image-to-text (I→T) and text-to-image (T→I) retrieval results on the comparable part
of Multi30K, measured by Recall at 1, 5 at 10. Typewriter font shows performance of two sets of
symmetric and asymmetric models from Gella et al. (2017).

I→T T→I

R@1 R@5 R@10 R@1 R@5 R@10

Sy
m

m
et

ri
c VSE 29.3 58.1 71.8 20.3 47.2 60.1

Pivot-Sym 26.9 56.6 70.0 20.3 46.4 59.2

Parallel-Sym 28.2 57.7 71.3 20.9 46.9 59.3

A
sy

m
m

et
ri

c OE 26.8 57.5 70.9 21.0 48.5 60.4

Pivot-Asym 28.2 61.9 73.4 22.5 49.3 61.7

Parallel-Asym 30.2 60.4 72.8 21.8 50.5 62.3

Monolingual 34.2 63.0 74.0 23.9 49.5 60.5

Bilingual 35.2 64.3 75.3 24.6 50.8 62.0

+ c2c 37.9 66.1 76.8 26.6 53.0 64.0

Table 3: German Image-to-text (I→T) and text-to-image (T→I) retrieval results on the comparable part
of Multi30K, measured by Recall at 1, 5 at 10. Typewriter font shows performance of two sets of
symmetric and asymmetric models from Gella et al. (2017).

cially, it is still better than training on monolingual
data. In the Bi-comparable setting, the c2c loss
does not have a detrimental effect on model per-
formance, unlike in the Bi-translation experiment.
Overall we find that the comparable data leads to
larger improvements in retrieval performance.

5.3 Overlapping vs. non-overlapping images

In a bilingual setting, we can improve an image-
sentence ranking model by collecting more data in

a second language. This can be achieved in two
ways: by collecting captions in a new language
for the same overlapping set of images, or by us-
ing a disjoint set of images and captions in a new
language. We compare these two settings here.

In the Bi-overlap condition, we collect captions
for the existing images in a new language, i.e. we
use all of the English and German captions paired
with a random selection of 50% of the images in
comparable Multi30K. This results in a training

407

English German

I→T T→I I→T T→I

Monolingual 56.3 40.1 39.5 20.9

Bi-translation 67.4 55.1 58.3 44.6

+ c2c 58.2 47.7 51.0 39.6

Bi-comparable 67.9 55.7 62.0 48.1

+ c2c 67.6 56.0 61.9 49.1

Table 4: R@10 retrieval results on the comparable
part of Multi30K. Bi-translation is trained on 29K
translation pair data; bi-comparable is trained by
downsampling the comparable data to 29K.

dataset of 14.5K images with 145K bilingual cap-
tions. In the Bi-disjoint condition, we collect cap-
tions for new images in a new language, i.e. we use
all of the English captions from a random selection
of 50% of the images, and all of the German cap-
tions for the remaining 50% of the images. This
results in a training dataset on 29K images with a
total of 145K bilingual captions.

Table 5 shows the results of this experiment. The
upper-bound is to train a Monolingual model on the
full comparable corpus. For the lower bound, we
train Half Monolingual models by randomly sam-
pling half of the 29K images and their associated
captions, giving 72.5K captions over 14.5K images.
Unsurprisingly, the Half Monolingual models per-
form worse than the Full Monolingual models. In
the Bi-overlap experiment, the German model is
improved by collecting captions for the existing
images in English. There is no difference in the
performance of the English model, echoing the
results from Section 5.1. The Bi-overlap model
also benefits from the added c2c objective. Finally,
the Bi-disjoint model performs as well as the Bi-
overlap model without the c2c objective. (It was
not possible to train the Bi-disjoint model with the
additional c2c objective because there are no cap-
tion pairs for the same image.)

Overall, these results suggest that it is best to
collect additional captions in the original language,
but when adding a second language, it is better
to collect extra captions for existing images and
exploit the additional c2c ranking objective.

English German

I→T T→I I→T T→I

Full Monolingual 79.8 67.9 74.0 60.5

Half Monolingual 73.7 61.6 66.4 53.9

Bi-overlap 73.6 62.2 67.6 54.9

+ c2c 76.0 65.9 71.2 59.1

Bi-disjoint 73.1 62.1 67.9 54.9

Table 5: R@10 retrieval results on the compara-
ble part of Multi30K. Full model trained on the
29K images of the comparable part, Half model on
14.5K images using random downsampling. For
Bi-overlap, both English and German captions are
used for 14.5K images. For Bi-disjoint, 14.5K im-
ages are used for English and the remaining 14.5K
images for German.

6 Multilingual experiments

We now turn out attention to multilingual learning
using the English, German, French and Czech anno-
tations in the translation portion of Multi30K. We
only report the text-to-image (T→I) R@10 results
due to space limitations.

We did not repeat the overlapping vs. non-
overlapping experiments from Section 5.3 in a mul-
tilingual setting because this would introduce too
much data sparsity. In order to conduct this exper-
iment, we would have to downsample the already
low-resource French and Czech captions by 50%,
or even further for multi-way experiments.

6.1 Translation vs. independent captions

Table 6 shows the results of repeating the trans-
lations vs. comparable captions experiment from
Section 5.2 with data in four languages. The
Multi-translation models are trained on 29K im-
ages paired with a single caption in each language.
These models perform better than their Monolin-
gual counterparts, and the German, French, and
Czech models are further improved with the c2c ob-
jective. The Multi-comparable models are trained
by randomly sampling one English and one Ger-
man caption from the comparable dataset, along-
side the French and Czech translation pairs. These
models perform as well as the Multi-translation
models, and the c2c objective brings further im-
provements for all languages in this setting.

408

En De Fr Cz

Monolingual 50.4 39.5 47.0 42.0

Multi-translation 58.7 51.2 57.0 51.0

+ c2c 56.3 52.2 55.0 51.6

Multi-comparable 59.2 49.6 57.2 50.8

+ c2c 61.8 52.7 59.2 55.2

Table 6: The Monolingual and joint Multi-
translation models trained on translation pairs, and
the Multi-comparable trained on the downsampled
comparable set with one caption per image.

These results clearly demonstrate the advantage
of jointly training on more than two languages.
Text-to-image retrieval performance increases by
more than 11 R@10 points for each of the four
languages in our experiment.

6.2 High-to-low resource transfer

We now examine whether the lower-resource
French and Czech models benefit from training
with the full complement of the higher-resource
English and German comparable data. Therefore
we train a joint model on the translation as well
as comparable portions of Multi30K, and examine
the performance on French and Czech.

Table 7 shows the results of this experiment. We
find that the French and Czech models improve by
8.8 and 5.5 R@10 points respectively when they
are only trained on the multilingual translation pairs
(compared to the monolingual version), and by an-
other 2.2 and 2.8 points if trained on the extra 155K
English and German comparable descriptions. We
also find that the additional c2c objective improves
the Czech model by a further 4.8 R@10 points (this
improvement is likely caused by training the model
on 46 possible caption pairs). Our results show
the impact of jointly training with the larger En-
glish and German resources, which demonstrates
the benefits of high-to-low resource transfer.

6.3 Bilingual vs. multilingual

Finally, we investigate how useful it is to train on
four languages instead of two. Figure 3 presents
the image-to-text and text-to-image retrieval results
of training Monolingual, Bilingual, or Multilingual
models. The Monolingual and Bilingual models are
trained on a random single-caption-image subsam-

French Czech

Monolingual 47.0 42.0

Multilingual 56.3 51.3

+ Comparable 58.9 52.4

+ c2c 61.6 57.2

Table 7: Multilingual is trained on all translation
pairs, + Comparable adds the comparable data set.

ple of the comparable dataset with the additional
c2c objective, as this configuration provided the
overall best results in Sections 5.2 and 6.1. The
Multilingual models are trained with the additional
French and Czech translation data. As can be seen
in Figure 3, the performance on both tasks and for
both languages improves as we move from using
data from one to two to four languages.

7 Conclusions

We learn multilingual multimodal sentence em-
beddings and show that multilingual joint training
improves over bilingual joint training. We also
demonstrate that low-resource languages can bene-
fit from the additional data found in high-resource
languages. Our experiments suggest that either
translation pairs or independently-collected cap-
tions improve the performance of a multilingual
model, and that the latter data setting provides fur-
ther improvements through a caption–caption rank-
ing objective. We also show that when collecting
data in an additional language, it is better to col-
lect captions for the existing images because we
can exploit the caption–caption objective. Our re-
sults lead to several directions for future work. We
would like to pin down the mechanism via which
multilingual training contributes to improved per-
formance for image-sentence ranking. Addition-
ally, we only consider four languages and show the
gain of multilingual over bilingual training only for
the English-German language pair. In future work
we will incorporate more languages from data sets
such as the Chinese Flickr8K (Li et al., 2016) or
Japanese COCO (Miyazaki and Shimizu, 2016).

Acknowledgements

Desmond Elliott was supported by an Amazon Re-
search Award.

409

Monolingual Bilingual Multilingual
0

20

40

60

80

100

English

56.3

67.6
71.9

40.1

56
61

R
@

10

Monolingual Bilingual Multilingual

German

39.5

61.9 65.1

20.9

49.1
52.6

Image→ Text
Text→ Image

Figure 3: Comparing models from the Monolingual, Bilingual and Multilingual settings. The Monolingual
and Bilingual models are trained on the downsampled English and German comparable sets with additional
c2c objective. The Multilingual model uses the French and Czech translation pairs as additional data.
The results are reported on the full 2016 test set of the comparable portion of Multi30K.

References

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M.,
Gonzalez-Agirre, A., Guo, W., Lopez-Gazpio, I.,
Maritxalar, M., Mihalcea, R., et al. (2015). Semeval-
2015 task 2: Semantic textual similarity, english,
spanish and pilot on interpretability. In Proceedings
of the 9th international workshop on semantic eval-
uation (SemEval 2015), pages 252–263.

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M.,
Gonzalez-Agirre, A., Guo, W., Mihalcea, R., Rigau,
G., and Wiebe, J. (2014). Semeval-2014 task 10:
Multilingual semantic textual similarity. In Proceed-
ings of the 8th international workshop on semantic
evaluation (SemEval 2014), pages 81–91.

Ammar, W., Mulcaire, G., Ballesteros, M., Dyer, C.,
and Smith, N. A. (2016). Many languages, one
parser. arXiv preprint arXiv:1602.01595.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Lawrence Zitnick, C., and Parikh, D. (2015). Vqa:
Visual question answering. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2425–2433.

Barman, U., Das, A., Wagner, J., and Foster, J. (2014).
Code mixing: A challenge for language identifica-
tion in the language of social media. In Proceedings
of the first workshop on computational approaches
to code switching, pages 13–23.

Baroni, M. (2016). Grounding distributional semantics
in the visual world. Language and Linguistics Com-
pass, 10(1):3–13.

Barsalou, L. W., Simmons, W. K., Barbey, A. K., and
Wilson, C. D. (2003). Grounding conceptual knowl-
edge in modality-specific systems. Trends in cogni-
tive sciences, 7(2):84–91.

Bruni, E., Tran, N.-K., and Baroni, M. (2014). Multi-
modal distributional semantics. Journal of Artificial
Intelligence Research, 49:1–47.

Calixto, I., Liu, Q., and Campbell, N. (2017). Multilin-
gual multi-modal embeddings for natural language
processing. arXiv preprint arXiv:1702.01101.

Chung, J., Cho, K., and Bengio, Y. (2016). A
character-level decoder without explicit segmenta-
tion for neural machine translation. arXiv preprint
arXiv:1603.06147.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y.
(2014). Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. (2009). Imagenet: A large-scale hier-
archical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 248–255. IEEE.

Dolan, B., Quirk, C., and Brockett, C. (2004). Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the 20th international conference on
Computational Linguistics, page 350. Association
for Computational Linguistics.

Elliott, D., Frank, S., Barrault, L., Bougares, F., and
Specia, L. (2017). Findings of the second shared

410

task on multimodal machine translation and multi-
lingual image description. In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2:
Shared Task Papers.

Elliott, D., Frank, S., Sima’an, K., and Specia, L.
(2016). Multi30k: Multilingual english-german im-
age descriptions. arXiv preprint arXiv:1605.00459.

Elliott, D. and Kádár, A. (2017). Imagination im-
proves multimodal translation. arXiv preprint
arXiv:1705.04350.

Faghri, F., Fleet, D. J., Kiros, J. R., and Fidler, S.
(2017). Vse++: Improved visual-semantic embed-
dings. arXiv preprint arXiv:1707.05612.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin,
E., Solan, Z., Wolfman, G., and Ruppin, E. (2001).
Placing search in context: The concept revisited. In
Proceedings of the 10th international conference on
World Wide Web, pages 406–414. ACM.

Frank, S., Elliott, D., and Specia, L. (2018). Assessing
multilingual multimodal image description: Studies
of native speaker preferences and translator choices.
Natural Language Engineering, 24(3):393–413.

Fukui, A., Park, D. H., Yang, D., Rohrbach, A., Darrell,
T., and Rohrbach, M. (2016). Multimodal compact
bilinear pooling for visual question answering and
visual grounding. arXiv preprint arXiv:1606.01847.

Funaki, R. and Nakayama, H. (2015). Image-mediated
learning for zero-shot cross-lingual document re-
trieval. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 585–590.

Gella, S., Sennrich, R., Keller, F., and Lapata, M.
(2017). Image pivoting for learning multilin-
gual multimodal representations. arXiv preprint
arXiv:1707.07601.

Harwath, D., Chuang, G., and Glass, J. (2018). Vision
as an interlingua: Learning multilingual semantic
embeddings of untranscribed speech. arXiv preprint
arXiv:1804.03052.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-
999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics,
41(4):665–695.

Jabri, A., Joulin, A., and van der Maaten, L. (2016).
Revisiting visual question answering baselines. In
European conference on computer vision, pages
727–739. Springer.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu,
Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M.,
Corrado, G., et al. (2016). Google’s multilingual
neural machine translation system: enabling zero-
shot translation. arXiv preprint arXiv:1611.04558.

Kádár, Á., Alishahi, A., and Chrupała, G. (2015).
Learning word meanings from images of natural
scenes. Traitement Automatique des Langues, 55(3).

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
3128–3137.

Kiela, D. and Bottou, L. (2014). Learning image em-
beddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 36–45.

Kiela, D., Conneau, A., Jabri, A., and Nickel, M.
(2017). Learning visually grounded sentence repre-
sentations. arXiv preprint arXiv:1707.06320.

Kiela, D., Hill, F., Korhonen, A., and Clark, S. (2014).
Improving multi-modal representations using image
dispersion: Why less is sometimes more. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 835–841.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014).
Unifying visual-semantic embeddings with multi-
modal neural language models. arXiv preprint
arXiv:1411.2539.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Ur-
tasun, R., Torralba, A., and Fidler, S. (2015). Skip-
thought vectors. In Advances in neural information
processing systems, pages 3294–3302.

Lee, J., Cho, K., and Hofmann, T. (2017). Fully
character-level neural machine translation without
explicit segmentation. Transactions of the Associ-
ation for Computational Linguistics, 5:365–378.

Li, X., Lan, W., Dong, J., and Liu, H. (2016). Adding
chinese captions to images. In Proceedings of the
2016 ACM on International Conference on Multime-
dia Retrieval, pages 271–275. ACM.

Libovicky, J. and Helcl, J. (2017). Attention strate-
gies for multi-source sequence-to-sequence learning.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 196–202, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Malaviya, C., Neubig, G., and Littell, P. (2017). Learn-
ing language representations for typology prediction.
arXiv preprint arXiv:1707.09569.

411

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and
Yuille, A. (2014). Deep captioning with multimodal
recurrent neural networks (m-rnn). arXiv preprint
arXiv:1412.6632.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L.,
Bernardi, R., Zamparelli, R., et al. (2014). A sick
cure for the evaluation of compositional distribu-
tional semantic models. In LREC, pages 216–223.

Miyazaki, T. and Shimizu, N. (2016). Cross-lingual
image caption generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1780–1790. Association for Computational Linguis-
tics.

Nakayama, H. and Nishida, N. (2017). Zero-resource
machine translation by multimodal encoder–decoder
network with multimedia pivot. Machine Transla-
tion, 31(1-2):49–64.

Nivre, J., Agić, Ž., Aranzabe, M. J., Asahara, M.,
Atutxa, A., Ballesteros, M., Bauer, J., Bengoetxea,
K., Bhat, R. A., Bosco, C., et al. (2015). Universal
dependencies 1.2.

Östling, R. and Tiedemann, J. (2016). Continuous mul-
tilinguality with language vectors. arXiv preprint
arXiv:1612.07486.

Peters, B., Dehdari, J., and van Genabith, J.
(2017). Massively multilingual neural grapheme-to-
phoneme conversion. In Proceedings of the First
Workshop on Building Linguistically Generalizable
NLP Systems, pages 19–26.

Rajendran, J., Khapra, M. M., Chandar, S., and Ravin-
dran, B. (2015). Bridge correlational neural net-
works for multilingual multimodal representation
learning. arXiv preprint arXiv:1510.03519.

Reed, S., Akata, Z., Yan, X., Logeswaran, L.,
Schiele, B., and Lee, H. (2016). Generative ad-
versarial text to image synthesis. arXiv preprint
arXiv:1605.05396.

Specia, L., Frank, S., Sima’an, K., and Elliott, D.
(2016). A shared task on multimodal machine trans-
lation and crosslingual image description. In Pro-
ceedings of the First Conference on Machine Trans-
lation, pages 543–553, Berlin, Germany. Associa-
tion for Computational Linguistics.

Vendrov, I., Kiros, R., Fidler, S., and Urtasun, R.
(2015). Order-embeddings of images and language.
arXiv preprint arXiv:1511.06361.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D.
(2015). Show and tell: A neural image caption gen-
erator. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pages 3156–
3164. IEEE.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,
Salakhudinov, R., Zemel, R., and Bengio, Y. (2015).
Show, attend and tell: Neural image caption gener-
ation with visual attention. In International Confer-
ence on Machine Learning, pages 2048–2057.

Yoo, K. M., Shin, Y., and Lee, S.-g. (2017). Improving
visually grounded sentence representations with self-
attention. arXiv preprint arXiv:1712.00609.

Zoph, B., Yuret, D., May, J., and Knight, K. (2016).
Transfer learning for low-resource neural machine
translation. arXiv preprint arXiv:1604.02201.

412

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 413–422
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Unsupervised Sentence Compression using Denoising Auto-Encoders

Thibault Fevry∗
Center for Data Science

New York University
Thibault.Fevry@nyu.edu

Jason Phang∗
Center for Data Science

New York University
jasonphang@nyu.edu

Abstract

In sentence compression, the task of short-
ening sentences while retaining the original
meaning, models tend to be trained on large
corpora containing pairs of verbose and
compressed sentences. To remove the need for
paired corpora, we emulate a summarization
task and add noise to extend sentences and
train a denoising auto-encoder to recover the
original, constructing an end-to-end training
regime without the need for any examples
of compressed sentences. We conduct a
human evaluation of our model on a standard
text summarization dataset and show that it
performs comparably to a supervised base-
line based on grammatical correctness and
retention of meaning. Despite being exposed
to no target data, our unsupervised models
learn to generate imperfect but reasonably
readable sentence summaries. Although we
underperform supervised models based on
ROUGE scores, our models are competitive
with a supervised baseline based on human
evaluation for grammatical correctness and
retention of meaning.

1 Introduction

Sentence compression is the task of condensing
a longer sentence into a shorter one that still re-
tains the meaning of the original. Past models for
sentence compression have tended to rely heavily
on strong linguistic priors such as syntactic rules
or heuristics (Dorr et al., 2003; Cohn and Lap-
ata, 2008). More recent work using deep learning
involves models trained without strong linguistic
priors, instead requiring large corpora consisting
of pairs of longer and shorter sentences (Miao and
Blunsom, 2016).

∗ Denotes equal contribution

Sentence compression can also be can be seen
as a “scaled down version of the text summariza-
tion problem” (Knight and Marcu, 2002). Within
text summarization, two broad approaches exist:
extractive approaches extract explicit tokens or
phrases from the reference text, whereas abstrac-
tive approaches involve a compressed paraphras-
ing of the reference text, similar to the approach
humans might take (Jing, 2000, 2002).

In the related domain of machine translation, a
task that also involves learning a mapping from
one string of tokens to another, state of the art
models using deep learning techniques are trained
on large parallel corpora. Recent promising
work on unsupervised neural machine translation
(Artetxe et al., 2017; Lample et al., 2017) has
shown that with the right training regime, it is
possible to train models for machine translation
between two languages given only two unpaired
monolingual corpora.

In this paper, we apply neural text summariza-
tion techniques to the task of sentence compres-
sion, focusing on on extractive summarization.
However, we depart significantly from prior work
by taking a fully unsupervised training approach.
Beyond not using parallel corpora, we train our
model using a single corpus. In contrast to un-
supervised neural machine translation, which still
uses two corpora, we do not have separate corpora
of longer and shorter sentences.

We show that a simple denoising auto-encoder
model, trained on removing and reordering words
from a noised input sequence, can learn effec-
tive sentence compression, generating shorter se-
quences of reasonably grammatical text that retain
the original meaning. While the models are still
prone to both errors in grammar and meaning, we
believe that this is a strong step toward reducing
reliance on paired corpora.

We evaluate our model using both a stan-

413

dard text-summarization benchmark as well as hu-
man evaluation of compressed sentences based on
grammatical correctness and retention of mean-
ing. Although our models do not capture the
written style of the target summaries (headlines),
they still produce reasonably readable and accu-
rate compressed sentence summaries, without ever
being exposed to any target sentence summaries.
We find that our model underperforms based on
ROUGE metrics, especially compared to super-
vised models, but performs competitively with su-
pervised baselines in human evaluation. We fur-
ther show that providing the model with a sen-
tence embedding of the original sentence leads
to better ROUGE scores but worse human eval-
uation scores. However, both unsupervised and
supervised methods still fall short based on hu-
man evaluation, and effective sentence compres-
sion and summarization remains an open problem.

2 Related work

Early sentence compression approaches were
extractive, focusing on deletion of uninforma-
tive words from sentences through learned rules
(Knight and Marcu, 2002) or linguistically-
motivated heuristics (Dorr et al., 2003). The first
abstractive approaches also relied on learned syn-
tactic transformations (Cohn and Lapata, 2008).

Recent work in automated text summarization
has seen the application of sequence-to-sequence
models to automatic summarization, including
both extractive (Nallapati et al., 2017) and ab-
stractive (Rush et al., 2015; Chopra et al., 2016;
Nallapati et al., 2016; Paulus et al., 2017; Fan
et al., 2017) approaches, as well as hybrids of
both (See et al., 2017). Although these meth-
ods have achieved state-of-the-art results, they are
constrained by their need for large amounts paired
document-summary data.

Miao and Blunsom (2016) seek to overcome
this shortcoming by training separate compressor
and reconstruction models, allowing for training
based on both paired (supervised) and unlabeled
(unsupervised) data. For their compressor, they
train a discrete variational auto-encoder for sen-
tence compression and use the REINFORCE al-
gorithm to allow end-to-end training. They fur-
ther use a pre-trained language model as a prior
for their compression model to induce their com-
pressed output to be grammatical. However, their
reported results are still based on models trained

on at least 500k instances of paired data.

In machine translation, unsupervised methods
for aligning word embeddings using only un-
matched bilingual corpora, trained with only small
seed dictionaries, (Mikolov et al., 2013; Lazari-
dou et al., 2015), adversarial training on simi-
lar corpora (Zhang et al., 2017; Conneau et al.,
2017b) or even on distant corpora and languages
(Artetxe et al., 2018) have enabled the develop-
ment of unsupervised machine translation (Artetxe
et al., 2017; Lample et al., 2017). However, it
is not clear how to adapt these methods for sum-
marization where the task is to shorten the refer-
ence rather than translate it. Wang and Lee (2018)
train a generative adversarial network to encode
references into a latent space and decode them
in summaries using only unmatched document-
summary pairs. However, in contrast with ma-
chine translation where monolingual data is plen-
tiful and paired data scarce, summaries are paired
with their respective documents when they exist,
thus limiting the usefulness of such approaches.
In contrast, our method requires no summary cor-
pora.

Denoising auto-encoders (Vincent et al., 2008)
have been successfully used in natural language
processing for building sentence embeddings (Hill
et al., 2016), training unsupervised translation
models (Artetxe et al., 2017) or for natural lan-
guage generation in narrow domains (Freitag and
Roy, 2018). In all those instances, the added noise
takes the form of random deletion of words and
word swapping or shuffling. Although our noising
mechanism relies on adding rather than removing
words, we take some inspiration from these works.

Work in sentence simplification (see Shardlow
(2014) for a survey) has some similarities with
sentence compression, but it differs in that the
key focus is on making sentences more easily un-
derstandable rather than shorter. Though word
deletion is used, sentence simplification methods
feature sentence splitting and word simplification
which are not usually present in sentence compres-
sion. Furthermore, these methods often rely heav-
ily on learned rules (e.g lexical simplification as
in Biran et al. (2011)), integer linear programming
and sentence parse trees which makes them starkly
different from our deep learning-based approach.
The exceptions that adopt end-to-end approaches,
such as Filippova et al. (2015), are usually super-
vised and focus on word deletion.

414

3 Methods

3.1 Model

Our core model is based on a standard attentional
encoder-decoder (Bahdanau et al., 2014), consist-
ing of multiple layers bi-directional long short-
term memory networks in both the encoder and
decoder, with negative-log likelihood as our loss
function. We detail below the training regime and
model modifications to apply the denoising auto-
encoding paradigm to sentence compression.

3.2 Additive Noising

Since we do not use paired sentence compression
data with which to train our model in a supervised
way, we simulate a supervised training regime by
modifying a denoising auto-encoder (DAE) train-
ing regime to more closely resemble supervised
sentence compression. Given a reference sen-
tence, we extend and shuffle the input sentence,
and then train our model to recover the original
reference sentence. In doing so, the model has
to exclude and reorder words, and hence learns
to output shorter but grammatically correct sen-
tences.

Additive Sampling We randomly sample addi-
tional sentences from our data set, and then sub-
sample a number of words from each without re-
placement. We then append the newly sampled
words to our reference sentence. In our exper-
iments, we sample two additional sentences for
each reference sentence, and the number of words
sampled from each is dependent on the length of
the original reference sentence. In practice, we
aim to generate a noised sentence that extends the
original sentence by 40% to 60%. To fit the fully
unsupervised learning paradigm, we do not intro-
duce any biases into our sampling of words in
training our model. In particular, we excluded ap-
proaches that overweighted adjectives or speaker
identification (e.g “said X on Tuesday”) in nois-
ing.

Shuffling Next, we shuffle the resultant string of
words. We experiment with two forms of shuf-
fling: (i) a complete word (unigram) shuffle and
(ii) bigram shuffling, where we only shuffle among
the word bigrams, keeping pairs of adjacent words
together.

This process is illustrated in Figure 1.

3.3 Length Countdown

To induce our model to output sequences of a de-
sired length, we augment the RNN decoder in our
model to take an additional length countdown in-
put. In the context of text generation, RNN de-
coders can be formulated as follows:

ht = RNN(ht−1, xt) (1)

where ht−1 is the hidden state at the previous step
and xt is an external input (often an embedding
of the previously decoded token). Let Tdec be the
desired length of our output sequence. We modify
(1) with an additional input:

ht = RNN(ht−1, xt, Tdec − t) (2)

The length countdown T − t is a single scalar in-
put that ticks down to 0 when the decoder reaches
the desired length T , and goes negative after. In
practice, (xt, Tdec− t) are concatenated into a sin-
gle vector. We also experimented with adding a
length penalty to our objective function to amplify
the loss from predicting the end-of-sequence to-
ken <EOS> at the desired time step, but did not
find that our models required this additional loss
term to output sequences of the desired length.

Explicit length control has been used in previ-
ous summarization work. Fan et al. (2017) in-
troduced a length marker token that induces the
model to target an output of a desired length,
coarsely divided into discrete bins. Kikuchi et al.
(2016) examined several methods of introducing
target output length information, and found that
they were effective without negatively impacting
summarization quality. We found more success
with our models with a per time-step input com-
pared to a token at the start of the sequence as in
Fan et al. (2017).

3.4 Input Sentence Embedding

The model specified above is supplied only with
an unordered set of words with which to construct
a shorter sentence. However, there are typically
many ways of ordering a given set of words into a
grammatical sentence. In order to help our model
better recover the original sentence, we also pro-
vide the model with an InferSent sentence em-
bedding (Conneau et al., 2017a) of the original
sentence, generated using a pre-trained InferSent
model. The InferSent model is trained on NLI
tasks, where, given a longer premise text and a

415

Figure 1: Illustration of Additive Noising. A reference sentence is noised with subsampled words from another sentence,
and then shuffled. The denoising auto-encoder is trained to recover the original reference sentence. This simulates a text
summarization training regimes without the need for parallel corpora.

shorter hypothesis text, the model is required to
determine if the premise (i) entails, (ii) contradicts
or (iii) is neutral to the hypothesis. The InferSent
sentence embeddings are an intermediate output of
the model, reflecting information captured from
each text string. Conneau et al. show that In-
ferSent sentence embeddings capture various as-
pects of the semantics of a string of text (Conneau
et al., 2018), and should provide additional infor-
mation to the model as to which ordering of words
best match the meaning original sentence.

We incorporate the InferSent embeddings by
modifying the hidden state passed between the en-
coder and the decoder. In typical RNN encoder-
decoder architectures, the final hidden state of the
encoder is used as the initial hidden state of the
decoder. In other words, hdec

0 = henc
Tenc

. We learn a
fully connected layer f to be used as follows:

hdec
0 = f(henc

Tenc
, s) (3)

where s is the InferSent embedding of the input
sentence. This transformation is only applied once
on the hidden state shared from the encoder to the
decoder. In the case of LSTMs, where there are
both hidden states and cell states, we learn a fully
connected mapping for each.

3.5 Numbered Out-of-Vocabulary (OOV)
Embeddings

Many text summarization data sets are based on
news articles and headlines, which often include
names, proper nouns, and other rare words or to-
kens that may not appear in word embedding dic-
tionaries. In addition, the output layer of most
models are based on a softmax over all potential
output tokens. This means that expanding the vo-
cabulary to potentially include more rare words in-
creases computation and memory costs in the fi-
nal layer linearly. There are many approaches to
tackle out-of-vocabulary (OOV) tokens (See et al.,
2017; Nallapati et al., 2016), and we detail below
our approach.

To address the frequent occurrences of OOV
characters, we learn a fixed number of embed-
dings for numbered OOV tokens.2 Given an in-
put sequence, we first parse the sentence to iden-
tify OOV tokens and number them in order, while
storing the map from numbered OOV tokens to
words.3 When embedding the respective tokens to
be inputs to the RNN, we assign the corresponding
embeddings for each numbered OOV token. We
apply the same numbering system to the target, so
the same word in the input and output will always
be assigned the same numbered OOV token, and
hence the same embedding. At inference, we re-
place any output numbered OOV tokens with their
respective words. This allows us to output sen-
tences using words not in our vocabulary.

This approach is similar to the pointer-generator
model (See et al., 2017), but whereas See et al.
compute attention weights over all tokens in the
input to learn where to copy and have an explicit
switch between copying (pointer) and output (gen-
erator), we learn embeddings for a fixed number of
OOV tokens, and the embeddings are in the same
latent space as our pre-trained word embeddings.

4 Experimental Setup

4.1 Data
For our text summarization task, We use the An-
notated Gigaword (Napoles et al., 2012) in line
with Rush et al. (2015). This data set is derived
for news articles, and consists of pairs of the main
sentences in the article (longer), and the headline
(shorter). The former and latter are used as ref-
erences and summaries respectively in the context
of summarization tasks. We preprocess the data
using the scripts made available by the authors,
which produces about 3.8M training examples and
400K validation examples. We sample randomly

2We use a fixed number of 10 OOV tokens in our experi-
ments.

3In the case of shuffling and noising, we number the OOV
tokens before shuffling, and number any additional OOV to-
kens from the noised input sentence in a second pass.

416

10K examples for validation and 10K for testing
from the validation set, similar to the procedure in
Nallapati et al. (2016). Like Rush et al. (2015), we
only extract the tokenized words of the first sen-
tence, in contrast with Nallapati et al. (2016) who
extract the first two sentences as well as part-of-
speech and named-entities tags.

4.2 Training

In training, we only use the reference sentences
from the Gigaword dataset. For all our models, we
used GloVe word embeddings (Pennington et al.,
2014). We freeze these embeddings during train-
ing. Our vocabulary is comprised of the 20000
most frequent words in the references, and we use
the aforementioned numbered OOV embeddings
for other unseen words. We similarly freeze the
InferSent model for sentence embeddings. The en-
coder and decoder are both 3-layer LSTMs with
512 hidden units. We use a batch size of 128, and
optimize our models using Adam (Kingma and
Ba, 2014) with a initial learning rate of 0.0005,
annealing it by 0.9 at every 10K mini-batches. We
do not use dropout but use gradient clipping at 2.
We train our models for 4 full epochs.

4.3 Inference

At inference, we supply our model with the un-
modified reference sentences–hence no noising is
applied. We use the length countdown to target
outputs of half the length of the reference sen-
tences. The application of sentence embeddings
is unchanged from training.

4.4 Implementation

We implemented our models using Pytorch
(Paszke et al., 2017), and will make our code
publicly available at https://github.com/
zphang/usc_dae.

5 Results

5.1 ROUGE Evaluation

In Table 1, we evaluate our models on ROUGE
(Lin, 2004) F1 scores, where a higher score is
better. We provide a comparison with a sim-
ple but strong baseline, F8W is simply first 8
words of the input, as is done in Wang and Lee
(2018) and similarly to the Prefix baseline (first
75 bytes) of Rush et al. (2015), as well as the
ROUGE of the whole text with the target. We pro-
vide scores of two supervised text-summarization

methods on Gigaword. One is our own baseline,
consisting of a sequence-to-sequence attentional
encoder-decoder trained on pairs of reference and
target summary text, but incorporating the same
length countdown mechanism as in our unsuper-
vised models. The other is the words-lvt2k-1sent
model of Nallapati et al. (2016). Although not
their best model, it is most comparable to ours
since it only uses the first sentence and does not
extract tf-idf vectors nor named entities tags.

F8W and All text are strong baselines due to the
tendency of news articles to contain specific terms
that are rarely rephrased. We find that our mod-
els perform competitively with these baselines,
although they pale in comparison to supervised
methods, likely because they do not learn any style
transfer and use only the reference’s vocabulary
and writing style. While our ROUGE-1 scores are
in line with the baselines, our ROUGE-2 scores
fall somewhat behind. Including InferSent sen-
tence embeddings improves our ROUGE scores
across the board. Our supervised baseline perfor-
mance is close to that of Nallapati et al. (2016),
with results lower in ROUGE-2 likely due to their
use of beam search. Nevertheless, the supervised
baseline is representative of the performance of a
standard sequence-to-sequence attentional model
on this task.

A direct comparison of ROUGE scores is not
completely adequate for evaluating our model.
Because of our training regime, our model primar-
ily learned to generate shortened sentences that of-
ten still retain the style of the input sentences. Un-
like other model setups, our model has never been
exposed to any examples of summaries, and hence
never adapts its output to match the style of the tar-
get summaries. In the case of Gigaword, the sum-
maries are headlines from news articles, which are
written in a particular linguistic style (e.g. drop-
ping articles, having clauses rather than full sen-
tences). ROUGE will thus penalize our model,
that tends to output longer, full sentences. In ad-
dition, ROUGE is an imperfect metric for sum-
marization as word/n-gram overlap does not fully
capture summary relevancy and retention of mean-
ing.4 For this reason, we also conduct a separate
human evaluation of our different models against

4See discussion in Nallapati et al. (2016), or in Paulus
et al. (2017) where a reinforcement learning model trained
on a Rouge-L objective alone achieves the best scores but
“produces the least readable summaries among [their] exper-
iments”

417

Example 1:
I: nearly ### of the released hostages remain in hospital , and more
than ### of them are in very serious condition , russian medical
authorities said sunday .
G: nearly ### people still hospitalized more than ### in critical
condition
2-g shuf: more than ### hostages are in serious condition , russian
medical authorities said .
2-g shuf + InferSent: nearly ### hostages of the nearly released in
serious medical condition , said .

Example 2:
I: french president jacques chirac arrived here friday at the start of a
<unk> during which he is expected to hold talks with romanian
leaders on bucharest ’s application to join nato .
G: chirac arrives in romania
2-g shuf: french president jacques chirac arrived here friday to hold
talks with romanian leaders on nato .
2-g shuf + InferSent: french president jacques chirac arrived here
friday at the start of talks to join nato .

Example 3:
I: swedish truck maker ab volvo on tuesday reported its third
consecutive quarterly loss as sales plunged by one-third amid weak
demand in the april-june period .
G: volvo posts $ ### million loss on falling sales
2-g shuf: swedish truck maker volvo ab on tuesday reported its third
consecutive quarterly .
2-g shuf + InferSent: swedish truck maker ab volvo on tuesday
reported its consecutive quarterly loss .

Example 4:
I: wall street stocks rallied friday as a weak report on us economic
growth boosted hopes for an easier interest rate policy from the federal
reserve and investors reacted to upbeat earnings news .
G: wall street shrugs off weak gdp pushes higher
2-g shuf: wall street stocks rallied friday as investors reacted to upbeat
economic news and interest rate .
2-g shuf + InferSent: wall street stocks rallied friday as investors
reacted to an economic growth report on hopes .

Figure 2: Examples of inputs, ground-truth summaries, and
outputs from two of our models. I is input, G (gold) is the
true summaries. Example 1 and 2 show our models sum-
marizing pertinent information from the input. Example 3
demonstrates the ability to recover long ordered strings of to-
kens, even though the models are trained on shuffle data. Ex-
ample 4 shows cases where the models output grammatical
but semantically incorrect sentences.

a supervised baseline (Section 5.4).

5.2 ROUGE Ablation study
In Table 2, we report the results of an ablation
study. We observe that all three components we
vary, namely the use of attention, bigram shuffling,
and incorporation of sentence embeddings, con-
tribute positively to the performance of our model
as measured by ROUGE. The model that incorpo-
rates all three obtains the highest ROUGE scores.

5.3 Impact of Length
To assess our models’ ability to deal with se-
quences of text of different length, we measure the
ROUGE scores on two bins of length of the input
text, from 16 to 30 tokens and from 31 to 45. As
expected, longer sentences pose a harder challenge
to the model, with our model performing better

on shorter than longer sentences. Across most
sequence-based problems, models tend to perform
better on shorter sequences. However, in the con-
text of the text summarization or sentence com-
pression, longer sentences not only contain more
information that the model would need to selective
remove, but also more information from which to
identify the central theme of the sentence.

5.4 Human Evaluation

To qualitatively evaluate our model, we take inspi-
ration from the methodology of Turner and Char-
niak (2005) to design our human evaluation. We
asked 6 native English speakers to evaluate ran-
domly chosen summaries from five models: our
best models with and without InferSent sentence
embeddings, a summary generated from a trained
supervised model, and the ground truth summary.
The sentences are evaluated based on two separate
criteria: the grammaticality of the summary and
how well it retained the information of the original
sentence. In the former, only the summary is pro-
vided, whereas in the latter, the evaluator is shown
both the original sentence as well as the summary.
Each of these criteria were graded on a scale from
1 to 5. The examples are from the test set, with
50 examples randomly sampled for each evaluator
and criterion.5

We report the average evaluation given by our
6 evaluators in Table 4. That the Meaning score
for the ground truth is somewhat low (3.87) is
not surprising. Within the Gigaword dataset, sum-
maries (headlines) sometimes include information
not within the reference (main line of the arti-
cle). We observe that quantitative evaluation does
not correlate well with human evaluation. Meth-
ods using InferSent embeddings improved our
ROUGE scores but perform worse in human eval-
uation, which is in line with the summaries pre-
sented in 2. Notably, the model trained on shuffled
bigrams and InferSent embeddings performed best
within our ablation study, but the worst among the
three models in human evaluation. Encouragingly,
the model without InferSent embeddings performs
competitively with the supervised baseline in both
grammar and meaning scores, indicating that al-
though it does not capture the style of headlines, it
succeeds in generating grammatical sentences that

5The sampling is constrained to ensure each evaluator
sees an equal number of summaries from each model, al-
though evaluators are informed neither about the sampling
process, nor how many or what models are involved.

418

ROUGE

Model R-1 R-2 R-L Avg. Length

Baselines:
All text 28.91 10.22 25.08 31.3
F8W 26.90 9.65 25.19 8

Unsupervised (Ours):
2-g shuf 27.72 7.55 23.43 15.4
2-g shuf + InferSent 28.42 7.82 24.95 15.6

Supervised abstractive:
Seq2seq 35.50 15.54 32.45 15.4
(words-lvt2k-1sent) (Nallapati et al., 2016) 34.97 17.17 32.70 -

Table 1: Performance of Baseline, Unsupervised and Supervised Models. Our unsupervised models pale in comparison to
supervised models, and perform in line with baselines. Simple baselines in text summarization benchmarks tend to be unusually
strong. The unsupervised model incorporating sentence embeddings performs slightly better on ROUGE.

ROUGE

Model R-1 R-2 R-L

1-g shuf (w/o attn) 23.01 5.51 20.07
2-g shuf (w/o attn) 22.36 5.18 19.60
1-g shuf 27.22 7.63 23.55
2-g shuf 27.72 7.55 23.43
1-g shuf + InferSent 28.12 7.75 24.81
2-g shuf + InferSent 28.42 7.82 24.95

Table 2: Ablation study. We find that using attention, shuf-
fling bigrams, and incorporating sentence embeddings all im-
prove our ROUGE scores. All length countdowns settings are
the same is in the main model.

ROUGE

Input Length R-1 R-2 R-L Avg. Length

16-30 30.79 9.20 27.73 12.6
31-45 26.89 6.76 23.04 17.7

Table 3: Effect of input sentence length on performance, us-
ing the 2-g shuf + InferSent model. Performance tends to be
worse on longer input texts.

Model Grammar Meaning

2-g shuf 3.53 (±0.18) 2.53 (±0.16)
1-g shuf + InferSent 2.82 (±0.17) 2.50 (±0.15)
2-g shuf + InferSent 2.87 (±0.16) 2.13 (±0.13)
Seq2seq (Supervised) 3.43 (±0.18) 2.60 (±0.17)

Ground Truth 4.07 (±0.13) 3.87 (±0.16)

Table 4: Human Evaluation. Mean scores, with 1 standard
error confidence bands in parentheses. Our best model per-
forms competitively with a supervised baseline in both gram-
matical correctness and retuention of meaning. Models with
sentence embeddings perform worse in human evaluation,
despite obtaining better ROUGE scores.

roughly match the meaning in the reference. Some
evaluators highlighted that it was problematic to
rate meaning for ungrammatical sentences.

5.5 Output Analysis

We show in Figure 2 several examples of the in-
puts, ground-truths target summaries, and outputs
from 2 of our models. We observe that the output
sentences are generally well-conditioned though
occasionally imperfectly grammatical. We also
observe certain artifacts from training only on ref-
erence texts that are not reflected in ground-truth
summaries. For example, every output sentence
ends with a period, and several examples end with
speaker identification clauses. In all instances, we
observe that the model without InferSent outputs
sentences are more readable and relevant, confirm-
ing human evaluation results in 4.

Example 1 shows that our model can extract the
most pertinent information to generate a grammat-
ical summary that captures the original meaning.

Example 2 shows an instance where our output
accurately summarizes the input text despite low

419

ROUGE scores to the target (R-1 of 21.1 and R-2
of 11.8). In this case, both models capture the core
meaning of the input.

Example 3 shows that although the models are
provided completely shuffled words in training, at
inference it is able to recover complex terms such
as “swedish truck maker ab volvo”. We note that
this may be a bias in the data set (sentences in news
often start with proper nouns preceded by quali-
fiers) and hence a simple strategy for the model to
discover. This examples also shows common mis-
take of our models: in the output of model without
InferSent, it drops an important word (“loss”) right
before the end of the sentence, causing it to fail to
capture the original meaning.

Example 4 shows that on longer sentences, our
models may sometimes fail to accurately capture
meaning. In this case, for the model without In-
ferSent, although the output is grammatical and
meaningful, it captures a meaning different than
that of the original input. Indeed, our model sug-
gests that upbeat news cause the rally whereas the
original sentence indicates that given poor eco-
nomic news investors anticipate easier monetary
policy and thus caused a stock rally.

5.6 Length Variation

Because the desired length of the output sequence
is a user-defined input in the model, we can take
an arbitrary sentence and use the model to out-
put the corresponding compressed (or even ex-
panded) sentence of any desired length. We show
two examples in Figure 3, where we vary the
desired length from 7 to the input length, us-
ing our best model based on human evaluation.
We observe that for very short desired lengths,
the model struggles to produce meaningful sen-
tences, whereas for desired lengths close to the in-
put length, the model nearly reconstructs the input
sentence. Nevertheless, we observe that for many
of the intermediate lengths, the model outputs sen-
tences that are close in meaning to the input sen-
tence, with different ways of rephrasing or short-
ening the input sentence in the interim. This sug-
gests that when the ratio of the desired output sen-
tence length to the input sentence length is close
to that of the training regime, the model is able to
perform better than when it has to generate sen-
tences with other ratios.

Example 1:
I: three convicted serial killers have been hanged in tehran ’s evin
prison , the khorasan newspaper reported sunday .
L=9: three convicted serial killers have been hanged in .
L=11: three convicted serial killers have been hanged in prison sunday
.
L=13: three convicted serial killers have been hanged , a newspaper
reported sunday .
L=15: three convicted serial killers have been hanged in tehran , a
newspaper reported sunday .
L=17: three convicted serial killers have been hanged in tehran , the
tehran ’s newspaper reported sunday .
L=19: three convicted serial killers have been hanged in tehran ’s
prison , the newspaper tehran newspaper reported sunday .

Example 2:
I: a home-made bomb was found near a shopping center on indonesia
’s ambon island , where ## people were wounded by an explosion at
the weekend , state media said on monday .
L=9: a home-made bomb explosion wounded ## people monday .
L=11: a home-made bomb explosion wounded ## people on indonesia
monday .
L=13: a home-made bomb explosion wounded ## people on indonesia
’s ambon island .
L=15: a home-made bomb explosion wounded ## people at a shopping
center on ambon monday .
L=17: a home-made bomb explosion wounded ## people at a shopping
center on ambon island on monday .
L=19: a home-made bomb explosion wounded ## people at a shopping
center near ambon on indonesia ’s island state .
L=21: a home-made bomb explosion wounded ## people at a shopping
center near ambon on indonesia ’s ambon island on monday .
L=23: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state on monday , state media said monday .
L=25: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media center where ## people were wounded by
bomb .
L=27: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media center where ## people were wounded ,
media said monday .
L=29: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media on monday , where ## people were wounded
by an explosion nearby .
L=31: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media on monday , where ## people were wounded
by an explosion at the weekend .
L=33: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media on monday , where ## people were wounded
by an explosion at the weekend on monday .

Figure 3: Summaries of varied desired lengths, using
the 2-g shuf model. L is the desired output length pro-
vided to the model. Because the desired output length is a
human-provided input, we can produce summaries of vary-
ing lengths, ranging from highly contracted to verbose.

6 Discussion

In our experiments, we found that denoising
auto-encoders quickly learn to generate well-
conditioned text, even from badly conditioned in-
puts. We were surprised by the ability of denois-
ing auto-encoders to recover readable sentences
even from completely shuffled and noised sets of
words. We observed some cases where the de-
noising auto-encoders outputs sequences that are
grammatical correct but nonsensical or semanti-
cally different from the input. However, the ability
for denoising auto-encoders to subsample words
to form grammatical sentences would significantly
reduce the search space for candidate sentences,

420

and we believe this could be useful for tasks in-
volving sentence construction and reformulation.

Our attempts to better condition the denoising
auto-encoders outputs on the original sentence us-
ing sentence embeddings had mixed results. Al-
though the incorporation of InferSent embeddings
improved our quantitative ROUGE scores, human
evaluators scored outputs conditioned on InferSent
embeddings markedly worse on both grammar and
meaning retention. It is unclear whether this is
due to InferSent embeddings failing to capture the
most significant semantic information, or if our
mechanism for incorporating the sentence embed-
ding is suboptimal.

Lastly, we echo sentiments from previous au-
thors that ROUGE remains an imperfect proxy for
measuring the adequacy of summaries. We found
that ROUGE scores can be fairly uncorrelated with
human evaluation, and in general can be distorted
by quirks of the data set or model outputs, partic-
ularly pertaining to length, formatting, and han-
dling of special tokens. On the other hand, human
evaluation can be more sensitive to comprehensi-
bility and relevancy while being more robust to re-
wording and reasonable ambiguity. Based on our
human evaluation, we find that both unsupervised
and supervised methods still fall short of effective
sentence compression and summarization.

7 Conclusion

We present a fully unsupervised approach to the
task of sentence compression in the form of
a denoising auto-encoder with additive noising
and word shuffling. Our model achieves com-
parable scores in human evaluation to a super-
vised sequence-to-sequence attentional baseline in
grammatical correctness and retention of mean-
ing, but underperforms on ROUGE. Output anal-
ysis indicates that our model does not capture
the particular style of the summaries in the Gi-
gaword dataset, but nevertheless produces reason-
ably valid sentences that capture the meaning of
the input. Although our models are still prone to
making mistakes, they provide a strong baseline
for future sentence compression and summariza-
tion work.

Acknowledgments

We would like to express our deepest gratitude to
Sam Bowman for his thoughtful advice and feed-
back in the writing of this paper. We thank the

NVIDIA Corporation for their support.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.

A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. arXiv
preprint 1805.06297.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint 1710.11041.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Or Biran, Samuel Brody, and Noémie Elhadad. 2011.
Putting it simply: a context-aware approach to lexi-
cal simplification. In Proceedings of ACL.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
NAACL.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of
ACL, pages 137–144.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017a. Su-
pervised learning of universal sentence representa-
tions from natural language inference data. CoRR,
abs/1705.02364.

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loic Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. arXiv
e-prints.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou.
2017b. Word translation without parallel data.
arXiv preprint 1710.04087.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: A parse-and-trim approach to head-
line generation. In Proceedings of NAACL, pages
1–8.

Angela Fan, David Grangier, and Michael Auli. 2017.
Controllable abstractive summarization. arXiv
preprint 1711.05217.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
EMNLP.

Markus Freitag and Scott Roy. 2018. Unsupervised
natural language generation with denoising autoen-
coders. arXiv preprint arXiv:1804.07899.

421

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. arXiv preprint 1602.03483.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Proceedings of ANLP, pages
310–315.

Hongyan Jing. 2002. Using hidden markov modeling
to decompose human-written summaries. Computa-
tional linguistics, 28(4):527–543.

Y. Kikuchi, G. Neubig, R. Sasano, H. Takamura, and
M. Okumura. 2016. Controlling Output Length in
Neural Encoder-Decoders. ArXiv e-prints.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
1412.6980.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91–107.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. arXiv preprint 1711.00043.

Angeliki Lazaridou, Georgiana Dinu, and Marco Ba-
roni. 2015. Hubness and pollution: Delving into
cross-space mapping for zero-shot learning. In Pro-
ceedings of ACL.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proceedings of ACL,
page 10.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In EMNLP.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint 1309.4168.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In AAAI.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
Santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-
to-sequence rnns and beyond. arXiv preprint
1602.06023.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of AKBC-WEKEX, pages 95–100.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint 1705.04304.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization.

Abigail See, Peter Liu, and Christopher Manning.
2017. Get to the point: Summarization with pointer-
generator networks. arXiv preprint 1704.04368.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications, 4(1):58–70.

Jenine Turner and Eugene Charniak. 2005. Super-
vised and unsupervised learning for sentence com-
pression. In Proceedings of ACL, pages 290–297.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In ICML, pages 1096–1103.

Yau-Shian Wang and Hung-Yi Lee. 2018. Learning
to encode text as human-readable summaries using
generative adversarial networks.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017. Adversarial training for unsupervised
bilingual lexicon induction. In Proceedings of ACL.

422

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 423–432
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Resources to Examine the Quality of Word Embedding Models Trained
on n-Gram Data

Ábel Elekes Adrian Englhardt Martin Schäler Klemens Böhm
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{abel.elekes, adrian.englhardt,
martin.schaeler, klemens.boehm}@kit.edu

Abstract

Word embeddings are powerful tools that fa-
cilitate better analysis of natural language.
However, their quality highly depends on the
resource used for training. There are various
approaches relying on n-gram corpora, such
as the Google n-gram corpus. However, n-
gram corpora only offer a small window into
the full text – 5 words for the Google corpus
at best. This gives way to the concern whether
the extracted word semantics are of high qual-
ity. In this paper, we address this concern with
two contributions. First, we provide a resource
containing 120 word-embedding models – one
of the largest collection of embedding mod-
els. Furthermore, the resource contains the n-
gramed versions of all used corpora, as well as
our scripts used for corpus generation, model
generation and evaluation. Second, we de-
fine a set of meaningful experiments allow-
ing to evaluate the aforementioned quality dif-
ferences. We conduct these experiments us-
ing our resource to show its usage and signifi-
cance. The evaluation results confirm that one
generally can expect high quality for n-grams
with n ≥ 3.

1 Introduction

Motivation. Word embedding approaches like
Word2Vec (Mikolov et al., 2013b) or Glove (Pen-
nington et al., 2014) are powerful tools for the
semantic analysis of natural language. One can
train them on arbitrary text corpora. Each word
in the corpus is mapped to a d-dimensional vec-
tor. These vectors feature the semantic similarity
and analogy properties, as follows. Semantic sim-
ilarity means that representations of words used in
a similar context tend to be close to each other in
the vector space. The analogy property can be de-
scribed by the example that ”man” is to ”woman”
like ”king” to ”queen” (Mikolov et al., 2013b,a;
Jansen, 2017).

These properties have been applied in numer-
ous approaches (Mitra and Craswell, 2017) like
sentiment analysis (Tang et al., 2014), irony detec-
tion (Reyes et al., 2012), out-of-vocabulary word
classification (Ma and Zhang, 2015), or semantic
shift detection (Hamilton et al., 2016a; Martinez-
Ortiz et al., 2016). One prerequisite when creating
high-quality embedding models is a good train-
ing corpus. To this end, many approaches use the
Google n-gram corpus (Hellrich and Hahn, 2016;
Pyysalo et al., 2013; Kim et al., 2014; Martinez-
Ortiz et al., 2016; Kulkarni et al., 2016, 2015;
Hamilton et al., 2016b). It also is the largest cur-
rently available corpus with historic data and ex-
ists for several languages. It incorporates over 5
million books from the last centuries split into n-
grams (Michel et al., 2015). n-grams are text seg-
ments separated into pieces consisting of n words
each. The fragmentation of a corpus is the size of
its n-grams. To illustrate, a corpus of 2-grams is
highly fragmented, one of 5-grams is moderately
fragmented.

n-gram counts over time can be published even
if the underlying full text is subject to copyright
protection. Next, this format reduces the data vol-
ume very much. So it is important to know how
good models built on n-gram corpora are.

While the quality of word embedding mod-
els trained on full-text corpora is fairly well
known (Lebret and Collobert, 2015; Baroni et al.,
2014), an assessment of models built on frag-
mented corpora is missing (Hill et al., 2014). The
resource advertised in this paper is a set of such
models, which should help to shed some light on
the issue, together with some experiments.

Difficulties. An obvious benefit of making
these models available is the huge runtime nec-
essary to build them. However, evaluating them
is not straightforward, for various reasons. First,
drawing general conclusions on the quality of em-

423

bedding models only based on the performance
of specific approaches, i.e., examining the extrin-
sic suitability of models, is error-prone (Gladkova
and Drozd, 2016; Schnabel et al., 2015). Conse-
quently, to come to general conclusions one needs
to investigate general properties of the embedding
models itself, i.e., examine their intrinsic suitabil-
ity. Properties of this kind are semantic similar-
ity and analogy. For both properties, one can use
well-known test sets that serve as comprehensive
baselines. Second, there are various parameters
which influence how the model looks like. Us-
ing n-grams as training corpus gives way to two
new parameters, fragmentation, as just discussed,
and minimum count, i.e., the minimum occurrence
count of an n-gram in order to be considered when
building the model. The latter is often used to filter
error-prone n-grams from a corpus, e.g., spelling
errors. While the effect of the other parameters
on the models is known (Lebret and Collobert,
2015; Baroni et al., 2014), the one of these new
parameters is not. We have to define meaningful
experiments to quantify and compare the effects.
Third, the full text, such as the Google Books cor-
pus, is not openly available as reference in many
cases. Hence, we need to examine how to compare
results from other corpora, where the full text is
available, referring e.g., to well-known baselines
as the Wikipedia corpus.

Contribution. The resource provided here is
a systematic collection of word embedding mod-
els trained on n-gram corpora, accessible at our
project website1. The collection consists of 120
word embedding models trained on the Wikipedia
and 1 Billion words data set. Its training has re-
quired more than two months of computing time
on a modern machine. To our knowledge, it cur-
rently is one of the most comprehensive collection
of its type. In order to make this resource re-usable
and our experiments repeatable, we also provide
the n-grammed versions of the Wikipedia and 1-
Billion word datasets, which we used for training
and the tools to create n-gram corpora from arbi-
trary text as well.

In addition, we describe some experiments to
examine how much model quality changes when
the training corpus is not full-text, but n-grams.
The experiments quantify how much fragmenta-
tion (i.e., values of n) and minimum count reduce
the average quality of the corresponding word em-

1http://dbis.ipd.kit.edu/2568.php

bedding model, on common word similarity and
analogical reasoning test sets.

To show the usefulness and significance of the
experiments and to give general recommendations
on which n-gram corpus to use as well as cre-
ating a baseline for comparison, we conduct the
experiments on the full English Wikipedia dump
and Chelba et al.’s 1-Billion word dataset. How-
ever, we recommend to conduct this examination
for any corpus before using it as training resource,
particularly if the corpus size differs from the ones
of the baseline corpora by much:

1. What is the smallest number n for which an
n-gram corpus is good training data for word
embedding models?

2. How sensitive is the quality of the models
to the fragmentation and the minimum count
parameter?

3. What is the actual reason for any quality loss
of models trained with high fragmentation or
a high minimum count parameter?

Our results for the baseline test sets indicate that
minimum count values exceeding a corpus-size-
dependent threshold drastically reduce the quality
of the models. Fragmentation in turn brings down
the quality only if the fragments are very small.
Based on this, one can conclude that n-gram cor-
pora such as Google Books are valid training data
for word embedding models.

2 Fundamentals and Notation

We first introduce word embedding models. Then
we explain how to build word embedding models
on n-gram corpora.

2.1 Background on Word Embedding Models
In the following, we review specific distributional
models called word embedding models. Experi-
ments have shown that word embedding models
are superior to conventional distributional mod-
els (Baroni et al., 2014; Mikolov et al., 2013b). In
this section, we briefly say how such models work,
and which parameters influence their building pro-
cess.

2.1.1 Building a Word Embedding Model
Word embedding models ’embed’ words into
a high-dimensional space, representing them as
dense vectors of real numbers. Vectors close to

424

each other according to a distance function, of-
ten the cosine distance, represent words that are
semantically related. Formally, a word embed-
ding model is a function F which takes a corpus
C as input, generates a dictionary D and asso-
ciates any word in the dictionary w ∈ D with a
d-dimensional vector v ∈ Rd. The dimension size
parameter d sets the dimensionality of the vectors.
win is the window size parameter. It determines
the context of a word. For example, a window size
of 5 means that the context of a specific word is
any other word in its sentence, and their distance
is at most 5 words. The training is based on word-
context pairs w× c ∈ D×D2×win extracted from
the corpus. The parameter epoch nr states how
many times the training algorithm passes through
the corpus. The model adds only words to the dic-
tionary which are among the dict size most fre-
quent words of the corpus. Additionally, there are
model specific parameters (θ) which change minor
details in their algorithms. Having said this, one
can define word embedding models as a function:

F (C, d, epoch nr, win, dict size, θ) ∈ Rd (1)

There is related work that studies the impact of
these parameters (Baroni et al., 2014; Hill et al.,
2014; Elekes et al., 2017). Consequently, for all
parameters mentioned except for the window size,
we can rely on the results from the literature. This
is because, as we outline shortly, win is highly
relevant for building embedding models using n-
gram corpora. Note that F has been defined to
work on full text corpora so far, but not on n-
grams. We explain how to adapt F in Section 2.3.

2.1.2 Realizations of Word Embedding
Models

In this paper, we work with a well-known
embedding model, Mikolov et al.’s Word2Vec
model (Mikolov et al., 2013b). Word2Vec mod-
els use a neural-network based learning algorithm.
They learn by maximizing the probability of pre-
dicting the word given the context (Continuous
Bag of Words model, CBOW) (Mikolov et al.,
2013c,b). Note that the results can be transferred
to the skip-gram learning algorithm of Word2Vec
as well as to Glove (Pennington et al., 2014; Levy
and Goldberg, 2014). This is because very recent
work has shown that the distribution of the cosine
distances among the word vectors of all such mod-
els (after normalization) is highly similar (Elekes
et al., 2017).

2.2 Generating Fragmented and Trimmed
Corpora

To create fragmented n-gram corpora from raw
text, we use a simple method described in the fol-
lowing. With a sliding window of size n passing
through the whole raw text, we collect all the n-
grams which appear in the corpus and store them
in a dictionary, together with their match count.
This means that we create datasets similar to the
Google Books dataset, but from other raw text
such as the Wikipedia dump. For every frag-
mented corpus, we create different versions of it,
by trimming n-grams from the corpora with regard
to different minimum count thresholds.

2.3 Building Word Embedding Models on
N-grams

Distributional models conventionally are trained
on full text corpora, by creating word-context
pairs. It does not need to be a coherent text; it
is sufficient if the sentences are meaningful. For
n-gram corpora, this means the following. When
creating the context of a word, we treat each n-
gram as if it was a sentence.2

The word embedding models which we make
available are trained on n-gram training corpora
which are in the Google n-gram format. This for-
mat comprises 4 values: the n-gram, the match
count, the book count and the year. For our pur-
pose, only the first two values are relevant. When
building a model with the n-gram versions, we
deem every n-gram a sentence and use it as many
times as it occurs in the raw text. We explain the
impact of the window size and of the match count
parameter in the following.

2.3.1 Window Size Parameter
The window size parameter win of the embedding
model F depends on the fragmentation. For ex-
ample, win = 4 is not meaningful when we work
with 3-grams , because the maximum distance be-
tween two words in a 3-gram corpus is 2. The
following Examples 1-3 illustrate how exactly the
word-context pairs are generated on n-gram cor-
pora depending on the size of the window.

Example 1. Let us look at the context of a spe-
cific word in a 5-gram corpus with win = 4. Let
A B C D E F G H I be a segment of the raw text
consisting of 9 words. In the raw text, the context

2Of course, if there is a punctuation mark in the n-gram
ending a sentence, it splits the n-gram into several sentences.

425

of word E are words A, B, C, D, F, G, H, I. Now
we create the 5-gram version of this segment and
identify 5-grams which include word E. These are
(A B C D E); (B C D E F); (C D E F G); (D E
F G H) and (E F G H I). For word E on the 5-
gram corpus, the contexts are words A, B, C, D;
...; words F, G, H, I. We can see that we have not
lost any context words. But we also do not have all
raw-text context words in one context, only frag-
mented into several ones.

Example 2. As extreme case, we consider a
window size which is bigger than the size of the
n-grams. In this setting, we naturally lose a lot
of information. This is because distant words will
not be in any n-gram at the same time. For exam-
ple, look at the same text segment as in Example 1
with win = 4, but with a 3-gram variant of it. The
raw-text context is the same as before for word E,
but the fragmented contexts are words C, D; words
D, F and words F, G.

Example 3. Another extreme case is when win
is less than or equal to bn−12 c. In this case at
least one n-gram context will be the same as the
full text context. This means that no information
is lost. However, there also are fragmented con-
texts in the n-gram variant which can influence the
training and, hence, model quality.

We point out that bigger window sizes do not
necessarily induce higher accuracy on various test
sets, as explained by Levy et al.(Levy et al., 2015).

2.3.2 Match Count Parameter
Another parameter to consider when building the
models on the n-gram corpora is the match count
of the n-grams. The intuition behind including
only higher match-count n-grams in the training
data is that they may be more valid segments of
the raw text, as they appear several times in the
same order. However, we naturally lose informa-
tion by pruning low match-count n-grams. When
we create the n-gram versions of our raw text cor-
pora, we create different versions, by pruning the
n-grams which do not appear in the corpus at least
2, 5, 10 times, respectively. These numbers are
much smaller than the minimum count of 40 in
the Google dataset. This is because the raw texts
we use are much smaller than the Google Books
dataset as well.

3 Experimental Setup

The experiments allow to to give general recom-
mendations on which n-gram corpus to use to train

word embedding models. In order to do this, we
justify the selection of our text corpora and of the
parameter values used. Finally, we explain the ac-
tual baseline test sets and say why this choice will
yield general insights.

3.1 Raw Text Corpus Selection

In this study we work with two raw-text cor-
pora. One is Chelba et al.’s 1-Billion word
dataset (Chelba et al., 2013), the other one is
a recent (November 1, 2016) Wikipedia dump,
with the articles shuffled and sampled to con-
tain approximately 1 billion words. Both corpora
are good benchmark datasets for language mod-
eling, with their huge size, large vocabulary and
topical diversity (Chelba et al., 2013; Zesch and
Gurevych, 2007). For both corpora we create their
respective n-gram versions in the Google Books
format, with n=2,3,5,8, cf. Section 2.3.

3.2 Baseline Test Sets

We see two properties of embedding models that
makes them a worthwhile resource. First, word
similarities, second, analogical reasoning. To il-
lustrate, an analogical reasoning task is as follows:
’A is to B as C is to D’, and the model has to guess
Word D knowing the other three words. We have
selected widely used word similarity and analogi-
cal reasoning baseline test sets for our evaluation.

3.2.1 Word Similarity
We use six test sets to evaluate word similarity.
They contain word pairs with similarity scores,
assigned by human annotators. The test sets are
Finkelstein et al.’s WordSim353 (Finkelstein et al.,
2001) partitioned into two test sets, WordSim Sim-
ilarity and WordSim Relatedness (Zesch et al.,
2008; Bruni et al., 2012); Bruni et al.’s MEN test
set (Bruni et al., 2012); Hill et al.’s SimLex-999
test set (Hill et al., 2015); Rubenstein and Good-
enough’s RG-65 test set (Rubenstein and Goode-
nough, 1965); Radinsky et al.’s Mechanical Turk
test set (Radinsky et al., 2011) and Luong et al.’s
Rare Words test set (Luong et al., 2013). We
evaluate the models with the conventional base-
line evaluation method (Levy et al., 2015) (Baroni
et al., 2014): We rank the word pairs of an eval-
uation test set by their similarity scores, based on
cosine distance of the word vectors. Then we mea-
sure Spearman’s correlation between this ranking
and the one based on human annotators. This
number is the score of the model on the test set.

426

3.2.2 Analogical Reasoning
We use two analogical reasoning test sets. The
first one is MSR’s analogy test set (Mikolov et al.,
2013c), which contains 8000 syntactic analogy
questions, such as ”big is to biggest as good is to
best”. The other test set is Google’s analogy test
set (Mikolov et al., 2013b), which contains 19544
questions The models answer the questions with
the following formula:

argmaxd∈D\{a,b,c}cos(d, b− a+ c) (2)

Here a, b, c, d ∈ D are the vectors of the corre-
sponding word. The score of a model is the per-
centage of questions for which the result of the for-
mula is the correct answer (d).

4 Experiment Questions

In order to make our experimental results more in-
tuitive we attempt to explicitly answer the three
following questions.

Question 1. What is the smallest number n for
which an n-gram corpus is good for the training of
embedding models?

Rationale behind Question 1. The size of any n-
gram corpus highly increases with large n. Hence,
it is important to know the smallest value that is
expected to still yield good results.

Question 2. How does the minimum count pa-
rameter affect the quality of the models? How
does this result compare to the effect caused by
the fragmentation?

Rationale behind Question 2. Having answered
the first question, we will be able to quantify the
effect of the fragmentation. However, it is neces-
sary to study the effect of the second parameter
as well, in order to quantify the applicability of n-
grams for embedding comprehensively. In other
words, we want to compare the effects of both pa-
rameters; we will be able to give recommendations
for both parameters.

Question 3. How does the quality loss of mod-
els trained on fragmented corpora of size n or with
high minimum count parameter manifest itself in
the embedding models?

Rationale behind Question 3. By answering
Questions 1 and 2, we are able to quantify the ef-
fect of both parameters. We hypothesize that the
parameters affect the quality of the models dif-
ferently, and that we are able to observe this in
the word vectors themselves. The rationale be-
hind our hypothesis is that large minimum count

values might eliminate various meaningful words
from the vector space. Fragmentation in isolation
however does not have the effect that a word is
lost. Hence, a quality loss must manifest itself dif-
ferently, which might be observable.

5 Experiment Results

We now turn to the questions just asked. We dedi-
cate a subsection to each question. In the first two
sections, we give an overview of the results using
the Wikipedia corpus. The results for the 1-Billion
word corpus are almost identical. For brevity, we
do not show all results for this corpus.

5.1 Answering Question 1: Minimal
Meaningful N-gram Size

We quantify the influence of the training-corpus
fragmentation on the quality of the word-
embedding models. We do not use a minimum
count parameter in this section.

5.1.1 Results for the Wikipedia Corpus
Figure 1 shows the result for the models trained on
the Wikipedia corpus.3 The interpretation of the
plots is as follows: We evaluate a specific model
on every test set introduced in Section 3.2. We cal-
culate the average scores for this model for both
the similarity and analogy test sets. We do this for
every trained model. We group the results by the
window-size parameter of the models and plot the
average values. So every plot shows the calculated
average scores of such models which only differ in
the fragmentation of their training corpus. As ex-
plained in Section 2.3.1, it is meaningless to train
models on n-grammed corpora with window-size
parameter win < n.

Figure 1 reveals that fragmentation does influ-
ence the quality of the models significantly. For
the similarity test sets, fragmentation reduces the
quality of the models for any value of the window-
size parameter win almost linearly.

For the analogy test sets, the results are not as
straightforward. Generally, the same observation
holds as for the similarity test sets, namely that
fragmentation reduces the quality of the models,
however there are a few exceptions. It is true that
the best models are trained on the 5 and 8-gram
variants and the full text corpora for any window
size. For models with smaller win however, the

3Note that we use different scales for the first and the sec-
ond two subplots.

427

Figure 1: The average score of models trained on differently fragmented Wikipedia corpora on the analogy and
similarity tasks

results do not always get better when the corpus is
less fragmented. For example, the very best model
for the MSR test set is trained on 8-grams, not the
full text.

5.1.2 Generalization of Results
To generalize the results, we measure the overall
average quality of the models trained on the dif-
ferently fragmented corpora. Then we compare
the results to ones computed on the full text. To
this end, we calculate the averages of the previous
results, grouped by training corpus fragmentation.
To make the resulting numbers more intuitive, we
do this in relative terms, compared to the results
with the full text corpus. For example, on analogi-
cal reasoning tasks, the models trained on 3-grams
are 7.5% worse than the models trained on full text
with the same window size. Table 1 shows the re-
sults. The total column is the average of the simi-
larity and analogy columns

Table 1: Average quality loss due to fragmentation
compared to the full text on the Wikipedia corpus.

Wikipedia total similarity analogy

2-gram -20.2% -14.4% -26.0%
3-gram -6.9% -6.4% -7.5%
5-gram -2.8% -3.6% -1.9%
8-gram -2.5% -3.4% -1.6%

5.1.3 Result Interpretation.
We conclude that embedding models built on frag-
mented corpora are worse than models based on
full text, but the difference is not much. Embed-
ding models trained on 2-gram corpora are 20.2%
worse overall than models trained on full text, a
significant drop. However, the 3-gram version is

only 6.9% worse. The 5-gram version and the 8-
gram version are almost tha same, they are only
2.8% and 2.5% worse, respectively. This answers
Question 1, i.e., a 5-gram corpus is the most frag-
mented corpus which is almost as good as models
trained on full text, and the 3-gram version is also
not much worse. A general takeaway for other re-
searchers when training embedding models on n-
grams is that using at least 3-grams for training
leads to good models and using at least 5-grams
leads to almost identical models as training on full
text.

5.1.4 Insight Confirmation Using a Different
Text Corpus

So far, our results only rely on one corpus. To
generalize, we verify our insights using another
large corpus. We only list aggregated results to
save space. We have calculated the numbers for
all models trained on the 1-Billion word dataset
and its fragmented versions. Table 2 shows that
the numbers are generally very similar to the pre-
vious ones with Wikipedia. So the decline in qual-
ity most likely does not depend on the underlying
text corpus, but on the fragmentation.

5.2 Answering Question 2: Effect of the
Minimum Count Parameter

In the following, we aim at quantifying the influ-
ence of the minimum count parameter and investi-
gate whether there is an interaction with the frag-
mentation. Our procedure is the same as in the
prior section. First, we aggregate the raw results
obtained from the Wikipedia corpus and all mod-
els built on it. Then we draw first conclusions and
finally verify the insights using the second corpus.

428

Table 2: Average quality loss due to fragmentation
compared to the full text on the 1-Billion word corpus.

1-Billion total similarity analogy

2-gram -19.3% -15.0% -23.6%
3-gram -5.4% -6.5% -4.3%
5-gram -1.8% -2.9% -0.8%
8-gram -1.3% -2.2% -0.4%

5.2.1 Results for the Wikipedia Corpus
Figure 2 shows the average quality of models
trained on the same n-gram corpus with different
minimum count parameter. The results indicate
that an increase of this parameter usually leads
to significantly worse models. However, there is
one exception, where the minimum count param-
eter is 2 and the corpus is the 2-grammed version
of Wikipedia. For this case the models actually
gets slightly better on the analogy task using the
minimum count threshold. The reason is that we
do not lose too many 2-grams with the threshold-
ing in this case, and those which we do lose may
bias the model on the analogy tasks. However, on
the similarity tasks the models get slightly worse,
which means we lose meaningful training data as
well. The reduction in quality is even more severe
with n-gram corpora with a big value of n, such as
5 or 8-grams. This is because these corpora have
fewer high match count n-grams than the more
fragmented 2 or 3-gram corpora. Summing up,
for corpora of a size such as the Wikipedia dump,
any threshold for the minimum count of the n-
grams significantly reduces the quality of the em-
bedding models. One exception is when the cor-
pus is highly fragmented with the smallest mini-
mum count parameter.

5.2.2 Generalization of the Results
We generalize the aforementioned observations by
computing the average quality loss for the models,
just as in Section 5.1.2. The numbers in Table 3
are for the Wikipedia dataset. With the small-
est minimum count threshold already, the mod-
els get significantly worse. For the 1-Billion word
dataset, the results again differ only slightly. This
again confirms our hypothesis that the quality dif-
ferences are not corpus-dependent.

5.2.3 Implications for the Google N-gram
Corpus

So far, the question how to transfer the results
from the Wikipedia and the 1-Billion corpus to the

Table 3: Average quality loss caused by the minimum
count parameter parameter on Wikipedia.

Min. count total similarity analogy

2 -23.6% -19.2% -28.0%
5 -56.5% -47.9% -65.1%

10 -72.3% -64.0% -78.6%

Google n-gram corpus remains open. We aim to
answer whether we lose any meaningful informa-
tion in the Google 5-gram corpus, because of the,
at first sight, large threshold value of 40. We as-
sume that even for such comprehensive text cor-
pora, including the Wikipedia or the 1-Billion cor-
pus, all the extracted n-grams are contained in
the Google n-gram data as well, despite its large
threshold value. We verify this hypothesis by
comparing the number of existing 5-grams in the
Google n-gram corpus (1.4 Billion) with those in
the full Wikipedia (1.25 Billion). A systematic
analysis of the data reveals that more than 99%
of the 5-grams included in the Wikipedia corpus is
included in the Google corpus as well. The ones
which are not usually are typos or contain words
which have not been present in the language un-
til 2008 (the last year in the Google dataset). This
holds for all n-gram corpora. This means that we
do not lose any relevant information if we train
our models on the Google n-gram dataset, despite
its high minimum count threshold value. So it is a
suitable training corpus for word-embedding mod-
els.

5.2.4 Result Interpretation
To conclude, we can now answer Question 2. We
see that the minimum count parameter reduces
model quality. This conclusion depends on the
size of the corpus . For smaller corpora, the effect
will be even more pronounced. For such sizes of
the training data we do not recommend to use any
minimum count threshold when training embed-
ding models. In combination with the results from
Section 5.1, we conclude that the Google Books
dataset is valid training data for embedding mod-
els. In general, one can expect good results using
the 5-grams as training data, but anything above
2-grams could be used.

5.3 Answering Question 3: the Reason for
the Quality Loss

Regarding Question 3, we start with an explana-
tion why the increase of the minimum count pa-

429

Figure 2: The average scores of models trained with different minimum count parameter on differently fragmented
Wikipedia corpora on the Analogy and Similarity tasks

rameter decreases the quality of the embedding
models. We have observed that in almost every
case this has been a consequence of certain in-
frequent words of the evaluation test sets not oc-
curring in sufficiently many n-grams. When ana-
lyzing the task specific results, we have seen that
result quality on the rare words test set drops in-
stantly even with the smallest threshold value. For
other test sets on the other hand (WordSim353,
RG-65 for instance) which include highly frequent
words almost exclusively, results are not much
worse. In summary, the reduced model quality
generally is a consequence of the less frequent
words not being trained sufficiently or even not at
all. Therefore, they do not appear in the dictionar-
ies of the model.

Table 4: Average movement in cosine distance of the
word vectors with one extra iteration.

Corpus 2-gram 3-gram 5-gram 8-gram Full text

Avg. movement 0.018 0.016 0.011 0.010 0.006

The fragmentation of the corpora causes a qual-
ity loss for a different reason. Every word of the
evaluation test sets is included in the dictionary of
every model, but fragmentation causes a mix-up
of the word vectors, cf. Section 2.2. As explained
in Example 1, each word is trained several times
when fragmented corpora are used, and most of
the time the context of the word, as considered by
the algorithm during training, is not the full con-
text. To quantify this effect, we have measured
the average movement of a word vector when we
iterate through the training data one extra time, af-
ter training the models. See Table 4; the numbers
are average cosine distances. The lower the cor-
pus quality is, the more the vectors move in the

additional iteration. The results seem to confirm
our intuition that, with bad corpora, vectors move
in suboptimal directions to a higher extent, ulti-
mately resulting in worse models.

6 Conclusions

In this paper we present a resource and cor-
responding experiments which allow to answer
which differences in quality one can expect when
training word embedding models on fragmented
corpora, such as the Google n-gram corpus, com-
pared to full-text. The resource contains all mod-
els, corpora and scripts we have used. The re-
source contains one of the largest collection of
systematically pre-trained embedding models cur-
rently openly available. It also contains the frag-
mented versions of both corpora used in this paper
and our scripts used to conduct the experiments.
We present experiments to give recommendations
on which n-gram versions to use for word em-
bedding model training. An in-depth evaluation
using our presented comprehensive resource con-
firms that one generally can expect good quality
for n-grams with n ≥ 3. In addition, we show that
the minimum count parameter is highly corpus
size dependent and should not be used for corpora
with size similar to or smaller than the Wikipedia
dump. Finally, our results show that the fragmen-
tation (i.e., small values for n) and the minimum
count parameter introduce different kinds of error.

In summary, our results indicate that one can
train high-quality embedding models with n-
grams if some (mild) prerequisites hold. This is
particularly true for the Google n-gram corpus,
which is a good corpus to this end.

430

References
M. Baroni et al. 2014. Don’t count, predict! A sys-

tematic comparison of context-counting vs. context-
predicting semantic vectors. In ACL. ACL.

E. Bruni et al. 2012. Distributional semantics in tech-
nicolor. In Proc. Annual Meeting of the Association
for Computational Linguistics (ACL), pages 136–
145. ACL.

