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Abstract

We present a novel neural network model
that learns POS tagging and graph-based
dependency parsing jointly. Our model
uses bidirectional LSTMs to learn feature
representations shared for both POS tag-
ging and dependency parsing tasks, thus
handling the feature-engineering problem.
Our extensive experiments, on 19 lan-
guages from the Universal Dependen-
cies project, show that our model outper-
forms the state-of-the-art neural network-
based Stack-propagation model for joint
POS tagging and transition-based depen-
dency parsing, resulting in a new state
of the art. Our code is open-source
and available together with pre-trained
models at: https://github.com/
datquocnguyen/jPTDP.
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LSTM, Universal Dependencies, Multilin-
gual parsing.

1 Introduction

Dependency parsing has become a key research
topic in NLP in the last decade, boosted by the suc-
cess of the CoNLL 2006, 2007 and 2017 shared
tasks on multilingual dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007a; Zeman
et al., 2017). McDonald and Nivre (2011) identify
two types of data-driven methodologies for depen-
dency parsing: graph-based approaches (Eisner,
1996; McDonald et al., 2005; Koo and Collins,
2010) and transition-based approaches (Yamada

and Matsumoto, 2003; Nivre, 2003). Most tra-
ditional graph- or transition-based parsing ap-
proaches manually define a set of core and com-
bined features associated with one-hot representa-
tions (McDonald and Pereira, 2006; Nivre et al.,
2007b; Bohnet, 2010; Zhang and Nivre, 2011;
Martins et al., 2013; Choi and McCallum, 2013).
Recent work shows that using deep learning in
dependency parsing has obtained state-of-the-art
performances. Several authors represent the core
features with dense vector embeddings and then
feed them as inputs to neural network-based clas-
sifiers (Chen and Manning, 2014; Weiss et al.,
2015; Pei et al., 2015; Andor et al., 2016). In ad-
dition, others propose novel neural architectures
for parsing to handle feature-engineering (Dyer
et al., 2015; Cheng et al., 2016; Zhang et al., 2016;
Wang and Chang, 2016; Kiperwasser and Gold-
berg, 2016a,b; Dozat and Manning, 2017; Ma and
Hovy, 2017; Peng et al., 2017).

Part-of-speech (POS) tags are essential features
used in most dependency parsers. In real-world
parsing, those dependency parsers rely heavily on
the use of automatically predicted POS tags, thus
encountering error propagation problems. Li et al.
(2011), Straka et al. (2016) and Nguyen et al.
(2016) show that parsing accuracies drop by 5+%
when utilizing automatic POS tags instead of gold
ones. Some attempts have been made to avoid us-
ing POS tags during dependency parsing (Dyer
et al., 2015; Ballesteros et al., 2015), however,
these approaches still additionally use the auto-
matic POS tags to achieve the best accuracy. Al-
ternatively, joint learning both POS tagging and
dependency parsing has gained more attention be-
cause: i) more accurate POS tags could lead to im-
proved parsing performance and ii) the the syntac-
tic context of a parse tree could help resolve POS
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Figure 1: Illustration of our jPTDP for joint POS tagging and graph-based dependency parsing.

ambiguities (Li et al., 2011; Hatori et al., 2011;
Lee et al., 2011; Bohnet and Nivre, 2012; Qian
and Liu, 2012; Wang and Xue, 2014; Zhang et al.,
2015; Alberti et al., 2015; Johannsen et al., 2016;
Zhang and Weiss, 2016).

In this paper, we propose a novel neural archi-
tecture for joint POS tagging and graph-based de-
pendency parsing. Our model learns latent feature
representations shared for both POS tagging and
dependency parsing tasks by using BiLSTM—
the bidirectional LSTM (Schuster and Paliwal,
1997; Hochreiter and Schmidhuber, 1997). Not
using any external resources such as pre-trained
word embeddings, experimental results on 19 lan-
guages from the Universal Dependencies project
show that: our joint model performs better than
strong baselines and especially outperforms the
neural network-based Stack-propagation model
for joint POS tagging and transition-based depen-
dency parsing (Zhang and Weiss, 2016), achieving
a new state of the art.

