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Abstract

In this paper, we propose a method which
uses semi-supervised convolutional neu-
ral networks (CNNs) to select in-domain
training data for statistical machine trans-
lation. This approach is particularly effec-
tive when only tiny amounts of in-domain
data are available. The in-domain data
and randomly sampled general-domain
data are used to train a data selection
model with semi-supervised CNN, then
this model computes domain relevance
scores for all the sentences in the general-
domain data set. The sentence pairs with
top scores are selected to train the sys-
tem. We carry out experiments on 4 lan-
guage directions with three test domains.
Compared with strong baseline systems
trained with large amount of data, this
method can improve the performance up
to 3.1 BLEU. Its performances are signifi-
cant better than three state-of-the-art lan-
guage model based data selection meth-
ods. We also show that the in-domain data
used to train the selection model could be
as few as 100 sentences, which makes fine-
grained topic-dependent translation adap-
tation possible.

1 Introduction

Statistical machine translation (SMT) systems are
trained on bilingual parallel and monolingual data.
The training corpora typically come from different
sources, and vary across topics, genres, dialects,
authors’ written styles, etc., which are usually re-
ferred as “general domain” training data. Here
the word “domain” is often used to indicate some
combination of all above and other possible hid-
den factors (Chen et al., 2013). At run time, the

content to be translated may come from a different
domain. Due to the mismatch in “domains”, it is
possible to achieve better performance by adapting
the SMT system to the test domain (in-domain).

However, manually creating training data to
match the test domain is not a preferred solu-
tion, because 1) sometimes the test domain is
not known when training the model, and it could
change from sentence to sentence; 2) even if the
test domain is pre-determined, the resources re-
quired and slow turnaround in data collection pro-
cess will still delay the system development pro-
cess.

Therefore, training data selection is widely used
for domain adaptation in statistical machine trans-
lation (Zhao et al., 2004; Lü et al., 2007; Ya-
suda et al., 2008; Moore and Lewis, 2010; Ax-
elrod et al., 2011; Duh et al., 2013; Axelrod et
al., 2015). Data selection techniques select mono-
lingual or bilingual data that are similar to the in-
domain seed data based on some criteria, which
are incorporated into the training data. The most
successful data selection approaches (Moore and
Lewis, 2010; Axelrod et al., 2011) train n-gram
language models on in-domain text to select sim-
ilar sentences from the large general-domain cor-
pora according to the cross entropy. Furthermore,
(Duh et al., 2013) obtained some gains by extend-
ing these approaches from n-gram models to re-
current neural network language models (Mikolov
et al., 2010). To train the in-domain language
model, a reasonable size in-domain data set, which
typically includes several thousands of sentences,
is required. In (Axelrod et al., 2011; Duh et al.,
2013), the sizes of the in-domain data sets are 30K
and over 100K sentences respectively.

However, we do not always have access to
large or even medium amounts of in-domain data.
With the growth of social media, new domains
have emerged which need machine translation but
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which have very limited in-domain data, maybe
just a few hundred sentence pairs. What’s more,
if one wishes to build a large scale topic-specific
MT system with hundreds of topics, it is pro-
hibitively expensive to collect tens of thousands of
in-domain sentences for each topic.

In this paper, we try to address this challenge,
i.e., domain adaptation with very limited amounts
of in-domain data. Inspired by the success of con-
volutional neural networks applied to image and
text classification (Krizhevsky et al., 2012; Kim,
2014; Johnson and Zhang, 2015a; Johnson and
Zhang, 2015b), we propose to use CNN to clas-
sify training sentence pairs as in-domain or out-
of-domain sentences. To overcome the problem
of limited in-domain data, we propose to augment
the original model with semi-supervised convolu-
tional neural networks for domain classification.

Convolutional neural networks (LeCun and
Bengio, 1998) are feed-forward neural networks
that exploit the internal structure of data through
convolution layers; each computation unit pro-
cesses a small region of the input data. CNN
has been very successful on image classification.
When applying it to text input, the convolution
layers process small regions of a document, i.e.,
a sequence of sentences or words. CNN has
been gaining attention, and is now used in many
text classification tasks (Kalchbrenner et al., 2014;
Zeng et al., 2014; Johnson and Zhang, 2015b; Yin
and Schütze, 2015; Wang et al., 2015).

