
Proceedings of the 19th Conference on Computational Language Learning, pages 305–309,
Beijing, China, July 30-31, 2015. c©2015 Association for Computational Linguistics

Deep Neural Language Models for Machine Translation

Minh-Thang Luong Michael Kayser Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA, 94305

{lmthang, mkayser, manning}@stanford.edu

Abstract

Neural language models (NLMs) have
been able to improve machine translation
(MT) thanks to their ability to generalize
well to long contexts. Despite recent suc-
cesses of deep neural networks in speech
and vision, the general practice in MT
is to incorporate NLMs with only one or
two hidden layers and there have not been
clear results on whether having more lay-
ers helps. In this paper, we demonstrate
that deep NLMs with three or four lay-
ers outperform those with fewer layers in
terms of both the perplexity and the trans-
lation quality. We combine various tech-
niques to successfully train deep NLMs
that jointly condition on both the source
and target contexts. When reranking n-
best lists of a strong web-forum baseline,
our deep models yield an average boost
of 0.5 TER / 0.5 BLEU points compared
to using a shallow NLM. Additionally, we
adapt our models to a new sms-chat do-
main and obtain a similar gain of 1.0 TER

/ 0.5 BLEU points.1

1 Introduction

Deep neural networks (DNNs) have been success-
ful in learning more complex functions than shal-
low ones (Bengio, 2009) and exceled in many
challenging tasks such as in speech (Hinton et al.,
2012) and vision (Krizhevsky et al., 2012). These
results have sparked interest in applying DNNs
to natural language processing problems as well.
Specifically, in machine translation (MT), there

1Our code and related materials are publicly available at
http://stanford.edu/˜lmthang/nlm.

has been an active body of work recently in uti-
lizing neural language models (NLMs) to improve
translation quality. However, to the best of our
knowledge, work in this direction only makes use
of NLMs with either one or two hidden layers. For
example, Schwenk (2010, 2012) and Son et al.
(2012) used shallow NLMs with a single hidden
layer for reranking. Vaswani et al. (2013) consid-
ered two-layer NLMs for decoding but provided
no comparison among models of various depths.
Devlin et al. (2014) reported only a small gain
when decoding with a two-layer NLM over a sin-
gle layer one. There have not been clear results on
whether adding more layers to NLMs helps.

In this paper, we demonstrate that deep NLMs
with three or four layers are better than those
with fewer layers in terms of the perplexity and
the translation quality. We detail how we com-
bine various techniques from past work to suc-
cessfully train deep NLMs that condition on both
the source and target contexts. When reranking n-
best lists of a strong web-forum MT baseline, our
deep models achieve an additional improvement
of 0.5 TER / 0.5 BLEU compared to using a shal-
low NLM. Furthermore, by fine-tuning general in-
domain NLMs with out-of-domain data, we obtain
a similar boost of 1.0 TER / 0.5 BLEU points over
a strong domain-adapted sms-chat baseline com-
pared to utilizing a shallow NLM.

2 Neural Language Models

We briefly describe the NLM architecture and
training objective used in this work as well as com-
pare our approach to other related work.
Architecture. Neural language models are fun-
damentally feed-forward networks as described in
(Bengio et al., 2003), but not necessarily lim-
ited to only a single hidden layer. Like any
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other language model, NLMs specify a distribu-
tion, p(w|c), to predict the next word w given a
context c. The first step is to lookup embeddings
for words in the context and concatenate them to
form an input, h(0), to the first hidden layer. We
then repeatedly build up hidden representations as
follows, for l = 1, . . . , n:

h(l) = f
(
W (l)h(l−1) + b(l)

)
(1)

where f is a non-linear fuction such as tanh. The
predictive distribution, p(w|c), is then derived us-
ing the standard softmax:

s = W (sm)h(n) + b(sm)

p(w|c) =
exp(sw)∑

w∈V exp(sw)
(2)

Objective. The typical way of training NLMs is
to maximize the training data likelihood, or equiv-
alently, to minimize the cross-entropy objective of
the following form:

∑
(c,w)∈T − log p(w|c).

