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Abstract

This paper describes our system for the
CoNLL 2016 Shared Task’s supplemen-
tary task on Discourse Relation Sense
Classification. Our official submission
employs a Logistic Regression classifier
with several cross-argument similarity fea-
tures based on word embeddings and per-
forms with overall F-scores of 64.13 for
the Dev set, 63.31 for the Test set and
54.69 for the Blind set, ranking first in the
Overall ranking for the task. We com-
pare the feature-based Logistic Regression
classifier to different Convolutional Neu-
ral Network architectures. After the offi-
cial submission we enriched our model for
Non-Explicit relations by including simi-
larities of explicit connectives with the re-
lation arguments, and part of speech sim-
ilarities based on modal verbs. This im-
proved our Non-Explicit result by 1.46
points on the Dev set and by 0.36 points
on the Blind set.

1 Introduction

The CoNLL 2016 Shared Task on Shallow Dis-
course Parsing (Xue et al., 2016) focuses on iden-
tifying individual discourse relations presented in
text. This year the shared task has a main track
that requires end-to-end discourse relation parsing
and a supplementary task that is restricted to dis-
course relation sense classification. For the main
task, systems are required to build a system that
given a raw text as input can identify arguments
Arg1 and Arg2 that are related in the discourse, and
also classify the type of the relation, which can be
Explicit, Implicit, AltLex or EntRel. A further at-
tribute to be detected is the relation Sense, which
can be one of 15 classes organized hierarchically

in 4 parent classes. With this work we participate
in the Supplementary Task on Discourse Relation
Sense Classification in English. The task is to pre-
dict the discourse relation sense when the argu-
ments Arg1, Arg2 are given, as well as the Dis-
course Connective in case of explicit marking.

In our contribution we compare different ap-
proaches including a Logistic Regression classi-
fier using similarity features based on word em-
beddings, and two Convolutional Neural Network
architectures. We show that an approach using
only word embeddings retrieved from word2vec
(Mikolov et al., 2013) and cross-argument simi-
larity features is simple and fast, and yields results
that rank first in the Overall, second in the Explicit
and forth in the Non-Explicit sense classification
task. Our system’s code is publicly accessible1.

2 Related Work

This year’s CoNLL 2016 Shared Task on Shallow
Discourse Parsing (Xue et al., 2016) is the second
edition of the shared task after the CoNLL 2015
Shared task on Shallow Discourse Parsing (Xue
et al., 2015). The difference to last year’s task is
that there is a new Supplementary Task on Dis-
course Relation Sense classification, where par-
ticipants are not required to build an end-to-end
discourse relation parser but can participate with a
sense classification system only.

Discourse relations in the task are divided in
two major types: Explicit and Non-Explicit (Im-
plicit, EntRel and AltLex). Detecting the sense of
Explicit relations is an easy task: given the dis-
course connective, the relation sense can be deter-
mined with very high accuracy (Pitler et al., 2008).
A challenging task is to detect the sense of Non-
Explicit discourse relations, as they usually don’t

1https://github.com/tbmihailov/
conll16st-hd-sdp - Source code for our Discourse
Relation Sense Classification system
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have a connective that can help to determine their
sense. In last year’s task Non-Explicit relations
have been tackled with features based on Brown
clusters (Chiarcos and Schenk, 2015; Wang and
Lan, 2015; Stepanov et al., 2015), VerbNet classes
(Kong et al., 2015; Lalitha Devi et al., 2015) and
MPQA polarity lexicon (Wang and Lan, 2015;
Lalitha Devi et al., 2015). Earlier work (Ruther-
ford and Xue, 2014) employed Brown cluster
and coreference patterns to identify senses of im-
plicit discourse relations in naturally occurring
text. More recently Rutherford and Xue (2015)
improved inference of implicit discourse relations
via classifying explicit discourse connectives, ex-
tending prior research (Marcu and Echihabi, 2002;
Sporleder and Lascarides, 2008). Several neu-
ral network approaches have been proposed, e.g.,
Multi-task Neural Networks (Liu et al., 2016) and
Shallow-Convolutional Neural Networks (Zhang
et al., 2015). Braud and Denis (2015) compare
word representations for implicit discourse rela-
tion classification and find that denser representa-
tions systematically outperform sparser ones.