In many of these studies, the first layer of the
network converts words to word embeddings us-
ing table lookup. The word embeddings are ei-
ther trained as part of CNN training, or pre-trained
(thus fixed during model training time) on an ad-
ditional unlabled corpus. The later is termed
semi-supervised CNN. Given tiny amounts of in-
domain data, the information learned in these pre-
trained word embeddings is very helpful.

We use a small amount of in-domain data, such
as the development set, as the positive sample and
randomly select the same number of sentences
from the general-domain training data as the neg-
ative sample to form the training sample for train-
ing the CNN classification model. This is a typ-
ical supervised learning setting. To compensate
the limit of in-domain data size, we use word2vec
(Mikolov et al., 2013) to learn the word embed-
ding from a large amount of general-domain data.
Together with the labeled data, these word embed-

dings are fed to the convolution layer as additional
input to train the final classification model. This is
a semi-supervised framework. The learned mod-
els are then used to classify each sentence in the
general-domain training data based on their do-
main relevance score. The top N sentence pairs
are selected to train the SMT system. We carry
out experiments on 4 different language directions
with 9-15M sentence pairs in each direction. The
test domains include short message (sms), tweets,
and Facebook posts. The experimental results
show that our method is able to select a small
amount of training data that is used to create a sys-
tem which outperforms baseline systems trained
with all the general-domain data. For example,
we obtain over 3.1 BLEU improvement on the
Chinese-to-English sms task with around 3% of
the whole training data. Experiments also show
that we can reduce the size of the in-domain sam-
ple to around 100 sentences and still obtain a 2.1
BLEU improvement.

2 Related Work

2.1 SMT adaptation techniques

Domain adaptation to SMT systems has recently
received considerable attention. Based on the
availability of in-domain bilingual or monolingual
training data, there are several adaptation scenar-
ios. Different domain adaptation techniques, in-
cluding self-training, data selection, data weight-
ing, etc., have been developed for different scenar-
ios.

Self-training (Ueffing and Ney, 2007; Schwenk,
2008; Bertoldi and Federico, 2009) uses general-
domain bilingual parallel data and in-domain
monolingual data. An MT system is first trained
on bilingual general-domain data, then it is used to
translate in-domain monolingual data. The result-
ing target sentences or bilingual sentence pairs are
then used as additional training data for language
model or translation model training.

Some early data selection approaches (Zhao et
al., 2004; Lü et al., 2007; Moore and Lewis, 2010)
use in-domain monolingual data to select mono-
lingual or bilingual data that are similar to the
in-domain data according to some criterion. The
state-of-the-art data selection approaches (Axel-
rod et al., 2011; Duh et al., 2013; Axelrod et al.,
2015) search for bilingual parallel sentences using
the difference in language model perplexity be-
tween two language models trained on in-domain
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and out-domain data, respectively.
Data weighting approaches weight each data

item according to its relevance to the in-domain
data. Mixture model adaptation (Foster and Kuhn,
2007; Foster et al., 2010; Sennrich, 2012; Foster
et al., 2013) assumes that the general-domain data
can be clustered to several sub-corpora, with some
parts that are not too far from test domain. It com-
bines sub-models trained on different sub-corpus
data sets linearly or log-linearly with different
weights. Vector space model adaptation (Chen et
al., 2013) has the same assumption, and it weights
each phrase pair based on vector space model
(VSM). (Chen et al., 2014) improved the VSM
adaptation by extending it to distributed VSM and
grouped VSM. Instance weighting adopts a rich
set of features to compute weights for each in-
stance in the training data; it can be applied to sen-
tence pairs (Matsoukas et al., 2009) or phrase pairs
(Foster et al., 2010).

