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Interactive spoken dialogue provides many new challenges for natural language understanding 
systems. One of the most critical challenges is simply determining the speaker's intended utter- 
ances: both segmenting a speaker's turn into utterances and determining the intended words in 
each utterance. Even assuming perfect word recognition, the latter problem is complicated by the 
occurrence of speech repairs, which occur where speakers go back and change (or repeat) something 
they just said. The words that are replaced or repeated are no longer part of the intended utterance, 
and so need to be identified. Segmenting turns and resolving repairs are strongly intertwined 
with a third task: identifying discourse markers. Because of the interactions, and interactions 
with POS tagging and speech recognition, we need to address these tasks together and early on in 
the processing stream. This paper presents a statistical language model in which we rede~'ne the 
speech recognition problem so that it includes the identification of POS tags, discourse markers, 
speech repairs, and intonational phrases. By solving these simultaneously, we obtain better results 
on each task than addressing them separately. Our model is able to identify 72% of turn-internal 
intonational boundaries with a precision of 71%, 97% of discourse markers with 96% precision, 
and detect and correct 66% of repairs with 74% precision. 

1. Introduction 

Consider  the following example  f rom the Trains corpus  (Heeman  and Allen 1995). 

Example 1 (d93-13.3 utt63) 

u m  it'll be there it'll get to Dansville at three a.m. and  then you  w a n n a  do you  take 
tho- wan t  to take those back  to Elmira so engine E two wi th  three boxcars  will be back  
in Elmira at six a.m. is that wha t  you  w a n n a  do 

In order to unders tand  wha t  the speaker  was  trying to say, the reader  p robab ly  seg- 
men ted  the above  into a n u m b e r  of sentence-like segments ,  ut terances,  as follows. 

Example 1 Revisited 

u m  it'll be there it'll get to Dansville at three a.m. 
and then you  wanna  do you  take tho- wan t  to take those back to Elmira 
so engine E two with  three boxcars  will be back in Elmira at six a.m. 
is that wha t  you  w a n n a  do 
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Even this does not fully capture what the speaker was intending to convey. The 
first and second utterances contain speech repairs, where the speaker goes back and 
changes (or repeats) something she just said. In the first, the speaker changed it'll be 
there to it'll get to; in the second, she changed you wanna to do you take tho-, which she 
then further revised. The speaker's intended utterances are thus as follows: 1 

Example 1 Revisited Again 

um it'll get to Dansville at three a.m. 
and then do you want to take those back to Elmira 
so engine E two with three boxcars will be back in Elmira at six a.m. 
is that what you wanna do 

The tasks of segmenting speakers' turns into utterance units and resolving speech 
repairs are strongly intertwined with a third task: identifying whether words, such 
as so, well, and right, are part of the sentential content or are being used as discourse 
markers to relate the current speech to the preceding context. In the example above, 
the second and third utterances begin with discourse markers. 

1.1 Utterance Units and Intonational Phrases 
As illustrated above, understanding a speaker's turn necessitates segmenting it into 
individual utterance units. However, there is no consensus as to how to define an 
utterance unit (Traum and Heeman 1997). The manner in which speakers break their 
speech into intonational phrases undoubtedly plays a major role in its definition. Into- 
national phrase endings are signaled through variations in the pitch contour, segmental 
lengthening, and pauses. Beach (1991) demonstrated that hearers can use intonational 
information early on in sentence processing to help resolve syntactic ambiguities. 
Bear and Price (1990) showed that a parser can use automatically extracted intona- 
tional phrasing to reduce ambiguity and improve efficiency. Ostendorf, Wightman, 
and Veilleux (1993) used hand-labeled intonational phrasing to do syntactic disam- 
biguation and achieved performance comparable to that of human listeners. Due to 
their significance, we will focus on the task of detecting intonational phrase bound- 
aries. 

1.2 Speech Repairs 
The on-line nature of spoken dialogue forces conversants to sometimes start speak- 
ing before they are sure of what they want to say. Hence, the speaker might need 
to go back and repeat or modify what she just said. Of course there are many dif- 
ferent reasons why speakers make repairs; but whatever the reason, speech repairs 
are a normal occurrence in spoken dialogue. In the Trains corpus, 23% of speaker 
turns contain at least one repair and 54% of turns with at least 10 words contain a 
repair. 

Fortunately for the hearer, speech repairs tend to have a standard form. As illus- 
trated by the following example, they can be divided into three intervals, or stretches 
of speech: the reparandum, editing term, and alteration. 2 

1 The speech that was revised cannot simply be thrown out since it might contain information, such as 
the identity of an anaphoric reference as the following example shows: Peter was well he wasfired. 
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Example 2 (d92a-2.1 utt29) 

that's the one with the bananas I mean that's taking the bananas 

reparandum ip editing terms alteration 

The reparandum is the stretch of speech that the speaker is replacing, and can end 
with a word fragment, where the speaker interrupts herself during the middle of a 
word. The end of the reparandum is the interruption point and is often accompanied 
by a disruption in the intonational contour. This can be optionally followed by the 
editing term, which can consist of filled pauses, such as um or uh or cue phrases, 
such as I mean, well, or let's see. Reparanda and editing terms account for 10% of the 
words in the Trains corpus. The last part is the alteration, which is the speech that 
the speaker intends as the replacement for the reparandum. In order for the hearer to 
determine the intended utterance, he must detect the repair and determine the extent 
of the reparandum and editing term. We refer to this latter process as correcting the 
speech repair. In the example above, the speaker's intended utterance is that's the one 
that's taking the bananas. 

Hearers seem to be able to effortlessly understand speech with repairs in it, even 
when multiple repairs occur in a row. In laboratory experiments, Martin and Strange 
(1968) found that attending to speech repairs and the content of an utterance are 
mutually inhibitory, and Bard and Lickley (1997) found that subjects have difficulty 
remembering the actual words in the reparandum. Listeners must be resolving repairs 
very early on in processing the speech. Earlier work by Lickley and colleagues (Lick- 
ley, Shillcock, and Bard 1991; Lickley and Bard 1992) strongly suggests that there are 
prosodic cues across the interruption point that hearers make use of in detecting re- 
pairs. However, little progress has been made in detecting speech repairs based solely 
on acoustical cues (cf. Bear, Dowding, and Shriberg 1992; Nakatani and Hirschberg 
1994; O'Shaughnessy 1994; Shriberg, Bates, and Stolcke 1997). 

1.2.1 Classification of Speech Repairs. Psycholinguistic work in speech repairs and 
in understanding the implications that they pose for theories of speech production 
(e.g. Levelt 1983; Blackmer and Mitton 1991; Shriberg 1994) has come up with a num- 
ber of classification systems. Categories are based on how the reparandum and al- 
teration differ, for instance whether the alteration repeats the reparandum, makes it 
more appropriate, or fixes an error in the reparandum. Such an analysis can shed 
light on where in the production system the error and its repair originated. Our 
concern, however, is in computationally resolving repairs. The relevant features are 
those that the hearer has access to and can make use of in detecting and correcting 
a repair. Following loosely in the footsteps of the work of Hindle (1983), we divide 
them into the following categories: fresh starts, modification repairs, and abridged 
repairs. 

Fresh starts occur where the speaker abandons the current utterance and starts 
again, where the abandonment seems to be acoustically signaled either in the editing 
term or at the onset of the alteration. Example 3 illustrates a fresh start where the 
speaker abandons the partial utterance I need to send, and replaces it by the question 
how many boxcars can one engine take. 

2 Our notation is adapted from Levelt (1983). We follow Shriberg (1994) and Nakatani and Hirschberg 
(1994) in using reparandum to refer to the entire interval being replaced. We use alteration in the same 
way. 
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Example 3 (d93-14.3 utt2) 

I need to send let's see how many boxcars can one engine take 

reparandum ip editing terms alteration 

For fresh starts, there can sometimes be little or even no correlation between the 
reparandum and alteration. Although it is usually easy to determine the reparandum 
onset, initial discourse markers and preceding intonational phrases can prove prob- 
lematic. 

The second type are modification repairs, which comprise the remainder of repairs 
with a nonempty reparandum. The example below illustrates this type of repair. 

Example 4 (d92a-1.2 utt40) 

you can carry them both on 
J 

reparandum lp 

tow both on the same engine 
Y 

alteration 

Modification repairs tend to have strong word correspondences between the reparan- 
dum and alteration, which can help the hearer determine the reparandum onset as 
well as signal that a repair occurred. In the example above, there are word matches on 
the instances of both and on, and a replacement of the verb carry by tow. Modification 
repairs can in fact consist solely of the reparandum being repeated by the alteration. 

The third type are the abridged repairs. These repairs consist of an editing term, 
but with no reparandum, as the following example illustrates. 

Example 5 (d93-14.3 utt42) 

we need to um manage to get the bananas to Dansville more quickly 
T v 
Ip editing terms 

For these repairs, the hearer has to determine that an editing term occurred, which 
can be difficult for phrases such as let's see or well since they can also have a sentential 
interpretation. The hearer also has to determine that the reparandum is empty. As the 
example above illustrates, this is not necessarily a trivial task because of the spurious 
word correspondences between need to and manage to. 

1.3 Discourse Markers 
Phrases such as so, now, firstly, moreover, and anyways can be used as discourse mark- 
ers (Schiffrin 1987). Discourse markers are conjectured to give the hearer information 
about the discourse structure, and so aid the hearer in understanding how the new 
speech or text relates to what was previously said and for resolving anaphoric refer- 
ences (Hirschberg and Litman 1993). Although discourse markers, such as firstly, and 
moreover, are not commonly used in spoken dialogue (Brown and Yule 1983), a lot of 
other markers are employed. These markers are used to achieve a variety of effects: 
such as signal an acknowledgment or acceptance, hold a turn, stall for time, signal a 
speech repair, or signal an interruption in the discourse structure or the return from 
one. 

Although Schiffrin defines discourse markers as bracketing units of speech, she 
explicitly avoids defining what the unit is. We feel that utterance units are the building 
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blocks of spoken dialogue and that discourse markers operate at this level to relate 
the current utterance to the discourse context or to signal a repair in an utterance. In 
the following example, and then helps signal that the upcoming speech is adding new 
information, while so helps indicate a summary is about to be made. 

Example 6 (d92a-1.2 utt47) 

and then while at Dansville take the three boxcars 
so that's total of five 

1.4 Interactions 
The tasks of identifying intonational phrases and discourse markers and detecting and 
correcting speech repairs are highly intertwined, and the solution to each task depends 
on the solution for the others. 

1.4.1 Intonational Phrases and Speech Repairs. Phrase boundaries and interruption 
points of speech repairs share a number of features that can be used to identify them: 
there is often a pause at these events as well as lengthening of the final syllable before 
them. Even correspondences, traditionally associated with speech repairs, can cross 
phrase boundaries (indicated with "%"), as the following example shows. 

Example 7 (d93-8.3 utt73) 

that's all you need % 
you only need one boxcar % 

Second, the reparandum onset for repairs, especially fresh starts, often occurs at the 
onset of an intonational phrase, and reparanda usually do not span phrase boundaries. 
Third, deciding if filled pauses and cue phrases should be treated as abridged repairs 
can only be done by taking into account whether they are midutterance or not (cf. 
Shriberg and Lickley 1993), which is associated with intonational phrasing. 

1.4.2 Intonational Phases and Discourse Markers. Discourse markers tend to be used 
at utterance boundaries, and hence have strong interactions with intonational phrasing. 
In fact, Hirschberg and Litman (1993) found that discourse markers tend to occur at the 
beginning of intonational phrases, while sentential usages tend to occur midphrase. 
Example 8 below illustrates so being used midutterance as a subordinating conjunction, 
not as a discourse marker. 