2 Our joint model

In this section, we describe our new model for
joint POS tagging and dependency parsing, which
we call jPTDP. Figure 1 illustrates the architec-
ture of our new model. We learn shared latent fea-
ture vectors representing word tokens in an input
sentence by using BiLSTMs. Then these shared
feature vectors are further used to make the predic-

tion of POS tags as well as fed into a multi-layer
perceptron with one hidden layer (MLP) to decode
dependency arcs and another MLP to predict rela-
tion types for labeling the predicted arcs.

BiLSTM-based latent feature representations:
Given an input sentence s consisting of n word to-
kens w1, w2, ..., wn, we represent each word wi in
s by an embedding e(•)

wi . Plank et al. (2016) and
Ballesteros et al. (2015) show that character-based
representations of words help improve POS tag-
ging and dependency parsing performances. So,
we also use a sequence BiLSTM (BiLSTMseq) to
compute a character-based vector representation
for each word wi in s. For a word type w con-
sisting of k characters w = c1c2...ck, the input to
the sequence BiLSTM consists of k character em-
beddings c1:k in which each embedding vector cj

represents the jth character cj in w; and the output
is the character-based embedding e(∗)

w of the word
type w, computed as:

e(∗)
w = BiLSTMseq(c1:k)

For the ith word wi in the input sentence s, we
create an input vector ei which is a concatena-
tion (◦) of the corresponding word embedding and
character-based embedding vectors:

ei = e(•)
wi
◦ e(∗)

wi
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Then, we feed the sequence of input vec-
tors e1:n with an additional index i correspond-
ing to a context position into another BiLSTM
(BiLSTMctx), resulting in shared feature vectors
vi representing the ith words wi in the sentence s:

vi = BiLSTMctx(e1:n, i)

POS tagging: Using shared BiLSTM-based la-
tent feature vector representations, then we follow
a common approach to compute the cross-entropy
objective loss LPOS(t̂, t), in which t̂ and t are the
sequence of predicted POS tags and sequence of
gold POS tags of words in the input sentence s,
respectively (Goldberg, 2016; Plank et al., 2016).

Arc-factored graph-based parsing: Depen-
dency trees can be formalized as directed graphs.
An arc-factored parsing approach learns the scores
of the arcs in a graph (Kübler et al., 2009). Then,
using an efficient decoding algorithm (in particu-
lar, we use the Eisner (1996)’s algorithm), we can
find a maximum spanning tree—the highest scor-
ing parse tree—of the graph from those arc scores:

score(s) = argmax
ŷ∈Y(s)

∑
(h,m)∈ŷ

scorearc(h,m)

where Y(s) is the set of all possible dependency
trees for the input sentence s while scorearc(h,m)
measures the score of the arc between the head hth

word and the modifier mth word in s. Following
Kiperwasser and Goldberg (2016b), we score an
arc by using a MLP with one-node output layer
(MLParc) on top of the BiLSTMctx:

scorearc(h,m) = MLParc(vh ◦ vm)

where vh and vm are the shared BiLSTM-based
feature vectors representing the hth and mth words
in s, respectively. We then compute a margin-
based hinge loss Larc with loss-augmented infer-
ence to maximize the margin between the gold un-
labeled parse tree and the highest scoring incorrect
tree (Kiperwasser and Goldberg, 2016b).

Dependency relation types are predicted in a
similar manner. We use another MLP on top of
the BiLSTMctx for predicting relation type of an
head-modifier arc. Here, the number of the nodes
in the output layer of this MLP (MLPrel) is the
number of relation types. Given an arc (h,m), we
compute a corresponding output vector as:

v(h,m) = MLPrel(vh ◦ vm)

Then, based on MLP output vectors v(h,m), we
also compute another margin-based hinge loss Lrel
for relation type prediction, using only the gold
labeled parse tree.

Joint model training: The final training objec-
tive function of our joint model is the sum of the
POS tagging loss LPOS, the structure loss Larc and
the relation labeling loss Lrel. The model pa-
rameters, including word embeddings, character
embeddings, two BiLSTMs and two MLPs, are
learned to minimize the sum of the losses.