C. Chelba et al. 2013. One billion word benchmark for
measuring progress in statistical language modeling.
CoRR, abs/1312.3005.

A. Elekes, M. Schäler, and K. Böhm. 2017. On the
various semantics of similarity in word embedding
models. In JCDL. IEEE.

L. Finkelstein et al. 2001. Placing search in context:
The concept revisited. In Proc. Int’l Conf. on World
Wide Web (WWW), pages 406–414. ACM.

A. Gladkova and A. Drozd. 2016. Intrinsic evaluations
of word embeddings: What can we do better? In
RepEval. ACL.

W. Hamilton et al. 2016a. Cultural shift or linguistic
drift? comparing two computational measures of se-
mantic change. In EMNLP. ACL.

William L Hamilton, Jure Leskovec, and Dan Juraf-
sky. 2016b. Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint
arXiv:1605.09096.

J. Hellrich and U. Hahn. 2016. An assessment of ex-
perimental protocols for tracing changes in word se-
mantics relative to accuracy and reliability. In LaT-
eCH.

F. Hill, R. Reichart, and A. Korhonen. 2015. Simlex-
999: Evaluating semantic models with genuine simi-
larity estimation. Computer Linguistics, 41(4):665–
695.

F. Hill et al. 2014. Not all neural embeddings are born
equal. CoRR, abs/1410.0718.

S. Jansen. 2017. Word and phrase translation with
word2vec. CoRR, abs/1705.03127.

Y. Kim et al. 2014. Temporal analysis of lan-
guage through neural language models. CoRR,
abs/1405.3515.

Vivek Kulkarni, Bryan Perozzi, and Steven Skiena.
2016. Freshman or fresher? quantifying the geo-
graphic variation of language in online social media.
In ICWSM, pages 615–618.

Vivek Kulkarni et al. 2015. Statistically significant de-
tection of linguistic change. In 24th International
Conference on World Wide Web, pages 625–635.

R. Lebret and R. Collobert. 2015. Rehabilitation of
Count-Based Models for Word Vector Representa-
tions. Springer.

O. Levy and Y. Goldberg. 2014. Neural word embed-
ding as implicit matrix factorization. In NIPS. MIT
Press.

O. Levy, Y. Goldberg, and I. Dagan. 2015. Improving
distributional similarity with lessons learned from
word embeddings. TACL, 3.

T. Luong, R. Socher, and C. Manning. 2013. Better
word representations with recursive neural networks
for morphology. In CoNLL. ACL.

L. Ma and Y. Zhang. 2015. Using word2vec to process
big text data. In Proc. Int’l. Conf. on Big Data (Big
Data), pages 2895–2897. IEEE.

C. Martinez-Ortiz et al. 2016. Design and implemen-
tation of shico: Visualising shifting concepts over
time. In HistoInformatics, DH.

J.-B. Michel et al. 2015. Quantitative analysis of cul-
ture using millions of digitized books. Science,
331(6014):176–182.

T. Mikolov, Q. Le, and I. Sutskever. 2013a. Exploit-
ing similarities among languages for machine trans-
lation. CoRR, abs/1309.4168.

T. Mikolov et al. 2013b. Distributed representations
of words and phrases and their compositionality. In
NIPS. Curran Associates Inc.

T. Mikolov et al. 2013c. Efficient estimation of
word representations in vector space. CoRR,
abs/1301.3781.

B. Mitra and N. Craswell. 2017. Neural text embed-
dings for information retrieval. In WSDM, pages
813–814. ACM.

J. Pennington et al. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.
ACL.

S. Pyysalo et al. 2013. Distributional semantics re-
sources for biomedical text processing. In LBM.

K. Radinsky et al. 2011. A word at a time: Computing
word relatedness using temporal semantic analysis.
In WWW, pages 337–346. ACM.

A. Reyes et al. 2012. From humor recognition to irony
detection: The figurative language of social media.
DKE.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

T. Schnabel et al. 2015. Evaluation methods for unsu-
pervised word embeddings. In EMNLP.

Duyu Tang et al. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In ACL, volume 1, pages 1555–1565.

431

T. Zesch and I. Gurevych. 2007. Analysis of the
wikipedia category graph for nlp applications. In
NAACL-HLT, pages 1–8. ACL.

T. Zesch et al. 2008. Using wiktionary for comput-
ing semantic relatedness. In AAAI, pages 861–866.
AAAI Press.

432

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 433–443
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Linguistically-based Deep Unstructured Question Answering

Ahmad Aghaebrahimian
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Malostranske nam. 25, 11800 Praha 1, Czech Republic
ebrahimian@ufal.mff.cuni.cz

Abstract

In this paper, we propose a new linguistically-
based approach to answering non-factoid
open-domain questions from unstructured
data. First, we elaborate on an architecture
for textual encoding based on which we in-
troduce a deep end-to-end neural model. This
architecture benefits from a bilateral attention
mechanism which helps the model to focus on
a question and the answer sentence at the same
time for phrasal answer extraction. Second,
we feed the output of a constituency parser
into the model directly and integrate linguistic
constituents into the network to help it concen-
trate on chunks of an answer rather than on its
single words for generating more natural out-
put. By optimizing this architecture, we man-
aged to obtain near-to-human-performance re-
sults and competitive to a state-of-the-art sys-
tem on SQuAD and MS-MARCO datasets re-
spectively.

1 Introduction

Reading, comprehending and reasoning over texts
and answering a question about them (i.e. Ques-
tion Answering) is a fundamental aspect of com-
putational intelligence. Question Answering
(QA), as a measure of intelligence, has been even
suggested to replace Turing test (Clark and Et-
zioni, 2016).

The development of large datasets of QA in
recent years (Hermann et al., 2015; Hill et al.,
2015; Bordes et al., 2015; Rajpurkar et al., 2016)
advanced the field especially for two significant
branches of QA namely factoid (Aghaebrahimian
and Jurčı́ček, 2016a,b) and non-factoid QA1 (Ra-
jpurkar et al., 2016). Non-factoid QA or QA over
unstructured data is a somewhat new challenge in

1While the answer to a non-factoid question is a chunk of
one or more adjacent words, the answer to a factoid question
is only an entity.

open-domain QA. A non-factoid QA system an-
swers questions by reading and comprehending a
context. The context in which we assume the an-
swer is mentioned may have different granulari-
ties from a single sentence or paragraph to larger
units of text. A QA system is supposed to extract
a phrase answer from the provided paragraph or
sentence depending on its granularity level.

The context for answering questions is usually
extracted using an Information Retrieval (IR) tech-
nique. Then, a QA system should extract the best
answer sentence. There are many studies about ex-
tracting answer sentences including but not limited
to (He et al., 2015; He and Lin, 2016; Yih et al.,
2013; Yu et al., 2016; Rao et al., 2016; Aghae-
brahimian, 2017a).

Extracting the final or shortest possible answer
from a set of candidate answer sentences is ad-
dressed in many studies as well (Zhang et al.,
2017; Gong and Bowman, 2017; Shen et al., 2016;
Weissenborn et al., 2017a). Instead of reasoning
over and making inference on linguistic symbols
(i.e., words or characters), almost all of these mod-
els use a neural architecture to encode contexts and
questions into a vector representation and to rea-
son over them.

A typical pattern in most of the current mod-
els is the use of a variant of uni- or bi-directional
attention schemes (question to context and vice-
versa) to encode the semantic content of ques-
tions’ words with a focus on their context’s
words (Seo et al., 2016; Xiong et al., 2016; Weis-
senborn et al., 2017b; Chen et al., 2017; Wang
et al., 2017). Compared to these models the nov-
elty of our work is in explicitly conducting atten-
tion over both the context and the question for each
candidate constituent2 answer (every constituent

2Form now on and for the sake of brevity by constituents
we mean linguistic constituents as they are referred to in
Phrase Structure Grammar (Chomsky, 1957).

433

Constituents Type Training set Development set
NP 59 % 62 %
ROOT 8 % 6 %
NNP 5 % 4 %
NN 4 % 2 %
JJ 3 % 1 %
VP 3 % 4 %
CD 3 % 2 %
PP 2 % 4 %
S 2 % 2 %
others 11 %(each < 2%) 13 %(each < 2%)

Table 1: The distribution of constituent types of
answers in SQuAD training and development sets.
For constituency parsing, we used the Standford
CoreNLP tool (Manning et al., 2014). To see
the full list of available constituency types in the
dataset, please refer to Appendix A.

in the context). The fact that this is better than
attending only to the question words is investi-
gated and proved according to the results reported
in Section 7.

Another observation is that a majority of recent
studies are purely based on data science where one
can barely see a linguistic intuition towards the
problem. We show that a pure linguistic intuition
could help neural reasoning and attention mech-
anisms to achieve quantitatively and qualitatively
better results in QA.

By analyzing a human-generated QA dataset
called SQuAD (Rajpurkar et al., 2016), we real-
ized that people tend to answer questions in units
called constituents (Table 1). We expect an answer
to a question to be a valid constituent otherwise it
would probably not be grammatical.

Constituents and Constituency relations are the
bases of Phrase Structure Grammar first proposed
by Noam Chomsky (Chomsky, 1957). Phrase
Structure Grammar and many of its variants in-
cluding Government and Binding theory (Chom-
sky, 1993) or Generalized and Head-driven Phrase
Structure Grammar (Gazdar et al., 1994; Pollard
and Sag, 1994) define hierarchical binary relations
between the constituents of a text, and hence help
to realize an exact and natural answer boundary
for answer extraction.

Having these two points in mind and inspired
by attentive pooling networks by Santos et al.
(2016), we designed an attentive bilateral model
and trained it on the constituents of questions and
answers. We attempted to use some information
from the parser, so to go beyond a simple word-
based or vector-based representations. The results

obtained by the model are near to human perfor-
mance on SQuAD dataset and competitive to a
state-of-the-art system on MS-MARCO dataset.
The contributions of our work are:

• A bilateral linguistically-based attention
model for Question Answering

• Integrating linguistic constituents into a DNN
architecture for the QA task.

In the next section, we review some of recent
QA systems with a focus on unstructured QA.
In Section 3, we briefly explain the constituency
types. Then in Section 4, we discuss the details
of our system architecture. In Section 5, we talk
about the datasets and the way we prepared them
for training. In Sections 6 and 7, we describe the
training details and present the results of our ex-
periments. Finally, we explain some ablation stud-
ies and error analysis in Section 8 before we con-
clude in Section 9.

2 Related work

In recent years, QA has been largely benefited
from the development of Deep Neural Network
(DNN) architectures largely in the form of Con-
volution Neural Networks (CNN) (LeCun et al.,
1998) or Recurrent Neural Networks (RNN) (El-
man, 1990). QA systems based on semantic
parsing (Clarke et al., 2010; Kwiatkowski et al.,
2010), IR-based systems (Yao and Durme, 2014),
cloze-type (Kadlec et al., 2016; Hermann et al.,
2015), factoid (Aghaebrahimian and Jurčı́ček,
2016b; Bordes et al., 2015) and non-factoid sys-
tems (Aghaebrahimian, 2017a; Rajpurkar et al.,
2016) are some of the QA variants that have been
improved by DNNs. Among all of these varieties,
factoid and non-factoid are two most widely stud-
ied branches of QA systems.

In Factoid QA like air traffic information sys-
tems (ATIS) or dialogue systems, we answer the
questions by extracting an entity from a structured
database like relational databases or knowledge
graphs. In contrast, in non-factoid systems, an-
swers are extracted mostly from unstructured data
like Wikipedia.

Unstructured QA in recent years has been stud-
ied with a few distinguishable different settings
such as answer selection, answer trigging, and
answers extraction. In answer selection (Aghae-
brahimian, 2017a; Wang et al., 2016; Yu et al.,

434

2016) and answer trigging (Jurczyk et al., 2016)
the goal is to find the best answer sentence given
each question. These answer sentences may
be non-existent in the provided context for an-
swer triggering. In answer extraction (Shen and
Klakow, 2006; Sultan et al., 2016), we extract a
chunk of a sentence as the shortest possible an-
swer.

Answer selection can be used as a measure
of machine comprehension (Kadlec et al., 2016;
Hermann et al., 2015). In this setting, a typ-
ical QA system reads a text and then answers
either multiple-answer (cloze-type) or free-text
questions. Cloze-type answers are limited to mul-
tiple distinct entities (usually 4 or 5) while a span
of words answers free-text questions.

The performance of cloze-type systems is a
good indication of machine comprehension. How-
ever, in QA systems for a real-life application like
in dialogue systems or scientists’ assistants, the
answers, their boundaries and their types (e.g.,
proper noun, adjective or noun phrase) are not
known in advance, and it makes this type of QA
more challenging. In this setting, free-text QA
or QA over unstructured data (Aghaebrahimian,
2017b; Rajpurkar et al., 2016; Cui et al., 2016)
is advocated where answers are spans of multiple
consecutive words in large repositories of textual
data like Wikipedia.

Many successful studies have been performed
for free-text (i.e., phrase) answer extraction from
SQuAD since its release in 2016. Almost all of
these models benefited from a form of DNN ar-
chitecture and a majority of them integrated a kind
of the attention mechanism. Some of these stud-
ies integrated attention to predicting the physical
location of answers (Xiong et al., 2016; Cui et al.,
2016; Hu et al., 2017; Seo et al., 2016). Others
made an effort to find a match between queries
and their contexts (Cui et al., 2016) or to compute
a global distribution over the tokens in the con-
text given a query (Wang and Jiang, 2016). Still,
some other models integrated other mechanisms
like memory networks (Pan et al., 2017) or rein-
forcement learning (Shen et al., 2016) to enhance
their attention performance.

To add to these efforts, we intend to propose a
new perspective on using attention and to enhance
it by using linguistic constituents as a linguisti-
cally motivated feature.

3 Linguistic Constituents

There is hardly a universal agreement upon the
definition of the term ‘constituent’. In general,
a constituent is an inseparable unit that can ap-
pear in different places of a sentence. Instead of
defining what a constituent is, linguists define a
set of experiments such as replacement or expan-
sion to distinguish between constituents and non-
constituents.

For instance, let’s consider the sentence ‘Plans
for the relay were announced on April 26, 2007, in
Beijing, China.’ We can replace or expand some
of its constituents and rephrase the sentence as ‘on
April 26, 2007, plans for the relay were announced
, in Beijing, China.’ or ‘Plans for the great and im-
portant relay were announced on April 26, 2007,
in Beijing, China.’ while we are sure that these
rephrases are not only both syntactically and se-
mantically correct but also convey the same mean-
ing as the original sentence. Some of the earli-
est works which tried to integrate more linguis-
tic structures into QA are (Zhang et al., 2017; Xie
and Eric, 2017). Using TreeLSTM, Zhang et al.
(2017) tried to integrate linguistic structure into
QA implicitly. At the prediction step, they used
pointer network (Vinyals et al., 2017) to detect
the beginning and the end of answer chunks. In
contrast, (Xie and Eric, 2017) explicitly modeled
candidate answers as sequences of constituents by
encoding individual constituents using a chain of-
trees LSTM (CT-LSTM) and tree-guided attention
mechanism. However, their formulation of con-
stituents is more complicated than ours and as we
will see, a direct use of constituents as answer
chunk is much less complicated and yields better
results.

4 System Architecture

In this section, we describe how to represent ques-
tions, sentences and answers in vector space in
Subsection 4.1 and then we train the vectors in
Subsection 4.2 using a specific loss function and
distance measure.

4.1 Representation Learning
Our goal is to extract constituent answers by load-
ing their vector representations with the semantic
content of their question and their containing an-
swer sentence. To achieve this end, we integrated
a bilateral attention mechanism into our model
which lets us estimate a joint vector representation

435

between answers when they are attending to ques-
tions’ constituents and when they are attending to
sentences’ constituents.

To encode the semantic information in ques-
tions and sentences, we used a simple encoding
unit (see Equations 1 to 6 and Figure 1). In this
unit,Wk ∈ R|V | are words in one-hot vector repre-
sentations where kth element of each vector is one
and others are 0. V are all vocabularies in training
questions and answers. E ∈ R|V |×de is the em-
bedding matrix and de is the embedding dimen-
sion. The product of the multiplication in Equa-
tion 1 is the word embeddings in which each cell
Wi,t is the word in time step t in sample i. Wi,t

is the input of forward and backward RNN cells in
Equations 2 and 4.

As RNN cell, we used Long Short-Term Mem-
ory architecture (LSTM) (Hochreiter and Schmid-
huber, 1997). Pan et al. (2017) and Hu et al.
(2017) show that bi-directional LSTM architec-
tures provide more accurate representations of tex-
tual data. The common practice to form a bidirec-
tional LSTM is to concatenate the last vectors in
forward and backward LSTMs. Instead, we used a
stepwise max pooling (SWMP) mechanism which
takes the most important vectors from forward and
backward LSTMs in Equations 3 and 5 and con-
catenate them in Equations 6.

Wi,t = E>Wk (1)
−→enci,t = LSTM(−→enci,t−1,Wi,t) (2)
−→enci = SWMP (−→enci,t) (3)
←−enci,t = LSTM(←−enci,t+1,Wi,t) (4)
←−enci = SWMP (←−enci,t) (5)

enci = [−→enci;←−enci] (6)

Using our encoding unit we encode questions
and sentences and then concatenate the resulted
vectors to generate a joint representation of ques-
tions and their answer sentences in Equation 7.

encQSi = [encQi ; enc
S
i] (7)

In the next step, we need to encode the con-
stituent answers. Our answer encoding unit has
two modules, one with attention on questions
encQi (equations 8-15) and the other with atten-
tion on sentences encSi (equations 16-23). In both
modules, we used an architecture similar to the
one in the encoding unit with an additional atten-
tion unit.

In the answer encoding unit, again the input to
LSTM cells are word embeddings generated by
lookup tableWA

i,t. Two attention layers in this unit
receive the output sequences of the forward and
backward LSTM cells and focus once on ques-
tions and once on sentences. This is done using an
attention mechanism similar to the one proposed
by Santos et al. (2016).

In the end, the vectors generated by these two
modules are concatenated in hAQSi = [h

AQ
i ;hASi]3

to form a general attentive representation of con-
stituents with respect to their corresponding ques-
tions and sentences.

At training time, we try to learn the vector rep-
resentations of questions, sentences, and their con-
stituents jointly. However, we like to learn the vec-
tors in a way that leads to a small distance between
questions and their true constituents and a long
distance between them and their false constituents.
For this purpose, for each pair of question and sen-
tence, we compute one true answerA+

QS and some
false answer A−QS vectors.

We generated these vectors by passing a correct
constituent A+ and a random wrong constituent
A− through question-attentive (see equations 8-
15) and sentence-attentive (see equations 16-23)
modules and by concatenating the outputs.

4.2 Training

In this section, we train our model. Given a ques-
tion and the constituents associated with its answer
sentence, the model generates a score for each
constituent. The score is an estimate of how sim-
ilar the constituent to the gold answer is. Taking
the argmax over the scores, the model returns the
id of its true predicted constituent.

To train the model, we need to compute the dis-
tance between questions and their true constituents
and to contrast it with the distance between ques-
tions and their false constituents.

There are various measures of distance or simi-
larity between two vectors each with its own mer-
its. Feng et al. (2015) did an exhaustive study on
different distance measures for text classification
and proposed some new measures including the
Geometric mean of Euclidean and Sigmoid Dot
product (GESD) (Formula 1) which outperformed
other measures in their study.

We integrated GESD in our work to estimate

3All concatenations are performed on the last layer (i.e.
data dimensions).

436

Figure 1: The encoding unit. The Embed-
ding lookup uses pre-trained Glove word
vectors (Pennington et al., 2014) and up-
dates them through training. The output
is the concatenation of max-pooled vec-
tors of LSTM encoders.

Figure 2: Question-aware (equations 16-23) and sentence-aware (equations 8-15) encoding

the distance between questions and their true and
false constituents. GESD linearly combines two
other measures called L2-norm and inner product.
L2-norm is the forward-line semantic distance be-
tween two sentences and inner product measures
the angle between two sentence vectors.

DIS(Q,A) = 1
1+exp(−(Q.A)) ∗ 1

1+||Q−A||

Formula 1: The distance between Question (Q)
and Answer (A) vectors.

Now everything is ready to train the model. The
overall system architecture is illustrated in Fig-
ure 3. We use Hinge loss function (Formula 2)
to estimate the loss on each question-answer com-
bination. Hinge function increases the loss with
the distance between a question and its true con-
stituents while decreases it with the distance be-
tween a question and its false constituents. In
Equation 2, encQS is the joint vector representa-

tion of questions and their answer sentences, h
A−
QS

i

is the vector of false answers, hA
+
QS is the vectors

of true answers. Finally, m is the margin between
positive and negative answers. It makes a trade-

off between the mistakes in positive and negative
classes.

L =
∑

imax(0,m+DIS(encQSi , h
A+
QS

i)−DIS(encQSi , h
A−
QS

i))

Formula 2: Hinge function. m is the margin, A−QS
are false and A+

QS are true answers.

5 Datasets

The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is a dataset
for sentence-level (i.e. answer selection) and
word-level (i.e. answer extraction) QA. It in-
cludes 107,785 question-answer pairs synthesized
by crowd workers on 536 Wikipedia articles.
The dataset is randomly shuffled and divided
into training (80%), development (10%) and test
(10%) sets. Due to its large number of questions
compared to previous datasets (Hirschman et al.,
1999; Richardson et al., 2013), it is considered a
good testbed for data-intensive QA methods. The
answers in SQuAD are categorized into ten types
including Person, Date, Location, etc (Rajpurkar
et al., 2016). However, there are no statistics
available on the constituent type of each answer.

437

Figure 3: The system architecture. Two answer modules, one with attention on questions and the other
on sentences, provide a joint representation containing all required information with respect to questions
and sentences for making inference on true constituents.

To control the vocabulary size we needed to elim-
inate redundant numeric values, but at the same
time, we wanted to parse the contents, and we
needed to keep the semantic values of numeric
tokens. Hence to preprocess the questions and
sentences in the dataset, we removed all non-
alphanumeric characters from all contents and
then replaced numeric values with ‘9’. Then we
used CoreNLP tool (Manning et al., 2014) to tok-
enize and to perform constituency parsing on the
contents.
After extracting constituents from the tree of sen-
tences and comparing them with gold answers, we
realized that 72% of the answers are constituents.
Other 21% of the answers had slight divergences
from a constituent, like lacking or having a deter-
miner or punctuation mark which were eventually
going to be disregarded in the official evaluation
script. The remaining 7% was a combination of
two smaller constituents or a part of a larger one.
In the training set, to use constituents as answers,
we replaced non-matching answers with the small-
est and most similar constituents. Since at the

evaluation time, we needed the gold answers and
not their replaced constituents, we did not change
the answers in the development set.
We extracted a total number of 48 different con-
stituents types including both terminal and non-
terminal ones from SQuAD. The percentage of
each constituent type in training and development
sets are presented in Table 1. The figures for de-
velopment set are computed only based on exact
match answers.
We used SQuAD’s development set for testing
the system and reporting the results. To prepare
the dataset for training and evaluating our system
we used a state-of-the-art answer sentence selec-
tion system (Aghaebrahimian, 2017a) to extract
the best answer sentences. The system provides us
the best sentence with 94.4 % accuracy given each
question. After pre-processing the sentence as ex-
plained above, we extracted its constituents and
trained the model using the correct constituents as
true and other constituents as negative samples.
At test time, we used the same procedure to extract
the constituents, but we used gold answers as they

438

are without substituting non-matching answer-
constituents. Then, we added other constituents
as negative samples.
For evaluation purpose, we used SQuAD’s offi-
cial evaluation script which computes the exact
match and the F1 score. The exact match is the
percentage of predictions which exactly match the
gold answer and the F1 (Macro-averaged) score
is the average overlap between the prediction and
ground truth answer while treating them both as
bags of tokens, and computing their F1.
To experiment our model furthermore, we used
MS-MARCO dataset (Nguyen et al., 2015). As
a machine comprehension dataset, MS-MARCO
has two fundamental differences with SQuAD.
Every question in MS-MARCO has several pas-
sages from which the best answer should be re-
trieved. Moreover, the answers in MS-MARCO
are not necessarily sub-spans of the provided con-
texts so that BLEU and ROUGE are used as the
metrics in the official tool of MS-MARCO evalu-
ation. During training we used the highest BLEU
scored constituent as the answer and in the evalua-
tion, we computed the BLEU and ROUGE scores
of the constituents selected by the system. As the
results in Table 7 show, our system obtained com-
petitive results to another state-of-the-art system
trained on the same dataset.

6 Experiment

To evaluate our new architecture and to see how
integrating linguistic constituents affects its per-
formance we set up two settings. We designed
one setting for evaluating the effect of using con-
stituents instead of words (constituent-base vs.
word-base) and another to evaluate the effect of
using attention mechanism on top of vector train-
ing modules (uni- vs. bi-attention). Therefore we
conducted four experiments on both datasets or
eight experiments in total.
In the constituent-base setting, we generated the
training and test data as described in Section 5.
In word-base however, we replaced constituents
with the tokens in answer sentences for both train
and test sets and trained our model to compute
two scores for initial and final positions of answer
chunks. In the constituent-base setting at test time,
we directly used the predicted constituent as the
final answer. In the word-base setting, however,
we got the final answer using the highest-scored
words for initial and final positions.

We also investigated the effect of bilateral atten-
tion on the model performance. In the bi-attention
model, we used the model as described in Sec-
tion 4. In the uni-attention model, we eliminated
the attention on sentences and only used the mod-
ule for attention on questions.
For training our model, we used 300-dimensional
pre-trained Glove word vectors (Pennington et al.,
2014) to generate the embedding matrix and kept
the embedding matrix updated through training.
We used 128-dimensional LSTMs for all recur-
rent networks and used ’Adam’ with parameters
learning rate=0.001, β1 = 0.9, β2 = 0.999 for
optimization. We set batch size to 32 and dropout
rate to 0.5 for all LSTMs and embedding layers.
We performed the accuracy check only on the first
best answer.

7 Result

The results of our experiments are summarized
in Table 2. By contrasting the results of uni-/bi-
attention and word/constituent-base models, we
can see that the proposed bi-attention mecha-
nism with linguistic constituents integrated into it
makes a significant improvement on answer ex-
traction. Another interesting observation is that
the Exact Match metric benefits from restric-
tion to constituents as answers. Concerning the
MS-MARCO dataset, the results are competitive
to a state-of-the-art system tested on the same
dataset (Wang et al., 2017).

8 Ablation and Error Analysis

In this section, we analyze the SQuAD concern-
ing answer distribution over different query types.
Table 1 shows that the NP type constituents are
the most prominent type among all other an-
swers. However, to investigate the importance of
other types in overall system performance, we per-
formed an ablation study where we studied the in-
fluence of each constituent type on overall accu-
racy. The results are presented in Figure 4. We
also studied how much the model succeeded in re-
trieving answers from each type. The results are
presented in the same figure. This table also shows
how often does the method succeed in cases where
the correct answer is, in fact, a constituent span.
As seen in Figure 4, the answers are mostly singu-
lar noun phrases after which with a significant dif-
ference are proper nouns, verb phrases, and prepo-

439

SQuAD Development set MS-MARCO Evaluation set
Exact-match(%) F1(%) BLEU ROUGE

Logistic Regression (Rajpurkar et al., 2016) 40.00 % 51.00 % - -
Uni-Attention Word-base (this work) 55.12 % 57.98 % 35.6 35.1
Bi-Attention Word-base (this work) 59.84 % 63.08 % 38.1 38.4
Uni-Attention Constituency-base (this work) 73.82 % 77.43 % 39.6 39.9
TreeLSTM (Zhang et al., 2017) 69.10 % 78.38 % - -
BIDAF (Seo et al., 2016) 72.6 % 80.7 % - -
CCNN (Xie and Eric, 2017) 74.1 % 82.6 % - -
R-net (Wang et al., 2017) 75.60 % 82.80 % 42.2 42.9
Bi-Attention Constituency-base (this work) 80.72 % 83.25 % 42.1 42.7
Human Performance (Rajpurkar et al., 2016) 82.30 % 91.22 % - -

Table 2: The performances of different models in the exact match and F1 metrics for SQuAD and BLEU
and ROUGE for the MS-MARCO dataset.

NP ROOT NNP NN JJ VP CD PP S Others
Constituent Type

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce

Model Performance
Type Contribution

Figure 4: Blue lines are the contribution of each
type in the overall system performance using the
best model and at the convergence time. Red
bars represent the performance of the model in re-
trieving each constituent type when the model is
converged. Performance is expressed in the ex-
act match metric (%). As a guide to how to read
the chars, the first blue line for NP type says that
50% of all correctly extracted answers by the sys-
tem are NP type-answers. The red line of the
same type says that our system managed to re-
trieve about 87% of all NP-type answers in the
dataset.

sitional phrases. We can also see how the model
performed for each constituent. It seems that ex-
tracting cardinal numbers is much easier for the
model than retrieving roots or full sentences.
An analysis of the errors shows that false answer
sentence, non-constituent answers, parsing errors,
overlapping constituents and unknown words are
the primary reasons for the mistakes made by our
system. The sentence selection process brought
about six percent incorrect answers. The next
primary reason for making mistakes is the con-
stituents which contain other smaller constituents.
While in all cases we extract the smallest con-
stituent, in about three percent of overlapping con-
stituents the more extended ones are the correct
answer. Parsing errors where the constituents are
not retrieved correctly and unknown words where
the embeddings are not trained properly are re-
sponsible for other four percent of the errors. Fi-
nally, non-constituent answers led to around eight
percent false answers in the system output.

9 Conclusion and Future Work

We described a new linguistically-based end-to-
end DNN for Question Answering from unstruc-
tured data. This model is a neural formulation in
which linguistic constituents are explicitly mod-
eled. It operates an LSTM over the constituents
and uses the resulting hidden states to attend both
to question and to the encompassing context sen-
tence, thereby enriching the constituents represen-
tation with both. The use of constituents instead of
an arbitrary string of words in answers improves
the system performance in three ways.
First, it increases the precision of the system. By
looking at the small gap between the F1 and the
exact match metrics in our system and compare it
to the ones for the other systems, we can see that
the ratio of exact-match answers in our system is
higher than that of the other ones.
Second, it helps an answer to look more like a
human-generated one. Considering prediction and
ground truth as bags of tokens, the F1 (Macro-

440

averaged) metric computes the average overlap
between the prediction and ground truth answer.
While a predicted answer may have a full overlap
with the ground truth hence gains a high F1 score,
due to the irrelevant words it contains, it poses an
incoherent answer to users. The longer the gap
between exact match and F1 measures, the more
inappropriate words appear in answers. This is
primarily an essential factor in the overall quality
of dialogue QA systems where users expect to re-
ceive a natural and human-generated-like answer.
Last but not least, imposing constraints on the can-
didate space, limit errors and make the system
more efficient by decreasing the search space and
weeding out non-relevant answers. In the future,
we plan to integrate dependency relations into the
model by designing a larger model and evaluating
it on other QA datasets.

Acknowledgments

This research was partially funded by the Ministry
of Education, Youth and Sports of the Czech
Republic (project LM2015071), by Charles Uni-
versity SVV project number 260 453 and GAUK
207-10/250098 of Charles University in Prague.

References
Ahmad Aghaebrahimian. 2017a. Constrained deep an-
swer sentence selection. In Proceedings of the 20th In-
ternational Conference on Text, Speech, and Dialogue
(TSD).

Ahmad Aghaebrahimian. 2017b. Hybrid Deep Open-
Domain Question Answering. In Proceedings of the
8th Language and Technology Conference (LTC).

Ahmad Aghaebrahimian and Filip Jurčı́ček. 2016a.
Constraint-Based Open-Domain Question Answering
Using Knowledge Graph Search. In Proceedings of the
19th International Conference on Text, Speech and Di-
alogue (TSD), LNAI 9924.

Ahmad Aghaebrahimian and Filip Jurčı́ček. 2016b.
Open-domain Factoid Question Answering via Knowl-
edge Graph Search. In Proceedings of the Workshop
on Human-Computer Question Answering, The North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open- do-
main questions. In arXiv:1704.00051, 2017a.

Noam Chomsky. 1957. Syntactic structures. The
Hague, Paris: Mouton.

Noam Chomsky. 1993. Lectures on Government and
Binding: The Pisa Lectures. Mouton de Gruyter.

Peter Clark and Oren Etzioni. 2016. My computer is
an honor student but how intelligent is it? standardized
tests as a measure of ai. AI Magazine.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
worlds response. In Proceedings of the Conference on
Computational Natural Language Learning (CoNLL).

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2016. Attention-over-
attention neural networks for reading comprehension.
arXiv:1607.04423.

Jeffry L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: a study and an open task. In
Proceedings of IEEE ASRU Workshop.

Gerald Gazdar, Ewan H. Klein, Geoffrey K. Pullum,
and Ivan A. Sag. 1994. Generalized Phrase Structure
Grammar. Blackwell, Oxford.

Yichen Gong and Samuel R Bowman. 2017. Ruminat-
ing reader: Reasoning with gated multi-hop attention.
arXiv:1704.07415.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convolu-
tional neural networks. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing(EMNLP).

Hua He and Jimmy Lin. 2016. Pairwise word interac-
tion modeling with deep neural networks for seman-
tic similarity measurement. In Proceedings of The
North American Chapter of the Association for Com-
putational Linguistics (NAACL).

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching machines
to read and comprehend. In Proceedings of Advances
in Neural Information Processing Systems.

Felix Hill, Antoine Bordes, Sumit Chopra, and Ja-
son Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representations.
arXiv :1511.02301.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep read: A reading com-
prehension system. In Proceedings of Association for
Computational Linguistics (ACL).

441

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8).

Minghao Hu, Yuxing Peng, and Xipeng Qiu. 2017.
Reinforced mnemonic reader for machine comprehen-
sion. arXiv:1705.02798.

Tomasz Jurczyk, Michael Zhai, and Jinho D. Choi.
2016. Selqa: A new benchmark for selection- based
question answering. In Proceedings of the 28th In-
ternational Conference on Tools with Artificial Intel-
ligence.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the atten-
tion sum reader network. In Proceedings of the Asso-
ciation for Computational Linguistics.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilistic
ccg grammars from logical form with higher-order uni-
fication. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to doc-
ument recognition. In Proceedings of the IEEE.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In proceedings of the Association for
Computational Linguistics (ACL) System Demonstra-
tions.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2015. Ms marco: A human generated machine read-
ing comprehension dataset. CoRR, abs/1611.09268.

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai,
and Xiaofei He. 2017. Memen: Multi-layer embed-
ding with memory networks for machine comprehen-
sion. arXiv:1707.09098.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Procedings of the conference
Empirical Methods in Natural Language Processing
(EMNLP).

Carl Pollard and Ivan A. Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press, Chicago.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for ma-
chine comprehension of text. arXiv:1606.05250.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with deep
neural networks. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowl-
edge Management, CIKM ’16.

Matthew Richardson, Burges, Christopher J.C., and
Renshaw Erin. 2013. Mctest: A challenge dataset
for the open-domain machine comprehension of text.
In Proceedings of Empirical Methods in Natural Lan-
guage Processing(EMNLP).

Cicero dos Santos, Ming Tan, Bing Xiang, and
Bowen Zhou. 2016. Attentive pooling networks.
arXiv:1602.03609v1.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv:1611.01603.

Dan Shen and Dietrich Klakow. 2006. Exploring corre-
lation of dependency relation paths for answer extrac-
tion. In Proceedings of the 21st International Confer-
ence on Computational Linguistics.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop read-
ing in machine comprehension. In Proceedings of the
Workshop on Cognitive Computation: Integrating neu-
ral and symbolic approaches 2016 co-located with the
30th Annual Conference on Neural Information Pro-
cessing Systems (NIPS 2016).

Md Arafat Sultan, Vittorio Castelli, and Radu Florian.
2016. A joint model for answer sentence ranking and
answer extraction. In Transactions of the Association
for Computational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2017. Pointer networks. In Proceedings of NIPS.

Shuohang Wang and Jing Jiang. 2016. Machine
comprehension using match-lstm and answer pointer.
arXiv:1608.07905.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching networks
for reading comprehension and question answering. In
Proceedings of the Association for Computational Lin-
guistics(ACL).

Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah.
2016. Sentence similarity learning by lexical decom-
position and composition. arXiv:1602.07019.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017a. Fastqa: A simple and efficient neural architec-
ture for question answering. arXiv:1703.04816.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017b. Making neural qa as simple as possible but not
simpler. In Proceedings of the Computational Natural
Language Learning (CoNLL).

Pengtao Xie and Xing Eric. 2017. A constituent-
centric neural architecture for reading comprehension.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question an-
swering. arXiv:1611.01604.

442

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with freebase. In Proceedings of Association
for Computational Linguistics.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In Proceedings of
Association for Computational Linguistics(ACL).

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2016. Deep learning for answer sen-
tence selection. Proceedings of the NIPS Deep Learn-
ing Workshop.

Junbei Zhang, Xiaodan Zhu, Qian Chen, Lirong Dai,
and Hui Jiang. 2017. Exploring question understand-
ing and adaptation in neural-network-based question
answering. arXiv:1703.04617.

A Full Constituent types

Other constituent types include: NP, ROOT, NNP,
NN, JJ, VP, CD, PP, S, NNS, ADJP, SBAR, NP-
TMP, QP, ADVP, VBG, DT, VBN, IN, NNPS, VB,
RB, VBD, VBZ, JJR, VBP, UCP, X, CC, FRAG,
WHNP, JJS, NAC, NX, FW, TO, RBR, PDT, PRN,
INTJ, PRT, WHPP, PRP, SINV, WHADJP, MD,
RRC, WHADVP
For a description of each type please refer to
(Manning et al., 2014)

443

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 444–453
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

DIMSIM: An Accurate Chinese Phonetic Similarity Algorithm based on
Learned High Dimensional Encoding

Min Li
IBM Research

minli@us.ibm.com

Marina Danilevsky
IBM Research

mdanile@us.ibm.com

Sara Noeman
IBM

noemans@eg.ibm.com

Yunyao Li
IBM Research

yunyaoli@us.ibm.com

Abstract

Phonetic similarity algorithms identify words
and phrases with similar pronunciation which
are used in many natural language process-
ing tasks. However, existing approaches are
designed mainly for Indo-European languages
and fail to capture the unique properties of
Chinese pronunciation. In this paper, we pro-
pose a high dimensional encoded phonetic
similarity algorithm for Chinese, DIMSIM.
The encodings are learned from annotated data
to separately map initial and final phonemes
into n-dimensional coordinates. Pinyin pho-
netic similarities are then calculated by aggre-
gating the similarities of initial, final and tone.
DIMSIM demonstrates a 7.5X improvement
on mean reciprocal rank over the state-of-the-
art phonetic similarity approaches.

1 Introduction

Performing the mental gymnastics of transform-
ing ‘I’m hear’ to ‘I’m here,’ or, ‘I can’t so but-
tons’ to ‘I can’t sew buttons,’ is familiar to anyone
who has encountered autocorrected text messages,
punny social media posts, or just friends with bad
grammar. Although at first glance it may seem
that phonetic similarity can only be quantified for
audible words, this problem is often present in
purely textual spaces, such as social media posts
or text messages. Incorrect homophones and syn-
ophones, whether used in error or in jest, pose
challenges for a wide range of NLP tasks, such
as named entity identification, text normalization
and spelling correction (Chung et al., 2011; Xia
et al., 2006; Toutanova and Moore, 2002; Twiefel
et al., 2014; Lee et al., 2013; Kessler, 2005). These
tasks must therefore successfully transform incor-
rect words or phrases (‘hear’,’so’) to their phonet-
ically similar correct counterparts (’here’,’sew’),
which in turn requires a robust representation of
phonetic similarity between word pairs. A reli-

Pinyin initial final tone
xi1 x i 1
fan4 f an 4

Table 1: Example Pinyins.

偶(ou2,我wo2)稀饭(xi1fan4,喜欢xi2huan1)你。
I like you.
杯具(bei1ju4,悲剧bei1ju4)啊，为一个女孩纸
(zhi2,子zi5)这么香菇(xiang1gu1,想哭 xiang2ku1)。
Sadly, I am heart broken for a girl.

Table 2: Microblogs using phonetic transcription.

able approach for generating phonetically simi-
lar words is equally crucial for Chinese text (Xia
et al., 2006).

Unfortunately, most existing phonetic similar-
ity algorithms such as Soundex (Archives and
Administration, 2007) and Double Metaphone
(DM) Philips (2000) are motivated by English and
designed for Indo-European languages. Words are
encoded to approximate phonetic presentations by
ignoring vowels (except foremost ones), which is
appropriate where phonetic transcription consists
of a sequence of phonemes, such as for English.
In contrast, the speech sound of a Chinese char-
acter is represented by a single syllable in Pinyin
consisting of two or three parts: an initial (op-
tional), a final or compound finals, and tone 1 (Ta-
ble 1). As a result, phonetic similarity approaches
designed for Indo-European languages often fall
short when applied to Chinese text. Note that we
use Pinyin as the phonetic representation because
it is a widely accepted Romanization system (San,
2007; ISO, 2015) of Chinese syllables, used to
teach pronunciation of standard Chinese. Table 2
shows two sentences from Chinese microblogs,
containing informal words derived from phonetic
transcription. The DM and Soundex encodings for

1Chinese has five tones, represented on a 1-5 scale.

444

Words DM Soundex
稀xi1饭fan4 S:S,FN:FN X000,F500
喜xi2欢huan1 S:S,HN:HN X000,H500
泄xie4愤fen4 S:S,FN:FN X000,F500

Table 3: DM and Soundex of Chinese words.

zh ch sh

z c s

Figure 1: Grouping initials by phonetic similarity.

near-homonyms of 喜欢 from Table 2 are shown
in Table 3. Since both DM and Soundex ignore
vowels and tones, words with dissimilar pronun-
ciations are incorrectly assigned to the same en-
coding (e.g. 稀饭 and 泄愤), while true near-
homonyms are encoded much further apart (e.g.
稀饭 and 喜欢). On the other hand, additional
candidates with similar phonetic distances such as
心xin1烦fan2，西xi1方fang1 for稀饭 should be
generated, for consumption by downstream appli-
cations such as text normalization.

The example highlights the importance of con-
sidering all Pinyin components and their charac-
teristics when calculating Chinese phonetic simi-
larity (Xia et al., 2006). One recent work (Yao,
2015) manually assigns a single numerical num-
ber to encode and derive phonetic similarity. How-
ever, this single-encoding approach is inaccurate
since the phonetic distances between Pinyins are
not captured well in a one dimensional space. Fig-
ure 1 illustrates the similarities between a sub-
set of initials. Initial groups “z, c”, “zh, ch”,
“z, zh” and “zh, ch” are all similar, which can-
not be captured using a one dimensional represen-
tation (e.g., an encoding of “zh=0,z=1,c=2,ch=3”
fails to identify the “zh, ch” pair as similar.)
ALINE (Kondrak, 2003) is another illustration
of the challenge of manually assigning numer-
ical values in order to accurately represent the
complex relative phonetic similarity relationships
across various languages. Therefore, given the
perceptual nature of the problem of phonetic simi-
larity, it is critical to learn the distances based on as
much empirical data as possible (Kessler, 2005),
rather than using a manually encoded metric.

This paper presents DIMSIM, a learned n-
dimensional phonetic encoding for Chinese along
with a phonetic similarity algorithm, which uses
the encoding to generate and rank phonetically

similar words. To address the complexity of rel-
ative phonetic similarities in Pinyin components,
we propose a supervised learning approach to
learn n dimensional encodings for finals and ini-
tials where n can be easily extended from one to
two or higher dimensions. The learning model
derives accurate encodings by jointly considering
Pinyin linguistic characteristics, such as place of
articulation and pronunciation methods, as well as
high quality annotated training data sets. We com-
pare DIMSIM to Double Metaphone(DM), Mini-
mum edit distance(MED) and ALINE demonstrat-
ing that DIMSIM outperforms these algorithms by
7.5X on mean reciprocal rank, 1.4X on precision
and 1.5X on recall on a real-world dataset. Our
contributions are:

1. An encoding for Chinese Pinyin leveraging
Chinese pronunciation characteristics.

2. A simple and effective phonetic similarity
algorithm to generate and rank phonetically
similar Chinese words.

3. An implementation and a comprehensive
evaluation showing the effectiveness of DIM-
SIM over the state-of-the-art algorithms.

4. A package release of the implemented algo-
rithm and a constructed dataset of Chinese
words with phonetic corrections.2

2 Generating Phonetic Candidates

DIMSIM generates ranked candidate words with
similar pronunciation to a seed word. Similarity is
measured by a phonetic distance metric based on
n-dimensional encodings, as introduced below.

2.1 Phonetic Comparison for Pinyin

An important characteristic of Pinyin is that the
three components, initial, final and tone, can be in-
dependently phonetically compared. For example,
the phonetic similarity of the finals “ie” and “ue”
is identical in the Pinyin pairs {“xie2”,“xue2”}
and {“lie2”,“lue2”}, in spite of the varying ini-
tials. English, by contrast, does not have this char-
acteristic. Consider as an example, the letter group
“ough,” which is pronounced quite differently in
“rough,” “through” and “though.”

Note that depending on the initials, a final of
same written form can represent different finals.
For instance, ü is written as u after j, q and x; uo is
written as o after b, p,m, f or w. There are a total

2https://github.com/System-T/DimSim.

445

of six rewritten rules in Pinyin (ISO, 2015). Since
these rules are fixed, we preprocess the Pinyins ac-
cording to these rules, transforming them into the
original form for our internal representation (e.g.,
we represent ju as jü and bo as buo.)

2.2 Measuring Phonetic Similarity
DIMSIM represents a given word w as a list of
characters {ci|1 ≤ i ≤ K} where K is the num-
ber of characters and pci denotes the Pinyin of ith
character. The initial, final, and tone components
of pci are denoted as pIci , p

F
ci , and pTci , respectively.

Formally, the phonetic similarity S between the
pronunciation of ci and c′i is computed using Man-
hattan distance as the sum of the distances be-
tween the three pairs of components, as follows:

∑

1≤i≤K
S(ci, c

′
i) =

∑

1≤i≤K
{Sp(pIci , pIc′i)+

Sp(p
F
ci , p

F
c′i
) + ST (p

T
ci , p

T
c′i
)}

(1)

Manhattan distance is an appropriate metric since
the three components are independent. Any sin-
gle change does not affect more than one com-
ponent, and any change affecting several compo-
nents is the result of multiple independent and
additive changes. It follows that the similarity
between two words is computed as the sum of
the phonetic distances of characters. For exam-
ple, the Pinyins of “童鞋” and “同学” are
“tong2xie2” and “tong2xue2”. The distance be-
tween “童(tong2)” and “同(tong2)” is zero; the
distance between “鞋(xie2)” and “学(xue2)”
is calculated as S(“鞋” , “学”) = Sp(x, x) +
Sp(ie, ue) + ST (2, 2). Although the characters
“鞋(xie2)” and “学(xue2)” are completely dif-
ferent, their Pinyins only differ in their finals.

2.3 Learning Pinyin Encodings
The next task is to compute encodings for initials,
finals, and tones. While tonal similarity is easily
handled (see Section 2.4), pairwise similarity for
initials and finals is more complex. We adopt a
supervised learning approach to obtain these en-
codings, using linguistic characteristics combined
with a labeled dataset. The latter consists of word
pairs, with specific pairs of initials or finals man-
ually annotated for phonetic similarity. The set of
annotated pairs between initials and finals are then
used to learn the n-dimensional encodings of ini-
tials and finals, which will in turn be used for gen-
erating phonetically similar candidates.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Confidential Review Copy. DO NOT DISTRIBUTE.

For instance, ü is written as u after j, q, x. uo
is written as o after b, p, m, f or w. There are a
total of six rewritten rules in Pinyin (ISO, 2015).
Since these rules are fixed, it is straightforward to
preprocess the Pinyins according to these rules to
turn them into the original form of Pinyins as a
internal representation before conducting phonetic
comparison. For example, we represent ju as jü,
bo as buo. After the preprocessing step, we inde-
pendently compare components.

2.2 Measuring Phonetic Similarity

DIMSIM represents a given Chinese word w as a
list of Chinese characters {ci|1 i K} where
K is the number of characters in w and pci denotes
the Pinyin of ith character. The initial, final, and
tone components of the Pinyin pci are denoted as
pI

ci
, pF

ci
, and pT

ci
, respectively.

Formally, the phonetic similarity S between the
pronunciation of two characters, ci and c0i is com-
puted using Manhattan distance as the sum of the
distances between the three pairs of components,
as follows:

X

1iK

S(ci, c
0
i) =

X

1iK

{Sp(pI
ci

, pI
c0i

)+

Sp(pF
ci

, pF
c0i

) + ST (pT
ci

, pT
c0i

)}
(1)

Manhattan distance is an appropriate metric since
the three components are independent. A single
change in a Pinyin is therefore a change to the ini-
tial, the final, or the tone, but not to more than
one of the components simultaneously. A change
that affects more than one component is the re-
sult of multiple independent and therefore additive
changes.

Following the same logic, the phonetic sim-
ilarity between two words w and w0 is com-
puted as the sum of the distances between the
Pinyins. For example, the Pinyins of “Âã”
and “�f” are “tong2xie2” and “tong2xue2”
respectively. The distance between “Â(tong2)”
and “�(tong2)” is zero; the distance between
“ã(xie2)” and “f(xue2)” is calculated as
S(ie, ue) = Sp(x, x)+Sp(ie, ue)+ST (2, 2). We
see that although the characters are completely dif-
ferent, “ã(xie2)” and “f(xue2)” only differ
in their finals, but not their initials and tones.

2.3 Learning Pinyin Encodings

Therefore, the next task is to generate an accurate
representation of phonetic similarity for every pair
of initials, finals, and tones. As there are only 5

Labial Alveolar Retroflex Alveolo- Velar
palatal

Plosive (u) b d g
Plosive (a) p t k
Nasal m n
Affricate (u) z zh j
Affricate (a) c ch q
Fricative f s sh x h
Liquid l r
Semivowel y and w
(u) = unaspirated, (a) = aspirated

Table 4: Table of Pinyin initials (colors denote clusters).

tones in Chinese, pairwise tonal similarity is eas-
ily handled (see section 2.4). However, pairwise
similarity for initials and finals is more complex
and must be learned. We use a supervised machine
learning approach that uses Pinyin linguistic char-
acteristics combined with manually labeled data
sets of phonetic similarity. The training data sets
consist of word pairs that highlight a pair of ini-
tials (or finals), and are used as the context for an
annotator-provided phonetic similarity score. The
manually labeled scores are transformed into sim-
ilarity scores. The set of initials (or finals) is then
mapped to the n-dimensional encodings by mini-
mizing the difference between the resulting pair-
wise distances, and the distances obtained from
the training data sets.

2.3.1 Generating Similar Word Pairs
Phonetically similar word pairs are used to create
annotations representing the phonetic similarity of
a pair of initials, or finals. Chinese has 253 pairs
of initials and 666 pairs of finals. Manually an-
notating each pair similarity requires a very large
number of examples: assuming ten or twenty word
pairs are provided as context for each pair, the task
quickly blows up to nine or eighteen thousand an-
notations. We observe that the phonetic similar-
ity of Chinese Pinyin is greatly impacted by the
pronunciation methods and the place of articula-
tion. Leveraging known Pinyin linguistic charac-
teristics can improve the accuracy of our model
and reduce the size of the annotation task. Specif-
ically, this is done by grouping the Pinyin compo-
nents into initial clusters according to the Pinyin
pronunciation tables (ISO, 2015) and only anno-
tating the pairs within each cluster along with a
single pairwise distance between clusters.

Table 4 shows the the clustering of initials ac-
cording to the Pinyin linguistic characteristics.
We partition initials into 12 clusters, consisting

Figure 2: Table of Pinyin Initials.

2.3.1 Generating Similar Word Pairs
Phonetically similar word pairs are used to create
annotations representing the phonetic similarity of
initials, or finals. Chinese has 253 pairs of initials
and 666 pairs of finals. Annotating examples of
all these pairs is labor intensive and error-prone.
Assuming twenty word pairs are provided as con-
text per pair, the task quickly blows up to eigh-
teen thousand annotations. However, we observe
that the phonetic similarity of Pinyin is greatly im-
pacted by the pronunciation methods and the place
of articulation - this allows us to improve the accu-
racy and simplify the annotation task. Specifically,
this is done by grouping Pinyin components into
initial clusters and only annotating pairs within
each cluster, and representative cluster pairs.

Figure 2 partitions initials into 12 clusters, con-
sisting of “bp”,“dt”,“gk”,“hf”,“nl”,“r”, “jqx”,
“zcs”, “zhchsh”, “m” ,“y” and “w”, based on the
pronunciation method and the place of articula-
tion. “f” and “h” are grouped together as they are
both fricative and sound very similar, especially
for people from the southeast of China (Zhishihao,
2017). We then eliminate the comparison of pairs
that are highly similar or highly dissimilar. For ex-
ample, as the semivowel initials “y” and “w” are
dissimilar to all other initials, we label every ini-
tial pair containing one of them with the lowest
possible score. To compare between clusters, we
randomly choose one initial from each cluster and
generate just those comparison pairs. The number
of pairs of initials decreases from 253 to 59.

We use a similar method for finals, partition-
ing them into six groups by the six basic vow-
els (“a,o,e,i,u,ü”) (e.g., “i,in,ing” are clustered to-
gether.) We then use edit distance and common
sequence length constraints to guide the pair gen-
eration; specifically, we compare a pair of finals
if the edit distance between them is 1 or 2. Since

446

the length of finals on average is two, an edit dis-
tance of three means a complete change to the fi-
nal, resulting in pairs with the lowest similarity.
To compare finals across clusters, since the edit
distance between any such pair is at least two, we
compare pairs only when the length of the com-
mon sequence is at least two (for example, “ian”
and “uan”), and otherwise assign the lowest possi-
ble similarity to the pairs. This drops the number
of comparison pairs of finals down to 113.

After generating the comparison pairs, we cre-
ate word pairs whose Pinyins only differ in the
these pairs. We identify and account for several
confounding factors that may affect annotation: 1)
the position of the character containing the initial
or final being compared; 2) the word length; and 3)
the combination of initials and finals. Since most
Chinese words are of length two, we only gener-
ate word pairs of length two for this task. Provid-
ing word pairs of length greater than two would
not make much difference to learned encodings as
long as word pairs are representative.

For a given initial (or final) pair (p1, p2), such
as (b, p), we first generate the all possible Pinyins
with a component of p1 such as bao and bing.
For each Pinyin py, we retrieve all the words
with length two in the dictionary which also have
first or second character with the same py. Ex-
ample words for py=“bao′′ include包bao1袱fu2.
For each created word w, we change the initial
(or final) from p1 to p2, retrieve the correspond-
ing words from the dictionary and generate the
word pairs to compare. One such example is
(包bao1袱fu2, 泡pao4芙fu2). Finally, from the
full list we randomly select five word pairs that
vary the first character, and five word pairs that
vary the second character.

We invite three native Chinese speakers to per-
form the annotations. For each word pair, the an-
notators give a label on a 7 point scale represent-
ing their agreement, where the labels range from
’Completely Disagree’ (1) to ’Completely Agree’
(7). We calculate Krippendorff’s α (Hayes and
Krippendorff, 2007) for the initials and finals an-
notations to be 0.69 and 0.54, representing the
inter-annotator agreement. For each word pair, we
use Equation 2 to calculate the distance θ with the
average value φ of labels across the annotators.
Equation 2 inverts the labels so that the output can
be used as a distance metric (phonetically similar
initials or finals are closer together), and scales the

b p

m

f dt

nl

g k
h

j q x

zh

chsh

r z

cs

-30 -20 -10 0 10 20 30

Figure 3: Learned initial encodings, n=1.

b p

m

f

d t

n
l

g k

h

j q x

zh

ch sh

r

z

c
s

-1000

-500

0

500

1000

1500

2000

-1500 -1000 -500 0 500 1000

Figure 4: Learned initial encodings, n=2.

result to more accurately measure phonetic simi-
larities. The parameters a and b are set 4 and 104

by default, but we also show that the performance
of our method is not sensitive to the parameter set-
tings (see Section 3.2).

θ(φ) = 1/aφ ∗ b (2)

2.3.2 Learning Model
Once the average distances between pairs are com-
puted from the annotated data sets, we define a
constrained optimization to compute encodings of
the initials and finals. The final goal is to map each
initial (or final) to an n-dimensional point.

The distance Sp of a pair p of points
(x1, x2, ..., xn), (y1, y2, ..., yn) is calculated using
Euclidean distance as shown in equation 3.

Sp =

√ ∑

1≤i≤n
(xi − yi)2 (3)

The model aims to minimize the sum of the ab-
solute differences between the Euclidean distances
of component pairs and the average distances ob-
tained from the annotated training data across all
pairs for initials (or finals) C. We also incorporate
a penalty function, τp, for pairs deviating from the
manually annotated distance θ so that more pho-
netically similar pairs are penalized more highly
(we discuss τ further in Section 3.2). Equation 4
represents the cost function:

min
∑

p∈C
|S2
p − θ2p| ∗ τp (4)

447

One main advantage of our learning model is
that it is generic and can easily extend to any n-
dimensional space. Based on the structured of
Table 2, we intuit that extending beyond one di-
mension will yield more accurate encodings. Fig-
ures 3 and 4 visualize the computed encodings
of initials when setting n=1 and n=2 We see that
when n = 2, the locations of initial coordinates
align well with Table 2,. In particular, the twelve
groups are clustered in a pattern that is defined in
Section 2.3.1. For example, “bp,gk,jqx” are sep-
arated into different clusters. However, while Ta-
ble 2 indicated the basic clusters for the initials,
our learned model goes further than Table 2 by ac-
tually quantifying the inter- and intra-cluster sim-
ilarities. Specifically, clusters “c, ch, j, q, x” are
tighter than clusters “c, c, h” and “d, t”, whereas
the clusters “m” and “n, r, l” are well separated
from other clusters. Interestingly, the learning al-
gorithms organically discovers new clusters that
are not reflected in Table 2; namely that “r,n” and
“r,l” are pairs of phonetically similar initials.

When n = 1, the learned model collapses the
coordinates into one dimension (Figure 3). We
observe that the predefined clusters are not well
aligned, and many clusters are mixed together
(e.g., “bp,gk,nl,dt”), preventing DIMSIM from
considering variations within a cluster to be more
similar than variations between clusters. Visually
comparing Figures 3 and 4 gives the intuition for
why DIMSIM with n = 2 performs better than
DIMSIM with n = 1, which is in turn reflected in
our evaluation results. Section 3 presents the ef-
fects that varying the number of dimensions has
on evaluation results.

2.4 Phonetic Tone Similarity

There are five tones in Chinese, represented by a
tone number scale ranging from 1 to 5. It is sim-
ple to use tone numbers for tone encodings and the
difference between the tones of two Pinyins as the
raw measure of distance, ranging in value from 1
to 5 (e.g., ST (xue2, xue4) = 4− 2 = 2). One ex-
ception is that we encode tone 3 as the numerical
value of 2.5 since tone 3 is more similar to tone 2
compared to tone 4 according to the relative pitch
changes of the four tones (ISO, 2015). However,
this measure must first be scaled to be compara-
ble to the pairwise phonetic distances of initials
and finals. There is an additional constraint: any
pairwise difference in initials or finals must have

Input : Word w, Threshold th,Dict dict;
Output: Words outws;
begin

pys = getPinyins(w,dict);
headPys =
getSimPinyins(pys(0), th);
headWords =
getWordswithHeadPy(headPys, dict);
for cw ∈ headWords do

if cw.size 6= w.size then
continue;

end
sim = getSimilarity(cw,w);
if sim ≤ th then

outws.add(cw);
end

end
sortByAscSim(outws);
return outws;

end
Algorithm 1: Generating phonetic candidates.

a greater negative effect on the phonetic similarity
between characters than any difference in tones.
For example, S(xue1,lue1)<S(xue1,xue5) even
though xue1 and xue5 are at opposite ends of
the tone scale. We therefore scale ST such that
Max(ST) <Min(Sp).

2.5 Candidate Generation and Ranking

Having determined the phonetic encodings and the
mechanism to compute the phonetic similarity us-
ing learned phonetic encodings, we now describe
how to generate and rank similar candidates in Al-
gorithm 1. Given a word w, a similarity threshold
th, and a Chinese Pinyin dictionary dict, we re-
trieve the Pinyin py of w from dict. We derive
a list of Pinyins Pys whose similarity to py falls
within the threshold th. These are used to gener-
ate a list of words with the same Pinyin in Pys
and the same number of characters as w. We cal-
culate the similarity of each candidate word with
w using Equation 1 and filter out candidates that
fall outside the similarity threshold th. Thus, th
is a parameter that affects the precision and recall
of the generated candidates. A larger th generates
more candidates, increasing recall while decreas-
ing precision.3 Finally, we output the candidates
ranked in ascending order by similarity distance.

3We study the impact of varying th in Section 3.

448

3 Evaluation

We collect 350 words from social media (Wu,
2016), and annotate each with 1-3 phoneti-
cally similar words. We use a community-
maintained free dictionary to map characters to
Pinyins (CEDict, 2016). We compare DIMSIM

with Double Metaphone (DM) (Philips, 2000),
ALINE (Kondrak, 2003) and Minimum edit dis-
tance (MED) (Navarro, 2001) in terms of preci-
sion (P), recall (R), and average Mean Reciprocal
Rank (MRR) (Voorhees and et al., 1999). We cal-
culate recall automatically using the the full test
set of word pairs (Wu, 2016). Since downstream
applications will only consider a limited number
of candidates in practice, we evaluate precision via
a manual annotation task on the top-ranked candi-
dates generated by each approach. DM consid-
ers word spelling, pronunciation and other mis-
cellaneous characteristics to encode the word into
a primary and a secondary code. DM as one of
the baselines is known to perform poorly at rank-
ing the candidates (Carstensen, 2005) since only
two codes are used. We therefore use our method
(Equation 1) to rank the DM-generated candi-
dates, to create a second baseline, DM-rank.4 The
third baseline, ALINE, measures phonetic similar-
ity based on manually coded multi-valued articu-
latory features weighted by their relative impor-
tance with respect to feature salience (again, man-
ually determined). MED, the last baseline, com-
putes similarity as the minimum-weight series of
edit operations that transforms one sound compo-
nent into another.

3.1 The Effectiveness of DIMSIM

Recall and MRR: We compare DIMSIM to DM,
DM-rank, ALINE and MED. DIMSIM1 and DIM-
SIM2 denotes DIMSIM encoding dimension n = 1
and n = 2, respectively. As shown in Figure 5,
DIMSIM2 improves recall by factors of 1.5, 1.5,
1.3 and 1.2, and improves MRR by factors of 7.5,
1.4, 1.03 and 1.2 over DM, DM-Rank, ALINE
and MED, respectively. DM performs relatively
poorly, as it is designed for English, and does not
accurately reflect Chinese pronunciation. Rank-
ing DM candidates using the DIMSIM phonetic
distance defined in Equation 1 improves its av-
erage MRR by a factor of 5.5. However, even
DM-Rank is outperformed by the simple MED

4We do not compare with Soundex as DM is accepted to
be an improved phonetic similarity algorithm over Soundex.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

MRR R

DM

DM-rank

ALINE

MED

DimSim1

DimSim2

Figure 5: Recall and MRR.

 0

 0.2

 0.4

 0.6

 0.8

 1

P MRR

ALINE

MED

DM-rank

DimSim2

Figure 6: Precision and MRR.

baseline, demonstrating the inherent problem with
DM’s coarse encodings. While ALINE has a
similar recall to DIMSIM, it performs worse on
MRR than DIMSIM2 because it does not have
a direct representation of compound vowels for
Pinyin. It measures distance between compound
vowels using phonetic features of basic vowels
which leads to inaccuracy. In turn, MED strug-
gles with representing accurate phonetic distances
between initials, since most initials are of length 1,
and the edit distance between any two characters
of length 1 is identical. In contrast, DIMSIM en-
codes initials and finals separately, and thus even a
1-dimensional encoding (DIMSIM1) outperforms
the other baselines. Finally, the intuition of Fig-
ures 3 and 4 is reflected in the data, as DIMSIM2
outperforms DIMSIM1 by 14% (MRR).

Precision and MRR: Here we evaluate the
quality of the candidate ranking since in practice,
downstream applications consider only a small
number of possible candidates for every word. We
ask two native Chinese speakers to annotate the
quality of the generated candidates. Choosing 100
words randomly from the test set, we use DM-
rank, MED, ALINE and DIMSIM2 to generate
top-K candidates for each seed word (K = 5).5

The annotators mark each candidate as phoneti-
cally similar to the seed word (1) or not (0), also
marking the one candidate they believe to be the
most similar-sounding (2), which may be any of

5We do not evaluate DM and DIMSIM1 as they perform
worse than DM-Rank and DIMSIM2, respectively.

449

the top-K candidates. We then compute precision
and average MRR using the obtained annotations.
We achieve inter-level agreement(ILA) of 0.75 for
P and ILA of 0.84 for average MRR. DIMSIM

once again outperforms MED and DM-Rank by up
to 1.4X for precision and 1.24X for MRR. Since
the only criteria for picking the best top-K candi-
date is phonetic similarity, this demonstrates that
DIMSIM ranks the most phonetically similar can-
didates higher than the other baselines.

τ(φ)
θ(φ) 1/2φ 1/4φ 1/φ2 1/φ4

∗102 ∗104 ∗102 ∗103

None F10 F20 F30 F40
2φ F11 F21 - -
4φ F12 F22 - -
φ2 - - F33 F34
φ4 - - F43 F44

Table 4: Variations of θ,τ .

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

F10

F20

F30

F40

Figure 7: Distance by θ.

 0.6

 0.7

 0.8

 0.9

 1

MRR R

F10
F11
F12

F20
F21
F22

F30
F33
F34

F40
F43
F44

Figure 8: Impact of varying θ,τ .

3.2 Impact of Scoring and Penalty Functions

We study the sensitivity of DIMSIM to varying the
scoring and penalty functions, using recall and av-
erage MRR for evaluation. Table 4 shows four dif-
ferent scoring functions θ and penalty functions
τ (including the variation of not using a penalty

function) to convert the annotator scores φ to pair-
wise distances S, following Equation 4.

Figure 7 depicts the values of the four scoring
functions θ as a function of the annotator scores
on a log 10 scale, to demonstrate the effect of
varying a and b, as well as using φ as the base
or exponent. Figure 8 demonstrates how sensitive
our model is to the different combinations of scor-
ing and penalty functions. We see that although
Recall is entirely insensitive to the variations, the
performance of MRR is impacted. There is a
clear preference for the variations on the “diago-
nal” of Table 4: F11, F22, F33, F44, but the near-
identical performance of these variations demon-
strates DIMSIM’s robustness to the particular scor-
ing and penalty functions used. Note that not using
a penalty function impacts MRR significantly.

 0.6

 0.7

 0.8

 0.9

 1

MRR R

n=1 n=2 n=3 n=4

Figure 9: Impact of varying n.

3.3 Impact of the Encoding Dimensions

As demonstrated above, encoding initials and fi-
nals into a two-dimensional space is more ef-
fective than a one-dimensional space. Figure 9
presents the results of continuing to increase the
number of dimensions, n = [1, 4]. We observe
that recall is barely affected, with all variations
able to successfully identify the targeted words
98% to 99% of the time. We also see that moving
from n=1 to n=2 increases the average MRR by
1.14X . However, further increasing the number
of dimensions to n>2 no longer improves average
MRR, indicating that learning a two-dimensional
encoding is enough to capture the phonetic rela-
tionships between Pinyin components.

3.4 Impact of the Distance Threshold

We examine how the similarity distance thresh-
old (th) impacts DIMSIM by varying th from 2 to
4096 (Figure 10) (using the scoring function F22).
As th increases, recall increases from 0.75 to 0.99,
converging when th reaches 2048. By increasing
th DIMSIM matches more characters that are simi-

450

 0.6

 0.7

 0.8

 0.9

 1

 1 4 16 64 256 1024 4096

MRR R

Figure 10: Impact of varying th.

lar to the first character of the given word, which in
turn increases the number of candidates within the
distance. Thus, the probability of including the la-
beled gold standard words in the results increases.
MMR is less sensitive to th, converging when th
reaches 128. However, the generated set of can-
didate words is reduced too much for th < 128,
hurting the performance of MMR. To ensure both
high recall and MRR we set th = 2500.

 0.6

 0.7

 0.8

 0.9

 1

 1 4 16 64 256 1024 4096

MRR R

Figure 11: Varying candidate nc.

3.5 Impact of Number of Candidates

While generating more candidates improves the
recall, presenting too many candidates to a down-
stream application is not desirable. To find a bal-
ance, we study the impact of varying the upper
limit of the number of generated candidates nc
from 2 to 2048 (Figure 11). We find that MRR
converges at 64 candidates, while recall takes
longer; however, setting the upper limit at 64 can-
didates already achieves almost 98% recall, sug-
gesting it as a reasonable cutoff in practice. Unless
otherwise mentioned, we set nc = 1, 000 for ex-
periments, to isolate the impact of this parameter.

3.6 Error Analysis

We analyze and summarize three types of errors
made by DIMSIM. The first occurs when targeted
words are out of vocabulary(OOV). For instance,
for the original word “药丸” , the targed word is

“要完” which is OOV. As is commonly the case in
text normalization applications which convert in-
formal language to well-formed terms, our method
works as long as the targeted words are in the dic-
tionary. This shortcoming is generally alleviated
by adding new terms to the dictionary. Second,
DIMSIM cannot derive phonetic candidates from
dialects that are not encoded in our mapping ta-
ble. For example, for “冻(dong4)蒜(suan4)” , the
targeted word “当(dang1)选(xuan2)” is obtained
using the pronunciation of southern Fujian dialect.
However, our approach can easily be extended to
incorporate and capture such variants by learning
mapping tables for each dialect and using them
to generate corresponding candidates. Finally, we
constrain DIMSIM to not identify candidates that
differ in length from the seed word, as we observe
that most transcriptions have the same word length
- though some corner cases do occur.

4 Related Work

There is a plethora of work focusing on
the phonetic similarities between words and
characters (Archives and Administration, 2007;
Mokotoff, 1997; Taft, 1970; Philips, 1990, 2000;
Elsner et al., 2013). These algorithms encode
words with similar pronunciation into the same
code. For example, Soundex (Archives and
Administration, 2007) converts words into fixed
length code through a mapping table of initial
groups to ordinal numbers. These algorithms fail
to capture Chinese phonetic similarity since the
conversion rules do not consider pronunciation
properties of Pinyin. Linguists in the phonetic and
phonology community have also proposed several
phonetic comparison algorithms (Kessler, 2005;
Mak and Barnard, 1996; Nerbonne and Heeringa,
1997; Ladefoged, 1969; Kondrak, 2003) for de-
termining the similarity between speech forms.
However, as features of articulatory phonetics
are manually assigned, these algorithms fall short
in capturing the perceptual essence of phonetic
similarity through empirical data (Kessler, 2005).
In contrast, DIMSIM achieves high accuracy by
learning the encodings both from high quality
training data sets and linguistic Pinyin features.

Several works in Named Entity translation (Lin
and Chen, 2002; Lam et al., 2004; Kuo et al., 2007;
Chung et al., 2011) focus on learning the phonetic
similarity between English and Chinese automati-
cally. These approaches first represent English and

451

Chinese words in basic phoneme units and apply
edit distance algorithms to compute the similar-
ity. Training frameworks are then used to learn
the similarity. However, the phonetic similarity
used in these systems cannot be applied to Chi-
nese words since Pinyin has its own specific char-
acteristics, which do not easily map to English, for
determining phonetic similarity. Another main ap-
plication of phonetic similarity algorithms is text
normalization (Xia et al., 2006; Li et al., 2003;
Han et al., 2012; Sonmez and Ozgur, 2014; Qian
et al., 2015), where phonetic similarity is mea-
sured by a combination of initial and final simi-
larities. However, the encodings used in these ap-
proaches are too coarse-grained, yielding low F1
measures. DIMSIM learns separate high dimen-
sional encodings for initials and finals, and uses
them to calculate and rank the distances between
Pinyin representations of Chinese word pairs. Karl
Stratos (Stratos, 2017) proposes a sub-character
architecture to deal with the data sparsity problem
in Korean language processing by breaking down
each Korean character into a small set of primitive
phonetic units. However, this work does not ad-
dress the problem of the phonetic similarity and is
thus orthogonal to DIMSIM.

5 Conclusion

Motivated by phonetic transcription as a widely
observed phenomenon in Chinese social media
and informal language, we have designed an accu-
rate phonetic similarity algorithm. DIMSIM gen-
erates phonetically similar candidate words based
on learned encodings that capture the pronunci-
ation characteristics of Pinyin initial, final, and
tone components. Using a real world dataset,
we demonstrate that DIMSIM effectively improves
MRR by 7.5X , recall by 1.5X and precision by
1.4X over existing approaches.

The original motivation for this work was to im-
prove the quality of downstream NLP tasks, such
as named entity identification, text normalization
and spelling correction. These tasks all share a de-
pendency on reliable phonetic similarity as an in-
termediate step, especially for languages such as
Chinese where incorrect homophones and syno-
phones abound. We therefore plan to extend this
line of work by applying DIMSIM to downstream
applications, such as text normalization.

References
National Archives and Records Administra-

tion. 2007. The Soundex Indexing System.
https://www.archives.gov/research/
census/soundex.html.

Adam Carstensen. 2005. An Introduction to
Double Metaphone and the Principles Behind
Soundex. http://www.b-eye-network.
com/view/1596.

CEDict. 2016. CC-CEDICT. https:
//www.mdbg.net/chindict/chindict.
php?page=cc-cedict.

Jen-Ming Chung, Fu-Yuan Hsu, Cheng-Yu Lu, Hahn-
Ming Lee, and Jan-Ming Ho. 2011. Automatic
english-chinese name translation by using web-
mining and phonetic similarity. In IEEE Interna-
tional Conference on Information Reuse and Inte-
gration, pages 283–287.

Micha Elsner, Sharon Goldwater, Naomi Feldman, and
Frank Wood. 2013. A joint learning model of word
segmentation, lexical acquisition, and phonetic vari-
ability. In Proc. EMNLP.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Au-
tomatically constructing a normalisation dictionary
for microblogs. In Proc. of the joint conference on
EMNLP and CoNLL, pages 421–432. ACL.

Andrew F. Hayes and Klaus Krippendorff. 2007. An-
swering the call for a standard reliability measure
for coding data. Communication Methods and Mea-
sures, 1(1):77–89.

ISO. 2015. ISO 7098: Romanization of Chi-
nese. https://www.iso.org/standard/
61420.html.

Brett Kessler. 2005. Phonetic comparison algo-
rithms. Transactions of the Philological Society,
103(2):243–260.

Grzegorz Kondrak. 2003. Phonetic alignment and sim-
ilarity. Computers and the Humanities, 37(3):273–
291.

Jin-Shea Kuo, Haizhou Li, and Ying-Kuei Yang. 2007.
A phonetic similarity model for automatic extraction
of transliteration pairs. ACM Transactions on Asian
Language Information Processing (TALIP), 6(2):6.

Peter Ladefoged. 1969. The measurement of phonetic
similarity. In Proceedings of the 1969 conference on
Computational linguistics, pages 1–14. Association
for Computational Linguistics.

Wai Lam, Ruizhang Huang, and Pik-Shan Cheung.
2004. Learning phonetic similarity for matching
named entity translations and mining new transla-
tions. In Proc. ACM SIGIR, pages 289–296.

Chia-ying Lee, Yu Zhang, and James R Glass. 2013.
Joint learning of phonetic units and word pronunci-
ations for asr. In EMNLp, pages 182–192.

452

Hong-lian Li, Wei He, and Bao-zong Yuan. 2003. An
kind of chinese text strings’ similarity and its appli-
cation in speech recognition. Journal of Chinese In-
formation Processing, 17(1):60–64.

Wei-Hao Lin and Hsin-Hsi Chen. 2002. Backward ma-
chine transliteration by learning phonetic similarity.
In Proc. CoNLL, pages 1–7. ACL.

Brian Mak and Etienne Barnard. 1996. Phone clus-
tering using the bhattacharyya distance. In Spoken
Language, 1996. ICSLP 96. Proceedings., Fourth
International Conference on, volume 4, pages 2005–
2008. IEEE.

Gary Mokotoff. 1997. Soundexing and genealogy.
Avotaynu.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching. ACM computing surveys (CSUR),
33(1):31–88.

John Nerbonne and Wilbert Heeringa. 1997. Measur-
ing dialect distance phonetically. In Proceedings of
the Third Meeting of the ACL Special Interest Group
in Computational Phonology (SIGPHON-97).

Lawrence Philips. 1990. Hanging on the metaphone.
Computer Language, 7(2):6.

Lawrence Philips. 2000. The double metaphone search
algorithm. C/C++ users journal, 18(6):38–43.

Tao Qian, Yue Zhang, Meishan Zhang, Yafeng Ren,
and Dong-Hong Ji. 2015. A transition-based model
for joint segmentation, pos-tagging and normaliza-
tion. In EMNLP, pages 1837–1846.

Duanmu San. 2007. The Phonology of Standard Chi-
nese. Oxford University Press.

Cagil Sonmez and Arzucan Ozgur. 2014. A graph-
based approach for contextual text normalization. In
EMNLP, pages 313–324.

Karl Stratos. 2017. A sub-character architecture for
korean language processing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 721–726.

Robert L Taft. 1970. Name search techniques. 1. Bu-
reau of Systems Development, New York State Iden-
tification and Intelligence System.

Kristina Toutanova and Robert C. Moore. 2002. Pro-
nunciation modeling for improved spelling correc-
tion. In Proc. ACL, ACL ’02, pages 144–151,
Stroudsburg, PA, USA.

Johannes Twiefel, Timo Baumann, Stefan Heinrich,
and Stefan Wermter. 2014. Improving domain-
independent cloud-based speech recognition with
domain-dependent phonetic post-processing. In
AAAI, pages 1529–1536.

Ellen M Voorhees and et al. 1999. The trec-8 question
answering track report. In Trec, volume 99, pages
77–82.

You Wu. 2016. Commonly used phonetic vocab-
ulary. http://www.51wendang.com/doc/
97585e99067d692a1bbaec92.

Yunqing Xia, Kam-Fai Wong, and Wenjie Li. 2006. A
phonetic-based approach to chinese chat text nor-
malization. In Proc. ACL, pages 993–1000.

Mabus Yao. 2015. An algorithm for Chinese Simi-
larity based on phonetic grapheme coding. http:
//mabusyao.iteye.com/blog/2267661.

Zhishihao. 2017. Differentiating f and h. http://
www.zhishihao.com/xue/show/51763.

453

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 454–464
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Challenge or Empower:
Revisiting Argumentation Quality in a News Editorial Corpus

Roxanne El Baff Henning Wachsmuth ∗ Khalid Al-Khatib Benno Stein
Bauhaus-Universität Weimar, Weimar, Germany, <first>{.<last>}+@uni-weimar.de

∗ Paderborn University, Paderborn, Germany, henningw@upb.de

Abstract

News editorials are said to shape public opin-
ion, which makes them a powerful tool and
an important source of political argumentation.
However, rarely do editorials change anyone’s
stance on an issue completely, nor do they tend
to argue explicitly (but rather follow a subtle
rhetorical strategy). So, what does argumen-
tation quality mean for editorials then? We de-
velop the notion that an effective editorial chal-
lenges readers with opposing stance, and at the
same time empowers the arguing skills of read-
ers that share the editorial’s stance — or even
challenges both sides. To study argumentation
quality based on this notion, we introduce a
new corpus with 1000 editorials from the New
York Times, annotated for their perceived ef-
fect along with the annotators’ political orien-
tations. Analyzing the corpus, we find that an-
notators with different orientation disagree on
the effect significantly. While only 1% of all
editorials changed anyone’s stance, more than
5% meet our notion. We conclude that our cor-
pus serves as a suitable resource for studying
the argumentation quality of news editorials.