Example 8 (d93-15.2 utt9) 

it takes an hour to load them % 
just so you know % 

Now consider the third turn of the following example in which the system is 
not using no as a quantifier to mean that there are not any oranges available, but 
as a discourse marker in signaling that the user misrecognized oranges as orange 
juice. 
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Table 1 
Frequency of discourse markers in the editing term of speech repairs 
and as the alteration onset. 

Abridged Modification Fresh Starts 

Number of repairs 423 1,301 671 
DM in editing term 36 60 155 
DM as alteration onset 8 126 147 
Either 41 179 269 

Example 9 (d93-11.1 utt109-111) 

system: so so we have three boxcars of oranges at Coming 
user: three boxcars of orange juice at Coming 
system: no um oranges 

The discourse marker interpretation is facilitated by the phrase boundary between 
no and oranges, especially since the determiner reading of no would be very unlikely 
to have a phrase boundary separating it from the noun it modifies. Likewise, the 
recognition of no as a discourse marker makes it more likely that there will be a 
phrase boundary following it. 

1.4.3 Speech Repairs and Discourse Markers. Discourse markers are often used in 
the editing term to help signal that a repair occurred, and can be used to help de- 
termine if it is a fresh start (cf. Hindle 1983; Levelt 1983), as the following example 
illustrates. 

Example 10 (d92a-1.3 utt75) 

we have the orange juice in two oh 

reparandum zp et 

how many did we need 

Realizing that oh is being used as a discourse marker helps facilitate the detection of 
the repair, and vice versus. This holds even if the discourse marker is not part of the 
editing term, but is the first word of the alteration. Table 1 shows the frequency with 
which discourse markers co-occur with speech repairs. We see that a discourse marker 
is either part of the editing term or is the alteration onset for 40% of fresh starts and 
14% of modification repairs. Discourse markers also play a role in determining the 
onset for fresh starts, since they are often utterance initial. 

1.5 Interactions with POS Tagging and Speech Recognition 
Not only are the tasks of identifying intonational phrases and discourse markers and 
resolving speech repairs intertwined, but these tasks are also intertwined with iden- 
tifying the lexical category or part of speech (POS) of each word, and the speech 
recognition problem of predicting the next word given the previous context. 

Just as POS taggers for text take advantage of sentence boundaries, it is natural 
to assume that tagging spontaneous speech would benefit from modeling intonational 
phrases and speech repairs. This is especially true for repairs, since their occurrence 
disrupts the local context that is needed to determine the POS tags (Hindle 1983). In 
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the example below, both instances of load are being used as verbs; however, since the 
second instance follows a preposition, it could easily be mistaken for a noun. 

Example 11 (d93-12.4 utt44) 

by the time we load in load the bananas 
T 

reparandum ~p 

However, by realizing that the second instance of load is being used in a repair and 
corresponds to the first instance of load, its POS tag becomes obvious. Conversely, 
since repairs disrupt the local syntactic context, this disruption, as captured by the 
POS tags, can be used as evidence that a repair occurred, as shown by the following 
example. 

Example 12 (d93-13.1 utt90) 

I can run trains on the in the opposite direction 

reparandum alteration 

Here we have a preposition following a determiner, an event that only happens across 
the interruption point of a speech repair. 

Just as there are interactions with POS tagging, the same holds for the speech 
recognition problem of predicting the next word given the previous context. For the 
lexical context can run trains on the, it would be very unlikely that the word in would be 
next. It is only by modeling the occurrence of repairs and their word correspondences 
that we can account for the speaker's words. 

There are also interactions with intonational phrasing. In the example below, after 
asking the question what time do we have to get done by, the speaker refines this to be 
whether they have to be done by two p.m. The result, however, is that there is a 
repetition of the word by, but separated by a phrase boundary. 

Example 13 (d93-18.1 utt58) 

what time do we have to get done by % 
by two p.m. % 

By modeling the intonational phrases, POS taggers and speech recognition language 
models would be expecting a POS tag and word that can introduce a new phrase. 

1.6 Modeling Speakers' Utterances 
In this paper, we address the problem of modeling speakers' utterances in spoken 
dialogue, which involves identifying intonational phrases and discourse markers and 
detecting and correcting speech repairs. We propose that these tasks can be done using 
local context and early in the processing stream. Hearers are able to resolve speech 
repairs and intonational phrase boundaries very early on, and hence there must be 
enough cues in the local context to make this feasible. We redefine the speech recog- 
nition problem so that it includes the resolution of speech repairs and identification 
of intonational phrases, discourse markers, and POS tags, which results in a statistical 
language model that is sensitive to speakers' utterances. Since all tasks are being re- 
solved in the same model, we can account for the interactions between the tasks in a 
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Timing l a I , , ~ m 6 , n :  k / 
It takes no t i t~  it, cf,nple . r  decemlde cars ~ . . .-..u...~ 
I¢ takes 1 hcmr t .  l e~d  t ,e  unh~d  any amcmm ¢~¢ carge, ¢,11 a t ram  
Manuf~luring O J: One be,xcar o ranges  c,,nwrts into .me tanker hxld. Any a,~,,mt can be made in e~le hmtr, 

Figure 1 
Map used by the system in collecting the Trains corpus. 

framework that can compare alternative hypotheses for the speaker's turn. Not only 
does this allow us to model the speaker's utterance, but it also results in an improved 
language model, evidenced by both improved POS tagging and in better estimating 
the probability of the next word. Furthermore, speech repairs and phrase boundaries 
have acoustic correlates, such as pauses between words. By resolving speech repairs 
and identifying intonational phrases during speech recognition, these acoustic cues, 
which otherwise would be treated as noise, can give evidence as to the occurrence of 
these events, and further improve speech recognition results. 

Resolving the speaker's utterances early on will not only help a speech recognizer 
determine what was said, but it will also help later processing, such as syntactic and 
semantic analysis. The literature (e.g., Bear and Price 1990; Ostendorf, Wightman, and 
Veilleus 1993) already indicates the usefulness of intonational information for syntactic 
processing. Resolving speech repairs will further simplify syntactic and semantic un- 
derstanding of spontaneous speech, since it will remove the apparent ill-formedness 
that speech repairs cause. This will also make it easier for these processes to cope with 
the added syntactic and semantic variance that spoken dialogue seems to license. 

1.7 Overview of the Paper 
We next describe the Trains corpus and the annotation of speech repairs, intonational 
phrases, discourse markers, and POS tags. We then introduce a language model that 
incorporates POS tagging and discourse marker identification. We then augment it 
with speech repair and intonational phrase detection, repair correction, and silence 
information, and give a sample run of the model. We then evaluate the model by 
analyzing the effects that each component of the model has on the other components. 
Finally, we compare our work with previous work and present the conclusions and 
future work. 

2. The Trains Corpus 

One of the goals that we are pursuing at the University of Rochester is the development 
of a conversationally proficient planning assistant, which assists a user in constructing 
a plan to achieve some task involving the manufacture and shipment of goods in a 
railroad freight system (Allen et al. 1995). In order to do this, we need to know what 
kinds of phenomena occur in such dialogue. To this end, we have collected a corpus 
of human-human dialogues (Heeman and Allen 1995). The person playing the role of 
the system was given the map in Figure 1. The user was also given a map, but lacking 
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Table 2 
Size of the Trains corpus. 

Dialogues 98 Intonational Phrases 10,947 
Speaker Turns 6 ,163  Turn-Internal Phrase Boundaries 5,535 
Words 58,298 Abridged Repairs 423 
Fragments 756 Modification Repairs 1,302 
Filled Pauses 1,498 Fresh Starts 671 
Discourse Markers 8,278 Editing Terms 1,128 

the distances and timing information. The collection procedure was designed to make 
the setting as close to human-computer interaction as possible, but was not a Wizard 
of Oz scenario, where one person pretends to be a computer; rather, both participants 
know that they are speaking to a real person. Thus these dialogues provide a snapshot 
into an ideal human-computer interface that is able to engage in fluent conversation. 
Table 2 gives details about the Trains corpus. The corpus consists of six and a half 
hours of speech produced by 34 different speakers solving 20 different problems. 

The Trains corpus provides natural examples of dialogue usage that spoken dia- 
logue systems need to handle in order to carry on a dialogue with a user. For instance, 
the corpus contains instances of overlapping speech, back-channel responses, and turn 
taking: phenomena that do not occur in collections of single speaker utterances, such 
as ATIS (MADCOW 1992). The Trains corpus also differs from the Switchboard corpus 
(Godfrey, Holliman, and McDaniel 1992) in that it is task oriented and has a limited 
domain, making it a more realistic domain for studying the types of conversations 
that people would want to have with a computer. 

2.1 Word Transcription 
Table 3 gives a dialogue from the Trains corpus. Overlapping speech is indicated by 
the "+"  markings. Each word was transcribed using its orthographic spelling, unless 
it was mispronounced and the speaker subsequently repairs the mispronunciation. 
Contractions, including words such as wanna, were transcribed as single words. Word 
fragments were annotated by spelling as much of the word as can be heard followed 
by a dash. If it was clear what word the speaker was saying, then the rest of the word 
was enclosed in parentheses before the dash. 

2.2 POS and Di scourse  Marker  A n n o t a t i o n s  
Our POS tagset is based on the Penn tagset (Marcus, Santorini, and Marcinkiewicz 
1993), but modified to include tags for discourse markers and end-of-turns, and to 
provide richer syntactic information (Heeman 1997). Table 4 lists our tagset with dif- 
ferences from the Penn tagset marked in bold. Contractions are annotated using "A" 
to conjoin the tag for each part; for instance, can't is annotated as MDARB. 

Discourse marker usage is captured by the POS tags. The tag AC marks single 
word acknowledgments, such as okay, right, mm-hm, and no. The tag CC_D marks 
discourse conjuncts, such as and, so, and but. The tag RB_D marks discourse adverbials, 
such as then, now, actually, first, and anyway. Finally, UH_D marks interjections, such 
as oh, well, hm, and mm. Verbs used as discourse markers, such as wait, and see, are 
not given special markers, but are annotated as VB. No attempt has been made at 
analyzing multiword discourse markers, such as by the way and you know; however, 
phrases such as oh really and and then are treated as two individual discourse markers. 
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Table 3 
Transcription of dialogue d93-12.2. 

Problem 1-B 
Transport 2 boxcars of bananas to Corning by 11 AM. It is now midnight. 

turn1 s: 
turn2 u: 
turn3 s: 
turn4 u: 
turn5 s: 
turn6 u: 
turn7 s: 
turn8 u: 
turn9 s: 
turn10 u: 
turn11 s: 
turn12 u: 

turn13 s: 
turn14 u: 

turn15 s: 
turn16 u: 
turn17 s: 

turn18 u: 
turn19 s: 

turn20 u: 
turn21 s: 

hello can I help you 
I need to take two boxcars of bananas um from Avon to Coming by eleven a.m. 
so two boxcars of what 
bananas 
bananas to where 
Corning 
to Coming okay 
um so the first thing we need to do is to get the uh boxcars to uh Avon 
okay so there's boxcars in Dansville and there's boxcars in Bath 
okay is Dansville the shortest route 
yep 
okay how long will it take from to to have the oh I need it ooh how long will it 
take to get from Avon to Dansville 
three hours 
okay so I'll need to go from Avon to Dansville with the engine to pick up two 
boxcars 
okay so we'l l  g- we' l l  get to Dansville at three a.m. 
okay I need to return to Avon to load the boxcars 
okay so we'l l  get back to Avon at six a.m. and we'l l  load them which takes an hour 
so that'll be done by seven a.m. 
and then we need to travel to uh Corning 
okay so the quickest way to Corning is through Dansville which will take four 
hours so we' l l  get there at + eleven a.m. + 
+ eleven + a.m. okay it's doable 
great 

Table 4 
Part-of-speech tags used in annotating the Trains corpus. 