3 Method

We divide the task into two subtasks, and develop
separate classifiers for Explicit and Non-Explicit
discourse relation sense classification, as shown in
Figure 1. We do that because the official evalua-
tion is divided into Explicit and Non-Explicit (Im-
plicit, AltLex, EntRel) relations and we want to be
able to tune our system accordingly. During train-
ing, the relation type is provided in the data, and
samples are processed by the respective classifier
models in Process 1 (Non-Explicit) and Process 2
(Explicit). During testing the gold Type attribute is
not provided, so we use a simple heuristic: we as-
sume that Explicit relations have connectives and
that Non-Explicit2 relations do not.

As the task requires that the actual evaluation is
executed on the provided server, we save the mod-
els so we can load them later during evaluation.

For classifying Explicit connectives we follow a
feature-based approach, developing features based
on word embeddings and semantic similarity mea-
sured between parts of the arguments Arg1 and
Arg2 of the discourse relations. Classification is

2In fact, some AltLex discourse relations do have connec-
tives, but they are considered Non-Explicit. More detailed
analysis will be required to improve on this simple heuristic.
Given that their distribution across the data sets is very small,
they do not have much influence on the overall performance.

Figure 1: System architecture: Training and eval-
uating models for Explicit and Non-Explicit dis-
course relation sense classification

into one of the given fifteen classes of relation
senses. For detecting Non-Explicit discourse re-
lations we also make use of a feature-based ap-
proach, but in addition we experiment with two
models based on Convolutional Neural Networks.

3.1 Feature-based approach

For each relation, we extract features from Arg1,
Arg2 and the Connective, in case the type of the
relation is considered Explicit.

Semantic Features using Word Embeddings.
In our models we only develop features based
on word embedding vectors. We use word2vec
(Mikolov et al., 2013) word embeddings with vec-
tor size 300 pre-trained on Google News texts.3

For computing similarity between embedding rep-
resentations, we employ cosine similarity:

1− u.v

‖u‖ . ‖v‖ (1)

Embedding representations for Arguments and
Connectives. For each argument Arg1, Arg2 and
Connective (for Explicit relations) we construct a
centroid vector (2) from the embedding vectors ~wi

of all words wi in their respective surface yield.

centroid(~w1... ~wn) =

n∑
i=1

~wi

n
(2)

3https://code.google.com/archive/p/
word2vec/ - Pre-trained vectors trained on part of Google
News dataset (about 100 billion words).
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Cross-argument Semantic Vector Similarities.
We calculate various similarity features on the ba-
sis of the centroid word vectors for the arguments
and the connective, as well as on parts of the argu-
ments:

Arg1 to Arg2 similarity. We assume that for
given arguments Arg1 and Arg2 that stand in a spe-
cific discourse relation sense, their centroid vec-
tors should stand in a specific similarity relation to
each other. We thus use their cosine similarity as
a feature.

Maximized similarity. Here we rank each
word in Arg2’s text according to its similarity with
the centroid vector of Arg1, and we compute the
average similarity for the top-ranked N words. We
chose the similarity scores of the top 1,2,3 and 5
words as features. The assumption is that the av-
erage similarity between the first argument (Arg1)
and the top N most similar words in the second
argument (Arg2) might imply a specific sense.

Aligned similarity. For each word in Arg1,
we choose the most similar word from the yield
of Arg2 and we take the average of all best word
pair similarities, as suggested in Tran et al. (2015).