1 Introduction

A news editorial is an article that argues in favor of
a particular stance on a usually timely controversial
issue, such as the relocation of the US embassy in
Israel to Jerusalem. Usually, it reflects the politi-
cal ideology of the newspaper, aiming to persuade
readers of the respective stance. Such editorials are
said to have the power to shape the opinion of the
masses. Similarly, they can increase or decrease
the gap between readers with opposing beliefs (van
Dijk, 1995). As such, news editorials represent
an important resource for research on argument
mining (Mochales and Moens, 2011) and debating
technologies (Rinott et al., 2015).

On the other hand, a single news editorial rarely
changes the stance of a reader completely. More-

over, many editorials do not put an explicit focus
on arguments. Rather, they follow a subtle rhetori-
cal strategy combining emotional anecdotes with
hidden claims and ethotic evidence, among oth-
ers (Al-Khatib et al., 2017). So, if not persuasive
arguments, what makes a news editorial effective
or ineffective then? In other words: How can we
measure its argumentation quality?

In this paper, we introduce a new corpus with
1000 news editorials from the New York Times
where we consider argumentation quality from a
dialectical perspective (van Eemeren and Grooten-
dorst, 2004). While several quality dimensions are
known in theory (Wachsmuth et al., 2017b), ex-
isting approaches rely on subjective assessments
of absolute (Persing and Ng, 2015) or relative
(Habernal and Gurevych, 2016) persuasiveness. In
contrast, our corpus captures quality in terms of
whether an editorial brings readers of opposing
belief closer together or rather increases the gap
between them. We argue that, thereby, we better
account for the practically achieved persuasive ef-
fect, resulting in a qualitative media measurement
analysis of editorials that intrigue our thoughts.

Persuasion, according to Halmari and Virtanen
(2005), is an umbrella term for linguistic choices
that aim at changing or affecting the behavior of
others or at strengthening the existing beliefs of
those who already agree, including the persuaders
themselves. To study persuasion for editorials, four
dimensions must be considered: (1) prior beliefs of
readers, (2) prior beliefs and behaviors of authors,
(3) effects of the text, and (4) linguistic choices.
We account for these dimensions as follows.

Prior Beliefs of Readers Given the focus of
news editorials on timely politics, we use the politi-
cal typology quiz1 developed by the Pew Research

1Typology quiz, http://www.people-press.
org/quiz/political-typology/

454

Center to measure the prior beliefs of readers. The
underlying typology divides Americans into eight
political groups, as detailed later on: four largely
liberal and four largely conservative ones, along
with a ninth group of the politically less engaged.

Prior Beliefs and Behaviors of Authors Each
newspaper has its set of beliefs, reflected in partic-
ular stances on different controversial issues. To
avoid newspaper-related side effects in the study of
argumentation quality, we decided to control this
dimension by annotating news editorials from one
source only. In particular, we resort to the online
portal of the New York Times for two practical rea-
sons: (1) The political typology quiz is tailored to
people from the United States. (2) A large source
of news editorials and detailed metadata is already
available (Sandhaus, 2008).

Effects of the Persuasive Text We tackle the
outlined dialectical view of argumentation quality
by asking annotators about how a given news edi-
torial affected them: If you have a different stance
than the editorial, did it challenge you, making
you rethink your stance? Or, if you have the same
stance, did it empower you, enabling you to better
defend your stance? We postulate that high-quality
argumentation challenges one side and empowers
the other side at the same time, and we hypothesize
that this notion allows distinguishing effective and
ineffective editorials regardless of the annotators’
stance. We analyze the corpus in order to inves-
tigate this hypothesis in comparison to classical
approaches asking for persuasion.

Linguistic Choices Our goal is to provide a re-
source for studying the quality of editorial argu-
mentation and their underlying rhetorical strategies.
Accordingly, we leave an analysis of the linguistic
features impacting quality to future research.

The contribution of this paper is three-fold:

• We propose a new notion of argumentation
quality for news editorials based on how chal-
lenging and empowering an editorial is for
readers with opposing stances.

• We create a freely available corpus2 with qual-
ity assessments of 1000 news editorials, each
annotated by three liberals and three conser-
vatives. The annotators also reported free-text
reasons for the effects they observed.

2Webis-Editorial-Quality-18 corpus, available at http:
//www.webis.de/data

• We analyze the corpus, finding that more than
5% of all editorials fulfill our notion of high
quality, whereas only 1% really persuaded any
annotator. As expected, annotators agree only
when sharing similar prior beliefs.

2 Related Work

Computational argumentation has lately become
popular in the natural language processing com-
munity. So far, most computational argumentation
research deals with the mining of arguments from
text (Mochales and Moens, 2011). Accordingly,
many studied corpora capture argument structure,
often for a specific text genre, such as persuasive es-
says (Stab and Gurevych, 2014), Wikipedia articles
(Levy et al., 2014), or even pure arguments (Peld-
szus and Stede, 2015). These genres share that
they make claims and reasons explicit, i.e., they
argue rationally. In contrast, real-world argumen-
tation related to politics often comprises more so-
phisticated mechanisms, bringing together logical
arguments (Johnson and Blair, 2006) with rhetori-
cal means (Aristotle, translated 2007) and dialectic
(van Eemeren and Grootendorst, 2004). A typical
genre of such kind is news editorials.

As outlined in Section 1, news editorials are
opinionated articles that aim to persuade their read-
ers of a stance towards some controversial issue,
usually with implicit, hidden strategies (van Dijk,
1995). Editorials have been used for opinion min-
ing and retrieval in some works (Yu and Hatzivas-
siloglou, 2003; Bal, 2009), partly towards analyz-
ing argumentation (Bal and Dizier, 2010; Kiesel
et al., 2015). To our knowledge, the only corpus
of noteworthy size that exists for studying editorial
argumentation explicitly is the one of Al-Khatib
et al. (2016) who segmented 300 editorials into ar-
gumentative discourse units of different claim and
evidence types.

Al-Khatib et al. (2017) trained classifiers on their
corpus and applied them to 28,986 editorials from
the New York Times Annotated Corpus (Sandhaus,
2008). They found topic-specific evidence type
patterns, which appear to be related to persuasive
strategies. However, editorial-level annotations are
missing that actually connect the patterns to per-
suasiveness. For blog posts and forum discussions
respectively, previous work has annotated persua-
sive acts (Anand et al., 2011) and the use of Aris-
totle’s rhetorical means (Hidey et al., 2017). Still,
this would not allow distinguishing effective from

455

ineffective strategies. We fill this gap by presenting
the first editorial corpus with persuasion-related
annotations of argumentation quality. To obtain a
larger corpus size, we rely on the editorials from
Sandhaus (2008) rather than those from Al-Khatib
et al. (2016). Potash et al. (2017) observe bias in
existing corpora towards higher quality for longer
arguments. To prevent such bias, we consider only
editorials from a narrow length range.

Research on argumentation quality has recently
been surveyed by Wachsmuth et al. (2017b). The
authors developed a taxonomy with one main as-
pect each for logical (cogency), rhetorical (effective-
ness), and dialectical quality (reasonableness), as
well as several concrete quality dimensions. Effec-
tiveness reflects to what extent an author persuades
a reader, and reasonableness reflects an argument’s
contribution to agreement. As detailed in Section 3,
the dimension we propose is meant to measure
persuasive effectiveness, yet, from a dialectical per-
spective, which is more suitable for editorials. We
hypothesize it to be related to the acceptability of
arguments (Cabrio and Villata, 2012) and the help-
fulness of argumentation (Liu et al., 2017).

While Louis and Nenkova (2013) study the gen-
eral quality of news articles, our goal is to provide
a basis for studying their argumentation quality
more objectively. Some existing computational ap-
proaches to assessing argumentation quality rely
on human persuasiveness ratings of essays (Pers-
ing and Ng, 2015; Wachsmuth et al., 2016) or de-
bate portal arguments (Persing and Ng, 2017). The
problem here is that persuasiveness is subjective by
heart, underlined by the low inter-annotator agree-
ment for effectiveness in the corpus of Wachsmuth
et al. (2017b): effectiveness depends on the prior
stance of the annotator.

Habernal and Gurevych (2016) compare the con-
vincingness of arguments with only one stance on
a given issue, which circumvents the problem, but
does not help for actual persuasion. While Tan et al.
(2016) analyze how people are persuaded by others
with opposing stance, they restrict their view to
good-faith discussions (where people are open to
be persuaded) — a setting not common for political
argumentation. Instead, we tackle subjectiveness
by letting people with both stances on a discussed
issue annotate quality.

Cano-Basave and He (2016) point out that per-
suasive argumentation is about both changing and
reinforcing stance — a view that we follow. The

authors study the impact of persuasive language
of political debates based on poll changes. Such a
direct effect on different audiences is not accessible
for most argumentative texts, including editorials.
Persuasiveness does not only depend on a text it-
self, but also on the reader’s beliefs and personality.
Lukin et al. (2017) find that different types of argu-
ments (rational vs. emotional) are effective depend-
ing on the “Big Five” personality traits (Goldberg,
1990). We captured our annotators’ personality
traits, too. However, we primarily focus on nine
political profiles from left to right (Doherty et al.,
2017) in order to represent prior stance. We are
not aware of any previous work in computational
argumentation considering such profiles so far.

3 A New Model of Argumentation
Quality for News Editorials

We propose a model that quantifies the argumen-
tation quality of an editorial at the discourse level.
Two dimensions of persuasion are considered to
this end: the prior beliefs of the reader and the
effect of the text. Regarding the former, readers are
profiled based on a political typology. Regarding
the latter, we annotate an editorial’s capability to
either (1) challenge or to (2) reinforce a reader’s
stance; we also consider the magnitude of the effect.
Based on the annotations, for which we consider
a set of annotators belonging to at least two spec-
trums of beliefs (three annotators for each), the
quality of an editorial can be assessed.

3.1 Prior Beliefs of a Reader
The existing beliefs of the reader of an editorial
are a crucial factor when measuring the editorial’s
argumentation quality. Theoretically, it would be
best to consider two reader groups for each editorial
that have an opposite stance on the concrete issue
discussed in the editorial. Practically, finding such
readers for a considerable number of editorials is
hardly feasible, because the reader’s stance on the
issue is not accessible beforehand.

As a proxy, we therefore decided to model the
reader’s prior beliefs by identifying the reader’s po-
litical ideology. In particular, we profile the reader
as being liberal or conservative based on the nine
groups of the political typology developed by the
PEW Research Center. The typology includes four
groups that belong to the liberal ideology and four
that belong to the conservative ideology:3

3The ninth rather small group is the bystanders, which we

456

Opposite stance Same stance

Stance of the editorial

No
ef

fec
t

Cha
ng

e

of
 st

an
ce

Stro
ng

ly

ch
all

en
gin

g

Som
ew

ha
t

ch
all

en
gin

g

No
ef

fec
t

Em
po

wer

Stro
ng

ly

re
inf

or
cin

g

Som
ew

ha
t

re
inf

or
cin

g

Figure 1: Illustration of potential effects of a news editorial on readers from two belief groups: Those whose prior
stance matches the stance of the editorial on the discussed issue, and those whose prior stance opposes it.

Liberal Ideologies solid liberals, opportunity
democrats, disaffected democrats, and devout and
diverse.

Conservative Ideologies core conservatives,
country first conservatives, market skeptic republi-
cans, and new era enterprisers.

3.2 Effect of the Text
We measure the effect of a news editorial along two
characteristics: how challenging and how reinforc-
ing the editorial is. An editorial is challenging, if it
makes the reader rethink his or her prior stance on
the discussed issue, even though he or she may not
change the stance in the end. On the other hand,
an editorial is reinforcing, if it helps the reader in
building or further corroborating his or her prior
stance on the discussed topic. To capture the magni-
tude of the effect of the editorial’s text, we consider
the following labels:

• Strongly challenging: The editorial made the
reader really rethink whether and why he/she
thinks that his/her prior stance is right.

• Somewhat challenging: The editorial con-
veyed at least some information opposite to
the reader’s stance that was new and notewor-
thy for him/her.

• No effect: The reader did not find any new and
noteworthy information opposing or support-
ing his/her prior stance.

• Somewhat reinforcing: The editorial con-
veyed at least some information supporting
the reader’s stance that was new and notewor-
thy for him/her.

ignore, since it represents those people that are considered not
involved in what is happening in politics. About 8% of the
American population are supposed to be bystanders.

• Strongly reinforcing: The editorial enabled
the reader to argue really better for his/her
stance.

The ultimate goal of a news editorial is to change
the stance of readers with an opposite prior stance.
An editorial may reach this effect in case it strongly
challenges the reader. On the other hand, in case
a reader already has the same stance as the edito-
rial, then the ultimate goal of a news editorial is to
empower the reader to argue better for his or her
stance on the discussed issue. Analog to the previ-
ous case, an editorial may have this effect in case
it strongly reinforces the stance of the reader. The
potential effects on readers from opposing belief
groups are visually illustrated in Figure 1.

3.3 Editorial Argumentation Quality
We argue that the argumentation quality of a news
editorial is governed by two factors: (1) whether
the news editorial increases or decreases the gap
between readers with opposing beliefs (van Dijk,
1995) and (2) whether the news editorial presents
new and/or persuasive argumentation.

Having the effect labels assigned by readers of
opposing belief groups A and B, we follow the
dialectical perspective outlined in Section 1 to in-
terpret the argumentation quality of each possible
combination A & B of labels as follows:

• Challenging & Challenging: The editorial
challenges the stance of both groups. This
suggests that it comprises new and noteworthy
argumentation for understanding each other’s
stance. We see this as an indicator of high
quality, since it helps bringing the two groups
closer together.

• Challenging & Reinforcing: The editorial
challenges the stance of one group and re-
inforces the stance of the other. This suggests

457

Group A

Challenging Reinforcing No Effect
G

ro
up

B

Challenging High quality. Brings groups
closer together. New and persua-
sive argumentation.

High quality. Helps agreeing on
one stance. New and persuasive
argumentation.

Medium quality. Helps agreeing
on one stance. Persuasive argu-
mentation.

Reinforcing Medium quality. New argumen-
tation.

Rather low quality. Increase the
gap between the groups. New ar-
gumentation.

No Effect Low quality. Neither new nor per-
suasive.

Table 1: Interpretation of the combined effects and quality of a news editorial for two groups with opposing beliefs.

that it comprises new and persuasive argumen-
tation in favor of one stance. We see this as an
indicator of high quality, too, since it does not
only help the two groups agree on the same
stance, but also further supports that stance.

• Challenging & No Effect: The editorial chal-
lenges the stance of one group but does not af-
fect the other. This suggests that it comprises
persuasive but not fully new argumentation in
favor of one stance. We see this as an indica-
tor of medium quality, since it at least helps
the two groups agree on the same stance.

• Reinforcing & Reinforcing: The editorial re-
inforces the stance of both groups. This sug-
gests that it comprises new and noteworthy
argumentation for clarifying the two possible
stances. We see this as an indicator of medium
quality, since it at least provides new insights
into the discussed issue.

• Reinforcing & No Effect: The editorial rein-
forces the stance of one group but does not af-
fect the other. This suggests that it comprises
new but not fully persuasive argumentation in
favor of one stance. We see this as an indica-
tor of rather low quality, since it increases the
gap between the two groups.

• No Effect & No Effect: The news editorial
does not affect either group. This suggests
that it comprises neither new nor persuasive
argumentation. We see this as an indicator of
low quality, since it makes the need for the
editorial questionable.

Table 1 summarizes our interpretation of the ef-
fects and their quality for each combination.

4 Corpus Construction

Based on the model from Section 3, we conducted
an annotation study to build a new corpus for study-

ing the argumentation quality of news editorials.
This section describes how editorials were acquired,
sampled, and annotated. Furthermore, it presents
an overview of the resulting corpus.

4.1 Editorial Acquisition and Sampling
As mentioned before, we decided to restrict our
study to editorials from a single news portal (The
New York Times), in order to exclude the portal
impact on the quality assessment. Particularly, we
used the New York Times Annotated Corpus (Sand-
haus, 2008), which comprises around 1.8 million
news articles written between 1987 and 2007. Each
of these articles comes with 27 metadata tags cap-
turing the article’s type, topic, author, etc.

To identify news editorials, we used the tags
descriptor and taxonomic classifiers with the values
‘Opinion’ and ‘Editorial’. To maximize recency, we
considered those written between 2005 and 2007
only. This resulted in 2556 editorials with a mean
length of 492 words. To control the length, we left
out short editorials (< 450 words) and long ones
(> 650 words), ending up with 1022 editorials. We
randomly selected five of these for the pilot study
and 1000 for the main one.

4.2 Editorial Annotations
Carrying out the task of annotating all editorials in
our corpus was divided into three phases: (1) the
selection of annotators, (2) a pilot study, and (3) the
main annotation. After discussing the annotation
task, we explain the three phases in detail.

Annotation Task As shown in Table 2, we asked
our annotators to assess the effect of each edito-
rial’s content along the five labels from Section 3
as well as a potential empowering or change of
stance. Given an editorial, an annotator should first
read its text carefully and then answer the question
‘How did the news editorial affect you?’ (question

458

Questions Answers

1 How did the news editorial affect you? a. It strongly challenged my stance
b. It somewhat challenged my stance
c. It neither challenged nor reinforced my stance
d. It somewhat reinforced my stance
e. It strongly reinforced my stance

1a Did the editorial actually change your stance on the discussed issue
(from pro to con, or vice versa)?

Yes / No

1e Did the editorial empower you to better argue for your stance? Yes / No

2 Explain your choice(s) (Keep it short) Free text

Table 2: The questions that our annotators had to answer after reading each news editorial. Only in case option a
was chosen for question 1, question 1a was asked. Accordingly, only in case option e was chosen for question 1,
question 1e was asked. In any case, the annotator was asked to explain his or her answers (question 2).

Core Conservatives

Country First Conservatives

Market Skeptic Republicans

New Era Enterprisers

Devout and Diverse

Disaffected Democrats

Opportunity Democrats

Solid Liberals

0

4

6

2

0

6

3

3

Liberals

Conservatives

Figure 2: The distribution of the 24 selected annotators
over the eight considered political ideologies.

1). The possible answers ranged from strongly chal-
lenging to strongly reinforcing. In case the answer
was strongly challenging, we asked whether it ac-
tually changed his or her stance (question 1a). In
case the answer was strongly reinforcing, we asked
whether it actually empowered him or her to argue
better about the topic (question 1e). Finally, the
annotator should briefly explain the rationale of his
or her choice(s) (question 2).

Selection of Annotators We recruited native En-
glish speakers from the United States with at least a
bachelor’s degree via upwork.com. We asked them
to do the PEW political typology quiz and to report
their results. 40 candidates were recruited until we
had both 12 annotators with liberal ideology and 12
with conservative ideology. Figure 2 illustrates the
distribution of annotators over the possible politi-
cal ideologies. The annotators within each group,
liberals or conservatives, were selected randomly.

Pilot study We conducted a pilot study with five
randomly chosen news editorials in order to check
whether our annotation guidelines were clear, con-
sistent, and understood by the annotators. We
randomly selected three liberals (one solid liberal

and two disaffected democrats) and three conserva-
tives (one core conservative, market skeptic repub-
lican, and new era enterpriser each) to annotate
all five editorials. We solicited the annotators to
give a feedback about the guidelines and the pro-
cess. All six annotators reported that the guidelines
were easy to follow and easy to understand. Also,
they gave some suggestions which we followed by
rephrasing some questions in the guidelines.

Main Annotation We divided the sampled 1000
news editorials into four batches of size 250. Each
batch was assigned to six annotators based on their
political ideology (three liberals and three conser-
vatives). As a result, we obtained 6000 different
annotations. To prevent annotators from prejudging
an editorial, we kept the source of the editorials as
well as their titles hidden. Thereby, we focused on
the editorial’s content while leaving a study of the
impact of its title to future work. As mentioned be-
fore, the editorials were somewhat outdated, hence,
we asked the annotators to try to think back to when
the discussed issue was current.

The annotation was done using a web applica-
tion that we developed specifically for this purpose.
Each annotator had to login with an assigned identi-
fication number and his or her result of the political
typology quiz.

4.3 Corpus Overview
Table 3 shows statistics of the resulting corpus. The
most frequently annotated effect was somewhat re-
inforcing followed by no effect. The rarest in turn
was strongly challenging for both liberals and con-
servatives with only 143 out of 6000 annotations
(i.e., 2.4%). Even more rare, in only 68 cases the
reader actually changed his or her stance which is
equivalent to about 1% of all annotations.

459

Effect with Intensity Effect without Intensity

Strongly Somewhat No effect Somewhat Strongly Challenging No effect Reinforcing
Political challenging challenging reinforcing reinforcing
Orientation (change) (empower)

Liberals 71 (33) 269 708 1402 550 (509) 340 708 1952
Conservatives 72 (35) 275 1282 798 573 (461) 347 1282 1371

Overall 143 (68) 544 1990 2200 1123 (970) 687 1990 3323

Table 3: Counts of the annotated effects for the 1000 news editorials in our corpus depending on the annotators’
political orientation, once with intensity (strongly vs. somewhat), once without. In parentheses: Annotators that
changed stance or felt empowered. Each editorial was annotated by three liberal and three conservative annotators.

[...] Police officers firing 50 rounds early last Saturday
killed Sean Bell, an unarmed man who was to have mar-
ried his high school sweetheart later in the day. The
mayor and the commissioner moved quickly to answer
questions and to hear the concerns of the victim’s family
and the community. But their responsiveness will not
bring back Sean Bell. The challenge here is far greater
than good communications. The officers who killed Mr.
Bell were part of a sting operation at a Queens nightclub
suspected of narcotics, prostitution and weapons viola-
tions. According to published reports, the officers have
said that as Mr. Bell and his friends left the club and
headed toward their car, an undercover detective heard
one of them say he was going to get a gun. They also
reportedly said that when the men entered the car, the
detective pulled his gun and identified himself, but the
car suddenly gunned forward, hit him in the shin and
then struck an unmarked police minivan. The officers
then opened fire. The tragedy may simply involve two
sets of very frightened men who reacted instinctively to
what they thought was imminent danger. But only one of
the sets was armed. There was no gun in the car, nor on
the shooting victims, who sat helpless inside while five
police officers began firing 50 rounds at them. [...]

Figure 3: An excerpt of the news editorial “50 Bullets
and a Death in Queens”. This editorial challenged the
stance of annotators with conservative ideology and re-
inforced the stance of those with liberal ideology.

Exemplarily, Figure 3 shows an excerpt of an
editorial on police brutality and misconduct from
the corpus. This editorial challenged the stance of
annotators with one ideology and reinforced the
stance of those with the opposing ideology. Ac-
cordingly, it meets our conditions of being of high
argumentation quality.

On the other hand, Figure 4 shows an excerpt
of an editorial on global warming from the corpus.
This editorial did not affect annotators of either
ideology. As a result, it meets our conditions of
being of low argumentation quality.

5 Analysis

This section provides insights into the annotations
of our corpus. We first outline the reliability of the

Weather is not primarily a moral affair. We do not de-
serve a long, slow patch of hot weather, like the one
that sat on the city in early June, any more than we de-
serve the extraordinarily beautiful evenings that have
come with these longest days of the year. Deserving has
nothing to do with it. The weather comes, it goes, and
sometimes it’s occluded. The days of seeing the wrath
of God in a prolonged drought or a heavy windstorm –
believing that bad weather chastens our bad actions, in
other words – are pretty much past. One sobering irony
of global warming is the thought that it threatens to make
weather moral again in a very different way. But these
are thoughts too puzzling for the fine weather of these
last few evenings, when it is almost impossible not to feel
that this has come to us by right – as our due after a run
of sticky days and as the best of what the month of June
has to offer anyway. These are the nights for stoop sitting,
not in long-suffering, as though we felt the curse of Cain
on our shoulders, but like the young man and his dog I
passed the other evening. Both sat quietly, watching the
street. You could tell that what they were really doing
was feeling the shape of the cool air around their bodies.
It would have been a pleasure in itself, but it was all the
more pleasurable for the memory of that hot spell. [...]

Figure 4: An excerpt of the news editorial “The Reward
of Good Weather”. This editorial neither affected the
stance of annotators with conservative ideologies, nor
the stance of those with liberal ideologies.

annotations in terms of inter-annotator agreement,
and we compare the annotations of liberals and con-
servatives, highlighting the noteworthy differences.
Then, we analyze the annotations regarding their
argumentation quality according to our model.

5.1 Inter-Annotator Agreement
Table 4 lists agreement results for all annotators
within each group (liberals and conservatives) as
well as across both groups (overall).

The overall agreement is lower than the agree-
ment within each group regarding the majority, full,
and Krippendorff’s α. For example, Krippendorff’s
α is 0.32 for liberals and 0.29 for conservatives, but
only 0.16 overall. According to the Mann-Whitney
test (Mann and Whitney, 1947), the difference be-

460

Effect w/o Intensity Effect vs. No Effect

Majority Full α Majority Full α

Liberals 74% 33% 0.32 83% 48% 0.30
Conservatives 69% 20% 0.29 77% 31% 0.32

Overall 64% 0% 0.16 72% 12% 0.17

Table 4: Majority, full, and Krippendorff’s α agree-
ment for both political ideologies and overall for anno-
tating what effect all news editorials in our corpus have
(left side) and whether they have any effect (right side).

tween the effects annotated by liberals and those an-
notated by conservatives is significant at p < 0.05.

In general, the liberal group agreed more than
the conservative, with a majority agreement of 74%
against 69%, full agreement of 33% against 20%,
and an α of 0.32 against 0.29. One reason for this
may be given by the varying ideology distributions
within each group: As mentioned before, the PEW
political typology ranges from far right to far left,
and in Figure 2, we see that the annotators with
liberal ideology are further from the middle than
the conservative annotators. An annotator closer
to the middle is likely to be less devoted than an
annotator with a more extreme ideology (e.g., solid
liberals or core conservatives).

The observed α agreement can be interpreted as
“fair” for both liberals and conservatives, and as
“slight” overall. We see two reasons for this limited
agreement: (1) The task at hand is very subjective,
and (2) the distribution of labels is skewed. For
instance, challenging is chosen significantly less
than no effect and reinforcing. Krippendorff’sα has
been shown to be often low in such cases (Di Eu-
genio and Glass, 2004). Indeed, the values are in
line with those obtained for similar tasks in other
studies (Wachsmuth et al., 2017a).

5.2 Editorial Argumentation Quality
Table 5 shows the distribution of news editorials
over their combined effect on the two opposing
belief groups, ignoring which group is liberal and
which is conservative. According to our model, 6%
of the editorials are of high quality, 46% of medium
quality, and 48% of low quality.

Only one of the 1000 editorials changed the
stance of either group with majority. According to
a one-sided binomial test, the proportion of read-
ers changing their stance after reading an editorial
is significantly lower than 1% at p < 0.001. This
speaks for our hypothesis that editorials do not
serve to persuade readers in most cases. By con-

Quality Group A Group B # %

High Challenging Challenging 4 1%
Challenging Reinforcing 37 5%

Medium Reinforcing Reinforcing 338 44%
Challenging No Effect 19 2%

Low Reinforcing No Effect 296 38%
No Effect No Effect 76 10%

Either group changed stance 1 0%
Either group was empowered 151 20%

Table 5: Distribution of combined majority effects of
the news editorials in our corpus on opposing belief
groups, along with their quality according to our model.
Editorials without majority agreement are ignored here.

trast, 151 editorials empowered annotators of either
groups to argue better about the discussed issue,
which shows the importance and applicability of
the ‘empower’ notion in our model.

296 editorials reinforced the stance of one group
and did not affect the other group. From these, 244
reinforced the stance of liberal annotators, suggest-
ing that their stance more often equals the stance
of the editorials. This matches expectation, given
that the New York Times is seen as a rather left
news portal. According to a Fisher’s exact test, the
difference in choosing reinforcing between liberals
and conservatives is significant at p < 0.05.

5.3 Personality Traits
Our model of argumentation quality is built by pro-
filing readers based on their political ideologies,
whereas Lukin et al. (2017) profiles the audience
for the “Big Five” personality traits to see whether
different personality types are more open to differ-
ent types of arguments. Although we focus in this
paper on the audience’s political belief, we also
expected useful insights from correlating the per-
sonality traits of our annotators to the editorials’
effects. For this reason, we asked our annotators
to take the personality test based on the “Big Five”
(Goldberg, 1990).

Table 6 shows the counts of the personality traits
of annotators based on their political orientations.
Since our primary goal was to have annotators
evenly distributed over their political orientations,
we did not control the distribution based on person-
ality traits.

We computed the correlations between the an-
notators’ personality traits and their annotations
regarding the effect of editorials. Table 7 shows
Kendall’s τ correlation coefficient between the

461

”Big Five” Personality Traits

Agreeableness Conscientiousness Extraversion Neuroticism Openness

Low Average High Low Average High Low Average High Low Average High Low Average High

Liberals 3 2 7 2 6 4 4 3 5 8 2 2 3 2 7
Conservatives 5 0 7 4 3 5 8 2 2 2 3 7 4 6 2

Overall 8 2 14 6 9 9 12 5 7 10 5 9 7 8 9

Table 6: Counts of the annotators’ ”Big Five” personality trait values, depending on their political orientation.

Kendall’s τ ”Big Five” Personality Traits

Agree. Consc. Extra. Neuro. Openn.

Liberals 0.02 0.04 *0.15 -0.06 0.06
Conservatives 0.14 -0.14 *0.23 0.02 *0.31

Overall 0.10 -0.06 0.24 -0.11 0.22

Table 7: Kendall’s τ correlation between the annota-
tors’ “Big Five” personality traits and the effect of a
news editorial depending on the annotators’ political
orientation. Values with * are discussed in Section 5.3.

“Big Five” (Goldberg, 1990) and the effect of an
editorial on liberal and conservative annotators.

As discussed in Section 2, Lukin et al. (2017)
found specific types of arguments to be persuasive
for people with specific personality traits. Analo-
gously, we found correlations between the effect
of editorials and combinations of political ideology
and personality traits of readers. For both liberals
and conservatives, for instance, there is a positive
correlation between their choices for editorial effect
and the extraversion trait. This trait characterizes
people who tend to be more dominant in social
settings (Friedman et al., 2010). Similarly, for con-
servatives there is a positive correlation between
their choices for editorial effect and the openness
trait. This trait characterizes active imagination or
high curiosity (Costa and McCrae, 1992).

5.4 Explanations
The annotators were asked to justify their answers,
resulting in in a total of 6000 explanations. All ex-
planations were manually inspected by us. Among
others, we found that the majority of annotators
selected no effect for two main reasons. One rea-
son was that, as expected, an annotator already
had a stance towards the discussed topic of the
editorial, but he or she found the editorial rather in-
effective. The second reason was that an annotator
did not have a stance regarding the topic, but also
expressed no interest in the topic.

6 Conclusion

This paper has presented a new model for the argu-
mentation quality of news editorials. As its main
dimensions the model combines the reader’s be-
liefs and the editorial effect. While the reader’s
beliefs are defined in terms of the political orien-
tation of a reader, the editorial effect is defined as
an editorial’s capability to either challenge readers
with opposing stance or to empower readers with
the same stance. This way, our model goes beyond
approaches that aim at quantifying quality as an
absolute value. Instead, we analyze how editorials
increase or decrease the gap between readers with
opposing beliefs (van Dijk, 1995).

To compute the determinants of our proposed
model and to analyze its potential, we built a new
corpus of 1000 editorials from the New York Times.
Each editorial has been annotated regarding its per-
ceived effect by three liberals and by three conser-
vatives. Our analysis of the corpus provided first
insights: As expected, readers with identical be-
liefs largely agree on the effect of editorials. In
particular, we provide empirical evidence for the
hypothesis that editorials rarely change the stance
of readers. With our approach, we can quantify
such effects more precisely.

We also observed that the ideology of the New
York Times seems to be reflected in the annotated
corpus: The editorials reinforced the stance of
many annotators with liberal ideology, while they
often had no effect on annotators with conservative
ideology. In addition, we found correlations be-
tween the effects of editorials and the combination
of political ideology and personality trait.

We consider the presented model and the new
corpus as substantial resources for fostering re-
search on computational argumentation. We our-
selves plan to use these resources in future work,
in particular, for developing computational ap-
proaches to assess argumentation quality.

462

References
Khalid Al-Khatib, Henning Wachsmuth, Matthias Ha-

gen, and Benno Stein. 2017. Patterns of argumen-
tation strategies across topics. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1351–1357. Asso-
ciation for Computational Linguistics.

Khalid Al-Khatib, Henning Wachsmuth, Johannes
Kiesel, Matthias Hagen, and Benno Stein. 2016.
A news editorial corpus for mining argumentation
strategies. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 3433–3443.
The COLING 2016 Organizing Committee.

P. Anand, J. King, Jordan Boyd-Graber, E. Wagner,
C. Martell, Douglas Oard, and Philip Resnik. 2011.
Believe me — We can do this! Annotating persua-
sive acts in blog text. In Workshops at the Twenty-
Fifth AAAI Conference on Artificial Intelligence.

Aristotle. translated 2007. On Rhetoric: A Theory of
Civic Discourse (George A. Kennedy, Translator).
Clarendon Aristotle series. Oxford University Press.

Bal Krishna Bal. 2009. Towards an analysis of opin-
ions in news editorials: How positive was the year?
(project abstract). In Proceedings of the Eight Inter-
national Conference on Computational Semantics,
pages 260–263. Association for Computational Lin-
guistics.

Bal Krishna Bal and Patrick Saint Dizier. 2010.
Towards building annotated resources for analyz-
ing opinions and argumentation in news editori-
als. In Proceedings of the Seventh conference on
International Language Resources and Evaluation
(LREC’10). European Languages Resources Associ-
ation (ELRA).

Elena Cabrio and Serena Villata. 2012. Combining tex-
tual entailment and argumentation theory for sup-
porting online debates interactions. In Proceed-
ings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 208–212. Association for Computa-
tional Linguistics.

Amparo Elizabeth Cano-Basave and Yulan He. 2016.
A study of the impact of persuasive argumentation
in political debates. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1405–1413. Association
for Computational Linguistics.

Paul T Costa and Robert R McCrae. 1992. Normal
personality assessment in clinical practice: The neo
personality inventory. Psychological assessment,
4(1):5.

Barbara Di Eugenio and Michael Glass. 2004. he
Kappa Statistic: A Second Look. Computational
Linguistics, 30(1):95–101.

Teun A. van Dijk. 1995. Opinions and Ideologies in Ed-
itorials. In Proceedings of the 4th International Sym-
posium of Critical Discourse Analysis, Language,
Social Life and Critical Thought, Athens.

Carrol Doherty, Jocelyn Kiley, and Bridget Johnson.
2017. Political typology reveals deep fissures on the
right and left doherty.

Frans H. van Eemeren and Rob Grootendorst. 2004. A
Systematic Theory of Argumentation: The Pragma-
Dialectical Approach. Cambridge University Press,
Cambridge, UK.

Howard S Friedman, Margaret L Kern, and Chandra A
Reynolds. 2010. Personality and health, subjective
well-being, and longevity. Journal of Personality,
78(1):179–216.

Lewis R. Goldberg. 1990. An alternative “descrip-
tion of personality”: The Big-Five factor struc-
ture. Journal of Personality and Social Psychology,
59(6):1216–1229.

Ivan Habernal and Iryna Gurevych. 2016. Which ar-
gument is more convincing? Analyzing and predict-
ing convincingness of web arguments using bidirec-
tional LSTM. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1589–1599.
Association for Computational Linguistics.

H. Halmari and T. Virtanen. 2005. Persuasion Across
Genres: A linguistic approach. Pragmatics & Be-
yond New Series. John Benjamins Publishing Com-
pany.

Christopher Hidey, Elena Musi, Alyssa Hwang,
Smaranda Muresan, and Kathy McKeown. 2017.
Analyzing the semantic types of claims and premises
in an online persuasive forum. In Proceedings of the
4th Workshop on Argument Mining, pages 11–21.

Ralph H. Johnson and J. Anthony Blair. 2006. Logical
Self-defense. International Debate Education Asso-
ciation.

Johannes Kiesel, Khalid Al Khatib, Matthias Hagen,
and Benno Stein. 2015. A shared task on argumen-
tation mining in newspaper editorials. In Proceed-
ings of the 2nd Workshop on Argumentation Mining,
pages 35–38. Association for Computational Lin-
guistics.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni, and Noam Slonim. 2014. Context depen-
dent claim detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1489–
1500. Dublin City University and Association for
Computational Linguistics.

Haijing Liu, Yang Gao, Pin Lv, Mengxue Li, Shiqiang
Geng, Minglan Li, and Hao Wang. 2017. Using

463

argument-based features to predict and analyse re-
view helpfulness. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1358–1363. Association for Com-
putational Linguistics.

Annie Louis and Ani Nenkova. 2013. What makes
writing great? First experiments on article quality
prediction in the science journalism domain. Trans-
actions of the Association for Computational Lin-
guistics, 1:341–352.

Stephanie Lukin, Pranav Anand, Marilyn Walker, and
Steve Whittaker. 2017. Argument Strength is in the
Eye of the Beholder: Audience Effects in Persuasion.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 742–753.
Association for Computational Linguistics.

H. B. Mann and D. R. Whitney. 1947. On a test
of whether one of two random variables is stochas-
tically larger than the other. Ann. Math. Statist.,
18(1):50–60.

Raquel Mochales and Marie-Francine Moens. 2011.
Argumentation mining. Artificial Intelligence and
Law, 19(1):1–22.

Andreas Peldszus and Manfred Stede. 2015. Joint pre-
diction in MST-style discourse parsing for argumen-
tation mining. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 938–948. Association for Compu-
tational Linguistics.

Isaac Persing and Vincent Ng. 2015. Modeling argu-
ment strength in student essays. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 543–552. Associa-
tion for Computational Linguistics.

Isaac Persing and Vincent Ng. 2017. Lightly-
supervised modeling of argument persuasiveness. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 594–604. Asian Federation of
Natural Language Processing.

Peter Potash, Robin Bhattacharya, and Anna
Rumshisky. 2017. Length, interchangeability,
and external knowledge: Observations from pre-
dicting argument convincingness. In Proceedings
of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 342–351. Asian Federation of Natural
Language Processing.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
M. Mitesh Khapra, Ehud Aharoni, and Noam
Slonim. 2015. Show me your evidence — An au-
tomatic method for context dependent evidence de-
tection. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing,
pages 440–450. Association for Computational Lin-
guistics.

Evan Sandhaus. 2008. The New York Times Annotated
Corpus. Corpus number LDC2008T19. In Linguis-
tic Data Consortium, Philadelphia.

Christian Stab and Iryna Gurevych. 2014. Annotating
argument components and relations in persuasive es-
says. In Proceedings of COLING 2014, the 25th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, pages 1501–1510. Dublin
City University and Association for Computational
Linguistics.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. 2016. Winning
arguments: Interaction dynamics and persuasion
strategies in good-faith online discussions. In Pro-
ceedings of the 25th International World Wide Web
Conference, pages 613–624.

Henning Wachsmuth, Khalid Al Khatib, and Benno
Stein. 2016. Using argument mining to assess the
argumentation quality of essays. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 1680–1691. The COLING 2016 Orga-
nizing Committee.

Henning Wachsmuth, Nona Naderi, Ivan Habernal,
Yufang Hou, Graeme Hirst, Iryna Gurevych, and
Benno Stein. 2017a. Argumentation quality assess-
ment: Theory vs. practice. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
250–255. Association for Computational Linguis-
tics.

Henning Wachsmuth, Nona Naderi, Yufang Hou,
Yonatan Bilu, Vinodkumar Prabhakaran, Tim Al-
berdingk Thijm, Graeme Hirst, and Benno Stein.
2017b. Computational argumentation quality assess-
ment in natural language. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 176–187. Association for Computa-
tional Linguistics.

Hong Yu and Vasileios Hatzivassiloglou. 2003. To-
wards answering opinion questions: Separating facts
from opinions and identifying the polarity of opinion
sentences. In Proceedings of the 2003 Conference
on Empirical Methods in Natural Language Process-
ing, pages 129–136. Association for Computational
Linguistics.

464

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 465–475
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Bringing Order to Neural Word Embeddings with
Embeddings Augmented by Random Permutations (EARP)

Trevor Cohen
Biomedical and Health Informatics
University of Washington, Seattle

cohenta@uw.edu

Dominic Widdows
Grab, Inc.

Seattle, WA
dominic.widdows@grab.com

Abstract

Word order is clearly a vital part of human
language, but it has been used comparatively
lightly in distributional vector models. This
paper presents a new method for incorporat-
ing word order information into word vector
embedding models by combining the bene-
fits of permutation-based order encoding with
the more recent method of skip-gram with
negative sampling. The new method intro-
duced here is called Embeddings Augmented
by Random Permutations (EARP). It operates
by applying permutations to the coordinates of
context vector representations during the pro-
cess of training. Results show an 8% improve-
ment in accuracy on the challenging Bigger
Analogy Test Set, and smaller but consistent
improvements on other analogy reference sets.
These findings demonstrate the importance of
order-based information in analogical retrieval
tasks, and the utility of random permutations
as a means to augment neural embeddings.

1 Introduction

The recognition of the utility of corpus-derived
distributed representations of words for a broad
range of Natural Language Processing (NLP)
tasks (Collobert et al., 2011) has led to a resur-
gence of interest in methods of distributional se-
mantics. In particular, the neural-probabilistic
word representations produced by the Skip-gram
and Continuous Bag-of-Words (CBOW) architec-
tures (Mikolov et al., 2013a) implemented in the
word2vec and fastText software packages
have been extensively evaluated in recent years.

As was the case with preceding distributional
models (see for example (Schütze, 1993; Lund
and Burgess, 1996; Schütze, 1998; Karlgren and
Sahlgren, 2001)), these architectures generate vec-
tor representations of words — or word embed-
dings — such that words with similar proximal

neighboring terms within a corpus of text will have
similar vector representations. As the relative po-
sition of these neighboring terms is generally not
considered, distributional models of this nature
are often (and sometimes derisively) referred to as
bag-of-words models. While methods of encod-
ing word order into neural-probabilistic represen-
tations have been evaluated, these methods gener-
ally require learning additional parameters, either
for each position in the sliding window (Mnih and
Kavukcuoglu, 2013), or for each context word-by-
position pair (Trask et al., 2015; Ling et al., 2015).

In this paper we evaluate an alternative method
of encoding the position of words within a sliding
window into neural word embeddings using Em-
beddings Augmented by Random Permutations
(EARP). EARP leverages random permutations
of context vector representations (Sahlgren et al.,
2008), a technique that has not been applied dur-
ing the training of neural word embeddings previ-
ously. Unlike prior approaches to encoding posi-
tion into neural word embeddings, it imposes no
computational and negligible space requirements.

Results show that the word order information
encoded through EARP leads to a nearly 8% im-
provement (from 29.17% to 37.07%) in the accu-
racy of analogy predictions in the Bigger Anal-
ogy Test Set of Gladkova et al (2016), with the
improvement being largest (over 20%) in the cat-
egory of analogies that exhibit derivational mor-
phology (a case where the use of subword infor-
mation also improves accuracy for all representa-
tions with and without order information). Smaller
improvements in performance are evident on other
analogy sets, and in downstream sequence label-
ing tasks. This makes EARP a strong contender
for enriching word embeddings with order-based
information, leading to greater accuracy on more
challenging semantic processing tasks.

465

2 Background

2.1 Distributed representations of words
Methods of distributional semantics learn repre-
sentations of words from the contexts they occur in
across large text corpora, such that words that oc-
cur in similar contexts will have similar represen-
tations (Turney and Pantel, 2010). Geometrically-
motivated approaches to this problem often in-
volve decomposition of a term-by-context matrix
(Schütze, 1993; Landauer and Dumais, 1997; Pen-
nington et al., 2014), resulting in word vectors
of considerably lower dimensionality than the to-
tal number of contexts. Alternatively, reduced-
dimensional representations can be generated on-
line while processing individual units of text, with-
out the need to represent a large term-by-context
matrix explicitly. A seminal example of the lat-
ter approach is the Random Indexing (RI) method
(Kanerva et al., 2000), which generates distributed
representations of words by superposing randomly
generated context vector representations.

Neural-probabilistic methods have shown util-
ity as a means to generate semantic vector repre-
sentations of words (Bengio et al., 2003). In par-
ticular, the Skip-gram and CBOW neural network
architectures (Mikolov et al., 2013a) implemented
within the word2vec and fastText software
packages provide scalable approaches to online
training of word vector representations that have
been shown to perform well across a number of
tasks (Mikolov et al., 2013a; Levy et al., 2015;
Mikolov et al., 2017).

While the definition of what constitutes a con-
text varies across models, a popular alternative is
to use words in a sliding window centered on a
focus term for this purpose. Consequently where
decomposition is involved the matrix in question
would be a term-by-term matrix. With online
methods, each term has two vector representations
— a semantic vector and a context vector, corre-
sponding to the input and output weights for each
word in neural-probabilistic approaches.

2.2 Order-based distributional models
In most word vector embedding models based on
sliding windows, the relative position of words
within this sliding window is ignored, but there
have been prior efforts to encode this informa-
tion. Before the popularization of neural word
embeddings, a number of researchers developed
and evaluated methods to encode word position

into distributed vector representations. The BEA-
GLE model (Jones et al., 2006) uses circular con-
volution — as described by Plate (1995) — as a
binding operator to compose representations of n-
grams from randomly instantiated context vector
representations of individual terms. These com-
posite representations are then added to the se-
mantic vector representation for the central term in
a sliding window. The cosine similarity between
the resulting vectors is predictive of human per-
formance in semantic priming experiments.

A limitation of this approach is that it involves
a large number of operations per sliding window.
For example, Jones and his colleagues (2006) em-
ploy eight superposition and nine convolution op-
erations to represent a single sliding window of
three terms (excluding the focus term). Sahlgren,
Holst and Kanerva (2008) report a computation-
ally simpler method of encoding word order in the
context of RI. Like BEAGLE, this approach in-
volves adding randomly instantiated context vec-
tors for adjacent terms to the semantic vector of
the central term in a sliding window. However, RI
uses sparse context vectors, consisting of mostly
zeroes with a small number non-zero components
initialized at random. These vectors are assigned
permutations indicating their position within a
sliding window. For example, with

∏
p represent-

ing the permutation assigned to a given position p
and words to the right of the equation representing
their context vectors, the sliding window “[fast is
fine but accuracy] is everything” would result in
the following update to S(fine), the semantic vec-
tor for the term “fine”:

S(fine) +=
∏

−2

−−→
fast +

∏

−1

−→
is

+
∏

+1

−→
but +

∏

+2

−−−−−−→accuracy

Amongst the encoding schemes evaluated using
this approach, using a pair of permutations to dis-
tinguish between words preceding the focus term
and those following it resulted in the best per-
formance on synonym test evaluations (Sahlgren
et al., 2008). Furthermore, this approach was
shown to outperform BEAGLE on a number of
evaluations on account of its ability to scale up to
larger amounts of input data (Recchia et al., 2010).

2.3 Encoding order into neural embeddings
Some recent work has evaluated the utility of en-
coding word order into neural word embeddings.

466

A straightforward way to accomplish this involves
maintaining a separate set of parameters for each
context word position, so that for a vocabulary of
size v and p context window positions the number
of output weights in the model is v×p×d for em-
beddings of dimensionality d. This approach was
applied by Ling and his colleagues (2015) to dis-
tinguish between terms occurring before and af-
ter the central term in a sliding window, with im-
provements in performance in downstream part-
of-speech tagging and dependency parsing tasks.

Trask and his colleagues (2015) develop this
idea further in a model they call a Partitioned Em-
bedding Neural Network (PENN). In a PENN,
both the input weights (word embeddings) and
output weights (context embeddings) of the net-
work have separate position-specific instantia-
tions, so the total number of model parameters is
2v × p × d. In addition to evaluating binary (be-
fore/after) context positions, the utility of training
separate weights for each position within a sliding
window was evaluated. Incorporating order in this
way resulted in improvements in accuracy over
word2vec’s CBOW implementation on propor-
tional analogy problems, which were considerably
enhanced by the incorporation of character-level
embeddings.

A more space-efficient approach to encoding
word order involves learning a vector V for each
position p in the sliding window. These vectors are
applied to rescale context vector representations
using pointwise multiplication while construct-
ing a weighted average of the context vectors for
each term in the window (Mnih and Kavukcuoglu,
2013; Mikolov et al., 2017). Results reported
using this approach are variable, with some au-
thors reporting worse performance with position-
dependent weights on a sentence completion task
(Mnih and Kavukcuoglu, 2013), and others report-
ing improved performance on an analogy comple-
tion task (Mikolov et al., 2017).

3 Methods

3.1 Skipgram-with-negative-sampling

In the current work, we extend the skipgram-with-
negative-sampling (SGNS) algorithm to encode
positional information without additional compu-
tation. The Skip-gram model (Mikolov et al.,
2013a) predicts p(c|w): the probability of observ-
ing a context word, c, given an observed word,
w. This can be accomplished by moving a slid-

ing window through a large text corpus, such that
the observed word is at the center of the window,
and the context words surround it. The architec-
ture itself includes two sets of parameters for each
unique word: The input weights of the network
(−→w), which represent observed words and are usu-
ally retained as semantic vectors after training, and
the output weights of the network which repre-
sent context words (−→c) and are usually discarded.
The probability of observing a word in context is
calculated by appying the sigmoid function to the
scalar product between the input weights for the
observed word, and the output weights for the con-
text word, such that p(c|w) = σ(−→w .−→c). As maxi-
mizing this probability using the softmax over all
possible context words would be computationally
inconvenient, SGNS instead draws a small number
of negative samples (¬c) from the vocabulary to
serve as counterexamples to each observed context
term. With D representing observed term/context
pairs, and D′ representing randomly constructed
counterexamples the SGNS optimization objective
is as follows (Goldberg and Levy, 2014):
∑

(w,c)∈D
log σ(−→w .−→c) +

∑

(w,¬c)∈D′
log σ(−−→w .−→¬c)

3.2 Embeddings Augmented by Random
Permutations (EARP)

Sliding window variants of RI are similar in some
respects to the SGNS algorithm, in that training
occurs through an online update step in which
a vector representation for each context term is
added to the semantic vector representation for
a focus term (with SGNS this constitutes an up-
date of the input weight vector for the focus term,
weighted by the gradient and learning rate (for
a derivation see (Rong, 2014)). Unlike SGNS,
however, context vectors in RI are immutable and
sparse. With SGNS, dense context vectors are al-
tered during the training process, providing an en-
hanced capacity for inferred similarity. Nonethe-
less, the technique of permuting context vectors
to indicate the position of a context term within a
sliding window is readily adaptable to SGNS.

Our approach to encoding the position of
context words involves assigning a randomly-
generated permutation to each position within a
sliding window. For example, with a sliding win-
dow of window radius 2 (considering two posi-
tions to the left and the right of a focus term), we
assign a random permutation,

∏
p, to each element

467

Figure 1: The Architecture of EARP

of the set of positions {−2;−1; +1; +2}. With∏
p indicating the application of a context-specific

random permutation for position p, the optimiza-
tion objective becomes:

∑

(w,c:p)∈D
log σ(−→w .

∏

p

(−→c)) +

∑

(w,¬c:p)∈D′
log σ(−−→w .

∏

p

(−→¬c))

For example, upon observing the term “wy-
att” in the context of the term “earp”, the
model would attempt to maximize p(c|w) =
σ(−−−→wyatt.

∏
+1(
−−→earp)), with −−−→wyatt and −−→earp as se-

mantic and context vectors respectively. The un-
derlying architecture is illustrated in Figure 1, us-
ing a simplified model generating 5-dimensional
vector representations for a small vocabulary of 10
terms. The permutation

∏
p can be implemented

by “rewiring” the components of the input and out-
put weights, without explicitly generating a per-
muted copy of the context vector concerned. In
this way, p(c|w) is estimated and maximized in
place without imposing additional computational
or space requirements, beyond those required to
store the permutations. This is accomplished by
changing the index values used to access compo-
nents of−−→earp when the scalar product is calculated,
and when weights are updated. The inverse per-
mutation (or reverse rewiring - connecting compo-
nents 1:3 rather than 3:1) is applied to −−−→wyatt when
updating−−→earp, and this procedure is used with both
observed context terms and negative samples.

Within this general framework, we evaluate four
word order encoding schemes, implemented by
adapting the open source Semantic Vectors1

package for distributional semantics research:
1https://github.com/semanticvectors/semanticvectors

3.2.1 Directional (EARPdir)
Directional encoding draws a distinction between
terms that occur before or after the focus term
in a sliding window. As such, only two permu-
tations (and their inverse permutations) are em-
ployed:

∏
−1 for preceding terms, and

∏
+1 for

all subseqent terms. Directional encoding with
permutations has been shown to improve perfor-
mance in synonym tests evaluations when applied
in the context of RI (Sahlgren et al., 2008).

3.2.2 Positional (EARPpos)
With positional encoding, a permutation is used
to encode each space in the sliding window. As
a randomly permuted vector is highly likely to
be orthogonal or close-to-orthogonal to the vec-
tor from which it originated (Kanerva, 2009), this
is likely to result in orthogonal encodings for the
same context word in different positions. With
RI, positional encoding degraded synonym test
performance, but permitted a novel form of dis-
tributional query, in which permutation is used
to retrieve words that occur in particular posi-
tions in relation to one another (Sahlgren et al.,
2008). EARPpos facilitates queries of this form
also: the nearest neighboring context vector to the
permuted semantic vector

∏INV
−1 (−−→earp) is −−−→wyatt in

both static-window subword-agnostic EARPpos

spaces used in the experiments that follow.

3.2.3 Proximity-based (EARPprox)
With proximity-based encoding, the positional en-
coding of a particular context term occurring in the
first position in a sliding window will be some-
what similar to the encoding when this term oc-
curs in the second position, and less similar (but
still not orthogonal) to the encoding when it occurs
in the third. This is accomplished by randomly
generating an index permutation

∏
+1, randomly

reassigning a half of its permutations to generate∏
+2, and repeating this process iteratively until

a permutation for every position in the window is
obtained (for the current experiments, we assigned
two index permutations

∏
+1 and

∏
−1, proceed-

ing bidirectionally). As a low-dimensional ex-
ample, if

∏
+1 were {4:1, 1:2, 2:3, 3:4}, ∏+2

might be {4:3, 1:2, 2:1, 3:4}. The net result is
that the similarity between the position-specific
representations of a given context vector reflects
the proximity between the positions concerned.
While this method is reminiscent of interpolation
between randomly generated vectors or matrices

468

to encode character position within words (Cohen
et al., 2013) and pixel position within images (Gal-
lant and Culliton, 2016) respectively, the iterative
application of permutations for this purpose is a
novel approach to such positional binding.

3.3 Subword embeddings

The use of character n-grams as components of
distributional semantic models was introduced by
Schütze (1993), and has been shown to improve
performance of neural-probabilistic models on
analogical retrieval tasks (Bojanowski et al., 2017;
Mikolov et al., 2017). It is intuitive that this should
be the case as standard analogy evaluation refer-
ence sets include many analogical questions that
require mapping from a morphological derivative
of one word (e.g. fast:faster) to the same morpho-
logical derivative of another (e.g. high:higher).

Consequently, we also generated n-gram based
variants of each of our models, by adapting the
approach described in (Bojanowski et al., 2017)
to our SGNS configuration. Specifically, we de-
composed each word into character n-grams, after
introducing characters indicating the start (<) and
end (>) of a word. N-grams of size betweeen 3
and 6 characters (inclusive) were encoded, and in
order to place an upper bound on memory require-
ments a hash function was used to map each ob-
served n-gram to one of at the most two million
vectors without constraints on collisions. The in-
put vector Vi for a word with n included n-grams
(including the word itself) was then generated as2

Vi =
1

n

n∑

i=1

−−−−→ngrami

During training, we used Vi as the input vector for
EARP and SGNS, with updates propagating back
to component word and n-gram vectors in propor-
tion to their contribution to Vi.

3.4 Training data

All models were trained on the first January 2018
release of the English Wikipedia3, to which we ap-
plied the pre-processing script distributed with the
fastText package4, resulting in a corpus of ap-
proximately 8.8 billion words.

2Words and n-grams are weighted equally, following (Bo-
janowski et al., 2017) and the fastText implementation

3https://dumps.wikimedia.org/enwiki
4https://github.com/facebookresearch

/fastText

3.5 Training procedure

All models used 500-dimensional vectors, and
were trained for a single iteration across the cor-
pus with five negative samples per context term.
For each of the four models (SGNS , EARPdir ,
EARPpos , EARPprox), embeddings were gener-
ated with sliding window radii r of 2 and 5 (in
each direction), with and without subword embed-
dings. For all experiments, we excluded numbers,
and terms occurring less than 150 times in the cor-
pus. SGNS has a number of hyperparameters that
are known to influence performance (Levy et al.,
2015). We did not engage in tuning of these hyper-
parameters to improve performance of our mod-
els, but rather were guided by prior research in se-
lecting hyper-parameter settings that are known to
perform well with the SGNS baseline model.

Specifically, we used a subsampling threshold
t of 10−5. In some experiments (EARP and
SGNS), we used dynamic sliding windows with
uniform probability of a sliding window radius be-
tween one and r, in an effort to align our base-
line model closely with other SGNS implemen-
tations. Stochastic reduction of the sliding win-
dow radius will result in distal words being ig-
nored at times. With a dynamic sliding window,
subsampled words are replaced by the next word
in sequence. This increases the data available for
training, but will result in relative position being
distorted at times. Consequently, we also gen-
erated spaces with static fixed-width sliding win-
dows (EARPx) for position-aware models.

After finding that fastText trained on
Wikipedia performed better on analogy tests than
prior results obtained with word2vec (Levy
et al., 2015), we adopted a number of its hyperpa-
rameter settings. We set the probability of negative
sampling for each term to f

1
2 , where f is the num-

ber of term occurrences divided by the total token
count. In addition we used an initial learning rate
of .05, and subsampled terms with a probability of
1− (

√
t
f + t

f)5.

5While using this formula reliably improves performance
on some of the analogy sets, it differs from both the for-
mula described in Mikolov et al. (2013b), and the formula
implemented in the canonical word2vec implementation of
SGNS - see Levy et al. (2015) for details. It is also diffi-
cult to justify on theoretical grounds, as it returns values less
than zero for some words that meet the subsampling thresh-
old. Nevertheless, retaining it throughout our experiments
seemed more principled than altering the fastText base-
line in a manner that impaired its performance.

469

3.6 Evaluation

To evaluate the nature and utility of the additional
information encoded by permutation-based vari-
ants, we utilized a set of analogical retrieval refer-
ence sets, including the MSR set (Mikolov et al.,
2013c) consisting of 8,000 proportional analogy
questions that are morphological in nature (e.g.
young:younger:quick:?) and the Google anal-
ogy set (Mikolov et al., 2013a) which includes
8,869 semantic (and predominantly geographic,
e.g. brussels:belgium:dublin:?) and 10,675
morphologically-oriented “syntactic” questions.
We also included the Bigger Analogy Test Set
(BATS) set (Gladkova et al., 2016), a more chal-
lenging set of 99,200 proportional analogy ques-
tions balanced across 40 linguistic types in four
categories: Inflections (e.g. plurals, infinitives),
Derivation (e.g. verb+er), Lexicography (e.g. hy-
pernyms, synonyms) and Encylopedia (e.g. coun-
try:capital, male:female). We obtained these sets
from the distribution described in Finley et al
(2017)6, in which only the first correct answer to
questions with multiple correct answers in BATS
is retained, and used a parallelized implementa-
tion of the widely used vector offset method, in
which for a given proportional analogy a:b:c:d, all
word vectors in the space are rank-ordered in ac-
cordance with their cosine similarity to the vector−−−−−−→
c+ b− a. We report average accuracy, where a
result is considered accurate if d is the top-ranked
result aside from a, b and c.7

To evaluate the effects of encoding word order
on the relative distance between terms, we used
a series of widely used reference sets that medi-
ate comparison between human and machine es-
timates of pairwise similarity and relatedness be-
tween term pairs. Specifically, we used Wordsim-
353 (Finkelstein et al., 2001), split into subsets
emphasizing similarity and relatedness (Agirre
et al., 2009); MEN (Bruni et al., 2014) and Simlex-
999 (Hill et al., 2015). For each of these sets,
we estimated the Spearman correlation of the co-
sine similarity between vector representations of
the words in a given pair, with the human ratings
(averaged across raters) of similarity and/or relat-

6 https://github.com/gpfinley/analogies
7For a finer-grained estimate of performance — which we

considered particularly important in cases in BATS in which
only the first of a set of correct answers was retained — we
also calculated the mean reciprocal rank (rank−1) (Voorhees
et al., 1999) of d across all questions. As these results closely
mirrored the accuracy results, we report accuracy only.

edness provided in the reference standards.
Only those examples in which all relevant terms

were represented in our vector spaces were con-
sidered. Consequently, our analogy test sets con-
sisted of 6136; 19,420 and 88,108 examples for
the MSR8, Google and BATS sets respectively.
With pairwise similarity, we retained 998; 335 and
all 3,000 of the Simlex, Wordsim and MEN exam-
ples respectively. These numbers were identical
across models, including fastText baselines.

In addition we evaluated the effects of incor-
porating word order with EARP on three stan-
dard sequence labeling tasks: part-of-speech tag-
ging of the Wall Street Journal sections of the
Penn Treebank (PTB) and the CoNLL’00 sentence
chunking (Tjong Kim Sang and Buchholz, 2000)
and CoNLL’03 named entity recognition (Tjong
Kim Sang and De Meulder, 2003) shared tasks.
As was the case with the pairwise similarity and
relatedness evaluations, we conducted these eval-
uations using the repEval2016 package 9 after
converting all vectors to the word2vec binary
format. This package provides implementations
of the neural NLP architecture developed by Col-
lobert and his colleagues (2011), which uses vec-
tors for words within a five-word window as input,
a single hidden layer of 300 units and an output
Softmax layer. The implementation provided in
repEval2016 deviates by design from the orig-
inal implementation by fixing word vectors during
training in order to emphasize difference between
models for the purpose of comparative evaluation,
which tends to reduce performance (for further
details, see (Chiu et al., 2016)). As spaces con-
structed with narrower sliding windows generally
perform better on these tasks (Chiu et al., 2016),
we conducted these experiments with models of
window radius 2 only. To facilitate fair compari-
son, we added random vectors representing tokens
available in the fastText-derived spaces only
to all spaces, replacing the original vectors where
these existed. This was important in this evalua-
tion as only fastText retains vector represen-
tation for punctuation marks (these are eliminated
by the Semantic Vectors tokenization pro-
cedure), resulting in a relatively large number of
out-of-vocabulary terms and predictably reduced

8The fraction of the MSR set retained is smaller, because
1000 of the examples in this set concern identifying posses-
sives indicates by the presence of an apostrophe, and terms of
this nature were eliminated by the pre-processing procedure.

9https://github.com/cambridgeltl/RepEval-2016

470

performance with the Semantic Vectors im-
plementation of the same algorithm. With the ran-
dom vectors added, out-of-vocabulary rates were
equivalent across the two SGNS implementations,
resulting in similar performance.

4 Results

4.1 Analogical retrieval

The results of our analogical retrieval experiments
are shown in Table 1. With the single exception
of the semantic component of the Google set, the
best result on every set and subset was obtained
by a variant of the EARPprox model, strongly
suggesting that (1) information concerning rela-
tive position is of value for solving analogical re-
trieval problems; (2) encoding this information in
a flexible manner that preserves the natural rela-
tionship of proximity between sliding window po-
sitions helps more than encoding only direction, or
encoding window positions as disparate “slots”.

On the syntactically-oriented subsets (Gsyn,
Binf, Bder) adding subword information improves
performance of baseline SGNS and EARP mod-
els, with subword-sensitive EARPx prox mod-
els showing improvements of between ∼6% and
∼21% in accuracy on these subtasks, as compared
with the best performing baseline10. The results
follow the same pattern at both sliding window
radii, aside from a larger decrease in performance
of EARPx models on the semantic component of
the Google set at radius 2, attributable to seman-
tically useful information lost on account of sub-
sampling without replacement. In general, bet-
ter performance on syntactic subsets is obtained at
radius 2 with subword-sensitive models, with se-
mantic subsets showing the opposite trend.

While better performance on the total Google
set has been reported with larger training corpora
(Pennington et al., 2014; Mikolov et al., 2017),
the best EARP results on the syntactic compo-
nent of this set surpass those reported from order-
insensitive models trained on more comprehensive
corpora for multiple iterations. With this subset,

10To assess reproducibility, we repeated the window radius
2 experiments a further 4 times, with different stochastic ini-
tialization of network weights. Performance was remarkably
consistent, with a standard error of the mean accuracy on the
MSR, Google and BATS sets at or below .24% (.0024), .33%
(.0033) and .12% (.0012) for all models. All differences in
performance from the baseline (only SGNS semVec was re-
peated) were statistically significant by unpaired t-test, aside
from the results of EARPdir and EARPprox on the Google
set when no subwords were used.

the best EARPprox model obtained an accuracy
of 76.74% after a single training iteration on a ∼9
billion word Wikipedia-derived corpus. Penning-
ton and his colleagues (2014) report a best accu-
racy of 69.3% after training Glove on a corpus
of 42 billion words, and Mikolov and colleagues
(2017) report an accuracy of 73% when training a
subword-sensitive CBOW model for five iterations
across a 630 billion word corpus derived from
Common Crawl. The latter performance improved
to 82% with pre-processing to tag phrases and
position-dependent weighting – modifications that
may improve EARP performance also, as would
almost certainly be the case with multiple training
iterations across a much larger corpus.

Regarding the performance of other order-
sensitive approaches on this subset, Trask and
his colleagues (2015) report a 1.41% to 3.07%
increase in absolute accuracy over a standard
CBOW baseline with PENN, and Mikolov and
his colleagues (2017) report a 4% increase over a
subword-sensitive CBOW model with incorpora-
tion of position-dependent weights11. By compar-
ison, EARPx prox yields improvements of up to
4.27% over the best baseline when subwords are
not considered, and 8.29% with subword-sensitive
models (both at radius 5).

With the more challenging BATS analogies,
Drozd and his colleagues (2016) report results for
models trained on a 6 billion word corpus de-
rived from the Wikipedia and several other re-
sources, with best results with the vector offset
method for BATS components of 61%, 11.2%
(both SGNS), 10.9% and 31.5% (both Glove) for
the Inflectional, Derivational, Lexicography and
Encyclopedia components respectively. While not
strictly comparable on account of our training on
Wikipedia alone and acknowledging only one of a
set of possible correct answers in some cases, our
best results for these sets were 71.56%, 44.30%,
10.07% and 36.52% respectively, with a fourfold
increase in performance on the derivational com-
ponent. These results further support the hypoth-
esis that order-related information is of value in
several classes of proportional analogy problem.

4.2 Semantic similarity/relatedness
These improvements in analogy retrieval were not
accompanied by better correlation with human es-

11CBOW baselines were around 10% higher than our
SGNS baselines, attributable to differences in corpus size,
composition and preprocessing; and perhaps architecture.

471

Radius 2 SW BATS MSR Google Gsem Gsyn Binf Bder Blex Benc
SGNS fastText 27.22 53.78 70.13 77.30 64.17 56.00 11.76 7.06 32.12
SGNS semVec 27.46 53.72 69.53 77.30 63.07 56.28 11.65 7.25 32.66
EARPdir 28.26 54.48 69.34 76.57 63.33 56.33 11.51 8.36 34.62
EARPpos 28.80 54.38 67.71 71.85 64.28 57.22 12.75 8.47 34.70
EARPprox 28.95 55.08 69.19 74.95 64.40 57.38 12.86 8.44 35.04
EARPx pos 30.50 60.15 61.71 58.94 64.01 66.09 11.07 9.37 33.05
EARPx prox 30.79 62.45 66.86 68.80 65.25 66.90 10.76 9.46 33.56
SGNS fastText X 28.16 59.83 63.57 57.87 68.31 61.05 22.51 4.47 24.60
SGNS semVec X 29.17 61.44 65.24 59.38 70.10 62.28 23.56 5.02 25.83
EARPdir X 31.70 62.94 68.90 62.46 74.26 63.85 29.26 5.54 28.65
EARPpos X 33.18 62.89 69.35 62.98 74.63 65.10 32.23 6.01 30.12
EARPprox X 33.26 64.26 70.82 64.83 75.80 66.08 31.72 6.05 29.85
EARPx pos X 36.89 68.90 61.12 44.05 75.29 71.32 44.14 6.81 27.62
EARPx prox X 37.07 69.07 63.88 49.31 75.98 71.56 44.30 6.92 27.81

Radius 5 SW BATS MSR Google Gsem Gsyn Binf Bder Blex Benc
SGNS fastText 25.54 48.21 69.29 78.47 61.66 49.93 11.95 7.00 31.51
SGNS semVec 25.76 46.90 68.75 79.04 60.20 49.42 11.84 6.87 33.08
EARPdir 27.07 49.20 68.66 76.85 61.85 50.58 12.38 8.30 35.04
EARPpos 26.14 45.39 61.29 65.53 57.76 49.82 12.41 7.71 32.80
EARPprox 28.40 51.06 69.17 77.05 62.62 53.59 14.05 8.51 35.56
EARPx pos 28.30 52.67 59.18 59.80 58.67 57.27 12.90 8.78 32.35
EARPx prox 30.94 58.15 69.37 73.51 65.93 59.86 15.36 10.07 36.52
SGNS fastText X 26.27 55.04 66.32 64.56 67.79 56.23 18.56 4.43 25.38
SGNS semVec X 27.69 55.93 67.96 67.37 68.44 57.90 20.32 5.12 26.98
EARPdir X 30.12 58.20 70.22 69.42 70.88 59.98 24.46 5.78 30.11
EARPpos X 31.02 54.78 65.67 60.41 70.03 60.28 28.21 5.96 29.94
EARPprox X 32.67 60.77 72.23 69.79 74.27 64.01 28.71 6.46 31.67
EARPx pos X 34.75 61.08 63.83 54.41 71.66 66.02 36.32 7.51 30.33
EARPx prox X 36.67 67.44 72.22 66.78 76.74 69.16 38.72 7.56 32.52

Table 1: Analogical retrieval results at radius 2 (top) and 5 (bottom). SW: subwords. Gsem/syn: “semantic”
and “syntactic” components of Google set. Binf/der/lex/enc: inflectional, derivational, lexical and encyclopedia-
derived components of the BATS. SGNS: fastText and Semantic Vectors (semVec) implementations of
skipgram-with-negative-sampling. EARP: Embeddings Augmented by Random Permutations. EARPx: EARP
with exact window positions. Best results are in boldface, and rows concerning baseline models are shaded.

timates of semantic similarity and relatedness. To
the contrary with a window radius of 2, the best
results on all sets and subsets were produced by
SGNS baselines, with a best baseline Spearman
Rho of .41 (SGNS fastText), .72 (SGNS semVec)
and .77 (SGNS semVec + subwords) for SimLex-
999, WS-353 and MEN respectively. Surprisingly,
incorporating order-related information reduced
performance on all of these sets, with best perfor-
mance for SimLex-999, WS-353 and MEN of .40
(EARPx prox), .71 (EARPpos) and .76 (EARPdir

+ subwords) respectively; and worst performance
of .37 (EARPpos), .66 and .71 (both EARPx prox)
respectively. Other models fell between these ex-

tremes, with a similar pattern observed with win-
dow radius of 5. The differences in performance
observed with these tasks are neither as stark nor
as consistent as those with analogy tasks, with
EARP performance falling between that of the two
baseline models in several cases. Nonetheless,
EARP models tend to correlate worse with hu-
man estimates of pairwise similarity and related-
ness. This drop in performance may relate to how
semantic information is dispersed with position-
aware models - a neighboring word is encoded
differently depending on position, which may ob-
scure the semantically useful information that two
other words both occur in proximity to it.

472

Task CoNLL00 CoNLL03 PTB CoNLL00 CoNLL03 PTB
SGNS fastText 87.09 80.32 94.38 87.34 80.66 94.78
SGNS semVec 87.11 77.93 95.59 87.57 80.33 95.96
EARPdir 88.25 80.24 95.83 88.06 80.96 96.07
EARPpos 88.71 80.10 95.74 88.55 80.84 95.89
EARPprox 88.59 79.64 95.85 88.78 80.54 96.09
EARPx pos 89.05 80.43 95.92 89.52 80.17 95.93
EARPx prox 88.99 80.77 96.02 89.37 79.77 95.93
Subwords - - - X X X

Table 2: Performance on Sequence Labeling Tasks. % accuracy shown for PTB, and % F-measure otherwise

4.3 Sequence labeling

Results of these experiments are shown in Ta-
ble 2, and suggest an advantage for models en-
coding position in sequence labeling tasks. In
particular, for the sentence chunking shared task
(CoNLL00), the best results obtained with an
order-aware model (EARPx pos + subwords) ex-
ceeds the best baseline result by around 2%, with
smaller improvements in performance on the other
two tasks, including a .43% improvement in ac-
curacy for part-of-speech tagging (PTB, without
subwords) that is comparable to the .37% im-
provement over a SGNS baseline reported on
this dataset by Ling and his colleagues (2015)
when using separate (rather than shared) position-
dependent context weights.

4.4 Computational performance

All models were trained on a single multi-core ma-
chine. In general, Semantic Vectors takes
slightly longer to run than fastText, which
takes around an hour to generate models includ-
ing building of the dictionary. With Semantic
Vectors, models were generated in around 1h20
when the corpus was indexed at document level,
which is desirable as this package uses Lucene12

for tokenization and indexing. As the accuracy of
fastText on analogy completion tasks dropped
considerably when we attempted to train it on
unsegmented documents, we adapted Semantic
Vectors to treat each line of input as an individ-
ual document. As this approximately doubled the
time required to generate each model, we would
not recommend this other than for the purpose of
comparative evaluation. Adding subword embed-
dings increased training time by three- to four-
fold. Source code is available via GitHub13, and

12https://lucene.apache.org/
13https://github.com/semanticvectors/semanticvectors

embeddings are publicly available at 14.

4.5 Limitations and future work

While this paper focused on encoding positional
information, EARP is generalizable and could be
used to encode other sorts of relational infor-
mation also. An interesting direction for future
work may involve using EARP to encode the na-
ture of semantic and dependency relations, as has
been done with RI previously (Cohen et al., 2009;
Basile et al., 2011). As the main focus of the cur-
rent paper was on comparative evaluation across
models with identical hyper-parameters, we have
yet to formally evaluate the extent to which hyper-
parameter settings (such as dimensionality) may
affect performance, and it seems likely that hyper-
parameters that would further accentuate EARP
performance remain to be identified.

4.6 Conclusion

This paper describes EARP, a novel method
through which word order can be encoded into
neural word embedding representations. Of note,
this additional information is encoded without the
need for additional computation, and space re-
quirements are practically identical to those of
baseline models. Upon evaluation, encoding word
order results in substantive improvements in per-
formance across multiple analogical retrieval ref-
erence sets, with best performance when order in-
formation is encoded using a novel permutation-
based method of positional binding.

Acknowledgments

This work was supported by US National Library
of Medicine grant (R01 LM011563), and con-
ducted in part at the University of Texas School
of Biomedical Informatics at Houston.

14https://doi.org/10.5281/zenodo.1345333

473

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27. Association for Computational Lin-
guistics.

Pierpaolo Basile, Annalina Caputo, and Giovanni Se-
meraro. 2011. Encoding syntactic dependencies by
vector permutation. In Proceedings of the GEMS
2011 Workshop on GEometrical Models of Natural
Language Semantics, pages 43–51. Association for
Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5(1):135–146.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Billy Chiu, Anna Korhonen, and Sampo Pyysalo. 2016.
Intrinsic evaluation of word vectors fails to predict
extrinsic performance. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 1–6.

Trevor Cohen, Roger W Schvaneveldt, and Thomas C
Rindflesch. 2009. Predication-based semantic in-
dexing: Permutations as a means to encode predi-
cations in semantic space. In AMIA Annual Sympo-
sium Proceedings, volume 2009, page 114. Ameri-
can Medical Informatics Association.

Trevor Cohen, Dominic Widdows, Manuel Wahle, and
Roger Schvaneveldt. 2013. Orthogonality and or-
thography: introducing measured distance into se-
mantic space. In International Symposium on Quan-
tum Interaction, pages 34–46. Springer.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and ma-
chine learning: Beyond king-man+ woman= queen.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3519–3530.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414. ACM.

Gregory Finley, Stephanie Farmer, and Serguei Pakho-
mov. 2017. What analogies reveal about word vec-
tors and their compositionality. In Proceedings of
the 6th Joint Conference on Lexical and Computa-
tional Semantics (* SEM 2017), pages 1–11.

Stephen I Gallant and Phil Culliton. 2016. Positional
binding with distributed representations. In Image,
Vision and Computing (ICIVC), International Con-
ference on, pages 108–113. IEEE.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pages 8–
15.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: Deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Michael N Jones, Walter Kintsch, and Douglas JK Me-
whort. 2006. High-dimensional semantic space ac-
counts of priming. Journal of memory and lan-
guage, 55(4):534–552.

Pentii Kanerva, Jan Kristoferson, and Anders Holst.
2000. Random indexing of text samples for la-
tent semantic analysis. In Proceedings of the An-
nual Meeting of the Cognitive Science Society, vol-
ume 22.

Pentti Kanerva. 2009. Hyperdimensional computing:
An introduction to computing in distributed rep-
resentation with high-dimensional random vectors.
Cognitive Computation, 1(2):139–159.

Jussi Karlgren and Magnus Sahlgren. 2001. From
words to understanding. Foundations of Real-World
Intelligence, pages 294–308.

Thomas Landauer and Susan Dumais. 1997. A solu-
tion to Plato’s problem: The latent semantic anal-
ysis theory of acquisition. Psychological Review,
104(2):211–240.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

474

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior research methods, instru-
ments, & computers, 28(2):203–208.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2017. Ad-
vances in pre-training distributed word representa-
tions. arXiv preprint arXiv:1712.09405.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Advances in neural information pro-
cessing systems, pages 2265–2273.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Tony A Plate. 1995. Holographic reduced represen-
tations. IEEE Transactions on Neural networks,
6(3):623–641.

Gabriel Recchia, Michael Jones, Magnus Sahlgren, and
Pentti Kanerva. 2010. Encoding sequential informa-
tion in vector space models of semantics: Compar-
ing holographic reduced representation and random
permutation. In Proceedings of the Annual Meeting
of the Cognitive Science Society, volume 32.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

Magnus Sahlgren, Anders Holst, and Pentti Kanerva.
2008. Permutations as a means to encode order in
word space.

Hinrich Schütze. 1993. Word space. In Advances in
neural information processing systems, pages 895–
902.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational Linguistics, 24(1):97–124.

Erik F Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of the 2nd workshop on Learn-
ing language in logic and the 4th conference on
Computational natural language learning-Volume 7,
pages 127–132. Association for Computational Lin-
guistics.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Andrew Trask, David Gilmore, and Matthew Rus-
sell. 2015. Modeling order in neural word em-
beddings at scale. In Proceedings of the 32nd In-
ternational Conference on International Conference
on Machine Learning-Volume 37, pages 2266–2275.
JMLR. org.

Peter D Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research,
37:141–188.

Ellen M Voorhees et al. 1999. The trec-8 question an-
swering track report. In Trec, volume 99, pages 77–
82.

475

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 476–485
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Aggregated Semantic Matching for Short Text Entity Linking

Feng Nie1∗, Shuyan Zhou2∗, Jing Liu3∗, Jinpeng Wang4, Chin-Yew Lin4, Rong Pan1∗
1Sun Yat-Sen University 2Harbin Institute of Technology 3Baidu Inc. 4Microsoft Research Asia

{fengniesysu, alexisxy0418}@gmail.com,
liujing46@baidu.com, {jinpwa, cyl}@microsoft.com, panr@sysu.edu.cn

Abstract

The task of entity linking aims to identify con-
cepts mentioned in a text fragments and link
them to a reference knowledge base. Entity
linking in long text has been well studied in
previous work. However, short text entity link-
ing is more challenging since the texts are
noisy and less coherent. To better utilize the
local information provided in short texts, we
propose a novel neural network framework,
Aggregated Semantic Matching (ASM), in
which two different aspects of semantic infor-
mation between the local context and the can-
didate entity are captured via representation-
based and interaction-based neural semantic
matching models, and then two matching sig-
nals work jointly for disambiguation with a
rank aggregation mechanism. Our evaluation
shows that the proposed model outperforms
the state-of-the-arts on public tweet datasets.