AC Acknowledgement HAVEP Present tense of have 
BE Base form of be HAVEZ 3rd person sing. present 
BED Past tense of be JJ Adjective 
BEG Present participle of be JJR Relative Adjective 
BEN Past participle of be JJS Superlative Adjective 
BEP Present tense of be MD Modal 
BEZ 3rd person sing. present NN Noun 
CC Coordinating conjunct NNS Plural noun 
CC_D Discourse connective NNP Proper Noun 
CD Cardinal number NNPS Plural proper Noun 
DO Base form of do PDT Pre-determiner 
DOD Past tense of do POS Possessive 
DOP Present tense of do PPREP Pre-preposition 
DOZ 3rd person sing. present PREP Preposition 
DP Pro-form PRP Personal pronoun 
DT Determiner PRP$ Possessive pronoun 
EX Existential there RB Adverb 
HAVE Base form of have RBR Relative Adverb 
HAVED Past tense of have RBS Superlative Adverb 

RB_D Discourse adverbial 
RP Reduced particle 
SC Subordinating conjunct 
TO To-infinitive 
TURN Turn marker 
UH_D Discourse interjection 
UH_FP Filled pause 
VB Base form of verb (other 

than do, be, or have) 
VBD Past tense 
VBG Present participle 
VBN Past participle 
VBP Present tense 
VBZ 3rd person sing. present 
WDT Wh-determiner 
WP Wh-pronoun 
WRB Wh-adverb 
WP$ Possessive Wh-pronoun 

2.3 Speech  Repair A n n o t a t i o n s  
O u r  repa i r  a n n o t a t i o n  scheme ,  de f i ned  in  Table 5, is b a s e d  on  the  one  p r o p o s e d  b y  
Bear  et al. (1993), b u t  e x t e n d e d  to be t t e r  dea l  w i t h  a m b i g u o u s  a n d  o v e r l a p p i n g  re- 
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Table 5 
Labels used for annotating speech repairs. 

ipr 

ipr:mod 

ipr:can 
ipr:abr 
s r r<  

mi 

ri 
XF 

pi 
et 

Interruption point of a speech repair. Index r is used to distinguish between multiple 
repairs. Indices are in multiples of 10 and all word correspondence for the repair are 
given a unique index between the repair index and the next highest repair index. 
Repair indices of 0 are not marked, as Example 14 illustrates. 
The mod suffix indicates a modification repair; mod+ indicates uncertainty as to the 
type of repair. 
The can suffix indicates a fresh start (or cancel); can+ marks ambiguous repairs. 
The abr suffix indicates an abridged repair. 
Denotes the onset of the reparandum of a fresh start. 
Used to label word correspondences in which the two words are identical. The index 
i is used both to coindex the two words and to associate them with the repair index. 
Used to label word correspondences in which one word replaces another. 
Word deletion or insertion. It is indexed by the repair index. 
Multiword correspondence, such as replacement of a pronoun by a longer description. 
Used to label the editing term that follows the interruption point. 

pairs (Heeman 1997). Like their scheme, ours allows the annotator  to capture word  
correspondences between the r epa randum and alteration. Below, we give a repair an- 
notation. 

Example  14 (d93-15.2 utt42) 
engine two from Elmi(ra)- or engine three from Elmira 

m l  r2 m3 m4 T et m l  r2 m3 m4 
ip:mod+ 

In this example, the r epa randum is engine two from Elmi(ra)-, the editing term is or, 
and the alteration is engine three from Elmira. The word  matches on engine and from are 
annotated with m and the replacement  of two by three is annotated with r. As with 
the POS tags, "A" can be used in annotat ing contracted words.  3 

2.4 Intonat ion  A n n o t a t i o n s  
For our  intonation annotation, we have annotated the intonational phrase boundaries,  
using the ToBI (Tones and Break Indices) definition (Silverman et al. 1992). Intonational 
phrases are determined by  both  the pitch contour  and the perceived juncture be tween 
each pair of words,  where  the perceived juncture takes into account both in terword 
pauses and p reboundary  lengthening (normalized durat ion of the final consonants). 
Labeling with the full ToBI annotat ion scheme is very  t ime-consuming; hence, we 
labeled only the intonational phrase boundaries.  

3. POS-based  Language  M o d e l  

In this section, we present  a speech recognition language model  that incorporates POS 
tagging. Here, POS tags are v iewed as part  of the output  of the speech recognizer 
rather than as intermediate objects. Not  only is this syntactic information needed  for 

3 Shriberg (1994) also extends the scheme of Bear et al. (1993) to deal with overlapping repairs. 
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modeling the occurrence of speech repairs and intonational phrases, but it will also be 
useful for higher-level syntactic and semantic processes. Incorporating POS tagging 
can also be seen as a first step in tightening the coupling between speech recognition 
and natural language processing so as to be able to make use of richer knowledge of 
natural language than simple word-based language models provide. 

3.1 Word-based Language Models 
The goal of speech recognition is to find the most probable sequence of words I;V given 
the acoustic signal A (Jelinek 1985). 

1~ = arg mwax Pr(W]A) (1) 

Using Bayes' rule, we rewrite the above equation in the following manner. 

Pr(A] W) Pr(W) 
l~ = arg max (2) 

w Pr(A) 

Since Pr(A) is independent of the choice of W, we can simplify the above as follows. 

I,V = arg rn~x Pr(A[W) Pr(W) (3) 

The first term, Pr(A[W), is the acoustic model and the second term, Pr(W), is the lan- 
guage model. We can rewrite W explicitly as the sequence of words WIW2W3... WN, 
where N is the number of words in the sequence. For expository ease, we use W/,j 
to refer to Wi... Wj. We now use the definition of conditional probabilities to rewrite 
Pr(W1,N) as follows. 

N 

Pr(W1,N) = I I  Pr(WilWl,i-1) (4) 
i=1 

The above equation gives us the probability of the word sequence as the product 
of the probability of each word given its previous lexical context. This probability 
distribution must be estimated. The simplest approach to estimating the probability of 
an event given a context is to use a training corpus to compute the relative frequency 
of the event given the context. However, no matter how large the corpus is, there will 
always be event-context pairs that have not been seen, or have been seen too rarely to 
accurately estimate the probability. To alleviate this problem, one must partition the 
contexts into equivalence classes and use these to compute the relative frequencies. A 
common technique is to partition the context based on the last n - 1 words, Wi-n+l,i-1, 
which is referred to as an n-gram language model. One can also mix in smaller-size 
language models to use when there is not enough data to support the larger context. 
Two common approaches for doing this are interpolated estimation (Jelinek and Mercer 
1980) and the backoff approach (Katz 1987). 

3.2 Incorporating POS Tags and Discourse Marker Identification 
Previous attempts to incorporate POS tags into a language model view the POS tags 
as intermediate objects and sum over all POS possibilities (Jelinek 1985). 

Pr(W1,N) = ~Pr(W1,NP1,N) 
P1,N 

N 

= ~ HPr(WiIWI,i-IPI,i) Pr(PilWl,i-lPl,i-1) 
P1,N i=1 

(5) 
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However, this throws away valuable information that is needed by later processing. 
Instead, we redefine the speech recognition problem so as to include finding the best 
POS and discourse marker sequence along with the best word sequence. For the word 
sequence W, let D be a POS sequence that can include discourse marker tags. The goal 
of the speech recognition process is to now solve the following: 

61b = argmaxPr(WDIA ) 

= argmaxPr(AIWD ) Pr(WD) (6) 

The first term Pr(AIWD ) is the acoustic model, which can be approximated by Pr(AIW ). 
The second term Pr(WD) is the POS-based language model and accounts for both the 
sequence of words and their POS assignment. We rewrite this term as follows: 

Pr(W1,ND1,N) 
N 

= I-IPr(WiDilWl,i_lDl,i_l)  
i=1 

N 

= l-I  Pr(WilWl,i-lDl,i) Pr(DilWl,i-lDl,i-1) 
i=1 

(7) 

Equation 7 involves two probability distributions that need to be estimated. These 
are the same distributions that are needed by previous POS-based language models 
(Equation 5) and POS taggers (Church 1988; Charniak et al. 1993). However, these 
approaches simplify the context so that the lexical probability is just conditioned on 
the POS category of the word, and the POS probability is conditioned on just the 
preceding POS tags, which leads to the following two approximations. 

Pr(WiIWl,i_lDl,i) ~ Pr(WilDi) (8) 

Pr(DiIWu_lDl,i_l) ~ Pr(DiIDu_l) (9) 

However, to successfully incorporate POS information, we need to account for the full 
richness of the probability distributions, as will be demonstrated in Section 3.4.4. 

3.3 Estimating the Probabilities 
To estimate the probability distributions, we follow the approach of Bahl et al. (1989) 
and use a decision tree learning algorithm (Breiman et al. 1984) to partition the context 
into equivalence classes. The algorithm starts with a single node. It then finds a ques- 
tion to ask about the node in order to partition the node into two leaves, each more 
informative as to which event occurred than the parent node. Information-theoretic 
metrics, such as minimizing entropy, are used to decide which question to propose. 
The proposed question is then verified using held-out data: if the split does not lead 
to a decrease in entropy according to the held-out data, the split is rejected and the 
node is not further explored. This process continues with the new leaves and results in 
a hierarchical partitioning of the context. After the tree is grown, relative frequencies 
are calculated for each node, and these probabilities are then interpolated with their 
parent node's probabilities using a second held-out dataset. 

Using the decision tree algorithm to estimate probabilities is attractive since the al- 
gorithm can choose which parts of the context are relevant, and in what order. Hence, 
this approach lends itself more readily to allowing extra contextual information to be 
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Figure 2 
Binary classification tree that encodes the POS tags for the decision tree algorithm. 

included, such as both  the word  identities and POS tags, and even hierarchical cluster- 
ings of them. If the extra information is not  relevant, it will not  be used. The approach 
of using decision trees will become even more  critical in the next  two sections, where  
the probabil i ty distributions will be condi t ioned on even richer context. 

3.3.1 Simple Questions. One of the most  impor tant  aspects of using a decision tree 
algori thm is the form of the questions that it is al lowed to ask. We allow two basic 
types of information to be used as part  of the context: numeric  and categorical. For a 
numeric variable N, the decision tree searches for questions of the form "is N > =  n ' ,  
where  n is a numeric  constant. For a categorical variable C, it searches over  questions 
of the form: "is C E S", where  S is a subset of the possible values of C. We also allow 
composite questions (Bahl et al. 1989), which are Boolean combinations of e lementary  
questions. 

3.3.2 Questions about POS Tags. The context that we use for estimating the prob- 
abilities includes both word  identities and POS tags. To make effective use of this 
information, we allow the decision tree algori thm to generalize be tween words  and 
POS tags that behave similarly. To learn which ones behave similarly, Black et al. 
(1992) and Magerman (1994) used the clustering algori thm of Brown et al. (1992) to 
build a hierarchical classification tree. Figure 2 gives the tree that we built  for the 
POS tags. The algori thm starts wi th  each POS tag in a separate class and iteratively 
finds two classes to merge that results in the smallest loss of information about  POS 
adjacency. This continues until  only a single class remains. The order  in which classes 
were merged,  however,  gives a binary tree with the root corresponding to the entire 
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~ < l o w >  2 
them 157 
me 85 
us  176 

they 89 
we 766 
648 

Figure 3 
Binary classification tree that encodes the personal pronouns (PRP). 

tagset, each leaf to a single POS tag, and intermediate nodes to groupings of the tags 
that are statistically similar. The path from the root to a tag gives the binary encoding 
for the tag. For instance, the binary encoding of VBG in Figure 2 is 01011100. The 
decision tree algorithm can ask which partition a tag belongs to by asking questions 
about its binary encoding. 