If in-domain comparable data are available,
(Daume III and Jagarlamudi, 2011; Irvine et al.,
2013) propose mining translations from the com-
parable data to translate out-of-vocabulary (OOV)
words and capture new senses for the new test do-
mains. (Dou and Knight, 2012; Zhang and Zong,
2013) learn bilingual lexical or phrase tables from
in-domain monolingual data with a decipherment
method, then incorporate them into the SMT sys-
tem.

All the above approaches assume that either
there is an in-domain (mono-lingual, parallel, or
comparable) data set with a reasonable size avail-
able, or that some sub-corpora are closer to the test
domain than others. There is no previous work
considering the scenario where only a tiny amount
of in-domain data is available: this is the scenario
we address in this paper.

2.2 CNNs for text classification

In a text classification task, key phrases (or n-
grams) can help in determining the class of the
text, regardless of their locations in the text. For
example, the word “desktop” in a sentence may
indicate this sentence has computers as its topic;
the phrase “not satisfactory” may indicate that the
sentiment of the entire sentence is negative. This
kind of strong local information about the class of
a text can appear in different regions in the input.
Convolutional neural networks are useful for text
classification because convolutional and pooling

layers allow the model to find such local indica-
tors, wherever they are in the text.

Recently, CNNs have shown promising results
on many text classification tasks, such as senti-
ment analysis (Kalchbrenner et al., 2014; Kim,
2014), topic and sentiment classification (Johnson
and Zhang, 2015a; Johnson and Zhang, 2015b),
paraphrase identification (Yin and Schütze, 2015),
entity relation type classification (Zeng et al.,
2014; dos Santos et al., 2015), short-text classi-
fication (Wang et al., 2015), event extraction and
detection (Chen et al., 2015; Nguyen and Grish-
man, 2015), question understanding and answer-
ing (Dong et al., 2015), and box-office prediction
based on reviews (Bitvai and Cohn, 2015).

Within the CNN architecture, people also use
word embeddings for text classification. (Kalch-
brenner et al., 2014) proposes a CNN frame-
work with multiple convolution layers, with la-
tent, dense and low-dimensional word embed-
dings as inputs. (Kim, 2014) defines a one-layer
CNN architecture with comparable performance
to (Kalchbrenner et al., 2014). The word em-
beddings input to the CNN can be pre-trained,
and treated as fixed input, or tuned for a specific
task. (Johnson and Zhang, 2015b) extends their
“one-hot” CNN in (Johnson and Zhang, 2015a)
to take region embeddings trained on unlabeled
data as CNN input. CNNs that input word em-
beddings trained on unlabeled data are considered
to be semi-supervised CNNs.

3 Semi-supervised CNN

A CNN is a feed-forward network consisting of
convolutional and pooling layers. Each neuron in
the convolutional layer of a CNN processes a seg-
ment of input signals, which could be a region in
an image or a window of words in a sentence. The
convolution layer consists of a set of kernels that
compute the dot product between different seg-
ments of the input. The kernel associated with the
l-th segment of the input x computes:

σ(W · wl(x) + b), (1)

where wl(x) ∈ Rq is the input window vector that
represents the l-th segment of data. Weight matrix
W ∈ Rm×q and bias vector b ∈ Rm are shared by
all the kernels in the same layer, and are learned
during the training process.

Because the convolution kernel allows interac-
tion between different parts of the input, it reduces
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the requirement to select features by hand. Im-
portant features in a sentence are automatically se-
lected with pooling, which is a form of non-linear
down-sampling. It takes the maximum or the av-
erage value observed in each of the d dimension
vectors over different windows. As a result, infor-
mation from multiple d dimension vectors is kept
in a single d dimensional vector. At training time,
both the weight vectors and the bias vectors are
learned with stochastic gradient ascent.

