
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 143–151,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A non-DNN Feature Engineering Approach to Dependency Parsing –
FBAML at CoNLL 2017 Shared Task

Xian Qian Yang Liu
xianqian@fb.com yangli@fb.com

Facebook Applied Machine Learning / 1 Facebook Way

Abstract

For this year’s multilingual dependency
parsing shared task, we developed a
pipeline system, which uses a variety
of features for each of its components.
Unlike the recent popular deep learning
approaches that learn low dimensional
dense features using non-linear classifier,
our system uses structured linear classi-
fiers to learn millions of sparse features.
Specifically, we trained a linear classifier
for sentence boundary prediction, linear
chain conditional random fields (CRFs)
for tokenization, part-of-speech tagging
and morph analysis. A second order
graph based parser learns the tree structure
(without relations), and a linear tree CRF
then assigns relations to the dependencies
in the tree. Our system achieves reason-
able performance – 67.87% official aver-
aged macro F1 score.

1 Introduction

Our system for the universal dependency parsing
shared task in CoNLL 2017 (Zeman et al., 2017)
follows a typical pipeline framework.

The system architecture is shown in Figure 1,
which consists of the following components : (1)
sentence segmentor, which segments raw text into
sentences, (2) tokenizer that tokenizes sentences
into words, or performs word segmentation for
Asian languages, (3) morphologic analyzer gen-
erates morphologic features, (4) part-of-speech
(POS) tagger generates universal POS tags and
language specific POS tags, (5) parser predicts tree
structures without relations, (6) a relation predic-
tor assigns relations to the dependencies in the
tree.

	

Sentence	Segmentation	

Word	Segmentation	

Morphological	Analysis	

UPOS	Tagging	 XPOS	Tagging	

Unlabeled	Parsing	

Relation	Classification	

Raw	Text	

Labeled	Text	

Figure 1: System architecture: pipeline compo-
nents for universal dependency parsing.

For each component, we take a non deep learn-
ing based approach, that is the typical structured
linear classifier that learns sparse features, but re-
quires heavy feature engineering.

Sentence segmentation, tokenization, POS tag-
ger and morphologic analyzer are based on linear
chain CRFs (Lafferty et al., 2001), and the relation
predictor is based on linear tree CRFs. We train
the pipeline for each language independently us-
ing the training portion of the treebank and the of-
ficial word embeddings for 45 languages provided
by the organizers. Our system components are im-
plemented in C++ with no third party toolkits. Due
to the time limit, we did not optimize our system
for speed or memory.

143



2 System Components

2.1 Sentence Segmentation
2.1.1 Task setup
We cast sentence segmentation as a classifica-
tion problem at the character level, determining
whether a character is the end of the sentence char-
acter (EOS). To obtain the gold labels, we aligned
the raw text file with the conllu file with annota-
tions.

Since most characters are not sentence bound-
aries, using all the characters will make the data
very imbalanced. To address this problem, we
only consider a character as a candidate trigger if
it is labeled as EOS at least once in the training
data. Intuitively this would prune many characters
as EOS characters should be punctuation marks.
However, we noticed that for English (possibly
other languages too) many sentences in the data
end without punctation, and thus the last character
of the sentence will be added into the EOS char-
acter trigger set. To reduce the size of the triggers,
we use a three label scheme for the characters.

• Label N for the character following the end
of a sentence, and before the beginning of the
next sentence. A typical example for this is
the space between two sentences. Even for
cases when punctuation marks are omitted,
this applies to the space separating the two
sentences.

• Label E represents a character is the end of a
sentence, and its next character is the begin-
ning of the next sentence. This category is
introduced for sentences that are not split by
space. For example, past few years,...Great
to have you on board!, ‘G’ is the beginning
of the second sentence, ‘.’ before ‘G’ has a
label of ‘E’.

• Label O is used for all other cases. Note that
a punctuation mark that ends a sentence will
have a label of ‘O’ if there is a space follow-
ing the sentence. In this case, EOS informa-
tion is obtained by the ‘N’ label for the space.