3.3.3 Questions about Word Identities. For handling word identities, one could follow 
the approach used for handling the POS tags (e.g., Black et al. 1992; Magerman 1994) 
and view the POS tags and word identities as two separate sources of information. 
Instead, we view the word identities as a further refinement of the POS tags. We start 
the clustering algorithm with a separate class for each word and each tag that it takes 
on. Classes are only merged if the tags are the same. The result is a word classification 
tree for each tag. This approach means that the trees will not be polluted by words 
that are ambiguous as to their tag, as exemplified by the word loads, which is used 
in the corpus as a third-person present tense verb VBZ and as a plural noun NNS. 
Furthermore, this approach simplifies the clustering task because the hand annotations 
of the POS tags resolve a lot of the difficulty that the algorithm would otherwise have 
to learn. Hence, effective trees can be built even when only a small amount of data is 
available. 

Figure 3 shows the classification tree for the personal pronouns (PRP). For ref- 
erence, we also list the number of occurrences of each word for the POS tag. In the 
figure, we see that the algorithm distinguished between the subjective pronouns L we, 
and they, and the objective pronouns me, us, and them. The pronouns you and it can 
take both cases and were probably clustered according to their most common usage in 
the corpus. The class low is used to group singleton words, which do not have enough 
training data to allow effective clustering. In using the word identities with the deci- 
sion tree algorithm, we restrict the algorithm from asking word questions when the 
POS tag for the word is not uniquely determined by previous questions. 

3.3.4 Example Decision Tree. Figure 4 illustrates the top part of the tree that was 
grown for estimating the probability distribution of the POS tag of the current word. 
The question on the root node "is D)_ 1 = 0 V D2_1 = 1" is asking whether the POS 
tag of the previous word has a 0 as the first bit or a 1 as the second bit of its binary 
encoding. If the answer is no then the bottom branch is followed, which corresponds 
to the following partition. 

Di-1 c (CC, PREP, JJ, JJS, JJR, CD, DT, PRP$, WDT} 

Following the bottom branch of the decision tree, we see that the next question is "is 
D 3 1  ----1",  which gives a true partition of Di-1 E {JJ, JJS, JJR, CD, DT, PRP$,WDT}. 
Following the top branch, we see that the next question is "is D4_l = 1", whose true 
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,s ~ h - - ~ - v - - - ~  

~ i s D  1 - - 0 A  D 2 --1 A D 3 --1 ~ - 1 - " " - ' ~ 2 ~ -  " " 

/ ~ ..._..-.--~ J~f 
/ k i s  D 1 ------0 A D2 ~ A D3 =1  

- "  ~-1 ZZ_-  ~ i - 1 -  ~-I..L~L.--w-~ ~ • . * 
/ N i s D ~  ~-----OAD? = I  

\ - 

i - l N . .  

Figure 4 
The top part of the decision tree used for estimating the POS probability distribution. 

partition is Di-1 E {DT, PRP$, WDT}. The next question along the top branch is "is 
D5 - 1 "  which gives a true partition of Di-1 = WDT. As indicated in the figure, this i _ 1 - - ~  

is a leaf node, and so no suitable question was found to ask of this context. 

3.4 Resul ts  
To test our POS-based language model, we ran two experiments. The first set examines 
the effect of using richer contexts for estimating the word and POS probability distri- 
butions. The second set measures whether modeling discourse usage leads to better 
language modeling. Before we give the results, we explain the methodology that we 
use throughout the experiments. 

3.4.1 Experimental  Setup.  In order to make the best use of our limited data, we tested 
our model using a sixfold cross-validation procedure. We divided the dialogues into 
six partitions and tested each partition with a model built from the other partitions. 
We divided the dialogues for each pair of speakers as evenly between the six parti- 
tions as possible. Changes in speaker are marked in the word transcription with the 
special token <turn>. The end-of-turn marker is not included in the POS results, but 
is included in the perplexity results. We treat contractions, such as that'll and gonna, as 
separate words, treating them as that and 'll for the first example, and going and ta for 
the second. We also changed all word fragments into a common token <fragment>. 

Since current speech recognition rates for spontaneous speech are quite low, we 
have run the experiments on the hand-collected transcripts. In searching for the best 
sequence of POS tags for the transcribed words, we follow the technique proposed 
by Chow and Schwartz (1989) and only keep a small number of alternative paths by 
pruning the low probability paths after processing each word. 

3.4.2 Perplexity. A way to measure the effectiveness of the language model is to 
measure the perplexity that it assigns to a test corpus (Bahl et al. 1977). Perplexity 
is an estimate of how well the language model is able to predict the next word of 
a test corpus in terms of the number of alternatives that need to be considered at 
each point. For word-based language models, with estimated probability distribution 
of Pr(wilwl,i_l) , the perplexity of a test set Wl,N is calculated as 2 H, where H is the 

i ~ - - - - 1  l o g 2  P r ( w i l w l , i - 1 )  • entropy, which is defined as H = - ~  
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Table 6 
Using richer histories to estimate probabilities. 

Pr(Wi[Di) Pr(Wi[Di-2,iWi-2,i-1) 
Pr(Di[Di-2,i-1) Pr(Di[Di-2,i-lWi-2,i-1) 

POS Errors 1,778 1,711 
POS Error Rate 3.04 2.93 
DM Errors 690 630 
DM Error Rate 8.33 7.61 
DM Recall 95.86 96.75 
DM Precision 95.79 95.68 
Word Perplexity 43.22 24.04 
Branching Perplexity 47.25 26.35 

Branching Perplexity. Our POS-based model  is not  only predicting the next  word,  but  
its POS tag as well. To estimate the branching factor, and thus the size of the search 
space, we use the following formula for the entropy, where  di is the POS tag for 
word  wi. 

1 N 
H = - ~ ~ log 2 ISr(wi[wl,i_ldl,i)I~r(di[Wl,i_ldl,i_l) (10) 

i=1 

Word Perplexity. In order  to compare a POS-based model  against a word-based lan- 
guage model ,  we should not  penalize the POS-based model  for incorrect POS tags. 
Hence, we should ignore them when  defining the perplexity and base the perplexi ty 
measure o n  Pr(wi[wl,i_l). However ,  for our  model,  this probabili ty is not  estimated. 
Hence, we must  rewrite it in terms of the probabilities that we do estimate. To do this, 
our  only recourse is to sum over all possible POS sequences. 

1 N Y'~I)li I3r(wiDi]Wl,i-lDl,i-1)ISr(wl,i-lDl,i-1) 
H =  - ~  ~ l o g  2 ' ^ (11) 

i=1 EDI,i-1 Pr(Wl,i-lD1, i-1) 

3.4.3 Recall and Precision. We report  results on identifying discourse markers  in 
terms of recall, precision and error rate. The recall rate is the number  of times that the 
algori thm correctly identifies an event  over the total number  of times that it actually 
occurred. The precision rate is the number  of times the algori thm correctly identifies 
it over  the total number  of times it identifies it. The error rate is the number  of errors 
in identifying an event  over  the number  of times that the event  occurred. 

3.4.4 Using Richer Histories. Table 6 shows the effect of varying the richness of the 
information that the decision tree algori thm is allowed to use in estimating the POS and 
word  probabilities. The second column uses the approximations given in Equation 8 
and 9 and the third column uses the full context. The results show that adding the 
extra context has the biggest effect on the perplexi ty measures,  decreasing the word  
perplexi ty by  44.4% from 43.22 to 24.04. The effect on POS tagging is less pronounced,  
but  still gives a reduction of 3.8%. We also see a 8.7% improvement  in identifying 
discourse markers.  Hence, in order  to use POS tags in a speech recognition language 
model,  we need to use a richer context for estimating the probabilities than what  is 
typically used. In other work  (Heeman 1999), we show that our  POS-based model  
results in lower perplexi ty and word  error rate than a word-based model.  
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Table 7 
Effect of modeling discourse markers with 
special POS tags. 

WP WD 

POS Errors 1,219 1,189 
POS Error Rate 2.09 2.04 
Word Perplexity 24.20 24.04 
Branching Perplexity 26.08 26.35 

3.4.5 Modeling Discourse Markers. Table 7 shows the effect of modeling discourse 
markers by using special POS tags. In column two, we give the results of a model in 
which we use a POS tagset that does not distinguish discourse marker usage (P). The 
discourse conjuncts CC_D are collapsed into CC, discourse adverbials RB_D into RB, 
and acknowledgments AC and discourse interjections UH_D into UH_FP. The third 
column gives the results of the model in which we use our tagset that does distinguish 
discourse marker usage (D). To ensure a fair comparison, we do not penalize POS 
errors that result from a confusion between discourse and sentential usages. We see 
that modeling discourse markers results in a perplexity reduction from 24.20 to 24.04 
and reduces the number of POS errors from 1,219 to 1,189, giving a 2.5% error rate 
reduction. Although the improvements in perplexity and POS tagging are small, they 
indicate that there are interactions, and hence discourse markers should be resolved 
at the same time as POS tagging and speech recognition word prediction. 

4. Identifying Speech Repairs and Intonational Phrases 

In the previous section, we presented a POS-based language model that uses spe- 
cial tags to denote discourse markers. However, this model does not account for the 
occurrence of speech repairs and intonational phrases. Ignoring these events when 
building a statistical language model will lead to probabilistic estimates for the words 
and POS tags that are less precise, since they mix contexts that cross intonational 
boundaries and interruption points of speech repairs with fluent stretches of speech. 
However, there is not a reliable signal for detecting the interruption point of speech 
repairs (Bear, Dowding, and Shriberg 1992) nor the occurrence of intonational phrases. 
Rather, there are a number of different sources of information that give evidence as 
to the occurrence of these events. These sources include the presence of pauses, filled 
pauses, cue phrases, discourse markers, word fragments, word correspondences, and 
syntactic anomalies. Table 8 gives the number of occurrences for some of these fea- 
tures for each word in the corpus that is not turn-final nor part of the editing term of 
a speech repair. Each word is classified by whether it immediately precedes the inter- 
ruption point of a fresh start, modification, or abridged repair, or ends an intonational 
phrase. All other words are categorized as fluent. The first row gives the number of 
occurrences of these events. The second row reports whether the word is a fragment. 
The third and fourth give the number of times the word is followed by a filled pause 
or discourse marker, respectively. The fifth and sixth rows report whether the word is 
followed by a pause that is less than or greater than 0.5 seconds, respectively. Pause 
durations were computed automatically with a speech recognizer constrained to the 
word transcription (Entropic Research Laboratory, Inc. 1994). The next row reports 
whether there is a word match that crosses the word with at most two intervening 
words, and the next row, those with at most five intervening words. 
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Table 8 
Occurrence of features 
boundaries. 

that signal speech repairs and intonational 

Fluent Abridged Modification Fresh Intonational 
Feature Speech Repairs Repairs Starts Boundaries 

All 43,439 423 1,301 671 5,211 
Fragments 7 0 481 150 0 
Filled Pauses 97 374 114 71 358 
Short Pauses 4,415 146 711 313 1,710 
Long Pauses 1,537 121 176 186 1,622 
Matching (2) 2,629 27 869 197 373 
Matching (5) 11,479 94 1,517 575 1,375 

From the table, it is clear that none of the cues on their own is a reliable indicator of 
speech repairs or intonational boundaries. For instance, 44.5% (1,622/3,642) of all long 
pauses occur after an intonational boundary and 13.3% occur after the interruption 
point of a speech repair. Conversely, 31.1% (1,622/5,211) of intonational boundaries 
are followed by a pause while 20.2% of all repairs are followed by a long pause. 
Hence, pauses alone do not give a complete picture of whether a speech repair or 
intonational boundary occurred. The same holds for filled pauses, which can occur 
both after the interruption point of a speech repair and in fluent speech, namely 
between utterances or after utterance-initial discourse markers. Word matchings can 
also be spurious, as evidenced by the 27 word matches with at most two intervening 
words across abridged repairs, as well as the matchings across intonational boundaries 
and fluent speech. Even syntactic ill-formedness at the interruption point is not always 
guaranteed, as the following example illustrates. 