Discussion: Prior neural network-based joint
models for POS tagging and dependency parsing
are feed-forward network- and transition-based
approaches (Alberti et al., 2015; Zhang and Weiss,
2016), while our model is a BiLSTM- and graph-
based method. Our model can be considered as
a two-component mixture of a tagging component
and a parsing component. Here, the tagging com-
ponent can be viewed as a simplified version with-
out the additional auxiliary loss for rare words of
the BiLSTM-based POS tagging model proposed
by Plank et al. (2016). The parsing component
can be viewed as an extension of the graph-based
dependency model proposed by Kiperwasser and
Goldberg (2016b), where we replace the input
POS tag embeddings by the character-based rep-
resentations of words.

3 Experiments

3.1 Experimental setup

Following Zhang and Weiss (2016) and Plank
et al. (2016), we conduct multilingual experiments
on 19 languages from the Universal Dependencies
(UD) treebanks1 v1.2 (Nivre et al., 2015), using
the universal POS tagset (Petrov et al., 2012) in-
stead of the language specific POS tagset.2 For de-
pendency parsing, the evaluation metric is the la-
beled attachment score (LAS). LAS is the percent-
age of words which are correctly assigned both de-
pendency arc and relation type.

1http://universaldependencies.org/
2 Zhang and Weiss (2016) and Plank et al. (2016) exper-

imented on 19 and 22 languages, respectively. For consis-
tency, we use 19 languages as in Zhang and Weiss (2016).
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Method
ar bg da de• en es eu• fa fi• fr hi id it iw nl no pl• pt sl• AVG
10.3 12.3 15.6 11.9 9.1 7.3 17.8 8.2 24.4 5.7 4.6 13.8 5.7 10.9 18.8 11.2 23.1 10.0 19.9 12.7

PART-OF-SPEECH TAGGING

UDPipe 98.7 97.8 95.8 90.7 94.5 95.0 93.1 96.9 94.9 95.9 95.8 93.6 97.2 94.8 89.2 97.2 96.0 97.4 95.6 95.3
TnT [⊕] 97.8 96.8 94.3 92.6 92.7 94.6 93.4 96.0 93.6 94.5 94.5 93.2 96.2 93.7 88.5 96.3 95.6 96.3 94.9 94.5
CRF [⊕] 97.6 96.4 93.8 91.4 93.4 94.2 91.6 95.7 90.3 95.1 96.0 93.0 96.4 93.6 90.0 96.2 94.0 96.3 94.8 94.2
BiLSTM-aux 98.9 98.0 96.2 92.6 94.5 95.1 94.7 97.2 94.9 95.8 96.2 93.1 97.6 95.8 93.3 97.6 96.4 97.5 97.6 95.9
Stack-prop - - - - - - - - - - - - - - - - - - - 95.4
Our jPTDP 98.8 97.4 95.8 92.7 94.7 95.9 93.7 96.8 94.6 96.0 96.4 93.1 97.5 95.5 91.4 97.4 96.3 97.5 97.1 95.7
5-Chars 3.1 2.4 3.9 2.3 1.6 0.8 4.3 0.8 5.4 1.1 0.3 3.7 1.4 1.6 6.6 2.7 4.7 3.1 5.7 2.9

DEPENDENCY PARSING

UDPipe 76.0 84.7 74.8 71.8 80.2 79.7 69.7 79.7 76.3 77.8 87.5 73.9 85.7 77.1 71.3 84.5 79.4 81.3 80.2 78.5
B’15 [*] 75.6 83.1 69.6 72.4 77.9 78.5 67.5 74.7 73.2 77.4 85.9 72.3 84.1 73.1 69.5 82.4 78.0 79.9 80.1 76.6
PipelinePtag[*] 73.7 83.6 72.0 73.0 79.3 79.5 63.0 78.0 66.9 78.5 87.8 73.5 84.2 75.4 70.3 83.6 73.4 79.5 79.4 76.6
RBGParser [*] 75.8 83.6 73.9 73.5 79.9 79.6 68.0 78.5 65.4 78.9 87.7 74.2 84.7 77.6 72.4 83.9 75.4 81.3 80.7 77.6
Stack-prop 77.0 84.3 73.8 74.2 80.7 80.7 70.1 78.5 74.5 80.0 88.9 74.1 85.8 77.5 73.6 84.7 79.2 80.4 81.8 78.9
Our jPTDP 79.0 83.9 75.8 75.8 82.0 82.4 73.2 81.5 75.0 80.0 87.3 75.7 86.4 79.2 66.8 84.9 82.5 79.3 81.7 79.6
5-Chars 3.8 4.1 4.5 3.6 1.4 2.3 12.0 1.1 11.1 0.2 0.3 4.1 1.9 1.9 5.4 2.3 10.6 3.4 9.2 4.4