3.1 One-hot CNN

When applying CNN to NLP tasks, the first layer
of the network takes word embeddings as in-
put. Word embeddings can be pre-trained using
tools such as word2vec (Mikolov et al., 2013) or
GloV e (Pennington et al., 2014), in which case
a table lookup is enough. Alternatively, these
vectors can be learned from scratch as a step in
the network training process. When there are
enough in-domain data, training in-domain word
embeddings is meaningful. However, when the
in-domain data are limited, the word embeddings
learned from these data are unreliable. In this
case, the input sentence x can be represented
with one-hot vectors where each vector’s length
is the vocabulary size, value 1 at index i indi-
cates word i appears in the sentence, and 0 indi-
cates its absence. A CNN with one-hot vector in-
put is called “one-hot CNN” (Johnson and Zhang,
2015a). wl(x) can be either a concatenation of
one-hot vectors, in which the order of concatena-
tion is the same as the word order in the sentence,
or it can be a bag-of-word/n-gram vector. The
bag-of-word (BOW) representation loses word or-
der information but is more robust to data sparsity.
In (Johnson and Zhang, 2015a), a CNN whose in-
put being BOW representation is called bow-CNN
while input with concatenation of vectors is called
seq-CNN. The window size and stride (distance
between the window centers) are meta-parameters.
σ in Equation 1 is a component-wise non-linear
function such as ReLU. Thus, each kernel gener-
ates an m-dimensional vector where m is the num-
ber of weight vectors or neurons. These vectors
from all the windows of each sentence are aggre-
gated by the pooling layer, by either component-
wise maximum (max pooling) or average (average
pooling), then used by the top layer as features for
classification.

3.2 Semi-supervised CNN
Although the size of the in-domain data is nor-
mally small, the unlabeled data from general do-
mains are much larger and easier to obtain. To
exploit large amounts of unlabeled data, we adopt
a semi-supervised learning framework similar to
(Johnson and Zhang, 2015b). It first learns word
embedding from unlabeled data, then generates
the text segment embedding based on these unsu-
pervised word embeddings. Both the one-hot vec-
tors from the labeled data and the segment embed-
dings from unlabeled data are combined to train
the CNN classifier.

The word embeddings map each word to a real-
valued, dense vector (Bengio et al., 2003). Word
embeddings are often learned with an unsuper-
vised learning paradigm: each dimension of the
continuous word embeddings aims at capturing a
latent feature, reflecting certain syntactic and se-
mantic meanings of the word. A widely used
approach for generating useful word embeddings
was proposed in (Mikolov et al., 2013). This
method learns the word embeddings such that the
likelihood of generating a word based on its con-
texts (or generating the context of a given word,
aka “skip-gram” model) is maximized. It speeds
up the training with the hierarchical softmax strat-
egy and a simplified learning objective, which
scales very well to very large training corpora.
We adopt the skip-gram model, which intuitively
learns a classifier that predicts words conditioned
on the central word’s vector representation. An
advantage of such distributed representations is
that words that have similar contexts, and there-
fore similar syntactic and semantic properties, will
tend to be near one another in the low-dimensional
vector space.

Given the word embeddings trained from unla-
beled data, a sentence is represented as a sequence
of d-dimensional vectors, which is the input to a
convolution network that generates feature vec-
tors for each text segment. The segment vectors
and one-hot vectors are fed into another convolu-
tion layer, which outputs the classification labels.
The second network is trained with the labeled in-
domain/out-domain data. Therefore, Equation 1 is
replaced with:

σ(W · wl(x) + V · ul(x) + b), (2)

where wl(x) is the one-hot vector obtained from
segment l in a sentence, and ul(x) is the embed-
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ding learned from the unlabeled data (general do-
main training data), applied to the same segment.
We train this model with the labeled data. We up-
date the weights W, V, bias b, and the top-layer
parameters so that the loss function is minimized
on the labeled training data.

4 Adaptation based on data selection

We use the in-domain data from the translation
task as positive samples, and randomly select the
same number of sentences from the general do-
main data as negative samples. We train the CNN
model on the positive and negative samples with
the one-hot CNN or semi-supervised CNN de-
scribed previously. The trained CNN model is
then used to classify the sentence pairs in the gen-
eral domain data. The sentence pairs with high
in-domain scores are selected to train the machine
translation system.