Using this scheme, during testing, an EOS char-
acter is found if it is labeled as E or its next char-
acter is labeled as N. For training, we collect the
characters labeled as E or N in the training set as
candidates. Table 1 shows the number of candi-
dates for each language. This significantly reduces

languages #trigger characters
cs cltt, et, it, lv, pt, pt br 3

en lines, sl 4
no nynorsk 5
no bokmaal 6
ru syntagrus 7

en 8
cs 14
zh 20
ja 23

others 2

Table 1: Number of trigger characters for EOS de-
tection.

the number of trigger candidates compared to con-
sidering all the characters.

2.1.2 Features
We use a linear classifier for EOS detection. We
tune the feature templates on the English develop-
ment data, and apply to all the other languages.
Detailed feature templates are described in Table
2. Features include the surrounding characters
and their lower cases. For character types, we
use digit and letters, and keep the other symbols.
Take 12:00pm as an example, it is represented as:
00:00aa, where we replace all digits by ’0’ and
all lower cased letters by ’a’. For languages that
have spaces between words, we also use the sur-
rounding ‘words’ split by spaces and the current
character. For example, for the following exam-
ple: comes this story: President Bush for char-
acter ‘y’, we have word features: word−2=this,
word−1=stor, word1=:, word2=President.

2.2 Tokenization
2.2.1 Methodology
We use a sequence labeling model for tokeniza-
tion. Each character will be labeled as one of the
following tags:

• B: beginning of a multi-character token,

• I: inside a multi-character token,

• E: end of a multi-character token,

• S: single character token,

• O: other.

The labels are generated by aligning the raw text
with the gold sentence segmentation with the word
form column of the conllu table.

144



chari, −3 ≤ i ≤ +3
charichari+1, −3 ≤ i ≤ +2
lowchari, −3 ≤ i ≤ +3

lowcharilowchari+1, −3 ≤ i ≤ +2
chartypei, −3 ≤ i ≤ +3

chartypeichartypei+1, −3 ≤ i ≤ +2
wordi, i = −2,−1, 1, 2

wordtypei, i = −2,−1, 1, 2

Table 2: Feature templates for sentence segmenta-
tion. chari is the ith character to the right of cur-
rent character, char−i is the ith character to the
left of the current character. lowchar is the lower
cased character, chartype is the character type, it
can be digit, upper cased letter, lower cased letter
or other. wordi is surrounding ’words’ splitted by
spaces and the current character. wordtype is the
concatenation of character types

chartype0, chartype−1chartype0
word−1, word1

word−1chartype0, word1chartype0
chartype−1chartype0, chartype0chartype1

transition feature

Table 3: Tokenization feature templates for lan-
guages with space between words (except Chinese
and Japanese).

2.2.2 Features
Linear chain CRF is used to learn the model with
character and word n-gram features. We used two
sets of feature templates, one for languages having
spaces between words including English, Arabric
etc., the other for languages without spaces includ-
ing Chinese and Japanese, as shown in Table 3 and
4. The first feature template set is tuned on English
development set, the second one is tuned on Chi-
nese development set.

2.3 POS Tagging and Morph Analysis

2.3.1 Methodology
For morphological analysis and POS tagging, we
use the same model setup and features, therefore
we group them together in this section. We used
linear chain CRFs for these tasks (a sequence la-
beling task for each word in the sequence). As
the morph features consist of several fields sepa-
rated by a special symbol, we treat the prediction
of each field as an independent task, and then com-
bine the predictions from different models. For

charichari+1, −2 ≤ i ≤ 1
word−1, word1

char0wordleft to current character

char0wordright to current character

wordleft to current character

wordright to current character

wordleft to left character

wordright to left character

wordleft to right character

wordright to right character

transition feature
transition feature + current character

Table 4: Tokenization feature templates for Chi-
nese and Japanese. Words in these languages are
obtained by maximum forward/backward match-
ing.

POS tagging (both universal (UPOS) and language
specific POS (XPOS) tagging), we use the same
set of features as used for morph analysis, and the
automatically predicted morph features. For lan-
guages that have multiple labels in XPOS tag, we
use a similar strategy as for morph analysis, i.e.,
learning multiple taggers and combine the results.

2.3.2 Features
The list of feature templates are shown in Ta-
ble 5. Note for POS tagging, as mentioned above,
one additional feature is the morph feature, which
comes from the automatic morph models.