Example 15 (d93-13.2 utt53) 

load two boxes of boxcars with oranges 

reparandum zp 

Hence using parser failures to find repairs (cf. Dowding et al. 1993) will not be robust. 
In this section, we augment our POS-based language model so that it also detects 

intonational boundaries and speech repairs, along with their editing terms. Although 
not all speech repairs have obvious syntactic anomalies, the probability distributions 
for words and POS tags are going to be different depending on whether they follow 
the interruption point of a speech repair, an intonational boundary, or fluent speech. 
So, it makes sense to take the speech repairs and intonational boundaries into account 
by directly modeling them when building the language model, which automatically 
gives us a means of detecting these events and better prediction of the speech that 
follows. To model the occurrence of intonational boundaries and speech repairs, we 
introduce three extra variables into the language model. The repair tag Ri, the editing 
term tag Ei and the intonation tag Ii. These utterance tags capture the discontinuities 
in the speaker's turn, and we use these discontinuities to better model the speech that 
follows. 

4.1 Speech Repairs 
The repair tag indicates the occurrence of speech repairs. However, we not only want to 
know whether a repair occurred, but also the type of repair: whether it is a modification 
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repair, a fresh start, or an abridged repair. The type of repair is important since the 
strategy that a hearer uses to correct the repair depends on the type of repair. For 
fresh starts, the hearer must determine the beginning of the current utterance. For 
modification repairs, the hearer can make use of the correspondences between the 
reparandum and alteration to determine the reparandum onset. For abridged repairs, 
there is no reparandum, and so simply knowing that it is abridged gives the correction. 

For repairs that do not have an editing term, the interruption point is where 
the local context is disrupted, and hence is the logical place to tag such repairs. For 
repairs with an editing term, there are two choices for marking the speech repair: 
either directly following the end of the reparandum, or directly preceding the onset 
of the alteration. The following example illustrates these two choices, marking them 
with Mod?. 

Example 16 (d92a-5.2 utt34) 

so we'll pick up a tank of Mod? uh Mod? the tanker of oranges 

The editing term by itself does not completely determine the type of repair. The al- 
teration also helps to disambiguate the repair. Hence, we delay hypothesizing about 
the repair type until the end of the editing term, which should keep our search-space 
smaller, since we do not need to keep alternative repair type interpretations while pro- 
cessing the editing term. This leads to the following definition of the repair variable 
Ri for the transition between word Wi-1 and Wi: 

Mod 

Ri = Can 
Abr 
null  

if Wi is the alteration onset of a modification repair 
if Wi is the alteration onset of a fresh start (or cancel) 
if Wi is the alteration onset of an abridged repair 
otherwise 

4.2 Editing Terms 
Editing terms are problematic for tagging speech repairs since they separate the end 
of the reparandum from the alteration onset, thus separating the discontinuity that 
gives evidence that a fresh start or modification repair occurred. For abridged repairs, 
they separate the word that follows the editing term from the context that is needed to 
determine the identity of the word and its POS tag. If editing terms could be identified 
without having to consider the context, we could skip over them, but still use them as 
part of the context for deciding the repair tag (cf. Heeman and Allen 1994). However, 
this assumption is not valid for words that are ambiguous as to whether they are an 
editing term, such as let me see. Even filled pauses are problematic since they are not 
necessarily part of the editing term of a repair. To model editing terms, we use the 
v a r i a b l e  E i to indicate the type of editing term transition between word W/_ 1 and Wi. 

Push 
ET 

Ei : Pop 

null 

if Wi-1 is not part of an editing term but Wi is 
if Wi-1 and Wi are both part of an editing term 
if Wi-1 is part of an editing term but  Wi is not 
if neither Wi-1 nor Wi are part of an editing term 

Below, we give an example and show all non-null editing term and repair tags. 

Example 17 (d93-10.4 utt30) 

that'll get there at four a.m. Push oh ET sorry Pop M o d  at eleven a.m. 
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4.3 Intonational Phrases 
The final variable is Ii, which marks the occurrence of intonational phrase boundaries. 

% if Wi-1 ends an intonational phrase 
li = null otherwise 

The intonation variable is separate from the editing term and repair variables since it 
is not restricted by the value of the other two. For instance, an editing term could end 
an intonational phrase, especially on the end of a cue phrase such as let's see, as can 
the reparandum, as Example 18 below demonstrates. 

Example 18 (d92a-2.1 utt29) 

that's the one with the bananas % Push I ET mean Pop Mod that's taking the bananas 

4.4 Redefining the Speech Recognition Problem 
We now redefine the speech recognition problem so that its goal is to find the sequence 
of words and the corresponding POS, intonation, editing term, and repair tags that is 
most probable given the acoustic signal. 

= a r g m a x P r ( W D R E I I A  ) 
WDREI 

= arg max Pr(A IWDREI) Pr(WDREI)  
WDREI 

(12) 

The second term is the language model probability, and can be rewritten as follows. 

Pr( W1,ND1,NR1,NE1,NI1,N ) 
N 

= ~-IPr(WiDiRiEililWl,i-lDl,i-lRl,i-lEl,i-lI1, i-1) 
i=1 

N 

~- I I  Pr(li lWl,i-lDl,i-lal , i- lEl, i- lI l , i-1) 
i=1 

Pr(EilWl,i-lDl,i-lRl,i-lEl,i-l l l , i)  

Pr (Ril Wl,i-lDl,i-lRl,i-lEl,ill ,i) 

Pr( Dil Wl,i- l Dl,i- l al,iEl,ill,i ) 

Pr(WilWl,i_lDl,iRl,iEl,iIl,i) (13) 

4.5 Representing the Context 
Equation 13 requires five probability distributions to be estimated. The context for 
each includes all of the words, POS, intonation, repair, and editing term tags that 
have been hypothesized, each as a separate piece of information. In principal, we 
could give this to the decision tree algorithm and let it decide what information to 
use in constructing equivalence classes. However, repairs, editing terms, and even 
intonation phrases do not occur in the same abundance as fluent speech and are 
not as constrained. Hence, it will be difficult to model the discontinuities that they 
introduce into the context. 
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Consider the following example of a speech repair without an editing term. 

Example 19 (d92-1 utt53) 

engine E two picks Mod takes the two boxcars 

When predicting the first word of the alteration takes, it is inappropriate to ask about 
the preceding words, such as picks,  without realizing that there is a modification repair 
in between. The same also holds for intonational boundaries and editing term pushes 
and pops. In the example below, a question should only be asked about is in  the 
realization that it ends an intonational phrase. 

Example 20 (d92a-1.2 utt3) 

you'll have to tell me what the problem is % I don't have their labels 

Although the intonation, repair, and editing term tags are part of the context and so 
can be used in partitioning it, the question is whether this will happen. The prob- 
lem is that null intonation, repair, and editing term tags dominate the training ex- 
amples. So, we are bound to run into contexts in which there are not enough into- 
national phrases and repairs for the algorithm to learn the importance of using this 
information, and instead might blindly subdivide the context based on some subdi- 
vision of the POS tags. The solution is analogous to what is done in POS tagging 
of written text: we give a view of the words and POS tags with the non-null re- 
pair, non-null intonation, and editing term push and pop tags inserted. By inserting 
these tags into the word and POS sequence, it will be more difficult for the learn- 
ing algorithm to ignore them. It also allows these tags to be grouped with other tags 
that behave in a similar way, such as change in speaker turn, and discourse mark- 
ers. 

Now consider the following examples, which both start with so we  need to. 

Example 21 (d92a-2.2 utt6) 

so we need to Push urn Pop Abr get a tanker of OJ to Avon 

Example 22 (d93-11.1 utt46) 

so we need to get the three tankers 

This is then followed by the verb get,  except the first has an editing term in between. 
However, in predicting this word, the editing term hinders the decision tree algorithm 
from generalizing with nonabridged examples. The same thing happens with fresh 
starts and modification repairs. To allow generalizations between repairs with an edit- 
ing term and those without, we need a view of the context with completed editing 
terms removed (cf. Stolcke and Shriberg 1996b). 

Part of the context given to the decision tree is the words and POS tags with the 
non-null utterance tags inserted (i.e., %) and completed editing terms removed. We 
refer to this as the utterance context, since it incorporates the utterance information 
that has been hypothesized. Consider the following example. 
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Figure 5 
Top part of the decision tree used for estimating the probability distribution of the intonation 
tag. 

Example 23 (d93-18.1 utt47) 

it takes one Push you ET know Pop Mod two hours % 

The utterance context for the POS tag of you is "i t /PRP takes/VBP one/CD Push." 
The context for the editing term Pop is "i t /PRP takes/VBP one/CD Push you/PRP 
know/VBP." The utterance context for the repair tag has the editing term cleaned up: 
"i t /PRP takes/VBP one/CD" (we also give it the context with the editing term not 
cleaned up). The context for the POS tag of two is " i t /PRP takes/VBP one/CD Mod." 

We also include two variables that indicate whether we are processing an editing 
term without forcing it to look for an editing term Push in the utterance context: ETo 
state indicates whether we are processing an editing term and whether a cue phrase 
was seen; and ET-prev indicates the number of editing term words seen so far. Figure 5 
gives the top part of the decision tree that was grown for the intonation tag, where 
u W  and uD are the utterance context. 

5. Correcting Speech Repairs 

The previous section focused on the detection of speech repairs, editing terms, and 
intonational phrases. But for repairs, we have only addressed half of the problem; 
the other half is determining the extent of the reparandum. Hindle (1983) and Kikui 
and Morimoto (1994) both separate the task of correcting a repair from detecting 
it by assuming that there is an acoustic editing signal that marks the interruption 
point of speech repairs (as well as access to the POS tags and utterance boundaries). 
Although the model of the previous section detects repairs, this model is not effective 
enough. In fact, we feel that one of its crucial shortcomings is that it does not take into 
consideration the task of correcting repairs (Heeman, Loken-Kim, and Allen 1996). 
Since hearers are often unaware of speech repairs (Martin and Strange 1968), they 
must be able to correct them as the utterance is unfolding and as an indistinguishable 
event from detecting them and recognizing the words involved. 