1 Introduction

The task of entity linking aims to link a men-
tion that appears in a piece of text to an entry
(i.e. entity) in a knowledge base. For example,
as shown in Table 1, given a mention Trump in
a tweet, it should be linked to the entity Donald
Trump1 in Wikipedia. Recent research has shown
that entity linking can help better understand the
text of a document (Schuhmacher and Ponzetto,
2014) and benefits several tasks, including named
entity recognition (Luo et al.) and information re-
trieval (Xiong et al., 2017b). The research of entity
linking mainly considers two types of documents:
long text (e.g. news articles and web documents)
and short text (e.g. tweets). In this paper, we focus
on short text, particularly tweet entity linking.

∗Correspondence author is Rong Pan. This work was
done when the first and second author were interns and the
third author was an employee at Microsoft Research Asia.

1https://en.wikipedia.org/wiki/Donald Trump

Tweet
The vile #Trump humanity raises its gentle face
in Canada ... chapeau to #Trudeau
Candidates
Donald Trump, Trump (card games), ...

Table 1: An illustration of short text entity linking,
with mention Trump underlined.

One of the major challenges in entity link-
ing task is ambiguity, where an entity mention
could denote to multiple entities in a knowledge
base. As shown in Table 1, the mention Trump
can refer to U.S. president Donald Trump and
also the card name Trump (card games). Many
of recent approaches for long text entity linking
take the advantage of global context which cap-
tures the coherence among the mapped entities
for a set of related mentions in a single docu-
ment (Cucerzan, 2007; Han et al., 2011; Glober-
son et al., 2016; Heinzerling et al., 2017). How-
ever, short texts like tweets are often concise and
less coherent, which lack the necessary informa-
tion for the global methods. In the NEEL dataset
(Weller et al., 2016), there are only 3.4 mentions in
each tweet on average. Several studies (Liu et al.,
2013; Huang et al., 2014) investigate collective
tweet entity linking by pre-collecting and consid-
ering multiple tweets simultaneously. However,
multiple texts are not always available for collec-
tion and the process is time-consuming. Thus, we
argue that an efficient entity disambiguation which
requires only a single short text (e.g., a tweet) and
can well utilize local contexts is better suited in
real word applications.

In this paper, we investigate entity disambigua-
tion in a setting where only local information is
available. Recent neural approaches have shown
their superiority in capturing rich semantic sim-

476

ilarities from mention contexts and entity con-
tents. Sun et al. (2015); Francis-Landau et al.
(2016) proposed using convolutional neural net-
works (CNN) with Siamese (symmetric) archi-
tecture to capture the similarity between texts.
These approaches can be viewed as represen-
tation-focused semantic matching models. The
representation-focused model first builds a rep-
resentation for a single text (e.g., a context or
an entity description) with a neural network, and
then conducts matching between the abstract rep-
resentation of two pieces of text. Even though
such models capture distinguishable information
from both mention and entity side, some con-
crete matching signals are lost (e.g., exact match),
since the matching between two texts happens af-
ter their individual abstract representations have
been obtained. To enhance the representation-
focused models, inspired by recent advances in in-
formation retrieval (Lu and Li, 2013; Guo et al.,
2016; Xiong et al., 2017a), we propose using in-
teraction-focused approach to capture the con-
crete matching signals. The interaction-focused
method tries to build local interactions (e.g., co-
sine similarity) between two pieces of text, and
then uses neural networks to learn the final match-
ing score based on the local interactions.

The representation- and interaction-focused ap-
proach capture abstract- and concrete-level match-
ing signal respectively, they would be comple-
ment each other if designed appropriately. One
straightforward way to combine multiple seman-
tic matching signals is to apply a linear regres-
sion layer to learn a static weight for each match-
ing signal(Francis-Landau et al., 2016). However,
we observe that the importance of different sig-
nals can be different case by case. For example,
as shown in Table 1, the context word Canada
is the most important word for the disambiguation
of Trudeau. In this case, the concrete-level match-
ing signal is required. While for the tweet “#Star-
Wars #theForceAwakens #StarWarsForceAwakens
@StarWars”, @StarWars is linked to the entity
Star Wars2. In this case, the whole tweet describes
the same topic “Star Wars”, thus the abstract-level
semantics matching signal is helpful. To address
this issue, we propose using a rank aggregation
method to dynamically combine multiple seman-
tic matching signals for disambiguation.

In summary, we focus on entity disambiguation

2https://en.wikipedia.org/wiki/Star Wars

by leveraging only the local information. Specif-
ically, we propose using both representation-
focused model and interaction-focused model for
semantic matching and view them as complemen-
tary to each other. To overcome the issue of the
static weights in linear regression, we apply rank
aggregation to combine multiple semantic match-
ing signals captured by two neural models on mul-
tiple text pairs. We conduct extensive experiments
to examine the effectiveness of our proposed ap-
proach, ASM, on both NEEL dataset and MSR
tweet entity linking (MSR-TEL for short) dataset.

2 Background

2.1 Notations
Given a tweet t, it contains a set of identified
queries Q = (q1, ..., qn). Each query q in a tweet t
consists of m and ctx, where m denotes an entity
mention and ctx denotes the context of the men-
tion, i.e., a piece of text surroundingm in the tweet
t. An entity is an unambiguous page (e.g., Donald
Trump) in a referent Knowledge Base (KB). Each
entity e consists of ttl and desc, where ttl denotes
the title of e and desc denotes the description of e
(e.g., the article defining e).

2.2 An Overview of the Linking System
Typically, an entity linking system consists of
three components: mention detection, candidate
generation and entity disambiguation. In this sec-
tion, we will briefly presents the existing solutions
for the first two components. In next section, we
will introduce our proposed aggregated semantic
matching for entity disambiguation.

2.2.1 Mention Detection
Given a tweet t with a sequence of words
w1, ..., wn, our goal is to identify the possible en-
tity mentions in the tweet t. Specifically, every
word wi in tweet t requires a label to indicate
that whether it is an entity mention word or not.
Therefore, we view it as a traditional named entity
recognition (NER) problem and use BIO tagging
schema. Given the tweet t, we aim to assign labels
y = (y1, ..., yn) for each word in the tweet t.

yi =

B wi is a begin word of a mention,
I wi is a non-begin word of a mention,
O wi is not a mention word.

In our implementation, we apply an LSTM-CRF
based NER tagging model which automatically

477

Model Overview

Mention Detection and Candidate Generation

Tweet Data

Convolution Neural
Network with Max-Pooling

Neural Relevance Model
with Kernel-Pooling

Semantic Matching

Knowledge Base

Linking Results

Rank Aggregation

Figure 1: An overview of aggregated semantic
matching for entity disambiguation.

learns contextual features for sequence tagging via
recurrent neural networks (Lample et al., 2016).

2.2.2 Candidate Generation
Given a mention m, we use several heuristic rules
to generate candidate entities similar to (Bunescu
and Pasca, 2006; Huang et al., 2014; Sun et al.,
2015). Specifically, given a mention m, we re-
trieve an entity as a candidate from KB, if it
matches one of the following conditions: (a) the
entity title exactly matches the mention, (b) the
anchor text of the entity exactly matches the men-
tion, (c) the title of the entity’s redirected page ex-
actly matches the mention Additionally, we add
a special candidate NIL for each mention, which
refers to a new entity out of KB. Given a mention,
multiple candidates can be retrieved. Hence, we
need to do entity disambiguation.

3 Aggregated Semantic Matching Model

We investigate entity disambiguation using only
local information provided in short texts in this
paper. Here, the local information includes a men-
tion and its context in a tweet. Similar to (Francis-
Landau et al., 2016), given a query q and an en-
tity e, we consider semantic matching on the four
text pairs for disambiguation: (1) the similarity
sim(m, ttl) between the mention and entity ti-
tle, (2) the similarity sim(m, desc) between the
mention and entity description, (3) the similarity
sim(ctx, desc) between the context and entity de-
scription, (4) the similarity sim(ctx, ttl) between
the context and entity description. Fig. 1 illustrates
an overview of our proposed Aggregated Semantic
Matching for entity disambiguation. First, we use
a representation-focused model and an interaction-
focused neural model for semantic matching on
four text pairs. Then, we introduce a pairwise rank
aggregation to combine multiple semantic match-

ing signals captured by the two neural models on
four text pairs.

3.1 Semantic Matching

Formally, given two texts T1 and T2, the semantic
similarity of the two texts is measured as a score
produced by a matching function based on the rep-
resentation of each text:

match(T1, T2) = F (Φ(T1),Φ(T2)) (1)

where Φ is a function to learn the text representa-
tion, and F is the matching function based on the
interaction between the representations.

Existing neural semantic matching models
can be categorized into two types: (a) the
representation-focused model which takes a com-
plex representation learning function and uses
a relatively simple matching function, (b) the
interaction-focused model which usually takes a
simple representation learning function and uses
a complex matching function. In the remaining
of this section, we will present the details of a
representation-focused model (M-CNN) and an
interaction-focused model (K-NRM). We will also
discuss the advantages of these two models in the
entity linking task.

3.1.1 Convolution Neural Matching with
Max Pooling (M-CNN)

Given two pieces of text T1 = {w1
1, ..., w

1
n} and

T2 = {w2
1, ..., w

2
m}, M-CNN aims to learn com-

positional and abstract representations (Φ) for T1
and T2 using a convolution neural network with a
max pooling layer(Francis-Landau et al., 2016).

Figure 2a illustrates the architecture of M-CNN
model. Given a sequence of words w1, ..., wn,
we embed each word into a d dimensional vector,
which yields a set of word vectors v1, ..., vn. We
then map those word vectors into a fixed-size vec-
tor using a convolution network with a filter bank
M ∈ Ru×d, where window size is l and u is the
number of filters. The convolution feature matrix
H ∈ Rk×(n−l+1) is obtained by concatenating the
convolution outputs

−→
h i:

−→
hj = max{0,Mvj:(j+l)}
H = [

−→
h 1, ...,

−→
h n−l+1]

(2)

where vj:j+l is a concatenation of the given word
vectors and the max is element-wise. In this way,
we extract word-level n-gram features of T1 and

478

CNN

CNN
Entity Description

Mention Contexts

Semantic
similarity

Max
Pooling

Max
Pooling

0.2, …, 0.5

0.1, …, 0.4

0.3, …, 0.8

0.1, …, 0.3

0.1, …, 0.5

0.2, …, 0.5

0.4, …, 0.5

ℎ1

ℎ2

ℎ1
′

ℎ2
′

ℎ3
′

Ԧ𝑧1

Ԧ𝑧2

𝑠

#Trump

is

visiting

Donald

John

Trump

born

(a) M-CNN Model

𝑠

ℎ1

ℎ2

ℎ1
′

ℎ2
′

ℎ3
′

Interaction

Kernel
Pooling

Semantic
similarity

Soft-TF
features

CNN
Entity Description

CNN
Mention Contexts

0.2, …, 0.5

0.1, …, 0.4

0.3, …, 0.8

0.1, …, 0.3

0.1, …, 0.5

0.2, …, 0.5

0.4, …, 0.5

𝑀11 𝑀21

𝑀12 𝑀22

𝑀13 𝑀23

𝐾1

𝐾𝑛

…

#Trump

is

visiting

Donald

John

Trump

born

(b) K-NRM Model

Figure 2: The Architecture of models.

T2 respectively. To capture the distinguishable in-
formation of T1 and T2, a max-pooling layer is ap-
plied and yields a fixed-length vector −→z1 and −→z2
for T1 and T2. The semantic similarity between
T1 and T2 is measured using a cosine similarity
match(T1, T2) = cosine(−→z1 ,−→z2).

In summary, M-CNN extracts distinguishable
information representing the overall semantics
(i.e. representations) of a string text by using
a convolution neural network with max-pooling.
However, the concrete matching signals (e.g., ex-
act match) are lost, as the matching happens after
their individual representation. We therefore intro-
duce an interaction-focused model to better cap-
ture the concrete matching in the next section.

3.1.2 Neural Relevance Model with Kernel
Pooling (K-NRM)

As shown in Fig. 2b, K-NRM captures the local
interactions between T1 and T2 , and then uses a
kernel-pooling layer (Xiong et al., 2017a) to softly
count the frequencies of the local patterns. The fi-
nal matching score is conducted based on the pat-
terns. Therefore, the concrete matching informa-
tion is captured.

Different from M-CNN, K-NRM builds the lo-
cal interactions between T1 and T2 based on the
word-level n-gram feature matrix calculated in
Eq. 2. Formally, we construct a translation matrix
M , where each element in M is the cosine simi-
larity between an n-gram feature vector

−→
h
q

i in T1
and an n-gram feature vector

−→
h
e

j in T2, calculated

as Mij = cosine(
−→
h
q

i ,
−→
h
e

j).
Then, a scoring feature vector φ(M) is gener-

ated by a kernel-pooling technique.

φ(M) =
n−l+1∑

i=1

√−→
K (Mi)

−→
K (Mi) = {K1(Mi), ...,KK(Mi)}

(3)

where
−→
K (Mi) applies K kernels to the i-th

row of the translation matrix, and generates a
K−dimensional scoring feature vector for the i-
th n-gram feature in the query. The sqrt-sum of
the scoring feature vectors of all n-gram features
in query forms the scoring feature vector φ for the
whole query, where the sqrt reduces the range of
the value in each kernel vector. Note that the effect
of
−→
K depends on the kernel used. We use the RBF

kernel in this paper.

Kk(Mi) =
∑

j

exp(
−(Mij − µk)2

2σ2
) (4)

The RBF kernel Kk calculates how pairwise sim-
ilarities between n-gram feature vectors are dis-
tributed around its mean µk: the more similarities
closed to its mean µk, the higher the output value
is. The kernel functions act as ‘soft-TF’ bins,
where µ defines the similarity level that ‘soft-TF’
focuses on and σ defines the range of its ‘soft-TF’
count. Then the semantic similarity is captured
with a linear layermatch(T1, T2) = wTφ(M)+b,
where φ(M) is the scoring feature vector.

In summary, K-NRM captures the concrete
matching signals based on word-level n-gram fea-
ture interactions between T1 and T2. In contrast,
M-CNN captures the compositional and abstract
meaning of a whole text. Thus, we produce the
semantic matching signals using both models to
capture different aspect of semantics that are use-
ful for entity linking.

3.2 Normalization Scoring Layer

We compute 4 types of semantic similarities be-
tween the query q and the candidate entity e
(e.g., sim(m, tit), sim(m, desc), sim(ctx, tit),
sim(ctx, desc)) with the above two semantic
matching models. We obtain 8 semantic match-
ing signals, denoted as f1(q, e), ..., f8(q, e) in to-

479

tal. The normalized ranking score for each seman-
tic matching signals fi(q, e) is calculated as

si(q, e, f) =
exp(fi(q, e))∑
e′ exp(fi(q, e

′))
(5)

where e
′
stands for any of the candidate entities for

the given mention m. We then produce 8 semantic
matching scores for each candidate entity of m,
denoted as Sq,e = {s1, ..., s8}.

3.3 Rank Aggregation

Given a query q, we obtain multiple semantic
matching signals for each entity candidate after
the last step. To take advantage of different se-
mantic matching models on different text pairs, a
straightforward approach is using a linear regres-
sion layer to combine multiple semantic matching
signals (Francis-Landau et al., 2016). The linear
combination learns a static weight for each match-
ing signal. However, as we pointed out previously,
the importance of different signals varies for dif-
ferent queries. In some cases, the abstract-level
signals are important. While the concrete-level
signals are more important in other cases. To ad-
dress this issue, we introduce a pairwise rank ag-
gregation method to aggregate multiple semantic
matching signals.

In the area of information retrieval, rank ag-
gregation is combining rankings from multiple re-
trieval systems and producing a better new rank-
ing (Carterette and Petkova, 2006). In our prob-
lem, given a query q, we have one ranking of the
entity candidates for each semantic matching sig-
nal. We aim to find the final ranking by aggregat-
ing multiple rankings. Specifically, given a rank-
ing of entities for one semantic matching signal,
e1 � e2 � e3 . . . , where i � j means entity i is
ranked above j, we extract all entity pairs (ei, ej)
from the ranking and assume that if ei � ej , then
ei is preferred to ej . We union all pairwise prefer-
ences generated from multiple rankings as a single
set, from which the final ranking is learned. In this
paper, we apply TrueSkill (Herbrich et al., 2006)
which is a Bayesian skill rating model. We present
a two-layer version of TrueSkill with no-draw.

TrueSkill assumes that the practical perfor-
mance of each player in a game follows a nor-
mal distribution N(µ, σ2), where µ means the
skill level of the player and σ stands for the un-
certainty of the estimated skill level. Basically,
TrueSkill learns the skill levels of players by lever-

aging Bayes’ theorem. Given the current esti-
mated skill levels of two players (prior probabil-
ity) and the outcome of a new game between them
(likelihood), TrueSkill model updates its estima-
tion of player skill levels (posterior probability).
TrueSkill updates the skill level µ and the un-
certainty σ intuitively: (a) if the outcome of a
new competition is expected, i.e., the player with
higher skill level wins the game, it will cause small
updates in skill level µ and uncertainty σ; (b) if the
outcome of a new competition is unexpected, i.e.,
the player with lower skill level wins the game, it
will cause large updates in skill level µ and uncer-
tainty σ. According to these intuitions, the equa-
tions to update the skill level µ and uncertainty σ
are as follows:

µwinner = µwinner +
σ2winner

c
∗ v(

t

c
,
ε

c
)

µloser = µloser −
σ2loser
c
∗ v(

t

c
,
ε

c
)

σ2winner = σ2winner ∗ [1− σ2winner
c2

∗ w(
t

c
,
ε

c
)]

σ2loser = σ2loser ∗ [1− σ2loser
c2
∗ w(

t

c
,
ε

c
)]

(6)
where t = µwinner − µloser and c2 = 2β2 +
σ2winner + σ2loser. Here, ε is a parameter repre-
senting the probability of a draw in one game, and
v(t, ε) and w(t, ε) are weighting factors for skill
level µ and standard deviation σ respectively. β
is a parameter representing the range of skills. In
this paper, we set the initial values of the skill level
µ and the standard deviation σ of each player the
same as the default values used in (Herbrich et al.,
2006). We use µ − 3β to rank entities following
(Herbrich et al., 2006).

4 Experiments

In this section, we describe our experimental re-
sults on tweet entity linking. Particularly, we
investigate the difference between two semantic
matching models and the effectiveness of jointly
combining these two semantic matching signals.

4.1 Datasets & Evaluation Metric
In our experiments, we evaluate our proposed
model ASM on the following two datasets.

NEEL Weller et al. (2016). We use the dataset
of Named Entity Extraction & Linking Challenge
2016. The training dataset consists of 6,025 tweets
and includes 6,374 non-NIL queries and 2,291

480

NIL queries. The validation dataset consists of
100 tweets and includes 253 non-NIL queries and
85 NIL queries. The testing dataset consists of 300
tweets and includes 738 non-NIL queries and 284
NIL queries.

MSR-TEL Guo et al. (2013)3. This dataset
consists of 428 tweets and 770 non-NIL queries.
Since the NEEL test dataset has distribution bias
problem, we add MSR-TEL as another dataset for
the evaluation. In the NEEL testing dataset, 384
out of 1022 queries refer to three entities: ‘Don-
ald Trump’, ‘Star Wars’ and ‘Star Wars (The Force
Awakens)’.

In this paper, we use accuracy as the major eval-
uation metric for entity disambiguation. Formally,
we denote N as the number of queries and M as
the number of correctly linked mentions given the
gold mention (the top-ranked entity is the golden
entity), accuracy = M

N . Besides, we use preci-
sion, recall and F1 measure to evaluate the end-to-
end system. Formally, we denote N

′
as the num-

ber of mentions identified by a system and M
′

as
the correctly linked mentions. Thus, precision =
M
′

N ′
, recall = M

′

N and F1 = 2 ∗ precision∗recall
precision+recall .

4.2 Data Preprocessing
Tweet data All tweets are normalized in the
following way. First, we use the Twitter-aware
tokenizer in NLTK4 to tokenize words in a tweet.
We convert each hyperlink in tweets to a special
token URL. Since hashtags usually does not
contain any space between words, we use a web
service5 to break hastags into tokens (e.g., the
service will break ‘#TheForceAwakens’ into ‘the
force awakens’) by following (Guo et al., 2013).
Regarding to usernames (@) in tweets, we replace
them with their screen name (e.g., the screen name
of the user ‘@jimmyfallon’ is ‘jimmy fallon’).
Wikipedia data We use the Wikipedia Dump on
December 2015 as the reference knowledge base.
Since the most important information of an entity
is usually at the beginning of its Wikipedia article,
we utilize only the first 200 words in the article as
its entity description. We use the default English
word tokenizer in NLTK to do the tokenization
for each Wikipedia article.
Word embedding We use the word2vec
toolkit (Mikolov et al., 2013) to pre-train word

3Guo et al. (2013) only used a subset of this dataset for
evaluation. Instead, we test on the full dataset.

4Natural Language Toolkit. http://www.nltk.org
5http://web-ngram.research.microsoft.com/info/break.html

embeddings on the whole English Wikipedia
Dump. The dimensionality of the word embed-
dings is set to 400. Note that we do not update the
word embeddings during training.

4.3 Experimental Setup
In our main experiment, we compare our proposed
approaches with the following baselines: (a) The
officially ranked 1st and 2nd systems in NEEL
2016 challenge. We denote these two systems as
Rank1 and Rank2. (b) TagMe. Ferragina and
Scaiella (2010) is an end-to-end linking system,
which jointly performs mention detection and en-
tity disambiguation. It focuses on short texts, in-
cluding tweets. (c) Cucerzan. (Cucerzan, 2007)
is a supervised entity disambiguation system that
won TAC KBP competition in 2010. (d) M-CNN.
To the best of our knowledge, (Francis-Landau
et al., 2016) is the state-of-the-art neural disam-
biguation model. (e) Ensemble. The rank ag-
gregated combination of two M-CNN models with
different random seeds.

To fairly compare with the baselines of
Cucerzan and M-CNN, we use the same mention
detection and candidate generation for them and
our approaches. We train an LSTM-CRF based
tagger (Lample et al., 2016) for mention detection
by using the NEEL training dataset. The preci-
sion, recall, and F1 of mention detection on NEEL
testing dataset are 96.1%, 89.2%, 92.6% respec-
tively. The precision, recall, and F1 of mention
detection on MSR-TEL dataset are 80.3% 83.8%
and 82% respectively. As we described in the pre-
vious section, we use the heuristic rules for can-
didate generation. The recall of candidate gen-
eration on NEEL and MSR-TEL is 88.7% and
92.5%.

When training our model, we use the stochastic
gradient descent algorithm and the AdaDelta opti-
mizer (Zeiler, 2012). The gradients are computed
via back-propagation. The dimensionality of the
hidden units in convolution neural network is set
to 300. All the parameters are initialized with a
uniform distribution U(−0.01, 0.01). Since there
is NIL entity in the dataset, we tune a NIL thresh-
old for the prediction of NIL entities according to
the validation dataset.

4.4 Main Results
The end-to-end performance of various ap-
proaches on the two datasets is shown in Table 2.
Since there are no publicly available codes of

481

Methods
NEEL MSR-TEL6

Precision Recall F1 Precision Recall F1
Rank 1 - - 50.1 - - -
Rank 2 - - 39.6 - - -
TagMe 25.3 62.9 36.2 14.5 69.2 23.8
Cucerzan 65.4 57.9 61.4 62.6 63.3 62.9
M-CNN 69.5 64.9 67.1 61.6 62.3 62.1

+pre-train 69.7 65.1 67.3 64.5 65.2 64.8
Ensemble 69.7 65.1 67.3 63.5 64.2 63.8

+pre-train 70.2 65.5 67.8 64.9 65.6 65.2
ASM 70.6 65.9 68.2 64.2 64.9 64.5

+pre-train 72.2 67.4 69.7 66.2 66.9 66.5

Table 2: End-to-end performance of the systems on the two datasets

Methods NEEL MSR-TEL
Cucerzan 65.4 75.5
M-CNN 72.8 74.7

+pre-train 72.9 77.6
Ensemble 72.9 76.4

+pre-train 73.5 78.1
ASM 73.9 77.4

+pre-train 75.5 79.4

Table 3: The accuracy of entity disambiguation
with golden mentions on the two datasets.

Rank1 and Rank2, we give only the F1 scores of
these two systems on NEEL dataset according to
Weller et al. (2016). Note that the baseline systems
Rank1, Rank2 and TagMe use different mention
detection.

The systems of Rank1, Rank2, TagMe and
Cucerzan are feature engineering based ap-
proaches. The systems of M-CNN and ASM are
neural based approaches. From Table 2, we
can observe that neural based approaches are
superior to the feature engineering based ap-
proaches. Table 2 also shows that ASM out-
performs the neural based method M-CNN. Our
proposed method ASM also shows improvements
over Ensemble, which indicates the neces-
sity of combining representation- and interaction-
focused models in entity disambiguation.

Moreover, we pre-train both M-CNN,
Ensemble and ASM by using 0.5 million
anchors in Wikipedia, and fine-tune the model pa-
rameters using non-NIL queries in NEEL training
dataset. From Table 2, we can observe that the
performance of neural models will be improved
by using pre-training. The results in Table 2 show

(m, ttl) (ctx, desc) All Pairs
M-CNN 64.8 66.7 72.8
K-NRM 64.1 66.8 72.7

ASM 65.1 69.7 73.9

Table 4: The performance of two semantic match-
ing models and their combinations on NEEL
dataset.

that our proposed ASM is still superior to M-CNN
and Ensemble in the setting of pre-training.

Since entity disambiguation is our focus, we
also give the disambiguation accuracy of differ-
ent approaches by using the golden mentions in
Table 3. Similarly, we observe that our proposed
ASM outperforms baseline systems.

4.5 Model Analysis

In this section, we discuss several key observa-
tions based on the experimental results, and we
mainly report the entity disambiguation accuracy
when given the golden mentions.

4.5.1 Effect of Different Semantic Matching
Methods

We empirically analyze the difference between
the two semantic matching models (M-CNN and
K-NRM) and show the benefits when combing the
semantic matching signals from these two models.

6Note that the performance of all systems on MSR-TEL
dataset might be under estimated, since not all mentions in
each tweet were manually annotated. For example, a cor-
rectly identified mention given by a system, which was not
manually annotated, will be judged as wrong. But we still
give the comparisons of different approaches on MSR-TEL
dataset.

482

M-CNN win M-CNN loss
K-NRM win 58.3% 6.3%
K-NRM loss 5.8% 29.6%

Table 5: The win-loss analysis of M-CNN and K-
NRM on the pair (ctx, desc).

Query: the vile #Trump humanity raises its
gentle face in Canada ... chapeau to
#Trudeau,URL

M-CNN: Kevin Trudeau
K-NRM: Justin Trudeau
Query: RT @ MingNa : What is my plan to

avoid spoiler about #theForceAwak-
ens ? No Internet except to post my
@StarWars

M-CNN: Star Wars
K-NRM: Comparison of Star Trek and Star

Wars

Table 6: The top-1 results of M-CNN and K-NRM
using (ctx,desc) pair for two queries. Mention is
in bold and the golden answer is underlined.

We first compare the performance of two se-
mantic matching models over the two text pairs:
(a) (m, ttl) and (b) (ctx, desc). These two pairs
presents two extreme of the information used in
the systems: (m, ttl) consumes the minimum
amount of information from a query and an entity,
while (ctx, desc) consumes the maximum amount
of information from a query and an entity. From
the first two columns in Table 4, we can observe
that M-CNN performs comparably with K-NRM on
the two text pairs. ASM that combines the two
models obtains performance gains on the two indi-
vidual text pairs. The third column in Table 4 also
shows that ASM gives performance gains when
using all text pairs. This indicates that M-CNN
and K-NRM capture complementary information
for entity disambiguation.

Moreover, we observe that the performance
gains are different on the two pairs (m, ttl) and
(ctx, desc). The gain on (ctx, desc) is relatively
larger. This indicates that M-CNN and K-NRM cap-
ture more different information when the text is
long. Additionally, we show the win-loss analy-
sis of the two semantic matching model for non-
NIL queries on (ctx, desc) in Table 5. The 12.1%
(=6.3% + 5.8%) difference between these two
models confirms the necessity of combination.

Method
Without Pre-Train With Pre-Train
NEEL MSR-TEL NEEL MSR-TEL

Linear 73.1 75.7 73.8 78.1
ASM 73.9 77.4 75.5 79.4

Table 7: Comparison of rank aggregation and lin-
ear combination on two datasets.

To further investigate the difference between
the two semantic matching models on short text,
we did case study. Table 6 gives two examples.
In the first example, the correct answer is ‘Justin
Trudeau’ which contains the words of ‘Canada’
and ‘trump’ in its entity description. However,
M-CNN fails to capture this concrete matching in-
formation, since the concrete information of text
might be lost after the convolution layer and max-
pooling layer. In contrast, K-NRM builds the n-
gram level local interactions between texts, and
thus successfully captures the concrete matching
information (e.g. exact match) that results in a cor-
rect linking result. In the second example, both
candidate entities ‘Star Wars’ and ‘Comparison of
Star Trek and Star Wars’ contains the phrase ‘Star
Wars’ for multiple times in their entity descrip-
tions. In this case, K-NRM fails to distinguish the
correct entity ‘Star Wars’ from the wrong entity
‘Comparision of Star Trek and Star Wars’, because
it relies too much on the soft-TF information for
matching. However, the soft-TF information in
the descriptions of the two entities is similar. In
contrast, M-CNN captures the whole meaning of
the text and links the mention to the correct entity.
A detailed analysis of n-grams extracted from the
M-CNN is provided in the Appendix.

4.6 Effect of Rank Aggregation

Table 4 shows that the combination of multiple
semantic matching signals yields the best perfor-
mance. Table 7 compares two different combi-
nation of M-CNN and K-NRM models, the result
shows that the rank aggregation method outper-
forms the linear combination. The rank aggrega-
tion method dynamically summarizes win-loss re-
sults for each signal and generates the final overall
ranking by considering all win-loss results. The
improvement of our method over the linear com-
bination confirms that the importance of different
semantic signals varies for different queries, and
our method is more suitable for combining multi-
ple semantic signals.

483

5 Related Work

Existing entity linking methods can roughly fall
into two categories. Early work focus on local ap-
proaches, which identifies one mention each time,
and each mention is disambiguated separately us-
ing hand-crafted features (Bunescu and Pasca,
2006; Ji and Grishman, 2008; Milne and Witten,
2008; Zheng et al., 2010). While recent work on
entity linking has largely focus on global methods,
which takes the mentions in the document as in-
puts and find their corresponding entities simul-
taneously by considering the coherency of entity
assignments within a document. (Cucerzan, 2007;
Hoffart et al., 2011; Globerson et al., 2016; Ganea
and Hofmann, 2017).

Global models can tap into highly discrimina-
tive semantic signals (e.g. coreference and en-
tity relatedness) that are unavailable to local meth-
ods, and have significantly outperformed the lo-
cal approach on standard datasets(Globerson et al.,
2016). However, global approaches are difficult to
apply in domains where only short and noisy text
is available (e.g. tweets). Many techniques have
been proposed to short texts including tweets. Liu
et al. (2013) and Huang et al. (2014) investigate
the collective tweet entity linking by considering
multiple tweets simultaneously. Meij et al. (2012)
and Guo et al. (2013) perform joint detection and
disambiguation of mentions for tweet entity link-
ing using feature based learning methods.

Recently, some neural network methods have
been applied to entity linking to model the local
contextual information. He et al. (2013) inves-
tigate Stacked Denoising Auto-encoders to learn
entity representation. Sun et al. (2015); Francis-
Landau et al. (2016) apply convolutional neural
networks for entity linking. Eshel et al. (2017)
use recurrent neural networks to model the men-
tion contexts. Nie et al. (2018) uses a co-attention
mechanism to select informative contexts and en-
tity description for entity disambiguation. How-
ever, none of these methods consider combining
representation- and interaction-focused semantic
matching methods to capture the semantic simi-
larity for entity linking, and use rank aggregation
method to combine multiple semantic signals.

6 Conclusion

We propose an aggregated semantic matching
framework, ASM, for short text entity linking.
The combination of the representation-focused

semantic matching method and the interaction-
focused semantic matching method capture both
compositional and concrete matching signals (e.g.
exact match). Moreover, the pairwise rank aggre-
gation is applied to better combine multiple se-
mantic signals. We have shown the effectiveness
of ASM over two datasets through comprehensive
experiments. In the future, we will try our model
for long text entity linking.

7 Acknowledgement

We thank the anonymous reviewers for their help-
ful comments. We also thank Jin-Ge Yao, Zhirui
Zhang, Shuangzhi Wu and Yin Lin for helpful con-
versations and comments on the work.

References
R Bunescu and M Pasca. 2006. Using encyclope-

dic knowledge for named entity disambiguation. In
EACL, Trento, Italy.

Ben Carterette and Desislava Petkova. 2006. Learning
a ranking from pairwise preferences. In Proceedings
of the 29th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 629–630. ACM.

S Cucerzan. 2007. Large-scale named entity disam-
biguation based on wikipedia data. In EMNLP-
CoNLL, volume 2007.

Yotam Eshel, Noam Cohen, and Kira Radinsky. 2017.
Named entity disambiguation for noisy text. In
CoNLL, volume 2017.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of CIKM 2010,
pages 1625–1628.

Matthew Francis-Landau, Greg Durrett, and Dan
Klein. 2016. Capturing semantic similarity for en-
tity linking with convolutional neural networks. In
In Proceedings of NAACL-HLT 2016, pages 1256–
1261.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing.

Amir Globerson, Nevena Lazic, Soumen Chakrabarti,
Amarnag Subramanya, Michael Ringgaard, and Fer-
nando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proceedings of ACL
2016.

484

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In Proceedings of CIKM 2016,
pages 55–64.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To link or not to link? a study on end-to-end
tweet entity linking. In NAACL-HLT 2013.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective
entity linking in web text: a graph-based method. In
Proceeding of the SIGIR 2011, pages 765–774.

Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai
Zhang, and Houfeng Wang. 2013. Learning entity
representation for entity disambiguation. In Pro-
ceedings of ACL 2013.

Benjamin Heinzerling, Michael Strube, and Chin-Yew
Lin. 2017. Trust, but verify better entity linking
through automatic verification. EACL.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.
Trueskilltm: A bayesian skill rating system. In In
Proceedings of NIPS 2006., pages 569–576.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of EMNLP 2011.

Hongzhao Huang, Yunbo Cao, Xiaojiang Huang, Heng
Ji, and Chin-Yew Lin. 2014. Collective tweet wiki-
fication based on semi-supervised graph regulariza-
tion. In Proceedings of ACL 2014.

Heng Ji and Ralf Grishman. 2008. Refining event ex-
traction through cross-document inference. In Pro-
ceedings of ACL 2008.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In In Proceedings of NAACL-HLT 2016, pages 260–
270.

Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou,
Furu Wei, and Yi Lu. 2013. Entity linking for
tweets. In ACL (1), pages 1304–1311.

Zhengdong Lu and Hang Li. 2013. A deep architecture
for matching short texts. In In Proceedings of NIPS
2006., pages 1367–1375.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. Joint entity recognition and disambigua-
tion. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015.

Edgar Meij, Wouter Weerkamp, and Maarten de Rijke.
2012. Adding semantics to microblog posts. In Pro-
ceedings of the WSDM, 2012, pages 563–572.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119.

David N. Milne and Ian H. Witten. 2008. Learning to
link with wikipedia. In Proceedings of CIKM 2008.

Feng Nie, Yunbo Cao, Jinpeng Wang, Chin-Yew Lin,
and Rong Pan. 2018. Mention and entity description
co-attention for entity disambiguation. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, New Orleans, Louisiana, USA,
February 2-7, 2018.

Michael Schuhmacher and Simone Paolo Ponzetto.
2014. Knowledge-based graph document modeling.
In Proceedings of CIKM 2014, pages 543–552.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou
Ji, and Xiaolong Wang. 2015. Modeling mention,
context and entity with neural networks for entity
disambiguation. In Proceedings of IJCAI 2015.

Katrin Weller, Aba-Sah Dadzie, and Danica
Radovanovic. 2016. Making sense of microp-
osts (#microposts2016) social sciences track. In
Proceedings of the 6th Workshop on ’Making Sense
of Microposts’ co-located with the 25th Interna-
tional World Wide Web Conference (WWW 2016),
Montréal, Canada, April 11, 2016., pages 29–32.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan
Liu, and Russell Power. 2017a. End-to-end neural
ad-hoc ranking with kernel pooling. In Proceedings
of SIGIR 2017, pages 55–64.

Chenyan Xiong, Russell Power, and Jamie Callan.
2017b. Explicit semantic ranking for academic
search via knowledge graph embedding. In Pro-
ceedings of the 26th International Conference on
World Wide Web, WWW 2017, Perth, Australia,
April 3-7, 2017, pages 1271–1279.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method.

Zhicheng Zheng, Fangtao Li, Minlie Huang, and Xi-
aoyan Zhu. 2010. Learning to link entities with
knowledge base. In NAACL-HLT 2010.

485

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 486–496
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Adversarial Over-Sensitivity and Over-Stability Strategies
for Dialogue Models

Tong Niu and Mohit Bansal
UNC Chapel Hill

{tongn, mbansal}@cs.unc.edu

Abstract

We present two categories of model-agnostic
adversarial strategies that reveal the weak-
nesses of several generative, task-oriented di-
alogue models: Should-Not-Change strate-
gies that evaluate over-sensitivity to small and
semantics-preserving edits, as well as Should-
Change strategies that test if a model is over-
stable against subtle yet semantics-changing
modifications. We next perform adversarial
training with each strategy, employing a max-
margin approach for negative generative ex-
amples. This not only makes the target di-
alogue model more robust to the adversarial
inputs, but also helps it perform significantly
better on the original inputs. Moreover, train-
ing on all strategies combined achieves fur-
ther improvements, achieving a new state-of-
the-art performance on the original task (also
verified via human evaluation). In addition to
adversarial training, we also address the ro-
bustness task at the model-level, by feeding it
subword units as both inputs and outputs, and
show that the resulting model is equally com-
petitive, requires only 1/4 of the original vo-
cabulary size, and is robust to one of the adver-
sarial strategies (to which the original model is
vulnerable) even without adversarial training.

1 Introduction

Adversarial evaluation aims at filling in the gap
between potential train/test distribution mismatch
and revealing how models will perform under real-
world inputs containing natural or malicious noise.
Recently, there has been substantial work on ad-
versarial attacks in computer vision and NLP. Un-
like vision, where one can simply add in impercep-
tible perturbations without changing an image’s
meaning, carrying out such subtle changes in text
is harder since text is discrete in nature (Jia and

We publicly release all our code and data at https:
//github.com/WolfNiu/AdversarialDialogue

Liang, 2017). Thus, some previous works have ei-
ther avoided modifying original source inputs and
only resorted to inserting distractive sentences (Jia
and Liang, 2017), or have restricted themselves
to introducing spelling errors (Belinkov and Bisk,
2018) and adding non-functioning tokens (Sha-
lyminov et al., 2017). Furthermore, there has
been limited adversarial work on generative NLP
tasks, e.g., dialogue generation (Henderson et al.,
2017), which is especially important because it is a
crucial component of real-world virtual assistants
such as Alexa, Siri, and Google Home. It is also a
challenging and worthwhile task to keep the out-
put quality of a dialogue system stable, because a
conversation usually involves multiple turns, and
a small mistake in an early turn could cascade into
bigger misunderstanding later on.

Motivated by this, we present a comprehensive
adversarial study on dialogue models – we not
only simulate imperfect inputs in the real world,
but also launch intentionally malicious attacks on
the model in order to assess them on both over-
sensitivity and over-stability. Unlike most previ-
ous works that exclusively focus on Should-Not-
Change adversarial strategies (i.e., non-semantics-
changing perturbations to the source sequence that
should not change the response), we demonstrate
that it is equally valuable to consider Should-
Change strategies (i.e., semantics-changing, inten-
tional perturbations to the source sequence that
should change the response).

We investigate three state-of-the-art models
on two task-oriented dialogue datasets. Con-
cretely, we propose and evaluate five naturally
motivated and increasingly complex Should-Not-
Change and five Should-Change adversarial strate-
gies on the VHRED (Variational Hierarchical
Encoder-Decoder) model (Serban et al., 2017b)
and the RL (Reinforcement Learning) model (Li
et al., 2016) with the Ubuntu Dialogue Cor-

486

pus (Lowe et al., 2015), and Dynamic Knowledge
Graph Network with the Collaborative Communi-
cating Agents (CoCoA) dataset (He et al., 2017).

On the Should-Not-Change side for the Ubuntu
task, we introduce adversarial strategies of in-
creasing linguistic-unit complexity – from shal-
low word-level errors, to phrase-level paraphras-
tic changes, and finally to syntactic perturba-
tions. We first propose two rule-based pertur-
bations to the source dialogue context, namely
Random Swap (randomly transposing neighbor-
ing tokens) and Stopword Dropout (randomly
removing stopwords). Next, we propose two
data-level strategies that leverage existing paral-
lel datasets in order to simulate more realistic,
diverse noises: namely, Data-Level Paraphras-
ing (replacing words with their paraphrases) and
Grammar Errors (e.g., changing a verb to the
wrong tense). Finally, we employ Generative-
Level Paraphrasing, where we adopt a neural
model to automatically generate paraphrases of
the source inputs.1 On the Should-Change side
for the Ubuntu task, we propose the Add Negation
strategy, which negates the root verb of the source
input, and the Antonym strategy, which changes
verbs, adjectives, or adverbs to their antonyms.
As will be shown in Section 6, the above strate-
gies are effective on the Ubuntu task, but not on
the collaborative-style, database-dependent Co-
CoA task. Thus for the latter, we investigate ad-
ditional Should-Change strategies including Ran-
dom Inputs (changing each word in the utterance
to random ones), Random Inputs with Entities
(like Random Inputs but leaving mentioned enti-
ties untouched), and Normal Inputs with Confus-
ing Entities (replacing entities in an agent’s utter-
ance with distractive ones) to analyze where the
model’s robustness stems from.

To evaluate these strategies, we first show that
(1) both VHRED and the RL model are vulner-
able to most Should-Not-Change and all Should-
Change strategies, and (2) DynoNet’s robustness
to Should-Change inputs shows that it does not
pay any attention to natural language inputs other
than the entities contained in them. Next, ob-
serving how our adversarial strategies ‘success-
fully’ fool the target models, we try to expose

1A real example of Generative-Paraphrasing: context
“You can find xorg . conf in /etc/X11 . It ’s not needed unless
it is . ;-) You may need to create one yourself .” is paraphrased
as “You may find xorg . conf in /etc/X11 . It ’s not necessary
until it is . You may be required to create one .”

these models to such perturbation patterns early
on during training itself, where we feed adver-
sarial input context and ground-truth target pairs
as training data. Importantly, we realize this ad-
versarial training via a maximum-likelihood loss
for Should-Not-Change strategies, and via a max-
margin loss for Should-Change strategies. We
show that this adversarial training can not only
make both VHRED and RL more robust to the ad-
versarial data, but also improve their performances
when evaluated on the original test set (verified
via human evaluation). In addition, when we train
VHRED on all of the perturbed data from each ad-
versarial strategy together, the performance on the
original task improves even further, achieving the
state-of-the-art result by a significant margin (also
verified via human evaluation).

Finally, we attempt to resolve the robust-
ness issue directly at the model-level (instead of
adversarial-level) by feeding subword units de-
rived from the Byte Pair Encoding (BPE) al-
gorithm (Sennrich et al., 2016) to the VHRED
model. We show that the resulting model not only
reduces the vocabulary size by around 75% (thus
trains much faster) and obtains results compara-
ble to the original VHRED, but is also naturally
(i.e., without requiring adversarial training) robust
to the Grammar Errors adversarial strategy.

2 Tasks and Models

For a comprehensive study on dialogue model
robustness, we investigate both semi-task-based
troubleshooting dialogue (the Ubuntu task) and
the new important paradigm of collaborative two-
bot dialogue (the CoCoA task). The former fo-
cuses more on natural conversations, while the lat-
ter focuses more on the knowledge base. Con-
sequently, the model trained on the latter tends
to ignore the natural language context (as will be
shown in Section 6.2) and hence requires a differ-
ent set of adversarial strategies that can directly re-
veal this weakness (e.g., Random Inputs with En-
tities). Overall, adversarial strategies on Ubuntu
and CoCoA reveal very different types of weak-
nesses of a dialogue model. We implement two
models on the Ubuntu task and one on the Co-
CoA task, each achieving state-of-the-art result on
its respective task. Note that although we employ
these two strong models as our testbeds for the
proposed adversarial strategies, these adversarial
strategies are not specific to the two models.

487

2.1 Ubuntu Dialogue

Dataset and Task: The Ubuntu Dialogue Cor-
pus (Lowe et al., 2015) contains 1 million
2-person, multi-turn dialogues extracted from
Ubuntu chat logs, used to provide and receive
technical support. We focus on the task of gener-
ating fluent, relevant, and goal-oriented responses.
Evaluation Method: The model is evaluated
on F1’s for both activities (technical verbs, e.g.,
“download”, “install”) and entities (technical
nouns, e.g., “root”, “web”). These metrics are
computed by mapping the ground-truth and model
responses to their corresponding activity-entity
representations using the automatic procedure de-
scribed in Serban et al. (2017a), who found that F1
is “particularly suited for the goal-oriented Ubuntu
Dialogue Corpus” based on manual inspection of
the extracted activities and entities. We also con-
ducted human studies on the dialogue quality of
generated responses (see Section 5 for setup and
Section 6.1 for results).
Models: We reproduce the state-of-the-art Latent
Variable Hierarchical Recurrent Encoder-Decoder
(VHRED) model (Serban et al., 2016), and a
Deep Reinforcement Learning based generative
model (Li et al., 2016). For the VHRED model,
we apply additive attention mechanism (Bahdanau
et al., 2015) to the source sequence while keep-
ing the remaining architecture unchanged. For
the RL-based model, we adopt the mixed objec-
tive function (Paulus et al., 2018) and employ a
novel reward: during training, for each source se-
quence S, we sample a response G on the de-
coder side, feed the encoder with a random source
sequence SR drawn from the train set, and use
− logP (G|SR) as the reward. Intuitively, if SR

stands a high chance of generating G (which cor-
responds to a large negative reward), it is very
likely that G is dull and generic.

2.2 Collaborative Communicating Agents

Dataset and Task: The collaborative CoCoA2 di-
alogue task involves two agents that are asym-
metrically primed with a private Knowledge Base
(KB), and engage in a natural language conversa-
tion to find out the unique entry shared by the two
KBs. For a bot-bot chat of the CoCoA task, a bot is
allowed one of the two actions each turn: perform-
ing an UTTERANCE action, where it generates
an utterance, or making a SELECT action, where

2
https://stanfordnlp.github.io/cocoa/

it chooses an entry from the KB. Note that each
bot’s SELECT action is visible to the other bot,
and each is allowed to make multiple SELECT ac-
tions if the previous guess is wrong.
Evaluation Method: One of the major metrics is
Completion Rate, the percentage of two bots suc-
cessfully finishing the task.
Models: We focus on DynoNet, the best-
performing model for the CoCoA task (He et al.,
2017). It consists of a dynamic knowledge graph,
a graph embedding over the entity nodes, and a
Seq2seq-based utterance generator.

3 Adversarial Strategies

3.1 Adversarial Strategies on Ubuntu

For Ubuntu, we introduce adversarial strategies of
increasing linguistic-unit complexity – from shal-
low word-level errors such as Random Swap and
Stopword Dropout, to phrase-level paraphrastic
changes, and finally to syntactic Grammar Errors.

Should-Not-Change Strategies
(1) Random Swap: Swapping adjacent words oc-
curs often in the real world, e.g., transposition
of words is one of the most frequent errors in
manuscripts (Headlam, 1902; Marqués-Aguado,
2014); it is also frequently seen in blog posts.3

Thus, being robust to swapping adjacent words
is useful for chatbots that take typed/written text
as inputs (e.g., virtual customer support on a air-
line/bank website). Even for speech-based con-
versations, non-native speakers can accidentally
swap words due to habits formed in their na-
tive language (e.g., SVO in English vs. SOV in
Hindi, Japanese, and Korean). Inspired by this,
we also generate globally contiguous but locally
“time-reversed” text, where positions of neighbor-
ing words are swapped (e.g., “I don’t want you to
go” to “I don’t want to you go”).
(2) Stopword Dropout: Stopwords are the
most frequent words in a language. The most
commonly-used 25 words in the Oxford English
corpus make up one-third of all printed material in
English, and these words consequently carry less
information than other words do in a sentence.4

3E.g., “he would give to it me” in https://talk.

drugabuse.com/threads/his-behavior-this-week.4347/
4One could also use closed-class words (prepositions, de-

terminers, coordinators, and pronouns), but we opt for stop-
words because a majority of stopwords are indeed closed-
class words, and secondly, closed-class words usually require
a very accurate POS-tagger, which is not available for low-
resource or noisy domains and languages (e.g., Ubuntu).

488

Inspired by this observation, we propose randomly
dropping stopwords from the inputs (e.g., “Ben ate
the carrot” to “Ben ate carrot”).
(3) Data-level Paraphrasing: We repurpose
PPDB 2.0 (Pavlick et al., 2015) and replace words
and phrases in the original inputs with their para-
phrases (e.g., “She bought a bike” to “She pur-
chased a bicycle”).
(4) Generative-level Paraphrasing: Although
Data-level Paraphrasing provides us with
semantic-preserving inputs most of the time, it
still suffers from the fact that the validity of a
paraphrase depends on the context, especially
for words with multiple meanings. In addition,
simply replacing word-by-word does not lead to
new compositional sentence-level paraphrases,
e.g., “How old are you” to “What’s your age”.
We thus also experiment with generative-level
paraphrasing, where we employ the Pointer-
Generator Networks (See et al., 2017), and train
it on the recently published paraphrase dataset
ParaNMT-5M (Wieting and Gimpel, 2017) which
contains 5 millions paraphrase pairs.
(5) Grammar Errors: We repurpose the AESW
dataset (Daudaravicius, 2015), text extracted from
9, 919 published journal articles with data be-
fore/after language editing. This dataset was used
for training models that identify and correct gram-
mar errors. Based on the corrections in the edits,
we build a look-up table to replace each correct
word/phrase with a wrong one (e.g., “He doesn’t
like cakes” to “He don’t like cake”).

Should-Change Strategies
(1) Add Negation: Suppose we add negation to
the source sequence of some task-oriented model
— from “I want some coffee” to “I don’t want
some coffee”. A proper response to the first ut-
terance could be “Sure, I will bring you some cof-
fee”, but for the second one, the model should
do anything but bring some coffee. We thus as-
sume that if we add negation to the root verb
of each source sequence and the response is un-
changed, the model must be ignoring important
linguistic cues like negation. Hence this qualifies
as a Should-Change strategy, i.e., if the model is
robust, it should change the response.
(2) Antonym: We change words in utterances
to their antonyms to apply more subtle meaning
changes (e.g., “You need to install Ubuntu” to “You
need to uninstall Ubuntu”).5

5Note that Should-Change strategies may lead to contexts

3.2 Adversarial Strategies on CoCoA

We applied all the above successful strategies
used for the Ubuntu task to the UTTERANCE
actions in a bot-bot-chat setting for the CoCoA
task, but found that none of them was effective
on DynoNet. This is surprising considering that
the model’s language generation module is a tradi-
tional Seq2seq model. This observation motivated
us to perform the following analysis. The high per-
formance of bot-bot chat may have stemmed from
two sources: information revealed in an utterance,
or entries directly disclosed by a SELECT action.

To investigate which part the model relies
on more, we experiment with different Should-
Change strategies which introduce obvious pertur-
bations that have minimal word or semantic mean-
ing overlap with the original source inputs:
(1) Random Inputs: Turn both bots’ utterances
into random inputs. This aims at investigating how
much the model depends on the SELECT action.
(2) Random Inputs with Kept Entities: Replace
each bot’s utterance with random inputs, but keep
the contained entities untouched. This further in-
vestigates how much entities alone contribute to
the final performance.
(3) Confusing Entity: Replace entities mentioned
in bot A’s utterances with entities that are present
in bot B’s KB but not in their shared entry (and
vice versa). This aims at coaxing bot B into
believing that the mentioned entities come from
their shared entry. By intentionally making the
utterances misleading, we expect DynoNet’s per-
formance to be lower – hence this qualifies as a
Should-Change strategy.

4 Adversarial Training

To make a model robust to an adversarial strategy,
a natural approach is exposing it to the same pat-
tern of perturbation during training (i.e., adversar-
ial training). This is achieved by feeding adver-
sarial inputs as training data. For each strategy,
we report results under three train/test combina-
tions: (1) trained with normal inputs, tested on ad-
versarial inputs (N-train + A-test), which evalu-
ates whether the adversarial strategy is effective at

that do not correspond to any legitimate task completion ac-
tion, but the purpose of such a strategy is to make sure that
the model at least should not respond the same way as it re-
sponded to the original context, i.e., even for the no-action
state, the model should respond with something different like
“Sorry, I cannot help with that.” Our semantic similarity re-
sults in Table 4 capture this intuition directly.

489

fooling the model and exposing its robustness is-
sues; (2) trained with adversarial inputs, tested on
adversarial inputs (A-train + A-test), which next
evaluates whether adversarial training made the
model more robust to that adversarial attack; and
(3) trained with adversarial inputs, tested on nor-
mal inputs (A-train + N-test), which finally eval-
uates whether the adversarial training also makes
the model perform equally or better on the original
normal inputs. Note that (3) is important, because
one should not make the model more robust to a
strategy at the cost of lower performance on the
original data; also when (3) improves the perfor-
mance on the original inputs, it means adversarial
training successfully teaches the model to recog-
nize and be robust to a certain type of noise, so
that the model performs better when encountering
similar patterns during inference. Also note that
we use perturbed train set for adversarial training,
and perturbed test set for adversarial testing. There
is thus no overlap between the two sets.

4.1 Adversarial Training for
Should-Not-Change Strategies

For each Should-Not-Change strategy, we take an
already trained model from a certain checkpoint,6

and train it on the adversarial inputs with maxi-
mum likelihood loss for K epochs (Shalyminov
et al., 2017; Belinkov and Bisk, 2018; Jia and
Liang, 2017; Iyyer et al., 2018). By feeding “ad-
versarial source sequence + ground-truth response
pairs” as regular positive data, we teach the model
that these pairs are also valid examples despite the
added perturbations.

4.2 Adversarial Training for Should-Change
Strategies

For Should-Change strategies, we want the F1’s to
be lower with adversarial inputs after adversarial
training, since this shows that the model becomes
sensitive to subtle yet semantic-changing pertur-
bations. This cannot be achieved by naively train-
ing on the perturbed inputs with maximum likeli-
hood loss, because the “perturbed source sequence
+ ground-truth response pairs” for Should-Change
strategies are negative examples which we need to
train the model to avoid from generating. Inspired
by Mao et al. (2016) and Yu et al. (2017), we in-
stead use a linear combination of maximum likeli-

6We do not train from scratch because each model (for
each strategy) takes several days to converge.

Model Activity F1 Entity F1
LSTM 1.18 0.87
HRED 4.34 2.22
VHRED 4.63 2.53
VHRED (w/ attn.) 5.94 3.52
Reranking-RL 5.67 3.73

Table 1: F1 results of previous works as compared to
our models. LSTM, HRED and VHRED are results re-
ported in Serban et al. (2017a). VHRED (w/ attn.) and
Reranking-RL are our results. Top results are bolded.

hood loss and max-margin loss:

L=LML+αLMM

LML =
∑

i

logP (ti|si)

LMM =
∑

i

max (0,M+logP (ti|ai)−logP (ti|si))

where LML is the maximum likelihood loss, LMM

is the max-margin loss, α is the weight of the max-
margin loss (set to 1.0 following Yu et al. (2017)),
M is the margin (tuned be to 0.1), and ti, si and ai
are the target sequence, normal input, and adver-
sarial input, respectively.7

5 Experimental Setup

In addition to datasets, tasks, models and evalua-
tion methods introduced in Section 2, we present
training details in this section (see Appendix for a
comprehensive version).
Models on Ubuntu: We implemented VHRED
and Reranking-RL in TensorFlow (Abadi et al.,
2016) and employed greedy search for inference.
As shown in Table 1, for both models we obtained
Activity and Entity F1’s higher than the VHRED
results reported in Serban et al. (2017a). Hence,
each of these two implementations serves as a
solid baseline for adversarial testing and training.
Should-Not-Change Strategies on Ubuntu: For
Random Swap, we allow up to 1 swap of neigh-
boring words per 4 words in each utterance. For
Stopword Dropout, we allow up to 8 words to be
dropped in each turn. For Data-level Paraphras-
ing, we use the small version of PPDB 2.0. For
Generative-level Paraphrasing, we use the publicly
available Pointer-Generator Networks code (See
Appendix for some random samples of the gen-
erated paraphrases).8 For Grammar Errors, in ad-
dition to those extracted from the AESW dataset,

7Please refer to supp. about greedy sampling based max-
margin setup and CoCoA discussion for adversarial training.

8
https://github.com/becxer/pointer-generator

490

Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.94, 3.52
Random Swap 6.10*, 3.42 6.47*, 3.64* 6.42*, 3.74* -
Stopword Dropout 5.49*, 3.44 6.23*, 3.82* 6.29*, 3.71* -
Data-Level Para. 5.38*, 3.18* 6.39*, 3.83* 6.32*, 3.87* -
Generative-Level Para. 4.25*, 2.48* 5.89 , 3.60 6.11*, 3.66* -
Grammar Errors 5.60*, 3.09* 5.93 , 3.67* 6.05 , 3.69* -
All Should-Not-Change - - 6.74*, 3.97* -
Add Negation 6.06 , 3.42 5.01*, 3.12* 6.07 , 3.46 -
Antonym 5.85 , 3.56 5.43*, 3.43 5.98 , 3.56 -

Table 2: Activity and Entity F1 results of adversarial strategies on the VHRED model. Numbers marked with * are
stat. significantly higher/lower than their counterparts obtained with Normal Input (upper-right corner of table).

we also add a heuristic where an inflected verb is
replaced with its respective infinitive form, and a
plural noun with its singular form. Note that for
all strategies we only keep an adversarial token if
it is within the original vocabulary set.
Should-Change Strategies on Ubuntu: For Add
Negation, we negate the first verb in each utter-
ance. For Antonym, we modify the first verb, ad-
jective or adverb that has an antonym.
Human Evaluation: We also conducted hu-
man studies on MTurk to evaluate adversarial
training (pairwise comparison for dialogue qual-
ity) and generative paraphrasing (five-point Lik-
ert scale). The utterances were randomly shuffled
to anonymize model identity, and we used MTurk
with US-located human evaluators with approval
rate > 98%, and at least 10, 000 approved HITs.
Results are presented in Section 6.1. Note that the
human studies and automatic evaluation are com-
plementary to each other: while MTurk annota-
tors are good at judging how natural and coherent
a response is, they are usually not experts in the
Ubuntu operating system’s technical details. On
the other hand, automatic evaluation focuses more
on the technical side (i.e., whether key activities or
entities are present in the response).
Model on CoCoA: We adopted the publicly avail-
able code from He et al. (2017),9 and used their
already trained DynoNet model.

6 Results
6.1 Adversarial Results on Ubuntu
Result Interpretation For Table 2 and 3 with
Should-Not-Change strategies, lower is better in
the first column (since a successful adversarial
testing strategy will be effective at fooling the
model), while higher is better in the second col-
umn (since successful adversarial training should
bring the performance back up). However, for

9
https://worksheets.codalab.org/worksheets/

0xc757f29f5c794e5eb7bfa8ca9c945573/

Should-Change strategies, the reverse holds.10

Lastly, in the third column, higher is better since
we want the adversarially trained model to per-
form better on the original source inputs.

Results on Should-Not-Change Strategies Ta-
ble 2 and 3 present the adversarial results on
F1 scores of all our strategies for VHRED and
Reranking-RL, respectively. Table 2 shows that
VHRED is robust to none of the Should-Not-
Change strategies other than Random Swap, while
Table 3 shows that Reranking-RL is robust to none
of the Should-Not-Change strategies other than
Stopword Dropout. For each effective strategy, at
least one of the F1’s decreases statistically signif-
icantly11 as compared to the same model fed with
normal inputs. Next, all adversarial trainings on
Should-Not-Change strategies not only make the
model more robust to adversarial inputs (each A-
train + A-test F1 is stat. significantly higher than
that of N-train + A-test) , but also make them per-
form better on normal inputs (each A-train + N-
test F1 is stat. significantly higher than that of N-
train + N-test, except for Grammar Errors’s Ac-
tivity F1). Motivated by the success in adversar-
ial training on each strategy alone, we also exper-
imented with training on all Should-Not-Change
strategies combined, and obtained F1’s stat. sig-
nificantly higher than any single strategy (the All
Should-Not-Change row in Table 2), except that
All-Should-Not-Change’s Entity F1 is stat. equal
to that of Data-Level Paraphrasing, showing that
these strategies are able to compensate for each
other to further improve performance. An inter-

10Higher is better in the first column, because this shows
that the model is not paying attention to important semantic
changes in the source inputs (and is maintaining its original
performance); while lower is better in the second column,
since we want the model to be more sensitive to such changes
after adversarial training.

11We obtained stat. significance via the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples, and consider p < 0.05 as stat. significant.

491

Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.67, 3.73
Random Swap 5.49*, 3.56* 6.20*, 4.28* 6.36*, 4.39* -
Stopword Dropout 5.51*, 4.09* - - -
Data-Level Para. 5.28*, 3.07* 5.53*, 3.69 5.79*, 3.87* -
Generative-Level Para. 4.47*, 2.63* 5.30*, 3.35* 5.86*, 3.90* -
Grammar Errors 5.33*, 3.25* 5.55*, 3.92* 5.93*, 4.04* -
Add Negation 5.61 , 3.79 4.92*, 2.78* 6.10*, 3.93* -
Antonym 5.68 , 3.70 5.30*, 2.95* 5.80*, 3.71 -

Table 3: Activity and Entity F1 results of adversarial strategies on the Reranking-RL model. Numbers marked
with * are stat. significantly higher/lower than their counterparts obtained with Normal Input (upper-right corner).

Strategy Name VHRED Reranking-RL
Cont. Resp. Cont. Resp.

Random Swap 1.00 0.71 1.00 0.86
Stopword Dropout 0.61 0.50 0.76 0.68
Data-Level Para. 0.96 0.58 0.96 0.74
Gen.-Level Para. 0.70 0.40 0.76 0.55
Grammar Err. 0.96 0.58 0.97 0.74
Add Negation 0.96 0.69 0.97 0.81
Antonym 0.98 0.66 0.98 0.74

Table 4: Textual similarity of adversarial strategies on
the VHRED and Reranking-RL models. “Cont.” stands
for “Context”, and “Resp.” stands for “Response”.

esting strategy to note is Random Swap: although
it itself is not effective as an adversarial strategy
for VHRED, training on it does make the model
perform better on normal inputs.

Results on Should-Change Strategies Table 2
and 3 show that Add Negation and Antonym
are both successful Should-Change strategies, be-
cause no change in N-train + A-test F1 is stat.
significant compared to that of N-train + N-
test, which shows that both models are ignoring
the semantic-changing perturbations to the inputs.
From the last two rows of A-train + A-test column
in each table, we also see that adversarial training
successfully brings down both F1’s (stat. signif-
icantly) for each model, showing that the model
becomes more sensitive to the context change.

Semantic Similarity In addition to F1, we also
follow Serban et al. (2017a) and employ cosine
similarity between average embeddings of nor-
mal and adversarial inputs/responses (proposed
by Liu et al. (2016)) to evaluate how much the in-
puts/responses change in semantic meaning (Ta-
ble 4). This metric is useful in three ways. Firstly,
by comparing the two columns of context sim-
ilarity, we can get a general idea of how much
change is perceived by each model. For exam-
ple, we can see that Stopword Dropout leads to
more evident changes from VHRED’s perspective
than from Reranking-RL’s. This also agrees with
the F1 results in Table 2 and 3, which indicate

Compared to Baseline Win(%) Tie(%) Loss(%)
Random Swap 49 19 32

Stopword Dropout 45 19 36
Data-Level Para. 37 22 41

Generative-Level Para. 41 26 33
Grammar Errors 41 29 30

All Should-Not-Change 49 22 28
Add Negation 34 25 41

Antonym 40 29 31

Table 5: Human evaluation results on comparison be-
tween VHRED baseline trained on normal inputs vs.
VHRED trained on each Should-Not-Change strategy
(incl. one with all Should-Not-Change strategies com-
bined) and each Should-Change strategy for Ubuntu.

Pointer-Generator ParaNMT-5M
Avg. Score 3.26 3.54

Table 6: Human evaluation scores on paraphrases
generated by Pointer-Generator Networks and ground-
truth pairs from ParaNMT-5M.

that Reranking-RL is much more robust to this
strategy than VHRED is. The high context sim-
ilarity of Should-Change strategies shows that al-
though we have added “not” or replaced antonyms
in every utterance of the source inputs, from the
model’s point of view the context has not changed
much in meaning. Secondly, for each Should-Not-
Change strategy, the cosine similarity of context
is much higher than that of response, indicating
that responses change more significantly in mean-
ing than their corresponding contexts. Lastly, The
high semantic similarity for Generative Paraphras-
ing also partly shows that the Pointer-Generator
model in general produces faithful paraphrases.

Human Evaluation As introduced in Section 5,
we performed two human studies on adversarial
training and Generative Paraphrasing. For the first
study, Table 5 indicates that models trained on
each adversarial strategy (as well as on all Should-
Not-Change strategies combined) indeed on aver-
age produced better responses, and mostly agrees
with the adversarial training results in Table 2.12

12Note that human evaluation does not show improvements
with the Data-Level-Paraphrasing and Add-Negation strate-

492

Context Response
N: ... you could save your ubuntu files and reinstall Windows , then install
ubuntu as a dual boot option eou eot aight buddy , so how do i get
that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files Windows rein-
stall , then install ubuntu as dual a option boot eou eot aight buddy
, so do how i that get space **unknown** back eou

NN: you can use the Live CD , you can install
Ubuntu on the same partition as the Windows
partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the Win-
dows partition , and then install Ubuntu on
the same drive eou

Table 7: VHRED output example before and after adversarial training on the Random Swap strategy.

For the second study, Table 6 shows that on av-
erage the generated paraphrase has roughly the
same semantic meaning with the original utter-
ance, but may sometimes miss some information.
Its quality is also close to that of the ground-truth
in ParaNMT-5M dataset.

Output Examples of Generated Responses
We present a selected example of generated re-
sponses before and after adversarial training on the
Random Swap strategy with the VHRED model in
Table 7 (more examples in Appendix on all strate-
gies with both models). First of all, we can see that
it is hard to differentiate between the original and
the perturbed context (N-context and A-context) if
one does not look very closely. For this reason,
the model gets fooled by the adversarial strategy,
i.e., after adversarial perturbation, the N-train +
A-test response (NA-Response) is worse than that
of N-train + N-test (NN-Response). However, af-
ter our adversarial training phase, A-train + A-test
(AA-Response) becomes better again.

6.2 Adversarial Results on CoCoA

Table 8 shows the results of Should-Change strate-
gies on DynoNet with the CoCoA task. The Ran-
dom Inputs strategy shows that even without com-
munication, the two bots are able to locate their
shared entry 82% of the time by revealing their
own KB through SELECT action. When we keep
the mentioned entities untouched but randomize
all other tokens, DynoNet actually achieves state-
of-the-art Completion Rate, indicating that the two
agents are paying zero attention to each other’s ut-
terances other than the entities contained in them.
This is also why we did not apply Add Negation
and Antonym to DynoNet — if Random Inputs
does not work, these two strategies will also make
no difference to the performance (in other words
Random Inputs subsumes the other two Should-

gies, though the latter does agree with F1 trends. Over-
all, we provide both human and F1 evaluations because they
are complementary at judging naturalness/coherence vs. key
Ubuntu technical activities/entities.

Strategy Completion Rate Num. of Turns
Norm. Inputs 0.94 16.06
Rand. Inputs 0.82 22.87
Rand. w/ Entity 0.95 17.19
Confusing Entity 0.77 24.11

Table 8: Adversarial Results on DynoNet.

Change strategies). We can also see that even with
the Normal Inputs with Confusing Entities strat-
egy, DynoNet is still able to finish the task 77% of
the time, and with only slightly more turns. This
again shows that the model mainly relies on the
SELECT action to guess the shared entry.

7 Byte-Pair-Encoding VHRED

Although we have shown that adversarial training
on most strategies makes the dialogue model more
robust, generating such perturbed data is not al-
ways straightforward for diverse, complex strate-
gies. For example, our data-level and generative-
level strategies all leverage datasets that are not
always available to a language. We are thus
motivated to also address the robustness task on
the model-level, and explore an extension to the
VHRED model that makes it robust to Grammar
Errors even without adversarial training.
Model Description: We performed Byte Pair
Encoding (BPE) (Sennrich et al., 2016) on
the Ubuntu dataset.13 This algorithm encodes
rare/unknown words as sequences of subword
units, which helps segmenting words with the
same lemma but different inflections (e.g., “show-
ing” to “show + ing”, and “cakes” to “cake +
s”), making the model more likely to be robust
to grammar errors such as verb tense or plu-
ral/singular noun confusion. We experimented
BPE with 5K merging operations, and obtained a
vocabulary size of 5121.
Results: As shown in Table 9, BPE-VHRED
achieved F1’s (5.99, 3.66), which is stat. equal
to (5.94, 3.52) obtained without BPE. To our best
knowledge, we are the first to apply BPE to a gen-

13 We employed code released by the authors on https:
//github.com/rsennrich/subword-nmt

493

VHRED BPE-VHRED
Normal Input 5.94, 3.52 5.99, 3.66

Grammar Errors 5.60, 3.09 5.86, 3.54

Table 9: Activity, Entity F1 results of VHRED model
vs. BPE-VHRED model tested on normal inputs.

erative dialogue task. Moreover, BPE-VHRED
achieved (5.86, 3.54) on Grammar Errors based
adversarial test set, which is stat. equal to the
F1’s when tested with normal data, indicating that
BPE-VHRED is more robust to this adversarial
strategy than VHRED is, since the latter had (5.60,
3.09) when tested with perturbed data, where both
F1’s are stat. signif. lower than when fed with nor-
mal inputs. Moreover, BPE-VHRED reduces the
vocabulary size by 15K, corresponding to 4.5M
fewer parameters. This makes BPE-VHRED train
much faster. Note that BPE only makes the model
robust to one type of noise (i.e. Grammar Errors),
and hence adversarial training on other strategies
is still necessary (but we hope that this encourages
future work to build other advanced models that
are naturally robust to diverse adversaries).

8 Related Works

Model-Dependent vs. Model-Agnostic Strate-
gies: Many adversarial strategies have been ap-
plied to both Computer Vision (Biggio et al., 2012;
Szegedy et al., 2013; Goodfellow et al., 2015;
Mei and Zhu, 2015; Papernot et al., 2016; Nar-
odytska and Kasiviswanathan, 2017; Liu et al.,
2017; Carlini and Wagner, 2017; Papernot et al.,
2017; Mironenco et al.; Wong, 2017; Gao et al.,
2018) and NLP (Jia and Liang, 2017; Zhao et al.,
2018; Belinkov and Bisk, 2018; Shalyminov et al.,
2017; Mironenco et al.; Iyyer et al., 2018). Pre-
vious works have distinguished between model-
aware strategies, where the adversarial algorithms
have access to the model parameters, and model-
agnostic strategies, where the adversary does not
have such information (Papernot et al., 2017; Liu
et al., 2017; Narodytska and Kasiviswanathan,
2017). We however, observed that within the
model-agnostic category, there are two subcate-
gories. One is half-model-agnostic, where al-
though the adversary has no access to the model
parameters, it is allowed to probe the target model
and observe its output as a way to craft adver-
sarial inputs (Biggio et al., 2012; Szegedy et al.,
2013; Goodfellow et al., 2015; Mei and Zhu, 2015;
Papernot et al., 2017; Mironenco et al.). On the
other hand, a pure-model-agnostic adversary, such

as works by Jia and Liang (2017) and Belinkov
and Bisk (2018), does not have any access to
the model outputs when creating adversarial in-
puts, and is thus more generalizable across mod-
els/tasks. We adopt the pure-model-agnostic ap-
proach, only drawing inspiration from real-world
noise, and testing them on the target model.
Adversarial in NLP: Text-based adversarial
works have targeted both classification mod-
els (Weston et al., 2016; Jia and Liang, 2017;
Wong, 2017; Liang et al., 2017; Samanta and
Mehta, 2017; Shalyminov et al., 2017; Gao et al.,
2018; Iyyer et al., 2018) and generative mod-
els (Hosseini et al., 2017; Henderson et al., 2017;
Mironenco et al.; Zhao et al., 2018; Belinkov and
Bisk, 2018). To our best knowledge, our work is
the first to target generative goal-oriented dialogue
systems with several new adversarial strategies in
both Should-Not-Change and Should-Change cat-
egories, and then to fix the broken models through
adversarial training (esp. using max-margin loss
for Should-Change), and also achieving model ro-
bustness without using any adversarial data.

9 Conclusion

We first revealed both the over-sensibility and
over-stability of state-of-the-art models on Ubuntu
and CoCoA dialogue tasks, via Should-Not-
Change and Should-Change adversarial strategies.
We then showed that training on adversarial inputs
not only made the models more robust to the per-
turbations, but also helped them achieve new state-
of-the-art performance on the original data (with
further improvements when we combined strate-
gies). Lastly, we also proposed a BPE-enhanced
VHRED model that not only trains faster with
comparable performance, but is also robust to
Grammar Errors even without adversarial training,
motivating that if no strong adversary-generation
tools (e.g., paraphraser) are available (esp. in low-
resource domains/languages), we should try alter-
native model-robustness architectural changes.

Acknowledgments
We thank the anonymous reviewers for their help-
ful comments and discussions. This work was sup-
ported by DARPA (YFA17-D17AP00022), Face-
book ParlAI Research Award, Google Faculty Re-
search Award, Bloomberg Data Science Research
Grant, and Nvidia GPU awards. The views con-
tained in this article are those of the authors and
not of the funding agency.

494

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In Proceedings of ICLR.

Battista Biggio, Blaine Nelson, and Pavel Laskov.
2012. Poisoning attacks against support vector ma-
chines. In Proceedings of ICML.

Nicholas Carlini and David Wagner. 2017. Adver-
sarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Secu-
rity, pages 3–14. ACM.

Vidas Daudaravicius. 2015. Automated evaluation of
scientific writing data set (version 1.2)[data file].
VTeX, Vilnius, Lithuania.

Bradley Efron and Robert J. Tibshirani. 1994. An in-
troduction to the bootstrap. CRC press.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In
Deep Learning and Security Workshop.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples. In Proceedings of ICLR.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative di-
alogue agents with dynamic knowledge graph em-
beddings. In Proceedings of ACL.

W. Headlam. 1902. Transposition of words in mss. The
Classical Review, 16(5):243–256.

Peter Henderson, Koustuv Sinha, Nicolas Angelard-
Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan
Lowe, and Joelle Pineau. 2017. Ethical challenges
in data-driven dialogue systems. arXiv preprint
arXiv:1711.09050.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective api built for detecting toxic comments.
arXiv preprint arXiv:1702.08138.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of NAACL.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of EMNLP.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of EMNLP.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2017. Deep
text classification can be fooled. arXiv preprint
arXiv:1704.08006.

Chia-Wei Liu, Ryan Lowe, Iulian V. Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Proceed-
ings of EMNLP.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
2017. Delving into transferable adversarial exam-
ples and black-box attacks. In Proceedings of ICLR.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L. Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 11–20.

Teresa Marqués-Aguado. 2014. Errors, corrections and
other textual problems in three copies of a middle
english antidotary. Nordic Journal of English Stud-
ies, 13(1):53–77.

Shike Mei and Xiaojin Zhu. 2015. Using machine
teaching to identify optimal training-set attacks on
machine learners. In Proceedings of AAAI, pages
2871–2877.

Mircea Mironenco, Dana Kianfar, Ke Tran, Evangelos
Kanoulas, and Efstratios Gavves. Examining coop-
eration in visual dialog models. In Proceedings of
NIPS.

Nina Narodytska and Shiva Prasad Kasiviswanathan.
2017. Simple black-box adversarial perturbations
for deep networks. In Proceedings of CVPR.

Eric W. Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Nicolas Papernot, Patrick McDaniel, Ian Goodfel-
low, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. 2017. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communica-
tions Security, pages 506–519. ACM.

495

Nicolas Papernot, Patrick McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. 2016. The limitations of deep learning in
adversarial settings. In Security and Privacy (Eu-
roS&P), 2016 IEEE European Symposium on, pages
372–387. IEEE.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In Proceedings of ICLR.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 425–430.

Suranjana Samanta and Sameep Mehta. 2017. Towards
crafting text adversarial samples. arXiv preprint
arXiv:1707.02812.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of ACL.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron C. Courville. 2017a. Multiresolution re-
current neural networks: An application to dialogue
response generation. In AAAI, pages 3288–3294.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI,
pages 3776–3784.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C. Courville,
and Yoshua Bengio. 2017b. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. In AAAI, pages 3295–3301.

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.
2017. Challenging neural dialogue models with nat-
ural data: Memory networks fail on incremental
phenomena. In Proceedings of SemDial.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards ai-complete
question answering: A set of prerequisite toy tasks.
In Proceedings of ICLR.

John Wieting and Kevin Gimpel. 2017. Pushing the
limits of paraphrastic sentence embeddings with
millions of machine translations. arXiv preprint
arXiv:1711.05732.

Catherine Wong. 2017. Dancin seq2seq: Fooling text
classifiers with adversarial text example generation.
arXiv preprint arXiv:1712.05419.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L.
Berg. 2017. A joint speakerlistener-reinforcer
model for referring expressions. In Computer Vision
and Pattern Recognition (CVPR), volume 2.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In Pro-
ceedings of ICLR.

496

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 497–507
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Improving Response Selection in Multi-turn Dialogue Systems
by Incorporating Domain Knowledge

Debanjan Chaudhuri
Smart Data Analytics Group

University of Bonn & Fraunhofer IAIS
Germany

chaudhur@cs.uni-bonn.de

Agustinus Kristiadi
Smart Data Analytics Group

University of Bonn
Germany

kristiadi@uni-bonn.de

Jens Lehmann
Smart Data Analytics Group

University of Bonn & Fraunhofer IAIS
Germany

jens.lehmann@cs.uni-bonn.de

Asja Fischer
Department of Mathematics

Ruhr University Bochum
Germany

asja.fischer@rub.de

Abstract

Building systems that can communicate with
humans is a core problem in Artificial Intel-
ligence. This work proposes a novel neural
network architecture for response selection in
an end-to-end multi-turn conversational dia-
logue setting. The architecture applies context
level attention and incorporates additional ex-
ternal knowledge provided by descriptions of
domain-specific words. It uses a bi-directional
Gated Recurrent Unit (GRU) for encoding
context and responses and learns to attend over
the context words given the latent response
representation and vice versa. In addition, it
incorporates external domain specific informa-
tion using another GRU for encoding the do-
main keyword descriptions. This allows better
representation of domain-specific keywords in
responses and hence improves the overall per-
formance. Experimental results show that our
model outperforms all other state-of-the-art
methods for response selection in multi-turn
conversations.

1 Introduction

In a conversation scenario, a dialogue system can
be applied to the task of freely generating a new re-
sponse or to the task of selecting a response from
a set of candidate responses based on the previ-
ous utterances, i.e. the context of the dialogue.
The former is known as generative dialogue sys-
tem while the latter is called retrieval-based (or
response selection) dialogue system.

