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Abstract

This paper describes a discourse parsing
system for our participation in the CoNLL
2016 Shared Task. We focus on the sup-
plementary task: Sense Classification, es-
pecially the Non-Explicit one which is the
bottleneck of discourse parsing system.
To improve Non-Explicit sense classifica-
tion, we propose a Convolutional Neural
Network (CNN) model to determine the
senses for both English and Chinese tasks.
We also explore a traditional linear model
with novel dependency features for Ex-
plicit sense classification. Compared with
the best system in CoNLL-2015, our sys-
tem achieves competitive performances.
Moreover, as shown in the results, our sys-
tem has higher F1 score on Non-Explicit
sense classification.

1 Introduction

This paper presents the Shanghai Jiao Tong Uni-
versity discourse parsing system for the CoNLL
2016 Shared Task (Xue et al., 2016) on Shallow
Discourse Parsing and the supplementary tasks of
sense classification for English and Chinese.

As shown by the results of the same task in
CoNLL 2015 (Xue et al., 2015), sense classifica-
tion has been found more difficult than other sub-
tasks, especially determining Non-Explicit senses
which is the bottleneck of the end-to-end discourse
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parsing system. Without the discourse connec-
tives which provide strong indications, the Non-
Explicit relations between adjacent sentences are
difficult to figure out. Therefore, our primary work
is to improve sense classification components, es-
pecially on Non-Explicit relations. For other com-
ponents such as connectives detection and argu-
ments extraction, we just follow the top ranked
system (Wang and Lan, 2015) in CoNLL-2015,
which is as the baseline system in this paper.

In CoNLL-2015, various approaches were ex-
plored to conquer the sense classification problem,
which is a straightforward multi-category classi-
fication task (Okita et al., 2015; Wang and Lan,
2015; Chiarcos and Schenk, 2015; Song et al.,
2015; Stepanov et al., 2015; Yoshida et al., 2015;
Sun et al., 2015; Nguyen et al., 2015; Laali et
al., 2015). Typical data-driven machine learn-
ing methods, like Maximum Entropy and Support
Vector Machine, were adopted. Some of them se-
lected lexical and syntactic features over the ar-
guments, including linguistically motivated word
groupings such as Levin verb classes and polarity
tags. Brown cluster features, surface features and
entity semantics were also effective to enhance
sense classification. Additionally, paragraph em-
beddings were also used to determine the senses
(Okita et al., 2015). In other previous work of im-
plicit sense classification, Chen et al (2015) used
word-pair features for predicting missing connec-
tives, Zhou et al. (2010) attempted to insert dis-
course connectives between arguments with the
use of a language model, Lin et al. (2009) applied
various feature selection methods. Although tra-
ditional methods have performed well on seman-
tic tasks through feature engineering (Zhao et al.,
2009a; Zhao et al., 2009b; Zhao et al., 2013), they
still suffer from data sparsity problems.

Recently, Neural Network (NN) methods have
shown competitive or even better performance
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than traditional linear models with hand-crafted
sparse features for some Nature Language Pro-
cess (NLP) tasks (Wang et al., 2013; Wang et al.,
2014; Cai and Zhao, 2016; Wang et al., 2016;
Zhang and Zhao, 2016), such as sentence mod-
eling (Kalchbrenner et al., 2014; Kim, 2014). In
Non-Explicit sense classification, due to the ab-
sence of discourse connectives, the task is exactly
to classify a sentence pair, where CNN could be
utilized.

For Explicit sense classification which has
strong discourse relation information provided by
the connectives, we will use traditional linear
methods with novel dependency features.

The rest of the paper is organized as follows:
Section 2 briefly describes our system, Section 3
introduces the CNN model for modeling sentence
pairs, Section 4 discusses our main works includ-
ing Explicit sense classification and Non-Explicit
sense classification, Section 5 shows our experi-
ments on sense classification and Section 6 reports
our results on the final official evaluation. Section
7 concludes this paper.