Bear, Dowding, and Shriberg (1992) proposed that multiple information sources 
need to be combined in order to detect and correct speech repairs. One of these sources 
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Table 9 
Occurrences of common repair structures. 

x. 362 mmr.mmr 10 mm.mxm 4 mxmx.mm 2 
m.m 249 m.xm 10 xmmm.mmm 3 mmm.mmxm 2 
r.r 136mxx.m 8 mrx.mr 3 mm.xxmm 2 
mm.mm 85 mmmx.mmm 8 mrr.mrr 3 mm.mxxm 2 
mx.m 76 m.xxm 8 mrmx.mrm 3 xr.r 2 
mmx.mm 35 mrm.mrm 7 mmmmm.mmmmm 3 xmx.m 2 
mr.mr 29 mx.xm 6 mm.xmm 3 xmmx.mm 2 
mmm.mmm 22 xm.m 5 mmmmx.mmmm 2 rr.rr 2 
rx.r 20 mmmmr.mmmmr 5 mrmm.mrmm 2 rm.rxm 2 
rm.rm 20rmm.rmm 4 mmmxx.mmm 2 r.xr 2 
xx. 12 mmxx.mm 4 mmm.xxxmmm 2 
mmmm.mmmm 12 mmn~.mmmr 4 mmm.mxmm 2 

includes a pat tern-matching routine that looks for simple cases of word  correspon- 
dences that could indicate a repair. However ,  pat tern matching is too limited to cap- 
ture the variety of word  correspondence patterns that speech repairs exhibit (Heeman 
and Allen 1994). For example,  the 1,302 modification repairs in the Trains corpus take 
on 160 different repair structures, even when  we exclude word  fragments and editing 
terms. Of these, only 47 occurred at least twice, and these are listed in Table 9. Each 
word  in the repair is represented by  its correspondence type: m for word  match, r for 
replacement,  and x for deletions and insertions. A per iod "." marks the interrupt ion 
point. For example,  the structure of the repair  given in Example 14 (engine two from 
Elmi(ra)- or engine three from Elmira) would  be mrm.mrm.  

To remedy  the limitation of Bear, Dowding,  and Shriberg (1992), we proposed  that 
the word  correspondences be tween the r epa randum and alteration could be found  by  
a set of well-formedness rules (Heeman and Allen 1994; Heeman,  Loken-Kim, and 
Allen 1996). Potential repairs found  by  the rules were passed to a statistical language 
model  (a predecessor  of the model  of Section 4), which p runed  out  false positives. Part 
of the context for the statistical model  was the proposed  repair structure found by  the 
well-formedness rules. However ,  the alteration of a repair, which makes  up  half of the 
repair structure, occurs after the interrupt ion point  and hence should not  be used to 
predict  the occurrence of a repair. Hence this model  was of limited use for integration 
into a speech recognizer. 

Recently, Stolcke and Shriberg (1996) presented a word-based model  for speech 
recognition that models  simple word  deletion and repetit ion patterns. They used the 
predict ion of the repair  to clean up  the context and to help predict  what  word  will occur 
next. Al though their model  is limited to simple types of repairs, it provides  a starting 
point  for incorporat ing speech repair correction into a statistical language model.  

5.1 Sources of Information 
There are several sources of information that give evidence as to the extent of the 
r epa randum of speech repairs. Probably the most  widely  used is the presence of word  
correspondences between the r epa randum and alteration, both  at the word  level and 
at the level of syntactic constituents (Levelt 1983; Hindle  1983; Bear, Dowding,  and 
Shriberg 1992; Heeman  and Allen 1994; Kikui and Morimoto  1994). Second, there tends 
to be a fluent transition from the speech that precedes the onset of the r epa randum to 
the alteration (Kikui and Morimoto 1994). This source is very  impor tant  for repairs that 
do not  have initial retracing, and is the mainstay of the "parser-first" approach (e.g., 
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Dowding et al. 1993)--keep trying alternative corrections until one of them parses. 
Third, there are certain regularities for where speakers restart. Reparandum onsets 
tend to be at constituent boundaries (Nooteboom 1980), and in particular, at bound- 
aries where a coordinated constituent can be placed (Levelt 1983). Hence, reparandum 
onsets can be partially predicted without even looking at the alteration. 

5.2 Our Approach 
Most previous approaches to correcting speech repairs have taken the standpoint of 
finding the best reparandum given the neighboring words. Instead, we view the prob- 
lem as finding the reparandum that best predicts the following words. Since speech 
repairs are often accompanied by word correspondences (Levelt 1983; Hindle 1983; 
Bear, Dowding, and Shriberg 1992; Heeman and Allen 1994; Kikui and Morimoto 
1994), the actual reparandum will better predict the words in the alteration of the 
repair. Consider the following example: 

Example 24 (d93-3.2 utt45) 

which engine are we are we taking 
T 

reparandum lp 

In this example, if we predicted that a modification repair occurred and that the 
reparandum consists of are we, then the probability of are being the first word of the 
alteration would be very high, since it matches the first word of the reparandum. 
Conversely, if we are not predicting a modification repair with reparandum are we, 
then the probability of seeing are would be much lower. The same reasoning holds for 
predicting the next word, we: it is much more likely under the repair interpretation. So, 
as we process the words of the alteration, the repair interpretation will better account 
for the words that follow it, strengthening the interpretation. 

When predicting the first word of the alteration, we can also make use of the 
second source of evidence identified in the previous section: the context provided by 
the words that precede the reparandum. Consider the following repair in which the 
first two words of the alteration are inserted. 

Example 25 (d93-16.2 utt66) 

and two tankers to of OJ to Dansville 
v T 

reparandum zp 

Here, if we know the reparandum is to, then we know that the first word of the reparan- 
dum must be a fluent continuation of the speech before the onset of the reparandum. 
In fact, we see that the repair interpretation (with the correct reparandum onset) pro- 
vides better context for predicting the first word of the alteration than a hypothesis 
that predicts either the wrong reparandum onset or predicts no repair at all. Hence, by 
predicting the reparandum of a speech repair, we no longer need to predict the onset 
of the alteration on the basis of the ending of the reparandum, as we did in Section 4.5. 
Such predictions are based on limited amounts of training data since only examples 
of speech repairs can be used. Rather, by first predicting the reparandum, we can use 
examples of fluent transitions to help predict the first word of the alteration. 

We can also make use of the third source of information. When we initially hy- 
pothesize the reparandum onset, we can take into account the a priori probability 

551 



Computational Linguistics Volume 25, Number 4 

that it will occur at that point. In the following example, the words should and the 
are preferred by Levelt's coordinated constituent rule (Levelt 1983), and hence should 
have a higher score. Exceptions to the rule, such as this one, should have a lower 
score. 

Example 26 

two boxcars 

(d93-10.4 utt30) 

of orange juice should er of oranges should be made into orange juice 
• ,J 

Y 

reparandum lp 

To incorporate correction processing into our language model, we need to add 
extra variables. After we predict a repair, we need to predict the reparandum onset. 
Knowing the reparandum onset then allows us to predict the word correspondences 
between the reparandum and alteration, thus allowing us to use the repair to better 
predict the words and their POS tags that make up the alteration. 

5.3 Reparandum Onset 
After we predict a modification repair or a fresh start, we need to predict the reparan- 
dum onset. Consider the following two examples of modification repairs. 

Example 27 (d93-16.3 utt9) 

to fill the engine 
• "T Y 

reparandum lp 

the boxcars with bananas 

Example 28 (d93-25.6 utt31) 

drop off the one tanker 

reparandum l~p 
the two tankers 

Although the examples differ in the length of the reparandum, their reparanda both 
start at the onset of a noun phrase. This same phenomena also exists for fresh starts 
where reparandum onsets are likely to follow an intonational boundary, the beginning 
of the turn, or a discourse marker. In order to allow generalizations across different 
reparandum lengths, we query each potential onset to see how likely it is as the onset. 
For Ri E {Mod, Can} and j < i, we define Oq as follows: 

Onset Wj is the reparandum onset of repair R i 

Oq = null otherwise 

We normalize the probabilities to ensure t h a t  ~-~j(Oij = Onset) = 1. 
Just as we exclude the editing terms of previous repairs from the utterance words 

and POS tags, so we exclude the reparanda of previous repairs. Consider the following 
example of overlapping repairs, repairs in which the reparanda and alterations cannot 
be separated. 
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Example 29 (d93-16.3 utt4) 

what's the shortest route from engine from 
T l ~p zp 

for engine two at Elmira 

The reparandum of the first repair is from engine. In predicting the reparandum of the 
second, we work from the cleaned up context: what's the shortest route from. 

The context used in estimating how likely a word is as the reparandum onset 
includes which word we are querying. We also include the utterance words and POS 
tags that precede the proposed reparandum onset, thus allowing the decision tree to 
check if the onset is at a suitable constituent boundary. Since reparanda rarely extend 
over more than one utterance, we include three variables that help indicate whether 
an utterance boundary is being crossed. The first indicates the number of intonational 
phrase boundaries embedded in the proposed reparandum. The second indicates the 
number of discourse markers in the reparandum. Discourse markers at the beginning 
of the reparandum are not included, and if discourse markers appear consecutively, 
the group is only counted once. The third indicates the number of filled pauses in the 
reparandum. 

Another source of information is the presence of other repairs in the turn. In the 
Trains corpus, 35.6% of nonabridged repairs overlap. If a repair overlaps a previous 
one then its reparandum onset is likely to co-occur with the alteration onset of the 
previous repair (Heeman 1997). Hence we include a variable that indicates whether 
there is a previous repair, and if there is, whether the proposed onset coincides with, 
precedes, or follows the alteration onset of the preceding repair. 

5.4 The Active Repair 
Determining word correspondences is complicated by the occurrence of overlapping 
repairs. To keep our approach simple, we allow at most one previous word to license 
the correspondence. Consider again Example 29. Here, one could argue that the word 
for corresponds to the word from from either the reparandum of the first or second 
repair. In either case, the correspondence to the word engine is from the reparandum 
of the first repair. Our approach is to first decide which repair the correspondence will 
be to and then decide which word of that repair's reparandum will license the current 
word. We always choose the most recent repair that has words in its reparandum 
that have not yet licensed a correspondence (other than a word fragment). Hence, the 
active repair for predicting the word for is the second repair, while the active repair 
for predicting engine is the first repair. For predicting the word two, neither the first 
nor second repair has any unlicensed words in its reparandum, and hence two will 
not have an active repair. In future work, we plan to choose between the reparan- 
dum of alternative speech repairs, as allowed by the annotation scheme (Heeman 
1997). 

5.5 Licensing a Correspondence 
If we are in the midst of processing a repair, we can use the reparandum to help 
predict the current word Wi and its POS tag Di. In order to do this, we need to 
determine which word in the reparandum of the active repair will license the current 
word. As illustrated in Figure 6, word correspondences for speech repairs tend to 
exhibit a cross serial dependency (Heeman and Allen 1994); in other words, if we 
have a correspondence between Wj in the reparandum and Wk in the alteration, any 
correspondence with a word in the alteration after Wk will be to a word that is after wj. 
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we'llpick up a tank of uh the tanker of oranges 

' I t t t 
Figure 6 
Cross serial correspondences between reparandum and alteration. 

This regularity does have exceptions, as the following example illustrates; however, 
we currently do not support such correspondences. 

Example 30 (d93-19.4 utt37) 

can we have 

reparandum z~p 

we can have three engines in Corning at the same time 

Since we currently do not support such exceptions, this means that if there is already 
a correspondence for the repair, then the licensing word will follow the last correspon- 
dence in the reparandum. 

The licensing word might need to skip over words due to deleted words in the 
reparandum or inserted words in the alteration. In the example below, the word tow 
is licensed by carry, but the word them must be skipped over before processing the 
licensing between the two instances of both. 

Example 31 (d92a-1.2 utt40) 

you can carry them both on "1 
Y 

reparandum lp 

tow both on the same engine 

The next example illustrates the opposite problem: the word two has no correspon- 
dence with any word in the reparandum. 