Both approaches can be realized using a modu-
lar architecture, where each module is responsible
for a certain task such as natural language under-
standing, dialogue state-tracking, natural language

Context
Utterance 1:
My networking card is not working on my
Ubuntu, can somebody help me?

Utterance 2:
What’s your kernel version? Run uname -r or
sudo dpkg -l |grep linux-headers |grep ii |awk
’{print $3}’ and paste the output here.

Utterance 3:
It’s 2.8.0-30-generic.

Utterance 4:
Your card is not supported in that kernel. You
need to upgrade, that’s like decade old kernel!

Utterance 5:
Ok how do I install the new kernel??

Response
Just do sudo apt-get upgrade, that’s it.

Table 1: Illustration of a multi-turn conversation with
domain specific words (UNIX commands) in italics.

generation, etc., or can be trained in an end-to-end
manner optimized on a single objective function.

Previous work, belonging to the latter category,
by Lowe et al. (2015a) applied neural networks
to multi-turn response selection in conversations
by encoding the utterances in the context as well
as the possible responses with a Long Short-term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997). Based on the context and response encod-
ings, the neural network then estimates the proba-
bility for each response to be the correct one given
the context. More recently, a lot of enhanced ar-
chitectures have been proposed that build on the

497

general idea of encoding response and context first
and performing some embedding-based matching
after (Yan et al., 2016; Zhou et al., 2016; An et al.,
2018; Dong and Huang, 2018).

Although such approaches result in efficient
text-pair matching capabilities, they fail to attend
over logical consistencies for longer utterances in
the context, given the response. Moreover, in do-
main specific scenarios, a system’s ability to incor-
porate additional domain knowledge can be very
beneficial, e.g. for the example shown in Table 1.

In this paper, we propose a novel neural network
architecture for multi-turn response-selection that
extends the model proposed by Lowe et al.
(2015a). Our major contributions are: (1) a neu-
ral network paradigm that is able to attend over
important words in a context utterance given the
response encoding (and vice versa), (2) an ap-
proach to incorporate additional domain knowl-
edge into the neural network by encoding the de-
scription of domain specific words with a GRU
and using a bilinear operation to merge the re-
sulting domain specific representations with the
vanilla word embeddings, and (3) an empirical
evaluation on a publicly available multi-turn dia-
logue corpus showing that our system outperforms
all other state-of-the-art methods for response se-
lection in a multi-turn setting.

2 Related work

Recently, human-computer conversations have at-
tracted increasing attention in the research com-
munity and dialogue systems have become a field
of research on its own. The conversation mod-
els proposed in early studies (Walker et al., 2001;
Oliver and White, 2004; Stent et al., 2002) were
designed for catering to specific domains only,
e.g. for performing restaurant bookings, and re-
quired substantial rule-based strategy building and
human efforts in the building process. With the ad-
vancements in machine learning, there have been
more and more studies on conversational agents
which are based on data-driven approaches. Data-
driven dialogue systems can chiefly be realized
by two types of architectures: (1) pipeline ar-
chitectures, which follow a modular pattern for
modelling the dialogues, where each component
is trained/created separately to perform a specific
sub-task, and (2) end-to-end architectures, which
consist of a single trainable module for modelling
the conversations.

Task-oriented dialogue systems, which are de-
signed to assist users in achieving specific goals,
were mainly realized by pipeline architectures.
Recently however, there have been more and more
works on end-to-end dialogue systems because
of the limitations of the former modular archi-
tectures, namely, the credit assignment problem
and inter-component dependency, as for example
described by Zhao and Eskenazi (2016). Wen
et al. (2017) and Bordes et al. (2017) proposed
encoder-decoder-based neural networks for mod-
eling task oriented dialogues. Moreover, Zhao
and Eskenazi (2016) proposed an end-to-end rein-
forcement learning-based system for jointly learn-
ing to perform dialogue state-tracking (Williams
et al., 2013) and policy learning (Baird, 1995).

Since task oriented systems primarily focus on
completing a specific task, they usually do not al-
low free flowing, articulate conversations with the
user. Therefore, there has been considerable ef-
fort to develop non-goal driven dialogue systems,
which are able to converse with humans on an
open domain (Ritter et al., 2011). Such systems
can be modeled using either generative architec-
tures, which are able to freely generate responses
to user queries, or retrieval-based systems, which
pick a response suitable to a context utterance out
of a provided set of responses. Retrieval-based
systems are therefore more limited in their output
while having the advantage of producing more in-
formative, constrained, and grammatically correct
responses (Ji et al., 2014).

2.1 Generative models

Ritter et al. (2011) were the first to formu-
late the task of automatic response generation
as phrase-based statistical machine translation,
which they tackled with n-gram-based language
models. Later approaches (Shang et al., 2015;
Vinyals and Le, 2015; Luong et al., 2015) applied
Recurrent Neural Network (RNN)-based encoder-
decoder architectures. However, dialogue gener-
ation is considerably more difficult than language
translation because of the wide possibility of re-
sponses in interactions. Also, for dialogues, in
order to generate a suitable response at a certain
time-step, knowing only the previous utterance is
often not enough and the ability to leverage the
context from the sequence of previous utterances
is required. To overcome such challenges, a hier-
archical RNN encoder-decoder-based system has

498

been proposed by Serban et al. (2016) for leverag-
ing contextual information in conversations.

2.2 Retrieval-based models

Earlier works on retrieval-based systems focused
on modeling short-text, single-turn dialogues. Hao
et al. (2013) introduced a data set for this task
and proposed a response selection system which
is based on information retrieval techniques like
the vector space model and semantic matching. Ji
et al. (2014) suggested to apply a deep neural net-
work for matching contexts and responses, while
Wu et al. (2016) proposed a topic aware convolu-
tional neural tensor network for answer retrieval in
short-text scenarios.

More recently, there has been a lot of focus on
developing retrieval-based models for multi-turn
dialogues which is more challenging as the mod-
els need to take into account long-term dependen-
cies in the context. Lowe et al. (2015a), intro-
duced the Ubuntu Dialogue Corpus (UDC), which
is the largest freely available multi-turn dialogue
data set. Moreover, the authors proposed to lever-
age RNNs, e.g. LSTMs, to encode both the con-
text and the response, before computing the score
of the pair based on the similarity of the encod-
ings (w.r.t. a certain measure). This class of meth-
ods is referred to as dual encoder architectures.
Shortly after, Kadlec et al. (2015) investigated the
performance of dual encoders with different kind
of encoder networks, such as convolutional neu-
ral networks (CNNs) and bi-directional LSTMs.
Yan et al. (2016) followed a different approach and
trained a single CNN to map a context-response
pair to the corresponding matching score.

Later on, various extensions of the dual en-
coder architecture have been proposed. Zhou et al.
(2016) employed two encoders in parallel, one
working on word- the other on utterance-level. Wu
et al. (2017) proposed the Sequential Matching
Network (SMN), where the candidate response is
matched with every utterance in the context sep-
arately, based on which a final score is computed.
The Cross Convolution Network (CNN) (An et al.,
2018) extends the dual encoder with a cross con-
volution operation. The latter is a dot product be-
tween the embeddings of the context and response
followed by a max-pooling operation. Both of
the outputs are concatenated and fed into a fully-
connected layer for similarity matching. More-
over, An et al. (2018) improve the representation

of rare words by learning different embeddings for
them from the data. Handling rare words has also
been studied by Dong and Huang (2018), who pro-
posed to handle Out-of-Vocabulary (OOV) words
by using both pre-trained word embeddings and
embeddings from task-specific data.

Furthermore, many models targeting response
selection along with other sentence pair scoring
tasks such as paraphrasing, semantic text scoring,
and recognizing textual entailment have been pro-
posed. Baudiš et al. (2016) investigated a stacked
RNN-CNN architecture and attention-based mod-
els for sentence-pair scoring. Match-SRNN (Wan
et al., 2016) employs a spatial RNN to cap-
ture local interactions between sentence pairs.
Match-LSTM (Wang and Jiang, 2016) improves
its matching performance by using LSTM-based,
attention-weighted sentence representations. QA-
LSTM (Tan et al., 2016) uses a simple attention
mechanism and combines the LSTM encoder with
a CNN.

Incorporating unstructured domain knowledge
into dialogue system has initially been studied by
Lowe et al. (2015b) and followed by Xu et al.
(2016), who incorporated a loosely-structured
knowledge base into a neural network using a spe-
cial gating mechanism. They created the knowl-
edge base from domain-specific data, however
their model is not able to leverage any external do-
main knowledge.

3 Background

In this section, we will explain the task at hand
and give a brief introduction to the neural network
architectures our proposed model is based on.

3.1 Problem definition

Let the data set D = {(ci, ri, yi)}Mi=1 be a set of
M triples consisting of context ci, response ri, and
ground truth label yi. Each context is a sequence
of utterances, that is ci = {uil}Ll=1, where L is
the maximum context length. We define an utter-
ance as a sequence of words {wt}Tt=1. Thus, ci can
also be viewed as a sequence of words by concate-
nating all utterances in ci. Each response ri is an
utterance and yi ∈ {0, 1} is the corresponding la-
bel of the given triple which takes a value of 1 if ri
is the correct response for ci and 0 otherwise. The
goal of retrieval-based dialogue systems is then to
learn a predictive distribution p(y|c, r,θ) param-
eterized by θ. That is, given a context c and re-

499

sponse r, we would like to infer the probability of
r being a response to context c.

3.2 RNNs, BiRNNs and GRUs
Recurrent neural networks are one of the most
popular classes of models for processing se-
quences of words W = {wt}Tt=1 with arbitrary
length T ∈ N, e.g. utterances or sentences. Each
word wt is first mapped onto its vector represen-
tation wt (also referred to as word embedding),
which serves as input to the RNN at time step t.
The central element of RNNs is the recurrence re-
lation of its hidden units, described by

−→
h t = f(

−→
h t−1,wt|φ) , (1)

where φ are the parameters of the RNN and f is
some nonlinear function. Accordingly, the state−→
h t of the hidden units at time step t depends on
the state

−→
h t−1 in the previous time step and the

t-th word in the sequence. This way, the hidden
state

−→
h T obtained after T updates contains infor-

mation about the whole sequence W , and can thus
be regarded as an embedding of the sequence.

The RNN architecture can also be altered to take
into account dependencies coming from both the
past and the future by adding an additional sub-
RNN that moves backward in time, giving rise to
the name bi-directional RNN (biRNN). To achieve
this, the network architecture is extended by an ad-
ditional set of hidden units. The states

←−
ht of those

hidden units are updated based on the current in-
put word and the hidden state from the next time
step. That is for t = 1, . . . , T − 1:

←−
h T−t = f(

←−
h T−t+1,wT−t|φ) . (2)

Here, the words are processed in reverse order,
i.e. wT , . . . , w1, such that

←−
h T (analogous to

−→
h T

in the forward directed RNN) contains informa-
tion about the whole sequence. At the t-th time
step, the model’s hidden representation of the se-
quence is then usually obtained by the concatena-
tion of the hidden states from the forward and the
backward RNN, i.e. by ht = [

−→
h t,
←−
h t] and the

embedding of the whole sequence W is given by
hW = [

−→
h T ,
←−
h T].

Modeling very long sequences with RNNs is
hard: Bengio et al. (1994) showed that RNNs suf-
fer from vanishing and exploding gradients, which
makes training over long-term dependency diffi-
cult. Such problems can be addressed by augment-
ing the RNN with additional gating mechanisms,

as it is done in LSTMs and the Gated Recurrent
Unit (GRU) (Cho et al., 2014). These mecha-
nisms allow the RNN to learn how much to update
the hidden state flexibly in each step and help the
RNN to deal with the vanishing gradient problem
in long sequences better than vanilla RNNs. The
gating mechanism of GRUs is motivated by that
of LSTMs, but is much simpler to compute and
implement. It contains two gates, namely the reset
and update gate, whose states at time t are denoted
by zt and rt, respectively. Formally, a GRU is de-
fined by the following update equations

zt = σ(Wzxt +Uzht−1) ,

rt = σ(Wrxt +Urht−1) ,

h̃t = tanh(Whxt +Uhri � ht−1) ,

ht = zt � h̃t + (1− zt)� ht−1 ,

where xt is the input (corresponding to wt in our
setting) and the set of weight matrices φ = {Wz ,
Uz ,Wr, Ur, Wh, Uh} constitute the learnable
model parameters.

3.3 Dual Encoder

Recurrent neural networks and their variants have
been used in many applications in the field of
natural language processing, including retrieval-
based dialogue systems. In this area the dual en-
coder (DE) (Lowe et al., 2015a) became a popular
model. It uses a single RNN encoder to transform
both context and response into low dimensional
vectors and computes their similarity. More for-
mally, let hc and hr be the encoded context and
response, respectively. The probability of r being
the correct response for c is then computed by the
DE as

p(y|c, r,θ) = σ((hc)T Mhr + b) , (3)

where θ = {φ,M, b} (recall, that φ is the set of
parameters of the encoder RNN that outputs hc

and hr) is the set of parameters of the full model
and σ is the sigmoid function. Note, that the same
RNN is used to encode both context and response.

In summary, this approach can be described as
first creating latent representations of context and
response in the same vector space and then using
the similarity between these latent embeddings (as
induced by matrix M and bias b) for estimating the
probability of the the response being the correct
one for the given context.

500

4 Model description

Our model extends the DE described in Sec-
tion 3.3 by two attention mechanisms which make
the context encoding response-aware and vice
versa. Furthermore, we augment the model with a
mechanism for incorporating external knowledge
to improve the handling of rare words. Both ex-
tensions are described in detail in the following
subsections.

4.1 Attention augmented encoding

As described above, in the DE context and re-
sponse are encoded independently from each other
based on the same RNN. Instead of simply tak-
ing the final hidden state hc (and hr) of the RNN
as context (and response) encoding, we propose to
use a response-aware attention mechanism to cal-
culate the context embedding and vice versa.

Subsequently, we will describe this mechanism
formally. Recall that a context c can be seen as se-
quence of words {wct}Tt=1 where all utterances are
concatenated and T is the total number of words in
the context. Given this sequence, the RNN (in our
experiments a bi-directional GRU) produces a se-
quence of hidden states hc1, . . . ,h

c
T and an encod-

ing of the whole context sequence hc as described
in Section 3.2. Analogously, we get hr1, . . . ,h

r
T ′

and hr for a response consisting of a sequence of
words {wrt }T

′
t=1, where T ′ is the total number of

words in the response.
For calculating the response-aware context en-

coding, we first estimate attention weights αct for
the hidden state hct in each time step, depending
on the response encoding hr:

αct ∝ exp((hct)
TWch

r) , (4)

where Wc is a learnable parameter matrix. The
response-aware context embedding then is given
by

ĥc =

T∑

t=1

αct h
c
t . (5)

Intuitively this means, that depending on the re-
sponse we focus on different parts of the context
sequence, for judging on how well the response
matches the context. This may resemble human
focus.

Similarly, we calculate the context-aware re-

· · · −→
h t−1

−→
h t

−→
h t+1 · · ·

· · ·←−
h t+1

←−
h t

←−
h t−1· · ·

ŵr
t−1 ŵr

t ŵr
t+1

⊕ wr
tBiGRU{wd

tk}Kk=1
1− βtβt

Figure 1: Our proposed way to incorporate domain
knowledge into the model. βt and 1−βt represent the
(multiplicative) weights for the description embedding
and the word embedding respectively. The resulting
combination, ŵr

t acts as an input of the encoder.

sponse encoding by

ĥr =
T∑

t=1

αrt h
r
t , (6)

with attention weights

αrt ∝ exp((hrt)
TWrh

c) . (7)

The two attention-weighted encodings (for re-
sponse and context, respectively) then replace the
vanilla encodings in equation (3), that is

p(y|c, r,θ) = σ((ĥc)T Mĥr + b) . (8)

4.2 Incorporating domain keyword
descriptions

Bahdanau et al. (2018) proposed a method for
learning embeddings for OOV words based on ex-
ternal dictionary definitions. They learn these de-
scription embeddings of words using an LSTM for
encoding the corresponding definition. If a partic-
ular word included in the dictionary also appears
in the corpus’ vocabulary (for which vanilla word
embeddings are given), they add the word embed-
ding and the description embedding together. Oth-
erwise, in the case of OOV words, they use solely
the description embedding in place of the miss-
ing word embedding. Inspired by this approach,
we use a similar technique to incorporate domain
keyword descriptions into word embeddings.

If a word wrt in the response utterance is in the
set of domain keywords K, we firstly extract its
description. The description of wrt is a sequence
of words {wdtk}Kk=1, which is projected onto se-
quence of embeddings {wd

tk}Kk=1. This sequence

501

is encoded using another bi-directional GRU to
obtain a vector representation hdt of the same di-
mension as the vanilla word embeddings. If wrt is
not in K, we simply set hdt to zero. We call hdt the
description embedding.

Some domain specific words might also hap-
pen to be common words. For instance, in the
case of the UDC’s vocabulary, there exist tokens
such as shutdown 1 or who 2, which are ambigu-
ous, i.e., although they are valid UNIX commands,
they are also common words in natural language.
The description embeddings of domain specific
words can be simply added to the vanilla word em-
beddings as suggested by Bahdanau et al. (2018).
However, it might be advantageous if the model
can determine itself whether to treat the current
word as a domain specific word, a common word,
or something in between, depending on the con-
text. For instance, if the context is mainly talk-
ing about system users, then who is most likely a
UNIX keyword. Therefore, we propose a more
flexible way to combine the description embed-
ding hdt and the word embedding wr

t , that is, we
define the final word embedding to be a convex
combination of both, and let the combination co-
efficients be given by a function of hdt and the
context embedding ĥc. Intuitively, this allows the
model to flexibly focus on the description or the
vanilla embedding, in dependence on the context
and the description. Formally, the combination co-
efficients βt of t-th word in the response is given
by

βt ∝ exp(UTĥc +VTwr
t) , (9)

where U and V are learnable parameter matrices.
Note that βt is a vector of the same dimension
as the embeddings. The final embedding of wrt
(which serves as input to the response encoder) is
then the weighted sum

ŵr
t = βt � hdt + (1− βt)�wr

t , (10)

where � denotes the element wise multiplication.

5 Experiment

5.1 Ubuntu multi-turn dialogue corpus
Extending the work of Uthus and Aha (2013),
Lowe et al. (2015a) introduced a version of the
Ubuntu chat log conversations which is the largest

1UNIX command for system shutdown.
2UNIX command to get a list of currently logged-in users.

publicly available multi-turn, dyadic, and domain-
specific dialogue data set. The chats are extracted
from Ubuntu related topic specific chat rooms in
the Freenode Internet Relay Chat (IRC) network.
Usually, experienced users address a problem of
someone by suggesting a potential solution and a
name mention of the addressed user. A conversa-
tion between a pair of users often stops when the
problem has been solved. However, they might
continue having a discussion which is not related
to the topic.

A preprocessed version of the above corpus and
the needed vocabulary are provided by Wu et al.
(2017). The preprocessing consisted of replac-
ing numbers, URLs, and system paths with special
placeholders as suggested by Xu et al. (2016). No
additional preprocessing is performed by us. The
data set consists of 1 million training triples, 500k
validation triples, and 500k test triples. One half
of the 1 million training triples are positive (triples
with y = 1, i.e. the provided response fits the con-
text) the other half negative (triples with y = 0).
In contrast, in the validation and test set, for every
context ci, there exists one positive triple provid-
ing the ground-truth response to ci and nine neg-
ative triples with unbefitting responses. Thus, in
these sets, the ratio between positive and negative
triples per context is 1:9 which makes evaluating
the model with information retrieval metrics such
as Recall@k possible (see Section 6).

5.2 Model hyperparameters

We chose a word embedding dimension of 200 as
done by Wu et al. (2017). We use fastText (Bo-
janowski et al., 2016) to pre-train the word embed-
dings using the training set instead of using off-
the-shelf word embeddings, following Wu et al.
(2017). We set the hidden dimension of our GRU
to be 300, as in the work of Lowe et al. (2015a).
We restricted the sequence length of a context by
a maximum of 320 words, and that of the response
by 160. Because of the resulting size of the model
and limited GPU memory, we had to use a smaller
batch size of 32. We optimize the binary cross en-
tropy loss of our model with respect to the training
data using Adam (Kingma and Ba, 2015) with an
initial learning rate of 0.0001. We train our model
for a maximum of 20 epochs as according to our
experience, this is more than enough to achieve
convergence. The training is stopped when the
validation recall does not increase after three sub-

502

Model R2@1 R10@1 R10@3 R10@5

DE-RNN (Kadlec et al., 2015) 0.768 0.403 0.547 0.819
DE-CNN (Kadlec et al., 2015) 0.848 0.549 0.684 0.896
DE-LSTM (Kadlec et al., 2015) 0.901 0.638 0.784 0.949
DE-BiLSTM (Kadlec et al., 2015) 0.895 0.630 0.780 0.944

MultiView (Zhou et al., 2016) 0.908 0.662 0.801 0.951
DL2R (Yan et al., 2016) 0.899 0.626 0.783 0.944
r-LSTM (Xu et al., 2016) 0.889 0.649 0.857 0.932

MV-LSTM (Wan et al., 2016) 0.906 0.653 0.804 0.946
Match-LSTM (Wang and Jiang, 2016) 0.904 0.653 0.799 0.944
QA-LSTM (Tan et al., 2016) 0.903 0.633 0.789 0.943

SMNdyn (Wu et al., 2017) 0.926 0.726 0.847 0.961
CCN (An et al., 2018) - 0.727 0.858 0.971
ESIM (Dong and Huang, 2018) - 0.734 0.854 0.967

AK-DE-biGRU (Ours) 0.933 0.747 0.868 0.972

Table 2: Evaluation results of our models compared to various baselines on Ubuntu Dialogue Corpus.

sequent epochs. The test set is evaluated on the
model with the best validation recall.

For the implementation, we use PyTorch
(Paszke et al., 2017). We train the model end-to-
end with a single 12GB GPU. The implementa-
tion3 of our models along with the additional do-
main knowledge base4 are publicly available.

6 Results

Following Lowe et al. (2015a) and Kadlec et al.
(2015), we use the Recall@k evaluation metric,
where Rn@k corresponds to the fraction of of ex-
amples for which the correct response is under the
k best out of a set of n candidate responses, which
were ranked according to there their probabilities
under the model.

In our evaluation specifically, we use R2@1,
R10@1, R10@3, and R10@5.

6.1 Comparison against baselines

We compare our model, which we refer to as
Attention and external Knowledge augmented
DE with bi-directional GRU (AK-DE-biGRU),
against models previously tested on the same data
set: the basic DE models analyzed by Lowe
et al. (2015a) and Kadlec et al. (2015) using
different encoders, such as convolutional neu-
ral network (DE-CNN), LSTM (DE-LSTM) and

3https://github.com/SmartDataAnalytics/AK-DE-biGRU.
4Command descriptions scraped from Ubuntu man pages.

bi-directional LSTM (DE-BiLSTM); the Multi-
View, DL2R and r-LSTM models proposed by
Zhou et al. (2016), Yan et al. (2016) and Xu
et al. (2016), respectively; architectures for ad-
vanced context and response matching, namely
MV-LSTM (Wan et al., 2016), Match-LSTM
(Wang and Jiang, 2016), and QA-LSTM (Tan
et al., 2016); architectures processing the con-
text utterances individually, namely SMNdyn (Wu
et al., 2017) and CCN; and we also use recently
proposed ESIM (Dong and Huang, 2018) as a
baseline.

The results are reported in Table 2. Our model
outperforms all other models used as baselines.
The largest improvement of our model compared
to the best of the baselines (i.e. ESIM in general
and SMNdyn for R2@1 metric) are with respect to
the R10@1 and R10@3 metric, where we observed
absolute improvements of 0.013 and 0.014 corre-
sponding to 1.8% and 1.6% relative improvement
, respectively. For R2@1 and R10@5 we observed
more modest improvements of 0.007 (0.8%) and
0.005 (0.5%), respectively. Our results are signifi-
cantly better with p < 10−6 for a one-sample one-
tailed t-test compared to the best baseline (ESIM),
on R10@1, R10@3, R10@5 metrics, using the out-
come of 15 independent experiments. The vari-
ance between different trials is smaller than 0.001
for all evaluation metrics.

503

Model R10@1 R10@3 R10@5

DE-GRU 0.685 0.831 0.960
DE-biGRU 0.678 0.813 0.956
A-DE-GRU 0.712 0.845 0.964
A-DE-biGRU 0.739 0.864 0.968
AK+-DE-biGRU 0.743 0.867 0.969
AK-DE-biGRUw2v 0.745 0.866 0.970
AK-DE-biGRU 0.747 0.868 0.972

Table 3: Ablation study with different settings.

6.2 Ablation study

Our model differs in various ways from the vanilla
DE: it uses a GRU instead of an LSTM for the en-
coding, introduces an attention mechanism for the
encoding of the context and another for the encod-
ing of the response, and incorporates additional
knowledge in the response encoding process.

To analyze the effect of these components on
the over all performance, we analyzed different
model variants: a DE using a GRU or a bi-
directional GRU as encoder (DE-GRU and DE-
biGRU, respectively) and both of these models
with attention augmented encoding for embedding
both context and response (A-DE-GRU and A-
DE-biGRU, respectively). We also tested the ef-
fects of using a simple addition instead of the
weighted summation given in equation (10) for
merging the word embedding with the descip-
tion embedding (AK+-DE-biGRU). Finally, we
investigated a version of our model (AK-DE-
biGRUw2v) where we used pre-trained word2vec
embeddings, as done by Wu et al. (2017), instead
of learning our own word embeddings from the
data set.

The results of the study are presented in Ta-
ble 3. With the basic models, i.e. DE-GRU and
DE-biGRU, as baselines, we observed around 4%
and 9% improvement on R10@1 when incorporat-
ing the attention mechanism (A-DE-GRU and A-
DE-biGRU, respectively).

When domain knowledge is incorporated by
simple addition (as in the work of Bahdanau et al.
(2018)), i.e. in AK+-DE-biGRU, we noticed 0.5%
further improvement. Note however, that the re-
sults are not as good as when using the proposed
weighted addition. Finally, using our method
of incorporating domain knowledge in combina-
tion with embeddings trained from scratch with
fastText (Bojanowski et al., 2016), the perfor-
mance gets 0.3% better than when using pre-

Example Response Utterances

gui for shutdown try typing sudo

shutdown -h now

sudo apt-get install qt4-designer

there could be some qt dev packages too

but i think the above will install them as
dependencies

certainly won n’t make a difference i m

sure but maybe try sudo shutdown -r

now shutdown works just fine graphical

and command line

pci can you put the output of lspci

on url and give me the link please

i do n’t see a line in xorg conf for

hsync and vsync do you get the same

you d create it i m looking at gentoo

and ubuntu forums a sec

can be many reasons of traceroute

url you will not get a complete result

Table 4: Visualization of attention weight in utterance
samples, darker shade means higher attention weight.

trained word2vec embeddings. In total, compared
to the DE-biGRU baseline, our model (AK-DE-
biGRU) achieves 10% of improvement in terms
of the R10@1 metric. Thus, the results clearly
suggest that both the attention mechanism and the
incorporation of domain knowledge, are effective
approaches for improving the dual encoder archi-
tecture. Curiously, we noticed that for the baseline
models, using a GRU as the encoder is better than
using a biGRU. This finding is in line with the re-
sults from Kadlec et al. (2015) reported in Table 2.
However, the table is turned when augmenting the
models with an attention mechanism where the
biGRU-based model outperforms the one with the
GRU. This observation motivates us to consider a
biGRU instead of a GRU in our final model.

6.3 Visualizing response attentions

To further investigate the results given by our
model, we qualitatively inspected several samples
of response utterances and their attention weights,
as shown in Table 4. We noticed that our model
learned to focus on technical terms, such as lspci,

504

Context utterances
Utterance 1: Ubuntu <version>
Utterance 2: hi all sony vaio fx120 will not
turn off when shutting down, any ideas? btw
acpi =o ff in boot parameters anything else i
should be trying?
Utterance 3: how are you shutting down i.e.
terminal or gui?

Table 5: Sample context utterances from UDC’s test set
whose correct response is the first utterance in Table 4.

shutdown, and traceroute. We also observed that
the model is able to capture contextual importance,
i.e. it is able to focus on context relevant words.
For example, given the context in Table 5 and the
correct response in the first row of Table 4, one can
see the attention on the word shutdown, where it
gets a lower weight when used as a common word
in the first occurance than as a UNIX command in
the second. 5

6.4 Error analysis
We qualitatively analyzed the errors our method
made. We observed that our model’s predic-
tions are biased toward high information utter-
ances. That is, we observed for some examples
that the correct response is generic (i.e. has low
information), our model chooses a non-generic re-
sponse, as shown in Table 6. Furthermore, we
computed the average utterance information con-
tent (the entropy) for both the correct and pre-
dicted responses, based on Xu and Reitter (2018),
where we obtained 9.25 bits and 9.34 bits, re-
spectively. This quantitatively indicates that our
model is slightly biased toward high information
responses.

7 Conclusion and future work

We presented a novel model which extends the
dual encoder architecture for multi-turn response
selection by incorporating external domain knowl-
edge and attention augmented encoding. Our ex-
perimental results demonstrate that our model out-
performed other state-of-the-art methods for re-
sponse selection in a multi-turn dialogue setting,
and that the attention mechanism and incorporat-
ing additional domain knowledge are indeed ef-
fective approaches for improving the response se-

5N.B. The conversations are taken directly from the cor-
pus and can be grammatically inconsistent.

Examples of model error:

Correct: ok will do :), nope.
Predicted: url if you go down to the
bottom of that tutorial i also have a post there
that is a bit more detailed about my problem
poster name is trent

Correct: hmm! ok
Predicted: as did i w/ fbsd ... just check out
the livecd for a bit

Correct: okay thank you a thread i hope :)
Predicted: hmm ok because im not sure about
iwconfig and wpa but we can give it a try do
gksudo gedit path then add a record like
this url

Correct: right .. it is, it exists i verified
Predicted: i want to connect to your computer
remotely if you allow me to so i can fix the
problem for you just follow the following
procedure.

Correct: roger .. lemme check, got it ... thanks
dude :)
Predicted: just click the partition and then
click the blue text next to mount point or you
can simply navigate to that path

Table 6: Examples on the error our model made. We
observed that our model’s predictions are biased to-
wards non-generic responses.

lection performance of the dual encoder architec-
ture. Further improvement might be made by also
considering domain knowledge in the context and
by improving the handling of OOV words, e.g. by
widening our domain specific word vocabulary
and handling generic OOV words such as typos.

References
Guozhen An, Mehrnoosh Shafiee, and Davood Shamsi.

2018. Improving retrieval modeling using cross
convolution networks and multi frequency word em-
bedding. arXiv preprint arXiv:1802.05373.

Dzmitry Bahdanau, Tom Bosc, Stanisław Jastrzebski,
Edward Grefenstette, Pascal Vincent, and Yoshua
Bengio. 2018. Learning to compute word embed-
dings on the fly.

Leemon Baird. 1995. Residual algorithms: Reinforce-
ment learning with function approximation. In Ma-
chine Learning Proceedings 1995, pages 30–37. El-
sevier.

505

Petr Baudiš, Jan Pichl, Tomáš Vyskočil, and Jan
Šedivỳ. 2016. Sentence pair scoring: Towards
unified framework for text comprehension. arXiv
preprint arXiv:1603.06127.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
Proceedings of the 3rd International Conference for
Learning Representations.

Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre,
F Bougares, H Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2014).

Jianxiong Dong and Jim Huang. 2018. Enhance word
representation for out-of-vocabulary on ubuntu dia-
logue corpus. arXiv preprint arXiv:1802.02614.

Wang Hao, Lu Zhengdong, Li Hang, et al. 2013. A
dataset for research on short-text conversation. In
Proceed-ings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
935–945.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conver-
sation. In Proceedings of International Conference
on Computation and Language.

Rudolf Kadlec, Martin Schmid, and Jan Kleindienst.
2015. Improved deep learning baselines for ubuntu
corpus dialogs. In NIPS on Machine Learning for
Spoken Language Understanding.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning
Representations.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015a. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. In Proceedings of SIGDIAL.

Ryan Lowe, Nissan Pow, IV Serban, Laurent Char-
lin, and Joelle Pineau. 2015b. Incorporating un-
structured textual knowledge sources into neural di-
alogue systems. In Neural Information Processing
Systems Workshop on Machine Learning for Spoken
Language Understanding.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Address-
ing the rare word problem in neural machine trans-
lation. In Proceeding of Association for Computa-
tional Linguistics.

Johanna Moore Mary Ellen Foster Oliver and
Lemon Michael White. 2004. Generating tailored,
comparative descriptions in spoken dialogue.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the conference on empirical methods
in natural language processing, pages 583–593. As-
sociation for Computational Linguistics.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI,
volume 16, pages 3776–3784.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In Proceedings of 53rd Annual Meeting of the
Association for Computational Linguistics.

Amanda Stent, Marilyn A Walker, Steve Whittaker, and
Preetam Maloor. 2002. User-tailored generation for
spoken dialogue: An experiment. In Seventh Inter-
national Conference on Spoken Language Process-
ing.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Lstm-based deep learning models for
non-factoid answer selection. In Proceedings of the
4rd International Conference for Learning Repre-
sentations.

David C Uthus and David W Aha. 2013. Extend-
ing word highlighting in multiparticipant chat. In
FLAIRS Conference.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. In International Conference on Ma-
chine Learning: Deep Learning Workshop.

Marilyn A Walker, Rebecca Passonneau, and Julie E
Boland. 2001. Quantitative and qualitative evalu-
ation of darpa communicator spoken dialogue sys-
tems. In Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, pages
515–522. Association for Computational Linguis-
tics.

Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo,
Liang Pang, and Xueqi Cheng. 2016. Match-srnn:
Modeling the recursive matching structure with spa-
tial rnn. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence.

506

Shuohang Wang and Jing Jiang. 2016. Learning natu-
ral language inference with lstm. In Proceedings of
NAACL-HLT 2016.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In European Chapter of the Association for
Computational Linguistics.

Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL 2013
Conference, pages 404–413.

Yu Wu, Wei Wu, Zhoujun Li, and Ming Zhou. 2016.
Topic augmented neural network for short text con-
versation. CoRR abs/1605.00090.

Yu Wu, Wei Wu, Chen Xing, Ming Zhou, and Zhou-
jun Li. 2017. Sequential matching network: A
new architecture for multi-turn response selection
in retrieval-based chatbots. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 496–505.

Yang Xu and David Reitter. 2018. Information den-
sity converges in dialogue: Towards an information-
theoretic model. Cognition, 170:147–163.

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie
Sun, and Xiaolong Wang. 2016. Incorporating
loose-structured knowledge into lstm with recall
gate for conversation modeling. arXiv preprint
arXiv:1605.05110.

Rui Yan, Yiping Song, and Hua Wu. 2016. Learning
to respond with deep neural networks for retrieval-
based human-computer conversation system. In
Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Infor-
mation Retrieval, pages 55–64. ACM.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In
Proceedings of SIGDIAL.

Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao,
Dianhai Yu, Hao Tian, Xuan Liu, and Rui Yan. 2016.
Multi-view response selection for human-computer
conversation. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 372–381.

507

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 508–518
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

The Lifted Matrix-Space Model for Semantic Composition

WooJin Chung1

woojin@nyu.edu
Sheng-Fu Wang1

shengfu.wang@nyu.edu
Samuel R. Bowman1,2

bowman@nyu.edu

1Dept. of Linguistics
New York University
10 Washington Place
New York, NY 10003

2Center for Data Science
New York University

60 Fifth Avenue
New York, NY 10011

Abstract
Tree-structured neural network architectures
for sentence encoding draw inspiration from
the approach to semantic composition gener-
ally seen in formal linguistics, and have shown
empirical improvements over comparable se-
quence models by doing so. Moreover, adding
multiplicative interaction terms to the com-
position functions in these models can yield
significant further improvements. However,
existing compositional approaches that adopt
such a powerful composition function scale
poorly, with parameter counts exploding as
model dimension or vocabulary size grows.
We introduce the Lifted Matrix-Space model,
which uses a global transformation to map
vector word embeddings to matrices, which
can then be composed via an operation based
on matrix-matrix multiplication. Its compo-
sition function effectively transmits a larger
number of activations across layers with rela-
tively few model parameters. We evaluate our
model on the Stanford NLI corpus, the Multi-
Genre NLI corpus, and the Stanford Sentiment
Treebank and find that it consistently outper-
forms TreeLSTM (Tai et al., 2015), the previ-
ous best known composition function for tree-
structured models.

1 Introduction

Contemporary theoretical accounts of natural lan-
guage syntax and semantics consistently hold that
sentences are tree-structured, and that the mean-
ing of each node in each tree is calculated from the
meaning of its child nodes using a relatively sim-
ple semantic composition process which is applied
recursively bottom-up (Chierchia and McConnell-
Ginet, 1990; Dowty, 2007). In tree-structured re-
cursive neural networks (TreeRNN; Socher et al.,
2010), a similar procedure is used to build repre-
sentations for sentences for use in natural language
understanding tasks, with distributed representa-
tions for words repeatedly fed through a neural

Figure 1: The Lifted Matrix-Space model in schematic
form. Words are stored as vectors and projected into
matrix space by the LIFT layer. A parametric COMPO-
SITION function combines pairs of these matrices using
multiplicative interactions.

network composition function according to a bi-
nary tree structure supplied by a parser. The suc-
cess of a tree-structured model largely depends on
the design of its composition function.

It has been repeatedly shown that a composition
function that captures multiplicative interactions
between the two items being composed yields bet-
ter results (Rudolph and Giesbrecht, 2010; Socher
et al., 2012, 2013) than do otherwise-equivalent
functions based on simple linear interactions. This
paper presents a novel model which advances this
line of research, the Lifted Matrix-Space model.
We utilize a tensor-parameterized LIFT layer that
learns to produce matrix representations of words
that are dependent on the content of pre-trained
word embedding vectors. Composition of two ma-
trix representations is carried out by a composition
layer, into which the two matrices are sequentially

508

fed. Figure 1 illustrates the model design.

Our model was inspired by Continuation Se-
mantics (Barker and Shan, 2014; Charlow, 2014),
where each symbolic representation of words is
converted to a higher-order function. There is
a consensus in linguistic semantics that a sub-
set of natural language expressions correspond to
higher-order functions. Inspired by the works in
programming language theory, Continuation Se-
mantics takes a step further and claims that all ex-
pressions have to be converted into a higher-order
function before they participate in semantic com-
position. The theory bridges a gap between lin-
guistic semantics and programming language the-
ory, and reinterprets various linguistic phenomena
from the view of computation. While we do not
directly implement Continuation Semantics, we
follow its rough contours: We convert low-level
representations (vectors) to higher-order functions
(matrices), and composition only takes place be-
tween the higher-order functions.

A number of models have been developed to
capture the multiplicative interactions between
distributed representations. While having a sim-
ilar objective, the proposed model requires fewer
model parameters than the predecessors because it
does not necessarily learn each word matrix repre-
sentation separately, and the number of parameters
for the composition function is not proportional to
the cube of the hidden state dimension. Because
of this, it can be trained with larger vocabularies
and more hidden state activations than was possi-
ble with its predecessors.

We evaluate our model primarily on the task
of natural language inference (NLI; MacCartney,
2009). The task consists in determining the infer-
ential relation between a given pair of sentences.
It is a principled and widely-used evaluation task
for natural language understanding, and knowing
the inferential relations is closely related to under-
standing the meaning of an expression (Chierchia
and McConnell-Ginet, 1990). While other tasks
such as question answering or machine transla-
tion require a model to learn task-specific behavior
that goes beyond understanding sentence mean-
ing, NLI results highlight sentence understanding
performance in isolation. We also include an eval-
uation on sentiment classification for comparison
with some earlier work.

We find that our model outperforms existing ap-
proaches to tree-structured modeling on all three

tasks, though it does not set the state of the art on
any of them, falling behind other types of complex
model. We nonetheless expect that this method
will be a valuable ingredient in future models for
sentence understanding and a valuable platform
for research of compositionality in learned repre-
sentations.

2 Related work

Composition functions for tree-structured mod-
els have been thoroughly studied in recent years
(Mitchell and Lapata, 2010; Baroni and Zampar-
elli, 2010; Zanzotto et al., 2010; Socher et al.,
2011). While this line of research has been suc-
cessful, the majority of the existing models ulti-
mately rely on the additive linear combination of
vectors. The Tree-structured recursive neural net-
works (TreeRNN) of Socher et al. (2010) com-
pose two child node vectors ~hl and ~hr using this
method:

(1) ~h = tanh(W

[
~hl
~hr

]
+~b)

where ~hl, ~hr, ~h, ~b ∈ Rd× 1, and W ∈ Rd× 2d.
Throughout this paper, d stands for the number of
activations of a given model.

However, there is no reason to believe that the
additive linear combination of vectors is adequate
for modeling semantic composition. Formal work
in linguistic semantics has shown that many lin-
guistic expressions are well-represented as func-
tions. Accordingly, composing two meanings typ-
ically require feeding an argument into a function
(function application; Heim and Kratzer, 1998).
Such an operation involves a complex interac-
tion between the two meanings, but the classic
TreeRNN does not supply any additional means
to capture the interaction.

Rudolph and Giesbrecht (2010) report that ma-
trix multiplication, as opposed to element-wise ad-
dition, is more suitable for semantic composition.
Their Compositional Matrix-Space model (CMS)
represents words and phrases as matrices, and they
are composed via a simple matrix multiplication:

(2) P = AB

whereA,B, P ∈ Rd × d are matrix representations
of the word embeddings. They provide a formal
proof that element-wise addition/multiplication of
vectors can be subsumed under matrix multipli-
cation. Moreover, they claim that the order-
sensitivity of matrix multiplication is adequate for

509

capturing the semantic composition because natu-
ral language is order-sensitive.

However, as Socher et al. (2012) note, CMS
loses syntactic information during composition
due to the associative character of matrix multipli-
cation. For instance, the following two tree struc-
tures in (3) are syntactically distinct, but CMS
would produce the same result for both structures
because its mode of composition is associative.

(3) a.
A B C

b.
A B C

CMS cannot distinguish the meaning of the two
tree structures and invariably produces ABC (a se-
quence of matrix multiplications). Therefore, the
information on syntactic constituency would be
lost. This makes the model less desirable for han-
dling semantic composition of natural language
expressions for two reasons: First, the principle
of compositionality is violated. Much of the suc-
cess of the tree-structured models can be credited
to the shared hypothesis that the meaning of ev-
ery tree node is derived from the meanings of its
child nodes. Abandoning this principle of com-
positionality gives up the advantage. Second, it
cannot handle structural ambiguities exemplified
in (4).

(4) John saw a man with binoculars.

(5) a.

John

saw a man with binoculars

b.
John

saw
a

man
with binoculars

The sentence has two interpretations that can be
disambiguated with the following paraphrases: (i)
John saw a man via binoculars, and (ii) John saw
a man who has binoculars. The common syntactic
analysis of the ambiguity is that the prepositional
phrase with binoculars can attach to two different
locations. If it attaches to the verb phrase saw a
man, the first interpretation arises. On the other
hand, if it attaches to the noun man, the second
interpretation is given. However, if the structural
information is lost, we would have no way to dis-
ambiguate the two readings.

Socher et al.’s (2012) Matrix-Vector RNN (MV-
RNN) is another attempt to capture the multiplica-
tive interactions between two vectors, while con-
forming to the principle of compositionality. They
hypothesize that representing operators as matri-
ces can better reflect operator semantics. For each
lexical item, a matrix (trained parameter) is as-
signed in addition to the pre-trained word embed-
ding vector. The model aims to assign the right
matrix representations to operators while assign-
ing an identity matrix to words with no operator
meaning. One step of semantic composition is de-
fined as follows:

(6) ~h = f(B~a,A~b) = g(W

[
B~a

A~b

]
)

(7) H = fM (A,B) =WM

[
A
B

]

where ~a,~b, ~h ∈ Rd × 1, A, B, H ∈ Rd × d, and W ,
WM ∈ Rd×2d.

MV-RNN is computationally costly as it needs
to learn an additional d × d matrix for each lexi-
cal item. It is empirically known that the size of
the vocabulary is roughly proportional to the size
of the corpus (Heaps’ law; Herdan, 1960), there-
fore the number of model parameters increases as
the corpus gets bigger. This makes the model less
ideal for handling a large corpus: having a huge
number of parameters causes a problem both for
memory usage and for learning efficiency.

Chen et al. (2013) and Socher et al. (2013)
present the recursive neural tensor network
(RNTN) which reduces the computational com-
plexity of MV-RNN, while capturing the multi-
plicative interactions between child vectors. The
model introduces a third-order tensor V which in-
teracts with the child node vectors as follows:

(8) ~h = tanh(W

[
~hl
~hr

]
+~b+ ~hTl V~hr)

where ~hl, ~hr, ~b ∈ Rd× 1, W ∈ Rd× 2d, and V
∈ Rd× d× d. RNTN improves on MV-RNN in that
its parameter size is not proportional to the size
of the corpus. However, the addition of the third-
order tensor V of dimension d×d×d still requires
proportionally more parameters.

The last composition function relevant to this
paper is the Tree-structured long short-term mem-
ory networks (TreeLSTM; Tai et al., 2015; Zhu
et al., 2015; Le and Zuidema, 2015), particularly
the version over a constituency tree. It is an

510

Model Params. Associative Multiplicative Activation size w.r.t. TreeRNN

TreeRNN/LSTM O(d× d) No No 1
CMS O(V × d× d) Yes Yes 1/V
MV-RNN O(V × d× d) No Yes 1/V
RNTN O(d× d× d) No Yes 1/d

LMS (this work) O(d× demb) No Yes 1/demb

Table 1: Summary of the models. Params. is the number of model parameters (not counting pretrained word
vectors), d is the number of activations at each tree node, demb is the dimension of the word embeddings, and
V is the size of the vocabulary. Associative and Multiplicative indicate whether composition is associative and
whether it includes multiplicative interactions between inputs, respectively. Activation size w.r.t. TreeRNN shows
how activation sizes scale with respect to TreeRNN when all of the models have the same parameter count.

extension of TreeRNN which adapts long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997) networks. It shares the advantage of
LSTM networks in that it prevents the vanishing
gradient problem (Hochreiter et al., 2001).

Unlike TreeRNN, the output hidden state ~h of
TreeLSTM is not directly calculated from the hid-
den states of its child nodes, ~hl and ~hr. Rather,
each node in TreeLSTM maintains a cell state ~c
that keeps track of important information of its
child nodes. The output hidden state ~h is drawn
from the cell state ~c by passing it through an out-
put gate ~o.

The cell state is calculated in three steps: (i)
Compute a new candidate ~g from ~hl and ~hr.
TreeLSTM selects which values to take from the
new candidate ~g by passing it through an input
gate~i. (ii) Choose which values to forget from the
cell states of the child nodes, ~cl and ~cr. For each
child node, an element-wise product (�) between
its cell state and the forget gate (either ~fl and ~fr,
depending on the child node) is calculated. (iii)
Lastly, sum up the results from (i) and (ii).

(9) ~g = tanh

(
W

[
~hl
~hr

]
+~b

)

(10)

~i
~fl
~fr
~o

 =

σ
σ
σ
σ

(
W

[
~hl
~hr

]
+~b

)

(11) ~c = ~fl � ~cl + ~fr � ~cr +~i� ~g
(12) ~h = ~o� tanh(~c)

TreeLSTM achieves the state-of-the-art perfor-
mance among the tree-structured models in var-
ious tasks, including natural language inference
and sentiment classification. However, there are
non-tree-structured models on the market that

outperform TreeLSTM. Our goal is to design a
stronger composition function that enhances the
performance of tree-structured models. We de-
velop a composition function that captures the
multiplicative interaction between distributed rep-
resentations. At the same time, we improve on the
predecessors in terms of scalability, making the
model more suitable for larger datasets.

To recapitulate, TreeRNN and TreeLSTM re-
flect the principle of compositionality but cannot
capture the multiplicative interaction between two
expressions. In contrast, CMS incorporates mul-
tiplicative interaction but violates the principle of
compositionality. MV-RNN is compositional and
also captures the multiplicative interaction, but
it requires a learned d × d matrix for each vo-
cabulary item. RNTN is also compositional and
incorporates multiplicative interaction, but it re-
quires less parameters than MV-RNN. Neverthe-
less, it requires significantly more parameters than
TreeRNN or TreeLSTM. Table 1 is an overview of
the discussed models.

Other interesting works enrich semantic com-
position with additional context such as grammat-
ical roles or function/argumenthood (Clark et al.,
2008; Erk and Padó, 2008; Grefenstette et al.,
2014; Asher et al., 2016; Weir et al., 2016).

3 The Lifted Matrix-Space model

3.1 Base model

We present the Lifted Matrix-Space model (LMS)
which renders semantic composition in a novel
way. Our model consists of three subparts: the
LIFT layer, the composition layer, and the TreeL-
STM wrapper. The LIFT layer takes a word em-
bedding vector and outputs a corresponding

√
d×√

d matrix (eq. 13).

(13) H = tanh(WLIFT~c+BLIFT)

511

where ~c ∈ Rdemb×1, BLIFT ∈ R
√
d×
√
d, and

WLIFT ∈ R
√
d×
√
d×demb . The resulting H matrix

serves as an input for the composition layer.
Given the matrix representations of two child

nodes,Hl andHr, the composition layer first takes
Hl and returns a hidden state Hinner ∈ R

√
d×
√
d

(eq. 14). SinceHinner is also a matrix, it can func-
tion as the weight matrix for Hr. The composition
layer multiplies Hinner with Hr, adds a bias, and
feeds the result into a non-linear activation func-
tion (eq. 15). This yields Hcand ∈ R

√
d×
√
d,

which for the base model is the output of semantic
composition.

(14) Hinner = tanh(WCOMBHl +BCOMB1)

(15) Hcand = tanh(HinnerHr +BCOMB2)

As in CMS, the primary mode of semantic com-
position is matrix multiplication. However, LMS
improves on CMS in that it avoids associativity.
LMS differs from MV-RNN in that it does not
learn a d × d matrix for each vocabulary item.
Compared to RNTN, LMS transmits a larger num-
ber of activations across layers, given the same
parameter count. In both models, the size of the
third-order tensor is the dominant factor in deter-
mining the number of model parameters. The pa-
rameter count of LMS is approximately propor-
tional to the number of activations (d), but the pa-
rameter count of RNTN is approximately propor-
tional to the cube of the number of activations (d3).
Therefore, LMS can transmit the same number of
activations with fewer model parameters.

3.2 LMS augmented with LSTM components

We augment the base model with LSTM compo-
nents (LMS-LSTM) to circumvent the problem of
long-term dependencies. As in the case of TreeL-
STM, we additionally manage cell states (~cl, ~cr).
Since the LSTM components operate on vectors,
we reshape Hcand, Hl, and Hr into d × 1 column
vectors respectively, and produce ~g, ~hl, and ~hr.
The output of the LSTM components are calcu-
lated based on these vectors, and is reshaped back
to a
√
d×
√
d matrix (eq. 22).

(16) ~g = VECTORIZE(Hcand)

(17) ~hl = VECTORIZE(Hl)

(18) ~hr = VECTORIZE(Hr)

(19)

~i
~fl
~fr
~o

 =

σ
σ
σ
σ

(
W

[
~hl
~hr

]
+B

)

(20) ~c = ~fl � ~cl + ~fr � ~cr +~i� ~g
(21) ~h = ~o� tanh(~c)
(22) H = TO-MATRIX(~h)

3.3 Simplified variants

We implement two LMS-LSTM variants with a
simpler composition function as an ablation study.
The first variant replaces the equations in (14)
and (15) with a single equation (eq. 23), which
does not utilize a weight matrix. It simply mul-
tiplies the matrix representations of two child
nodes Hl, Hr ∈ R

√
d×
√
d, adds a bias BCOMB ∈

R
√
d×
√
d, and feeds the result into a non-linear ac-

tivation function.

(23) Hcand = tanh(HlHr +BCOMB)

The second variant is more complex than the
first, in a way that a weight matrix WCOMB ∈
R
√
d×
√
d is added to the equation (eq. 24). But

unlike the full LMS-LSTM which has two tanh
layers, it only utilizes one.

(24) Hcand = tanh(WCOMBHlHr +BCOMB)

4 Experiments

4.1 Implementation details

As our interest is in the performance of compo-
sition functions, we compare LMS-LSTM with
TreeLSTM, the previous best known composition
function for tree-structured models. To allow for
efficient batching, we use the SPINN-PI-NT ap-
proach (Bowman et al., 2016), which implements
standard TreeLSTM using stack and buffer data
structures borrowed from parsing, rather than tree
structures. We implement our model by replacing
SPINN-PI-NT’s composition function with ours
and adding the LIFT layer.

We use the 300D reference GloVe vectors
(840B token version; Pennington et al., 2014) for
word representations. We fine-tune the word em-
beddings for improved results. We follow Bow-
man et al. (2016) and other prior work in our use
of an MLP with product and difference features to
classify pairs of sentences.

512

(25) ~xclassifier =

~hpremise
~hhypothesis

~hpremise − ~hhypothesis
~hpremise � ~hhypothesis

The feature vector is fed into an MLP that con-
sists of two ReLU neural network layers and a
softmax layer. In both models, the objective func-
tion is a sum of a cross-entropy loss function and
an L2 regularization term. Both models use the
Adam optimizer (Kingma and Ba, 2014). Dropout
(Srivastava et al., 2014) is applied to the classifier
and to the word embeddings. The MLP layer also
utilizes Layer Normalization (Ba et al., 2016).1

4.2 Datasets
We first train and test our models on the Stan-
ford Natural Language Inference corpus (SNLI;
Bowman et al., 2015). The SNLI corpus contains
570,152 pairs of natural language sentences that
are labeled for entailment, contradiction, and neu-
tral. It consists of sentences that were written and
validated by humans. Along with the MultiNLI
corpus introduced below, it is two orders of mag-
nitude larger than other human-authored resources
for NLI tasks. The following example illustrates
the general format of the corpus.

(26) PREMISE: A soccer game with multiple
males playing.
HYPOTHESIS: Some men are playing a
sport.
LABEL: Entailment

We test our models on the Multi-Genre Natural
Language Inference corpus (MultiNLI; Williams
et al., 2017). The corpus consists of 433k pairs
of examples, and each pair is labeled for entail-
ment, contradiction, and neutral. MultiNLI has
the same format as SNLI, so it is possible to train
on both datasets at the same time (as we do when
testing on MultiNLI). Two notable features distin-
guish MultiNLI from SNLI: (i) It is collected from
ten distinct genres of spoken and written English.
This makes the dataset more representative of hu-
man language use. (ii) The examples in MultiNLI
are considerably longer than the ones in SNLI.
These two features make MultiNLI classification
fairly more difficult than SNLI. The pair of sen-
tences in (27) is an illustrative example. The sen-

1The source code and the checkpoints for the mod-
els trained for the NLI tasks are available at https://
github.com/nyu-mll/spinn.

tences are from the section of the corpus that is
transcribed verbatim from telephone speech.

(27) GENRE: Telephone speech
PREMISE: Yes now you know if if every-
body like in August when everybody’s on
vacation or something we can dress a little
more casual or
HYPOTHESIS: August is a black out month
for vacations in the company.
LABEL: Contradiction

The MultiNLI training set consists of five dif-
ferent genres of spoken and written English, the
matched test set contains sentence pairs from only
those five genres, and the mismatched test set con-
tains sentence pairs from additional genres.

We also experiment on the Stanford Sentiment
Treebank (SST; Socher et al., 2013), which is con-
structed by extracting movie review excerpts writ-
ten in English from rottentomatoes.com,
and labeling them with Amazon Mechanical Turk.
Each example in SST is paired with a parse tree,
and each node of the tree is tagged with a fine-
grained sentiment label (5 classes).

5 Results and Analysis

Table 2 summarizes the results on SNLI and
MultiNLI classification. We use the same prepro-
cessing steps for all results we report, including
loading the parse trees supplied with the datasets.
Dropout rate, size of activations, number and size
of MLP layers, and L2 regularization term are
tuned using repeated random search. MV-RNN
and RNTN introduced in the earlier sections are
extremely expensive in terms of computational re-
sources, and training the models with comparative
hyperparameter settings quickly runs out of mem-
ory on a high-end GPU. We do not include them
in the comparison for this reason. TreeLSTM per-
forms the best with one MLP layer, while LMS-
LSTM displays the best performance with two
MLP layers. The difference in parameter count
is largely affected by this choice, and in principle
one model does not demand notably more compu-
tational resources than the other.

On the SNLI test set, LMS-LSTM has an ad-
ditional 1.3% gain over TreeLSTM. Also, both
of the simplified variants of LMS-LSTM outper-
form TreeLSTM, but by a smaller margin. On
the MultiNLI test sets, LMS-LSTM scores 1.3%
higher on the matched test set and 1.9% higher on
the mismatched test set.

513

Model Params. S tr. S te. M tr. M te. mat. M te. mism.

Baselines

CBOW (Williams et al., 2017) – – 80.6 – 65.2 64.6
BiLSTM (Williams et al., 2017) 2.8m – 81.5 – 67.5 67.1
Shortcut-Stacked BiLSTM (Nie and Bansal, 2017) 34.7m – 86.1 – 74.6 73.6
DIIN (Gong et al., 2018) – – 88.0 – 78.8 77.8

Existing Tree-Structured Model Runs

300D TreeLSTM (Bowman et al., 2016) 3.4m 84.4 80.9 – – –
300D SPINN-PI (Bowman et al., 2016) 3.7m 89.2 83.2 – – –

Our Experiments

441D LMS (base) 2.0(+11.6m) 79.7 76.5 – – –
441D LMS-LSTM (simplified, −WCOMB,−tanh) 3.3(+11.6)m 90.5 84.1 – – –
324D LMS-LSTM (simplified, −tanh) 2.2(+11.6)m 92.5 84.5 – – –

700D TreeLSTM 2.0(+11.6)m 89.5 83.6 – – –
576D LMS-LSTM (full) 4.6(+11.6)m 86.0 84.9 – – –
700D TreeLSTM 4.6(+30.2)m – – 78.9 70.0 69.7
576D LMS-LSTM (full) 5.9(+30.2)m – – 80.5 71.3 71.6

Table 2: Results on NLI classification with sentence-to-vector encoders. Params. is the approximate number of
model parameters, and the numbers in parentheses indicate the parameters contributed by word embeddings. S tr.,
and S te. are the class accuracies (%) on SNLI train set and test set, respectively. M tr., M te. mat., and M te.
mism. are the class accuracies (%) on MultiNLI train set, matched test set, and mismatched test set, respectively.
Underlining marks the best result among tree-structured models.

We cite the state-of-the-art results of non-tree-
structured models, although these models are only
relevant for our absolute performance numbers.
The Shortcut-Stacked sentence encoder achieves
the state-of-the-art result among non-attention-
based models, outperforming LMS-LSTM. While
this paper focuses on the design of the composi-
tion function, we expect that adding depth along
the lines of Irsoy and Cardie (2014) and shortcut
connections to LMS-LSTM would offer compa-
rable results. Gong et al.’s (2018) attention-based
Densely Interactive Inference Network (DIIN) dis-
plays the state-of-the-art performance among all
models. Applying various attention mechanisms
to tree-structured models is left for future research.

We inspect the performance of the models on
certain subsets of the MultiNLI corpus that mani-
fest linguistically difficult phenomena, which was
categorized by Williams et al. (2017). The phe-
nomena include pronouns, quantifiers (e.g., every,
each, some), modals (e.g., must, can), negation,
wh-terms (e.g., who, where), belief verbs (e.g., be-
lieve, think), time terms (e.g., then, today), dis-
course markers (e.g., but, thus), presupposition
triggers (e.g., again, too), and so on. In linguis-
tic semantics, these phenomena are known to in-
volve complex interactions that are more intricate
than a simple merger of concepts. For instance,
modals express possibilities or necessities that are

LMS-LSTM TreeLSTM
Phenomenon Mat. Mismat. Mat. Mismat.

Pronoun 72.0 71.6 69.6 70.3
Quantifier 72.2 71.7 69.9 70.5
Modal 70.6 70.8 69.8 69.2
Negation 72.3 74.1 70.3 72.4
Wh-term 70.5 69.7 68.6 68.6
Belief verb 70.1 70.1 68.4 68.7
Time term 70.0 71.1 67.3 69.4
Discourse mark. 68.8 68.8 67.0 67.0
Presup. triggers 71.5 71.9 69.1 69.9
Compr./Supr. 69.0 67.5 67.0 67.1
Conditionals 69.7 71.3 68.2 70.5
Tense match 73.3 72.5 71.0 71.2
Interjection 69.7 74.3 69.7 72.5
Adj/Adv 72.6 72.0 70.3 70.7
Determiner 72.4 72.1 70.3 70.8
Length 0-10 72.8 72.8 69.8 72.7
Length 11-14 72.6 72.8 72 70.5
Length 15-19 71.0 70.8 69.3 68.3
Length 20+ 75.2 68.2 69.8 69.0

Table 3: MultiNLI development set classification ac-
curacies (%), classified using the tags introduced in
Williams et al. (2017).

beyond “here and now”. One can say ‘John might
be home’ to convey that there is a possibility that
John is home. The utterance is perfectly compat-
ible with a situation in which John is in fact at
school, so modals like might let us reason about
things that are potentially false in the real world.
We use the same code as Williams et al. (2017) to

514

Model Test

Baselines

MV-RNN (Socher et al., 2013) 44.4
RNTN (Socher et al., 2013) 45.7
Deep RNN (Irsoy and Cardie, 2014) 49.8
TreeLSTM (Tai et al., 2015) 51.0
TreeBiGRU w/ attention 52.4
(Kokkinos and Potamianos, 2017)

Our Experiments

312D TreeLSTM 48.9
144D LMS-LSTM 50.1

Table 4: Five-way test set classification accuracies (%)
on the Stanford Sentiment Treebank.

categorize the data to make fair comparisons.
In addition to the categories offered by Williams

et al. (2017), we inspect whether sentences con-
taining adjectives/adverbs affect the performance
of the models. Baroni and Zamparelli (2010) show
that adjectives are better represented as matrices,
as opposed to vectors. We also inspect whether
the presence of a determiner in the hypothesis that
refers back to a salient referent in the premise
affects the model performance. Determiners are
known to encode intricate properties in linguistic
semantics and have been one of the major research
topics (Elbourne, 2005; Charlow, 2014). Lastly,
we examine whether the performance of the mod-
els varies with respect to sentence length, as longer
sentences are harder to comprehend.

Table 3 summarizes the result of the inspec-
tion on linguistically difficult phenomena. We see
gains uniformly across the board, but with particu-
larly clear gains on negation (+2% on the matched
set/+1.7% on the mismatched set), quanti-
fiers (+2.3%/+1.2%), time terms (+2.7%/+1.7%),
tense matches (+2.3%/+1.3%), adjectives/adverbs
(+2.3%/+1.3%), and longer sentences (length 15-
19: +1.7%/+2.5%; length 20+: +5.4%/-0.8%).

Table 4 summarizes the results on SST classi-
fication, particularly on the fine-grained task with
5 classes. While our implementation does not ex-
actly reproduce Tai et al.’s (2015) TreeLSTM re-
sults, a comparison between our trained TreeL-
STM and LMS-LSTM is consistent with the pat-
terns seen in NLI tasks.

We examine how well the constituent represen-
tations produced by LMS-LSTM and TreeLSTM
encode syntactic category information. As men-
tioned earlier, there is a consensus in linguistic se-
mantics that semantic composition involves func-

Category # of samples Ratio (%)

NP 63346 43.31
VP 30534 20.08
PP 25624 17.98
ROOT 18267 12.49
S 4863 3.06
SBAR 2004 1.20
ADVP 1136 0.27
ADJP 408 0.13
Etc. 160 1.45

Table 5: Syntactic category distribution of SNLI de-
velopment set, classified using the tags introduced in
Bowman et al. (2015).

tion application (i.e., feeding an argument to a
function) which goes beyond a simple merger of
two concepts. Given that the syntactic category
of a node determines whether the node serves as
a function or an argument in semantic composi-
tion, we hypothesize that the distributed represen-
tation of each node would encode syntactic cat-
egory information if the models learned how to
do function application. To assess the quality of
the representations, we first split the SNLI devel-
opment set into training and test sets. From the
training set, we extract the hidden state of every
constituent (i.e., phrase) produced by the best per-
forming models. For each of the models, we train
linear classifiers that learn to do the following two
tasks: (i) 3-way classification, which trains and
tests exclusively on noun phrases, verb phrases,
and prepositional phrases, and (ii) 19-way classi-
fication, which trains and tests on all 19 category
labels attested in the SNLI development set. The
distribution of the 19 category labels is provided
in Table 5. We opt for a linear classifier to keep
the classification process simple, so that we can
properly assess the quality of the constituent rep-
resentations.

Table 6 summarizes the results on the syntac-
tic category classification task. As a baseline, we
train a bag-of-words (BOW) model which pro-
duces the hidden state of a given phrase by sum-
ming the GloVe embeddings of the words of the
phrase. We train and test on the hidden states pro-
duced by BOW as well. The hidden state repre-
sentations produced by LMS-LSTM yield the best
results on both 3-way and 19-way classification
tasks. Comparing LMS-LSTM and TreeLSTM
representations, we see a 5.1% gain on the 3-way
classification and a 5.5% gain on the 19-way clas-
sification.

515

3-way 19-way
Model Train Test Train Test

300D BOW 86.4 85.6 82.7 82.1
700D TreeLSTM 93.2 91.2 90.0 86.6
576D LMS-LSTM 97.3 96.3 94.0 92.1

Table 6: Syntactic category classification accuracies
(%) on SNLI development set, classified using the tags
introduced in Bowman et al. (2015).

Figure 2 depicts the corresponding confusion
matrices for the 19-way classification task. We
show the most frequent eight classes due to space
limitations. We observe notable gains on adver-
bial phrases (ADVP; +24%), adjectival phrases
(ADJP; +12%), verb phrases (VP; +9%), and
clauses introduced by subordinate conjunction
(SBAR; +9%). We also observe a considerable
gain on non-terminal declarative clauses (S; +9%),
although the absolute number is fairly low com-
pared to other categories. While we do not have
a full comprehension of the drop in classification
accuracy, we speculate that the ambiguity of in-
finitival clauses and gerund phrases is one of the
culprits. As exemplified in (28) and (29) respec-
tively, infinitival clauses and gerund phrases are
not only labeled as a VP but also as an S in the
SNLI dataset. Given that our experiment is set up
in a way that each constituent is assigned exactly
one category label, a good number of infinitival
clauses and gerund phrases that are labeled as an
S could have been classified as a VP, resulting in a
drop in classification accuracy. On the other hand,
VP constituents are less affected by the ambiguity
because the majority of them are neither an infini-
tival clause nor a gerund phrase, as shown in (30).

(28) A dog carries a snowball [S [VP to give it to
his owner]]

(29) Two women are embracing while [S [VP
holding to-go packages after just eating
lunch]]

(30) A few people [VP are [VP catching fish]]

With the exclusion of non-terminal declarative
clauses, the categories we see notable gains are
known to play the role of a function in semantic
composition. On the other hand, both models are
efficient in identifying noun phrases (NP), which
are typically arguments of a function in semantic
composition. We speculate that the results are in-
dicative of LMS-LSTM’s ability to identify func-

(a) LMS-LSTM

(b) TreeLSTM

Figure 2: Confusion matrices of LMS-LSTM and
TreeLSTM for 19-way linear classification.

tions and arguments, and this hints that the model
is learning to do function application.

6 Conclusion

In this paper, we propose a novel model for se-
mantic composition that utilizes matrix multiplica-
tion. Experimental results indicate that, while our
model does not reach the state of the art on any of
the three datasets under study, it does substantially
outperform all known tree-structured models, and
lays a strong foundation for future work on tree-
structured compositionality in artificial neural net-
works.

Acknowledgments

We thank NVIDIA Corporation for the donation
of the Titan X Pascal GPU used for this research.
This project has benefited from financial support
to SB by Google, Tencent Holdings, and Samsung
Research.

516

References
Nicholas Asher, Tim Van de Cruys, Antoine Bride,

and Márta Abrusán. 2016. Integrating type the-
ory and distributional semantics: a case study on
adjective–noun compositions. Computational Lin-
guistics, 42(4):703–725.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer Normalization. arXiv:1607.06450.

Chris Barker and Chung-chieh Shan. 2014. Continu-
ations and natural language, volume 53. Oxford
studies in theoretical linguistics.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space.
In Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1183–1193.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics.

Simon Charlow. 2014. On the semantics of exceptional
scope. Ph.D. thesis, New York University.

Danqi Chen, Richard Socher, Christopher D. Manning,
and Andrew Y. Ng. 2013. Learning new facts from
knowledge bases with neural tensor networks and
semantic word vectors. In Proceedings of workshop
at ICLR, pages 1–4.

Gennaro Chierchia and Sally McConnell-Ginet. 1990.
Meaning and grammar: An introduction to seman-
tics. MIT Press, Cambridge, MA.

Stephen Clark, Bob Coecke, and Mehrnoosh
Sadrzadeh. 2008. A compositional distribu-
tional model of meaning. In Proceedings of the
Second Quantum Interaction Symposium (QI-2008),
pages 133–140.

David Dowty. 2007. Compositionality as an empirical
problem. In Direct Compositionality. Oxford Uni-
versity Press.

Paul D. Elbourne. 2005. Situations and individuals,
volume 90. Mit Press Cambridge, MA.

Katrin Erk and Sebastian Padó. 2008. A structured vec-
tor space model for word meaning in context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 897–906.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Natu-
ral language inference over interaction space. ICLR
2018.

Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen
Clark, Bob Coecke, and Stephen Pulman. 2014.
Concrete sentence spaces for compositional distri-
butional models of meaning. In Computing mean-
ing, pages 71–86. Springer.

Irene Heim and Angelika Kratzer. 1998. Semantics in
Generative Grammar. Blackwell Publishers.

Gustav Herdan. 1960. Type-token mathematics. Mou-
ton.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient flow in recur-
rent nets: the difficulty of learning long-term depen-
dencies. A Field Guide to Dynamical Recurrent Net-
works, pages 237–243.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1–
32.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language.
In Proceedings of Advances in Neural Information
Processing Systems, pages 2096–2104.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. The Inter-
national Conference on Learning Representations,
pages 1–13.

Filippos Kokkinos and Alexandros Potamianos. 2017.
Structural Attention Neural Networks for improved
sentiment analysis. arXiv:1701.01811.

Phong Le and Willem Zuidema. 2015. Composi-
tional Distributional Semantics with Long Short
Term Memory. arXiv:1503.02510.

Bill MacCartney. 2009. Natural language inference.
Ph.D. thesis, Stanford University.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence, 34(8):1388–1429.

Yixin Nie and Mohit Bansal. 2017. Shortcut-stacked
sentence encoders for multi-domain inference. In
Proceedings of the 2nd Workshop on Evaluating
Vector Space Representations for NLP, pages 41–45.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Sebastian Rudolph and Eugenie Giesbrecht. 2010.
Compositional matrix-space models of language. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
907–916.

517

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Proceedings of the 2012 joint conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211.

Richard Socher, Cliff C. Lin, Christopher D. Manning,
and Andrew Y. Ng. 2011. Parsing natural scenes and
natural language with recursive neural networks. In
Proceedings of the 28th international conference on
machine learning (ICML), pages 129–136.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop, pages 1–9.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive Deep Mod-
els for Semantic Compositionality over a Sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1631–1642.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of ACL, pages 1556–1566.

David Weir, Julie Weeds, Jeremy Reffin, and Thomas
Kober. 2016. Aligning packed dependency trees: a
theory of composition for distributional semantics.
Computational Linguistics, 42(4):727–761.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A Broad-Coverage Challenge Cor-
pus for Sentence Understanding through Inference.
arXiv:1704.05426.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating linear models for compositional distribu-
tional semantics. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 1263–1271.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long Short-Term Memory Over Tree Struc-
tures. In Proc. of ICML, pages 1604–1612.

518

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 519–529
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

End-to-End Neural Entity Linking

Nikolaos Kolitsas ∗
ETH Zürich

nikos_kolitsas@hotmail.com

Octavian-Eugen Ganea ∗
ETH Zürich

octavian.ganea@inf.ethz.ch

Thomas Hofmann
ETH Zürich

thomas.hofmann@inf.ethz.ch

Abstract

Entity Linking (EL) is an essential task for se-
mantic text understanding and information ex-
traction. Popular methods separately address
the Mention Detection (MD) and Entity Dis-
ambiguation (ED) stages of EL, without lever-
aging their mutual dependency. We here pro-
pose the first neural end-to-end EL system that
jointly discovers and links entities in a text doc-
ument. The main idea is to consider all possi-
ble spans as potential mentions and learn con-
textual similarity scores over their entity can-
didates that are useful for both MD and ED
decisions. Key components are context-aware
mention embeddings, entity embeddings and
a probabilistic mention - entity map, without
demanding other engineered features. Empir-
ically, we show that our end-to-end method
significantly outperforms popular systems on
the Gerbil platform when enough training data
is available. Conversely, if testing datasets
follow different annotation conventions com-
pared to the training set (e.g. queries/ tweets
vs news documents), our ED model coupled
with a traditional NER system offers the best
or second best EL accuracy.

1 Introduction and Motivation

Towards the goal of automatic text understanding,
machine learning models are expected to accurately
extract potentially ambiguous mentions of enti-
ties from a textual document and link them to a
knowledge base (KB), e.g. Wikipedia or Freebase.
Known as entity linking, this problem is an essen-
tial building block for various Natural Language
Processing tasks, e.g. automatic KB construction,
question-answering, text summarization, or rela-
tion extraction.

An EL system typically performs two tasks: i)
Mention Detection (MD) or Named Entity Recog-

∗Equal contribution.

1) MD may split a larger span into
two mentions of less informative entities:
B. Obama’s wife gave a speech [...]
Federer’s coach [...]
2) MD may split a larger span into
two mentions of incorrect entities:
Obama Castle was built in 1601 in Japan.
The Kennel Club is UK’s official kennel club.
A bird dog is a type of gun dog or hunting dog.
Romeo and Juliet by Shakespeare [...]
Natural killer cells are a type of lymphocyte
Mary and Max, the 2009 movie [...]
3) MD may choose a shorter span,
referring to an incorrect entity:
The Apple is played again in cinemas.
The New York Times is a popular newspaper.
4) MD may choose a longer span,
referring to an incorrect entity:
Babies Romeo and Juliet were born hours apart.

Table 1: Examples where MD may benefit from ED
and viceversa. Each wrong MD decision (under-
lined) can be avoided by proper context understand-
ing. The correct spans are shown in blue.

nition (NER) when restricted to named entities –
extracts entity references in a raw textual input,
and ii) Entity Disambiguation (ED) – links these
spans to their corresponding entities in a KB. Un-
til recently, the common approach of popular sys-
tems Ceccarelli et al. (2013); van Erp et al. (2013);
Piccinno and Ferragina (2014); Daiber et al. (2013);
Hoffart et al. (2011); Steinmetz and Sack (2013)
was to solve these two sub-problems independently.
However, the important dependency between the
two steps is ignored and errors caused by MD/NER
will propagate to ED without possibility of recov-
ery Sil and Yates (2013); Luo et al. (2015). We
here advocate for models that address the end-to-

519

end EL task, informally arguing that humans under-
stand and generate text in a similar joint manner,
discussing about entities which are gradually intro-
duced, referenced under multiple names and evolv-
ing during time Ji et al. (2017). Further, we em-
phasize the importance of the mutual dependency
between MD and ED. First, numerous and more
informative linkable spans found by MD obviously
offer more contextual cues for ED. Second, find-
ing the true entities appearing in a specific context
encourages better mention boundaries, especially
for multi-word mentions. For example, in the first
sentence of Table 1, understanding the presence
of the entity Michelle Obama helps detecting
its true mention "B. Obama’s wife", as opposed
to separately linking B. Obama and wife to less
informative concepts.

We propose a simple, yet competitive, model for
end-to-end EL. Getting inspiration from the recent
works of Lee et al. (2017) and Ganea and Hofmann
(2017), our model first generates all possible spans
(mentions) that have at least one possible entity
candidate. Then, each mention - candidate pair
receives a context-aware compatibility score based
on word and entity embeddings coupled with a
neural attention and a global voting mechanisms.
During training, we enforce the scores of gold
entity - mention pairs to be higher than all possible
scores of incorrect candidates or invalid mentions,
thus jointly taking the ED and MD decisions.

Our contributions are:

• We address the end-to-end EL task using a
simple model that conditions the "linkable"
quality of a mention to the strongest con-
text support of its best entity candidate. We
do not require expensive manually annotated
negative examples of non-linkable mentions.
Moreover, we are able to train competitive
models using little and only partially anno-
tated documents (with named entities only
such as the CoNLL-AIDA dataset).

• We are among the first to show that, with one
single exception, engineered features can be
fully replaced by neural embeddings automat-
ically learned for the joint MD & ED task.

• On the Gerbil1 benchmarking platform, we
empirically show significant gains for the end-
to-end EL task when test and training data

1http://gerbil.aksw.org/gerbil/

come from the same domain. Morever, when
testing datasets follow different annotation
schemes or exhibit different statistics, our
method is still effective in achieving state-of-
the-art or close performance, but needs to be
coupled with a popular NER system.

2 Related Work

With few exceptions, MD/NER and ED are treated
separately in the vast EL literature.

Traditional NER models usually view the prob-
lem as a word sequence labeling that is modeled us-
ing conditional random fields on top of engineered
features Finkel et al. (2005) or, more recently, us-
ing bi-LSTMs architectures Lample et al. (2016);
Chiu and Nichols (2016); Liu et al. (2017) capable
of learning complex lexical and syntactic features.

In the context of ED, recent neural methods He
et al. (2013); Sun et al. (2015); Yamada et al.
(2016); Ganea and Hofmann (2017); Le and Titov
(2018); Yang et al. (2018); Radhakrishnan et al.
(2018) have established state-of-the-art results, out-
performing engineered features based models. Con-
text aware word, span and entity embeddings, to-
gether with neural similarity functions, are essen-
tial in these frameworks.

End-to-end EL is the realistic task and ultimate
goal, but challenges in joint NER/MD and ED mod-
eling arise from their different nature. Few previous
methods tackle the joint task, where errors in one
stage can be recovered by the next stage. One of
the first attempts, Sil and Yates (2013) use a popu-
lar NER model to over-generate mentions and let
the linking step to take the final decisions. How-
ever, their method is limited by the dependence on
a good mention spotter and by the usage of hand-
engineered features. It is also unclear how link-
ing can improve their MD phase. Later, Luo et al.
(2015) presented one of the most competitive joint
MD and ED models leveraging semi-Conditional
Random Fields (semi-CRF). However, there are
several weaknesses in this work. First, the mutual
task dependency is weak, being captured only by
type-category correlation features. The other engi-
neered features used in their model are either NER
or ED specific. Second, while their probabilistic
graphical model allows for tractable learning and
inference, it suffers from high computational com-
plexity caused by the usage of the cartesian prod-
uct of all possible document span segmentations,
NER categories and entity assignments. Another

520

approach is J-NERD Nguyen et al. (2016) that ad-
dresses the end-to-end task using only engineered
features and a probabilistic graphical model on top
of sentence parse trees.

3 Neural Joint Mention Detection and
Entity Disambiguation

We formally introduce the tasks of interest. For
EL, the input is a text document (or a query or
tweet) given as a sequence D = {w1, . . . , wn} of
words from a dictionary, wk ∈ W . The output
of an EL model is a list of mention - entity pairs
{(mi, ei)}i∈1,T , where each mention is a word sub-
sequence of the input document, m = wq, . . . , wr,
and each entity is an entry in a knowledge base
KB (e.g. Wikipedia), e ∈ E . For the ED task,
the list of entity mentions {mi}i=1,T that need to
be disambiguated is additionally provided as in-
put. The expected output is a list of corresponding
annotations {ei}i=1,T ∈ ET .