2 System Overview

Our parsing system uses the sequential pipeline
following by (Lin et al., 2014; Wang and Lan,
2015). Figure 1 shows the system pipeline. The
system can be roughly split into two parts: the Ex-
plicit parser and the Non-Explicit parser. We will
give a brief introduction for every components.
The overall parser starts from detecting discourse
connectives for the Explicit Parser. Then the types
of relative location of Argument1 (Arg1) and Ar-
gument2 (Arg2) are identified: Arg1 located in
the exact previous sentence of Arg2 (noted as PS)
or both arguments are within the same sentence
(noted as SS). For the last part of Explicit parser,
the tuples (Arg1, Connective, Arg2) are classi-
fied into one of the Explicit relation senses. For
the Non-Explicit parser, it classifies the senses of
Non-Explicit with original arguments and then ex-
tracts the arguments of the argument pairs. Fi-
nally, the senses of Non-Explicit argument pairs
are again decided with refined arguments. Among
all subtasks, we will focus on sense classification
the other parts have been done relatively well in
previous work.

Figure 1: System pipeline for the discourse parser

3 Convolutional Neural Network

Each sentence could obtain a sentence vector
through CNN and the final classification is based
on the transformations of the sentence vectors. Al-
though both Explicit and Non-Explicit tasks could
utilize the neural model, CNN might be more ap-
posite for the Non-Explicit one because of lacking
indicating connectives.

The architecture of our CNN model, is illus-
trated in Figure 2. Firstly, a look-up table is uti-
lized to fetch the embeddings of words and part-
of-speech (POS) tags, forming two sentence em-
beddings which will be the input of the convo-
lutional layer. Through the convolution and max
pooling operations, two sentence vectors are ob-
tained. Finally, these vectors will be sent to the
final softmax layer after concatenated.

Embedding For a sentence S = w1w2 . . .wn

and POS sequence P = p1p2 . . .pn, the sentence
embedding M is formed through projection and
concatenating. Following the jargons in the task,
the input sentences will be called “Arguments” and
the two arguments are represented as follows:

M1 = [w1
1 ⊕ p1

1;w
1
2 ⊕ p1

2; . . . ;w
1
n ⊕ p1

n]

M2 = [w2
1 ⊕ p2

1;w
2
2 ⊕ p2

2; . . . ;w
2
n ⊕ p2

n]
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Here wj
i ∈ Rdw is the word vector correspond-

ing to the i-th word in the j-th argument, and
pj

i ∈ Rdp is the POS vector for wj
i , where dw

and dp respectively stand for the dimensions of
word and POS vectors. ⊕ and ; are the concate-
nation operators on different dimensions. Consid-
ering the efficiency, we specialize a max sentence
length for both arguments, and apply truncating or
zero-padding when needed.

Convolutional layer Filter matrices [W1, W2,
. . . , Wk] with several variable sizes [l1, l2, . . . , lk]
are utilized to perform the convolution opera-
tions for the sentence embeddings. Via parameter
sharing, this feature extraction procedure become
same for both arguments. For the sake of sim-
plicity, ignoring the superscripts, we will explain
the procedure for only one argument. The sen-
tence embedding will be transformed to sequences
Cj(j ∈ [1, k]) :

Cj = [. . . ; tanh(Wj ·M[i:i+lj−1] + bj); . . . ]

Here, [i : i+ lj − 1] indexes the convolution win-
dow. Additionally, We apply wide convolution op-
eration between embedding layer and filter matri-
ces, because it ensures that all weights in the fil-
ters reach the entire sentence, including the words
at the margins.

Max Pooling A one-max-pooling operation is
adopted after convolution and the sentence vector
s is obtained through concatenating all the map-
pings for those k filters.

s = [s1 ⊕ · · · ⊕ sj ⊕ · · · ⊕ sk]
sj = max(Cj)

In this way, the model can capture the most impor-
tant features in the sentence with different filters.

Concatenating and Softmax Now adding the
superscripts and considering the two arguments
(s1, s2), they are concatenated to form the
argument-pair representation vector v as below:

v = s1 ⊕ s2

For the final labeling decision, a softmax layer will
be applied using the argument-pair vector v.

concat

max(·)

convolution

embedding
It   is  raining I  bring  an  umbrella

W1

v

M1

s1 s2

M2

W1Wk Wk

······

softmax Pr(y)

C1
1

sk
1 s1

2s1
1 sk

2

Ck
1 C1

2 Ck
2

Figure 2: Our neural model for sentence classifi-
cation.