Table 1: Universal POS tagging accuracies and LAS scores computed on all tokens (including punctua-
tion) on test sets for 19 languages in UD v1.2. The language codes with • refer to morphologically rich
languages. Numbers (in the second top row) right below language codes are out-of-vocabulary rates.
UDPipe is the trainable pipeline for processing CoNLL-U files (Straka et al., 2016). TnT denotes the
second order HMM-based TnT tagger (Brants, 2000). CRF denotes the Conditional random fields-based
tagger, presented in Plank et al. (2014). BiLSTM-aux refers to the state-of-the-art (SOTA) BiLSTM-
based POS tagging model with an additional auxiliary loss for rare words (Plank et al., 2016). Note that
the (old) language code for Hebrew “iw” is referred to as “he” as in Plank et al. (2016). [⊕]: Results are
reported in Plank et al. (2016). Stack-prop refers to the SOTA Stack-propagation model for joint POS
tagging and transition-based dependency parsing (Zhang and Weiss, 2016). 5-Chars denotes the absolute
accuracy decrease of our jPTDP, when the character-based representations of words are not taken into
account. B’15 denotes the character-based stack LSTM model for transition-based dependency parsing
(Ballesteros et al., 2015). PipelinePtag refers to a greedy version of the approach proposed by Alberti
et al. (2015). RBGParser refers to the graph-based dependency parser with tensor decomposition, pre-
sented in Lei et al. (2014). [*]: Results are reported in Zhang and Weiss (2016).

3.2 Implementation details

Our jPTDP is implemented using DYNET v2.0
(Neubig et al., 2017).3 We optimize the objec-
tive function using Adam (Kingma and Ba, 2014)
with default DYNET parameter settings and no
mini-batches. We use a fixed random seed, and
we do not utilize pre-trained embeddings in any
experiment. Following Kiperwasser and Gold-
berg (2016b) and Plank et al. (2016), we apply a
word dropout rate of 0.25 and Gaussian noise with
σ = 0.2. For training, we run for 30 epochs, and
evaluate the mixed accuracy of correctly assigning
POS tag together with dependency arc and rela-
tion type on the development set after each train-
ing epoch. We perform a minimal grid search of
hyper-parameters on English. We find that the
highest mixed accuracy on the English develop-

3https://github.com/clab/dynet

ment set is when using 64-dimensional character
embeddings, 128-dimensional word embeddings,
128-dimensional BiLSTM states, 2 BiLSTM lay-
ers and 100 hidden nodes in MLPs with one hid-
den layer.4 We then apply those hyper-parameters
to all 18 remaining languages.

3.3 Main results

Table 1 compares the POS tagging and depen-
dency parsing results of our model jPTDP with
results reported in prior work, using the same ex-
perimental setup.

Regarding POS tagging, our joint model jPTDP
generally obtains similar POS tagging accura-
cies to the BiLSTM-aux model (Plank et al.,

4On English, carried out on a computer with 2.2 GHz
Core i7 processor, jPTDP took 6 hours for training with these
hyper-parameters, and then obtained a joint tagging and pars-
ing speed of 700 words/second.
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2016). Our model also achieves higher averaged
POS tagging accuracy than the joint model Stack-
propagation (Zhang and Weiss, 2016). There
are slightly higher tagging results obtained by
BiLSTM-aux when utilizing pre-trained word em-
beddings for initialization, as presented in Plank
et al. (2016). However, for a fair comparison to
both Stack-propagation and our jPTDP, we only
compare to the results reported without using the
pre-trained word embeddings.

In terms of dependency parsing, in most cases,
our model jPTDP outperforms Stack-propagation.
It is somewhat unexpected that our model pro-
duces about 7% absolute lower LAS score than
Stack-propagation on Dutch (nl). A possible rea-
son is that the hyper-parameters we selected on
English are not optimal for Dutch. Another reason
is due to a large number of non-projective trees in
Dutch test set (106/386 ≈ 27.5%), while we use
the Eisner’s decoding algorithm, producing only
projective trees (Eisner, 1996). Without taking
“nl” into account, our averaged LAS score over all
remaining languages is 1.1% absolute higher than
Stack-propagation’s.