Training NLMs can be prohibitively slow due
to the computationally expensive softmax layer.
As a result, past works have tried to use a more
efficient version of the softmax such as the hi-
erarchical softmax (Morin, 2005; Mnih and Hin-
ton, 2007; Mnih and Hinton, 2009) or the class-
based one (Mikolov et al., 2010; Mikolov et al.,
2011). Recently, the noise-contrastive estimation
(NCE) technique (Gutmann and Hyvärinen, 2012)
has been applied to train NLMs in (Mnih and Teh,
2012; Vaswani et al., 2013) to avoid explicitly
computing the normalization factors.

Devlin et al. (2014) used a modified version
of the cross-entropy objective, the self-normalized
one. The idea is to not only improve the predic-
tion, p(w|c), but also to push the normalization
factor per context, Zc, close to 1:

J =
∑

(c,w)∈T

− log p(w|c) + α log2(Zc) (3)

While self-normalization does not lead to speed up
in training, it allows trained models to be applied
efficiently at test time without computing the nor-
malization factors. This is similar in flavor to NCE
but allows for flexibility (through α) in how hard
we want to “squeeze” the normalization factors.
Training deep NLMs. We follow (Devlin et al.,
2014) to train self-normalized NLMs, condition-
ing on both the source and target contexts. Unlike

(Devlin et al., 2014), we found that using the recti-
fied linear function, max{0, x}, proposed in (Nair
and Hinton, 2010), works better than tanh. The
rectified linear function was used in (Vaswani et
al., 2013) as well. Furthermore, while these works
use a fixed learning rate throughout, we found that
having a simple learning rate schedule is useful
in training well-performing deep NLMs. This has
also been demonstrated in (Sutskever et al., 2014;
Luong et al., 2015) and is detailed in Section 3.
We do not perform any gradient clipping and no-
tice that learning is more stable when short sen-
tences of length less than or equal to 2 are re-
moved. Bias terms are used for all hidden layers
as well as the softmax layer as described earlier,
which is slightly different from other work such as
(Vaswani et al., 2013). All these details contribute
to our success in training deep NLMs.

For simplicity, the same vocabulary is used for
both the embedding and the softmax matrices.2 In
addition, we adopt the standard softmax to take ad-
vantage of GPUs in performing large matrix mul-
tiplications. All hyperparameters are given later.

3 Experiments

3.1 Data

We use the Chinese-English bitext in the DARPA
BOLT (Broad Operational Language Translation)
program, with 11.1M parallel sentences (281M
Chinese words and 307M English words). We re-
serve 585 sentences for validation, i.e., choosing
hyperparameters, and 1124 sentences for testing.3

3.2 NLM Training

We train our NLMs described in Section 2 with
SGD, using: (a) a source window of size 5, i.e.,
11-gram source context4, (b) a 4-word target his-
tory, i.e., 5-gram target LM, (c) a self-normalized
weight α = 0.1, (d) a mini-batch of size 128, and
(e) a learning rate of 0.1 (training costs are nor-
malized by the mini-batch size). All weights are
uniformly initialized in [−0.01, 0.01]. We train
our models for 4 epochs (after 2 epochs, the learn-
ing rate is halved every 0.5 epoch). The vocab-
ularies are limited to the top 40K frequent words
for both Chinese and English. All words not in

2Some work (Schwenk, 2010; Schwenk et al., 2012) uti-
lize a smaller softmax vocabulary, called short-list.

3The test set is from BOLT and labeled as p1r6 dev.
4We used an alignment heuristic similar to Devlin et al.

(2014) but applicable to our phrase-based MT system.
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Models Valid Test | log Z|
1 layer 9.39 8.99 0.51
2 layers 9.20 8.96 0.50
3 layers 8.64 8.13 0.43
4 layers 8.10 7.71 0.35

Table 1: Training NLMs – validation and test
perplexities achieved by self-normalized NLMs of
various depths. We report the | log Z| value (base
e), similar to Devlin et al. (2014), to indicate how
good each model is in pushing the log normaliza-
tion factors towards 0. All perplexities are derived
by explicitly computing the normalization factors.

these vocabularies are replaced by a universal un-
known symbol. Embeddings are of size 256 and
all hidden layers have 512 units each. Our train-
ing speed on a single Tesla K40 GPU device is
about 1000 target words per second and it gener-
ally takes about 10-14 days to fully train a model.