We classify the source sentence and target sen-
tences separately. The CNN model computes
two scores for each sentence pair. The sentence
pairs are selected based on the source scores, tar-
get scores or the sum of source and target scores
(Moore and Lewis, 2010). Experiments show that
selection based on the sum of the source and target
scores achieves the best performance. We empiri-
cally determine the number of selected in-domain
sentences for each MT system based on experi-
mental results on a separate validation set.

When selecting the negative samples, we either
randomly sample from the whole data pool, or se-
lect from the sentences which have been labeled
as negative in the first round classification. Addi-
tional experiments show that the results from these
two methods are very similar, so we sample the
negative samples from the whole general domain
for simplicity.

5 Experiments

Our goal is to adapt the MT system when only a
tiny amount of in-domain data is available. So in
our experiments, we did not consider any domain
information about the training data, such as the
source of each corpus. What we have is a small
development set (dev) and one or more test sets
(test) which are in the same domain.

5.1 Data setting

We carried out experiments in four different data
settings. All four have large amounts of bilin-

gual training data: 9-15M sentences. The first
two involve translation into English (en) from Chi-
nese (zh) and Arabic (ar), while the last two in-
volve translation from English to Spanish (es) and
Chinese. The training data are all publicly avail-
able, either from LDC,1 and transcriptions of TED
talks2 where the data are the mixture of newswire,
web crawl, UN proceedings and TED talks, etc.,
or from WMT,3 where the data are the mixture of
Europarl, web crawl, news-commentary, UN pro-
ceedings, etc. The dev and test sets are “short mes-
sages (sms)” for the first task, which are also avail-
able from LDC; “tweets” for the second task; pub-
licly available “Facebook post” for the remaining
two tasks. The last three tasks are from social me-
dia - an intriguing new area of application for MT -
where in-domain parallel training data are seldom
publicly available. Table 1 summarizes the statis-
tics of the training, dev, and test data for all the test
sets.

5.2 Experiment setup
We experiment with two CNN-based data selec-
tion strategies:

1. ohcnn: Data selection by supervised one-hot
CNN (Section 3.1)

2. sscnn: Data selection by semi-supervised
CNN (Section 3.2)

We employ the dev set as in-domain data.
All the supervised CNN models are trained with
the in-domain dev data as positive examples and
an equal number of randomly selected general-
domain sentences as negative examples. All the
meta-parameters of the CNN are tuned on held-
out data; we generate both bow-regions and seq-
regions and input them to the CNN. We set the
region size to 5 and stride size to 1. The non-
linear function we chose is “ReLU”, the number
of weight vectors or neurons is 500. The pooling
method is component-wise maximum (max pool-
ing). We use the online available CNN toolkit
conText.4 To train the general domain word em-
bedding, we used word2vec.5 The size of the
vector was set to 300. We also generate word-
embedding-based bow-regions and seq-regions as
additional input to the CNN.

1https://catalog.ldc.upenn.edu/
2https://wit3.fbk.eu/
3http://statmt.org/wmt15/
4http://riejohnson.com/cnn download.html
5https://code.google.com/archive/p/word2vec/
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language zh2en ar2en en2es en2zh
test domain sms tweets facebook facebook
train origin LDC&TED LDC&TED WMT LDC&TED

train size 12.20M 8.97M 15.23M 12.20M
dev size 6,016 1,000 800 650
test size 3,282 1,500 3,378 3,343

Table 1: Summary of the data. “sms” means “short message”. “facebook” means “Facebook post”. Data
is given as the number of sentence pairs, “M” represents “million”. The tasks “zh2en” and “en2zh” use
the same training data.

We compared with four baselines for each task.
The first baseline SMT system is trained using all
general-domain data. The other three systems are
trained with data selected with different LM-based
data selection methods as same as in (Duh et al.,
2013).6 The four baselines are:

1. alldata: All general-domain data.

2. ngram: Data selection by 3-gram LMs with
Witten-Bell 7 smoothing (Axelrod et al.,
2011)

3. rnnlm: Data selection by recurrent neural net-
work LM, with the RNNLM Toolkit (Duh et
al., 2013)

4. comblm: Data selection by the combined LM
using ngram & rnnlm (equal weight) (Duh et
al., 2013).