Note that, in this work, we only link mentions
that have a valid gold KB entity, setting referred
in Röder et al. (2017) as InKB evaluation. Thus,
we treat mentions referring to entities outside of
the KB as "non-linkable". This is in line with few
previous models, e.g. Luo et al. (2015); Ganea and
Hofmann (2017); Yamada et al. (2016). We leave
the interesting setting of discovering out-of-KB
entities as future work.

We now describe the components of our neural
end-to-end EL model, depicted in Figure 1. We
aim for simplicity, but competitive accuracy.

Word and Char Embeddings. We use pre-
trained Word2Vec vectors Mikolov et al. (2013).
In addition, we train character embeddings that
capture important word lexical information. Fol-
lowing Lample et al. (2016), for each word inde-
pendently, we use bidirectional LSTMs Hochreiter
and Schmidhuber (1997) on top of learnable char
embeddings. These character LSTMs do not ex-
tend beyond single word boundaries, but they share
the same parameters. Formally, let {z1, . . . , zL} be
the character vectors of word w. We use the for-
ward and backward LSTMs formulations defined
recursively as in Lample et al. (2016):

hf
t = FWD − LSTM(hf

t−1, zt) (1)

hb
t = BKWD − LSTM(hb

t+1, zt)

Then, we form the character embedding of w is
[hf

L; hb
1] from the hidden state of the forward LSTM

corresponding to the last character concatenated
with the hidden state of the backward LSTM cor-
responding to the first character. This is then con-
catenated with the pre-trained word embedding,
forming the context-independent word-character
embedding of w. We denote the sequence of these
vectors as {vk}k∈1,n and depict it as the first neural
layer in Figure 1.

Mention Representation. We find it crucial to
make word embeddings aware of their local context,
thus being informative for both mention boundary
detection and entity disambiguation (leveraging
contextual cues, e.g. "newspaper"). We thus en-
code context information into words using a bi-
LSTM layer on top of the word-character embed-
dings {vk}k∈1,n. The hidden states of forward and
backward LSTMs corresponding to each word are
then concatenated into context-aware word embed-
dings, whose sequence is denoted as {xk}k∈1,n.

Next, for each possible mention, we produce
a fixed size representation inspired by Lee et al.
(2017). Given a mention m = wq, . . . , wr, we first
concatenate the embeddings of the first, last and
the "soft head" words of the mention:

gm = [xq; xr; x̂
m] (2)

The soft head embedding x̂m is built using an at-
tention mechanism on top of the mention’s word
embeddings, similar with Lee et al. (2017):

αk = �wα, xk�

am
k =

exp(αk)�r
t=q exp(αt)

(3)

x̂m =
r�

k=q

am
k · vk

However, we found the soft head embedding to
only marginally improve results, probably due to
the fact that most mentions are at most 2 words
long. To learn non-linear interactions between the
component word vectors, we project gm to a final
mention representation with the same size as en-
tity embeddings (see below) using a shallow feed-
forward neural network FFNN (a simple projection
layer):

xm = FFNN1(g
m) (4)

Entity Embeddings. We use fixed continuous
entity representations, namely the pre-trained en-
tity embeddings of Ganea and Hofmann (2017),

521

Figure 1: Our global model architecture shown for the mention The New York Times. The final score is
used for both the mention linking and entity disambiguation decisions.

due to their simplicity and compatibility with the
pre-trained word vectors of Mikolov et al. (2013).
Briefly, these vectors are computed for each en-
tity in isolation using the following exponential
model that approximates the empirical conditional
word-entity distribution p̂(w|e) obtained from co-
occurrence counts.

exp(�xw, ye�)�
w�∈W exp(�xw� , ye�)

≈ p̂(w|e) (5)

Here, xw are fixed pre-trained word vectors and
ye is the entity embedding to be trained. In prac-
tice, Ganea and Hofmann (2017) re-write this as a
max-margin objective loss.

Candidate Selection. For each span m we select
up to s entity candidates that might be referred by
this mention. These are top entities based on an
empirical probabilistic entity - map p(e|m) built
by Ganea and Hofmann (2017) from Wikipedia
hyperlinks, Crosswikis Spitkovsky and Chang and
YAGO Hoffart et al. (2011) dictionaries. We de-
note by C(m) this candidate set and use it both at
training and test time.

Final Local Score. For each span m that can
possibly refer to an entity (i.e. |C(m)| ≥ 1) and
for each of its entity candidates ej ∈ C(m), we
compute a similarity score using embedding dot-
product that supposedly should capture useful in-
formation for both MD and ED decisions. We then
combine it with the log-prior probability using a
shallow FFNN, giving the context-aware entity -
mention score:

Ψ(ej , m) = FFNN2([log p(ej |m); �xm, yj�])
(6)

Long Range Context Attention. In some cases,
our model might be improved by explicitly cap-
turing long context dependencies. To test this, we
experimented with the attention model of Ganea
and Hofmann (2017). This gives one context em-
bedding per mention based on informative context
words that are related to at least one of the candi-
date entities. We use this additional context embed-
ding for computing dot-product similarity with any
of the candidate entity embeddings. This value is
fed as additional input of FFNN2 in Eq. 6. We refer
to this model as long range context attention.

522

Training. We assume a corpus with docu-
ments and gold entity - mention pairs G =
{(mi, e

∗
i)}i=1,K is available. At training time, for

each input document we collect the set M of all
(potentially overlapping) token spans m for which
|C(m)| ≥ 1. We then train the parameters of our
model using the following minimization procedure:

θ∗ = arg min
θ

�

m∈M

�

e∈C(m)

V (Ψθ(e, m)) (7)

where the violation term V enforces the scores of
gold pairs to be linearly separable from scores of
negative pairs, i.e.

V (Ψ(e, m)) = (8)
�

max(0, γ −Ψ(e, m)), if(e, m) ∈ G
max(0,Ψ(e, m)), otherwise

Note that, in the absence of annotated negative
examples of "non-linkable" mentions, we assume
that all spans in M and their candidates that do not
appear in G should not be linked. The model will
be enforced to only output negative scores for all
entity candidates of such mentions.

We call all spans training the above setting. Our
method can also be used to perform ED only, in
which case we train only on gold mentions, i.e.
M = {m|m ∈ G}. This is referred as gold spans
training.

Inference. At test time, our method can be ap-
plied for both EL and ED only as follows. First,
for each document in our validation or test sets,
we select all possibly linkable token spans, i.e.
M = {m| |C(m)| ≥ 1} for EL, or the input set of
mentions M = {m|m ∈ G} for ED, respectively.
Second, the best linking threshold δ is found on
the validation set such that the micro F1 metric
is maximized when only linking mention - entity
pairs with Ψ score greater than δ. At test time, only
entity - mention pairs with a score higher than δ
are kept and sorted according to their Ψ scores;
the final annotations are greedily produced based
on this set such that only spans not overlapping
with previously selected spans (of higher scores)
are chosen.

Global Disambiguation Our current model is
"local", i.e. performs disambiguation of each can-
didate span independently. To enhance it, we add
an extra layer to our neural network that will pro-
mote coherence among linked and disambiguated

entities inside the same document, i.e. the global
disambiguation layer. Specifically, we compute a
"global" mention-entity score based on which we
produce the final annotations. We first define the set
of mention-entity pairs that are allowed to partici-
pate in the global disambiguation voting, namely
those that already have a high local score:

VG = {(m, e)|m ∈M, e ∈ C(m),Ψ(e, m) ≥ γ�}

Since we initially consider all possible spans and
for each span up to s candidate entities, this filtering
step is important to avoid both undesired noise
and exponential complexity for the EL task for
which M is typically much bigger than for ED. The
final "global" score G(ej , m) for entity candidate
ej of mention m is given by the cosine similarity
between the entity embedding and the normalized
average of all other voting entities’ embeddings (of
the other mentions m�).

V m
G = {e|(m�, e) ∈ VG ∧m� �= m}

ym
G =

�

e∈V m
G

ye

G(ej , m) = cos(yej , y
m
G)

This is combined with the local score, yielding

Φ(ej , m) = FFNN3([Ψ(ej , m); G(ej , m)])

The final loss function is now slightly modified.
Specifically, we enforce the linear separability in
two places: in Ψ(e, m) (exactly as before), but also
in Φ(e, m), as follows

θ∗ = arg min
θ

(9)
�

d∈D

�

m∈M

�

e∈C(m)

V (Ψθ(e, m)) + V (Φθ(e, m))

The inference procedure remains unchanged in
this case, with the exception that it will only use
the Φ(e, m) global score.

Coreference Resolution Heuristic. In a few
cases we found important to be able to solve simple
coreference resolution cases (e.g. "Alan" referring
to "Alan Shearer"). These cases are difficult to han-
dle by our candidate selection strategy. We thus
adopt the simple heuristic descried in Ganea and
Hofmann (2017) and observed between 0.5% and
1% improvement on all datasets.

523

F1@MA
F1@MI

A
ID

A
A

A
ID

A
B

M
SN

B
C

O
K

E
-2

01
5

O
K

E
-2

01
6

N
3-

R
eu

te
rs

-1
28

N
3-

R
SS

-5
00

D
er

cz
yn

sk
i

K
O

R
E

50

FREME 23.6
37.6

23.8
36.3

15.8
19.9

26.1
31.6

22.7
28.5

26.8
30.9

32.5
27.8

31.4
18.9

12.3
14.5

FOX 54.7
58.0

58.1
57.0

11.2
8.3

53.9
56.8

49.5
50.5

52.4
53.3

35.1
33.8

42.0
38.0

28.3
30.8

Babelfy 41.2
47.2

42.4
48.5

36.6
39.7

39.3
41.9

37.8
37.7

19.6
23.0

32.1
29.1

28.9
29.8

52.5
55.9

Entityclassifier.eu 43.0
44.7

42.9
45.0

41.4
42.2

29.2
29.5

33.8
32.5

24.7
27.9

23.1
22.7

16.3
16.9

25.2
28.0

Kea 36.8
40.4

39.0
42.3

30.6
30.9

44.6
46.2

46.3
46.4

17.5
18.1

22.7
20.5

31.3
26.5

41.0
46.8

DBpedia Spotlight 49.9
55.2

52.0
57.8

42.4
40.6

42.0
44.4

41.4
43.1

21.5
24.8

26.7
27.2

33.7
32.2

29.4
34.9

AIDA 68.8
72.4

71.9
72.8

62.7
65.1

58.7
63.1

0.0
0.0

42.6
46.4

42.6
42.4

40.6
32.6

49.6
55.4

WAT 69.2
72.8

70.8
73.0

62.6
64.5

53.2
56.4

51.8
53.9

45.0
49.2

45.3
42.3

44.4
38.0

37.3
49.6

Best baseline 69.2
72.8

71.9
73.0

62.7
65.1

58.7
63.1

51.8
53.9

52.4
53.3

45.3
42.4

44.4
38.0

52.5
55.9

base model 86.6
89.1

81.1
80.5

64.5
65.7

54.3
58.2

43.6
46.0

47.7
49.0

44.2
38.8

43.5
38.1

34.9
42.0

base model + att 86.5
88.9

81.9
82.3

69.4
69.5

56.6
60.7

49.2
51.6

48.3
51.1

46.0
40.5

47.9
42.3

36.0
42.2

base model + att + global 86.6
89.4

82.6
82.4

73.0
72.4

56.6
61.9

47.8
52.7

45.4
50.3

43.8
38.2

43.2
34.1

26.2
35.2

ED base model + att + global using
Stanford NER mentions 75.7

80.3
73.3
74.6

71.1
71.0

62.9
66.9

57.1
58.4

54.2
54.6

45.9
42.2

48.8
42.3

40.3
46.0

Table 2: EL strong matching results on the Gerbil platform. Micro and Macro F1 scores are shown. We
highlight the best and second best models, respectively. Training was done on AIDA-train set.

4 Experiments

Datasets and Metrics. We used Wikipedia 2014
as our KB. We conducted experiments on the most
important public EL datasets using the Gerbil plat-
form Röder et al. (2017). Datasets’ statistics are
provided in Tables 5 and 6 (Appendix). This bench-
marking framework offers reliable and trustable
evaluation and comparison with state of the art
EL/ED methods on most of the public datasets for
this task. It also shows how well different systems
generalize to datasets from very different domains
and annotation schemes compared to their training
sets. Moreover, it offers evaluation metrics for the
end-to-end EL task, as opposed to some works that
only evaluate NER and ED separately, e.g. Luo
et al. (2015).

As previously explained, we do not use the NIL
mentions (without a valid KB entity) and only com-
pare against other systems using the InKB metrics.

For training we used the biggest publicly avail-
able EL dataset, AIDA/CoNLL Hoffart et al.
(2011), consisting of a training set of 18,448 linked
mentions in 946 documents, a validation set of
4,791 mentions in 216 documents, and a test set of
4,485 mentions in 231 documents.

We report micro and macro InKB F1 scores for

both EL and ED. For EL, these metrics are com-
puted both in the strong matching and weak match-
ing settings. The former requires exactly predicting
the gold mention boundaries and their entity anno-
tations, whereas the latter gives a perfect score to
spans that just overlap with the gold mentions and
are linked to the correct gold entities.

Baselines. We compare with popular and state-
of-the-art EL and ED public systems, e.g. WAT Pic-
cinno and Ferragina (2014), Dbpedia Spot-
light Mendes et al. (2011), NERD-ML van Erp
et al. (2013), KEA Steinmetz and Sack (2013),
AIDA Hoffart et al. (2011), FREME, FOX Speck
and Ngomo (2014), PBOH Ganea et al. (2016) or
Babelfy Moro et al. (2014). These are integrated
within the Gerbil platform. However, we did not
compare with Luo et al. (2015) and other models
outside Gerbil that do not use end-to-end EL met-
rics.

Training Details and Model Hyper-Parameters.
We use the same model hyper-parameters for both
EL and ED training. The only difference between
the two settings is the span set M : EL uses all
spans training, whereas ED uses gold spans train-
ing settings as explained before.

Our pre-trained word and entity embeddings are

524

solved%
matched gold entity%

position of ground
truth in p(e|m)

N
um

be
ro

f
m

en
tio

ns

E
D

G
lo

ba
lm

od
el

E
D

B
as

e
+

A
tt

m
od

el

E
D

B
as

e
m

od
el

E
L

G
lo

ba
lm

od
el

E
L

B
as

e
+

A
tt

m
od

el

E
L

B
as

e
m

od
el

E
L

G
lo

ba
l-

lo
gp

(e
|m

)

1 3390 98.8
98.8

98.6
98.9

98.3
98.8

96.7
99.0

96.6
98.6

96.2
99.0

93.3
96.7

2 655 89.9
89.9

88.1
88.5

88.5
88.9

86.8
90.8

86.8
90.8

85.0
88.4

86.9
89.8

3 108 83.3
84.3

81.5
82.4

75.9
78.7

79.1
84.5

80.2
84.7

74.8
81.1

84.3
88.9

4-8 262 78.2
78.2

76.3
79.0

74.8
76.0

69.5
78.2

68.8
78.7

68.7
76.0

78.9
83.5

9+ 247 59.9
63.6

53.4
60.7

53.0
58.7

47.8
58.2

46.2
59.4

50.4
54.8

62.7
67.5

Table 3: AIDA A dataset: Gold mentions are split by the position they appear in the p(e|m) dictionary.
In each cell, the upper value is the percentage of the gold mentions that were annotated with the correct
entity (recall), whereas the lower value is the percentage of gold mentions for which our system’s highest
scored entity is the ground truth entity, but that might not be annotated in the end because its score is
below the threshold δ.

300 dimensional, while 50 dimensional trainable
character vectors were used. The char LSTMs have
also hidden dimension of 50. Thus, word-character
embeddings are 400 dimensional. The contextual
LSTMs have hidden size of 150, resulting in 300
dimensional context-aware word vectors. We apply
dropout on the concatenated word-character em-
beddings, on the output of the bidirectional context
LSTM and on the entity embeddings used in Eq. 6.
The three FFNNs in our model are simple projec-
tions without hidden layers (no improvements were
obtained with deeper layers). For the long range
context attention we used a word window size of K
= 200 and keep top R = 10 words after the hard at-
tention layer (notations from Ganea and Hofmann
(2017)). We use at most s = 30 entity candidate
per mention both at train and test time. γ is set to
0.2 without further investigations. γ� is set to 0, but
a value of 0.1 was giving similar results.

For the loss optimization we use Adam Kingma
and Ba (2014) with a learning rate of 0.001. We
perform early stopping by evaluating the model
on the AIDA validation set each 10 minutes and
stopping after 6 consecutive evaluations with no
significant improvement in the macro F1 score.

Results and Discussion. The following models
are used.

i) Base model: only uses the mention local score
and the log-prior. It does not use long range atten-
tion, nor global disambiguation. It does not use the
head attention mechanism.

ii) Base model + att: the Base Model plus Long
Range Context Attention.

ii) Base model + att + global: our Global Model
(depicted in figure 1)

iv) ED base model + att + global Stanford
NER: our ED Global model that runs on top of
the detected mentions of the Stanford NER sys-
tem Finkel et al. (2005).

EL strong and weak matching results are pre-
sented in Tables 2 and 7 (Appendix).

We first note that our system outperforms all
baselines on the end-to-end EL task on both AIDA-
A (dev) and AIDA-B (test) datasets, which are the
biggest EL datasets publicly available. Moreover,
we surpass all competitors on both EL and ED by a
large margin, at least 9%, showcasing the effective-
ness of our method. We also outperform systems
that optimize MD and ED separately, including our
ED base model + att + global Stanford NER. This
demonstrates the merit of joint MD + ED optimiza-
tion.

In addition, one can observe that weak matching
EL results are comparable with the strong matching
results, showcasing that our method is very good
at detecting mention boundaries.

At this point, our main goal was achieved: if
enough training data is available with the same
characteristics or annotation schemes as the test
data, then our joint EL offers the best model. This
is true not only when training on AIDA, but also for
other types of datasets such as queries (Table 11)
or tweets (Table 12). However, when testing data

525

1) Annotated document:
SOCCER - [SHEARER] NAMED AS [1 [1ENGLAND] CAPTAIN]. [LONDON] 1996-08-30 The
world ’s costliest footballer [Alan Shearer] was named as the new [England] captain on Friday. The
26-year-old, who joined [Newcastle] for 15 million pounds sterling, takes over from [Tony Adams],
who led the side during the [European] championship in June, and former captain [David Platt] .
[2Adams] and [Platt] are both injured and will miss [England]’s opening [3[World Cup]] qualifier
against [Moldova] on Sunday . [Shearer] takes the captaincy on a trial basis , but new coach [Glenn
Hoddle] said he saw no reason why the former [Blackburn] and [Southampton] skipper should not
make the post his own . "I ’m sure [4Alan] is the man for the job , " [Hoddle] said . [...] I spoke to
[5Alan] he was up for it [...]. [Shearer] ’s [Euro 96] striking partner [...].
Analysis:
[1 is considered a false negative and the ground truth is the entity England_national_football_team. Our
annotation was for the span "ENGLAND CAPTAIN" and wrongly linked to the England_cricket_team.
[3 The ground truth here is 1998_FIFA_World_Cup whereas our model links it to FIFA_World_Cup.
[2,4,5 are correctly solved due to our coreference resolution heuristic.
2) Annotated document:
[N. Korea] urges [S. Korea] to return war veteran . [SEOUL] 1996-08-31 [North Korea] demanded
on Saturday that [South Korea] return a northern war veteran who has been in the [1 South] since
the 1950-53 war , [Seoul] ’s unification ministry said . " ...I request the immediate repatriation of
Kim In-so to [North Korea] where his family is waiting , " [1 North Korean] Red Cross president Li
Song-ho said in a telephone message to his southern couterpart , [2 Kang Young-hoon] . Li said Kim
had been critically ill with a cerebral haemorrhage . The message was distributed to the press by the [
South Korean] unification ministry . Kim , an unrepentant communist , was captured during the [2
[3 Korean] War] and released after spending more than 30 years in a southern jail . He submitted a
petition to the [International Red Cross] in 1993 asking for his repatriation . The domestic [Yonhap]
news agency said the [South Korean] government would consider the northern demand only if the
[3 North] accepted [Seoul] ’s requests , which include regular reunions of families split by the [4
[4 Korean] War] . Government officials were not available to comment . [South Korea] in 1993
unconditionally repatriated Li In-mo , a nothern partisan seized by the [5 South] during the war and
jailed for more than three decades.
Analysis:
[1, [3, and [5 cases illustrate the main source of errors. These are false negatives in which our model
has the correct ground truth entity pair as the highest scored one for that mention, but since it is not
confident enough (score < γ) it decides not to annotate that mention. In this specific document these
errors could probably be avoided easily with a better coreference resolution mechanism.
[3 and [4 cases illustrate that the gold standard can be problematic. Specifically, instead of annotating
the whole span Korean War and linking it to the war of 1950, the gold annotation only include Korean
and link it to the general entity of Korea_(country).
[2 is correctly annotated by our system but it is not included in the gold standard.

Table 4: Error analysis on a sample document. Green corresponds to true positive (correctly discovered
and annotated mention), red to false negative (ground truth mention or entity that was not annotated) and
orange to false positive (incorrect mention or entity annotation).

has different statistics or follows different conven-
tions than the training data, our method is shown
to work best in conjunction with a state-of-the-art
NER system as it can be seen from the results of our
ED base model + att + global Stanford NER for
different datasets in Table 2. It is expected that such
a NER system designed with a broader generaliza-

tion scheme in mind would help in this case, which
is confirmed by our results on different datasets.

While the main focus of this paper is the end-
to-end EL and not the ED-only task, we do show
ED results in Tables 8 and 9. We observe that our
models are slightly behind recent top performing
systems, but our unified EL - ED architecture has

526

to deal with other challenges, e.g. being able to
exchange global information between many more
mentions at the EL stage, and is thus not suitable for
expensive global ED strategies. We leave bridging
this gap for ED as future work.

Additional results and insights are shown in the
Appendix.

Ablation study Table 3 shows an ablation study
of our method. One can see that the log p(e|m)
prior is very helpful for correctly linking unam-
biguous mentions, but is introducing noise when
gold entities are not frequent. For this category of
rare entities, removing this prior completely will
result in a significant improvement, but this is not
a practical choice since the gold entity is unknown
at test time.

Error Analysis. We conducted a qualitative ex-
periment shown in Table 4. We showcase correct
annotations, as well as errors done by our system
on the AIDA datasets. Inspecting the output anno-
tations of our EL model, we discovered the remark-
able property of not over-generating incorrect men-
tions, nor under-generating (missing) gold spans.
We also observed that additional mentions gener-
ated by our model do correspond in the majority
of time to actual KB entities, but are incorrectly
forgotten from the gold annotations.

5 Conclusion

We presented the first neural end-to-end entity link-
ing model and show the benefit of jointly optimiz-
ing entity recognition and linking. Leveraging key
components, namely word, entity and mention em-
beddings, we prove that engineered features can
be almost completely replaced by modern neural
networks. Empirically, on the established Gerbil
benchmarking platform, we exhibit state-of-the-art
performance for EL on the biggest public dataset,
AIDA/CoNLL, also showing good generalization
ability on other datasets with very different char-
acteristics when combining our model with the
popular Stanford NER system.

Our code is publicly available2.

References
David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,

Bo-June Paul Hsu, and Kuansan Wang. 2014.

2https://github.com/dalab/end2end_
neural_el

Erd’14: entity recognition and disambiguation chal-
lenge. In ACM SIGIR Forum, volume 48, pages 63–
77. ACM.

Diego Ceccarelli, Claudio Lucchese, Salvatore Or-
lando, Raffaele Perego, and Salvatore Trani. 2013.
Dexter: an open source framework for entity linking.
In Proceedings of the sixth international workshop
on Exploiting semantic annotations in information
retrieval, pages 17–20. ACM.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Marco Cornolti, Paolo Ferragina, Massimiliano Cia-
ramita, Stefan Rüd, and Hinrich Schütze. 2016. A
piggyback system for joint entity mention detection
and linking in web queries. In Proceedings of the
25th International Conference on World Wide Web,
pages 567–578. International World Wide Web Con-
ferences Steering Committee.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems, pages 121–124. ACM.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo,
Marieke van Erp, Genevieve Gorrell, Raphaël
Troncy, Johann Petrak, and Kalina Bontcheva. 2015.
Analysis of named entity recognition and linking
for tweets. Information Processing & Management,
51(2):32–49.

MGJ van Erp, G Rizzo, and R Troncy. 2013. Learn-
ing with the web: Spotting named entities on the in-
tersection of nerd and machine learning. In CEUR
workshop proceedings, pages 27–30.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics,
pages 363–370. Association for Computational Lin-
guistics.

Octavian-Eugen Ganea, Marina Ganea, Aurelien Luc-
chi, Carsten Eickhoff, and Thomas Hofmann. 2016.
Probabilistic bag-of-hyperlinks model for entity
linking. In Proceedings of the 25th International
Conference on World Wide Web, pages 927–938. In-
ternational World Wide Web Conferences Steering
Committee.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2619–2629.

527

Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai
Zhang, and Houfeng Wang. 2013. Learning entity
representation for entity disambiguation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 30–34.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012. Kore:
keyphrase overlap relatedness for entity disambigua-
tion. In Proceedings of the 21st ACM international
conference on Information and knowledge manage-
ment, pages 545–554. ACM.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 782–792. Association for Computational Lin-
guistics.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic entity rep-
resentations in neural language models. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1830–1839.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Phong Le and Ivan Titov. 2018. Improving entity link-
ing by modeling latent relations between mentions.
arXiv preprint arXiv:1804.10637.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197.

Liyuan Liu, Jingbo Shang, Frank Xu, Xiang Ren, Huan
Gui, Jian Peng, and Jiawei Han. 2017. Empower
sequence labeling with task-aware neural language
model. arXiv preprint arXiv:1709.04109.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 879–888.

Pablo N Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of

the 7th international conference on semantic sys-
tems, pages 1–8. ACM.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Dat Ba Nguyen, Martin Theobald, and Gerhard
Weikum. 2016. J-nerd: joint named entity recogni-
tion and disambiguation with rich linguistic features.
Transactions of the Association for Computational
Linguistics, 4:215–229.

Andrea Giovanni Nuzzolese, Anna Lisa Gentile,
Valentina Presutti, Aldo Gangemi, Darío Garigliotti,
and Roberto Navigli. 2015. Open knowledge extrac-
tion challenge. In Semantic Web Evaluation Chal-
lenge, pages 3–15. Springer.

Francesco Piccinno and Paolo Ferragina. 2014. From
tagme to wat: a new entity annotator. In Proceed-
ings of the first international workshop on Entity
recognition & disambiguation, pages 55–62. ACM.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva
Varma. 2018. Elden: Improved entity linking us-
ing densified knowledge graphs. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), volume 1, pages 1844–1853.

Giuseppe Rizzo, Marieke van Erp, and Raphaël Troncy.
Benchmarking the extraction and disambiguation of
named entities on the semantic web.

Michael Röder, Ricardo Usbeck, and Axel-Cyrille
Ngonga Ngomo. 2017. Gerbil–benchmarking
named entity recognition and linking consistently.
Semantic Web, (Preprint):1–21.

Avirup Sil and Alexander Yates. 2013. Re-ranking for
joint named-entity recognition and linking. In Pro-
ceedings of the 22nd ACM international conference
on Conference on information & knowledge manage-
ment, pages 2369–2374. ACM.

René Speck and Axel-Cyrille Ngonga Ngomo. 2014.
Ensemble learning for named entity recognition. In
International semantic web conference, pages 519–
534. Springer.

Valentin I Spitkovsky and Angel X Chang. A cross-
lingual dictionary for english wikipedia concepts.

Nadine Steinmetz and Harald Sack. 2013. Semantic
multimedia information retrieval based on contex-
tual descriptions. In Extended Semantic Web Con-
ference, pages 382–396. Springer.

528

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling men-
tion, context and entity with neural networks for en-
tity disambiguation. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language
Learning, pages 250–259.

Yi Yang, Ozan Irsoy, and Kazi Shefaet Rahman. 2018.
Collective entity disambiguation with structured gra-
dient tree boosting. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), vol-
ume 1, pages 777–786.

3https://github.com/dice-group/gerbil/
issues/98

529

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 530–540
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Modelling Salient Features as Directions in Fine-Tuned Semantic Spaces

Thomas Ager
School of CS & Informatics

Cardiff University, UK
agert@cardiff.ac.uk

Ondřej Kuželka
Dept. of Computer Science

KU Leuven, Belgium
ondrej.kuzelka@kuleuven.be

Steven Schockaert
School of CS & Informatics

Cardiff University, UK
schockaerts1@cardiff.ac.uk

Abstract

In this paper we consider semantic spaces con-
sisting of objects from some particular domain
(e.g. IMDB movie reviews). Various authors
have observed that such semantic spaces of-
ten model salient features (e.g. how scary a
movie is) as directions. These feature direc-
tions allow us to rank objects according to
how much they have the corresponding fea-
ture, and can thus play an important role in
interpretable classifiers, recommendation sys-
tems, or entity-oriented search engines, among
others. Methods for learning semantic spaces,
however, are mostly aimed at modelling simi-
larity. In this paper, we argue that there is an
inherent trade-off between capturing similar-
ity and faithfully modelling features as direc-
tions. Following this observation, we propose
a simple method to fine-tune existing seman-
tic spaces, with the aim of improving the qual-
ity of their feature directions. Crucially, our
method is fully unsupervised, requiring only a
bag-of-words representation of the objects as
input.

1 Introduction

Vector space representations, or ‘embeddings’,
play a crucial role in various areas of natural lan-
guage processing. For instance, word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) are
routinely used as representations of word mean-
ing, while knowledge graph embeddings (Bordes
et al., 2013) are used to find plausible missing in-
formation in structured knowledge bases, or to ex-
ploit such knowledge bases in neural network ar-
chitectures. In this paper we focus on domain-
specific semantic spaces, i.e. vector space repre-
sentations of the objects of a single domain, as
opposed to the more heterogeneous setting of e.g.
word embeddings.

Such domain-specific semantic spaces are used,
for instance, to represent items in recommender

systems (Vasile et al., 2016; Liang et al., 2016;
Van Gysel et al., 2016), to represent entities in
semantic search engines (Jameel et al., 2017;
Van Gysel et al., 2017), or to represent examples in
classification tasks (Demirel et al., 2017). In many
semantic spaces it is possible to find directions that
correspond to salient features from the considered
domain. For instance, Gupta et al. (2015) found
that features of countries, such as their GDP, fer-
tility rate or even level of CO2 emissions, can be
predicted from word embeddings using a linear re-
gression model. Similarly, in (Kim and de Marn-
effe, 2013) directions in word embeddings were
found that correspond to adjectival scales (e.g. bad
< okay < good < excellent) while Rothe and
Schütze (2016) found directions indicating lexical
features such as the frequency of occurrence and
polarity of words. Finally, Derrac and Schockaert
(2015) found directions corresponding to proper-
ties such as ‘Scary’, ‘Romantic’ or ‘Hilarious’ in
a semantic space of movies.

In our work, we focus on improving the rep-
resentation of these feature directions in domain-
specific semantic spaces. Such feature directions
are useful in a wide variety of applications. The
most immediate example is perhaps that they al-
low for a natural way to implement critique-based
recommendation systems, where users can specify
how their desired result should relate to a given
set of suggestions (Viappiani et al., 2006). For
instance, Vig et al. (2012) propose a movie rec-
ommendation system in which the user can spec-
ify that they want to see suggestions for movies
that are “similar to this one, but scarier”. If the
property of being scary is adequately modelled as
a direction in a semantic space of movies, such
critiques can be addressed in a straightforward
way. Similarly, in (Kovashka et al., 2012) a system
was developed that can find “shoes like these but
shinier”, based on a semantic space representation

530

that was derived from visual features. Semantic
search systems can use such directions to interpret
queries involving gradual and possibly ill-defined
features, such as “popular holiday destinations in
Europe” (Jameel et al., 2017). While features such
as popularity are typically not encoded in tradi-
tional knowledge bases, they can often be repre-
sented as semantic space directions. As another
application, feature directions can also be used in
interpretable classifiers. For example, Derrac and
Schockaert (2015) learned rule based classifiers
from rankings induced by the feature directions.
Along similar lines, in this paper we will use shal-
low decision trees to evaluate the quality of our
feature directions.

In the aforementioned applications, feature di-
rections are typically emerging from vector space
representations that have been learned with a
similarity-centred objective, i.e. the main consid-
eration when learning these representations is that
similar objects should be represented as similar
vectors. An important observation is that such
spaces may not actually be optimal for modelling
feature directions. To illustrate why this can be
the case, Figure 1 shows a toy example in which
basic geometric shapes are embedded in a two-
dimensional space. Within this space, we can
identify directions which encode how light an ob-
ject is and how closely its shape resembles a
square. While most of the shapes embedded in
this space are grey-scale circles and squares, one
of the shapes embedded in this space is a red
triangle, which is a clear outlier. If this space
is learned with a similarity-centred objective, the
representation of the triangle will be far from all
the other shapes. However, this means that out-
liers like this will often take up extreme positions
in the rankings induced by the feature directions,
and may thus lead us to incorrectly assume that
they have certain features. In this example, the
triangle would incorrectly be considered as the
shape which most exhibits the features “light” and
“square”. In contrast, if we had learned the repre-
sentation with the knowledge that it should model
these two features rather than similarity, this trian-
gle would have ended up closer to the bottom-left
corner.

Unfortunately, we usually have no a priori
knowledge of which are the most salient features.
In this paper, we therefore suggest the follow-
ing fully unsupervised strategy. First, we learn

Figure 1: Toy example showing the effect of out-
liers in a two-dimensional embedding of geomet-
ric shapes.

a semantic space from bag-of-words representa-
tions of the considered objects, using a standard
similarity-centric method. Using the method from
(Derrac and Schockaert, 2015), we subsequently
determine the most salient features in the consid-
ered domain, and their corresponding directions.
Finally, we fine-tune the semantic space and the
associated feature directions, modelling the con-
sidered features in a more faithful way. This last
step is the main contribution of this paper. All
code and hyperparameters are available online1.

2 Related Work

Topic models. The main idea underlying our
method is to learn a representation in terms of
salient features, where each of these features is de-
scribed using a cluster of natural language terms.
This is somewhat similar to Latent Dirichlet Al-
location (LDA), which learns a representation of
text documents as multinomial distributions over
latent topics, where each of these topics corre-
sponds to a multinomial distribution over words
(Blei et al., 2003). Topics tend to correspond to
salient features, and are typically labelled with
the most probable words according to the corre-
sponding distribution. However, while LDA only
uses bag-of-words (BoW) representations, our fo-
cus is specifically on identifying and improving
features that are modelled as directions in seman-
tic spaces. One advantage of using vector spaces
is that they offer more flexibility in how addi-

1https://github.com/ThomasAger/
Modelling-Salient-Features-as-
Directions-in-Fine-Tuned-Semantic-Spaces

531

tional information can be taken into account, e.g.
they allow us to use neural representation learn-
ing methods to obtain these spaces. Many ex-
tensions of LDA have been proposed to incorpo-
rate additional information as well, e.g. aiming
to avoid the need to manually specify the num-
ber of topics (Teh et al., 2004), modelling corre-
lations between topics (Blei and Lafferty, 2005),
or by incorporating meta-data such as authors or
time stamps (Rosen-Zvi et al., 2004; Wang and
McCallum, 2006). Nonetheless, such techniques
for extending LDA offer less flexibility than neu-
ral network models, e.g. for exploiting numerical
attributes or visual features.

Fine-tuning embeddings. Several authors have
looked at approaches for adapting word embed-
dings. One possible strategy is to change how the
embedding is learned in the first place. For exam-
ple, some approaches have been proposed to learn
word embeddings that are better suited at captur-
ing sentiment Tang et al. (2016), or to learn em-
beddings that are optimized for relation extraction
Hashimoto et al. (2015). Other approaches, how-
ever, start with a pre-trained embedding, which is
then modified in a particular way. For example,
in (Faruqui et al., 2015) a method is proposed to
bring the vectors of semantically related words, as
specified in a given lexicon, closer together. Simi-
larly Yu et al. (2017) propose a method for refining
word vectors to improve how well they model sen-
timent. In (Labutov and Lipson, 2013) a method
is discussed to adapt word embeddings based on a
given supervised classification task.

Semantic spaces. Within the field of cogni-
tive science, feature representations and semantic
spaces both have a long tradition as alternative,
and often competing representations of semantic
relatedness (Tversky, 1977). Conceptual spaces
(Gärdenfors, 2004) to some extent unify these two
opposing views, by representing objects as points
in vector spaces, one for each facet (e.g. color,
shape, taste in a conceptual space of fruit), such
that the dimensions of each of these vector spaces
correspond to primitive features. The main appeal
of conceptual spaces stems from the fact that they
allow a wide range of cognitive and linguistic phe-
nomena to be modelled in an elegant way. The
idea of learning semantic spaces with accurate fea-
ture directions can be seen as a first step towards
methods for learning conceptual space representa-
tions from data, and thus towards the use of more

cognitively plausible representations of meaning
in computer science. Our method also somewhat
relates to the debates in cognitive science on the
relationship between similarity and rule based pro-
cesses (Hahn and Chater, 1998), in the sense that
it allows us to explicitly link similarity based cate-
gorization methods (e.g. an SVM classifier trained
on semantic space representations) with rule based
categorization methods (e.g. the decision trees that
we will learn from the feature directions).

3 Identifying Feature Directions

We assume that a domain-specific semantic space
is given, and that for each of the objects which are
modelled in this space, we also have a BoW repre-
sentation. Our overall aim is to find directions in
the semantic space that model salient features of
the considered domain. For example, given a se-
mantic space of movies, we would like to find a di-
rection that models the extent to which each movie
is scary, among others. Such a direction would
then allow us to rank movies from the least scary
to the most scary. We will refer to such directions
as feature directions. Formally, each feature direc-
tion will be modelled as a vector vf . However, we
refer to directions rather than vectors to emphasize
their intended ordinal meaning: feature directions
are aimed at ranking objects rather than e.g. mea-
suring degrees of similarity. In particular, if o is
the vector representation of a given object then we
can think of the dot product vf · o as the value of
object o for feature f , and in particular, we take
vf · o1 < vf · o2 to mean that o2 has the feature f
to a greater extent than o1.

To identify feature directions, we use a variant
of the unsupervised method proposed in (Derrac
and Schockaert, 2015), which we explain in this
section. In Section 4, we will then introduce our
approach for fine-tuning the semantic space and
associated feature directions.

Step 1: Generating candidate feature direc-
tions. Each feature will be associated with a clus-
ter of words, which we can regard as a description
of the intuitive meaning of that feature. Since we
assume no a priori information about which words
might describe features that can be modelled as di-
rections in the vector space, the method initially
considers all nouns and adjectives that are suffi-
ciently frequent in the BoW representations of the
objects as candidate feature labels. Then, for each
considered word w, a logistic regression classifier

532

20 Newsgroups: Accuracy Scored Movie Reviews: NDCG Scored Place-types: Kappa Scored

{sins, sinful, jesus, moses} {environmentalist, wildlife, ecological} {smile, kid, young, female}
{hitters, catcher, pitching, batting} {prophets, bibles, scriptures} {rust, rusty, broken, mill}
{ink, printers, printer, matrix} {assassinating, assasins, assasin} {eerie, spooky, haunted, ghosts}
{jupiter, telescope, spacecraft, satellites} {reanimated, undead, zombified} {religious, christian, chapel, carved}
{firearm, concealed, handgun, handguns} {ufos, ufo, extraterrestrial, extraterrestrials} {fur, tongue, teeth, ears}
{escaped, terror, wounded, fled} {swordsman, feudal, swordfight, swordplay} {weeds, shed, dirt, gravel}
{cellular, phones, phone} {scuba, divers, undersea} {stonework, archway, brickwork}
{brake, steering, tires, brakes} {regiment, armys, soliders, infantry} {rails, rail, tracks, railroad}
{riders, rider, ride, riding} {toons, animations, animating, animators} {dirty, trash, grunge, graffiti}
{formats, jpeg, gif, tiff} {fundamentalists, doctrine, extremists} {tranquility, majestic, picturesque}
{physicians, treatments physician} {semitic, semitism, judaism, auschwitz} {monument, site, arch, cemetery}
{bacteria, toxic, biology, tissue} {shipwrecked, ashore, shipwreck} {journey, traveling, travelling}
{planets, solar, mars, planetary} {planetary, earths, asteroid, spaceships} {mother, mom, children, child}
{symptoms, syndrome, diagnosis} {atheism, theological, atheists, agnostic} {frost, snowy, icy, freezing}
{universities, nonprofit, institution} {astronaut, nasa, spaceship, astronauts} {colourful, vivid, artistic, vibrant}

Table 1: The first clustered words of features for three different domains and three different scoring types.

is trained to find a hyperplane Hw in the seman-
tic space that separates objects which contain w in
their BoW representation from those that do not.
The vector vw perpendicular to this hyperplane is
then taken as the direction that models the wordw.

Step 2: Filtering candidate feature directions.
To determine whether the word w is likely to de-
scribe an important feature for the considered do-
main, we then evaluate the quality of the candi-
date feature direction vw. For example, we can use
the classification accuracy to evaluate the quality
in terms of the corresponding logistic regression
classifier: if this classifier is sufficiently accurate,
it must mean that whether word w relates to object
o (i.e. whether it is used in the description of o)
is important enough to affect the semantic space
representation of o. In such a case, it seems rea-
sonable to assume that w describes an important
feature for the given domain.

One problem with accuracy as a scoring func-
tion is that these classification problems are of-
ten very imbalanced. In particular, for very rare
words, a high accuracy might not necessarily im-
ply that the corresponding direction is accurate.
For this reason, Derrac and Schockaert (2015) pro-
posed to use Cohen’s Kappa score instead. In
our experiments, however, we found that accuracy
sometimes yields better results, so rather than fix
the scoring function, we keep this as a hyperpa-
rameter of the model that can be tuned.

In addition to accuracy and Kappa, we also

consider Normalized Discounted Cumulative Gain
(NDCG). This is a standard metric in information
retrieval which evaluates the quality of a rank-
ing w.r.t. some given relevance scores (Järvelin
and Kekäläinen, 2002). In our case, the rank-
ings of the objects o are those induced by the
dot products vw · o and the relevance scores are
determined by the Pointwise Positive Mutual In-
formation (PPMI) score ppmi(w, o), of the word
w in the BoW representation of object o where
ppmi(w, o) = max

(
0, log

(pwo
pw∗·p∗o

))
, and

pwo =
n(w, o)∑

w′
∑

o′ n(w
′, o′)

where n(w, o) is the number of occurrences of
w in the BoW representation of object o, pw∗ =∑

o′ pwo′ and p∗o =
∑

w′ pw′o. In principle,
we may expect that accuracy and Kappa are best
suited for binary features, as they rely on a hard
separation in the space between objects that have
the word in their BoW representation and those
that do not, while NDCG should be better suited
for gradual features. In practice, however, we
could not find such a clear pattern in the differ-
ences between the words chosen by these metrics
despite often finding different words.

Step 3: clustering candidate feature directions.
As the final step, we cluster the best-scoring can-
didate feature directions vw. Each of these clus-
ters will then define one of the feature directions
to be used in applications. The purpose of this

533

clustering step is three-fold: it will ensure that the
feature directions are sufficiently different (e.g. in
a space of movies there is little point in having
funny and hilarious as separate features), it will
make the features easier to interpret (as a clus-
ter of terms is more descriptive than an individ-
ual term), and it will alleviate sparsity issues when
we want to relate features with the BoW represen-
tation, which will play an important role for the
fine-tuning method described in the next section.

As input to the clustering algorithm, we con-
sider the N best-scoring candidate feature direc-
tions vw, where N is a hyperparameter. To cluster
these N vectors, we have followed the approach
proposed in (Derrac and Schockaert, 2015), which
we found to perform slightly better thanK-means.
The main idea underlying their approach is to se-
lect the cluster centers such that (i) they are among
the top-scoring candidate feature directions, and
(ii) are as close to being orthogonal to each other
as possible. We refer to (Derrac and Schockaert,
2015) for more details. The output of this step is
a set of clusters C1, ..., CK , where we will iden-
tify each cluster Cj with a set of words. We will
furthermore write vCj to denote the centroid of
the directions corresponding to the words in the
cluster Cj , which can be computed as vCj =
1
|Cj |

∑
wl∈Cj vl provided that the vectors vw are

all normalized. These centroids vC1 , ..., vCk are
the feature directions that are identified by our
method.

Table 1 displays some examples of clusters that
have been obtained for three of the datasets that
will be used in the experiments, modelling respec-
tively movies, place-types and newsgroup post-
ings. For each dataset, we used the scoring func-
tion that led to the best performance on develop-
ment data(see Section 5). Only the first four words
whose direction is closest to the centroid vC are
shown.

4 Fine-Tuning Feature Directions

To illustrate that the method from Section 3 can
produce sub-optimal directions, the second col-
umn of Table 2 shows the top-ranked objects for
some feature directions in the semantic space of
place-types. For the feature represented by the
cluster {steep, climb, slope}, the top ranked object
mountain is clearly relevant. However, the next
two objects — landscape and national park —
are not directly related to this feature. Intuitively,

they are ranked highly because of their similarity
to mountain in the vector space. Similarly, for the
second feature, building is ranked highly because
of its similarity to skyscraper, despite intuitively
not having this feature. Finally, fence received a
high rank for several features, mostly because it is
an outlier in the space.

To improve the directions and address these
problems, we propose a method for fine-tuning the
semantic space representations and corresponding
feature directions. The main idea is to use the
BoW representations of the objects as a kind of
weak supervision signal: if an object should be
ranked highly for a given feature, we would ex-
pect the words describing that feature to appear
frequently in its description. In particular, for each
feature f we determine a total ordering 4f such
that o 4f o′ iff the feature f is more prominent in
the BoW represention of object o′ than in the BoW
representation of o. We will refer to 4f as the tar-
get ranking for feature f . If the feature directions
are in perfect agreement with this target ranking,
it would be the case that o 4 o′ iff vC · o ≤ vC · o′.
Since this will typically not be the case, we subse-
quently determine target values for the dot prod-
ucts vC · o. These target values represent the min-
imal way in which the dot products need to be
changed to ensure that they respect the target rank-
ing. Finally, we use a simple feedforward neural
network to adapt the semantic space representa-
tions o and feature directions vC to make the dot
products vC · o as close as possible to these target
values.

4.1 Generating Target Rankings
Let C1, ..., CK be the clusters that were found us-
ing the method from Section 3. Each cluster Ci
typically corresponds to a set of semantically re-
lated words {w1, ..., wn}, which describe some
salient feature from the considered domain. From
the BoW representations of the objects, we can
now define a ranking that reflects how strongly
each object is related to the words from this clus-
ter. To this end, we represent each object as a
bag of clusters (BoC) and then compute PPMI
scores over this representation. In particular, for
a cluster C = {w1, ..., wm}, we define n(C, o) =∑m

i=1 n(wi, o). In other words, n(C, o) is the to-
tal number of occurrences of words from cluster
C in BoW representation of o. We then write
ppmi(C, o) for the PPMI score corresponding to

534

Feature direction Highest ranking objects Highest fine-tuned ranking objects

{steep, climb, slope} mountain, landscape, national park ski slope, steep slope, slope
{illuminated, illumination, skyscraper} building, city, skyscraper tall building, office building, large building
{play, kid, kids} school, field, fence college classroom, classroom, school
{spooky, creepy, scary} hallway, fence, building hospital room, hospital ward, patient room
{amazing, dream, awesome} fence, building, beach hotel pool, resort, beach resort
{pavement, streetlight, streets} sidewalk, fence, building overpass road, overpass, road junction
{dead, hole, death} fence, steps, park grave, cemetery, graveyard
{spire, belltower, towers} building, arch, house bell tower, arch, religious site
{stones, moss, worldheritage} landscape, fence, steps ancient site, ancient wall, tomb
{mosaic, tile, bronze} building, city, steps cathedral, church, religious site

Table 2: Comparing the highest ranking place-type objects in the original and fine-tuned space.

this BoC representation, which is evaluated in the
same way as ppmi(C, o), but using the counts
n(C, o) rather than n(w, o). The target ranking for
clusterCi is then such that o1 is ranked higher than
o2 iff ppmi(Ci, o1) > ppmi(Ci, o2). By comput-
ing PPMI scores w.r.t. clusters of words, we allevi-
ate problems with sparsity and synonymy, which
in turn allows us to better estimate the intensity
with which a given feature applies to the object.
For instance, an object describing a violent movie
might not actually mention the word ‘violent’, but
would likely mention at least some of the words
from the same cluster (e.g. ‘bloody’ ‘brutal’ ‘vi-
olence’ ‘gory’). Similarly, this approach allows
us to avoid problems with ambiguous word usage;
e.g. if a movie is said to contain ‘violent language’,
it will not be identified as violent if other words re-
lated to this feature are rarely mentioned.

4.2 Generating Target Feature Values
Finding directions in a vector space that induce
a set of given target rankings is computationally
hard2. Therefore, rather than directly using the
target rankings from Section 4.1 to fine-tune the
semantic space, we will generate target values for
the dot products vCj · oi from these target rank-
ings. One straightforward approach would be to
use the PPMI scores ppmi(Cj , oi). However these
target values would be very different from the ini-
tial dot products, which among others means that
too much of the similarity structure from the initial
vector space would be lost. Instead, we will use
isotonic regression to find target values τ(Cj , oi)
for the dot product vCj ·oi, which respect the rank-
ing induced by the PPMI scores, but otherwise re-
main as close as possible to the initial dot prod-

2It is complete for the complexity class ∃R, which sits
between NP and PSPACE (Schockaert and Lee, 2015).

ucts.
Let us consider a cluster Cj for which we

want to determine the target feature values. Let
oσ1 , ..., oσn be an enumeration of the objects such
that ppmi(Cj , oσi) ≤ ppmi(Cj , oσi+1) for i ∈
{1, ..., n − 1}. The corresponding target values
τ(Cj , oi) are then obtained by solving the follow-
ing optimization problem:

Minimize:
∑

i

(τ(Cj , oi)− vCj · oi)2

Subject to:
τ(Cj , oσ1) ≤ τ(Cj , oσ2) ≤ ... ≤ τ(Cj , oσn)

4.3 Fine-Tuning
We now use the target values τ(Cj , oi) to fine-tune
the initial representations. To this end, we use a
simple neural network architecture with one hid-
den layer. As inputs to the network, we use the
initial vectors o1, ..., on ∈ Rk. These are fed into
a layer of dimension l:

hi = f(Woi + b)

where W is an l× k matrix, b ∈ Rl is a bias term,
and f is an activation function. After training the
network, the vector hi will correspond to the new
representation of the ith object. The vectors hi are
finally fed into an output layer containing one neu-
ron for each cluster:

gi = Dhi

where D is a K × l matrix. Note that by using
a linear activation in the output layer, we can in-
terpret the rows of the matrix D as the K feature
directions, with the components of the vector gi =
(g1i , ..., g

K
i) being the corresponding dot products.

535

20 Newsgroups F1 D1 F1 D3 F1 DN

FT MDS 0.50 0.47 0.44
MDS 0.44 0.42 0.43
FT PCA 0.40 0.36 0.34
PCA 0.25 0.27 0.36
FT Doc2Vec 0.44 0.42 0.41
Doc2Vec 0.29 0.34 0.44
FT AWV 0.47 0.45 0.40
AWV 0.41 0.38 0.43
FT AWVw 0.41 0.41 0.43
AWVw 0.38 0.40 0.43
LDA 0.40 0.37 0.35

Table 3: Results for 20 Newsgroups.

As the loss function for training the network, we
use the squared error between the outputs gji and
the corresponding target values τ(Cj , oi), i.e.:

L =
∑

i

∑

j

(gji − τ(Cj , oi))2

The effect of this fine-tuning step is illustrated in
the right-most column of Table 2, where we can
see that in each case the top ranked objects are
now more closely related to the feature, despite
being less common, and outliers such as ‘fence’
no longer appear.

5 Evaluation

To evaluate our method, we consider the problem
of learning interpretable classifiers. In particu-
lar, we learn decision trees which are limited to
depth 1 and 3, which use the rankings induced by
the feature directions as input. This allows us to
simultaneously assess to what extent the method
can identify the right features and whether these
features are modelled well using the learned di-
rections. Note that depth 1 trees are only a sin-
gle direction and a cut-off, so to perform well, the
method needs to identify a highly relevant feature
to the considered category. Depth 3 decision trees
are able to model categories that can be character-
ized using at most three feature directions.

5.1 Experimental set-up
Datasets. We evaluate our method on four
datasets. First, we used the movies and place-types
datasets from (Derrac and Schockaert, 2015),
which are available in preprocessed form3. The

3http://www.cs.cf.ac.uk/
semanticspaces/

former describes 15000 movies, using a BoW rep-
resentation that was obtained by combining re-
views from several sources. However, 1022 du-
plicate movies were found in the data, which we
removed. The associated classification tasks are
to predict the movie genres according to IMDB
(23 classes), predicting IMDB plot keywords such
as ‘suicide’, ‘beach’ or ‘crying’ (100 classes) and
predicting age rating certificates such as ‘UK-15’
‘UK-18’ or ‘USA-R’ (6 classes). All tasks are
evaluated as binary classification tasks. We ran-
domly split the datasets into 2/3 for training and
1/3 for testing. The place-types dataset was ob-
tained by associating each place-type with the bag
of tags that have been used to describe places of
that type on Flickr. It contains BoW represena-
tions for 1383 different place-types. The classi-
fication problems for this dataset involve predict-
ing whether a place-type belongs to a given cate-
gory in three different taxonomies: Geonames (7
classes), Foursquare (9 classes) and OpenCYC (20
classes). Since many of these categories are very
small, for this dataset we have used 5-fold cross
validation.

The remaining two datasets are standard
datasets for document classification: 20 news-
groups and the IMDB sentiment dataset. For the 20
newsgroups dataset, the standard4 split was used
where 11314 of the 18446 documents are used
for training. Headers, footers and quote metadata
were removed using scikit-learn5. The associated
classification problem is to predict which news-
group a given post was submitted to (20 classes).
The IMDB sentiment dataset contains a total of
50000 documents, and it is split into 25000 docu-
ments for training and 25000 for testing. For the
newsgroups and sentiment datasets, we used stop-
words from the NLTK python package (Loper and
Bird, 2002). For these datasets, we used all (low-
ercased) tokens and retained numbers, rather than
only using nouns and adjectives. The associated
classification problem is to predict the sentiment
of the review (positive or negative).
Semantic Spaces. We will consider semantic
spaces that have been learned using a number
of different methods. First, following (Derrac
and Schockaert, 2015), we use Multi-Dimensional
Scaling (MDS) to learn semantic spaces from the
angular differences between the PPMI weighted

4http://qwone.com/˜jason/20Newsgroups/
5http://scikit-learn.org/stable/

datasets/twenty_newsgroups.html

536

Movie Reviews

Genres D1 D3 DN Keywords D1 D3 DN Ratings D1 D3 DN

FT MDS 0.57 0.56 0.51 FT MDS 0.33 0.33 0.24 FT MDS 0.49 0.51 0.46
MDS 0.40 0.49 0.52 MDS 0.31 0.32 0.25 MDS 0.46 0.49 0.46
FT AWV 0.42 0.42 0.39 FT AWV 0.25 0.25 0.15 FT AWV 0.47 0.44 0.39
AWV 0.35 0.44 0.43 AWV 0.26 0.21 0.19 AWV 0.44 0.48 0.41
LDA 0.52 0.51 0.45 LDA 0.22 0.19 0.18 LDA 0.48 0.48 0.41

Place-types

Geonames D1 D3 DN Foursquare D1 D3 DN OpenCYC D1 D3 DN

FT MDS 0.32 0.31 0.24 FT MDS 0.41 0.44 0.41 FT MDS 0.35 0.36 0.30
MDS 0.32 0.31 0.21 MDS 0.38 0.42 0.42 MDS 0.35 0.36 0.29
FT AWV 0.31 0.29 0.23 FT AWV 0.39 0.42 0.41 FT AWV 0.37 0.37 0.28
AWV 0.28 0.28 0.22 AWV 0.32 0.37 0.31 AWV 0.33 0.35 0.26
LDA 0.34 0.32 0.27 LDA 0.55 0.48 0.47 LDA 0.40 0.36 0.31

Table 4: The results for Movie Reviews and Place-Types on depth-1, depth-3 and unbounded trees.

IMDB Sentiment D1 D3 DN

FT PCA 0.78 0.80 0.79
PCA 0.76 0.82 0.80
FT AWV 0.72 0.76 0.71
AWV 0.74 0.76 0.71
LDA 0.79 0.80 0.79

Table 5: Results for IMDB Sentiment.

BoW vectors. We also consider PCA, which di-
rectly uses the PPMI weighted BoW vectors as
input, and which avoids the quadratic complex-
ity of the MDS method. As our third method, we
consider Doc2vec, which is inspired by the Skip-
gram model (Le and Mikolov, 2014). Finally, we
also learn semantic spaces by averaging word vec-
tors, using a pre-trained GloVe word embeddings
trained on the Wikipedia 2014 + Gigaword 5 cor-
pus6. While simply averaging word vectors may
seem naive, this was found to be a competitive ap-
proach for unsupervised representations in several
applications (Hill et al., 2016). We consider two
variants, In the first variant (denoted by AWV),
we simply average the vector representations of
the words that appear at least twice in the BoW
representation, or at least 15 times in the case of
the movies dataset. The second variant (denoted
by AWVw) uses the same words, but weights the
vectors by PPMI score. As a comparison method,
we also include results for LDA.
Methodology. As candidate words for learning

6https://nlp.stanford.edu/projects/
glove/

the initial directions, we only consider sufficiently
frequent words. The thresholds we used are 100
for the movies dataset, 50 for the place-types, 30
for 20 newsgroups, and 50 for the IMDB senti-
ment dataset. We used the logistic regression im-
plementation from scikit-learn to find the direc-
tions. We deal with class imbalance by weighting
the positive instances higher.

For hyperparameter tuning, we take 20% of
the data from the training split as development
data. We choose the hyperparameter values that
maximize the F1 score on this development data.
As candidate values for the number of dimen-
sions of the vector spaces we used {50, 100, 200}.
The number of directions to be used as in-
put to the clustering algorithm was chosen from
{500, 1000, 2000}. The number of clusters was
chosen from {k, 2k}, with k the chosen number
of dimensions. For the hidden layer of the neu-
ral network, we fixed the number of dimensions
as equal to the number of clusters. As the scor-
ing metric for the dimensions, we considered ac-
curacy, Kappa and NDCG. In all experiments, we
used 300 epochs, a minibatch size of 200, and the
tanh activation function for the hidden layer of the
neural network. We train the network using Ada-
Grad (Duchi et al., 2011), with default values, and
the model was implemented in the Keras library.
As the performance of LDA can be sensitive to the
number of topics and other parameters, we tuned
the number of topics from {50, 100, 200, 400}, the
topic word prior from {0.1, 0.01, 0.001} and the
document topic prior {0.1, 0.01, 0.001}.

537

To learn the decision trees, we use the scikit-
learn implementation of CART, which allows us
to limit the depth of the trees. To mitigate the
effects of class imbalance, the less frequent class
was given a higher weight during training.

5.2 Results
Table 3 shows the results for the 20 newsgroups
dataset, where we use FT to indicate the results
with fine-tuning7. We can see that the fine-tuning
method consistently improves the performance of
the depth-1 and depth-3 trees, often in a very sub-
stantial way. After fine-tuning, the results are
also consistently better than those of LDA. For the
unbounded trees (DN), the differences are small
and fine-tuning sometimes even makes the re-
sults worse. This can be explained by the fact
that the fine-tuning method specializes the space
towards the selected features, which means that
some of the structure of the initial space will
be distorted. Unbounded decision trees are far
less sensitive to the quality of the directions, and
can even perform reasonably on random direc-
tions. Interestingly, depth-1 trees achieved the best
overall performance, with depth-3 trees and es-
pecially unbounded trees overfitting. Since MDS
and AWV perform best, we have only considered
these two representations (along with LDA) for
the remaining datasets, except for the IMDB Sen-
timent dataset, which is too large for using MDS.

The results for the movies and place-types
datasets are shown in Table 4. For the MDS rep-
resentations, the fine-tuning method again con-
sistently improved the results for D1 and D3
trees. For the AWV representations, the fine-
tuning method was also effective in most cases, al-
though there are a few exceptions. What is notice-
able is that for movie genres, the improvement is
substantial, which reflects the fact that genres are a
salient property of movies. For example, the deci-
sion tree for the genre ‘Horror’ could use the fea-
ture direction for {gore, gory, horror, gruesome}.
Some of the other datasets refer to more spe-
cialized properties, and the performance of our
method then depends on whether it has identified
features that relate to these properties. It can be
expected that a supervised variant of this method
would perform consistently better in such cases.

7Since the main purpose of this first experiment was to
see whether fine-tuning improved consistently across a broad
set of representations, here we considered a slightly reduced
pool of parameter values for hyperparameter tuning.

After fine-tuning, the MDS based representation
outperforms LDA on the movies dataset, but not
for the place-types. This is a consequence of the
fact that some of the place-type categories refer to
very particular properties, such as geological phe-
nomena, which may not be particularly dominant
among the Flickr tags that were used to generate
the spaces. In such cases, using a BoW based rep-
resentation may be more suitable.

Finally, the results for IMDB Sentiment are
shown in Table 5. In this case, the fine-tuning
method fails to make meaningful improvements,
and in some cases actually leads to worse re-
sults. This can be explained from the fact that
the feature directions which were found for this
space are themes and properties, rather than as-
pects of binary sentiment evaluation. The fine-
tuning method aims to improve the representa-
tion of these properties, possibly at the expense of
other aspects.

6 Conclusions

We have introduced a method to identify and
model the salient features from a given domain
as directions in a semantic space. Our method
is based on the observation that there is a trade-
off between accurately modelling similarity in a
vector space, and faithfully modelling features as
directions. In particular, we introduced a post-
processing step, modifying the initial semantic
space, which allows us to find higher-quality di-
rections. We provided qualitative examples that
illustrate the effect of this fine-tuning step, and
quantitatively evaluated its performance in a num-
ber of different domains, and for different types
of semantic space representations. We found that
after fine-tuning, the feature directions model the
objects in a more meaningful way. This was
shown in terms of an improved performance of
low-depth decision trees in natural categorization
tasks. However, we also found that when the con-
sidered categories are too specialized, the fine-
tuning method was less effective, and in some
cases even led to a slight deterioration of the re-
sults. We speculate that performance could be im-
proved for such categories by integrating domain
knowledge into the fine-tuning method.

Acknowledgments

This work has been supported by ERC Starting
Grant 637277.

538

References
David M. Blei and John D. Lafferty. 2005. Correlated

topic models. In Advances in Neural Information
Processing Systems 18, pages 147–154.

David M. Blei, Andrew Y. Ng, Michael I. Jordan, and
John Lafferty. 2003. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:2003.

Antoine Bordes, Nicolas Usunier, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings
for modeling multi-relational data. In In Advances
in Neural Information Processing Systems 26. Cur-
ran Associates, Inc, pages 2787–2795.

Berkan Demirel, Ramazan Gokberk Cinbis, and Nazli
Ikizler-Cinbis. 2017. Attributes2classname: A dis-
criminative model for attribute-based unsupervised
zero-shot learning. In IEEE International Confer-
ence on Computer Vision, pages 1241–1250.

J. Derrac and S. Schockaert. 2015. Inducing seman-
tic relations from conceptual spaces: a data-driven
approach to plausible reasoning. Artificial Intelli-
gence, pages 74–105.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine
Learning Research, 12:2121–2159.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1606–1615.

Peter Gärdenfors. 2004. Conceptual Spaces: The Ge-
ometry of Thought. MIT press.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Pad. 2015. Distributional vectors encode
referential attributes. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Ulrike Hahn and Nick Chater. 1998. Similarity and
rules: distinct? exhaustive? empirically distinguish-
able? Cognition, 65:197 – 230.

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa,
and Yoshimasa Tsuruoka. 2015. Task-oriented
learning of word embeddings for semantic relation
classification. CoRR, abs/1503.00095.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1367–1377.

Shoaib Jameel, Zied Bouraoui, and Steven Schockaert.
2017. Member: Max-margin based embeddings for
entity retrieval. In Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 783–792.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems, 20(4):422–
446.

Joo-Kyung Kim and Marie-Catherine de Marneffe.
2013. Deriving adjectival scales from continuous
space word representations. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1625–1630. ACL.

Adriana Kovashka, Devi Parikh, and Kristen Grauman.
2012. Whittlesearch: Image search with relative at-
tribute feedback. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2973–2980.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 489–493.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31th International Conference on
Machine Learning, pages 1188–1196.

Dawen Liang, Jaan Altosaar, Laurent Charlin, and
David M Blei. 2016. Factorization meets the item
embedding: Regularizing matrix factorization with
item co-occurrence. In Proceedings of the 10th
ACM Conference on Recommender Systems, pages
59–66.

Edward Loper and Steven Bird. 2002. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics, pages 63–70.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers,
and Padhraic Smyth. 2004. The author-topic model
for authors and documents. In Proceedings of the
20th Conference on Uncertainty in Artificial Intelli-
gence, UAI ’04, pages 487–494, Arlington, Virginia,
United States. AUAI Press.

539

Sascha Rothe and Hinrich Schütze. 2016. Word
embedding calculus in meaningful ultradense sub-
spaces. In ACL (2). The Association for Computer
Linguistics.

Steven Schockaert and Jae Hee Lee. 2015. Qualita-
tive reasoning about directions in semantic spaces.
In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, pages
3207–3213. AAAI Press.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting Liu,
and Ming Zhou. 2016. Sentiment embeddings with
applications to sentiment analysis. IEEE Transac-
tions on Knowledge and Data Engineering, 28:496–
509.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal,
and David M. Blei. 2004. Sharing clusters among
related groups: Hierarchical dirichlet processes. In
Proceedings of the 17th International Conference on
Neural Information Processing Systems, NIPS’04,
pages 1385–1392, Cambridge, MA, USA. MIT
Press.

Amos Tversky. 1977. Features of similarity. Psycho-
logical review, 84:327–352.

Christophe Van Gysel, Maarten de Rijke, and Evange-
los Kanoulas. 2016. Learning latent vector spaces
for product search. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 165–174.

Christophe Van Gysel, Maarten de Rijke, and Evange-
los Kanoulas. 2017. Structural regularities in text-
based entity vector spaces. In Proceedings of the
ACM SIGIR International Conference on Theory of
Information Retrieval, pages 3–10.

Flavian Vasile, Elena Smirnova, and Alexis Conneau.
2016. Meta-prod2vec: Product embeddings using
side-information for recommendation. In Proceed-
ings of the 10th ACM Conference on Recommender
Systems, pages 225–232.

Paolo Viappiani, Boi Faltings, and Pearl Pu. 2006.
Preference-based search using example-critiquing
with suggestions. Journal of Artificial Intelligence
Research, 27:465–503.

Jesse Vig, Shilad Sen, and John Riedl. 2012. The tag
genome: Encoding community knowledge to sup-
port novel interaction. ACM Transactions on Inter-
active Intelligent Systems, 2(3):13:1–13:44.

Xuerui Wang and Andrew McCallum. 2006. Topics
over time: a non-markov continuous-time model of
topical trends. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 424–433. ACM.

Liang-Chih Yu, Jin Wang, K Robert Lai, and Xuejie
Zhang. 2017. Refining word embeddings for sen-
timent analysis. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 534–539.

540

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 541–550
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Model Transfer with Explicit Knowledge of the Relation
between Class Definitions

Hiyori Yoshikawa and Tomoya Iwakura
Fujitsu Laboratories Ltd., Kanagawa, Japan

{y.hiyori, iwakura.tomoya}@jp.fujitsu.com

Abstract

This paper investigates learning methods for
multi-class classification using labeled data for
the target classification scheme and another la-
beled data for a similar but different classi-
fication scheme (support scheme). We show
that if we have prior knowledge about the re-
lation between support and target classification
schemes in the form of a class correspondence
table, we can use it to improve the model per-
formance further than the simple multi-task
learning approach. Instead of learning the in-
dividual classification layers for the support
and target schemes, the proposed method con-
verts the class label of each example on the
support scheme into a set of candidate class
labels on the target scheme via the class cor-
respondence table, and then uses the candi-
date labels to learn the classification layer for
the target scheme. We evaluate the proposed
method on two tasks in NLP. The experimental
results show that our method effectively learns
the target schemes especially for the classes
that have a tight connection to certain support
classes.

1 Introduction

Machine learning based methods have shown high
performance in many NLP tasks, which typically
are formulated as some kinds of classification
problems. Although there has been a remarkable
progress in methods utilizing unlabeled resources,
many tasks still require a large amount (at least
thousands, in some cases millions or billions) of
high quality labeled data to achieve high accuracy.

For many tasks, however, classification schemes
vary depending on fields of application or other
factors, and large and high quality labeled data
following a single scheme is insufficient. Named
entity recognition (NER) (Nadeau and Sekine,
2007) and text classification (TC) (Joachims,
1998) are typical examples that allow variable

classification schemes. For example, there are
two kinds of NE type definitions for Japanese
NER: IREX (Sekine and Isahara, 2000) with eight
entity types and Sekine’s extended NE (ENE)
hierarchy with 200 entity types (Sekine et al.,
2002). These two schemes are relevant but not
in complete correspondence, i.e., a class in ENE
is not necessarily a proper subclass of a class
in IREX and vice versa. For example, entities
with LOCATION type in IREX are (a subtype of)
LOCATION or FACILITY in ENE, while some
entities with FACILITY type in ENE can also be
ORGANIZATION in IREX. It is also the case that
a classification scheme for an existing model is
revised. In the case of news categolization, for
example, a new category such as world cup
would be added at a certain point of time; or the
articles about eSports would newly categorised the
existing sports category.

To obtain labeled data following the desired
scheme, it is often required to create them al-
most from scratch or modify existing annotation
because the existing data follow partly different
schemes. However, the annotation processes to
create such on-demand labeled data usually take
too much cost to obtain enough data.

This paper addresses the methods to utilize the
existing large amount of labeled data with a dif-
ferent classification scheme (support scheme) to
learn a good model for the target scheme with a
small amount of corresponding labeled data. One
possible solution is the multi-task learning ap-
proach (Caruana, 1997) in which the model for
each classification scheme is learned while shar-
ing the model parameters for the input representa-
tion. A drawback of typical multi-task approaches
is that they cannot exploit relation between two
schemes directly, even if we know it in advance.
The problem becomes critical when it is required
to preserve the classification performance on the

541

classes that are tightly connected to those of the
support scheme. This corresponds to the follow-
ing practical situation. We have a model work-
ing on some systems, and are required to modify
it to adapt to a new classification scheme given
only a small amount of examples related to the
change of the scheme. It is also required that the
performance of the retrained model is almost un-
changed for the input examples that is not related
to the change of the scheme. In the simple multi-
task learning, the classification layer for the target
scheme is learned only from the small labeled data
for the target scheme. Such small data are often
insufficient to learn existing classes in spite of the
shared input representation.

In this paper, we propose a method to exploit the
relation between the two classification schemes
which is given in the form of a class correspon-
dence table described in Section 3. Instead of
learning the individual classification layers for the
support and target schemes, the proposed method
converts the class label of each example on the
support scheme into a set of candidate class labels
on the target scheme via the class correspondence
table, and then uses it to learn the classification
layer for the target scheme using the learning with
multiple labels framework (Jin and Ghahramani,
2002). The difference from the typical multi-
task learning methods is that the large amount of
labeled data on the support scheme are directly
used to learn the classification layer for the target
scheme. It enables the model to learn the target
scheme while preserving the performance on those
classes which are tightly connected to the support
scheme effectively. We conduct experiments for
two tasks in NLP to verify the effectiveness of our
proposed method.

The contribution of this paper is as follows.

• We propose a method to utilize the known re-
lation of the two classification schemes by us-
ing the relation as an explicit constraint.

• We evaluated the proposed method on two
task with public data and original but repro-
ducible classification schemes.

The proposed method has the following advan-
tages.

• We can utilize the prior knowledge on the re-
lation between the support and the target clas-
sification schemes to effectively constrain the
model.

• The method can learn the classes existing in
the support scheme, even when the target la-
beled data contain few or no examples on
these classes.

• It can also be used for such tasks in which the
output is structured and difficult to be sepa-
rated, e.g., NER.

• The proposed method can be applied to the
most of current neural network based models
which output a probability distribution and
take loss to update parameters with learning
method such as SGDs. There is no need to
violate the original network architecture.

2 Preliminaries

2.1 Problem Settings

The goal is to learn a classification scheme (tar-
get scheme) fT : X → YT for a certain input
space X (e.g., sentences) and a set of class la-
bels YT. We assume that the model to learn takes
an input x ∈ X and predicts a probability distri-
bution pT(y|x; θT) over YT, where θT represents
the model parameters to learn. We focus on the
situation that we have only a small amount of la-
beled dataDT = {(xi, yi)}NT

i=1. Instead, we have a
large amount of labeled data DS = {(xi, yi)}NS

i=1,
where xi is from the same input space X and the
same domain distribution but yi is from a different
set of class labels YS. We denote fS : X → YS
by the classification scheme (support scheme) fol-
lowed by DS. In addition, we have prior knowl-
edge about the relation between these two schemes
fS and fT. We introduce the relation formally in
Section 3.

In general, we can assume multiple support and
target schemes. But this paper describes the cases
of a single support scheme and a single target
scheme for simplicity. Note that the formulation
in the following can be extended to multi-support
and multi-target cases straightforwardly.

2.2 Multi-task Learning

We first review simple multi-task learning on two
tasks, which we use as a baseline as well as the
basis of the proposed method.

In multi-task learning, the probability ditribu-
tions on both YS and YT are learned simultane-
ously with sharing a part of their model parame-
ters. Let θR denote the shared part, θCT the part
specific to the target model , and θCS the parame-

542

ters specific to the support model. Then the prob-
ability distributions on the support and the target
schemes can be written as pS(y|x; θR, θCS) and
pT(y|x; θR, θCT), respectively.

For training, the following loss function is min-
imized:

LMT = LT + λLS, (1)

where

LT = − 1

NT

∑

(x,y)∈DT

log pT(y|x; θR, θCT), (2)

LS = − 1

NS

∑

(x,y)∈DS

log pS(y|x; θR, θCS), (3)

and λ is a real-valued hyperparameter for specify-
ing the weight of the support loss.

2.3 Learning with Multiple Labels

In learning with multiple labels (LwML) frame-
work, each training example (x, Y) consists of an
input x and a set of candidate labels Y instead of
a single true label. It is assumed that the only one
label in Y is correct for x, and the objective is to
learn a classifier that maps inputs to the correct la-
bels. To deal with the problem, the loss fucntion
consists of the likelihood for the predicted distri-
bution to be high within the candidate label set:

lML(x, Y, p) = log
∑

y∈Y
p(y|x). (4)

3 Proposed Methods

In this section, we introduce relations between
schemes in the form of class correspondence ta-
ble, and how it is used for training a classifier for
the target scheme.

3.1 Class Correspondence Table

We suppose that the two schemes introduced in
Section 2.1 have a strong relation in that for an
input x, the candidates for its class on the target
scheme can be limited by its class on the support
scheme. Here we give examples for two scheme
sets introduced in Section 1. For Japanese NE
type definitions, an entity with LOCATION type in
IREX definition can be (a subtype of) LOCATION
or FACILITY in ENE, but it cannot be other
type such as PERSON, DISEASE or COLOR. For

news categolization, sports category in the tar-
get scheme comes only from sports and the cat-
egories which include articles about eSports in the
support scheme.

Formally, we consider the following class cor-
respondence table. The class correspondence ta-
ble T is a map from a class in YS to a set of classes
in YT. It functions as a constraint on the target
scheme fT. Namely, the class yT = fT(x) must
be a member of T (yS), where yS = fS(x).

There are some possible ways to construct a
class correspondence table. One is to define it by
hands. For example, if the ontology related to the
classification scheme is known, it is straightfor-
ward to define the class correspondence table ac-
cording to the ontology. Another way is to define
it from data. First, we apply the model learned for
the support scheme to the examples in the labeled
data for the target scheme. Then, we obtain pairs
of labels on the support and the target schemes.
The class correspondence table can be defined by
allowing the pair that appears in the dataset at a
certain frequency. While the method can automat-
ically define the relation, there is a risk to drop
the possible relation that is not found in the given
dataset, or because of the insufficient model accu-
racy. We propose a model to alleviate the problem
in Section 3.3.

3.2 Multi-Task Learning with Multiple
Candidate Labels

For training, the following loss function is mini-
mized:

LCS = LT + λLSCS, (5)

where

LSCS = − 1

NS
·

∑

(x,y)∈DS

lML(x, T (y), pT(y|x; θR, θCT)),

(6)

with a real-valued hyperparameter λ. The first
term corresponds to the loss from the target
dataset, and the second for the support dataset in
the form of LwML with candidate classes given
by the class correspondence table. Compared with
the simple multi-task learning, our method trains
only θT (i.e. θR and θCT) and does not require
the parameters specific to support scheme. We call
this model as Class Shift constraint (CS) model.

543

To get an intuition, let us see the special cases.
If the support scheme is equal to the target scheme
and the class correspondence is identity, then the
loss (5) behaves just like a single-task learning
with labeled data consisting of the support and the
target data. If the class correspondence table al-
lows all class shift for all classes in the support
scheme, then LSCS is always zero and so the sup-
port dataset has completely no effect on training.

3.3 Combination with Simple Multi-Task
Learning

While CS model can exploit the prior knowl-
edge about class correspondence, it has a potential
problem that the class correspondence table can
work inadequately. For example, if we construct
the class correspondence table from some data au-
tomatically, there can be some overlooked relation
because they just do not exist in the given data.

To overcome this problem, we propose an ex-
tention of the CS model which relaxes the class
shift constraint by combining it with the loss from
the simple multi-task learning:

LMTCS = LT + λ {µLSCS + (1− µ)LS} , (7)

with an additional hyperparameter µ ∈ [0, 1]. We
call this model as Multi-Task with Class Shift
constraint (MTCS) model.

3.4 Training
For the following experiments with neural-based
models, we adopt training by stochastic gradient
descent (SGD) with mini-batches. For each it-
eration, we sample b examples from each of the
support and the target labeled data, where b is the
mini-batch size. Then the loss is calculated by (5)
or (7) for the batch.

We suppose that the model is trained with
a large amount of labeled data on the support
scheme. When such labeled data is unavailable,
however, it is possible to obtain pseudo-labeled
data by applying the model for the support scheme
to unlabeled data, and use them to train the model
for the target scheme.

4 Experiments

We evaluated the proposed method on two tasks:
named entity recognition (NER) and text classifi-
cation (TC).

To examine the effectiveness of the proposed
method, we adopted datasets that are not only

large but also accompanied with well-organized
ontology. We defined the target schemes follow-
ing the exsiting shared tasks, while we defined dif-
ferent support schemes according to their ontol-
ogy so that the labels correspond to the different
level or granularity in the same ontology. By do-
ing so, we can compare the proposed method with
an ideal settings where all data is labeled accord-
ing to the target scheme, which can be seen as an
upper bound.

4.1 Named Entity Recognition (NER) task

We conducted NER task on GENIA corpus. GE-
NIA corpus (Kim et al., 2003) was developed as
a resource for text mining in biomedical litera-
ture. It contains annotated text for 2,000 Medline
abstracts, and the annotated information includes
term annotation for entities related to biological
components such as proteins, genes and cells.

As described in (Kim et al., 2003), the entities
are annotated according to hierarchical ontology,
and have 36 types. BioNLP / JNLPBA shared task
(Kim et al., 2004) is organized by GENIA project
as well. The task is to extract named entities of 5
types, which is defined by integrating the above 36
types following the ontology.