Part of speech (POS) based word vector sim-
ilarities. We used part of speech tags from the
parsed input data provided by the organizers, and
computed similarities between centroid vectors of
words with a specific tag from Arg1 and the cen-
troid vector of Arg2. Extracted features for POS
similarities are symmetric: for example we cal-
culate the similarity between Nouns from Arg1
with Pronouns from Arg2 and the opposite. The
assumption is that some parts of speech between
Arg1 and Arg2 might be closer than other parts of
speech depending on the relation sense.

Explicit discourse connectives similarity. We
collected 103 explicit discourse connectives from
the Penn Discourse Treebank (Prasad et al., 2008)
annotation manual4 and for all of them construct
vector representations according to (2), where for
multi-token connectives we calculate a centroid
vector from all tokens in the connective. For every
discourse connective vector representation we cal-
culate the similarity with the centroid vector rep-
resentations from all Arg1 and Arg2 tokens. This

4
https://www.seas.upenn.edu/˜pdtb/PDTBAPI/

pdtb-annotation-manual.pdf - The Penn Discourse Treebank 2.0 Annota-
tion Manual

results in adding 103 similarity features for every
relation. We use these features for implicit dis-
course relations sense classification only.

We assume that knowledge about the relation
sense can be inferred by calculating the similarity
between the semantic information of the relation
arguments and specific discourse connectives.

Our feature-based approach yields very good re-
sults on Explicit relations sense classification with
an F-score of 0.912 on the Dev set. Combining
features based on word embeddings and similar-
ity between arguments in Mihaylov and Nakov
(2016) yielded state-of-the art performance in a
similar task setup in Community Question An-
swering (Nakov et al., 2016), where two text ar-
guments (question and answer) are to be ranked.

3.2 CNNs for sentence classification

We also experiment with Convolutional Neural
Network architectures to detect Implicit relation
senses. We have implemented the CNN model
proposed in Kim (2014) as it proved successful in
tasks like sentence classification and modal sense
classification (Marasović and Frank, 2016). This
model (Figure 2) defines one convolutional layer
that uses pre-trained Word2Vec vectors trained on
the Google News dataset. As shown in Kim
(2014), this architecture yields very good results
for various single sentence classification tasks. For
our relation classification task we input the con-
catenated tokens of Arg1 and Arg2.

Figure 2: CNN architecture by Kim (2014).

3.3 Modified ARC-1 CNN for sentence
matching

An alternative model we try for Implicit discourse
relation sense classification is a modification of the
ARC-1 architecture proposed for sentence match-
ing by Hu et al. (2015). We will refer to this
model as ARC-1M. The modified architecture is
depicted in Figure 3. The input of the model are
two sentences Sx and Sy represented as sequence of
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Figure 3: Modified ARC-I CNN architecture for
sentence matching.

tokens’ vector representations of Arg1 and Arg2.
Here, separate convolution and max-pooling lay-
ers are constructed for the two input sentences, and
the results of the max-pooling layers are concate-
nated and fed to a single final SoftMax layer. The
original ARC-1 architecture uses a Multilayer Per-
ceptron layer instead of SoftMax. For our imple-
mentation we use TensorFlow (Abadi et al., 2015).

4 Experiments and Results

4.1 Data

In our experiments we use the official data (En-
glish) provided from the task organizers: Train
(15500 Explicit + 18115 Non-Explicit), Dev (740
Explicit + 782 Non-Explicit), Test (990 Explicit
+ 1026 Non-Explicit), Blind (608 Explicit + 661
Non-Explicit). All models are trained on Train set.

4.2 Classifier settings

For our feature-based approach we concatenate the
extracted features in a feature vector, scale their
values to the 0 to 1 range, and feed the vectors to a
classifier. We train and evaluate a L2-regularized
Logistic Regression classifier with the LIBLIN-
EAR (Fan et al., 2008) solver as implemented in
scikit-learn (Pedregosa et al., 2011). For most of
our experiments, we tuned the classifier with dif-
ferent values of the C (cost) parameter, and chose
C=0.1 as it yielded the best accuracy on 5-fold
cross-validation on the training set. We use these
settings for all experiments that use the logistic re-
gression classifier.