The basic features includes word and lower
cased word n-grams, prefixes and suffixes. With
these features, the baseline UPOS tagger achieves
94.78% accuracy on the English development set.
Since we do not use deep learning based ap-
proaches, incorporating pretrained word embed-
dings is not straightforward for linear classifiers.
In our system, we clustered the word vectors us-
ing k-means, where k = 2048 and 10000, and then
used the cluster n-grams as features.

2.4 Unlabeled Dependency Parsing

2.4.1 Methodology
Our dependency parser consists of two compo-
nents, one is the unlabeled parser which only pre-
dicts the tree structures, the other is relation type
prediction that assigns dependency relations to the
dependencies. Originally, we trained a third or-
der parser with word/POS/morph n-gram features,
but it is too slow to extract features, especially

145



wordi, −2 ≤ i ≤ 2
wordichari+1, −2 ≤ i ≤ 1

cluster0, clustericlusteri+1, i = −1, 0
lowerCasedWord0

prefixi,j , i = −1, 0, 1, 1 ≤ j ≤ 6
suffixi,j , i = −1, 0, 1, 1 ≤ j ≤ 6

word0prefixi,j , i = −1, 1, 1 ≤ j ≤ 6
word0suffixi,j , i = −1, 1, 1 ≤ j ≤ 6
morph (invalid for morph analysis)

transition features

Table 5: Feature templates for morph analysis and
POS tagging, where prefixi,j is the length = j
prefix of the ith word to the right of current word,
clusteri is the cluster id of wordi

the third order features. So we chose to build
a second order parser to balance speed and per-
formance. We developed two versions of depen-
dency parsers, one is pseudo-projective parser that
handles treebanks that are nearly projective (pro-
jective dependencies % > 95%), the other is
the 1-endpoint-crossing parser (Pitler et al., 2013;
Pitler, 2014) that processes treebanks with more
non-projective dependencies (projective depen-
dencies % < 95%), such as Dutch-LassySmall,
Ancient Greek, Ancient Greek-PROIEL, Basque,
Latin-PROIEL and Latin. We modified the origi-
nal third order 1-endpoint-crossing parsing algo-
rithm to guarantee the unique derivation of any
parse tree, because we need the top k parse trees
for training.

2.4.2 Features
Our original third order parser includes 1000+
feature templates, and generated more than 100
million features on English data. As the features
consume too much memory, making the parser
rather slow, we kept only 260 templates, and use
second order parser instead, which generated 15
million features. Most of the feature templates
come from the previous works (Koo and Collins,
2010; McDonald et al., 2005), including word,
POS ngrams and their combinations. We also add
some morphology and word cluster n-grams. De-
tailed feature templates are described in Table 6.

2.5 Relation Classification

2.5.1 Methodology
Once the tree structure of a parse tree is obtained,
we train a linear tree CRF to assign the relation

type to each arc in the tree. Given a tree repre-
sented as a collection of arcs: T = {e}, the tree
CRF represents the potential function of T as the
sum of the potential functions of arcs and arc pair
chains:

φ(T ) =
∑
e

φ(e) +
∑
e→e′

φ(e→ e′) (1)

where φ(e) is the linear combination of node fea-
tures in the CRF and φ(e→ e′) is the linear com-
bination of transition features in the CRF.

2.5.2 Features
For each arc p → c, we use the same feature tem-
plates as in Table 6 to generate node features. For
transition features, we simply use the relation type
bigrams, i.e., relation(g→ p)relation(p→ c).

3 CoNLL Shared Task Results

3.1 Implementation details

All the classifiers, including linear chain CRF,
tree CRF and second order dependency parser,
are trained using 10-best MIRA (McDonald et al.,
2005). Parameters are averaged to avoid overfit-
ting. We found that k best MIRA consistently out-
performs averaged perceptron about 0.1 − 0.2%
for all tasks.

For CRFs and the parser, we used the lazy de-
coding algorithm (Huang and Chiang, 2005) for
fast k-best candidate generation, the complexity
is nearly the same as 1-best decoding. Specifi-
cally, the time complexity for CRFs is O(nL2 +
nk log(k)), and O(n4 + nk log(k)) for the parser.
where n is the length of sentence.