All systems are trained with a standard phrase-
based SMT system with standard settings, i.e.,
GIZA++ alignment, phrase table Kneser-Ney
smoothing, hierarchical reordering models, target
side 4-gram language model, “gigaword” 5-gram
language model for systems with English as the
target language, etc.

5.3 Experimental results
We evaluated the system using BLEU (Papineni
et al., 2002) score on the test set. Following
(Koehn, 2004), we use the bootstrap resampling
test to do significance testing. Table 2 summa-
rizes the results and numbers of the selected sen-
tences for each task. First, we can see that all
the data selection methods improved the perfor-
mance over the baseline “alldata” with much less

6The code and scripts for the three baselines are available
at http://cl.naist.jp/ kevinduh/a/acl2013/.

7For small amounts of data, Witten-Bell smoothing had
performed better than Kneser-Ney smoothing in our experi-
ments.

training data (only around 2.5% to 10% of the
whole training data). Consistent with (Duh et
al., 2013), the three LM based data selection all
got improvements, where “rnnlm” obtained better
performance than the “ngram” on average. It is
not clear that combining the two language model
methods (“comblm”) yields further improvement.
While the one-hot CNN method “ohcnn” obtained
similar improvement as the three LM-based meth-
ods on average. The semi-supervised CNN (sscnn)
achieved the best performance for all the tasks: its
improvements over the “alldata” baseline are 3.1,
1.4, 0.7 and 1.4 BLEU score respectively. It beats
“ohcnn” by about 0.5 BLEU point on average.

There are two results worth noticing. First,
task 1 (zh2en sms task) obtained very high BLEU
improvement through data selection. This is be-
cause in this task, there is a 120K in-domain sub-
set within the general-domain data. If we train
a system on this in-domain data set, we get 25.7
BLEU on the test set. The LM-based methods
did not beat this “in-domain data only (indata)”
baseline, while the semi-supervised CNN method
performed significantly better than this baseline at
p < 0.05 level. In the top 300K selected sentence
pairs, LM-based methods can select around 90K
out of 120K in-domain sentence pairs, while both
“ohcnn” and “sscnn” can select around 105K in-
domain sentence pairs. This demonstrates the ef-
fectiveness of the proposed approach. Second, for
the other three tasks, there is no in-domain data
component in the general-domain data (that we
know of). Even in this case, we achieved up to 1.4
BLEU improvement, which also demonstrates the
effectiveness of our method: it can select highly
suitable in-domain sentences, even when the in-
domain data is very limited.

In our second experiment, we examine how
many labeled samples are needed to train a strong
CNN classifier to select the MT training in-domain
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zh2en ar2en en2es en2zh
#sent BLEU #sent BLEU #sent BLEU #sent BLEU

alldata 12.2M 22.9 8.9M 17.6 15.2M 26.8 12.2M 10.0
ngram 300K 25.3** 800K 18.2** 1600K 26.9 400K 10.5*
rnnlm 300K 25.6** 800K 18.4** 1600K 27.0 400K 10.5*

comblm 400K 25.7** 800K 18.4** 1400K 27.0 500K 10.4*
ohcnn 300K 25.3** 700K 18.2* 1200K 27.1* 400K 11.0**+
sscnn 300K 26.0**+ 700K 19.0**++ 1300K 27.5**++ 300K 11.4**++

Table 2: Summary of the results. Data size is given as number of sentence pairs. The number of selected
in-domain sentences is determined by the performance on held-out data. “M” represents million, “K”
represents thousand. */** means result is significantly better than the “alldata” baseline at p < 0.05 or
p < 0.01 level, respectively. +/++ means result is significantly better than the best LM-based method at
p < 0.05 or p < 0.01 level, respectively.

Figure 1: The performance on zh2en sms task with different numbers of in-domain sentences to train
LM-based vs. CNN-based classifiers, which are then used to select 300K sentence pairs for MT system
training. X-axis is the number of in-domain sentences, Y-axis is BLEU score.
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data. Fixing the number of MT training sentence
pairs to 300K that will be selected by the CNN, we
reduce the CNN training data from 6,000 down to
100 sentence pairs in steps. The performance of
the resulting MT systems for all five data selection
methods is shown in Figure 1.