4.3 Official submission (LR with E+Sim)

Our official submission uses the feature-based ap-
proach described in Section 3.1 for both Explicit
and Non-Explicit relations with all features de-

scribed above, except for the Explicit connective
similarities (Conn) and Modal verbs similarities
(POS MD) which have been added after the sub-
mission deadline. Table 1 presents the results di-
vided by senses from our official submission per-
formed on the TIRA evaluation platform (Potthast
et al., 2014) server. We also compare our official
and improved system results to the best perform-
ing system in the CoNLL 2015 Shared Task (Wang
and Lan, 2015) and the best performing systems in
the CoNLL 2016 Discourse Relation Sense Clas-
sification task. With our official system we rank
first in the Overall5 ranking. We rank second in the
Explicit ranking with a small difference of 0.07 be-
hind the best system and fourth in the Non-Explicit
ranking with more significant difference of 2.75
behind the best system. We can see that similar to
(Wang and Lan, 2015) our system performs well
in classifying both types, while this year’s win-
ning systems perform well in their winning rela-
tion type and much worse in the others6.

4.4 Further experiments on Non-Explicit
relations

In Table 2 we compare different models for Non-
Explicit relation sense classification trained on the
Train and evaluated on the Dev set.

Embeddings only experiments. The first three
columns show the results obtained with three ap-
proaches that use only features based on word
embeddings. We use word2vec word embed-
dings. We also experimented with pre-trained
dependency-based word embeddings (Levy and
Goldberg, 2014), but this yielded slightly worse
results on the Dev set.

Logistic Regression (LR). The LR column
shows the results from a Logistic Regression clas-
sifier that uses only the concatenated features from
the centroid representations built from the words
of Arg1 and Arg2.

CNN experiments. The CNN column shows
results obtained from the Convolutional Neural
Network for sentence classification (Section 3.2)
fed with the concatenated Arg1 and Arg2 word to-
kens’ vector representations from Word2Vec word
embeddings. For our experiments we used default

5Overall score is the F-score on All (both Explicit and
Non-Explicit) relations.

6The winner team in Non-Explicit (Rutherford and Xue,
2016) does not participate in Explicit.
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WSJ Dev Set WSJ Test Set Blind Set (Official task ranking)
Sense Overall Exp Non-E Overall Exp Non-E Overall Exp Non-E
Comparison.Concession 33.33 40.00 0.00 36.36 44.44 0.00 91.67 100.00 0.00
Comparison.Contrast 74.31 94.44 16.07 65.99 92.19 9.60 21.24 25.81 0.00
Contingency.Cause.Reason 51.48 78.95 38.51 64.36 94.03 47.93 35.71 82.61 18.03
Contingency.Cause.Result 38.94 91.43 15.38 40.74 100.00 17.53 53.33 91.67 27.78
Contingency.Condition 95.56 95.56 - 87.50 87.50 - 89.66 89.66 -
EntRel 58.73 - 58.73 70.97 - 70.97 47.06 - 47.06
Expansion.Alt 92.31 92.31 - 100.00 100.00 - 100.00 100.00 -
Expansion.Alt.Chosen alt 71.43 90.91 0.00 22.22 100.00 6.67 0.00 - 100.00
Expansion.Conjunction 70.45 97.00 40.00 75.88 98.36 40.26 63.48 94.52 27.51
Expansion.Instantiation 47.73 100.00 34.29 57.14 100.00 44.29 55.56 100.00 50.00
Expansion.Restatement 31.13 66.67 29.56 31.31 14.29 31.94 32.39 66.67 30.88
Temporal.Async.Precedence 78.46 98.00 13.33 82.22 100.00 11.11 84.44 97.44 0.00
Temporal.Async.Succession 82.83 87.23 0.00 58.82 63.49 0.00 96.08 96.08 -
Temporal.Synchrony 77.30 80.77 0.00 80.25 83.33 0.00 59.70 59.70 100.00
System All senses - comparison
Our system (Official) 64.13 91.20 40.32 63.31 89.80 39.19 54.69 78.34 34.56
Our improved system 64.77 91.05 41.66 62.69 90.02 37.81 54.88 78.38 34.92
Wang and Lan, 2015 65.11 90.00 42.72 61.27 90.79 34.45 54.76 76.44 36.29
Rutherford and Xue, 2016 - - 40.32 - - 36.13 - - 37.67
Jain, 2016 62.43 91.50 36.85 50.90 89.70 15.60 41.47 78.56 9.95