One reason for our better LAS is probably be-
cause jPTDP uses character-based representations
of words, while Stack-propagation uses feature
representations for suffixes and prefixes which
might not be as useful as character-based represen-
tations for capturing unknown words. The last row
in Table 1 shows an absolute LAS improvement
of 4.4% on average when comparing our jPTDP
with its simplified version of not using character-
based representations: specifically, morphologi-
cally rich languages get an averaged improvement
of 9.3 %, vice versa 2.6% for others.5 So, our
jPDTP is particularly good for morphologically
rich languages, with 1.7% higher averaged LAS
than Stack-propagation over these languages.

4 MQuni at the CoNLL 2017 shared task

Our team MQuni participated with jPTDP in the
CoNLL 2017 shared task on multilingual parsing
from raw text to universal dependencies (Zeman
et al., 2017). Training data are 60+ universal de-
pendency treebanks for 40+ languages from UD
v2.0 (Nivre et al., 2017a). We do not use any ex-
ternal resource, and we use a fixed random seed

5To determine a morphologically rich language, we
take as a proxy for morphological richness the number of
noun cases >= 4, with this value obtained from WALS
(http://wals.info/) where available or Wikipedia otherwise.

and a fixed set of hyper-parameters as presented in
Section 3.2 for all treebanks.6 For each treebank,
we train a joint model for universal POS tagging
and dependency parsing. We evaluate the mixed
accuracy on the development set after each train-
ing epoch, and select the model with the highest
mixed accuracy. Note that for each “surprise” lan-
guage where there are only few sample sentences
with gold-standard annotation or a “small” tree-
bank whose development set is not available, we
simply split its sample or training set into two parts
with a ratio 4:1, and then use the larger part for
training and the smaller part for development.

For parsing from raw text to universal de-
pendencies, we utilize CoNLL-U test files pre-
processed by the baseline UDPipe 1.1 (Straka
et al., 2016). These pre-processed CoNLL-U test
files are available to all participants who do not
want to train their own models for any steps pre-
ceding the dependency analysis, including: tok-
enization, word segmentation, sentence segmen-
tation, POS tagging and morphological analysis.
Note that we only employ the tokenization, word
and sentence segmentation, and we do not care
about the POS tagging and morphological analysis
pre-processed by UDPipe 1.1. Recall that we per-
form universal POS tagging and dependency pars-
ing jointly. In addition, when we encounter an ad-
ditional parallel test set in a language where mul-
tiple training treebanks exist, i.e. a parallel test set
marked with language code suffix “ pud” such as
“ar pud”, “cs pud” and “de pud”, we simply use
the model trained for its corresponding language
code prefix, e.g., “ar”, “cs” and “de”.

Table 2 presents our official parsing results
from the CoNLL 2017 shared task on UD pars-
ing (Zeman et al., 2017). We obtain 1% abso-
lute higher averaged scores than the baseline UD-
Pipe 1.1 (Straka et al., 2016) in both categories:
big treebank test sets (denoted as Big in Table
2) and parallel test sets (denoted as PUD in Ta-
ble 2). Specifically, we obtain a highest rank at
8th place for the PUD category, showing that our
parsing model jPTDP is particularly good when
it is applied to a real practical application in out-
of-domain data. Unlike the baseline UDPipe 1.1
and others, for each surprise language, we simply

6Except for the biggest treebank UD Czech (cs) consist-
ing of 68K training sentences, due to a limited computation
resource, we used 64-dimensional word embeddings and 32-
dimensional character embeddings. Then it took 30 hours to
complete training process for UD Czech.
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System All Big PUD Sma. Sur. R-S(81) (55) (14) (8) (4)
UDPipe 1.2 69.528 74.389 69.009 53.759 35.9614 8
UDPipe 1.1 68.3513 73.0417 68.3313 51.8015 37.0711 15
MQuni 68.0514 74.0312 69.288 51.5817 14.4828 10