Both CRFs are optimized for fast tagging:
strings like words, POS tags are mapped to bit
strings for efficient concatenation to generate fea-
ture strings, while the parser is not optimized. The
actual running time for 1-endpoint-crossing parser
is about 1.8 times of projective parser, though the-
oretically it should be 50x times slower. The main
reason is that feature generating is much more
slower than decoding, which is actully the same
for both parsers. For fast training, we use hog-
wild strategy to update the parameters using 30
threads. Empirical results on English development
data showed that compared with standard MIRA
that only used single thread, the hogwild strategy
get 5x speedup, the parser can be trained within
2.5 hours. While the performance is very compet-
itive, only lost 0.1% UAS.

146



pi.word, ci.word, −2 ≤ i ≤ 2
pi.word pi+1.word, ci.word ci+1.word, −2 ≤ i ≤ 1

pi.word cj .word, ci.word sj .word, gi.word cj .word, −1 ≤ i, j ≤ 1
gi.word pj .word ck.word, pi.word cj .word sk.word, −1 ≤ i, j, k ≤ 1

pi.word cj .word cj+1.word, −1 ≤ i ≤ 1, −1 ≤ j ≤ 0
pi.word pi+1.word cj .word, −1 ≤ i ≤ 0, −1 ≤ j ≤ 1

g0.word pi.word cj .word cj+1.word, −1 ≤ i ≤ 1, −1 ≤ j ≤ 0
g0.word pi.word pi+1.word cj .word, −1 ≤ i ≤ 0, −1 ≤ j ≤ 1
pi.word cj .word cj+1.word s0.word, −1 ≤ i ≤ 1, −1 ≤ j ≤ 0
pi.word pi+1.word cj .word s0.word, −1 ≤ i ≤ 0, −1 ≤ j ≤ 1

replace word above by upos, xpos, lowCasedWord, wordCluster, morph
combine the templates above with distance and direction of arcs

Table 6: Feature templates for unlabeled dependency parsing, where pi, ci, gi, si are the ith token right
to the parent, child, grand parent, sibling. (to the left, if i < 0)

To cluster word vectors, we implemented fast k
means using triangle inequality. We let k means
run 20 iterations using 45 threads to quickly gen-
erate clusters. For languages without pretrained
word vectors, such as en lines, we use word vec-
tors from en instead.

For surprised languages, we trained POS tagger,
morphological analyzer and parser using the ex-
ample data. The word cluster features are derived
by running word2vec on the unlabeled dataset, and
k-means clustering. For sentence segmentation
and tokenization, we just used the models trained
on English data, since the example dataset is quite
limited.

3.2 Results on development data
The feature sets are tuned on English development
data, except some languages specific tasks such as
Chinese word segmentation. Table 7 shows the re-
sults on development dataset. We have the follow-
ing observation regarding feature effect.

• Character type features are useful for sen-
tence segmentation, which made 13% abso-
lute F1 score improvement.

• Morphological features help the parser, re-
sulting in an UAS 0.5% absolute F1 score im-
provement.

• For tokenization, word features i.e., word−1

and word1 in Table 3 are useful, which made
1% absolute F1 score improvement.

• Lemma features do not have a big effect on
parsing. We compared using the gold lemma
features vs. the automatically generated ones,

with about 0.3% improvement from the for-
mer, and only 0.1% using the latter. Because
of this our system did not do lemmartization
for all the languages.

• Word cluster features have limited gains. We
tried two different ways to convert the pre-
trained word vectors to binary features:

(1) find the k nearest neighbors (k = 3 in ex-
periments) in the embedding space, and use
these neighors as features;

(2) cluster the words into k clusters, (k =
8, 16, . . . , 2048, 10000, 100000), and used
the cluster features.

The results on the English development set
showed that the two approaches performed
quite the same, both achieving 94.92% UPOS
accuracy, 0.15% improvement over the base-
line. In addition, we noticed that the word
cluster features did not help when k is small.
In our system submission, we used k =
2048, 10000 to generate the clusters.