Table 1: Evaluation of our official submission system, trained on Train 2016 and evaluated on Dev, Test
and Blind sets. Comparison with our official system and our improved system with the official results
of CoNLL 2015 Shared task’s best system (Wang and Lan, 2015) and CoNLL 2016 Shared Task best
systems in Explicit (Jain, 2016) and Non-Explicit (Rutherford and Xue, 2016). F-Score is presented.

system parameters as proposed in Kim (2014): fil-
ter windows with size 3,4,5 with 100 feature maps
each, dropout probability 0.5 and mini-batch of
size 50. We train the model with 50 epochs.

CNN ARC-1M experiments The CNN ARC-
1M column shows results from our modification of
ARC-1 CNN for sentence matching (see Section
3.3) fed with Arg1 and Arg2 word tokens’ vector
representations from the Word2Vec word embed-
dings. We use filter windows with size 3,4,5 with
100 feature maps each, shared between the two ar-
gument convolutions, dropout probability 0.5 and
mini-batch of size 50 as proposed in Kim (2014).
We train the model with 50 epochs.

Comparing LR, CNN and CNN ARC-1M ac-
cording to their ability to classify different classes
we observe that CNN ARC-1M performs best
in detecting Contingency.Cause.Reason and Con-
tingency.Cause.Result with a substantial margin
over the other two models. The CNN model
outperforms the LR and CNN-ARC1M for Com-
parison.Contrast, EntRel, Expansion.Conjunction
and Expansion.Instantiation but cannot capture
any Expansion.Restatement which leads to worse
overall results compared to the others. These in-
sights show that the Neural Network models are

able to capture some dependencies between the re-
lation arguments. For Contingency.Cause.Results,
CNN ARC-1M even clearly outperforms the LR
models enhanced with similarity features (dis-
cussed below). We also implemented a modified
version of the CNN ARC-2 architecture of Hu et
al. (2015), which uses a cross-argument convolu-
tion layer, but it yielded much worse results.7

LR with Embeddings + Features The last three
columns in Table 2 show the results of our feature-
based Logistic Regression approach with different
feature groups on top of the embedding represen-
tations of the arguments. Column E+Sim shows
the results from our official submission and the
other two columns show results for additional fea-
tures that we added after the submission deadline.

Adding the cross-argument similarity features
(without the POS modal verbs similarities) im-
proves the overall result of the embeddings-only
Logistic Regression (LR) baseline significantly
from F-score 35.54 to 40.32. It also improves the
result on almost all senses individually. Adding
Explicit connective similarities features improves
the All result by 0.67 points (E+Sim+Conn).
It also improves the performance on Tem-