Table 2: Official macro-averaged LAS F1 scores
of MQuni and baselines from the CoNLL 2017
shared task on UD parsing (Zeman et al., 2017):
http://universaldependencies.org/
conll17/results-las.html. “All” refers
to the averaged score over all 81 test sets, which is
used as the main metric for ranking participating
systems. Big: the averaged score over 55/81 test
sets whose training treebanks are big and have
development data available. PUD: the averaged
score over 14/81 test sets that are additional
parallel ones, produced separately and their
domain may be different from their training data.
Sma.: the averaged score over 8/81 test sets
whose training treebanks are small, i.e., they lack
development data and some of them have very
little training data. Sur.: the averaged score over
4/81 remaining test sets for surprise languages.
Here the subscript denotes the official rank out of
33 participating systems. R-S is the system rank
where the 4 surprise language test sets are not
taken into account.

train a joint model just on the sample data of few
sentences with gold-standard annotation provided
before the test phase, i.e., we utilize neither exter-
nal resources nor a cross-lingual technique nor a
delexicalized parser. So, it is not surprising that
we obtain a very low averaged score over the 4
surprise language test sets. When the 4 surprise
language test sets are not taken into account, we
obtain a rank in top-10 participating systems.

In fact, it is hard to make a clear comparison
between our jPTDP and the parsing models used
in other top participating systems. This is be-
cause other systems use various external resources
and/or better pre-processing modules and/or con-
struct ensemble models for dependency parsing.7

For example, UDPipe 1.2 only extends the word
and sentence segmenters of the baseline UDPipe
1.1. Consequently, UDPipe 1.2 obtains 0.1% ab-
solute higher in the macro-averaged word seg-
mentation score8 and 0.2% higher in the macro-

7Combining multiple treebanks available for a language
or similar languages to obtain larger training data is also con-
sidered as a manner of exploiting external data.

8Word segmentation results are available at:

averaged sentence segmentation score9 than the
baseline UDPipe 1.1, resulting in 1+% better in
the macro-averaged LAS F1 score though they use
exactly the same parsing model. See Zeman et al.
(2017) for an overview of the methods, algorithms,
resources and software used for all other partici-
pating systems.10

It is worth noting that for universal POS tag-
ging, we obtain a highest rank at 4th place for the
Big category (i.e., 4th on average over 55 big tree-
bank test sets).11 In this Big category, we also ob-
tain better rank than both UDPipe 1.2 and 1.1.

5 Conclusion

In this paper, we describe our novel model for joint
POS tagging and graph-based dependency pars-
ing, using bidirectional LSTM-based feature rep-
resentations. Experiments on 19 languages from
the Universal Dependencies (UD) v1.2 show that
our model obtains state-of-the-art results in both
POS tagging and dependency parsing.

With our joint model, we participated in the
CoNLL 2017 shared task on UD parsing (Zeman
et al., 2017). Given that we followed a strict closed
setting while other top participating systems did
not, we still obtained very competitive results. So,
we believe our joint model can serve as a new
strong baseline for further models in both POS
tagging and dependency parsing tasks.