Training The training object J will be the cross-
entropy error E with L2 regularization:

E(ŷ, y) = −
l∑
j

yj × log(Pr(ŷj))

J(θ) =
1
m

m∑
k

E(ŷ(k), y(k)) +
λ

2
‖θ‖2

where yj is the gold label and ŷj is the predicted
one. For the optimization process, we apply the
diagonal variant of AdaGrad (Duchi et al., 2011)
with mini-batches.

4 Sense Classification

Now we will discuss about the sense classification
task. Both the Explicit and Non-Explicit labeling
are typical classification tasks with the argument-
pair as the input and the CNN model could be ap-
plied to both of them. However, the Explicit task
provides the connectives which are the crucial in-
dicators and we find that CNN performs slightly
poorly on this task even if embeddings for indica-
tors are concatenated. Thus, for the Explicit task,
we will adopt the traditional linear model consid-
ering only the features related with the indicators
and CNN model will be applied to the more diffi-
cult Non-Explicit task.

4.1 Explicit Sense Classification
For the Explicit classification task, connectives
provide the crucial and decisive information. The
connective itself has been found to be a very good

72



data set baseline C+C POS add C-HP
English 90.14 91.35 92.11
Chinese - 96.15 97.43

Table 1: Explicit Sense Classification on English
and Chinese development sets without error prop-
agation.

data set baseline CNN model
English 42.92 45.50
Chinese - 71.57

Table 2: Non-Explicit Sense Classification on En-
glish and Chinese development sets without error
propagation.

feature, as connectives are ambiguous as pointed
out in Pitler et al. (2008), and the majority of the
ambiguous connectives is highly skewed toward
certain senses (Lin et al., 2014). Thus, the task is
in fact to disambiguate the connective under dif-
ferent contexts.

Although the provided context contains the two
whole arguments, the most crucial indicators are
still the words that near the connectives or the
ones that have close syntactic dependency rela-
tions with the connectives. This might explain
why plain CNN model performs poorly on this
task without these key features.

Thus, for the Explicit task, we will adopt the tra-
ditional method, using Support Vector Machines
(SVM) with linear kernel and manually selected
features. We consider only three features which
are all related to Connective C: (1) C string (2) C
POS (3) C string combined with POS of C’s parent
node in dependency tree (noted as C-HP).

We will use an example in the Chinese task to
explain the influence of the third feature which
utilizes the dependency tree.

(1) 男选手的成绩是近１０年来最差的一
次，说明水平在下降[Arg1] 而 [Connective] 罗罗罗
莉莉莉、、、乔乔乔娅娅娅和和和莫莫莫惠惠惠兰兰兰３３３名名名女女女选选选手手手都都都是是是第第第一一一次次次参参参
加加加世世世界界界大大大赛赛赛，，，均均均表表表现现现不不不错错错。。。[Arg2]

(Contrast - CHTB 0310)

In Chinese, ‘而’ is a connective with ambigu-
ity relations of ‘Contrast’ and ‘Conjunction’. Be-
cause ‘Conjunction’ accounts for a large part of
these instances, the classifier will tend to predict
‘而’ as ‘Conjunction’ if just using connective fea-
tures. Like in this example, the sense of the in-

filter-size on original Args
(2,3,3) 38.45
(2,4,5) 38.86
(2,6,12) 38.45
(3,3,3) 39.40
(4,8,12) 40.08
(6,8,18) 38.99

Table 3: F1 scores (%) with different CNN filter
sizes for Non-Explicit on original arguments on
development set.

filter-size on refined Args
(1,2,3) 45.11
(2,3,4) 44.18

(2,5,10) 44.97
(2,8,16) 43.25
(3,3,3) 45.50
(3,5,9) 43.92

Table 4: F1 scores (%) with different CNN filter
sizes for Explicit on refined arguments on devel-
opment set.

stance is ‘Contrast’ but is predicted as ‘Conjunc-
tion’ if considering only the connective itself. But
if we add the third feature, which means the com-
bination feature ‘而-VC’ will be added (C is ‘而’
and POS of C’s parent node is ‘VC’), the classifier
will correctly decide the right sense.

4.2 Non-Explicit Sense Classification
The situations for the Non-Explicit task are quite
different. Without the information of connectives,
we have to extract the discourse relations through
the two arguments, which might need semantic
comprehensions sometimes. This might be hard
for traditional methods because it is not easy to ex-
tract hand-craft features. The neural models which
can automatically extract features may be another
solution.