Example 32 (d93-15.4 utt45) 

and fill my boxcars fully of oranges ]" 

reparandum lp 

my two boxcars full of oranges 

For words that have no correspondence, we define the licensing word as the first 
available word in the alternation, in this case boxcars. We leave it to the correspon- 
dence variable to encode that there is no correspondence. This gives us the following 
definition for the correspondence licensor, Lq, where i is the current word and j runs 
over all words in the reparandum of the active repair that come after the last word in 
the reparandum with a correspondence. 

Corr 
Lq = Corr 

null 

Wj licenses the current word 
W i is an inserted word and Wj is first available word in reparandum 
otherwise 

Just as with the reparandum onset, we estimate the probability by querying each 
eligible word. The context for this query includes information about the proposed 
word, namely its POS tag, as well as the utterance POS and word context prior to 
the current word, the type of repair and the reparandum length. We also include 
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information about the repair structure that has been found so far. If the previous word 
was a word match, there is a good chance that the current word will involve a word 
match to the next word. The rest of the features are the number of words skipped in 
the reparandum and alteration since the last correspondence, the number of words 
since the onset of the reparandum and alteration, and the number of words to the end 
of the reparandum. 

5.6 The Word Correspondence 
Now that we have decided which word in the reparandum will potentially license the 
current word, we need to predict the type of correspondence. We focus on correspon- 
dences involving exact word match (identical POS tag and word), word replacements 
(same POS tag), or no such correspondence. 

m 

Ci = r 
X 

null 

Wi is a word match of the word indicated by Li 
Wi is a word replacement of the word indicated by Li 
Wi has no correspondence (inserted word) 
No active repair 

The context used for estimating the correspondence variable is exactly the same as 
that used for estimating the licensor. 

5.7 Redefining the Speech Recognition Problem 
Now that we have introduced the correction tags, we redefine the speech recognition 
problem so that it includes finding the most probable corrections tags. 

WDCLOREI arg max Pr( WDCLOREIIA ) 
WDCLOREI 

arg max Pr(A] WDCLOREI) Pr(WDCLOREI) (14) 
WDCLOREI 

The second term is the language model and can be rewritten as we did for Equation 12. 
We have already discussed the context used for estimating the three new proba- 

bility distributions. We also have a richer context for estimating the other five distri- 
butions. For these, we take advantage of the new definition of the utterance word and 
POS tags, which now accounts for the reparanda of repairs. Consider the following 
example. 

Example 33 (d93-13.1 utt64) 

pick up and load two um the two boxcars on engine two 

reparandum lp 

In processing the word the, if we hypothesized that it follows a modification repair 
with editing term um and reparandum two, then we can now generalize with fluent 
examples, such as the following, in hypothesizing its POS tag and the word identity. 

Example 34 (d93-12.4 utt97) 

and to make the orange juice and load the tankers 

Thus, we can make use of the second knowledge source of Section 5.1. 
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Cleaning up fresh starts requires a slightly different treatment. Fresh starts aban- 
don the current utterance, and hence the alteration starts a new utterance. But this 
new utterance will start differently than most utterances in that it will not begin with 
initial filled pauses, or phrases such as let's see, since these would have been counted 
as part of the editing term of the fresh start. Hence, when we clean up the reparanda 
of fresh starts, we leave the fresh start marker Can, just as we do for intonational 
boundaries. 

For predicting the word and POS tags, we have an additional source of informa- 
tion, namely the values of the correspondence licensor and the correspondence type. 
Rather than use these two variables as part of the context that we give the decision 
tree algorithm, we use these tags to override the decision tree probability. If a word 
replacement or word match was hypothesized, we assign all of the POS probability 
to the appropriate POS tag. If a word match was hypothesized, we assign all of the 
word probability to the appropriate word. 

6. Acoustic Cues 

Silence, as well as other acoustic information, can also give evidence as to whether an 
intonational phrase, speech repair, or editing term occurred, as was shown in Table 8. 
In this section, we revise the language model to incorporate this information. 

6.1 Redefining the Speech Recognition Problem 
In the same way that speech recognizers hypothesize lexical items, they also hypoth- 
esize pauses. Rather than insert these into the word sequence (e.g., Zeppenfeld et al. 
1997), we define the variable Si to be the amount of silence between words Wi_ 1 and 
Wi. We incorporate this information by redefining the speech recognition problem. 

^ ^ . . . . . . .  

WPCLOREIS = argmax Pr(AIWDCLOREIS ) Pr(WDCLOREIS) (15) 
WDCLOREIS 

Again, the first term is the acoustic model, which one can approximate by Pr(AIWS ), 
and thus reduce it to a traditional acoustic model. The second term is the new language 
model, which we rewrite as follows: 

Pr( W1,ND1,NC1,NL1,NO1,NR1,NE1,NI1,NS1,N ) 
N 

= I-[ Pr(WiDiCiLiOiRiEiliSilWl,i-lDl,i-lCl,i-lLl, i-lOl,i-lRl, i-lEl, i-lIl , i- lSl, i-1) 
i=1 

We expand the silence variable first so that we can use it as part of the context in 
estimating the tags for the remaining variables. 

We now have an extra probability in our model, namely the probability of Si 
given the previous context. The variable Si will take on values in accordance with 
the minimum time samples that the speech recognizer uses. To deal with limited 
amounts of training data, one could collapse these durations into larger intervals. Note 
that including this probability impacts the perplexity computation. Usually, prediction 
of silence durations is not included in the perplexity calculation. In order to allow 
comparisons between the perplexity rates of the model that includes silence durations 
and ones that do not, we exclude the probability of Si in the perplexity calculation. 

6.2 Using Silence as Part of the Context 
We now need to include the silence durations as part of the context for predicting the 
values of the other variables. However, it is just for the intonation, repair, and editing 
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Figure 7 
Preference for utterance tags given the length of silence. 

term variables that this information is most appropriate. We could let the decision tree 
algorithm use the silence duration as part of the context in estimating the probability 
distributions. However, our attempts at doing this have not met with success, perhaps 
because asking questions about the silences fragments the training data and hence 
makes it difficult to model the influence of the other aspects of the context. Instead, 
we treat the silence information as being independent from the other context. Below 
we give the derivation for the intonation variable. For expository ease, we define 
Contexti to be the prior context for deciding the probabilities for word Wi. 

Contexti = W l , i _ l D l , i _ l C l , i _ l L l , i _ l O l , i _ l R l , i _ l E l , i _ l l l , i _ l S l , i _ l  

The derivation is as follows. 

Pr (Iil SiContexti ) 
Pr(ContextiSiili) Pr(Ii) 

Pr( SiContexti) 

Pr(Contextilli) Pr(Silli) Pr(Ii) 
Pr(Si) Pr( Contexti) 

. Pr(IiiSi) 
Pr(IiiC°ntexti) (16) 

The second line involved the assumptions that Contexti and Si are independent and 
that Contexti and Si are independent given Ii. The first assumption is obviously too 
strong. If the previous word is a noun it is more likely that there will be a silence after 
it than if the previous word was an article. However, the assumptions allow us to 
model the silence information independently from the other context, which gives us 
more data to estimate its effect. The result is that we use the factor Pr(IilSi) to adjust the 
probabilities computed by the decision tree algorithm, which does not use the silence 
durations. We guard against shortcomings by normalizing the adjusted probabilities 
to ensure that they sum to one. 

To compute Pr(IiiSi), we group the silence durations into 30 intervals and then 
smooth the counts using a Gaussian filter. We do the same adjustment for the editing 
term and repair variables. For the editing term variable, we only do the adjustment 
if the intonation tag is null, due to a lack of data in which editing terms co-occur 
with intonational phrasing. For the repair variable, we only do the adjustment if the 
intonation tag is null and the editing term tag is not a push or pop. Figure 7 gives 
the adjustments for the resulting six equivalence classes of utterance tags. The ratio 

557 



Computational Linguistics Volume 25, Number 4 

between the curves gives the preference for one class over another, for a given silence 
duration. Silence durations were automatically obtained from a word aligner (Entropic 
Research Laboratory, Inc. 1994). 

Silences between speaker turns are not used in computing the preference factor, 
nor is the preference factor used at such points. The end of the speaker's turn is 
determined jointly by both the speaker and the hearer. So when building a system that 
is designed to participate in a conversation, these silence durations will be partially 
determined by the system's turn-taking strategy. We also do not include the silence 
durations after word fragments since these silences were hand-computed. 

7. Example 

This section illustrates the workings of the algorithm. As in Section 3.4.1, the algorithm 
is constrained to the word transcriptions and incrementally considers all possible in- 
terpretations (those that do not get pruned), proceeding one word at a time. Since 
resolving speech repairs is the most complicated part of our model, we focus on this 
using the following example of overlapping repairs. 

Example 35 (d92a-2.1 utt95) 

okay % uh and that will take a total of um let's see total of s- of seven hours 

T " " ~ lp~:mod reparandum ~p:mod ~ reparandum 

Rather than try to show all of the competing hypotheses, we focus on the correct 
interpretation, which, for this example, happens to be the winning interpretation. We 
contrast the probabilities of the correct tags with those of its competitors. For reference, 
we give a simplified view of the context that is used for each probability. Full results 
of the algorithm will be given in the next section. 

7.1 Predicting "um" as the Onset of an Editing Term 
Below, we give the probabilities involved in the correct interpretation of the word um 
given the correct interpretation of the words okay uh and that will take a total of. We start 
with the intonation variable. The correct tag of null is significantly preferred over the 
alternative, mainly because intonational boundaries rarely follow prepositions. 

Pr(Iw=null [ a total of) = 0.9997 

Pr(h0=% I a total of) = 0.0003 

For I10 = null, we give the alternatives for the editing term tag. Since an editing term 
is not in progress, the only possible values are Push and null. 

Pr(E10=Push ]a total of) = 0.242 

Pr(E10=null [ a total of) = 0.758 

With El0 = Push, the only allowable repair tag is null. Since no repair has been started, 
the reparandum onset O10 must be null. Similarly, since no repair is in progress, 
L10, the correspondence licensor, and C10, the correspondence type, must both be 
null. 

We next hypothesize the POS tag. Below we list all of the tags that have a prob- 
ability greater than 1%. Since we are starting an editing term, we see that POS tags 
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associated with the first word  of an editing term have a high probability, such as 
UFLFP for um,  AC for okay, CC_D for or, UH_D for well, and VB for the let in  let's see. 

For D10 

Pr(D10=UH_FP [ a total of Push) = 0.731 

Pr(D10--AC [ a total of Push) = 0.177 

Pr(D10=CC_D I a total of Push) = 0.026 

Pr(D10=UH_D [ a total of Push) = 0.020 

Pr(D10--VB I a total of Push) = 0.026 

set to UH_FP, the word  choices are um,  uh, and er. 

Pr(W10=um [ a total of Push UH_FP) = 0.508 

Pr(W10=uh [ a total of Push UH_FP) -- 0.488 

Pr(Wl0=er I a total of Push UH_FP) = 0.004 

Given the correct interpretat ion of the previous words,  the probabil i ty of the filled 
pause um along with the correct tags is 0.090. 

7.2 Predicting "total" as the Alteration Onset  
We now give the probabilities involved in the second instance of total, which is the 
alteration onset of the first repair, whose  editing term um let's see, which ends an 
intonational phrase, has just finished. Again we start with the intonation variable. 

Pr(I14=% [ a total of Push u m  let's see) = 0.902 

Pr(I14=null I a total of Push um let's see) = 0.098 

F o r  I14 -~ %,  the editing term probabilities are given below. Since an editing term is in 
progress, the only possibilities are that it is cont inued or that it has ended.  