From Figure 1, we can see that all the data selec-
tion methods obtained improvement compared to
the “alldata” baseline. When the in-domain train-
ing sample is more than 1600 sentence pairs, all
the data selection methods obtain reasonable and
comparable improvement, while “sscnn” is better
than the best LM-based method by 0.3-0.5 BLEU.
However, when the in-domain training sample is
less than 800 sentence pairs, the difference be-
tween the “sscnn” and other methods gets bigger,
and CNN-based methods get more stable results
than the LM-based methods get. For instance,
when the in-domain set increases from 400 to 800,
the LM-based methods did not get an improve-
ment; “ngram” and “comblm” even got a small
loss on BLEU score. When the in-domain sam-
ple is reduced to 100 sentence pairs, the LM-based
methods only get a small improvement over the
baseline, while the “ohcnn” got a 1.2 BLEU score
improvement over the baseline and “sscnn” got a
2.1 BLEU improvement over the baseline. Thus,
even if we have no domain knowledge about the
training data, when we have only 100 sentences in
the test domain, the semi-supervised CNN classi-
fier can still select a good in-domain subset and
achieve good performance.

We obtained 2.1 BLEU improvement even
when we randomly select only 100 in-domain sen-
tence pairs to train the classification model. Is
this just because we luckily sampled a good part
of the in-domain data? We repeated the “100
in-domain sentence pairs experiment” three times
for our most effective method - “sscnn” - by
sampling three different in-domain sets from the
whole 6,016-sentence dev set. The average BLEU
score we got is 25.03, and the standard deviation is
0.12. This means that our algorithm is quite stable
even when the in-domain set is very small.

5.4 Discussion

Why do semi-supervised convolutional neural net-
works perform so well for data selection? We
think there are two main reasons. The first one
is that convolution captures the important domain
information of the words in the window, and

the max-pooling operation combines the vectors
which, as a result, focuses on the most important
“features” in the sentence. Even a highly domain-
specific sentence normally contains both domain-
specific words and general-domain words. For
example, in “I have a Dell desktop and a Mac-
book laptop”, the words “Dell, laptop, Macbook,
laptop” are from the computer domain, while the
words “I, have, a, and” are general. However, the
topic of this sentence is decided by the domain
specific words, not the general-domain words. If
the properties of the words “Dell, laptop, Mac-
book, laptop” are kept and highlighted, classifi-
cation will be more accurate for this sentence.
The second reason is the use of word embedding
learned from the whole general-domain data. A
very important advantage of word embedding is
that words that have similar meaning will tend to
be grouped together in the vector space. If the
word “Lenovo” in the test sentence is not seen
in the labeled data, it would be difficult for LM-
based models to classify sentences like “I prefer
choosing a Lenovo machine” as computer-domain
sentence. However, the word embeddings learned
from much larger unlabeled data ensure that the
word embedding of “Lenovo” is close to that of
“Dell”. According to the domain of its neighbor
words, the CNN model can still label this sentence
as belonging to the computer domain. This prop-
erty is particularly useful for fast or fine grained
adaptation, where obtaining large amount of in-
domain samples may be slow or too expensive.

6 Conclusions and future work

Domain adaptation with only a tiny amount of in-
domain data is a hard problem. In this paper, we
proposed to use a semi-supervised CNN to train
the domain classification model, then use the CNN
to select the data which is most similar to the
test domain. Experiments on large data condition
SMT tasks showed that this outperforms state-of-
the-art language-model-based data selection meth-
ods significantly. Particularly when the size of
the in-domain data is small, semi-supervised CNN
classifier can still select in-domain bilingual sen-
tences to train an adapted SMT system. In future
work, we plan to 1) apply this approach to select
the data from large size target language corpus for
language model training; 2) use the source sen-
tences of the test set to select the data for online
dynamic adaptation.
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