We present the NLM training results in Table 1.
With more layers, the model succeeds in learning
more complex functions; the prediction, hence,
becomes more accurate as evidenced by smaller
perplexities for both the validation and test sets.
Interestingly, we observe that deeper nets can learn
self-normalized NLMs better: the mean log nor-
malization factor, | log Z| in Eq. (3), is driven to-
wards 0 as the depth increases.5

3.3 MT Reranking with NLMs

Our MT models are built using the Phrasal MT
toolkit (Cer et al., 2010). In addition to the stan-
dard dense feature set6, we include a variety of
sparse features for rules, word pairs, and word
classes, as described in (Green et al., 2014). Our
decoder uses three language models.7 We use a
tuning set of 396K words in the newswire and web
domains and tune our systems using online ex-
pected error rate training as in (Green et al., 2014).
Our tuning metric is (BLEU-TER)/2.

We run a discriminative reranker on the 1000-
best output of a decoder with MERT. The features
used in reranking include all the dense features,

5As a reference point, though not directly comparable,
Devlin et al. (2014) achieved 0.68 for | log Z| on a different
test set with the same self-normalized constant α=0.1.

6Consisting of forward and backward translation mod-
els, lexical weighting, linear distortion, word penalty, phrase
penalty and language model.

7One is trained on the English side of the bitext, one
is trained on a 16.3-billion-word monolingual corpus taken
from various domains, and one is a class-based language
model trained on the same large monolingual corpus.

System dev test1 test2
T↓ B↑ T↓ B↑ T↓ B↑

baseline 53.7 33.1 55.1 31.3 63.5 16.5
Reranking

1 layer 52.9 34.3 54.5 32.0 63.1 16.7
2 layers 52.7 34.1 54.3 31.9 63.0 16.8
3 layers 52.5 34.5 54.3 32.3 62.5 17.3
4 layers 52.6 34.7 54.1 32.4 62.7 17.2
vs. baseline +1.2† +1.6† +1.0† +1.1† +1.0† +0.8†

vs. 1 layer +0.4† +0.4† +0.4† +0.4† +0.6† +0.6†

Table 2: Web-forum Results – TER (T)
and BLEU (B) scores on both the dev set
(dev10wb dev), used to tune reranking weights,
and the test sets (dev10wb syscomtune and
p1r6 dev accordingly). Relative improvements
between the best system and the baseline as well
as the 1-layer model are bolded. † marks improve-
ments that are statistically significant (p<0.05).

an aggregate decoder score, and an NLM score.
We learn the reranker weights on a second tuning
set, different from the decoder tuning set, to make
the reranker less biased towards the dense features.
This second tuning set consists of 33K words of
web-forum text and is important to obtain good
improvements with reranking.

3.4 Results

As shown in Table 2, it is not obvious if the depth-
2 model is better than the single layer one, both
of which are what past work used. In contrast,
reranking with deep NLMs of three or four lay-
ers are clearly better, yielding average improve-
ments of 1.0 TER / 1.0 BLEU points over the base-
line and 0.5 TER / 0.5 BLEU points over the sys-
tem reranked with the 1-layer model, all of which
are statisfically significant according to the test de-
scribed in (Riezler and Maxwell, 2005).

The fact that the improvements in terms of the
intrinsic metrics listed in Table 1 do translate into
gains in translation quality is interesting. It rein-
forces the trend reported in (Luong et al., 2015)
that better source-conditioned perplexities lead to
better translation scores. This phenomon is a use-
ful result as in the past, many intrinsic metrics,
e.g., alignment error rate, do not necessarily cor-
relate with MT quality metrics.