We apply the CNN model described in Section
3 for this task. To simplify model building and pa-
rameter tuning, and also due to the similar archi-
tectures, the model structures for sense classifica-
tion components in English and Chinese are iden-
tical.

5 Experiments

Our system is trained on the PDTB 2.0 corpus.
Sections 02-21 are used as training set, and Sec-
tion 22 as the development set. There are two tests
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Components
WSJ Test

baseline our parser
P R F P R F

ALL Explicit connective 94.83 93.49 94.16 92.42 94.88 93.63
Explicit Arg1 extraction 51.05 50.33 50.68 49.73 51.06 50.38
Explicit Arg2 extraction 77.89 76.79 77.33 75.73 77.75 76.73
Explicit Both extraction 45.54 44.90 45.22 44.31 45.49 44.90
Explicit only Parser - - 39.96 41.05 40.02 40.53
Non-Explicit Arg1 extraction 64.83 69.50 67.08 67.42 63.08 65.18
Non-Explicit Arg2 extraction 66.02 70.78 68.32 70.18 65.65 67.84
Non-Explicit Both extraction 51.20 54.89 52.98 53.44 50.00 51.67
Non-Explicit only Parser - - 20.74 20.66 22.11 21.36
All Arg1 extraction 59.20 61.03 60.10 59.67 58.29 58.97
All Arg2 extraction 71.43 73.64 72.52 72.82 71.13 71.97
All Both extration 48.62 50.13 49.36 49.10 47.96 48.52
All Parser 29.27 30.08 29.72 29.90 30.65 30.27

Table 5: Results of the Shallow Discourse Parsing task on English WSJ test set.

Components
Blind Test

baseline our parser
P R F P R F

ALL Explicit connective 93.48 90.29 91.86 88.67 93.73 91.13
Explicit Arg1 extraction 49.16 47.48 48.31 47.12 49.81 48.43
Explicit Arg2 extraction 75.61 73.02 74.29 71.58 75.56 73.57
Explicit Both extraction 42.09 40.65 41.35 40.29 42.59 41.40
Explicit only Parser - - 30.38 32.57 30.76 31.64
Non-Explicit Arg1 extraction 58.66 63.25 60.87 64.01 59.38 61.61
Non-Explicit Arg2 extraction 71.88 77.49 74.58 80.86 75.00 77.82
Non-Explicit Both extraction 48.58 52.37 50.41 55.44 51.42 53.35
Non-Explicit only Parser - - 18.87 18.32 19.75 19.01
All Arg1 extraction 55.12 56.58 55.84 56.91 55.93 56.42
All Arg2 extraction 73.49 75.43 74.45 76.59 75.28 75.93
All Both extration 45.77 46.98 46.37 48.47 47.64 48.05
All Parser 23.69 24.32 24.00 24.41 24.81 24.61

Table 6: Results of the Shallow Discourse Parsing task on English Blind test set.

sets for the shared task: Section 23 of the PDTB,
and a blind test prepared especially for this task.
We participate in the closed track, so only two
resources (Brown Clusters and MPQA Subjectiv-
ity Lexicon) are used. test platform of CoNLL-
2016 still adopts still the TIRA evaluation plat-
form (Potthast et al., 2014).

Non-Explicit relations contains three types: Im-
plicit, EntRel and AltLex. Originally EntRel is
not treated as discourse relation in Penn Discourse
TreeBank (PDTB) (Prasad et al., 2008), but this
category has been included in this task and we also
count it as one sense. Some instances are anno-
tated with two senses, so the predicted sense for a
relation must match one of the two senses if there
is more than one sense. We compare with the best
system in the competition of CoNLL 2015 (Wang
and Lan, 2015), which is regarded as the baseline.

5.1 Explicit Sense Classification

Table 1 reports our results of the Explicit sense
classifier on both English and Chinese develop-

ment sets. Compared with the baseline, our meth-
ods obtain progress and the overall F1 score of Ex-
plicit Sense classification increases by 1.97% for
English task.

For both English and Chinese sense classifica-
tion, the C string and C POS features can clas-
sify most of the relations correctly. Moreover, the
new combination feature based on dependency re-
lations helps effectively disambiguate senses.