It is worth pointing out that such improve-
ment from using the cluster features is quite
limited compared to using embeddings in
deep learning based methods. For example,
using stacked word and character bi-LSTM-
CRFs (Lample et al., 2016) achieved 95.75%
POS tagging accuracy, and 96.00% using
word+prefix/suffix embedding. We suspect
that the converting real valued features to
binary features (cluster features) loses too
much information.

147



Language Sentence Words UPOS XPOS Feats UAS LAS
ar 87.89% 92.15% 87.51% 81.08% 78.83% 70.33% 65.03%
bg 91.32% 99.77% 97.36% 75.72% 89.78% 87.75% 83.30%
ca 99.30% 99.73% 97.89% 97.92% 95.63% 88.69% 85.41%
cs 96.09% 99.96% 98.71% 92.11% 88.65% 89.46% 86.11%

cs cac 99.50% 100.00% 99.00% 88.60% 83.94% 87.47% 84.26%
cs cltt 74.36% 99.33% 89.20% 70.17% 65.97% 71.70% 68.37%

da 87.39% 100.00% 95.65% 0.00% 89.51% 79.36% 75.40%
de 93.68% 99.91% 93.39% 95.74% 79.83% 84.16% 79.76%
el 94.37% 99.78% 94.76% 94.80% 84.85% 81.99% 78.60%
en 81.43% 98.92% 93.89% 92.22% 92.23% 81.63% 78.11%

en partut 95.73% 99.37% 94.37% 93.76% 88.81% 80.60% 76.35%
es 98.75% 99.70% 96.24% 0.00% 95.00% 86.95% 83.71%

es ancora 96.66% 99.74% 97.93% 97.77% 95.64% 87.73% 84.74%
et 93.21% 99.07% 89.27% 91.13% 74.46% 71.24% 59.57%
eu 100.00% 99.99% 94.95% 0.00% 83.97% 76.87% 70.12%
fa 98.74% 99.48% 95.75% 95.52% 94.33% 83.27% 78.84%
fi 89.33% 99.77% 94.93% 96.07% 88.01% 78.73% 74.26%

fi ftb 85.02% 100.00% 92.96% 0.00% 88.60% 78.78% 73.34%
fr 97.73% 99.16% 96.27% 0.00% 94.87% 87.67% 85.03%

fr sequoia 90.58% 98.83% 96.05% 0.00% 92.82% 83.03% 80.43%
gl 96.68% 99.96% 96.83% 95.32% 99.79% 83.17% 79.89%

got 26.87% 100.00% 94.29% 95.23% 80.63% 70.46% 62.89%
grc 99.34% 100.00% 88.35% 77.68% 84.01% 68.13% 60.82%

grc proiel 42.42% 100.00% 96.20% 96.54% 86.50% 74.26% 68.52%
he 99.49% 84.12% 80.55% 80.66% 75.41% 62.52% 57.81%
hi 98.55% 100.00% 96.33% 95.11% 87.43% 92.20% 88.09%
hr 97.48% 99.89% 96.64% 0.00% 81.14% 82.20% 76.22%
hu 98.19% 99.95% 93.40% 0.00% 59.68% 73.99% 64.48%
it 97.02% 99.44% 96.92% 96.28% 95.44% 87.65% 85.36%

it partut 96.62% 99.16% 95.16% 94.89% 92.60% 82.55% 79.02%
ko 90.61% 97.91% 91.54% 86.50% 97.57% 62.80% 55.05%

la ittb 77.03% 99.87% 96.75% 0.00% 88.37% 75.85% 70.70%
la proiel 22.81% 100.00% 95.62% 95.37% 84.94% 68.66% 62.19%

lv 94.30% 99.66% 91.76% 26.01% 69.57% 72.57% 64.15%
nl 93.25% 99.66% 94.49% 0.00% 89.96% 82.82% 77.86%

nl lassysmall 81.01% 99.81% 96.32% 0.00% 93.48% 79.35% 74.41%
no bokmaal 96.08% 99.88% 97.28% 0.00% 91.16% 86.64% 83.22%
no nynorsk 93.90% 99.94% 96.54% 0.00% 91.27% 84.78% 81.28%

pl 99.56% 99.17% 95.54% 0.00% 77.10% 84.51% 79.17%
pt 90.71% 99.53% 96.70% 0.00% 92.86% 87.45% 84.66%