7We are currently checking our implementation.
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Embeddings only Logistic Regression with Embeddings + Features
Sense LR CNN CNN ARC-1M E+Sim E+Sim+Conn E+Sim+Conn+POS MD
Comparison.Concession 0.00 0.00 0.00 0.00 0.00 0.00
Comparison.Contrast 2.33 13.68 8.51 16.07 18.80 17.86
Contingency.Cause.Reason 25.00 29.30 35.90 38.51 40.24 42.17
Contingency.Cause.Result 3.57 9.20 19.28 15.38 15.38 13.70
EntRel 53.13 59.53 56.87 58.73 60.80 61.26
Expansion.Alt.Chosen alt 0.00 0.00 0.00 0.00 0.00 0.00
Expansion.Conjunction 35.90 38.29 14.67 40.00 40.91 41.27
Expansion.Instantiation 0.00 21.98 4.08 34.29 31.43 33.80
Expansion.Restatement 12.74 0.00 21.56 29.56 26.87 27.45
Temporal.Async.Precedence 0.00 0.00 0.00 13.33 17.65 12.90
Temporal.Async.Succession 0.00 0.00 0.00 0.00 0.00 0.00
Temporal.Synchrony 0.00 0.00 0.00 0.00 0.00 0.00
All 35.54 34.34 36.21 40.32 40.99 41.66

Table 2: Evaluation of different systems and feature configurations for Non-Explicit relation sense clas-
sification, trained on Train 2016 and evaluated on Dev. F-score is presented.

poral.Async.Precedence, Expansion.Conjunction,
EntRel, Contingency.Cause.Reason and Compari-
son.Contrast individually. We further added POS
similarity features between MD (modal verbs) and
other part of speech tags between Arg1 and Arg2.
The obtained improvement of 0.67 points shows
that the occurrence of modal verbs within ar-
guments can be exploited for implicit discourse
relation sense classification. Adding the modal
verbs similarities also improved the individual re-
sults for the Contingency.Cause.Reason, EntRel
and Expansion.Conjunction senses.

Some relations are hard to predict, probably
due to the low distribution in the train and eval-
uation data sets: Comparison.Concession8, Ex-
pansion.Alt.Chosen alt9, Temporal.Async. Succes-
sion10, Temporal. Synchrony11.

5 Conclusion and Future work

In this paper we describe our system for the par-
ticipation in the CoNLL Shared Task on Discourse
Relation Sense Classification. We compare dif-
ferent approaches including Logistic Regression
classifiers using features based on word embed-
dings and cross-argument similarity and two Con-
volutional Neural Network architectures. Our offi-
cial submission uses a logistic regression classifier
with several similarity features and performs with
overall F-scores of 64.13 for the Dev set, 63.31
for the Test set and 54.69 for the Blind set. After
the official submission we improved our system

8
Comparison.Concession, Non-Explicit: Train:1.10 %, Dev:0.66 %: Test:0.59 %.

9
Expansion.Alt.Chosen-alt, Non-Explicit: Train:0.79 %, Dev:0.26 %: Test:1.49 %.

10
Temporal.Async.Succ, Non-Explicit: Train:0.80 %, Dev:0.39 %: Test:0.49 %.

11
Temporal.Synchrony, Non-Explicit: Train:0.94 %, Dev:1.19 %: Test:0.49 %.

by adding more features for detecting senses for
Non-Explicit relations and we improved our Non-
Explicit result by 1.46 points to 41.66 on the Dev
set and by 0.36 points to 34.92 on the Blind set.

We could show that dense representations of
arguments and connectives jointly with cross-
argument similarity features calculated over word
embeddings yield competitive results, both for Ex-
plicit and Non-Explicit relations. First results in
adapting CNN models to the task show that fur-
ther gains can be obtained, beyond LR models.

In future work we want to explore further deep
learning approaches and adapt them for discourse
relation sense classification, using among others
Recurrent Neural Networks and CNNs for match-
ing sentences, as well as other neural network
models that incorporate correlation between the
input arguments, such as the MTE-NN system
(Guzmán et al., 2016a; Guzmán et al., 2016b).
Since we observe that the neural network ap-
proaches improve on the LR Embeddings-only
models for most of the senses, in future work
we could combine these models with our well-
performing similarity features. Combining the
output of a deep learning system with additional
features has been shown to achieve state of the art
performance in other tasks (Kreutzer et al., 2015).
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