5.2 Non-Explicit Sense Classification

For the Non-Explicit task, we utilize the CNN
model to model the argument pairs. Following
(Wang and Lan, 2015), in the final discourse pars-
ing pipeline, we utilize the sense classifier twice,
once for original arguments (adjacent sentence
pairs) and once for redefined arguments (after ar-
gument extraction). Because the two classifiers
expect different inputs, we train different CNN
models for these two tasks and also with slightly
different hyper-parameters.
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components
WSJ Test En Blind Test CTB Test CH Blind Test

P R F P R F P R F P R F
Explicit Sense Classification 89.59 89.59 89.59 75.95 75.54 75.74 93.68 92.71 93.19 75.82 73.67 74.73
Non-Explicit Sense Classification 38.20 38.20 38.20 35.38 35.38 35.38 67.41 67.41 67.41 56.35 56.35 56.35
All Parser 62.69 62.69 62.69 53.94 53.85 53.89 72.91 72.75 72.83 61.02 61.02 61.02

Table 7: Results of the supplementary task on English and Chinese.

On Original Arguments The input for this
classifier will be two adjacent sentences without
Explicit discourse relations. The maximum input
length for both sentences is set to 80, the dimen-
sions for word embeddings and POS embeddings
are 300 and 50 respectively. The word embeddings
are initialized with pre-trained word vectors using
word2vec1 (Mikolov et al., 2013) and other pa-
rameters are randomly initialized including POS
embeddings. We employ three categories of CNN
filters, and choose 512 as the number of feature
maps. About the filter region sizes, Zhang and
Wallace (2015) have concluded that each dataset
has its own optimal range. We set the three filter
sizes to 4,8,12 separately according to the empiri-
cal results in Table 3.

On Refined Arguments This module is sim-
ilar to the above one but with some differences.
The input will be the refined arguments and corre-
spondingly, golden argument pairs are utilized for
training. Thus, we adopt slightly different hyper-
parameters. The number of feature maps for each
filter categories is set to 1024, and the final filter
region sizes are 3,3,3 accordingly to the empirical
results in Table 4. For the choice of filter region
sizes, we have attempted a lot of combinations, but
only the best ones are shown.

Results of classification The trained model
on refined arguments could be directly utilized
for part of Non-Explicit sense classification in the
supplementary task and Table 2 reports the results
on English and Chinese development sets. Com-
pared to the Explicit task, the Non-Explicit task
is indeed much more difficult. Using CNN, we
achieve an improvement of 2.58% compared to
the baseline. This result fully illustrates that CNN
model is suitable to determine the Non-Explicit re-
lations.

6 Results

We report our official results and comparisons on
Shallow Discourse Parsing task on English and the

1http://www.code.google.com/p/word2vec

supplementary tasks of sense classification on En-
glish and Chinese.

Table 5 and 6 show the performance on two test
sets for English: i) (Official) Blind test set; ii)
Standard WSJ test set. Our parsers give higher F1
scores than baselines: 0.55% higher on WSJ test
set and 0.61% on Blind Test set, though our Ex-
plicit connective detection F1 is less than theirs at
the beginning of the pipeline, which might intro-
duce more error propagations. This might suggest
that our sense classifiers play key roles in the sys-
tem.

To see the performances of the sense classi-
fiers, Table 7 shows the results for English and
Chinese supplementary tasks (sense classifications
on golden argument pairs without errors propaga-
tion). For Explicit sense classification, the features
we proposed are proved to be effective. For Non-
Explicit sense classification, our CNN model also
works well on the test sets. Compared to the per-
formance of discourse parsing sense classification
components (with error propagation), the subtask
results are higher. The reasons include: i) Con-
nective detection serves as the first component of
the pipeline and plays an important role, because
it has a major influence on Explicit sense classi-
fication which relies heavily on discourse connec-
tives. ii) Arguments extraction also have important
effects on the classifications for both Explicit and
Non-Explicit relations.

7 Conclusions

This paper describes our discourse parsing sys-
tem for the CoNLL 2016 shared Task and reports
our results on test data and blind test data. De-
spite of the errors propagation in the beginning
of discourse parsing pipeline, we still obtain im-
provements against baseline, and perform well on
the supplementary tasks. Especially, the CNN
model for Non-Explicit sense classification gives
competitive performances. Actually, Non-Explicit
sense classification performance can be further-
more improved in the future.
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