pt br 96.71% 99.82% 97.65% 97.57% 99.70% 89.23% 87.01%
ro 97.47% 99.63% 96.58% 9.64% 89.17% 86.94% 81.59%
ru 93.09% 99.79% 95.48% 94.35% 79.82% 82.12% 77.38%

ru syntagrus 97.29% 99.72% 98.10% 0.00% 90.25% 88.91% 86.14%
sk 76.09% 99.93% 94.94% 0.87% 69.04% 82.74% 77.20%
sl 99.59% 99.94% 97.38% 14.87% 81.19% 87.41% 84.31%
sv 96.17% 99.88% 95.66% 0.00% 89.63% 80.57% 76.05%

sv lines 87.19% 99.97% 94.89% 66.27% 99.97% 80.30% 75.22%
tr 96.98% 96.61% 89.31% 88.25% 77.59% 60.47% 52.49%
ur 99.10% 99.99% 93.46% 91.47% 77.62% 84.81% 78.02%
vi 97.40% 85.98% 78.32% 75.69% 85.84% 49.67% 44.20%
zh 98.50% 93.81% 87.21% 87.39% 92.25% 67.97% 62.75%

Table 7: Performance of our system on development dataset. XPOS accuracy for some languages are
quite low due to the format issue.

148



Language Sentence Word UPOS XPOS Feats UAS LAS
ar 85.69% 91.45% 86.59% 80.83% 78.27% 70.16% 64.89%
bg 91.5% 99.82% 97.67% 76.65% 90.18% 87.96% 83.89%
ca 99.35% 99.77% 97.68% 97.68% 95.35% 88.48% 85.02%

cs cac 99.76% 99.94% 98.43% 87.99% 83.95% 87.54% 83.27%
cs cltt 91.99% 99.59% 96.65% 83.34% 78.42% 80.26% 76.08%

cs 95.1% 99.99% 98.53% 91.45% 87.96% 88.14% 84.43%
cu 37.46% 100% 94.8% 95.02% 80.78% 73.68% 66.91%
da 81.41% 100% 95.84% 0% 90.55% 79.48% 75.59%
de 78.78% 99.61% 92.42% 96.74% 78.28% 79.17% 74.26%
el 28.28% 100% 95.75% 95.9% 84.99% 67.8% 61.53%

en lines 86.95% 99.96% 95.4% 63.43% 99.96% 79.27% 74.67%
en partut 98.1% 99.31% 94.2% 93.43% 88.49% 80.83% 76.68%

en 78.01% 98.98% 94.09% 93.46% 92.9% 80.8% 77.57%
es ancora 98.67% 99.72% 97.87% 97.87% 95.66% 87.13% 83.81%

es 87.08% 99.98% 94.88% 62.88% 99.98% 80.33% 74.89%
et 92.63% 99.28% 89.9% 92.01% 75.16% 69.98% 58.48%
eu 99.75% 99.99% 94.59% 0% 83.32% 77.28% 70.76%
fa 99.25% 99.44% 95.86% 95.74% 94.4% 82.11% 77.74%

fi ftb 86.46% 99.98% 93.11% 0% 89.1% 78.16% 72.08%
fi 89.48% 99.6% 95.15% 96.15% 88.07% 78.87% 74.51%

fr sequoia 82.97% 99.19% 96.4% 0% 93.33% 82.91% 80.3%
fr 92.49% 98.84% 95.68% 0% 94.27% 83.83% 80.38%
gl 96.14% 99.98% 96.98% 95.82% 99.78% 83% 79.79%
got 28.35% 100% 94.85% 95.7% 81.73% 70.13% 62.64%
grc 98.96% 100% 87.25% 75.43% 81.13% 66.23% 58.42%
he 99.49% 80.93% 77.34% 77.34% 71.84% 58.54% 54.25%
hi 99.11% 99.99% 96.4% 95.8% 87.71% 92.31% 88.15%
hr 95.92% 99.88% 96.13% 0% 78.71% 82.95% 76.63%
hu 94.1% 99.75% 92.63% 0% 59.13% 74.22% 64.37%
id 92.14% 99.96% 93.41% 0% 99.46% 82.27% 75.74%
it 98.76% 99.56% 97.29% 97.17% 96.02% 88.42% 86.01%
ja 94.64% 93.32% 91.04% 0% 93.3% 80.71% 79.25%
ko 90.99% 98.24% 92.51% 88.35% 97.9% 68.14% 61.14%