We used the JNLPBA definition as the target
scheme, and made another definition for the sup-
port scheme. We show the class correspondence
in Table 1. Note that the O (no tag) class in the tar-
get scheme corresponds to Nucleic acid and
O classes in the support scheme. It means that
the shift from the support scheme to the target
scheme involves both class subdivision and inte-
gration. We also note that we follow BIOES (Col-
lobert et al., 2011) representation to convert the
NE tags into the word-level class labels. It means
that each NE class (say XXX) except O corresponds
to 4 word-level classes (S-XXX, B-XXX, I-XXX,
and E-XXX). We construct the class correspon-
dence table by associating the labels with same
prefix for each corresponding label pair. For in-
stance, if a class XXX in the support scheme cor-
responds to the label YYY in the target scheme,
the word-level class label S-XXX corresponds to
S-YYY, and so on. This setting is based on a
strong assumption that the modification of the tag-
ging scheme does not change the range of named
entity mentions. As it is not always true, the re-
laxed formulation (7) is expected to work better.

We created the NER input for the support

544

Support scheme Target scheme Original GENIA ontology
Nucleic acid DNA DNA (5 types)

RNA RNA (5 types)
O (no tag) polynucleotide, nucleotide

Protein Protein protein (7 types)
O (no tag) Cell type cell type

Cell line cell line
O (no tag) others (15 types) + no tag

Table 1: Class correspondence table for NER task.

Support
Sentences 14838
Types Nucleic acid 6954

Protein 26777
Target Train Dev Test
Sentences 2966 742 3856
Types DNA 1868 412 1056

RNA 206 50 118
Protein 3634 1257 5067
Cell type 887 241 1921
Cell line 635 176 500

Table 2: Data statistics of NER task.

scheme from the original GENIA corpus. For to-
kenization we used NLTK (Bird et al., 2009), and
then broke tokens at the start and the end of the en-
tity mentions. Since the task does not allow over-
lap of entity mentions, we chose the shortest men-
tions and discarded longer ones when mentions are
nested in the original corpus. We used JNLPBA
dataset as the input for the target scheme. Table 2
shows the statistics of the dataset.

4.2 Text Classification (TC) task
For TC, we used DBpedia ontology classification
dataset created by (Zhang et al., 2015). Each sam-
ple in the dataset consists of the description text
and the class of a DBpedia (Lehmann et al., 2015)
entry. The entries are chosen from 14 ontology
classes. We use these classes as the target scheme,
and defined the support scheme by integrating the
categories into 5 classes. The class correspon-
dence is shown in Table 3. Table 4 shows the
statistics of the dataset.

4.3 Baseline Methods
We compare the following methods with the pro-
posed methods CS and MTCS described in Sec-
tion 3.

• Target Only trains a model with only labeled
data on the target scheme.

• Finetune method first trains a model with la-
beled data on the support scheme. Then, the
model for the target scheme is trained for an-
other set of labeled data with the shared part
θR of the parameters initilaized with the value
trained on the support data (Razavian et al.,
2014).

• MT is the multi-task learning method de-
scribed in Section 2.2.

• ALL Target represents training on an ideal
situation that all training examples are la-
beled according to the target scheme. The to-
tal number of training examples of each task
is the sum of the number of labeled data for
the support and the target schemes.

We also initialized model parameters for MT, CS
and MTCS with the Finetune method.

4.4 Models and Training Settings

For NER, we used the model similar to the one de-
scribed in (Ma and Hovy, 2016) with the same net-
work parameters, except that we used the sum of
word-level loss as in (Collobert and Weston, 2008)
instead of the structural loss12, mainly because of
the computation time. As a result, the model is
trained as a simple word-level label classification.

For TC, we used a simple softmax model which
is similar to fastText (Grave et al., 2017) model
with the same network parameters except we use
pretrained word embeddings; we use simple soft-
max instead of hierarchical softmax; and only bag-
of-words features are used to construct input rep-
resentation.

1It is reported that its performance is competitive to the
structural loss (Chiu and Nichols, 2016).

2The training of CRF with multiple label candidates can
be found in (Tsuboi et al., 2008).

545

Support scheme Target scheme
Org Company, EducationalInstitution
Artist Artist
Non-artist Athlete, OfficeHolder
Work Album, Film, WrittenWork
Other MeanOfTransportation, Building, NaturalPlace,

Village, Animal, Plant

Table 3: Class correspondence table for TC task.

Support
Sentences 500000
Types Org 70688

Artist 35419
Non artist 70544
Work 106162
Other 212187

Target (14 classes) Train Dev Test
Sentences 5000 60000 70000
Sentences / class 357.1 4285.7 5000
(ave.)

Table 4: Data statistics of TC task. We show only the
average number of sentences per class for target since
the data is highly balanced.

Hyperparameter NER TC
dropout rate 0.5 0.5
batch size 10 10
initial learning rate 0.1 0.075
learning rate decay 0.1 0.05
gradient clipping 0.5 0.5
λ (MT) 1.0 1.25
λ (CS) 1.0 1.0
λ (MTCS) 1.5 1.25
µ (MTCS) 0.5 0.6

Table 5: Hyperparameter settings.

For both models, all parameters except the soft-
max layers on the top are shared. We implemented
these models using DyNet (Neubig et al., 2017) li-
brary.

The models are trained by SGD with mini-
batches as mentioned in Section 3.4, and some op-
timization techniques are used including dropout,
learning rate decay and gradient clipping follow-
ing (Ma and Hovy, 2016). The result of hyperpa-
rameter tuning on development data is described
in Table 5.

We used pretrained word embeddings from

Method NER (F1) TC (Acc.)
Target Only 66.02 93.29
Finetune 68.29 94.71
MT 68.73 94.91
CS 68.73 95.81
MTCS 69.12 95.67
All Target 72.23 96.81

Table 6: Results for NER and TC task.

PMC open access subset (commercial use ver-
sion)3 for NER and from Wikipedia dump
(2010/10/11)4 for TC.

4.5 Experimental Results
All of the following results are averaged over five
runs.

Table 6 shows the F1 scores for NER task and
accuracy scores for TC task. For NER, the perfor-
mance of CS is competitive to MT, but by com-
bining them (MTCS) we had the improved perfor-
mance. On the other hand, for TC task CS outper-
forms MT in a certain degree. The effect of their
combination of (MTCS) is limited on this task.

We also evaluated the effect of the class shift
constraint when the amount of labeled data for the
target scheme is quite small. Figure 1 and Figure 2
show how the scores improve as the size of the la-
beled data for the target scheme increases. We can
see that the advantage of CS and MTCS methods
are significant especially when the size of the la-
beled data for the target scheme is very small.

Next, we evaluated how the models preserve
the classification performance on the classes that
are tightly connected to some classes in the sup-
port scheme. We first trained a model on the
support scheme (support model) using the labeled
data for the support scheme. Next we transfer the
model for the target scheme with the labeled data

3https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
4https://dumps.wikimedia.org/backup-index.html

546

Figure 1: F1 scores with different data size on target
scheme for NER task.

Figure 2: Accuracy scores with different data size on
target scheme for TC task.

for the target scheme using Finetune, MT, CS, or
MTCS. Then, test data are labeled by both the sup-
port model and the transferred model. By doing
so, we can compare the classification performance
of the support model and the transferred models
on the unchanged classes for these tasks, namely
Protein for NER and Artist for TC. We first
check the performance of the transferred models
on these classes with the small size of labeled data
for the target schemes. Figure 3 and Figure 4 show
the results. Compared to Finetune and MT, the
performance of CS and MTCS is high even when
the size of labeled data for the target scheme is
very small. It suggests that the proposed methods
effectively use the knowledge from support mod-
els for recognizing these classes. Table 7 shows
the number of examples that are correctly classi-
fied by the transferred models out of those cor-

Figure 3: F1 scores with different data size on the target
scheme for Protein class in NER task.

Figure 4: Accuracy scores with different data size on
the target scheme for Artist class in TC task.

rectly classified by the support model. For NER
task, the support model extracted 3193 out of 5067
Protein mentions correctly. For TC task, the
support model categorized 4534 out of 5000 text
with Artist labels correctly. We can see that the
proposed methods succeed to prevent performance
deterioration more effectively than Finetune and
MT.

5 Related Work

Improving model performance with knowledge
from other models or data sources is one of the
central research topics in machine learning.

Domain adaptation methods utilize training data
that have the same class definition but they come
from different domains (Daumé III, 2007; Dai
et al., 2007; Crammer and Mansour, 2012). These
methods focus on the change of input distribution,

547

Method NER-Protein TC-Artist
Finetune 0.928 (2963) 0.966 (4380)
MT 0.933 (2979) 0.980 (4445)
CS 0.956 (3053) 0.991 (4495)
MTCS 0.955 (3051) 0.989 (4486)

Table 7: The proportion of performance preservation
from the support model on unchanged classes. The
numbers in the brackets represent the number of ex-
amples correctly classified by both the support and the
target models.

not the classicication scheme.
Multi-task learning approaches with nerual net-

works often achieve this by sharing input repre-
sentation among different tasks. The objectives
of jointly learned tasks are often different and the
mapping from the shared representation to the out-
put for each task is learned independently (Liu
et al., 2015; Hashimoto et al., 2017). Therefore,
the relation between classification schemes is not
directly considered.

Some studies focus on adding model capabili-
ties to handle new tasks without storing all train-
ing data for old tasks. The central issue is to avoid
catastrophic forgetting (Li and Hoiem, 2017), and
several approaches have been explored (Lopez-
Paz et al., 2017; Kirkpatrick et al., 2017; Triki
et al., 2017). As with standard multi-task learning,
many studies in this line assume different tasks
with task-specific output models. iCaRL (Rebuffi
et al., 2017) assumes a different problem named
class-incremental learning. A stream of new class
examples is observed and the model is required at
any time to perform as a multi-class classifier on
the classes observed so far. However, modifying
the classification scheme on observed samples is
not considered in this framework.

Knowledge distillation (Hinton et al., 2015) is
another topic of knowledge transfer, which can
be used to simplify a large complex classification
model such as ensemble model by letting a sim-
ple model imitate the output distributions of the
complex model instead of predicted labels. It is
also used for preventing catastrophic forgetting in
continual learning (Rebuffi et al., 2017; Shmelkov
et al., 2017).

Learning with Hierarchy and Exclusion (HEX)
graph (Deng et al., 2014) is a promising method
utilizing pre-defined relationship between class la-
bels. HEX graph can express exclusion and sub-

sumption relations between class labels. Despite
that it is originally used for a different kind of
problems (multi-class classification which allows
multiple labels for an input), it is possible to solve
our problem setting in this framework. In fact, we
can construct a HEX graph by assigning exclusive
edges to all class pairs within the same scheme
and to class pairs from different schemes which do
not correspond in the class correspondence table.
One of the main advantages of our method is the
computational cost. Inference with HEX graph is
sometimes computationally prohibitive depending
on the graph structure, while inference with our
model is not affected by the structure of the class
correspondence table. In addition, HEX graph ap-
proach requires parameters of both support and
target classes even at inference. Hence it is not
suitable if the classification scheme can change
many times.

Another related framework is semi-supervised
learning, which use both labeled and unlabeled
data. The approaches include use of classifiers
trained with automatically generated training data
from unlabeled data (Ando and Zhang, 2005), use
of automatically labeled data (Suzuki and Isozaki,
2008), language model (Peters et al., 2017, 2018)
trained from unlabeled data, and so on. In discrim-
inative models, knowledge from unlabled data is
often incorporated in the models as improved in-
put representation or additional features. Since our
method does not restrict input representation, such
semi-supervised methods can be easily combined.

6 Conclusion

We have proposed a training method for the set-
ting where we have only a small amount of labeled
data for the target scheme, but have access to a
large amount of labeled data for a related support
scheme with the class correspondence table. The
experimental results on a named entity recognition
task and a text classification task showed that our
proposed methods outperform finetune and simple
multi-task learning methods.

Although the experiment for NER task showed
that MTCS model has potential to work with a
possibly incomplete class correspondence table,
further experiments are necessary to verify its ef-
fectiveness on automatically generated class cor-
respondence tables. Future work also includes
applying our method to improve models learned
from a single corpus by combining other corpora

548

with different schemes, experiments on multi-
support and multi-target settings, and extensions
to the case where input domain of labeled data for
support and target schemes are different.

References
Rie Kubota Ando and Tong Zhang. 2005. A high-

performance semi-supervised learning method for
text chunking. In Proc. of ACL, pages 1–9.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
ICML, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Koby Crammer and Yishay Mansour. 2012. Learning
multiple tasks using shared hypotheses. In Proc. of
NIPS, pages 1484–1492.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong
Yu. 2007. Boosting for transfer learning. In Proc. of
ICML, pages 193–200.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proc. of ACL, pages 256–263.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome,
Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. 2014. Large-scale ob-
ject classification using label relation graphs. In
Proc. of ECCV, pages 48–64.

Edouard Grave, Tomas Mikolov, Armand Joulin, and
Piotr Bojanowski. 2017. Bag of tricks for efficient
text classification. In Proc. of EACL, pages 427–
431.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In Proc.
of EMNLP, pages 1923–1933.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Rong Jin and Zoubin Ghahramani. 2002. Learning
with multiple labels. In Proc. of NIPS, pages 921–
928.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In Proc. of ECML, pages 137–142.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and
Jun’ichi Tsujii. 2003. GENIA corpus – a semanti-
cally annotated corpus for bio-textmining. Bioinfor-
matics, 19(Supplement 1):i180–i182.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction
to the bio-entity recognition task at jnlpba. In Proc.
of JNLPBA, pages 70–75.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Overcom-
ing catastrophic forgetting in neural networks. Proc.
of the National Academy of Sciences U.S.A.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick
Van Kleef, Sören Auer, et al. 2015. DBpedia–a
large-scale, multilingual knowledge base extracted
from Wikipedia. Semantic Web, 6(2):167–195.

Zhizhong Li and Derek Hoiem. 2017. Learning with-
out forgetting. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proc. of NAACL, pages 912–921.

David Lopez-Paz et al. 2017. Gradient episodic mem-
ory for continual learning. In Proc. of NIPS, pages
6467–6476.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proc. of ACL, pages 1064–1074.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

549

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In Proc. of ACL, pages 1756–1765.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. CNN features off-
the-shelf: An astounding baseline for recognition.
In Proc. of CVPR workshops, pages 806–813.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and
Christoph H. Lampert. 2017. iCaRL: Incremental
classifier and representation learning. pages 5533–
5542.

Satoshi Sekine and Hitoshi Isahara. 2000. IREX: IR &
IE evaluation project in japanese. In Proc. of LREC,
pages 1977–1980.

Satoshi Sekine, Kiyoshi Sudo, and Chikashi Nobata.
2002. Extended named entity hierarchy. In Proc. of
LREC’02.

Konstantin Shmelkov, Cordelia Schmid, and Karteek
Alahari. 2017. Incremental learning of object de-
tectors without catastrophic forgetting. In 2017
IEEE International Conference on Computer Vision
(ICCV), pages 3420–3429.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In Proc. of ACL, pages
665–673.

Amal Rannen Triki, Rahaf Aljundi, Matthew B.
Blaschko, and Tinne Tuytelaars. 2017. Encoder
based lifelong learning. Proc. of ICCV, pages 1329–
1337.

Yuta Tsuboi, Hisashi Kashima, Shinsuke Mori, Hiroki
Oda, and Yuji Matsumoto. 2008. Training condi-
tional random fields using incomplete annotations.
In Proc. of COLING, pages 897–904.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proc. of NIPS, pages 649–657.

550

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 551–561
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Aiming to Know You Better Perhaps Makes Me a More Engaging
Dialogue Partner

Yury Zemlyanskiy
University of Southern California

Los Angeles, CA 90089
yury.zemlyanskiy@usc.edu

Fei Sha
Netflix

Los Angeles, CA 90028
fsha@netflix.com∗

Abstract

There have been several attempts to define a
plausible motivation for a chit-chat dialogue
agent that can lead to engaging conversations.
In this work, we explore a new direction where
the agent specifically focuses on discovering
information about its interlocutor. We formal-
ize this approach by defining a quantitative
metric. We propose an algorithm for the agent
to maximize it. We validate the idea with hu-
man evaluation where our system outperforms
various baselines. We demonstrate that the
metric indeed correlates with the human judg-
ments of engagingness.

1 Introduction

There has been a significant progress in creat-
ing end-to-end data-driven dialogue systems (Rit-
ter et al., 2011; Vinyals and Le, 2015; Serban
et al., 2017; Shang et al., 2015; Sordoni et al.,
2015). The general scheme is to view dialogues
as a sequence transduction process. This process
is then modeled with the sequence-to-sequence
(SEQ2SEQ) neural network (Sutskever et al., 2014)
whose parameters are fit on large dialogue corpora
such as OpenSubtitles (Tiedemann, 2009). What
is especially appealing about these systems is that
they do not require hand-crafted rules to generate
reasonable responses in the open-domain dialogue
(i.e., chit-chat) setting.

An important goal of such systems is to be able
to have a meaningful and engaging conversation
with a real person. Despite the progress, how-
ever, this goal remains elusive — current systems
often generate generic and universally applicable
responses (to any questions) such as “I do not
know”. While such responses are reasonable in
isolation, collectively too many of them are per-

∗On leave from U. of Southern California
(feisha@usc.edu)

ceived as dull and repetitive (Sordoni et al., 2015;
Serban et al., 2017; Li et al., 2016a,b).

It remains open what metrics to use to optimize
a data-driven model to produce highly engaging
dialogues (Liu et al., 2016). Li et al. (2016b,a)
propose to use several heuristic criteria: how easy
to answer the utterance with non-generic response,
how grammatical the response is, etc. Zhang et al.
(2018) suggests to use pre-defined facts about the
conversation agents as the context for the dialogue.
Specifically, conditioning on those facts (called
“memories” in their approach), the dialogue be-
comes “personalized”, purposefully coherent and
is perceived being more engaging.

In this paper, we investigate a different ap-
proach which leverages the following intuition: an
engaging dialogue between two agents is a conver-
sation that is focused and intends to discover infor-
mation with the goal of increased understanding
of each other. In other words, discovering implies
asking engaging and inquisitive questions that are
not meant to be answered with dull responses.

How do we use these intuitions to build engag-
ing dialogue chatbots? Imagine a dialogue be-
tween a chatbot and a human. The human has
facts about herself and is willing to share with the
chatbot. The chatbot has only a vague idea what
those facts might be – for instance, it knows out of
100 possible ones, 3 of them are true. The chat-
bot’s initial utterance could be random as it has no
knowledge of what the 3 are. However, the chat-
bot wants to be engaging so it constantly selects
utterances so that it can use them to identify those
3 facts. This is in spirit analogous to a (job) inter-
view: the HR representative (i.e., our interviewer
“chatbot”) is trying to figure out the personality
characteristics (i.e., “facts”) of the applicant (i.e.,
the “human” interviewee). A successful interview
implies that the HR representative was able to get
as much information about the applicant as possi-

551

ble within a limited amount of time, while dull and
repetitive questions are avoided at all cost. In other
words, the amount of gathered information can be
seen as a proxy measure to the engagingness of the
dialogue.

We have implemented such an “interview” set-
ting to validate our intuitions. First, we have de-
veloped a metric called DISCOVERYSCORE that
can measure how much information has been gath-
ered by the chit-chat bot after a dialogue. During a
dialogue, we show how this metric can be used to
guide the chatbot’s generation of responses at its
turns — these responses are selected so that they
lead to the highest expected DISCOVERYSCORE.
To identify such responses, the chit-chat chat-
bot needs to simulate how its human counterpart
would react. To this end, we have proposed an im-
proved version of the personalized chatbot (Zhang
et al., 2018) and use it as the chit-chat bot’s model
of the human. Finally, we perform human stud-
ies on the Amazon Mechanical Turk platform and
demonstrate the positive correlation between DIS-
COVERYSCORE and the engagingness scores as-
sessed by human evaluators on our chit-chat bot.

The rest of the paper is organized as the follows.
We discuss briefly the related work in Section 2. In
Section 3, we then describe various components in
our approach: the metric DISCOVERYSCORE for
assessing how engaging an dialogue is, a chatbot
model that is used in our study, and a response se-
lection procedure for our chatbot to yield engaging
conversations. We report empirical studies in Sec-
tion 4 and conclude in Section 5.

2 Related Work

One of the biggest challenges for chit-chat bots
is the lack of the exact objective for models to
optimize. This stands in stark contrast to task-
oriented dialogue systems (Wen et al., 2016; Su
et al., 2016b).

Several heuristic criteria are proposed in (Li
et al., 2016a,b) as objectives to optimize. Asghar
et al. (2017) proposes humans-in-the-loop to se-
lect the best response out of a few generated candi-
dates. Cheng et al. (2018) uses an additional input
signal – the specificity level of a response, which
is estimated by certain heuristics at training time
and can be varied during evaluation.

Another way to address the lack of the explicit
objective function is to predict many possible re-
sponses at once. Zhou et al. (2017) maps the

input message to the distribution over intermedi-
ate factors, each of which produces a different re-
sponse. Similarly, (Zhao et al., 2017; Shen et al.,
2018; Gu et al., 2018) use variants of variational
autoencoder. These approaches are complemen-
tary to defining the objective for dialogue mod-
els, as an external reward can further guide the re-
sponse generation and simplify learning such one-
to-many mappings.

Liu et al. (2016) hypothesizes that creating a
perfect metric for automatic evaluation (so it can
be used to optimize a dialogue model to be more
engaging, at least in principle) is as hard as cre-
ating human-like dialogue system itself. The au-
thors also note that some of the common automatic
evaluation metrics (of generated texts) like BLEU,
METEOR or ROGUE correlate poorly with hu-
man judgments of engagingness. Lowe et al.
(2017) suggests a metric ADEM, which is trained
to mimic human evaluators. While it’s shown to
have better correlation with the scores assigned
by humans, it also gives preference to safer and
generic responses.

In our work, we propose to measure how much
information the chit-chat bot has gathered about its
human counterpart as a proxy to the engagingness
of the dialogue. To the best of our knowledge, this
metric has not been explored actively in the design
of chit-chat bots.

To apply the metric to generate engaging utter-
ances, the chit-chat bot needs to have a model of
how the human partner will respond to its utter-
ances. To this end, we have used the chit-chat bot
developed in (Zhang et al., 2018) as a base model
and improved upon it. That bot, called PROFILE-
MEMORY, has a set of memories (basically, fac-
tual sentences) defining its persona and can out-
put personalized utterances using those memories.
Note that in (Zhang et al., 2018) PROFILEMEM-
ORY is used as a chit-chat bot to generate contex-
tualized dialogue (so as to be engaging). In our
work, however, we use it and its improved ver-
sion as a model of how humans might chat. Our
chit-chat bots can be any existing ones (such as
a vanilla SEQ2SEQ model without persona) or an-
other PROFILEMEMORY with its own persona that
is different from what humans might have. The
key difference is that our chit-chat bot generates
utterances to elicit human counterparts to reveal
about themselves while PROFILEMEMORY in its
original work generates utterances to tell stories

552

about itself.
Similar ideas have been explored in cognitive

research. Rothe et al. (2016) analyzed how people
ask questions to elicit information about the world
within a Battleship game (Gureckis and Markant,
2009). In particular, they proposed to evaluate
questions based on Expected Information Gain
(Oaksford and Chater, 1994), which is built on the
similar principles as DISCOVERYSCORE.

3 Method

In the following section, we describe in details our
approach for designing engaging chit-chat bots.
We start by describing the main idea, followed by
discussing each component in our approach.

3.1 Main Idea
The main idea behind our approach is that the chit-
chat bot stays in “discovery” mode. Its main goal
is to identify key aspects of its human counterpart.
Algorithmically, it chooses utterances to elicit re-
sponses from the human so that the responses in-
crease its understanding of the human.

More formally, imagine each human is char-
acterized by a collection of K facts F =
{z1, z2, . . . , zK}, where z1 is I was born in Rus-
sia, z2 is My favorite vegetable is carrot, and zK
is I like to swim. The chit-chat bot has access to a
universal set of all candidate facts U , and F is just
a subset of U . However, the bot does not know
the precise composition of F at the beginning of
the conversation. Its goal is to identify the subset
(or to reduce the uncertainty about it). With a bit
abuse of terminology, we call F the personality of
the human or the persona.

We denote a dialogue as a sequence of sentences
hN = [s1, t1, ..., sN , tN] where sn denotes the
sentences by the chit-chat bot and tn denotes the
ones by the human.

3.2 A Metric for Measuring Engagingness
The chit-chat bot assumes that the human’s re-
sponse t is generated probabilistically when it is
the human’s turn to respond to the chit-chat bot’s
utterance s

P (t | s, F) =
∑

z∈F
P (t | s, z)P (z | s, F) (1)

Intuitively, the human first decides on which fact z
she plans to use (ie, which information she wants
to reveal) and based on the fact and the chit-chat
bot’s question, she provides an answer.

The goal of the discovery oriented chit-chat is
to maximize the mutual information between the
dialogue and the revealed personality

I(F ;hN) = H[P (F)]−H[P (F | hN)] (2)

where H[·] stands for the entropy of the distribu-
tion. Maximizing the mutual information is equiv-
alent to minimizing the uncertainty about F after a
dialogue. Intuitively, the chit-chat bot aims to dis-
cover the maximum amount of knowledge about
the human. We thus term this quantity as the DIS-
COVERYSCORE.

For simplicity, we assume a uniform prior on
which F is. Thus, the key quantity to compute is
the entropy of the posterior probability. We pro-
ceed in two steps.

Calculating the posterior probability We as-
sume that every human’s response tn is indepen-
dent from the previous dialogue history, condi-
tioned on the immediately previous message, and
chatbot’s question sn is independent uncondition-
ally. Thus, the posterior can be computed recur-
sively:

P (F | hN) ≈
P (F | hN−1)

∑

f∈F
P (zN = f | sN , tN) (3)

where zN is the fact used in the N th turn. The
“single-turn” posterior for the specific fact f is
computed as (we have dropped the subscript N to
be cleaner)

P (z = f | s, t) =
P (t | s, z = f)P (z = f | s)∑

f ′∈U
P (t | s, z = f ′)P (z = f ′ | s) (4)

We will make a further simplifying assumption
that P (z = f ′ | s) is uniform1 and compute the

1This is only an approximation: the human will respond
to “what kind of food do you like?” with any facts that relate
to food but definitely not to geographical locations, sports,
etc. However, this assumption is not as damaging as long as
P (t | s, z = f) is almost zero for the z that P (z = f | s)
should be ignored – the multiplication would result in zero
anyway. Since z refers to the fact, P (t|s, z = f) being al-
most zero reduces to suggest that for a response t, there are
just only a very limited number of s (questions) and facts
that can be used to generate that response. For example, a re-
sponse “I lived in Russia as a child” can only be elicited from
“Where did you spend your childhood?” (as question) and “I
was born in Russia” (as a fact). For any other question and
fact pair (such as “Where did you spend your childhood?”,

553

posterior approximately

P (z = f | s, t) ≈ P (t | s, z = f)∑
f ′∈U P (t | s, z = f ′)

(5)

Substituting this into the expression for P (F |
hN), we obtain

P (F | hN) ≈

P (F | hN−1)
∑

f∈F P (tN | sN , zN = f)∑
f∈U P (tN | sN , zN = f)

(6)

Acute readers might have identified this as a form
of Bayesian belief update, incorporating new evi-
dence at timeN . The likelihood P (tN | sN , zN =
f) depends on how to model how the human gen-
erates responses. It is sufficient to note that this
probability can be computed conveniently by per-
sonalized chatbot models. We postpone the details
to the next section.

Calculating the entropy We make an assump-
tion that the number of facts K assigned to the
human is known in advance. Therefore, we can
consider only probabilities P (F | hN), where F
is of a particular known size.

P (F | hN , |F | = K) =
P (F | hN)∑

F ′⊂U ,|F ′|=K
P (F ′ | hN)

(7)
The entropy of distribution P (F | hN , |F | = K)
can be computed directly by enumerating all pos-
sible combinations of K facts.

3.3 ChatBot Models

In our work, there are two types of chatbot models.
The first one is the chit-chat bot who will respond
to messages from the human conversation partner.
While we can use any existing chatbot models, the
key ingredient to our approach is to respond so that
the expected gain of knowledge on the human is
increased. However, since the chit-chat bot can-
not inquire the human with “if I answer you this,
would I gain knowledge?”, it has to estimate the
gain in knowledge from its model of the human.
The second type of model addresses the aspect of
modeling the human. In particular, among the 3

and “I like apples”), the response would be unlikely. We be-
lieve this is largely due to the experimental/data design that
has ensured facts are being largely non-overlapping for each
personality and the dialogues are in general centered around
the facts. We leave to future work on how to refine this ap-
proximation.

models described below, all 3 can be used as the
chit-chat bot models and only PROFILEMEMORY

and PROFILEMEMORY+ can be used as the model
of humans2.

SEQ2SEQ dialogue model This basic model
maps an input message t to a vector representation
using the encoder LSTM layer and uses it as an
initial state hd0 for the decoder LSTM layer. The
decoder predicts a response s sequentially, word
by word via softmax. Both the encoder and the
decoder share the same input embeddings table.

PROFILEMEMORY model PROFILEMEM-
ORY (Zhang et al., 2018) is built on top of
SEQ2SEQ and uses exactly the same architecture
for the encoder. Additionally, it has a list of
memory slots (called profile memory) and each
slot stores a fact, represented by a sentence. Each
fact is encoded into a single vector representation
using the weighted average of its word embed-
dings where the embeddings table is shared with
the encoder and the decoder. In this work, we call
the profile memory as the personality.

The decoder is an LSTM layer with attention
over the encoded memories. In essence, the atten-
tion mechanism computes a weight for each fact
and a weighted sum of the facts form a context
vector. The context vector and the hidden states
are combined as inputs to a softmax layer to gen-
erate words sequentially. For details, please con-
sult (Zhang et al., 2018)

PROFILEMEMORY+ model The PROFILE-
MEMORY has a weakness that is especially critical
to our intent of using it as a model of the human.
It has to apply attention at every step, even when
responding to messages which are not relevant to
any of the facts. Thus it always reveals something
about the personality (unless the attention is
uniform, generally hard to achieve in practice).
To address this issue, we enhance the model with
a DefaultFact, which does not correspond to any
real sentence. It does have a vector representation
(as other facts do) except the representation is
learned during the training. An advantage is that
the DefaultFact allows to efficiently train on the
dialogue datasets without profile memories, such
as OpenSubtitles – intuitively it is the bucket
for “all other facts” that the dialogue does not
explicitly refer to.

2In our empirical studies, we use PROFILEMEMORY+

most of the time as it is more powerful than the other two.

554

3.4 Dialoguing with Intent to Discover
As a metric, DISCOVERYSCORE can only be com-
puted over and assess a finished dialogue. How
can we leverage it to encourage the chit-chat bot to
be more engaging? In what follows, we describe
one of the most important components in our ap-
proach.

Instead of using the standard maximum a pos-
terior inference for the typical SEQ2SEQ (and its
variants) to generate a sentence, we proceed in
two steps to identify the best utterance that has the
potential to yield high DISCOVERYSCORE. The
first step is to generate a large set of candidate ut-
terances (for example, using beam search). The
second step is to re-rank these utterances. We de-
scribe the second step in details as the first step is
fairly standard.

At the N th turn of the dialogue, the chit-chat
bot has access to the dialogue history hN−1 and an
estimate of the human’s personality P (F | hN−1).
Let s be a sentence from the chatbot’s candidate
set. Since the bot has a model of the human, it can
predict the human’s response t as

t ∼ P (· | hN−1, s, F) = P (· | s, F) (8)

where F is used to instantiate the model’s mem-
ory/facts/personality – in other words, we query
the model to see what kind of utterances the hu-
man might respond with.

The value of a possible response s, i.e, the ex-
pected DISCOVERYSCORE assuming s and t com-
pletes the dialogue with hN = [hN−1, s, t], is then
given by

V (s) = EF∼P (·|hN−1)Et∼P (·|s,F)I(F ;hN) (9)

Note that the first expectation is needed as the bot
has uncertainty of what personality the human is.
In practice, we compute this for each s from the
candidate set by sampling F and t. We then select
the optimal utterance that maximize the value

sN = argmax
s
V (s) (10)

4 Experiments

We evaluate empirically the proposed approach
in several aspects. First, we investigate the ef-
fectiveness of the proposed PROFILEMEMORY+

model. This model is especially used to model
human interlocutors so that it can be used by the
chit-chat bot to estimate how an utterance could

elicit the human partner to reveal key facts about
her (cf. Section 3.4). Secondly, we investigate
whether the proposed metric DISCOVERYSCORE

correlates with the engagingness score of a dia-
logue assessed by human evaluators.

4.1 Evaluating PROFILEMEMORY+

We contrast PROFILEMEMORY+ to SEQ2SEQ and
PROFILEMEMORY. We show that not only PRO-
FILEMEMORY+ is a stronger model for personal-
ized chit-chat but also PROFILEMEMORY+ does
not reveal its personality easily. Being discreet
is a highly desirable property when the model is
used to simulate the human participating in the di-
alogue; when the facts are easily revealed, then the
chit-chat bot can use generic or irrelevant ques-
tions to identify the personality thus the dialogue
does not become engaging.

4.1.1 As a stronger personalized chatbot
Datasets We train all three models on the orig-
inal PersonaChat dataset (Zhang et al., 2018) and
the Year 2009 version of the OpenSubtitles cor-
pus (Tiedemann, 2009). The PersonaChat data
set, which consists of crowdsourced 9000 dia-
logues (123,000 message-response pairs in total)
between two people with randomly assigned per-
sonas/personalities. There are total 1155 person-
alities and each personality is defined by 3 to 5
memories (facts such as “I was born in Russia”
or “I like to swim”). 968 dialogues are set aside
for validation and 1000 for testing. We report the
perplexity of our models on this test data set. The
OpenSubtitles corpus has 322,000 dialogues (1.2
million message-response pairs). During training,
we augment samples from OpenSubtitles with ran-
dom personas, which forces PROFILEMEMORY+

to actively prioritize DefaultFact over these fake
facts.

Implementation Details Similarly to (Zhang
et al., 2018), we use a single layer LSTM for both
the encoder and the decoder with hidden size of
1024 for all models. The word embeddings are
of size 300 and are initialized with GloVe word
vectors (Pennington et al., 2014). All models are
trained for 20 epochs to maximize the likelihood
of the data by using SGD with momentum with
batch size 128. Learning rate is reduced by a fac-
tor of 4 if the validation perplexity has increased
compared to the previous epoch. We found that
general post-attention (Luong et al., 2015) over

555

Model Datasets Perplexity
SEQ2SEQ P 38.08

PROFILEMEMORY P 34.54
SEQ2SEQ P 31.538
SEQ2SEQ P+O 30.022

PROFILEMEMORY P 28.406
PROFILEMEMORY P+O 27.373

PROFILEMEMORY+ P 28.098
PROFILEMEMORY+ P+O 26.807

Table 1: Perplexity on PersonaChat test dialogues by 3 dif-
ferent models. For datasets, P stands for PersonaChat and O
for OpenSubtitles. The first two rows are reported by (Zhang
et al., 2018). The rests are from our implementation.

encoded memories gives better performance than
pre-attention. Weights for encoding memories are
being learned during training and are initialized
with 0.01 for the top 100 frequent words, and with
1 for others. We found that this simple initializa-
tion procedure outperforms the one suggested in
(Zhang et al., 2018).

Results The perplexity on the test dialogues by
all of the models is contrasted in Table 1. The first
two rows are previously reported in (Zhang et al.,
2018). The rest results are from models imple-
mented by us.

Our re-implementation of SEQ2SEQ and PRO-
FILEMEMORY show better performance than what
are reported in (Zhang et al., 2018), likely due to
the difference in the amount of data used for train-
ing3 , as well as model architecture (post- instead
of pre-attention) and optimization procedure (e.g.,
SGD vs. ADAM).

Including additional data such as OpenSubti-
tles, in general, improves performance. Our PRO-
FILEMEMORY+ performs better than PROFILE-
MEMORY. This is the benefit of having Default-
Fact (cf. Section 3.3) which re-directs the attention
by the messages and responses that are not related
to the real personality away it. On the other end,
in PROFILEMEMORY, the attention has to select
a real personality no matter what the messages or
responses are.

4.1.2 As a discreet chatbot
Since we intend to use a personalized chatbot such
as PROFILEMEMORY and PROFILEMEMORY+ as
a model of the human interlocutor, we would want
the model to behave intelligently: when given an

3Zhang et al. (2018) only modeled the second person in
dialogues, which reduces the training data by half.

PROFIL
EM

EM
ORY

PROFIL
EM

EM
ORY

+

*P
ROFIL

EM
EM

ORY

*P
ROFIL

EM
EM

ORY
+

0

10

20

30

40

A
cc

ur
ac

y,
%

OpenSubtitles
PersonaChat
CornellMovieD
DailyDialog

Figure 1: Average accuracies of utterances sampled
from different corpora (PersonaChat, OpenSubtitles, Cor-
nellMovieDialog, DailyDialog) in revealing the personality
of the human interlocutor modeled by personalized chat-
bots (cf. Section 4.1.2). PROFILEMEMORY and PROFILE-
MEMORY+ have been trained on PersonaChat data set, while
*PROFILEMEMORY and *PROFILEMEMORY+ have been
trained on both PersonaChat and OpenSubtitles.

Top 5 sentences, accuracy 29-32%
Tell me about it! What do you do for fun?

Nice! what is it that you do?

In a cabin, all by myself, hoping my grandkids will visit.
any you?

You should give it a try! what do you do with your
weekends?

Wow cool. what do you do in your spare time. i work on
art projects.

Bottom 5 sentences (sampled), accuracy 0%
How come you were rejected?

So he can stay put

Spending the night pondering life.

Hence the fact that she survived.

Maybe she just needs a friend?

Table 2: Examples of sentences from PersonaChat dataset
with the highest and the worst accuracies in revealing a per-
sonality of PROFILEMEMORY+ model (trained jointly on
PersonaChat and OpenSubtitles). We expect human to re-
ply to such utterances with something which will more likely
(correspondingly, less likely) reveal her personality. Note,
that we don’t predict human’s personality from the presented
utterances alone. Rather, these are considered good (corre-
spondingly, bad) questions to get to know your interlocutor
better.

556

irrelevant message, the model should not reveal its
personality. When given a relevant message, the
model reveals its personality. We can expect a sim-
ilar behavior from a real human, which might re-
ply with “I don’t know” or “I don’t understand”,
when the question is irrelevant to them. In other
words, we want to avoid simulating dialogues like
this – Chatbot: “Hmm... Thank you.”, Human
(Simulation): “I was born in Russia”. With this
adversity, the chit-chat bot has to ask meaningful
and relevant questions if its goal is to discover the
personality of the human interlocutor.

Experiment setup We randomly sample 100
memories/facts (out of total 5709) from the Per-
sonaChat dataset. For simplicity, we assume the
model of the human interlocutor has a simple per-
sonality, denoted by one of the 100 facts. We as-
sign this single personality to each of the PRO-
FILEMEMORY and PROFILEMEMORY+ models
trained on either the PersonalChat dataset or
jointly with the OpenSubtitles dataset. So there
are 4 variants in total.

We then construct a simple 2-turn dialogue,
where the model is given a probing message and
the model responses with a sampled utterance. We
use the DISCOVERYSCORE (cf. Section 3.2) to
measure how much the dialogue reveals a person-
ality. We then select the personality that maxi-
mizes the revealing. If the selected personality is
the true personality, we consider the lead message
is able to accurately predict the personality. We
then average all probing messages to compute the
averaged accuracy.

For probing messages, we use sentences from
4 different datasets - PersonaChat, OpenSubtitles,
CornellMovieDialogCorpus (Danescu-Niculescu-
Mizil and Lee, 2011) and DailyDialog (Li et al.,
2017). Our expectation is that an ideal model
won’t reveal its personality when asked a random
question from OpenSubtitles or CornellMovieDi-
alogCorpus, since most of the time it’s completely
irrelevant lines from a movie script. DailyDia-
log contains more casual conversations, so some
of them we expect to be useful. Of course, the
accuracy of random sentences from PersonaChat
should be the highest on average, since the corpus
was collected with the intent to get to know each
other better.

Results The averaged accuracies from the dif-
ferent corpora are shown in Figure 1.

For PROFILEMEMORY+ trained only on Per-
sonaChat data, all types of sentences have similar
effectiveness in predicting personality. However,
after joint learning with OpenSubtitles, only sen-
tences from PersonaChat (which are most relevant
to personalities) are able to predict noticeably ac-
curate than other sentences.

As an illustration, examples of the sentences
from PersonaChat with the best and the worst ac-
curacy are presented in the Table 2, for the PRO-
FILEMEMORY+ trained both on PersonaChat and
OpenSubtitles.

These findings, together with the superior mod-
eling ability (cf. Section 4.1.1 and Table 1), have
validated the usage of PROFILEMEMORY+ trained
additionally on OpenSubtitles as a proper model
for human interlocutors.

4.2 Human Evaluation
We report human evaluations to show that (1) DIS-
COVERYSCORE can be used to measure how en-
gaging the conversation is. (2) the dialogue’s qual-
ity can be increased by choosing a response with
the highest expected future DISCOVERYSCORE

(cf. Section 3.4).

Setup We use “The Conversational Intelligence
Challenge 2”4 evaluation procedure provided in
ParlAI framework (Miller et al., 2017). We use
around 200 Amazon Mechanical Turkers for hu-
man evaluation. The same procedure is also used
in (Zhang et al., 2018).

During an evaluation round, a Turker is as-
signed a random persona (with 3-5 profile facts)
from the PersonaChat dataset. Each Turker is
paired with a chatbot – we experiment with several
models including SEQ2SEQ and PROFILEMEM-
ORY trained on PersonaChat and PROFILEMEM-
ORY+ model trained on both PersonaChat and
OpenSubtitles. The chatbot can also adopt per-
sonal facts, but only PROFILEMEMORY and PRO-
FILEMEMORY+ are able to utilize it. Every evalu-
ation dialogue has at least 6 turns per participant.

After the dialogue the Turker is asked to eval-
uate its interlocutor (i.e., the chatbot) by how flu-
ent, engaging and consistent it is on a 1 to 5 scale
(5 being the best). Our primary focus is engaging-
ness score and we will show in below that it cor-
relates well with the DISCOVERYSCORE we pro-
posed. The Turker is also asked to guess the chat-
bot’s persona out of two given persona candidates

4http://convai.io

557

ChatBot Model Fluency Engagingness Consistency Persona
Detection,
%

SEQ2SEQ 3.90 (1.24) 3.52 (1.44) 3.77 (1.32) 57.14
+ BeamSearch 4.25 (1.13) 3.51 (1.11) 3.92 (1.27) 47.41
+ BeamSearch + Re-ranking 4.64 (0.67) 3.92 (1.14) 4.03 (1.16) 48.65
PROFILEMEMORY 4.13 (1.04) 3.62 (1.48) 3.92 (1.29) 68.57
+ BeamSearch 4.54 (0.82) 3.92 (1.09) 4.28 (1.11) 60.58
+ BeamSearch + Re-ranking 4.25 (0.97) 4.10 (1.10) 4.22 (1.06) 70.00
PROFILEMEMORY+ 4.03 (1.22) 3.70 (1.22) 3.79 (1.34) 78.89
+ BeamSearch 4.59 (0.84) 3.73 (1.44) 4.16 (1.20) 61.22
+ BeamSearch + Re-ranking 4.41 (1.05) 4.27 (1.07) 3.99 (1.26) 69.89

Table 3: Human evaluation results of various dialogues models. Every model is evaluated by its fluency, engagingness and
consistency on a scale from 1 to 5. Persona Detection corresponds to how accurate a human can guess the chatbot’s personality
thus demonstrating how well a model utilizes the assigned persona (note, it’s not related to DISCOVERYSCORE). Numbers in
parenthesis correspond to standard deviation.

Engagingness Average DISCOVERYSCORE % of questions Average Length
1 2.578 (1.697) 37.6 8.04
2 2.776 (1.923) 48.4 8.53
3 2.634 (1.837) 53.0 8.29
4 2.977 (2.044) 65.6 7.92
5 3.196 (1.682) 55.6 8.68

Table 4: Average DISCOVERYSCORE over dialogues grouped by corresponding engagingness score in different tiers. Num-
bers in parenthesis correspond to standard deviation.

(each with 3-5 profile facts). This metric is called
“Persona Detection” and demonstrates how well
the model is utilizing the assigned persona. Natu-
rally, we expect SEQ2SEQ-based chatbots to have
Persona Detection rate around 50% since they are
not using provided persona at all. Each chatbot
model is evaluated on at least 100 dialogues.

Response generation We experimented with
both the greedy decoding (which is default) and
the beam search (with 100 beam size) for text gen-
eration.

DISCOVERYSCORE-based re-ranking As
described in Section 3.4, we use DISCOV-
ERYSCORE-based re-ranking to select the
response with the intent to discover the person-
ality of the human participant. Concretely, the
chatbot is given a set of 30 facts from PersonaChat
data set, which does include the true facts. The
chatbot is also told that the human has only
3 facts in her personality. This is mainly for
computational efficiency.

The re-ranking takes place in two steps. First,
the chatbot generates 100 response candidates.
For every candidate, it performs 10 simulated di-

alogues with the PROFILEMEMORY+ model as a
proxy for the human interlocutor. Finally, it se-
lects the response with the highest expected DIS-
COVERYSCORE.

Results The evaluation results are presented in
the Table 3. The results clearly demonstrate
that the DISCOVERYSCORE-oriented re-ranking
makes conversations more engaging for all type of
the chatbot models.

When re-ranking is used, many human evalu-
ators provided a feedback stating that the model
was acting “genuinely interested” and asked a lot
of questions. In contrast, modeling without re-
ranking had a lower engagingness score precisely
because of the lack of questions.

Persona Detection score indicates that PRO-
FILEMEMORY+ is doing a better job in modeling
a persona. We also see a decrease in this metric
when we combine PROFILEMEMORY+ with the
re-ranking procedure, which is likely caused by
the chatbot asking more questions than revealing
itself personality.

Example dialogues between human and two
PROFILEMEMORY+ models with and without
DISCOVERYSCORE-based re-ranking are given in

558

ChatBot’s Persona Human’s Persona
I will graduate from college in two years. I play piano.

My parents are divorced. I have a ten year old son.

I could not live without my dog, Bart. I graduated high school in 1986.

I am very popular and have a lot of friends. I hope to become a music teacher after retirement.

I am an excellent student.

[Human]: Hi! How are you doing?

PROFILEMEMORY+: I am good how are you

DISCOVERYSCORE: I am well, thank you. How are you?

[Human]: I’m doing okay

PROFILEMEMORY+: Okay.

DISCOVERYSCORE: Ok. What do you do for work?

[Human]: I’m working in some local company. How about you?

PROFILEMEMORY+: I am a stay at home mom

DISCOVERYSCORE: I am a college student. Do you have any hobbies?

[Human]: I’m a musician, I’m playing piano from time to time.

PROFILEMEMORY+: What city are you from?

DISCOVERYSCORE: That is cool. Do you have any hobbies?

[Human]: Not really. But I hope to become a music teacher soon. What are your hobbies?

PROFILEMEMORY+: What kind of music do you like?

DISCOVERYSCORE: I like to spend time with my friends and family. You?

Table 5: Examples of the dialogue between human and chatbots: PROFILEMEMORY+ model conducts only beam size for best
response and DISCOVERYSCORE additionally uses DISCOVERYSCORE-based re-ranking.

the Table 5.

DISCOVERYSCORE as a proxy for Engaging-
ness We group all the dialogues between chat-
bots and humans by the assigned engaging-
ness score and compute the average DISCOV-
ERYSCORE, average length of utterances and av-
erage percentage of generated questions - see Ta-
ble 4. Interestingly enough, there is no obvious
correlation between how engaging the dialogue
has been perceived and simple metrics like the
length of the response or the number of asked
questions. On the other hand, it is strongly cor-
related with DISCOVERYSCORE, indicating that it
indeed can be used as one of the automatic metrics
for dialogues quality.

5 Conclusion & Future Work

We introduce a new metric DISCOVERYSCORE to
assess the engagingness of a dialogue based on the
intuition that the more interested the chatbot is in
its interlocutor the more engaging the dialog be-
comes. We propose an improved PROFILEMEM-
ORY+ model, which achieves state-of-the-art per-
plexity results on the PersonaChat dataset. One
appealing property of the model is that it doesn’t
reveal assigned personality upon irrelevant ques-

tions. We demonstrate how it can be used to esti-
mate the expected DISCOVERYSCORE by running
simulations with the model as a human substitute.
A re-ranking method that uses such estimates al-
lows us to significantly improve the dialogue en-
gagingness score over several baselines, which we
demonstrate with human evaluations.

We hope to continue exploring DISCOV-
ERYSCORE in more general settings with richer,
more complicated personalization or when profile
information is not explicitly defined.

Acknowlegements

We appreciate the feedback from the review-
ers. This work is partially supported by
USC Graduate Fellowships, NSF IIS-1065243,
1451412, 1513966/1632803/1833137, 1208500,
CCF-1139148, a Google Research Award, an Al-
fred P. Sloan Research Fellowship, gifts from
Facebook and Netflix, and ARO# W911NF-12-1-
0241 and W911NF-15-1-0484.

References
Nabiha Asghar, Pascal Poupart, Xin Jiang, and Hang

Li. 2017. Deep active learning for dialogue gener-
ation. In Proceedings of the 6th Joint Conference

559

on Lexical and Computational Semantics, *SEM
@ACM 2017, Vancouver, Canada, August 3-4, 2017,
pages 78–83. Association for Computational Lin-
guistics.

Regina Barzilay and Min-Yen Kan, editors. 2017. Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017, Van-
couver, Canada, July 30 - August 4, Volume 1: Long
Papers. Association for Computational Linguistics.

Xueqi Cheng, Jun Xu, Jiafeng Guo, Yanyan Lan,
Ruqing Zhang, and Yixing Fan. 2018. Learning
to control the specificity in neural response gener-
ation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Vol-
ume 1: Long Papers, pages 1108–1117. Association
for Computational Linguistics.

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A
new approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the Work-
shop on Cognitive Modeling and Computational
Linguistics, ACL 2011.

Xiaodong Gu, Kyunghyun Cho, JungWoo Ha, and
Sunghun Kim. 2018. Dialogwae: Multimodal
response generation with conditional wasserstein
auto-encoder. CoRR, abs/1805.12352.

Todd M Gureckis and Douglas B. Markant. 2009. Ac-
tive Learning Strategies in a Spatial Concept Learn-
ing Game. Proceedings of the 31st Annual Confer-
ence of the Cognitive Science Society.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016, pages 110–119. The Association for Compu-
tational Linguistics.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep rein-
forcement learning for dialogue generation. In (Su
et al., 2016a), pages 1192–1202.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing, IJCNLP 2017, Taipei,
Taiwan, November 27 - December 1, 2017 - Volume
1: Long Papers, pages 986–995. Asian Federation
of Natural Language Processing.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How NOT to evaluate your dialogue system:

An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In (Su et al.,
2016a), pages 2122–2132.

Ryan Lowe, Michael Noseworthy, Iulian Vlad Ser-
ban, Nicolas Angelard-Gontier, Yoshua Bengio, and
Joelle Pineau. 2017. Towards an automatic turing
test: Learning to evaluate dialogue responses. In
(Barzilay and Kan, 2017), pages 1116–1126.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421. The
Association for Computational Linguistics.

Alexander H. Miller, Will Feng, Dhruv Batra, Antoine
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and
Jason Weston. 2017. Parlai: A dialog research soft-
ware platform. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017 - System Demonstrations,
pages 79–84. Association for Computational Lin-
guistics.

Mike Oaksford and Nick Chater. 1994. A rational anal-
ysis of the selection task as optimal data selection.
Psychological Review, 101(4):608–631.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543. ACL.

Alan Ritter, Colin Cherry, and William B. Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2011, 27-31 July 2011, John McIntyre Conference
Centre, Edinburgh, UK, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 583–593.
ACL.

Anselm Rothe, Brenden M. Lake, and Todd M.
Gureckis. 2016. Asking and evaluating natural
language questions. In Proceedings of the 38th
Annual Meeting of the Cognitive Science Society,
Recogbizing and Representing Events, CogSci 2016,
Philadelphia, PA, USA, August 10-13, 2016. cogni-
tivesciencesociety.org.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C. Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. In (Singh and Markovitch, 2017), pages
3295–3301.

560

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conver-
sation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Pa-
pers, pages 1577–1586. The Association for Com-
puter Linguistics.

Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg.
2018. Improving variational encoder-decoders in
dialogue generation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
New Orleans, Louisiana, USA, February 2-7, 2018.
AAAI Press.

Satinder P. Singh and Shaul Markovitch, editors. 2017.
Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA. AAAI Press.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In NAACL HLT
2015, The 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 196–
205. The Association for Computational Linguistics.

Jian Su, Xavier Carreras, and Kevin Duh, editors.
2016a. Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4,
2016. The Association for Computational Linguis-
tics.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Maria
Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve J. Young. 2016b.
Continuously learning neural dialogue management.
CoRR, abs/1606.02689.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, pages 3104–
3112.

Jörg Tiedemann. 2009. News from OPUS – a collec-
tion of multilingual parallel corpora with tools and
interfaces. In Proceedings of Recent Advances in
Natural Language Processing (RANLP), volume 5,
pages 237–248.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. CoRR, abs/1506.05869.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei-Hao Su, Stefan
Ultes, David Vandyke, and Steve J. Young. 2016.
A network-based end-to-end trainable task-oriented
dialogue system. CoRR, abs/1604.04562.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? CoRR, abs/1801.07243.

Tiancheng Zhao, Ran Zhao, and Maxine Eskénazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In (Barzilay and Kan, 2017), pages 654–
664.

Ganbin Zhou, Ping Luo, Rongyu Cao, Fen Lin,
Bo Chen, and Qing He. 2017. Mechanism-aware
neural machine for dialogue response generation. In
(Singh and Markovitch, 2017), pages 3400–3407.

561

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 562–572
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Neural Maximum Subgraph Parsing
for Cross-Domain Semantic Dependency Analysis

Yufei Chen♠, Sheng Huang♠, Fang Wang♠, Weiwei Sun♠♥ and Xiaojun Wan♠
♠ Institute of Computer Science and Technology, Peking University

♠ The MOE Key Laboratory of Computational Linguistics, Peking University
♥ Center for Chinese Linguistics, Peking University

{yufei.chen,huangsheng,foundwang,ws,wanxiaojun}@pku.edu.cn

Abstract

We present experiments for cross-domain se-
mantic dependency analysis with a neural
Maximum Subgraph parser. Our parser targets
1-endpoint-crossing, pagenumber-2 graphs
which are a good fit to semantic dependency
graphs, and utilizes an efficient dynamic pro-
gramming algorithm for decoding. For dis-
ambiguation, the parser associates words with
BiLSTM vectors and utilizes these vectors to
assign scores to candidate dependencies. We
conduct experiments on the data sets from Se-
mEval 2015 as well as Chinese CCGBank.
Our parser achieves very competitive results
for both English and Chinese. To improve the
parsing performance on cross-domain texts,
we propose a data-oriented method to ex-
plore the linguistic generality encoded in En-
glish Resource Grammar, which is a precision-
oriented, hand-crafted HPSG grammar, in an
implicit way. Experiments demonstrate the ef-
fectiveness of our data-oriented method across
a wide range of conditions.

1 Introduction

Semantic Dependency Parsing (SDP) is defined
as the task of recovering sentence-internal bilex-
ical semantic dependency structures, which en-
code predicate–argument relationships for all con-
tent words. Such sentence-level semantic analy-
sis of text is concerned with the characterization
of events and is therefore important to understand
the essential meaning of a natural language sen-
tence. With the advent of many supporting re-
sources, SDP has become a well-defined task with
a substantial body of work and comparative eval-
uation. (Almeida and Martins, 2015; Du et al.,
2015a; Zhang et al., 2016; Peng et al., 2017; Wang
et al., 2018). Two SDP shared tasks have been run
as part of the 2014 and 2015 International Work-
shops on Semantic Evaluation (SemEval) (Oepen
et al., 2014, 2015).

There are two key dimensions of the data-driven
dependency parsing approach: decoding and dis-
ambiguation. Existing decoding approaches to
syntactic or semantic analysis into bilexical de-
pendencies can be categorized into two domi-
nant types: transition-based (Zhang et al., 2016;
Wang et al., 2018) and graph-based, i.e., Max-
imum Subgraph (Kuhlmann and Jonsson, 2015;
Cao et al., 2017a) approaches. For disambigua-
tion, while early work on dependency parsing fo-
cused on global linear models, e.g., structured per-
ceptron (Collins, 2002), recent work shows that
deep learning techniques, e.g., LSTM (Hochre-
iter and Schmidhuber, 1997), is able to signif-
icantly advance the state-of-the-art of the pars-
ing accuracy. From the above two perspectives,
i.e., the decoding and disambiguation frameworks,
we find that what is still underexploited is neu-
ral Maximum Subgraph parsing for highly con-
strained graph classes, e.g., noncrossing graphs.
In this paper, we fill this gap in the literature by
developing a neural Maximum Subgraph parser.

Previous work showed that the 1-endpoint-
crossing, pagenumber-2 (1EC/P2) graphs are an
appropriate graph class for modeling semantic de-
pendency structures (Cao et al., 2017a). In this pa-
per, we build a parser that targets 1EC/P2 graphs.
Based on an efficient first-order Maximum Sub-
graph decoder, we implement a data-driven parser
that scores arcs based on stacked bidirectional-
LSTM (BiLSTM) together with a multi-layer per-
ceptron. Using the benchmark data sets from the
SemEval 2015 Task 18 (Oepen et al., 2015), our
parser gives very competitive results for English
semantic parsing. To test the ability for cross-
lingual parsing, we also conduct experiments on
the Chinese CCGBank (Tse and Curran, 2010) and
Enju HPSGBank (Yu et al., 2010) data. Our parser
plays equally well for Chinese, resulting in an er-
ror reduction of 23.5% and 9.4% over the best

562

published result reported in Zhang et al. (2016)
and Du et al. (2015b).

Most studies on semantic parsing focused on
the in-domain setting, meaning that both train-
ing and testing data are drawn from the same do-
main. Even a data-driven parsing system achieves
a high in-domain accuracy, it usually performs
rather poorly on the out-of-domain data (Oepen
et al., 2015). How to build robust semantic de-
pendency parsers that can learn across domains re-
mains an under-addressed problem. To improve
the cross-domain parsing performance, we pro-
pose a data-oriented model to explore the linguis-
tic generality encoded in a hand-crafted, domain-
independent, linguistically-precise English gram-
mar, namely English Resource Grammar (ERG;
Flickinger, 2000). In particular, we introduce
a cost-sensitive training model to learn cross-
domain semantic information implicitly encoded
in WikiWoods (Flickinger et al., 2010), i.e., a
corpus that collects the wikipedia1 texts as well
as their automatic syntactico-semantic annotations
produced by ERG. Evaluation demonstrates the
usefulness of the imperfect annotations automat-
ically created by ERG.

Our parser is available at https://github.
com/draplater/msg-parser.

2 Semantic Dependency Parsing

2.1 Semantic Dependency Analysis
SDP is the task of mapping a natural language sen-
tence into a formal meaning representation in the
form of a dependency graph. Figure 1 shows an
Minimal Recursion Semantics (MRS; Copestake
et al., 2005) reduced semantic dependency anal-
ysis (Ivanova et al., 2012). In this example, the
semantic analysis is represented as a labeled di-
rected graph in which the vertices are tokens in
the sentence. The graph abstracts away from syn-
tactic analysis (e.g., the complementizer—that—
and passive construction are excluded) and in-
cludes most semantically relevant non-anaphoric
local (e.g., from “wants” to “Mark”) and long-
distance (e.g., from “buy” to “company”) depen-
dencies. The arc labels encode linguistically-
motivated, broadly-applicable semantic relations
that are grounded under the type-driven semantics.
It is worth noting that semantic dependency graphs
are not necessarily trees: (1) a token may be mul-
tiply headed because a word can be the arguments

1https://www.wikipedia.org

The company that Mark wants to buy is broken

BV
ARG2

ARG1

ARG1

ARG2

top

ARG2

Figure 1: A fragment of a semantic dependency graph.

of more than one predicate; (2) cycles are allowed
if the direction of arcs are not taken into account.

2.2 Previous Work

Some recent work on parsing targets the graph-
structured semantic representations that are more
general than the tree representation. Existing ap-
proaches can be categorized into two dominant
types: the transition-based (Zhang et al., 2016;
Wang et al., 2018) and graph-based, i.e., Max-
imum Subgraph (Kuhlmann and Jonsson, 2015;
Cao et al., 2017a), approaches. Previous investiga-
tions on transition-based string-to-semantic-graph
parsing adopt many ideas from syntactic string-to-
tree parsing, such as how to handle crossing arcs
and how to perform neural disambiguation. Zhang
et al. (2016) introduced two transition systems that
can generate arbitrary graphs and augmented them
into practical semantic dependency parsers with a
structured perceptron model. Wang et al. (2018)
evaluated the effectiveness of deep learning tech-
niques for transition-based SDP.

Kuhlmann and Jonsson (2015) proposed to for-
mulate SDP as the search for the maximum sub-
graphs for some particular graph classes. This
proposal is called Maximum Subgraph parsing,
which is a generalization of the graph-based pars-
ing framework for syntactic parsing. For arbitrary
graphs, Du et al. (2015a) proved that the second-
order Maximum Subgraph problem is an NP-
hard problem. Nevertheless, Almeida and Mar-
tins (2015) and Du et al. (2015a) showed that dual
decomposition is a practical technique to solve
the problem. Considering more restricted graph
classes, Kuhlmann and Jonsson (2015) introduced
a dynamic programming algorithem for parsing to
noncrossing graphs. Cao et al. (2017a; 2017b)
showed that 1EC/P2 graphs are more suitable for
describing semantic graphs than the noncrossing
graphs, and they also allow low-degree dynamic
programming algorithms for decoding.

563

3 A Neural Maximum Subgraph Parser

3.1 Maximum Subgraph Parsing

Usually, syntactic dependency analysis employs
the tree-shaped representation. Dependency pars-
ing, thus, can be formulated as the search for
a maximum spanning tree (MST) from an arc-
weighted (complete) graph. For SDP where
the target representation are no longer trees,
Kuhlmann and Jonsson (2015) proposed to gener-
alize the MST model to other types of subgraphs.
In general, dependency parsing is formulated as
the search for Maximum Subgraph regarding to
a particular graph class, viz. G: Given a graph
G = (V,A), find a subset A′ ⊆ A with maxi-
mum total weight such that the induced subgraph
G′ = (V,A′) belongs to G. Formally, we have the
following optimization problem:

G′(s) = arg max
H∈G(s,G)

SCORE(H)

= arg max
H∈G(s,G)

∑

p in H

SCOREPART(s, p)

(1)

Here, G(s,G) is the set of all graphs that belong
to G and are compatible with s andG. For parsing,
G is usually a complete graph. SCOREPART(s, p)
evaluates whether a small subgraph p of a candi-
date graph H is a good partial analysis for sen-
tence s.

For some graph classes and some types of
score functions, there exists efficient algorithms
for solving (1). For example, when G is the set of
noncrossing graphs and SCOREPART is limited to
handle individual dependencies, (1) can be solved
in cubic-time (Kuhlmann and Jonsson, 2015).

3.2 Parsing to 1EC/P2 Graphs

Previous work showed that the Maximum Sub-
graph framework is not only elegant in theory
but also effective in practice (Kuhlmann and Jon-
sson, 2015; Cao et al., 2017a,b). In particular,
1EC/P2 graphs are an appropriate graph class for
modeling semantic dependency structures (Cao
et al., 2017a). Figure 2 presents an example to
illustrate the 1-endpoint-crossing property, while
Figure 3 shows a case for pagenumber-2. Below
we present the formal description of the two prop-
erties that are adopted from Pitler et al. (2013) and
Kuhlmann and Jonsson (2015) respectively.

a b c d e

Figure 2: (a, c)’s crossing edges (b, d) and (b, e) share an
endpoint b.

a b c d e f

Page 1

Page 2

Figure 3: A pagenumber-2 graph. The upper and the lower
figures represent two half-planes respectively.

Definition 1 A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p named pencil point.

Definition 2 A pagenumber-k graph means it
consists at most k half-planes, and arcs on each
half-plane are noncrossing.

If G is the set of 1-endpoint-crossing graphs
or more restricted 1EC/P2 graphs, the optimiza-
tion problem (1) in the first-order case can be
solved in quintic-time (Cao et al., 2017a) by us-
ing dynamic programming. Furthermore, ignoring
one linguistically-rare structure in 1EC/P2 graphs
descreases the complexity to O(n4) (Cao et al.,
2017a). In this paper, we implement Cao et al.
Cao et al. (2017a)’s algorithm as the basis of our
parser.

3.3 Disambiguation with an LSTM

3.3.1 The Architecture
A semantic graph mainly consists of two parts: the
structural part and the label part. The former de-
scribes the predicate–argument relation in the sen-
tence, and the latter describes the type of this rela-
tion. In our model, the structural part and the la-
bel part are regarded as independent of each other.
We use a coarse-to-fine strategy: finding the max-
imum unlabeled subgraph first and assigning a la-
bel for every edge in this subgraph then. The mo-
tivation is to avoid the calculation of a number of
unnecessary label scores in order to improve the
processing efficiency.

Following Kiperwasser and Goldberg (2016)’s
successful experience on syntactic tree parsing and
Peng et al. (2017)’s experience on semantic graph
parsing, we employ a stacked bidirectional-LSTM
(BiLSTM) based model to assign scores. In our
system, the BiLSTM vectors associated with the
input words are utilized to calculate scores for the

564

...LSTM LSTM LSTM

He PRP wants VBZ go VB

...

Figure 4: The architecture of the network when processing
He wants to go. The upper-left nonlinear transform is used
for edge scoring while the upper right one is used for label
scoring.

candidate dependencies as well as their relation
types. Figure 4 shows the architecture of our sys-
tem.

3.3.2 Dense Representations
We use words as well as POS tags as clues
for scoring an individual arc. In particular, we
transform all of them into continuous and dense
vectors. Inspired by Costa-jussà and Fonollosa
(2016)’s work, we utilize character-based em-
bedding for low-frequency words, i.e., words
that appear more than k times in the train-
ing data, and word-based embeddings for other
words. The word-based embedding module ap-
plies the common lookup-table mechanism, while
the character-based word embedding wi is im-
plemented by extracting the features (denoted as
c1, c2, . . . , cn) within a character-based BiLSTM:

x1 : xn = BiLSTM(c1 : cn)

wi = x1 + xn

3.3.3 Lexical Feature Extractor
The concatenation of word embedding wi and
POS-tag embedding pi of each word in specific
sentence is used as the input of BiLSTMs to ex-
tract context-related feature vectors ri for each po-
sition i.

ai = wi ⊕ pi

r1 : rn = BiLSTM(a1 : an)

3.3.4 Factorized Scoring
In our first order model, the SCORE function eval-
uates the preference of a semantic dependency
graph by considering every bilexical relation in
this graph one by one. In particular, the corre-
sponding SCOREPART function assigns a score to
a candidate arc between word i and word j using a
non-linear transform from the two feature vectors,
viz. ri and rj , associated to the two words:

SCOREPART(i, j) =
W2 · ReLU(W1,1 · ri + W1,2 · rj + b)

The assignment task for dependency labels can
be regarded as a classification task. Our label scor-
ing process is similar to the prediction of depen-
dencies:

LABEL(i, j) = arg max
W2 · ReLU(W1,1 · ri + W1,2 · rj + b) + b2

We can see here the two local score functions
explicitly utilize the positions of a semantic head
and a semantic dependent. It is similar to the first-
order factorization as defined in a number of linear
parsing models, e.g., the models defined by Mar-
tins and Almeida (2014) and Cao et al. (2017a).

3.3.5 Training
In order to update graphs which achieve high
model scores but are actually wrong, we use a
margin-based approach to compute loss from the
gold graphG∗ and the best prediction Ĝ under cur-
rent model. We define the loss term as:

max(0,∆(G∗, Ĝ)− SCORE(G∗) + SCORE(Ĝ))

The margin objective ∆ measures the similar-
ity between the gold graph G∗ and the prediction
Ĝ. Follow Peng et al. (2017)’s approach, we de-
fine ∆ as weighted Hamming to trade off between
precision and recall.

4 Cross-Domain Parsing with a Precision
Grammar and a Data-Oriented Model

4.1 Precision Grammar-Guided Parsing
Semantic dependency graphs like Minimal Recur-
sion Semantics (MRS) reduced analysis (dubbed
DM) and Head-driven Phrase Structure Gram-
mar (HPSG) grounded predicate–argument anal-
ysis (dubbed PAS) are derived from the linguis-
tic analysis licensed by a deep linguistic grammar.

565

They are parallel with the deep syntactic analysis,
and the semantic construction process of them is
strictly compositional. Another type of domain-
independent, sentence-level semantic annotations
are based on annotators’ reflection of the mean-
ings of particular natural language sentences. No
syntactic constraints on linguistic signals are intro-
duced explicitly introduced. A representative ex-
ample is Abstract Meaning Representation (AMR;
Banarescu et al., 2013).

Different from data-driven syntactic parsing, se-
mantic parsing for the first type of annotation can
leverage a precision grammar-guided model. Such
a model applies a rich set of precise linguistic
rules to constrain their search for a preferable syn-
tactic or semantic analysis. In recent years, sev-
eral of these linguistically motivated parsing sys-
tems achieved high performances that are compa-
rable or even superior to the treebank-based purely
data-driven parsers. For example, using ERG
(Flickinger, 2000), which provides precise linguis-
tic analyses for a broad range of phenomena, as
the the core engine, PET2 (Callmeier, 2000) and
ACE3 produce better results than all existing data-
driven semantic parsers for sentences that can be
parsed by ERG.

The main weakness of the precision grammar-
guided parsers is their robustness with respect to
both coverage and efficiency. Even for treebank-
ing on the newswire data, i.e., the Wall Street Jour-
nal data from Penn TreeBank, ERG lacks analy-
ses for c.a. 11% sentences (Oepen et al., 2015).
For the texts from the web, e.g., tweets, this prob-
lem is much more serious. Moreover, checking
all linguistic constraints makes a grammar-guided
parser too slow for many realistic NLP applica-
tions. On the contrary, light-weight, data-driven
parsers usually have complementary strengthes in
terms of both coverage and efficiency.

4.2 The Parser-Oriented Model

Intuitively, a hand-crafted precision grammar, e.g.,
ERG, reflects highly generalized properties of a
particular language and is thus highly resilient
to domain shifts. Accordingly, one should ex-
pect that a precision grammar-guided parser which
guarantees the a rich set of domain-independent
linguistic constraints to be met can be more robust
to domain shifts than a purely data-driven parser.

2http://pet.opendfki.de/
3http://sweaglesw.org/linguistics/ace/

In related work for syntactic parsing, Ivanova et al.
(2013) showed that the ERG-based parser was
more robust to domain variation than several rep-
resentative data-driven parsers.

Zhang and Wang (2009) proposed to derive fea-
tures from syntactic parses generated by PET to
assist a data-driven dependency tree parser and ob-
served some encouraging results for cross-domain
evaluation. However, there are at least two draw-
backs of their ERG-guided parser based method:

1. A considerable number of sentences cannot
benefit from ERG since PET may produce no
analysis.

2. This method fails to take parsing efficiency
into account.

4.3 Our Data-Oriented Model

In this paper, we introduce a new data-oriented
strategy to consume a precision grammar. The key
idea is to take a grammar as an imperfect anno-
tator: We let a precision grammar-guided parser
parse large-scale raw texts in an offline way, and
then utilize the automatically generated analysis
as imperfect training data. Because we only need
raw texts to be parsed once, even if this process
takes much time, it is still reasonable. A grammar-
guided parser cannot parse a considerable portion
of data, but this will not cause serious problems
because we can take an enormous amount of sen-
tences as annotation candidates. Just considering
the wikipedia, we can collect at least dozens of
millions of comparatively high-quality sentences.

An essential problem of this method is that such
imperfect annotations bring in annotation errors
which may hurt parser training. To deal with
this problem, we adopted a cost-sensitive training
method to train our model on the extended training
data. In each epoch, we trained on imperfect cor-
pus first and then on gold-standard corpus. When
processing an imperfect sentence, we do not take
a loss into consideration if the loss of this sentence
is too small. In particular, if a loss of a bilexical
relation between two tokens is less than 0.05, we
would exclude the loss. As for label assigning, we
exclude losses less than 0.5. These threshold num-
bers are tuned on the development data.

566

System DM PAS PSD
LP LR LF LP LR LF LP LR LF

IN
-D

O
M

A
IN

Du et al. ensemble 90.93 87.32 89.09 92.90 89.67 91.26 78.60 72.93 75.66
Almeida and Martins single 89.84 86.64 88.21 91.87 89.92 90.88 78.62 74.23 76.36
Peng et al. single - - - - 89.4 - - - - 92.2 - - - - 77.6
Peng et al. multitask - - - - 90.4 - - - - 92.7 - - - - 78.5
Wang et al. single - - - - 89.3 - - - - 91.4 - - - - 76.1
Wang et al. ensemble - - - - 90.3 - - - - 91.7 - - - - 78.6
Ours single 90.74 90.40 90.57 92.26 92.43 92.35 76.42 76.33 76.38
Ours (E[3]) ensemble 92.17 91.35 91.76 93.50 92.98 93.24 78.83 77.07 77.95
Ours ([E10]) ensemble 92.81 91.65 92.23 93.91 93.22 93.56 79.33 78.00 78.66

O
U

T-
O

F
-D

O
M

A
IN

Du et al. ensemble 84.29 79.53 81.84 89.47 85.10 87.23 77.36 69.61 73.28
Almeida and Martins single 84.81 78.90 81.75 88.52 85.30 86.88 78.68 71.31 74.82
Peng et al. single - - - - 84.5 - - - - 88.3 - - - - 75.3
Peng et al. multitask - - - - 85.3 - - - - 89.0 - - - - 76.4
Wang et al. single - - - - 83.2 - - - - 87.2 - - - - 73.2
Wang et al. ensemble - - - - 84.9 - - - - 87.6 - - - - 75.9
Ours single 85.70 85.02 85.37 89.11 88.85 88.98 73.54 73.19 73.36
Ours (E[3]) ensemble 87.65 86.24 86.94 90.72 89.31 90.01 76.10 73.83 74.95
Ours (E[10]) ensemble 88.13 86.37 87.24 91.19 89.50 90.34 76.75 74.48 75.60

Table 1: Labeled F1 on the test data from SemEval 2015.

Hyper-parameter Val
Randomly-initialized word embedding dimension 100
Pre-trained word embedding dimension 100
Randomly-initialized character embedding dimension 100
Character LSTM layers for each direction 2
Randomly-initialized POS-Tag embedding dimension 50
POS-Tag dropout 0.5
Batch size 32
BiLSTM dimension for each direction 150
BiLSTM layers 5
MLP hidden layers 1
MLP hidden layer dimension 100

Table 2: Hyper-parameter setting of our model.

5 Experiments

5.1 Set-up for the Baseline System

To evaluate neural Maximum Subgraph parsing in
practice, we first conduct experiments on the three
English data sets, namely DM, PAS and PSD4,
which are from the SemEval 2015 Task18 (Oepen
et al., 2015). We use the “standard” training, vali-
dation, and test splits to facilitate comparisons. In
other words, the data splitting policy follows the
shared task. In addition to English parsing, we
consider Chinese SDP and use two data sets: (1)
Chinese PAS data provided by SemEval 2015, and
(2) Chinese CCGBank (Tse and Curran, 2010) to
evaluate the cross-lingual ability of our model. All
the SemEval data sets are publicly available from

4 DM, PAS and PSD are short for DeepBank, Enju HPS-
GBank and Prague Dependency Treebank.

LDC (Oepen et al., 2016).
We use DyNet5 to implement our neural mod-

els. We use the automatic batch technique (Neubig
et al., 2017) in DyNet to perform mini-batch gradi-
ent descent training. The batch size is 32. The de-
tailed network hyper-parameters are summarized
in Table 2. We use the same pre-trained word em-
bedding as Kiperwasser and Goldberg (2016).

5.2 Main Results of English Parsing

Table 1 lists the parsing accuracy of our system
as well as the best published results in the liter-
ature for comparison. Results from other papers
are of different yet representative decoding or dis-
ambiguation frameworks. Du et al. (2015a)’s and
Almeida and Martins (2015)’s parsers use global
linear models to perform disambiguation. These
systems obtained the best parsing accuracy for the
SemEval 2015 shared task. Peng et al. (2017)’s
and Wang et al. (2018)’s parsers utilize neural
models, LSTMs in particular, to score either arcs
or transitions. Our single models get the high-
est scores on not only in-domain but also out-of-
domain test sets for the DM and PAS data sets,
and they obtain comparable results with the state-
of-art parser on the PSD data set. Comparing our
results to the results obtained by parsers based on
linear models, we can see the effectiveness of the
BiLSTM based disambiguation model. The preci-

5https://github.com/clab/dynet

567

 78

 80

 82

 84

 86

 88

 90

 92

 94

DM PAS PSD

L
a
b
e
le

d
 F

-s
c
o
re

Baseline
Vote(3)

Vote(10)
Average(3)

Average(10)

Figure 5: Labeled F1 relative to different ensemble methods.
Results are obtained on the development data.

sion of the two linear model-based parsers is com-
parable or even superior to our neural parser, but
the recall is far behind.

5.3 Model Ensemble

Ensemble methods have been shown very help-
ful to boost the accuracy of neural network based
parsing. We evaluate two ensemble methods, vot-
ing and score averaging. In the voting method,
each model parses the sentence to graph respec-
tively. An edge will exist on the combined graph
only if more than half output graphs of these mod-
els contain this edge. The label of this edge will
be the most common label. In the score averag-
ing method, we use averaged score parts to get a
maximum graph and classify labels.

We choose 3/10 kind of different initial param-
eters to train models for ensemble. Figure 5 shows
the result of the two ensemble methods. The av-
eraging method has slightly better performance on
the 3 datasets. The performance of this method on
test data is shown on Table 1.

5.4 Data for Cross-Domain Experiments

Since around 2001, the ERG has been accom-
panied by syntactico-semantic annotations, where
for each sentence an annotator has selected the
intended analysis among all alternatives licensed
by the grammar. This derived resource, namly
Redwoods6 (Oepen et al., 2002; Flickinger et al.,
2017), is a collection of hand-annotated corpora
and consists of data sets from several distinct do-
mains. Redwoods also includes (re)treebanking
results of the first 22 sections of the venerable
Wall Street Journal (WSJ) text and the section
of Brown Corpus in the Penn Treebank (Marcus
et al., 1993). The WSJ part is also known as Deep-

6http://moin.delph-in.net/RedwoodsTop

Bank (Flickinger et al., 2012). The Brown corpus
part is used as the out-of-domain test data by Se-
mEval 2015. The DM data sets for both SemEval
2014 and 2015 SDP shared tasks are based on the
RedWoods corpus.

Besides gold standard annoations, Flickinger
et al. (2010) built the WikiWoods corpus7, which
provides automatically created annotations for the
texts from wikipedia. The annotations are disam-
biguated using the MaxEnt model trained using
redwoods without DeepBank. We use a small por-
tion of Wikiwoods, which contains 857,329 sen-
tences in total.

To evaluate the (positive) impact of ERG on
out-of-domain parsing, we conduct experiments
on the DM data. The first group of experiments
are designed to be comparable with the results ob-
tained by various participant systems of SemEval
2015. The detailed data set-up is as follows:

• Test Data. We use the Brown corpus section
which is provided by SemEval 2015.

• Training Data. We use three data sets for
training: (1) DeepBank, (2) RedWoods and
(3) a small portion of WikiWoods reparsed
using the MaxEnt model trained on Deep-
Bank. We denote this reparsed WikiWoods
as WikiWoods-ACE, since the HPSG analy-
sis is provided by the ACE parser. To extract
the semantic dependency graph, we use the
pydelphin tool8.