For future comparison, we provide in Ta-
ble 3 the POS tagging, UAS and LAS accura-
cies with respect to gold-standard segmentation
on the UD v2.0—CoNLL 2017 shared task test
sets (Nivre et al., 2017b). Our code is open-
source and available at: https://github.
com/datquocnguyen/jPTDP.
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ltcode UPOS UAS LAS ltcode UPOS UAS LAS ltcode UPOS UAS LAS
ar pud 79.34 68.78 56.81 fr partut 95.34 84.75 80.68 lv 90.27 69.28 61.50
ar 95.18 84.16 77.82 fr pud 89.85 83.50 78.14 nl lassysmall 95.82 79.74 75.29
bg 97.49 88.53 84.20 fr sequoia 97.27 86.00 83.25 nl 91.15 78.47 71.39
bxr 43.21 28.79 14.04 fr 96.70 87.69 84.51 no bokmaal 97.43 88.25 85.33
ca 98.10 88.62 85.59 ga 88.35 73.43 62.24 no nynorsk 97.07 86.30 83.12
cs cac 98.53 87.52 83.47 gl treegal 92.83 75.45 68.46 pl 96.18 88.60 82.70
cs cltt 97.20 79.61 74.84 gl 96.86 83.77 80.40 pt br 97.64 90.40 88.32
cs pud 95.96 85.26 79.83 got 94.27 77.78 70.27 pt pud 88.41 81.49 75.15
cs 98.41 88.03 84.35 grc proiel 94.73 73.25 67.34 pt 96.58 87.88 84.54
cu 92.81 81.96 73.22 grc 86.97 54.87 47.57 ro 96.72 87.04 81.37
da 95.80 80.87 76.89 he 95.53 86.65 80.91 ru pud 86.26 78.88 70.15
de pud 85.62 78.34 71.34 hi pud 85.19 64.54 51.97 ru syntagrus 98.11 89.73 87.08
de 92.83 80.16 75.66 hi 96.41 90.68 86.71 ru 95.31 82.14 77.12
el 96.18 85.07 81.55 hr 96.19 85.46 79.32 sk 94.48 81.26 75.51
en lines 94.67 79.21 74.60 hsb 51.13 29.88 17.06 sl sst 88.84 63.25 55.01
en partut 94.17 81.25 76.56 hu 91.81 74.05 66.82 sl 96.87 84.75 81.25
en pud 94.74 85.49 81.64 id 93.10 83.41 76.84 sme 33.12 22.80 8.23
en 94.82 85.29 81.64 it pud 93.51 89.30 85.58 sv lines 94.73 81.52 76.19
es ancora 98.28 88.48 85.50 it 97.62 90.28 87.26 sv pud 91.60 77.73 72.05
es pud 88.59 87.55 80.28 ja pud 97.08 94.40 93.26 sv 96.05 83.35 78.85
es 96.32 87.66 84.05 ja 96.56 94.07 92.41 tr pud 72.60 57.14 35.50
et 87.62 69.44 59.15 kk 51.11 44.25 22.91 tr 93.42 67.39 59.14
eu 93.15 77.86 72.56 kmr 47.72 31.59 18.79 ug 72.49 57.79 39.48
fa 96.38 85.98 81.91 ko 93.47 79.89 74.75 uk 88.09 71.03 61.03
fi ftb 92.63 82.48 76.54 la ittb 97.44 78.81 74.65 ur 92.96 86.05 79.27
fi pud 96.15 83.15 79.31 la proiel 94.23 71.75 64.78 vi 86.78 64.88 55.63
fi 94.95 81.89 77.50 la 83.26 57.79 44.60 zh 92.36 78.57 72.99

Table 3: Universal POS tagging accuracies (labeled as UPOS), UAS and LAS scores of our jPTDP model
with respect to gold-standard segmentation on the UD v2.0—CoNLL 2017 shared task test sets (Nivre
et al., 2017b). UAS refers to the unlabeled attachment score. ltcode denotes the language treebank code.
The 4 surprise language tests are bxr, hsb, kmr and sme. The 8 small treebank tests are fr partut, ga,
gl treegal, kk, la, sl sst, ug and uk. The 14 parallel test sets are marked with the language code suffix
“ pud”. The 55 remaining test sets are for big treebanks.
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Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies, Morgan & cLay-
pool publishers.

John Lee, Jason Naradowsky, and David A. Smith.
2011. A discriminative model for joint morphologi-
cal disambiguation and dependency parsing. In Pro-
ceedings of ACL-HLT (Volume 1). pages 885–894.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-Rank Tensors for
Scoring Dependency Structures. In Proceedings of
ACL (Volume 1: Long Papers). pages 1381–1391.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint Mod-
els for Chinese POS Tagging and Dependency Pars-
ing. In Proceedings of EMNLP. pages 1180–1191.

Xuezhe Ma and Eduard H. Hovy. 2017. Neural Prob-
abilistic Model for Non-projective MST Parsing.
CoRR abs/1701.00874.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the Turbo: Fast Third-Order Non-
Projective Turbo Parsers. In Proceedings of ACL
(Volume 2: Short Papers). pages 617–622.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of ACL. pages
91–98.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics 37(1):197–230.

Ryan McDonald and Fernando Pereira. 2006. Online
Learning of Approximate Dependency Parsing Al-
gorithms. In Proceedings of EACL. pages 81–88.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 .

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2016. An empirical study for Vietnamese depen-
dency parsing. In Proceedings of ALTA. pages 143–
149.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of IWPT .
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