la ittb 92.91% 99.97% 97.49% 0% 91.59% 82.08% 77.62%
la proiel 28.28% 100% 95.75% 95.9% 84.99% 67.8% 61.53%

lv 98.8% 99.45% 90.09% 26.52% 68.6% 69.15% 60.94%
nl lassysmall 82.8% 99.93% 97.74% 0% 95.74% 84.92% 81.81%

nl 76.83% 99.79% 92.04% 0% 87.45% 77.93% 72%
no bokmaal 96.26% 99.85% 96.64% 0% 90.78% 85.8% 82.6%
no nynorsk 80.51% 96.99% 28.19% 0% 25.88% 23.91% 6.57%

pl 98.73% 98.99% 95.66% 0% 77.12% 84.05% 78.61%
pt br 96.63% 99.83% 97.42% 97.42% 99.7% 87.57% 85.41%

pt 91.67% 99.34% 96.51% 0% 92.24% 85.15% 82.03%
ro 94.79% 99.64% 96.71% 9.43% 89.06% 86.68% 81.19%

ru syntagrus 97.97% 99.69% 98.2% 0% 90.38% 89.36% 86.83%
ru 95.75% 99.81% 95.49% 95.24% 80.24% 81.58% 76.53%
sk 82.04% 99.98% 94.22% 0.9% 68.49% 81.58% 76.23%
sl 99.24% 99.93% 96.92% 14.55% 81.73% 85.74% 82.19%

sv lines 87.08% 99.98% 94.88% 62.88% 99.98% 80.33% 74.89%
sv 94.92% 99.84% 96.05% 0% 89.81% 82.31% 77.7%
tr 96.32% 97.13% 91.3% 90.45% 78.62% 61.69% 53.08%
ur 97.67% 100% 93.17% 91.23% 78.21% 85.22% 78.61%
vi 92.44% 83.8% 75.84% 72.94% 83.56% 46.16% 40.89%
zh 98.5% 94.57% 88.36% 88.4% 92.9% 70.35% 65.15

Table 8: Official performance of our system on big treebanks. For language no nynorsk, we used the
model trained on another language, thus got very poor result.

149



Language Sentence Word UPOS XPOS Feats UAS LAS
fr partut 98.5% 98.88% 95.26% 95.04% 90.07% 84.2% 80.06%

ga 94.75% 99.64% 90.79% 89.9% 71.95% 76.51% 66.49%
gl treegal 86.74% 97.91% 91.89% 86.48% 83.83% 73.44% 67.97%

kk 71.84% 94.45% 56.76% 57.13% 36.46% 44.67% 23.99%
la 98.14% 99.99% 88.57% 68.96% 67.45% 59.83% 48.33%

sl sst 17.58% 100% 91.78% 13.97% 75.6% 56.73% 49.53%
ug 67.13% 96.94% 74.76% 76.87% 96.94% 54.54% 34.57%%
uk 92.49% 99.82% 90.08% 8.95% 62.26% 73.52% 65.17%

ar pud 99.4% 89.08% 69.85% 0% 21.16% 53.74% 44.31%
cs pud 96.13% 98.48% 96.32% 87.99% 83.56% 85.12% 79.76%
de pud 88.4% 96.28% 83.82% 20.29% 30.75% 75.61% 69.19%
en pud 98.06% 99.59% 94.46% 93.43% 91.38% 83.56% 79.88%
es pud 94.88% 99.24% 88.01% 0% 54.03% 84.27% 77.09%
fr pud 96.55% 96.63% 87.56% 0% 57.52% 78.74% 73.67%
hi pud 1.17% 92.38% 79.04% 34.5% 13.38% 54.7% 43.46%
it pud 93.97% 99.08% 93.19% 2.48% 57.18% 87.72% 84.41%
ja pud 96.6% 93.57% 91.7% 0% 54.72% 82.04% 81.25%
pt pud 97.32% 98.51% 88% 0% 58.8% 78.75% 72.85%
ru pud 97.23% 97.15% 85.67% 79.23% 37.33% 77.5% 69.46%
sv pud 94.11% 98.39% 92.54% 0% 69.4% 75.94% 70.76%
tr pud 93% 94.94% 68.8% 0% 22.41% 52.75% 31.53%