For the second group of experiments, we use
the section wsj21 from the DeepBank as test data,
which is the official in-domain test of the SemEval
2015. The training data includes the “RedWoods
minus DeepBank” annotations (RedwoodsWOD
for short) as well as the official WikiWoods anno-
tations. Note that the MaxEnt model used to ob-
tain the official WikiWoods annotations are com-
patible with RedwoodswWOD. Due to the diver-
sity of the RedwoodsWOD and DeepBank sen-
tences, this set-up can also be viewed as an out-
of-domain evaluation.

5.5 Results of Cross-Domain Parsing

Table 3 summarizes experimental results for dif-
ferent cross-domain evaluation set-ups. For the

7http://moin.delph-in.net/WikiWoods
8https://github.com/delph-in/pydelphin

568

Training Data LP LR LF
IN-DOMAIN (SEMEVAL)

DeepBank S 90.74 90.40 90.57
Redwoods S 91.50 90.57 91.03
DeepBank+WikiWoods-ACE S 91.93 90.72 91.32
DeepBank+WikiWoods-ACE E[3] 92.73 91.48 92.11

OUT-OF-DOMAIN (SEMEVAL)
DeepBank S 85.70 85.02 85.37
Redwoods S 86.28 84.85 85.56
DeepBank+WikiWoods-ACE S 88.30 86.42 87.35
DeepBank+WikiWoods-ACE E[3] 89.53 87.57 88.54

OUT-OF-DOMAIN (REDWOODSWOD)
DeepBank S 90.74 90.40 90.57
RedwoodsWOD S 81.40 78.99 80.18
RedwoodsWOD+WikiWoods S 84.05 79.86 81.90
RedwoodsWOD+WikiWoods E[3] 84.84 81.02 82.88

Table 3: Labeled F1 on the DM test sets. “S” denotes single model, while “E[3]” denotes ensemble model with 3 sub-models.

first group of experiments, we test the parser us-
ing different training data sets. The baseline uti-
lizes the WSJ portion only. While more reliable
training data is added, the performances increase
consistently. We notice that the improvement ex-
tending the training data from DeepBank to Red-
woods is quite limited for the out-of-domain eval-
uation. One reason is that the amount of en-
larged gold standard annotations is still limited:
The DeepBank training data contains 35,656 sen-
tences (838,374 tokens, i.e., roughly words), while
the additional training data contains 35,950 sen-
tences (538,659 tokens). For comparison, we se-
lect 480,564 sentences (5,346,703 tokens) from
WikiWoods to train another model, and leave out
other parts of Redwoods. The performance im-
provement is more remarkable when providing
more data, even though such data contains annota-
tion errors. For the second group of experiments,
we use the RedwoodsWOD sentences for train-
ing and the DeepBank WSJ sentences for evalu-
ation. For this set-up, consistent improvements of
the parser quality are observed.

5.6 Results of Chinese Parsing

To test the ability for cross-lingual parsing,
we conduct experiments on HPSG and CCG
grounded semantic analyses respectively. The
HPSG grounded analysis is provided by SemEval
2015 and the underlying framework is the same to
the English PAS data. The CCG grounded analy-
sis is from Chinese CCGBank. We use the same

set-up as Zhang et al. (2016). Both data sets are
transformed from Chinese TreeBank with two rich
sets of heuristic rules (Yu et al., 2010; Tse and
Curran, 2010). Table 4 and 5 presents all results.
Our parser significantly outperforms Zhang et al.
(2016)’s Zhang et al. (2016) system on Chinese
CCGBank, which achieved best reported perfor-
mance.

Chinese POS tagging has a great impact on
parsing. In this paper, we consider two POS tag-
gers: a symbol-refined generative HMM tagger
(SR-HMM) (Huang et al., 2009) and a BiLSTM-
CRF model when assisting Chinese SDG. For
the neural tagging model, in addition to a BiL-
STM layer for encoding words, we set a BiLSTM
layer for encoding characters, which supports us
to derive character-level representations for all
words. In particular, vectors from the character-
level LSTM is concatenated with the pre-trained
word embedding before feeding into the other
word-level BiLSTM network to capture contextual
information. The final module of our CRF tagger
is a linear chain CRF which scores the output se-
quence by factoring it in local tag bi-grams. From
Table 5, we can see that POS information is very
important to Chinese SDP. This phenomenon is
consist with Chinese syntactic parsing, including
both constituency and dependency parsing. Man-
darin Chinese is recognized as a morphology-poor
language: POS tags are defined mainly according
to words’ distributional rather than morphological
properties. The LSTM-based tagger can leverage

569

Model LP LR LF
Peking 84.75 82.15 83.43
Ours 85.49 84.11 84.79

Table 4: Labeled F1 on the test set of SemEval 2015 for
Chinese. “Peking” is the participant system that obtained the
best parsing accuracy for Chinese in SemEval 2015.

Model POS LP LR LF
ZDSW Gold 82.09 81.81 81.95
Ours Gold 86.37 86.00 86.19

SR-HMM 80.19 80.53 80.37
BiLSTM-CRF 81.13 81.74 81.43

Table 5: Labeled F1 on the test set of Chinese CCGBank.
“ZDSW” is the system that obtained the best parsing accu-
racy on the Chinese CCGBank data in the literature.

the power of the RNN architecture to learn non-
local dependencies and thus benefit our semantic
dependency parser a lot.

6 Conclusion

Parsing sentences to linguistically-rich semantic
representations is a key goal of Natural Language
Understanding. We introduce a new parser for
semantic dependency analysis, which combines
two promising parsing techniques, i.e., decoding
based on Maximum Subgraph algorithms and dis-
ambiguation based on BiLSTMs. To our knowl-
edge, this is the first neural Maximum Subgraph
parser. Our parser significantly improves state-of-
the-art accuracy on three out of total four data sets
from SemEval 2015 for English/Chinese parsing
and the CCGBank data for Chinese parsing. We
also propose a new data-oriented method to lever-
age ERG, a linguistically-motivated, hand-crafted
grammar, to improve cross-domain performance.
Experiments demonstrate the effectiveness of tak-
ing ERG as an imperfect annotator. We think this
method can be re-used for other types of data-
driven semantic parsing models.

Acknowledgement

This work was supported by the National Nat-
ural Science Foundation of China (61772036,
61331011) and the Key Laboratory of Science,
Technology and Standard in Press Industry (Key
Laboratory of Intelligent Press Media Technol-
ogy). We thank the anonymous reviewers for their
helpful comments. Weiwei Sun is the correspond-
ing author.

References
C. Mariana S. Almeida and T. André F. Martins. 2015.

Lisbon: Evaluating TurboSemanticParser on Multi-
ple Languages and Out-of-Domain Data. Proceed-
ings of SemEval 2015.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Ulrich Callmeier. 2000. Pet. a platform for experi-
mentation with efficient hpsg processing techniques.
Journal of Natural Language Engineering, 6(1):99–
108.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-
jun Wan. 2017a. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
2110–2120, Vancouver, Canada. Association for
Computational Linguistics.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiaojun
Wan. 2017b. Quasi-second-order parsing for 1-
endpoint-crossing, pagenumber-2 graphs. In Pro-
ceedings of EMNLP 2017. Association for Compu-
tational Linguistics.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the 2002 Conference on Empirical Methods in
Natural Language Processing, pages 1–8. Associ-
ation for Computational Linguistics.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics:
An introduction. Research on Language and Com-
putation, pages 281–332.

Marta R. Costa-jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 357–361, Berlin, Germany.

Yantao Du, Weiwei Sun, and Xiaojun Wan. 2015a.
A data-driven, factorization parser for CCG depen-
dency structures. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1545–1555, Beijing, China. Associ-
ation for Computational Linguistics.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015b. Peking: Building semantic

570

dependency graphs with a hybrid parser. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 927–931,
Denver, Colorado. Association for Computational
Linguistics.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Nat. Lang. Eng.,
6(1):15–28.

Dan Flickinger, Stephan Oepen, and Emily M. Bender.
2017. Sustainable Development and Refinement of
Complex Linguistic Annotations at Scale. Springer
Netherlands, Dordrecht.

Dan Flickinger, Stephan Oepen, and Gisle Ytrestøl.
2010. Wikiwoods: Syntacto-semantic annotation
for English wikipedia. In Proceedings of the Seventh
International Conference on Language Resources
and Evaluation (LREC’10), Valletta, Malta. Euro-
pean Language Resources Association (ELRA).

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: A dynamically annotated treebank of the
wall street journal. In Proceedings of the Eleventh
International Workshop on Treebanks and Linguistic
Theories, pages 85–96.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Zhongqiang Huang, Vladimir Eidelman, and Mary
Harper. 2009. Improving a simple bigram hmm
part-of-speech tagger by latent annotation and self-
training. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, Companion Volume: Short Pa-
pers, pages 213–216, Boulder, Colorado. Associa-
tion for Computational Linguistics.

Angelina Ivanova, Stephan Oepen, Rebecca Dridan,
Dan Flickinger, and Lilja Øvrelid. 2013. On differ-
ent approaches to syntactic analysis into bi-lexical
dependencies. an empirical comparison of direct,
PCFG-based, and HPSG-based parsers. In Proceed-
ings of The 13th International Conference on Pars-
ing Technologies (IWPT-2013), pages 63–72, Nara,
Japan.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop, pages 2–11, Jeju, Republic of Korea.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics, 3:559–
570.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: the penn treebank. Computa-
tional Linguistics, 19(2):313–330.

André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A turbo semantic parser with second or-
der features. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 471–476, Dublin, Ireland. Association
for Computational Linguistics and Dublin City Uni-
versity.

Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017.
On-the-fly operation batching in dynamic computa-
tion graphs. In Advances in Neural Information Pro-
cessing Systems.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajič, Angelina Ivanova, and Zdeňka Urešová.
2016. Semantic Dependency Parsing (SDP) graph
banks release 1.0 LDC2016T10. Web Download.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, and Zdenka Uresová. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland. Association for Computational Lin-
guistics and Dublin City University.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and Thorsten
Brants. 2002. The lingo redwoods treebank moti-
vation and preliminary applications. In Proceedings
of the 19th International Conference on Computa-
tional Linguistics - Volume 2, COLING ’02, pages
1–5, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048, Van-
couver, Canada. Association for Computational Lin-
guistics.

Emily Pitler, Sampath Kannan, and Mitchell Marcus.
2013. Finding optimal 1-endpoint-crossing trees.
TACL, 1:13–24.

Daniel Tse and James R. Curran. 2010. Chinese CCG-
bank: extracting CCG derivations from the penn
Chinese treebank. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics

571

(Coling 2010), pages 1083–1091, Beijing, China.
Coling 2010 Organizing Committee.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2018. A neural transition-based approach for
semantic dependency graph parsing. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence.

Kun Yu, Miyao Yusuke, Xiangli Wang, Takuya
Matsuzaki, and Junichi Tsujii. 2010. Semi-
automatically developing Chinese hpsg grammar
from the penn Chinese treebank for deep parsing.
In Coling 2010: Posters, pages 1417–1425, Beijing,
China. Coling 2010 Organizing Committee.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics,
42(3):353–389.

Yi Zhang and Rui Wang. 2009. Cross-domain depen-
dency parsing using a deep linguistic grammar. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 378–386, Suntec, Singapore.
Association for Computational Linguistics.

572

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 573–582
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

From Random to Supervised: A Novel Dropout Mechanism Integrated
with Global Information

Hengru Xu1, † Shen Li2, † Renfen Hu3 Si Li1 Sheng Gao1, ‡

1{xuhengru, lisi, gaosheng}@bupt.edu.cn
2shen@deeplycurious.ai

3irishere@mail.bnu.edu.cn
1 SICE, Beijing University of Post and Telecommunication

2 Deeplycurious.ai
3 Institute of Chinese Information Processing, Beijing Normal University

Abstract

Dropout is used to avoid overfitting by ran-
domly dropping units from the neural net-
works during training. Inspired by dropout,
this paper presents GI-Dropout, a novel
dropout method integrating with global infor-
mation to improve neural networks for text
classification. Unlike the traditional dropout
method in which the units are dropped ran-
domly according to the same probability, we
aim to use explicit instructions based on global
information of the dataset to guide the training
process. With GI-Dropout, the model is sup-
posed to pay more attention to inapparent fea-
tures or patterns. Experiments demonstrate the
effectiveness of the dropout with global infor-
mation on seven text classification tasks, in-
cluding sentiment analysis and topic classifi-
cation.

1 Introduction

Recently, neural networks have achieved remark-
able results in natural language processing (NLP).
Convolutional Neural Network (CNN) and Re-
current Neural Network (RNN) are two popular
types of neural network architectures and both of
them are widely applied to various NLP tasks.
CNN is known for its strong ability in extracting
position-invariant features and RNN is highlighted
in modeling sequences (Yin et al., 2017). In sen-
tence classification tasks, models based on CNN
or RNN aim to represent sentences as appropri-
ate embeddings, which are supposed to encode se-
mantic features for the classification.

However, with the consideration of computa-
tional complexity and spatial limitation, neural
networks are often trained via mini-batch in which
global information is gathered implicitly rather

† Hengru Xu and Shen Li contributed equally to this
work.

‡ Corresponding author.

than explicitly. To facilitate the learning process,
Li et al. (2017) extract global semantic features
from the training dataset, and encode them into
CNN filters with a novel initialization mechanism.
This approach gains significant improvements in
sentiment analysis and topic classification tasks.

Unlike most of machine learning methods, the
advantage of neural networks is extracting features
with less need of feature engineering. In gen-
eral, the stronger ability of a model to learn fea-
tures automatically, the better performance it will
achieve. However, during the training process,
neural networks tend to focus on some distinctive
words or phrases but ignore other noteworthy pat-
terns, which may result in overfitting, especially
in a small dataset. To avoid this problem, dropout
is proposed (Hinton et al., 2012; Srivastava et al.,
2014). The key idea of dropout is to randomly
drop units from the neural network during train-
ing and use a smaller weight of these units in the
test.

Inspired by the above works, we propose a
novel dropout method guided by global informa-
tion (GI-Dropout). In our method, we force the
model to pay more attention to features that are
inapparent or with low frequency by dropping
words that are prominent and easy to learn. Unlike
the traditional dropout method where neurons are
dropped randomly with the same probability, we
encode global information into dropout. Specif-
ically, we drop words based on their importance
which are calculated from training data via a novel
Naı̈ve Bayes (NB) weighting technique.

With this dropout method, neural networks tend
to extract not only the obvious features but also
the unobvious features which are also helpful for
the classification. By integrating our method into
a classic CNN model for text classification (Kim,
2014) and a novel self-attentive RNN (Lin et al.,
2017), we observe significant improvements in

573

various benchmarks.1 The advantages of our ap-
proach are as follows:

1. Global information is directly obtained from
the training data without any external re-
sources;

2. GI-Dropout is simple but effective, and could
be easily applied to other DNN models;

3. The computation brought by our method is
relatively small, resulting in little additional
training cost.

2 Related Work

Recently, neural networks dominate the state-of-
the-art results on a wide range of NLP tasks. For
text classification, Kim (2014) proposes a classi-
cal one-layer CNN which is very efficient for fea-
ture extraction, and it is considered as a strong
baseline for various sentiment and topic classifica-
tion tasks. Following this work, Yin and Schütze
(2015) introduce multichannel variable-size con-
volution, and Zhang et al. (2016b) exploit different
pre-trained word embeddings (e.g. word2vec and
GloVe). Zhang and Wallace (2017) improve the
CNN model by optimizing hyper-parameters and
provide a detailed sensitivity analysis.

RNNs also achieve comparable performance in
this area. Tang et al. (2015) show that gated RNN
performs well on document-level sentiment clas-
sification. Lin et al. (2017) propose a enhanced
model to extract an interpretable sentence embed-
ding by introducing self-attention mechanism and
yields a significant performance gain compared
with other sentence embedding methods.

Yin et al. (2017) make a systematic comparison
of CNNs and RNNs, showing that both of the net-
works can provide complementary information for
text classification tasks, while which architecture
performs better depends on how important it is to
semantically understand the global/long-range se-
mantics.

To improve the semantic understanding abilities
of the models, some works aim to encode prior
knowledge into the networks. For example, Hu
et al. (2016) present a framework that encapsu-
lates the logical structured knowledge into a neu-
ral network. Li et al. (2017) encode global seman-
tic features into the convolutional filters instead of

1We release source codes at https://gitlab.com/xusong19
960424/global cnn.

initializing them randomly, which helps the filters
focus on learning useful n-grams.

Another effective method to facilitate learning
process is to exploit dropout mechanism. Appar-
ently, if a model pays too much attention to a
few distinct patterns, it can easily give rise to an
overfitting, especially in a small dataset. Hinton
et al. (2012) introduce Binary (regular) Dropout,
showing that it can prevent co-adaptation of neu-
rons by randomly dropping units from the neural
networks during training, so as to reduce over-
fitting. Later Srivastava et al. (2014) show that
multiplying outputs of the neurons by a random
variable drawn from Gaussian distributions works
as well, or perhaps better than regular dropout.
Ba and Frey (2013) present standout, an adaptive
dropout method, where each variable’s dropout
probability is calculated by a binary belief net-
work, which can be trained jointly with the neu-
ral networks. Kingma et al. (2015) introduce
variational dropout, a generalization of Gaussian
dropout where the dropout rates are also learned
during training.

The existing dropout methods are often based
on mathematics or learned jointly with the down-
stream task, where global information is not ex-
plicitly utilized. Different from previous works,
we focus on how to utilize global information to
help model training via dropout. As depicted in
Figure 3, GI-Dropout is introduced at the begin-
ning of the baseline models, which is different
from prior dropout methods which aim at control-
ling units in the networks rather than input words
in the texts.

In this work, we use the global information to
guide dropout method by dropping words based
on their importance. Hence, neural networks are
able to extract not only the obvious features but
also the unobvious features which are also helpful
for the classification.

3 Our method

The intuition behind our method is straightfor-
ward. Since neural networks aim to capture se-
mantic features and classify sentences by the fea-
tures, we encourage models to share more atten-
tion to unobvious features by dropping words ac-
cording to their importance. Some features are
so distinctive that model can learn them easily.
However, a sentence may have more than one fea-
ture that can contribute to class prediction. For

574

Figure 1: Top 30 key words of each class in Cus-
tomer Review dataset

instance, in “The story is sad and very boring”,
“boring” is of strong polarity and indicates nega-
tive emotion. Neural networks may not be sensi-
tive to other features like “sad” which is also help-
ful for the sentiment classification, due to the very
strong impact of “boring”. In GI-Dropout, a word
of higher importance score has greater possibility
to be dropped. Thus, models are forced to learn
unobvious features and will achieve better perfor-
mance in prediction.

3.1 Importance Score
Firstly, we compute an importance score for each
word. Intuitively, word “unique” is much more
important than “movie” for determining polarities
of reviews. Naı̈ve Bayes (NB) weighting is an ef-
fective technique for determining the importance
of words (Martineau and Finin, 2009; Wang and
Manning, 2012; Li et al., 2017). The NB weight r
of word w in class c is calculated as follows:

rwc =
(nwc + α)/ ‖nc‖1
(nwc̃ + α)/ ‖nc̃‖1

(1)

where nwc is the count of word w in class c, nwc̃ is
the count of word w in the other classes, ‖nc‖1 is
the count of all the word occurrences in class c,
‖nc̃‖1 is the count of all the word occurrences in
the other classes, α is a smoothing parameter and
is set as 1 in this paper.

To avoid low-frequency words being recognized
as important words, we propose an improved NB
weighting method based on (1):

rwc =
(nwc + α)/ ‖nc‖1
(nwc̃ + α)/ ‖nc̃‖1

× logβ nwc (2)

where logβ nwc is introduced as a frequency fac-
tor. The base β is a hyperparameter.

For positive class in movie review dataset (MR),
the scores of words like “unique” and “warm”

Figure 2: GI-Dropout probability and rank in SST-
1 with β = 0.95.

should be large since they appear much more fre-
quently in positive texts than in negative texts. As
for neutral words like “the” and “movie”, their
scores should be small. For a word w, we select
the max score of it as its importance score:

rw = max(rwc0 , r
w
c1 , ..., r

w
cn) (3)

In Figure 1, we show top 30 key words of each
class in customer review dataset (CR). We aim to
drop these key words with higher probabilities and
encourage the model to pay more attention to other
unobvious features.

3.2 Dropout Probability

As shown in 3.1, we compute words importance
scores with the whole training data. It is a sim-
ple yet effective way to represent the global infor-
mation. After obtaining the scores, we compress
them into [0, 1). The GI-Dropout probability of
word w is:

p(r) =
er − 1

er + 1
(4)

where r is the importance score of w calculated
via (2). A word would not be ignored when its
probability is 0.

The β in (2) is a key parameter. As shown in
Figure 2, after tuning β, the GI-Dropout proba-
bility of a word and its probability rank follow
Zipf’s Law. Zipf (1935) states that given a sample
of words, the frequency of any word is inversely
proportional to its rank in the frequency table. Re-
placing the frequency with GI-Dropout probabil-
ity, we can get a variant of Zipf’s Law. The ex-
periments will show that setting β to this value in
SST-1 is not a coincidence.

575

 ������
��	����
���
�������

story

is

sad

and

very

The

story

is

sad

boring

and

very

The

�������
�������

Figure 3: GI-Dropout. In this case, the word em-
bedding of “boring” is dropped and set to zero vec-
tor while “sad” is not.

3.3 GI-Dropout Method

As illustrated in Figure 3, we implement a GI-
Dropout layer before the neural network. Models
without our dropout method can be viewed as the
special case in which all the words are not dropped
in GI-Dropout layer, i.e. dropout probabilities of
all words are 0.

In this paper, every word in training data has a
score to measure its importance via the novel NB
weighting method, as well as a dropout probability
calculated by the proposed scale function. During
training, the words will be dropped according to
their dropout probabilities.

The way to implement our dropout method is
very straightforward. In embedding layer, we get
the word embedding ei of word wi after looking
it up in the embedding table. After that, this word
can be dropped according to its GI-Dropout pos-
sibility. For word wi, we set the ei to zero vector
if it needs to be dropped. Through this method,
the neural network will not learn features from
words whose embeddings are zero vectors. It is
worth noted that the dropout probabilities of words
differ from each other, which is different from
the traditional dropout method where all the neu-
rons are dropped according to the same probabil-
ity. The dropout probabilities which are encoded
with global information, guide the model to share
attention to unobvious patterns.

In traditional dropout method, all the neurons
are used in testing, but their weights are scaled
down by a factor p (same with p in training) since
a part of units emit nothing to the next layer during
training. While in our method, during evaluation
and testing, dropout probabilities of all the words
are set to 0 so as to use all the patterns, and scaling
is not needed.

Dataset c l N V Test

MR 2 20 10662 18765 CV

SST-1 5 18 11855 17836 2210

SST-2 2 19 9613 16185 1821

Subj 2 23 10000 21323 CV

TREC 6 10 5952 9592 500

CR 2 19 3775 5340 CV

MPQA 2 3 10606 6246 CV

Table 1: Datasets summary. c: Number of target
classes. l: Average sentence length. N: Dataset
size. V: Vocabulary size. Test: Test set size (CV
means there is no standard train/test split and thus
10-fold CV is used).

4 Experiments

CNN-non-static proposed by Kim (2014) is con-
sidered as a very strong baseline in sentence classi-
fication. Self-attentive RNN proposed by Lin et al.
(2017) also achieves outstanding performance in
many sentence classification tasks. We adopt these
two models to evaluate GI-dropout.

4.1 Datasets

Following (Kim, 2014), we evaluate the per-
formance of the proposed approach on various
datasets. We use the same seven datasets with
(Kim, 2014), including both sentiment analysis
and topic classification tasks:

MR: Movie reviews sentiment datasets2.
SST-1: Stanford Sentiment Treebank with 5

sentiment labels (Socher et al., 2013)3. The data
consists of phrases-level and sentence-level in-
stances. To keep same with (Kim, 2014), we train
the model on both phrases and sentences but only
test on sentences.

SST-2: SST-1 data with binary labels.
Subj: Subjective or objective classification

dataset (Pang and Lee, 2005).
TREC: 6-class question classification dataset

(Li and Roth, 2002) 4.
CR: Customer products review dataset (Hu and

Liu, 2004) 5.

2https://www.cs.cornell.edu/people/pabo/movie-review-
data/

3http://nlp.stanford.edu/sentiment/
4http://cogcomp.cs.illinois.edu/Data/QA/QC/
5http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html

576

Convolution

Max Pooling

Fully connected
with dropout

Embedding

GI-Dropout

boringis and verystory sadThe

Inputboringis and verystory sadThe

Figure 4: CNN architectures with GI-Dropout.

MPQA: Opinion polarity detection dataset
(Wiebe et al., 2005).

The statistics of the datasets can be seen in Ta-
ble 1.

4.2 CNN Model

CNNs use filters to capture semantic features of
n-grams. After that, max-pooling is introduced to
force the network to capture the most useful local
features produced by convolutional layers (Col-
lobert et al., 2011). A simple CNN model in (Kim,
2014) consists of the embedding layer, one convo-
lution and pooling layer, and one fully connected
layer. Four model variations are provided in (Kim,
2014), and we choose the CNN-non-static model
as our baseline. The hyperparameters of the CNN
are described in Table 2. The architecture of the
model integrated with GI-Dropout is shown in
Figure 4.

4.3 Self-attentive RNN Model

Long Short-Term Memory (LSTM) is a spe-
cific recurrent neural network (RNN) architecture
which is good at modeling temporal sequences and

6A widely used publicly available word2vec 300-
dimension vectors which were trained on 100 billion words
from Google News in (Mikolov et al., 2013) way.

Parameters Values

Word embeddings GoogleNews-negative300 6

Fine-tune Yes

Convolution 1-d

Filter size [3, 4, 5]

Filter numbers 300

Activation function ReLU

Pooling method max-over-time

MLP dropout rate 0.5

Table 2: CNN configuration.

can capture long-range dependencies (Sak et al.,
2014). Attention mechanism, first proposed in
(Bahdanau et al., 2014), has become an integral
part of sequence modeling. The self-attentive
RNN proposed by Lin et al. (2017) consists of
a bidirectional LSTM (biLSTM) and the self-
attention mechanism. Self-attention mechanism is
used to replace the max pooling or averaging step
after the biLSTM. Multiple hops of attention are
performed to extract semantic features in different
aspects of the sentence.

In brief, suppose we have a sentence of n to-
kens, and let the hidden unit number for each uni-
directional LSTM be u. After the biLSTM layer,
we can get H , which have the size of n-by-2u.
The attention mechanism takes the whole LSTM
hidden states H as input, and outputs a vector of
weights a,

a = softmax(ws2 tanh(Ws1H
T)) (5)

where Ws1 is a weight matrix with a shape of da-
by-2u, andWs2 is a vector of parameters with size
da which is a hyperparameter.

To extract r different aspects of the sentence,
Lin et al. (2017) present multiple hops of atten-
tion, i.e. extend the ws2 into a r-by-da matrix and
note it as Ws2. In the end, the annotation vector a
becomes annotation matrix A.

A = softmax(Ws2 tanh(Ws1H
T)) (6)

The sentence embedding is:

M = AH (7)

Then the paper uses two layer 2-layer MLP with
ReLU activation function to predict the label of

577

A

𝑊𝑠1 𝑑𝑎

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑡𝑎𝑛ℎ

2𝑢ℎ1 ℎ2 ℎ3 ℎ4 ⋯ ℎ𝑛⋯

𝑒1 𝑒2 𝑒3 𝑒5𝑒4 𝑒6

𝑟

𝐻 × 𝐴

M

Dropout

𝑟
𝑢

Classifier

𝐻

biLSTM

𝑊𝑠2 𝑟

𝑟

Dropout

×

×

GI-Dropout

The story is sad and very boring

0

The story is sad and very boring

Figure 5: Self-attentive RNN architectures.

the sentence. Besides, a penalization term is in-
troduced to encourage the diversity of summation
weight vectors across different hops of attention.

Since Lin et al. (2017) do not provide source
codes, we reproduce the model and integrate
dropout layers into the model as shown in Figure
5. We perform a grid search to get the best base-
line hyperparameters with which the model can
achieve the state-of-the-art accuracy in most of the
datasets. This model uses a bidirectional LSTM
with 300 dimensions of hidden states in each di-
rection. In self attention part, da is 350 and the
coefficient of the penalization term is 1. r is set
to 4 considering the size of datasets and the length

Parameters Values

Word embeddings Glove-300 7

Fine-tune Yes

biLSTM hidden units 300

da 350

r 4

MLP Activation ReLU

MLP dropout rate 0.5

Table 3: Self-attentive RNN configuration.

of texts. We also use a 2-layer ReLU output MLP
with 2000 hidden units. During training we use a
0.5 dropout rate on the MLP. The hyperparameters
are described in Table 3.

4.4 Experiment Settings

We apply our method to two baseline models. For
fair comparison, we use the same hyperparameters
settings with two baselines for training and test-
ing. For datasets that do not have test sets, we split
them for cross-validation with fixed random seeds.
We train all the models using early stopping and
set timedelay to 10.

4.5 Effectiveness of GI-Dropout

Results on 7 datasets are listed in Table 4. Experi-
ments show that the models with GI-Dropout out-
perform both CNN and self-attentive RNN base-
lines by a significant margin.

To test whether global information makes key
contribution, we conduct another experiment in
which all words are dropped according to the same
probability at the GI-Dropout layer. Grid search
method is used to find the best result which is
listed in “Dropout-same-prob” row.

The one-layer CNN provides a very strong
baseline. The first line is the result of CNN-non-
static model in (Kim, 2014). We reproduce the
experiment results in “CNN-baseline” row.

Table 4 shows that by simply dropping all
the words according to the same probability, the
model gains slight improvements against CNN
baseline on all the datasets except in MPQA. Sim-
ilarly, it achieves improvements compared with
RNN baseline on most datasets.

7A widely used publicly available 300-dimension word
embeddings (Pennington et al., 2014).

578

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-reproduce 81.4 47.8 87.5 93.0 92.4 84.3 89.6

CNN-Dropout-same (p) 81.5(0.1) 48.5(0.1) 87.6(0.1) 93.5(0.2) 92.9(0.1) 84.5(0.5) 87.4(0.1)
CNN-GI-Dropout (β) 81.9(0.87) 49.0(0.95) 88.1(0.98) 93.4(0.91) 93.2(0.83) 85.1(0.87) 89.8(0.98)

RNN-baseline 82.1 49.7 89.7 93.6 92.6 84.1 89.6
RNN-Dropout-same (p) 82.2(0.2) 51.9(0.1) 90.1(0.1) 93.9(0.1) 93.4(0.2) 84.2(0.1) 89.7(0.1)
RNN-GI-Dropout (β) 82.5(0.87) 54.1(0.95) 90.4(0.95) 94.2(0.98) 94.8(0.95) 84.7(0.91) 89.7(0.98)

MVCNN - 49.6 89.4 93.9 - - -
MGNC-CNN - 48.7 88.3 94.1 95.5 - -

CNN-Rule 81.7 - 89.3 - - 85.3 -
Semantic-CNN 82.1 50.8 89.0 93.7 94.4 86.0 89.3
combine-skip 76.5 - - 93.6 92.2 80.1 87.1

DSCNN 82.2 50.6 88.7 93.9 95.6 - -
Paragraph Vector 74.8 48.7 87.8 90.5 91.8 78.1 74.2

NBSVM 79.4 - - 93.2 - 81.8 86.3
Tree LSTM - 51.0 88.0 - - - -

Table 4: Effectiveness of GI-Dropout. Dropout-same means dropping units with the same probability.
Results also include: MVCNN (Yin and Schütze, 2015), MGNC-CNN (Zhang et al., 2016b), CNN-Rule
(Hu et al., 2016), Semantic-CNN (Li et al., 2017), combine-skip (Kiros et al., 2015), combine-skip (Kiros
et al., 2015), DSCNN (Zhang et al., 2016a), Paragraph Vector (Le and Mikolov, 2014), NBSVM (Wang
and Manning, 2012) and Tree LSTM (Tai et al., 2015).

β CNN RNN

0.98 (10−0.01) 48.8 51.9

0.95 (10−0.02) 49.0 54.1
0.91 (10−0.04) 48.0 51.8

0.87 (10−0.06) 48.1 52.4

0.83 (10−0.08) 47.4 51.4

Table 5: β and accuracy in SST-1.

By integrating our GI-Dropout mechanism, the
model further improves the performance signifi-
cantly on both CNN and RNN models. Compared
with Dropout-same, there is a clear advantage that
results on all of the datasets have been improved.

With the comparison between GI-Dropout and
Dropout-same, we are convinced that GI-Dropout
benefits from global information which provides
explicit semantic information to guide the training
process.

Even when compared with other models
with complex architectures, GI-Dropout models
achieve the best accuracy on most datasets, espe-
cially in SST-1 and SST-2.

Top-k CNN baseline GI-Dropout in CNN

0 87.5 88.1

50 87.1 87.9

100 86.7 87.9

200 86.1 87.5

500 84.7 86.6

1000 81.7 84.0

Table 6: Accuracy decline when removing top-k
apparent words in SST-2.

4.6 Further Analysis of Our Method

With GI-Dropout, we drop words according to
their importance scores. The higher score of a
word, the greater chance it is to be ignored. We
further analyze why GI-Dropout works so well,
and the relationship between β and accuracy.

GI-dropout helps models to learn inappar-
ent features. To test whether the method in-
deed helps models to learn the inapparent features,
we conduct experiments where the top-k appar-
ent words (with highest important scores) were re-
moved from test cases in SST-2. Results are shown
in Table 6. We can observe that the CNN base-

579

line model is more sensitive to the apparent fea-
tures and GI-dropout can still have relatively good
results even when we remove top 1000 apparent
words. Thus, the model is supposed to pay more
attention to the inapparent features with the help
of GI-Dropout.

GI-dropout helps models to reduce the over-
fitting for the apparent features. The frequent
words can easily induce the model to focus on lim-
ited features and activate a part of units with large
score. This can be seen by analyzing the cases
which the proposed model makes a correct predic-
tion and the baseline makes a incorrect prediction:

(1) provide -lrb- s -rrb- nail-biting suspense and
credible characters without relying on technology-
of-the-moment technique or pretentious8 dia-
logue.

(2) the screenplay sabotages the movie’s
strengths at almost every juncture.

(3) this is cool, slick stuff, ready to quench
the thirst of an audience that misses the summer
blockbusters.

The baseline model is prone to focus only on the
prominent features, e.g. the “pretentious” (nega-
tive) in case (1), “strengths” (positive) in case(2)
and “miss” (negative) in case (3), and then make
wrong predictions. Even though there are some
important words indicating the opposite polarity,
e.g. “without” in case (1), “sabotages” in case
(2) , “cool”, “slick” and “quench” in case (3),
the model can not make use of these features effi-
ciently.

By integrating our GI-dropout method, the
model can learn not only the obvious features, e.g.
“strengths”, but also the less obvious features e.g.
“sabotages”. Thus, it makes correct predictions in
all the above cases.

The relationship between β and accuracy.
Another thing should be noticed is the value of β
in Equation 2. As shown in Figure 2, the probabil-
ity of a word and its rank follow Zipf’s Law when
β is 0.95 in SST-1. Actually, for each dataset,
there is an appropriate β value for Equation 2 that
can approximate the dropout probability and its
rank with a Zipfian distribution. We assume that
the β setting in accord with Zipf’s Law could have
an important positive effect on the model perfor-

8Words in bold denote the apparent features with high
importance scores, e.g. “pretentious” appears 159 times in
positive texts and 5 in negative texts. Words with underline
represent unobvious features that also contribute to the class
prediction.

mance. To examine this hypothesis, we further test
the influences of different β values on the CNN
and RNN model. As expected, Table 5 shows that
the models achieve the best results for both CNN
and RNN in SST-1 with β setting to 0.95.

5 Conclusion

This paper proposes GI-Dropout, a novel dropout
method which utilizes global information and
guides neural networks to extract not only obvious
features but also unobvious features.

This idea is inspired by dropout in which units
are dropped randomly in training according to
the same probability. Unlike traditional dropout
method, we aim to use global information to guide
our dropout based on the importance of the words.

By integrating this mechanism, we encode
global information explicitly into model via a
novel Naı̈ve Bayes Weighting method. We dis-
cover that model can be sensitive to some inap-
parent patterns, which is of great help to the clas-
sification. Experimental results demonstrate the
effectiveness of GI-Dropout on multiple text clas-
sification tasks. In addition, our method requires
few external resources and relatively small calcu-
lation. It is simple but effective and could be easily
applied to other NLP tasks.

Acknowledgments

This work was supported by National Natural Sci-
ence Foundation of China (No. 61702047), Bei-
jing Natural Science Foundation (No. 4174098),
the Fundamental Research Funds for the Central
Universities (No. 2017RC02), National Social
Science Fund of China (No. 18CYY029) and
China Postdoctoral Science Foundation funded
project (No. 2018M630095).

References
Jimmy Ba and Brendan Frey. 2013. Adaptive dropout

for training deep neural networks. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 3084–3092.
Curran Associates, Inc.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.

580

2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep neu-
ral networks with logic rules. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 2410–2420.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma, Tim Salimans, and Max Welling.
2015. Variational dropout and the local reparam-
eterization trick. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems
28, pages 2575–2583. Curran Associates, Inc.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Shen Li, Zhe Zhao, Tao Liu, Renfen Hu, and Xiaoy-
ong Du. 2017. Initializing convolutional filters with
semantic features for text classification. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1884–1889.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Justin Martineau and Tim Finin. 2009. Delta tfidf: An
improved feature space for sentiment analysis.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computa-
tional linguistics, pages 115–124. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Haşim Sak, Andrew Senior, and Françoise Beaufays.
2014. Long short-term memory recurrent neural
network architectures for large scale acoustic mod-
eling. In Fifteenth annual conference of the interna-
tional speech communication association.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
volume 1, pages 1556–1566.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1422–1432.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165–210.

581

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

Wenpeng Yin and Hinrich Schütze. 2015. Multichan-
nel variable-size convolution for sentence classifi-
cation. In Proceedings of the Nineteenth Confer-
ence on Computational Natural Language Learning,
pages 204–214.

Rui Zhang, Honglak Lee, and Dragomir Radev. 2016a.
Dependency sensitive convolutional neural networks
for modeling sentences and documents. In Proceed-
ings of NAACL-HLT, pages 1512–1521.

Ye Zhang, Stephen Roller, and Byron C Wallace.
2016b. Mgnc-cnn: A simple approach to exploiting
multiple word embeddings for sentence classifica-
tion. In Proceedings of NAACL-HLT, pages 1522–
1527.

Ye Zhang and Byron Wallace. 2017. A sensitivity
analysis of (and practitioners guide to) convolutional
neural networks for sentence classification. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), volume 1, pages 253–263.

George K Zipf. 1935. The psychology of language. NY
Houghton-Mifflin.

582

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 583–592
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

Sequence to Sequence Mixture Model for Diverse Machine Translation

Xuanli He Gholamreza Haffari Mohammad Norouzi
Monash University, Australia Google Brain

{xuanli.he1,gholamreza.haffari}@monash.edu mnorouzi@google.com

Abstract

Sequence to sequence (SEQ2SEQ) models of-
ten lack diversity in their generated transla-
tions. This can be attributed to the limitation
of SEQ2SEQ models in capturing lexical and
syntactic variations in a parallel corpus result-
ing from different styles, genres, topics, or am-
biguity of the translation process. In this pa-
per, we develop a novel sequence to sequence
mixture (S2SMIX) model that improves both
translation diversity and quality by adopting
a committee of specialized translation models
rather than a single translation model. Each
mixture component selects its own training
dataset via optimization of the marginal log-
likelihood, which leads to a soft clustering of
the parallel corpus. Experiments on four lan-
guage pairs demonstrate the superiority of our
mixture model compared to a SEQ2SEQ base-
line with standard or diversity-boosted beam
search. Our mixture model uses negligible ad-
ditional parameters and incurs no extra com-
putation cost during decoding.

1 Introduction

Neural sequence to sequence (SEQ2SEQ) models
have been remarkably effective machine transla-
tion (MT) (Sutskever et al., 2014; Bahdanau et al.,
2015). They have revolutionized MT by provid-
ing a unified end-to-end framework, as opposed
to the traditional approaches requiring several sub-
models and long pipelines. The neural approach
is superior or on-par with statistical MT in terms
of translation quality on various MT tasks and do-
mains e.g. (Wu et al., 2016; Hassan et al., 2018).

A well recognized issue with SEQ2SEQ mod-
els is the lack of diversity in the generated trans-
lations. This issue is mostly attributed to the de-
coding algorithm (Li et al., 2016), and recently
to the model (Zhang et al., 2016; Schulz et al.,
2018a). The former direction has attempted to
design diversity encouraging decoding algorithm,

particularly beam search, as it generates transla-
tions sharing the majority of their tokens except a
few trailing ones. The latter direction has investi-
gated modeling enhancements, particularly the in-
troduction of continuous latent variables, in order
to capture lexical and syntactic variations in train-
ing corpora, resulted from the inherent ambiguity
of the human translation process.1 However, im-
proving the translation diversity and quality with
SEQ2SEQ models is still an open problem, as the
results of the aforementioned previous work are
not fully satisfactory.

In this paper, we develop a novel sequence to
sequence mixture (S2SMIX) model that improves
both translation quality and diversity by adopt-
ing a committee of specialized translation models
rather than a single translation model. Each mix-
ture component selects its own training dataset via
optimization of the marginal log-likelihood, which
leads to a soft clustering of the parallel corpus. As
such, our mixture model introduces a conditioning
global discrete latent variable for each sentence,
which leads to grouping together and capturing
variations in the training corpus. We design the ar-
chitecture of S2SMIX such that the mixture com-
ponents share almost all of their parameters and
computation.

We provide experiments on four transla-
tion tasks, translating from English to Ger-
man/French/Vietnamese/Spanish. The experi-
ments show that our S2SMIX model consistently
outperforms strong baselines, including SEQ2SEQ

model with the standard and diversity encouraged
beam search, in terms of both translation diversity
and quality. The benefits of our mixture model
comes with negligible additional parameters and
no extra computation at inference time, compared
to the vanilla SEQ2SEQ model.

1For a given source sentence, usually there exist several
valid translations.

583

2 Attentional Sequence to Sequence

An attentional sequence to sequence (SEQ2SEQ)
model (Sutskever et al., 2014; Bahdanau et al.,
2015) aims to directly model the conditional dis-
tribution of an output sequence y ≡ (y1, . . . , yT)
given an input x, denoted P (y | x). This fam-
ily of autoregressive probabilistic models decom-
poses the output distribution in terms of a product
of distributions over individual tokens, often or-
dered from left to right as,

Pθ(y | x) =
∏|y|

t=1
Pθ(yt | y<t,x) , (1)

where y<t ≡ (y1, . . . , yt−1) denotes a prefix of
the sequence y, and θ denotes the tunable param-
eters of the model.

Given a training dataset of input-output pairs,
denoted by D ≡ {(x,y∗)d}Dd=1, the conditional
log-likelihood objective, predominantly used to
train SEQ2SEQ models, is expressed as,

`CLL(θ) =
∑

(x,y∗)∈D

|y∗|∑

t=1

logPθ(y
∗
t | y∗<t,x) . (2)

A standard implementation of the SEQ2SEQ

model is composed of an encoder followed by a
decoder. The encoder transforms a sequence of
source tokens denoted (x1, . . . , xN), into a se-
quence of hidden states denoted (h1, . . . ,hN) via
a recurrent neural network (RNN). Attention pro-
vides an effective mechanism to represent a soft
alignment between the tokens of the input and out-
put sequences (Bahdanau et al., 2015), and more
recently to model the dependency among the out-
put variables (Vaswani et al., 2017).

In our model, we adopt a bidirectional RNN
with LSTM units (Hochreiter and Schmidhuber,
1997). Each hidden state hn is the concatenation
of the states produced by the forward and back-
ward RNNs, hn = [h→n,hn←]. Then, we use a
two-layer RNN decoder to iteratively emit individ-
ual distributions over target tokens (y1, ..., yT). At
time step t, we compute the hidden representations
of an output prefix y≤t denoted s1t and s2t based on
an embedding of yt denoted M[yt], previous rep-
resentations s1t−1, s2t−1, and a context vector ct as,

s1t = LSTM(s1t−1,M[yt]; ct) , (3)

s2t = LSTM(s2t−1, s
1
t ; ct) , (4)

Pθ(yt+1 |y≤t,x) = softmax(W s2t +W ′ct) , (5)

where M is the embedding table, and W and W ′

are learnable parameters. The context vector ct is
computed based on the input and attention,

et,n = v>tanh(Whhn +Wss
1
t−1 + ba) , (6)

at = softmax(et) , (7)

ct =
∑

n

at,n hn , (8)

where Wh, Ws, ba, and v are learnable parame-
ters, and at is the attention distribution over the
input tokens at time step t. The decoder utilizes the
attention information to decide which input tokens
should influence the next output token yt+1.

3 Sequence to Sequence Mixture Model

We develop a novel sequence to sequence mix-
ture (S2SMIX) model that improves both transla-
tion quality and diversity by adopting a commit-
tee of specialized translation models rather than a
single translation model. Each mixture component
selects its own training dataset via optimization of
the marginal log-likelihood, which leads to a soft
clustering of the parallel corpus. We design the ar-
chitecture of S2SMIX such that the mixture com-
ponents share almost all of their parameters except
a few conditioning parameters. This enables a di-
rect comparison against a SEQ2SEQ baseline with
the same number of parameters.

Improving translation diversity within
SEQ2SEQ models has received considerable
recent attention (e.g., Vijayakumar et al. (2016);
Li et al. (2016)). Given a source sentence, human
translators are able to produce a set of diverse
and reasonable translations. However, although
beam search for SEQ2SEQ models is able to
generate various candidates, the final candidates
often share majority of their tokens, except a few
trailing ones. The lack of diversity within beam
search raises an issue for possible re-ranking
systems and for scenarios where one is willing to
show multiple translation candidates to the user.
Prior work attempts to improve translation diver-
sity by incorporating a diversity penalty during
beam search (Vijayakumar et al., 2016; Li et al.,
2016). By contrast, our S2SMIX model naturally
incorporates diversity both during training and
inference.

The key difference between the SEQ2SEQ and
S2SMIX models lies in the formulation of the con-
ditional probability of an output sequence y given
an input x. The S2SMIX model represents Pθ(y |

584

x) by marginalizing out a discrete latent variable
z ∈ {1, . . . ,K}, which indicates the selection of
the mixture component, i.e.,

Pθ(y |x) =

K∑

z=1

Pθ(y |x, z)P (z |x) , (9)

where K is the number of mixture components.
For simplicity and to promote diversity, we assume
that the mixing coefficients follow a uniform dis-
tribution such that for all z ∈ {1, . . . ,K},

P (z | x) = 1/K . (10)

For the family of S2SMIX models with uni-
form mixing coefficients (10), the conditional log-
likelihood objective (2) can be re-expressed as:

`CLL(θ) = constant +

∑

(x,y∗)∈D
log

K∑

z=1

exp

|y∗|∑

t=1

logPθ(y
∗
t | y∗<t,x, z)

︸ ︷︷ ︸
Pθ(y|x,z)

,

(11)

where log(1/K) terms were excluded because
they offset the objective by a constant value. Such
a constant has no impact on learning the param-
eters θ. One can easily implement the objective
in (11) using automatic differentiation software
such as tensorflow (Abadi et al., 2016), by adopt-
ing a LogSumExp operator to aggregate the loss
of the individual mixture components. When the
number of components K is large, computing the
terms Pθ(y∗t | y∗<t,x, z) for all values of z ∈
{1, . . . ,K} can require a lot of GPU memory. To
mitigate this issue, we will propose a memory ef-
ficient formulation in Section 3.3 inspired by the
EM algorithm.

3.1 S2SMIX Architecture
We design the architecture of the S2SMIX model
such that individual mixture components can share
as many parameters and as much computation as
possible. Accordingly, all of the mixture compo-
nents share the same encoder, which requires pro-
cessing the input sentence only once. We consider
different ways of injecting the conditioning signal
into the decoder. As depicted in Figure 1, we con-
sider different ways of injecting the conditioning
on z into our two-layer decoder. These different
variants require additional lookup tables denoted
M1,M2, or Mb.

LSTM

Logits

LSTM

+

+

+

LSTM

Logits

LSTM

+

+

+

Figure 1: An illustration of a two-layer LSTM de-
coder with different ways of injecting the condi-
tioning signal.

When we incorporate the conditioning on z into
the LSTM layers, each lookup table (e.g., M1

and M2) has K rows and DLSTM columns, where
DLSTM denotes the number of dimensions of the
LSTM states (512 in our case). We combine the
state of the LSTM with the conditioning signal via
simple addition. Then the LSTM update equations
take the form,

sit = LSTM(sit−1 + Mi[z], input) , (12)

for i ∈ {1, 2}. We refer to the addition of the con-
ditioning signal to the bottom and top LSTM lay-
ers of the decoder as bt and tp respectively. Note
that in the bt configuration, the attention mask de-
pends on the indicator variable z, whereas in the tp
configuration that attention mask is shared across
different mixture components.

We also consider incorporating the condition-
ing signal into the softmax layer to bias the selec-
tion of individual words in each mixture compo-
nent. Accordingly, the embedding table Mb has K
rows andDvocab entries, and the logits from (5) are
added to the corresponding row of Mb as,

Pθ(yt+1 |y≤t,x, z) = softmax(logits+Mb[z]) .

(13)

We refer to this configuration as sf and to the con-
figuration that includes all of the conditioning sig-
nals as all.

3.2 Separate Beam Search per Component

At the inference stage, we conduct a separate beam
search per mixture component. Performing beam

585

search independently for each component encour-
ages diversity among the translation candidates as
different mixture components often prefer certain
phrases and linguistic structures over each other.
Let ŷz denote the result of the beam search for
a mixture component z. The final output of our
model, denoted ŷ is computed by selecting the
translation candidate with the highest probability
under the corresponding mixture component, i.e.,

ŷ = argmax
1≤z≤K

logPθ(ŷz | x, z) . (14)

In order to accurately estimate the conditional
probability of each translation candidate based on
(9), one needs to evaluate each candidate using all
of the mixture components. However, this process
considerably increases the inference time and la-
tency. Instead, we approximate the probability of
each candidate by only considering the mixture
component based on which the candidate transla-
tion has been decoded, as outlined in (14). This
approximation also encourages the diversity as we
emphasized in this work.

Note that we have K mixture components and a
beam search of b per component. Overall, this re-
quires processing K × b candidates. Accordingly,
we compare our model with a SEQ2SEQ model us-
ing the same beam size of K × b.

3.3 Memory Efficient Formulation

In this paper, we adopt a relatively small number of
mixture components (up to 16), but to encompass
various clusters of linguistic content and style, one
may benefit from a large number of components.
Based on our experiments, the memory footprint
of a S2SMIX with K components increases by
about K folds, partly because the softmax layers
take a big fraction of the memory. To reduce the
memory requirement for training our model, in-
spired by prior work on EM algorithm (Neal and
Hinton, 1998), we re-express the gradient of the
conditional log-likelihood objective in (11) exactly
as,

d

dθ
`CLL(θ) =

∑

(x,y∗)∈D

K∑

z=1

P (z | x,y∗) d
dθ

logPθ(y
∗ | x, z) ,

(15)

where with uniform mixing coefficients, the pos-
terior distribution P (z | x,y∗) takes the form,

P (z | x,y) =
exp `z(y |x)∑
k exp `k(y |x)

, (16)

where `z(y |x) = logPθ(y |x, z).
Based on this formulation, one can compute

the posterior distribution in a few forward passes,
which require much less memory. Then, one can
draw one or a few Monte Carlo (MC) samples
from the posterior to obtain an unbiased estimate
of the gradient in (15). As shown in algorithm 1,
the training procedure is divided into two parts.
For each minibatch we compute the component-
specific log-loss for different mixture components
in the first stage. Then, we exponentiate and nor-
malize the losses as in (16) to obtain the poste-
rior distribution. Finally, we draw one sample from
the posterior distribution per input-output exam-
ple, and optimize the parameters according to the
loss of such a component. These two stages are al-
ternated until the model converges. We note that
this algorithm follows an unbiased stochastic gra-
dient of the marginal log likelihood.

Algorithm 1 Memory efficient S2SMIX

Initialize a computational graph: cg
Initialize a optimizer: opt
repeat

draw a random minibatch of the data
empty list Γ
for z = 1 to K do
`z := cg.forward(minibatch, z)
Γ := add exp(`z) to Γ

end for
Γ := normalize(Γ)
z̃ := sample(Γ)
` := cg.forward(minibatch, z̃)
opt.gradient_descent(`)

until converge

4 Experiments

Dataset. To assess the effectiveness of the
S2SMIX model, we conduct a set of translation
experiments on TEDtalks on four language
pairs: English→French (en-fr), English→German
(en-de), English→Vietnamese (en-vi), and
English→Spanish (en-es).

We use IWSLT14 dataset2 for en-es, IWSLT15
2https://sites.google.com/site/iwsltevaluation2014/home

586

Data en-fr en-de en-vi en-es
Train 208,719 189,600 133,317 173,601
Dev 5,685 6,775 1,553 5,401
Test 2,762 2,762 1,268 2,504

Table 1: Statistics of all language pairs for IWSLT
data after preprocessing

dataset for en-vi, and IWSLT16 dataset3 for en-fr
and en-de. We pre-process the corpora by Moses
tokenizer4, and preserve the true case of the text.
For en-vi, we use the pre-processed corpus dis-
tributed by Luong and Manning (2015)5. For train-
ing and dev sets, we discard all of the sentence
pairs where the length of either side exceeds 50
tokens. The number of sentence pairs of different
language pairs after preprocessing are shown in
Table 1. We apply byte pair encoding (BPE) (Sen-
nrich et al., 2016) to handle rare words on en-fr,
en-de and en-es, and share the BPE vocabularies
between the encoder and decoder for each lan-
guage pair.

Implementation details. All of the models use a
one-layer bidirectional LSTM encoder and a two-
layer LSTM decoder. Each LSTM layer in the en-
coder and decoder has a 512 dimensional hid-
den state. Each input word embeddings is 512
dimensional as well. We adopt the Adam opti-
mizer (Kingma and Ba, 2014). We adopt dropout
with a 0.2 dropout rate. The minibatch size is 64
sentence pairs. We train each model 15 epochs,
and select the best model in terms of the perplexity
on the dev set.

Diversity metrics. Having more diversity in the
candidate translations is one of the major advan-
tages of the S2SMIX model. To quantify diversity
within a set {ŷm}Mm=1 of translation candidates,
we propose to evaluate average pairwise BLEU be-
tween pairs of sentences according to

div_bleu ≡ 100−

M∑

i=1

M∑

j=i+1

BLEU(ŷi, ŷj)

M(M − 1)/2
(17)

As an alternative metric of diversity within a
set {ŷm}Mm=1 of translations, we propose a met-
ric based on the fraction of the n-grams that are

3https://sites.google.com/site/iwsltevaluation2016
4https://github.com/moses-smt/mosesdecoder
5https://nlp.stanford.edu/projects/nmt

Figure 2: BLEU scores of the different variants of
S2SMIX model and SEQ2SEQ model.

not shared among the translations, i.e.,

div_ngram ≡ 1−
∣∣∩Mm=1ngrams(ŷm)

∣∣
∣∣∪Mm=1ngrams(ŷm)

∣∣ (18)

where ngram(y) returns the set of unique n-grams
in a sequence y. We report average div_bleu and
average div_ngram across the test set for the trans-
lation candidates found by beam search. We mea-
sure and report bigram diversity in the paper and
report unigram diversity in the supplementary ma-
terial.

4.1 Experimental results

S2SMIX configuration. We start by investigat-
ing which of the ways of injecting the condition-
ing signal into the S2SMIX model is most effec-
tive. As seen in Section 3, the mixture components
can be built by adding component-specific vec-
tors to the logits (sf), the top LSTM layer (tp) or
the bottom LSTM layer (bt) in the decoder, or all
of them (all). Figure 2 shows the BLEU score of
these variants on the translation tasks across four
different language pairs. We observe that adding
a component-specific vector to the recurrent cells
in the bottom layer of the decoder is the most ef-
fective, and results in BLEU scores superior or on-
par with the other variants across the four language
pairs.

Therefore, we use this model variant in all ex-
periments for the rest of the paper.

Furthermore, Table 2 shows the number of pa-
rameters in each of the variants as well as the
base SEQ2SEQ model. We confirm that the mix-
ture model variants introduce negligible number

587

en-fr en-de en-vi en-es
SEQ2SEQ 173.22 173.78 112.76 173.21
S2SMIX-4

bt 173.23 173.79 112.77 173.22
tp 173.23 173.79 112.77 173.22
sf 173.70 174.27 112.88 173.70
all 173.72 174.29 112.90 173.72

Table 2: Size of the parameters (MB) for the base
SEQ2SEQ model and the variants of S2SMIX with
four mixtures.

beam en-fr en-de en-vi en-es

SEQ2SEQ

4 30.26 19.52 24.82 29.40
8 30.18 19.77 23.55 29.76
16 27.63 19.13 19.05 28.19

S2SMIX-4
1 30.61 20.18 25.16 31.17
2 31.22 20.71 25.28 31.47
4 31.97 21.08 25.36 31.21

Table 3: BLEU scores of different systems over dif-
ferent search space.

of new parameters compared to the base SEQ2SEQ

model. Specifically, only up to 0.002% increase in
the parameter size are introduced, across all of the
language pairs and mixture model variants.

S2SMIX vs. SEQ2SEQ. We compare our mix-
ture model against a vanilla SEQ2SEQ model both
in terms of translation quality and diversity. To be
fair, we compare models with the same number of
beams during inference, e.g., we compare vanilla
SEQ2SEQ using a beam size of 8 with S2SMIX-4
with 4 component and a beam size of 2 per com-
ponent.

As an effective regularization strategy, we adopt
label smoothing to strengthen generalisation per-
formance (Szegedy et al., 2016; Pereyra et al.,
2017; Edunov et al., 2018). Unlike conventional
cross-entropy loss, where the probability mass for
the ground truth word y is set to 1 and q(y′) = 0
for y′ 6= y, we smooth this distribution as:

q(y) = 1− ε, (19)

q(y′) =
ε

V − 1
(20)

where ε is a smoothing parameter, and V is the
vocabulary size. In our experiments, ε is set to 0.1.

Table 3 shows the results across four language
pairs. Each row in the top part should be compared

en-fr en-de en-vi en-es
BLEU

SEQ2SEQ-d 29.85 19.18 24.62 29.72
S2SMIX-4 30.61 20.18 25.16 31.17

DIV_BLEU
SEQ2SEQ-d 20.43 22.66 14.51 18.83
S2SMIX-4 34.85 47.85 37.40 38.31

Table 4: S2SMIX with 4 components vs SEQ2SEQ

endowed with the beam-diverse decoder (Li et al.,
2016) with the beam size of 4.

with the corresponding row in the bottom part for
a fair comparison in terms of the effective beam
size. Firstly, we observe that increasing the beam
size deteriorates the BLEU score for the SEQ2SEQ

model. Similar observations have been made in the
previous work (Tu et al., 2017). This behavior is
in contrast to our S2SMIX model where increas-
ing the beam size improves the BLEU score, ex-
cept en-es, which demonstrates a decreasing trend
when beam size increases from 2 to 4. Secondly,
our S2SMIX models outperform their SEQ2SEQ

counterparts in all settings with the same number
of bins.

Figure 3 shows the diversity comparison
between the S2SMIX model and the vanilla
SEQ2SEQ model where the number of decoding
beams is 8. The diversity metrics are bigram and
BLEU diversity as defined earlier in the section.
Our S2SMIX models significantly dominate the
SEQ2SEQ model across language pairs in terms of
the diversity metrics, while keeping the translation
quality high (c.f. the BLEU scores in Table 3).

We further compare against the SEQ2SEQ

model endowed with the beam-diverse decoder (Li
et al., 2016). This decoder penalizes sibling hy-
potheses generated from the same parent in the
search tree, according to their ranks in each de-
coding step. Hence, it tends to rank high those hy-
potheses from different parents, hence encourag-
ing diversity in the beam.

Table 4 presents the BLEU scores as well as the
diversity measures. As seen, the mixture model
significantly outperforms the SEQ2SEQ endowed
with the beam-diverse decoder, in terms of the di-
versity in the generated translations. Furthermore,
the mixture model achieves up to 1.7 BLEU score
improvements across three language pairs.

588

en-fr en-de en-vi en-es
BLEU time BLEU time BLEU time BLEU time

S2SMIX-4 30.61 1.25 20.18 1.33 25.16 1.14 31.17 1.30
MC sampling:

S2SMIX-4 30.43 1.67 19.74 1.67 24.93 1.58 31.27 1.67
S2SMIX-8 30.66 2.08 20.41 2.05 24.86 2.00 31.44 2.06
S2SMIX-16 30.74 3.10 20.43 2.88 24.90 2.83 30.82 3.02

Table 5: BLEU scores using greedy decoding and training time based on the original log-likelihood
objective and online EM coupled with gradient estimation based on a single MC sample. The training
time is reported by taking the average running time of one minibatch update across a full epoch.

Large mixture models. Memory limitations of
the GPU may make it difficult to increase the
number of mixture components beyond a certain
amount. One approach is to decrease the number
of sentence pairs in a minibatch, however, this re-
sults in a substantial increase in the training time.
Another approach is to resort to MC gradient esti-
mation as discussed in Section 3.3.

The top-part of Table 5 compares the models
trained by online EM vs the original log-likelihood
objective, in terms of the BLEU score and the
training time. As seen, the BLEU score of the EM-
trained models are on-par with those trained on
the log-likelihood objective. However, online EM
leads to up to 35% increase in the training time for
S2SMIX-4 across four different language pairs, as
we first need to do a forward pass on the mini-
batch in order to form the lower bound on the log-
likelihood training objective.

The bottom-part of Table 5 shows the effect of
online EM coupled with sampling only one mix-
ture component to form a stochastic approxima-
tion to the log-likelihood lower bound. For each
minibatch, we first run a forward pass to compute
the probability of each mixture component given
each sentence pair in the minibatch. We then sam-
ple a mixture component for each sentence-pair to
form the approximation of the log-likelihood lower
bound for the minibatch, which is then optimized
using back-propagation. As we increase the num-
ber of mixture components from 4 to 8, we see
about 0.7 BLEU score increase for en-de; while
there is no significant change in the BLEU score
for en-fr, en-vi and en-es.

Increasing the number of mixture components
further to 16 does not produce gains on these
datasets. Time-wise, training with online EM cou-
pled with 1-candidate sampling should be signif-
icantly faster that the vanilla online EM and the

original likelihood objective in principle, as we
need to perform the backpropagation only for the
selected mixture component (as opposed to all
mixture components). Nonetheless, the additional
computation due to increasing the number of mix-
tures from 4 to 8 is about 26%, which increases to
about 55% when going from 8 to 16 mixture com-
ponents.

Figure 3: Diversity bigram (top) and BLEU (bot-
tom) for the SEQ2SEQ model vs S2SMIX models,
with the number of decoding beams set to 8.

4.2 Qualitative Analysis
Finally, we would like to demonstrate that our
S2SMIX does indeed encourage diversity and im-

589

Source And this information is stored for at least six months in Europe , up to two years .
Reference Và những thông tin này được lưu trữ trong ít nhất sáu tháng ở châu Âu , cho tới tận hai năm .
SEQ2SEQ

Và thông tin này được lưu trữ trong ít sáu tháng ở Châu Âu , hai năm tới .
Và thông tin này được lưu trữ trong ít sáu tháng ở Châu Âu , trong hai năm tới .
Và thông tin này được lưu trữ trong ít sáu tháng ở Châu Âu , hai năm tới
Và thông tin này được lưu trữ trong ít sáu tháng ở Châu Âu , trong hai năm tới

S2SMIX

Và thông tin này được lưu trữ trong ít nhất 6 tháng ở châu Âu , đến 2 năm .
Và thông tin này được lưu trữ trong ít nhất 6 tháng ở châu Âu , lên tới hai năm .
Và thông tin này được lưu trữ trong ít nhất 6 tháng ở châu Âu , trong vòng hai năm .
Và thông tin này được lưu trữ trong ít nhất 6 tháng ở châu Âu , lên tới hai năm

Table 6: Words indicate diversity compared with the references, while red words denote translation im-
provement.

prove the translation quality. As shown in Table 6,
compared with SEQ2SEQ, which mistranslates the
second clause, our S2SMIX is not only capable of
generating a group of correct translation, but also
emitting synonyms for different mixture compo-
nents. We provide more examples in the supple-
mentary material.

5 Related Work

Obviously, different domains aim at different read-
ers, thus they exhibit distinctive genres compared
to other domains. A well-tuned MT system cannot
directly apply to new domains; otherwise, trans-
lation quality will degrade. Based on this fac-
tor, out-domain adaptation has been widely stud-
ied for MT, ranging from data selection (Li et al.,
2010; Wang et al., 2017), tuning (Luong and Man-
ning, 2015; Farajian et al., 2017) to domain tags
(Chu et al., 2017). Similarly, in-domain adaptation
is also a compelling direction. Normally, to train
an universal MT system, the training data consist
of gigantic corpora covering numerous and vari-
ous domains.This training data is naturally so di-
verse that Mima et al. (1997) incorporated extra-
linguistic information to enhance translation qual-
ity. Michel and Neubig (2018) argue even with-
out explicit signals (gender, politeness etc.), they
can handle domain-specific information via anno-
tation of speakers, and easily gain quality improve-
ment from a larger number of domains. Our ap-
proach is considerably different from the previ-
ous work. We remove any extra annotation, and
treat domain-related information as latent vari-
ables, which are learned from corpus.

Prior to our work, diverse generation has been
studied in image captioning, as some of the train-
ing set are comprised of images paired with multi-
ple reference captions. Some work puts their ef-
forts on decoding stages, and form a group of
beam search to encourage diversity (Vijayakumar
et al., 2016), while others pay more attention to
adversarial training (Shetty et al., 2017; Li et al.,
2018). Within translation, our method is similar
to Schulz et al. (2018b), where they propose a
MT system armed with variational inference to ac-
count for translation variations. Like us, their di-
versified generation is driven by latent variables.
Albeit the simplicity of our model, it is effective
and able to accommodate variation or diversity.
Meanwhile, we propose several diversity metrics
to perform quantitative analysis.

Finally, Yang et al. (2018) proposes a mixture
of softmaxes to enhance the expressiveness of lan-
guage model, which demonstrate the effectiveness
of our S2SMIX model under the matrix factoriza-
tion framework.

6 Conclusions and Future Work

In this paper, we propose a sequence to sequence
mixture (S2SMIX) model to improve translation
diversity within neural machine translation via in-
corporating a set of discrete latent variables. We
propose a model architecture that requires negli-
gible additional parameters and no extra compu-
tation at inference time. In order to address pro-
hibitive memory requirement associated with large
mixture models, we augment the training proce-
dure by computing the posterior distribution fol-

590

lowed by Monte Carlo sampling to estimate the
gradients. We observe significant gains both in
terms of BLEU scores and translation diversity
with a mixture of 4 components. In the future, we
intend to replace the uniform mixing coefficients
with learnable parameters, since different compo-
nents should not necessarily make an equal con-
tribution to a given sentence pair. Moreover, we
will consider applying our S2SMIX model to other
NLP problems in which diversity plays an impor-
tant role.

7 Acknowledgements

We would like to thank Quan Tran, Trang Vu and
three anonymous reviewers for their valuable com-
ments and suggestions. This work was supported
by the Multi-modal Australian ScienceS Imaging
and Visualisation Environment (MASSIVE)6, and
in part by an Australian Research Council grant
(DP160102686).

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. Tensorflow:
Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv:1603.04467.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. CoRR,
abs/1701.03214.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to sequence
learning. In Proceedings of NAACL-HLT 2018.

M Amin Farajian, Marco Turchi, Matteo Negri, and
Marcello Federico. 2017. Multi-domain neural ma-
chine translation through unsupervised adaptation.
In Proceedings of the Second Conference on Ma-
chine Translation, pages 127–137.
6https://www.massive.org.au/

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Federmann,
Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving
human parity on automatic chinese to english news
translation. arXiv:1803.05567.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Dianqi Li, Xiaodong He, Qiuyuan Huang, Ming-Ting
Sun, and Lei Zhang. 2018. Generating diverse and
accurate visual captions by comparative adversarial
learning. arXiv preprint arXiv:1804.00861.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. CoRR, abs/1611.08562.

Mu Li, Yinggong Zhao, Dongdong Zhang, and Ming
Zhou. 2010. Adaptive development data selection
for log-linear model in statistical machine transla-
tion. In Proceedings of the 23rd International Con-
ference on Computational Linguistics, pages 662–
670. Association for Computational Linguistics.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In IWSLT.

Paul Michel and Graham Neubig. 2018. Extreme adap-
tation for personalized neural machine translation.
In In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
Melbourne, Australia.

Hideki Mima, Osamu Furuse, and Hitoshi Iida. 1997.
Improving performance of transfer-driven machine
translation with extra-linguistic informatioon from
context, situation and environment. In IJCAI (2),
pages 983–989.

Radford M Neal and Geoffrey E Hinton. 1998. A
view of the em algorithm that justifies incremental,
sparse, and other variants. Learning in graphical
models.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Łukasz Kaiser, and Geoffrey Hinton. 2017. Regular-
izing neural networks by penalizing confident output
distributions. arXiv preprint arXiv:1701.06548.

Philip Schulz, Wilker Aziz, and Trevor Cohn. 2018a.
A stochastic decoder for neural machine translation.
CoRR, arXiv:1805.10844.

Philip Schulz, Wilker Aziz, and Trevor Cohn. 2018b. A
stochastic decoder for neural machine translation. In
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), Mel-
bourne, Australia.

591

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1715–1725.

Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hen-
dricks, Mario Fritz, and Bernt Schiele. 2017. Speak-
ing the same language: Matching machine to human
captions by adversarial training. In In Proceedings
of the IEEE International Conference on Computer
Vision (ICCV).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. NIPS.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2017. Neural machine translation with
reconstruction. AAAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1482–1488.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Inter-
national Conference on Learning Representations.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. CoRR, arXiv:1605.07869.

592

Author Index

Abbet, Christian, 161
Ackermann, Francesco, 392
Ager, Thomas, 530
Aghaebrahimian, Ahmad, 433
Agirre, Eneko, 171, 282
Al Khatib, Khalid, 454
Alishahi, Afra, 402
Artetxe, Mikel, 282
Asano, Hisako, 141

Baeriswyl, Michael, 161, 221
Bansal, Mohit, 486
Barrena, Ander, 171
Barrett, Maria, 302
Beard, Rory, 251
Bennani-Smires, Kamil, 221
Besacier, Laurent, 97
Bhat, Rajesh, 345
Bhattacharyya, Pushpak, 119
Bingel, Joachim, 302
Blohm, Matthias, 108
Böhm, Klemens, 423
Bowman, Samuel, 508
Buntine, Wray, 334

Cao, Junjie, 562
Casacuberta, Francisco, 151
Chaudhuri, Debanjan, 497
Chen, Enhong, 190
Chen, Fang, 42
Chen, Yufei, 562
Cheng, Jianpeng, 356
Chrupała, Grzegorz, 402
Chung, WooJin, 508
Cohen, Trevor, 465
Collins, Edward, 380
Côté, Marc-Alexandre, 402
Cotterell, Ryan, 211

Daelemans, Walter, 75
Danilevsky, Marina, 444
Das, Ritwik, 251
Deleu, Johannes, 324
Demeester, Thomas, 324
Derby, Steven, 260

Develder, Chris, 324
Devereux, Barry, 260

Ebrahimi, Mohammad, 42
Eerens, Luka, 251
Ekbal, Asif, 119
El Baff, Roxanne, 454
Elbayad, Maha, 97
Elekes, Ábel, 423
Elliott, Desmond, 402
Englhardt, Adrian, 423

Felbo, Bjarke, 292
Fevry, Thibault, 413
Filippova, Katja, 313
Fischer, Asja, 497
Fu, Tianfan, 11

Ganea, Octavian-Eugen, 519
Gao, Sheng, 573
Giannakopoulos, Athanasios, 161
Godin, Fréderic, 324
Gopalakrishnan, P. G. Keerthana, 251
Goyal, Pawan, 345
Gupta, Deepak, 119
Gurevych, Iryna, 54

Haffari, Gholamreza, 334, 583
He, Xuanli, 583
Hofer, Matthias, 292
Hofmann, Thomas, 519
Hollenstein, Nora, 302
Hossmann, Andreea, 161, 221
Hu, Renfen, 573
Huang, Lifu, 86
Huang, Sheng, 562

Iwakura, Tomoya, 541

Jagfeld, Glorianna, 108
Jaggi, Martin, 221
Ji, Heng, 86
Jung, Sangkeun, 131

Kádár, Ákos, 402
Kann, Katharina, 313

593

Kementchedjhieva, Yova, 211
Kim, Jiwon, 131
Kolitsas, Nikolaos, 519
Krishna, Amrith, 345
Kristiadi, Agustinus, 497
Kuželka, Ondřej, 530
Kuznetsov, Ilia, 54

Labaka, Gorka, 282
Lapata, Mirella, 356
Lee, Jinsik, 131
Lehmann, Jens, 497
Lenka, Pabitra, 119
Levy, Roger, 292
Li, Lishuang, 181
Li, Min, 444
Li, Mu, 190
Li, Ruoyu, 241
Li, Shen, 573
Li, Si, 573
Li, Yunyao, 444
Lin, Chin-Yew, 476
Liu, Jing, 476
Liu, Ming, 334
Liu, Shujie, 190
Liu, Yang, 181
Lopez-Gazpio, Inigo, 282

M’hamdi, Meryem, 161
Majumder, Bodhisattwa P., 345
Mandt, Stephan, 11
Markert, Katja, 230
Martschat, Sebastian, 230
McCallum, Andrew, 1
Merlo, Paola, 392
Miksik, Ondrej, 251
Miller, Paul, 260
Minervini, Pasquale, 65
Murphy, Brian, 260
Murty, Shikhar, 1
Musat, Claudiu, 161, 221

Nejdl, Wolfgang, 31
Ng, Raymond W. M., 251
Nguyen, Le-Minh, 21
Nguyen, Tu, 31
Nie, Feng, 476
Nishida, Kyosuke, 141
Niu, Tong, 486
Noeman, Sara, 444
Norouzi, Mohammad, 583

Pan, Rong, 476

Peris, Álvaro, 151
Phang, Jason, 413

Radinsky, Kira, 200
Rama, Taraka, 271
Ramesh, Sree Harsha, 1
Rei, Marek, 302
Riedel, Sebastian, 65
Rothe, Sascha, 313
Rozanov, Nikolai, 380
Ruder, Sebastian, 211

Søgaard, Anders, 211, 302
Saito, Itsumi, 141
Sandra, Dominiek, 75
Schäler, Martin, 423
Schockaert, Steven, 530
Sha, Fei, 551
ShafieiBavani, Elaheh, 42
Shen, Judy Hanwen, 292
Shoshan, Eylon, 200
Sirts, Kairit, 368
Sood, Ekta, 108
Soroa, Aitor, 171
Stein, Benno, 454
Sun, Maosong, 241
Sun, Weiwei, 562
Swietojanski, Pawel, 251

Thai, Dung, 1
Tkachenko, Alexander, 368
Tomita, Junji, 141
Tran, Tuan, 31
Tran, Van-Khanh, 21
Tulkens, Stephan, 75

Verbeek, Jakob, 97
Vilnis, Luke, 1
Vu, Ngoc Thang, 108

Wachsmuth, Henning, 454
Wan, Xiaojun, 562
Wang, Fang, 562
Wang, Jinpeng, 476
Wang, Sheng-Fu, 508
West, Robert, 161
Whitehead, Spencer, 86
Widdows, Dominic, 465
Wong, Raymond, 42

Xu, Hengru, 573

Yi, Xiaoyuan, 241
Yoshikawa, Hiyori, 541

Yu, Xiang, 108

Zemlyanskiy, Yury, 551
Zhang, Bingbing, 380
Zhang, Boliang, 86
Zhang, Cheng, 11
Zhang, Zhirui, 190
Zhou, AnQiao, 181
Zhou, Ming, 190
Zhou, Shuyan, 476

	Program
	Embedded-State Latent Conditional Random Fields for Sequence Labeling
	Continuous Word Embedding Fusion via Spectral Decomposition
	Dual Latent Variable Model for Low-Resource Natural Language Generation in Dialogue Systems
	A Trio Neural Model for Dynamic Entity Relatedness Ranking
	A Unified Neural Network Model for Geolocating Twitter Users
	Corpus-Driven Thematic Hierarchy Induction
	Adversarially Regularising Neural NLI Models to Integrate Logical Background Knowledge
	From Strings to Other Things: Linking the Neighborhood and Transposition Effects in Word Reading
	Global Attention for Name Tagging
	Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction
	Comparing Attention-Based Convolutional and Recurrent Neural Networks: Success and Limitations in Machine Reading Comprehension
	Uncovering Code-Mixed Challenges: A Framework for Linguistically Driven Question Generation and Neural Based Question Answering
	Learning to Embed Semantic Correspondence for Natural Language Understanding
	Commonsense Knowledge Base Completion and Generation
	Active Learning for Interactive Neural Machine Translation of Data Streams
	Churn Intent Detection in Multilingual Chatbot Conversations and Social Media
	Learning Text Representations for 500K Classification Tasks on Named Entity Disambiguation
	Hierarchical Attention Based Position-Aware Network for Aspect-Level Sentiment Analysis
	Bidirectional Generative Adversarial Networks for Neural Machine Translation
	Latent Entities Extraction: How to Extract Entities that Do Not Appear in the Text?
	Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction
	Simple Unsupervised Keyphrase Extraction using Sentence Embeddings
	A Temporally Sensitive Submodularity Framework for Timeline Summarization
	Chinese Poetry Generation with a Salient-Clue Mechanism
	Multi-Modal Sequence Fusion via Recursive Attention for Emotion Recognition
	Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data to Model Human Conceptual Knowledge
	Similarity Dependent Chinese Restaurant Process for Cognate Identification in Multilingual Wordlists
	Uncovering Divergent Linguistic Information in Word Embeddings with Lessons for Intrinsic and Extrinsic Evaluation
	Comparing Models of Associative Meaning: An Empirical Investigation of Reference in Simple Language Games
	Sequence Classification with Human Attention
	Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!
	Predefined Sparseness in Recurrent Sequence Models
	Learning to Actively Learn Neural Machine Translation
	Upcycle Your OCR: Reusing OCRs for Post-OCR Text Correction in Romanised Sanskrit
	Weakly-Supervised Neural Semantic Parsing with a Generative Ranker
	Modeling Composite Labels for Neural Morphological Tagging
	Evolutionary Data Measures: Understanding the Difficulty of Text Classification Tasks
	Vectorial Semantic Spaces Do Not Encode Human Judgments of Intervention Similarity
	Lessons Learned in Multilingual Grounded Language Learning
	Unsupervised Sentence Compression using Denoising Auto-Encoders
	Resources to Examine the Quality of Word Embedding Models Trained on n-Gram Data
	Linguistically-Based Deep Unstructured Question Answering
	DIMSIM: An Accurate Chinese Phonetic Similarity Algorithm Based on Learned High Dimensional Encoding
	Challenge or Empower: Revisiting Argumentation Quality in a News Editorial Corpus
	Bringing Order to Neural Word Embeddings with Embeddings Augmented by Random Permutations (EARP)
	Aggregated Semantic Matching for Short Text Entity Linking
	Adversarial Over-Sensitivity and Over-Stability Strategies for Dialogue Models
	Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge
	The Lifted Matrix-Space Model for Semantic Composition
	End-to-End Neural Entity Linking
	Modelling Salient Features as Directions in Fine-Tuned Semantic Spaces
	Model Transfer with Explicit Knowledge of the Relation between Class Definitions
	Aiming to Know You Better Perhaps Makes Me a More Engaging Dialogue Partner
	Neural Maximum Subgraph Parsing for Cross-Domain Semantic Dependency Analysis
	From Random to Supervised: A Novel Dropout Mechanism Integrated with Global Information
	Sequence to Sequence Mixture Model for Diverse Machine Translation