3.5 Domain Adaptation

For the sms-chat domain, we use a tune set of
260K words in the newswire, web, and sms-chat
domains to tune the decoder weights and a sepa-
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System dev test
T↓ B↑ T↓ B↑

baseline 62.2 18.7 57.3 23.3
Reranking

1 layer (5.42, 0.51) 60.1 22.0 56.2 25.9
2 layers (5.50, 0.51) 60.7 21.5 56.3 26.0
3 layers (5.34 0.43) 59.9 21.4 55.2 26.4
vs. baseline +2.3‡ +3.3‡ +2.1‡ +3.1‡

vs. 1 layer +0.2 -0.6 +1.0‡ +0.5

Table 3: Domain-adaptation Results – transla-
tion scores for the sms-chat domain similar to
Table 2. We use p2r2smscht dev for dev and
p2r2smscht syscomtune for test. The test perplex-
ities and the | log Z| values of our domain-adapted
NLMs are shown in italics. ‡ marks improvements
that are statistically significant (p<0.01).

rate small, 8K words set to tune reranking weights.
To train adapted NLMs, we use models previously
trained on general in-domain data and further fine-
tune with out-domain data for about 4 hours.8

Similar to the web-forum domain, for sms-chat,
Table 3 shows that on the test set, our deep NLM
with three layers yields a significant gain of 2.1
TER / 3.1 BLEU points over the baseline and 1.0
TER / 0.5 BLEU points over the 1-layer reranked
system. It is worth pointing out that for such a
small amount of out-domain training data, depth
becomes less effective as exhibited through the in-
significant BLEU gain in test and a drop in dev
when comparing between the 1- and 3-layer mod-
els. We exclude the 4-layer NLM as it seems to
have overfitted the training data. Nevertheless, we
still achieve decent gains in using NLMs for MT
domain adaptation.

4 Analysis

4.1 NLM Training

We show in Figure 1 the learning curves for vari-
ous NLMs, demonstrating that deep nets are better
than the shallow NLM with a single hidden layer.
Starting from minibatch 20K, the ranking is gen-
erally maintained that deeper NLMs have better
cross-entropies. The gaps become less discernible
from minibatch 30K onwards, but numerically, as
the model becomes deeper, the average gaps, in
perplexities, are consistently 40.1, 1.1, and 2.0.

8Our sms-chat corpus consists of 146K sentences (1.6M
Chinese and 1.9M English words). We randomly select 3000
sentences for validation and 3000 sentences for test. Models
are trained for 8 iterations with the same hyperparameters.
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Figure 1: NLM Learning Curve – test cross-
entropies (loge perplexities) for various NLMs.

4.2 Reranking Settings
In Table 4, we compare reranking using all dense
features (All) to conditions which use only dense
LM features (LM) and optionally, include a word
penalty (WP) feature. All these settings include
an NLM score and an aggregate decoder score. As
shown, it is best to include all dense features at
reranking time.

All LMs + WP LMs
1 layer 11.3 11.3 11.4
2 layers 11.2 11.4 11.5
3 layers 11.0 11.1 11.4
4 layers 10.9 11.2 11.3

Table 4: Reranking Conditions – (TER-BLEU)/2
scores when reranking the web-forum baseline.

5 Related Work

It is worth mentioning another active line of re-
search in building end-to-end neural MT systems
(Kalchbrenner and Blunsom, 2013; Sutskever et
al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Jean et al., 2015). These methods have
not yet demonstrated success on challenging lan-
guage pairs such as English-Chinese. Arsoy et al.
(2012) have preliminarily examined deep NLMs
for speech recognition, however, we believe, this
is the first work that puts deep NLMs into the con-
text of MT.

6 Conclusion

In this paper, we have bridged the gap that past
work did not show, that is, neural language mod-
els with more than two layers can help improve
translation quality. Our results confirm the trend
reported in (Luong et al., 2015) that source-
conditioned perplexity strongly correlates with
MT performance. We have also demonstrated the

308



use of deep NLMs to obtain decent gains in out-
of-domain conditions.
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