bxr 90.62% 97.46% 49.11% 0% 39.9% 36.42% 17.08%
hsb 72.93% 94.32% 63.89% 0% 35.05% 37.58% 24.58%
kmr 92.91% 91.45% 58.03% 56.45% 31.56% 33.98% 25.85%
sme 98.09% 96.52% 53.98% 57.7% 30.7% 31.22% 17.1%

Table 9: Official performance of our system on small treebanks, PUD treebanks and suprise languages.

3.3 Official Results and Analysis

Detailed numbers for official runs on the test set
(Nivre et al., 2017) are listed in Table 8 and Table
9.

Our system ranked the 15th among the 33 sub-
missions. Unfortunately, we found that for one
language (no nynorsk), we used the model trained
on another language, therefore the performance is
poor. Changing to the correct model would change
our results from 67.87% averaged macro F1 score
to 68.78%. For two languages la and grc proiel,
we trained the 1-endpoint-crossing parser, but
used the projective parser for testing due to mem-
ory issue. On the development dataset, we found
that such strategy lost about 0.5% LAS due to the
inconsistent decoding algorithms between training
and testing. For PUD treebanks that have no cor-
responding training portion, we used the model
trained on the non-PUD dataset, e.g., used the
model trained on en to parse en pud.

Regarding speed, our parser is not optimized
for running time nor memory. It spent 67 hours
to parse all the languages using 10 threads. The
peak memory usage is about 89GB when parsing
grc proiel. The most time consuming part in our
system is feature generation that has a complex-
ity of O(n3T ), where T = 260 is the number of
templates.

4 Conclusion and Future Work

We described our system for the universal depen-
dency parsing task that relies heavily on feature
engineering for each component in the pipeline.
Our system achieves reasonable performance. An
important observation we have is regarding the
pretrained word embeddings. Unlike neural net
based parsers that can effectively use large unla-
beled data by pretrained word embedding, pictures
of semi-supervised learning approaches for feature
engineering based systems are unclear. Though
we tried different ways in our work, the improve-
ment is quite limited. In our future work, we plan
to combine our system with neural net based ap-
proaches and explore some other semi-superivsed
learning techniques.

References
Liang Huang and David Chiang. 2005. Better

k-best parsing. In Proceedings of the Ninth
International Workshop on Parsing Technol-
ogy. Association for Computational Linguistics,
Stroudsburg, PA, USA, Parsing ’05, pages 53–64.
http://dl.acm.org/citation.cfm?id=1654494.1654500.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-

150



tional Linguistics, Uppsala, Sweden, pages 1–11.
http://www.aclweb.org/anthology/P10-1001.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, ICML ’01, pages 282–289.
http://dl.acm.org/citation.cfm?id=645530.655813.

Guillaume Lample, Miguel Ballesteros, Sandeep
Subramanian, Kazuya Kawakami, and Chris
Dyer. 2016. Neural architectures for named
entity recognition. CoRR abs/1603.01360.
http://arxiv.org/abs/1603.01360.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05). Association for Com-
putational Linguistics, Ann Arbor, Michigan, pages
91–98. https://doi.org/10.3115/1219840.1219852.

Joakim Nivre et al. 2017. Universal Dependencies
2.0 CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

Emily Pitler. 2014. A crossing-sensitive
third-order factorization for dependency
parsing. Transactions of the Associa-
tion for Computational Linguistics 2:41–54.
https://www.transacl.org/ojs/index.php/tacl/article/view/193.

Emily Pitler, Sampath Kannan, and Mitchell
Marcus. 2013. Finding optimal 1-endpoint-
crossing trees. Transactions of the Associa-
tion for Computational Linguistics 1:13–24.
https://www.transacl.org/ojs/index.php/tacl/article/view/23.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Associa-
tion for Computational Linguistics, pages 1–20.

151