Pr(E14=Pop [ a total of Push um let's see %) = 0.830 

Pr(E14=ET I a total of Push um let's see %) -- 0.170 

For E14 ~ Pop, we give the probabilities for the repair variable. Since an editing term 
has just ended,  the null tag for the repair  variable is ruled out. Note  the modification 
interpretation receives a score approximately  one third of that of a fresh start. However ,  
the repair  interpretation catches up after the alteration is processed. 

Pr(R14=Mod I a total of Push um let's see % Pop) = 0.228 

Pr(R14=Can I a total of Push um let's see % Pop) = 0.644 

Pr(R14=Abr I a total of Push um let's see % Pop) -- 0.128 

For R14 = Mod,  we give the probabilities assigned to the possible r epa randum onsets. 
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For each, we give the proposed reparandum onset, X, and the words that precede it. 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

Pr(O14,x=Onset 

W=take a total X=of R=Mod) = 0.589 

W=will take a X=total R=Mod) = 0.126 

W=that will take X--a R=Mod) = 0.145 

W=and that will X=take R=Mod) = 0.023 

W=uh and that X=will R=Mod) = 0.016 

W=% uh and X=that R=Mod) = 0.047 

IW=okay % uh X=and R=Mod) = 0.047 

]W=<turn> okay % X=uh R=Mod) = 0.003 

]W=<turn> X=okay R--Mod) = 0.003 

With total as the reparandum onset, there are two possibilities for which word of the 
reparandum will license the current word---either the word total or of. 

Pr(L10,x=Corr ]W=will take a X=total R=Mod) = 0.973 

Pr(L10,x=Corr ]W=will take a X=of R=Mod) = 0.027 

With total as the correspondence licensor, we need to decide the type of correspon- 
dence: whether it is a word match, word replacement, or otherwise. 

Pr(C14=m ]W=will take a L=total R=Mod) = 0.5882 

Pr(C14=r [W=will take a L=total R=Mod) = 0.1790 

Pr(C14---x ]W=will take a L=total R=Mod) = 0.2328 

For the correct interpretation, the word correspondence is a word match with the 
word total and POS tag NN. Hence, the POS tag and identity of the current word 
are both fixed and hence have a probability of 1. Given the correct interpretation of 
the previous words, the probability of the word total along with the correct tags is 
0.0111. 

8. Results 

In this section, we present the results of running our model on the Trains corpus. This 
section not only shows the feasibility of the model, but also supports the thesis that 
the tasks of resolving speech repairs, identifying intonational phrases and discourse 
markers, POS tagging, and speech recognition language modeling must be accom- 
plished in a single model to account for the interactions between these tasks. We start 
with the models that we presented in Section 3, and vary which variables of Section 4, 
5, and 6 that we include. All results in this section were obtained using the sixfold 
cross-validation procedure described in Section 3.4.1. 

8.1 POS Tagging, Perplexity, and Discourse Markers 
Table 10 shows that POS tagging, word perplexity, and discourse markers benefit 
from modeling intonational phrases and speech repairs. The second column gives 
the results of the POS-based language model of Section 3. The third column adds 
intonational phrase detection, which reduces the POS error rate by 3.8%, improves 
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Table 10 
Comparison of POS tagging, discourse marker identification, and perplexity rates. 

WD WDI WDCLORE WDCLOREI WDCLOREIS 

POS Errors 1,711 1,646 1,688 1,652 1,563 
POS Error Rate 2.93 2.82 2.89 2.83 2.68 
DM Errors 630 587 645 611 533 
DM Error Rate 7.61 7.09 7.79 7.38 6.43 
Word Perplexity 24.04 23.91 23.17 22.96 22.35 
Branching Perplexity 26.35 30.61 27.69 31.59 30.26 

discourse marker identification by 6.8%, and reduces perplexity slightly from 24.04 to 
23.91. These improvements are of course at the expense of the branching perplexity, 
which increases from 26.35 to 30.61. Column four augments the POS-based model 
with speech repair detection and correction, which improves POS tagging and reduces 
word perplexity by 3.6%, while only increasing the branching perplexity from 26.35 to 
27.69. Although we are adding five variables to the speech recognition problem, most 
of the extra ambiguity is resolved by the time the word is predicted. Thus, corrections 
can be sufficiently resolved by the first word of the alteration. Column five combines 
the models of columns three and four and results in a further improvement in word 
perplexity. POS tagging and discourse marker identification do not seem to benefit 
from combining the two processes, but both rates remain better than those obtained 
from the base model. 

Column six adds silence information. Silence information is not directly used to 
decide the POS tags, the discourse markers, nor what words are involved; rather, it 
gives evidence as to whether an intonational boundary, speech repair, or editing term 
occurred. As the following sections show, silence information improves the perfor- 
mance on these tasks, and this translates into better language modeling, resulting in 
a further decrease in perplexity from 22.96 to 22.35, giving an overall perplexity re- 
duction of 7.0% over the POS-based model. We also see a significant improvement 
in POS tagging with an error rate reduction of 9.5% over the POS-based model, and 
a reduction in the discourse marker error rate of 15.4%. As we further improve the 
modeling of the user's utterance, we should expect to see further improvements in 
the language model. 

8.2 I n t o n a t i o n a l  Phrases  
Table 11 demonstrates that modeling intonational phrases benefits from modeling si- 
lence information, speech repairs, and discourse markers. Column two gives the base 
results of modeling intonational phrase boundaries. Column three adds silence infor- 
mation, which reduces the error rate for turn-internal boundaries by 9.1%. Column 
four adds speech repair detection, which further reduces the error rate by 3.5%. Col- 
umn five adds speech repair correction. Curiously, this actually slightly increases the 
error rate for intonational boundaries but the rate is still better than not modeling re- 
pairs at all (column four). The final result for within-turn boundaries is a recall rate of 
71.8%, with a precision of 70.8%. The last column subtracts out the discourse marker 
modeling by using the POS tagset P of Section 3.4.5, which collapses discourse marker 
usage with sentential usages. Removing the modeling of discourse markers results in 
a 2.0% degradation in identifying turn-internal boundaries and 7.2% for end-of-turn 
boundaries. 
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Table 11 
Comparison of errors in detecting intonational phrase boundaries. 

WDI WDIS WDREIS WDCLOREIS WPCLOREIS 

Within Turn 3,585 3,259 3,145 3,199 3,262 
End of Tum 439 439 436 433 464 
All Boundaries 4,024 3,698 3,581 3,632 3,726 

Table 12 
Comparison of errors in detecting speech repairs. 

WDRE WDCLORE WDCLOREI WDCLOREIS WPCLOREIS 

All Repairs 1,106 982 909 839 879 
Exact Repairs 1,496 1,240 1,185 1,119 1,169 
Abridged 161 187 173 170 183 
Modification 747 512 489 459 497 
Fresh Starts 588 541 523 490 489 

8.3 Detecting Speech Repairs 
We now demonstra te  that detecting speech repairs benefits f rom model ing speech 
repair correction, intonational phrases, silences, and discourse markers.  We use two 
measures to compare  speech repair detection. The first measure,  referred to as All 
Repairs, ignores errors that result f rom improper ly  identifying the type of repair, and 
hence scores a repair  as correctly detected as long as it was identified as either an 
abridged repair, a modification repair, or a fresh start. For experiments that include 
speech repair correction, we further  relax this rule. When  multiple repairs have con- 
t iguous reparanda,  we count  all repairs involved (of the hand-annotat ions)  as correct 
as long as the combined r epa randum is correctly identified. Hence, for Example 29 
given earlier, as long as the overall r epa randum was identified as from engine from, 
both  of the hand-annota ted  repairs are counted  as correct. 

We argued earlier that the proper  identification of the type of repair  is neces- 
sary for successful correction. Hence,  the second measure,  Exact Repairs, counts a 
repair  as being correctly identified only if the type of the repair  is also proper ly  
determined.  Under  this measure,  a flesh start detected as a modification repair is 
counted as a false positive and as a missed repair. Just as with All Repairs, for models  
that include speech repair correction, if a misidentified repair  is correctly corrected, 
then it is counted as correct. We also give a b reakdown of this measure  by  repair 
type. 

The results are given in Table 12. The second column gives the base results for de- 
tecting speech repairs. The third co lumn adds speech repair correction, which improves  
the error rate from 46.2% to 41.0%, a reduct ion of 11.2%. Part of this improvement  is 
at tr ibuted to better scoring of over lapping repairs. However ,  f rom an analysis of the 
results, we  found that this could account for at most  32 of the 124 fewer errors. Hence, 
a reduct ion of at least 8.3% is directly at t r ibuted to incorporat ing speech repair cor- 
rection. The fourth column adds intonational phrasing, which reduces the error rate 
for detecting repairs f rom 41.0% to 37.9%, a reduct ion of 7.4%. The fifth column adds 
silence information, which further  reduces the error rate to 35.0%, a reduct ion of 7.7%. 
Part of this improvement  is a result of improved  intonational phrase modeling,  and 
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Table 13 
Comparison of errors in correcting speech repairs. 

WDCLORE WDCLOREI WDCLOREIS WPCLOREIS 

All Repairs 1,506 1,411 1,363 1,435 
Abridged 187 175 172 185 
Modification 616 563 535 607 
Fresh Starts 703 673 656 643 

part is a result of using pauses to detect speech repairs. This gives a final recall rate of 
76.8% with a precision of 86.7%. In the last column, we show the effect of removing 
the modeling of discourse markers, which increases the error rate of detecting repairs 
by 4.8%. 

8.4 Correcting Speech Repairs 
Table 13 shows that correcting speech repairs benefits from modeling intonational 
phrasing, silences, and discourse markers. Column two gives the base results for cor- 
recting repairs, which is a recall rate of 61.9% and a precision of 71.4%. Note that 
abridged and modification repairs are corrected at roughly the same rate but the cor- 
rection of fresh starts proves particularly problematic. Column three adds intonational 
phrase modeling. Just as with detecting repairs, we see that this improves correcting 
each type of repair, with the overall error rate decreasing from 62.9 to 58.9, a reduction 
of 6.3%. From Table 12, we see that only 73 fewer errors were made in detecting repairs 
after adding intonational phrase modeling, while 95 fewer errors were made in cor- 
recting them. Thus adding intonation phrases leads to better correction of the detected 
repairs. Column four adds silence information, which further reduces the error rate to 
56.9%, a reduction of 3.4%. This gives a final recall rate of 65.9% with a precision of 
74.3%. The last column subtracts out discourse marker modeling, which degrades the 
correction error rate by 5.2%. From Table 12, 40 errors were introduced in detecting 
repairs by removing discourse marker modeling, while 72 errors were introduced in 
correcting them. Thus modeling discourse markers leads to better correction of the 
detected repairs. 

8.5 Collapsing Repair Distinctions 
Our classification scheme distinguishes between fresh starts and modification repairs. 
Table 14 contrasts the full model (column 3) with one that collapses modification 
repairs and fresh starts (column 2). To ensure a fair comparison, the reported de- 
tection rates do not penalize incorrect identification of the repair type. We find that 
distinguishing fresh starts and modification repairs results in a 7.0% improvement in 
detecting repairs and a 6.6% improvement in correcting them. Hence, the two types 
of repairs differ enough both in how they are signaled and the manner in which they 
are corrected that it is worthwhile to model them separately. Interestingly, we also 
see that distinguishing between fresh starts and modification repairs improves into- 
national phrase identification by 1.9%. This improvement is undoubtedly attributable 
to the fact that the reparandum onset of fresh starts interacts more strongly with into- 
national boundaries than does the reparandum onset of modification repairs. As for 
perplexity and POS tagging, there was virtually no difference, except a slight increase 
in branching perplexity for the full model. 
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Table 14 
Effect of collapsing modification repairs and fresh starts. 

Collapsed Distinct 

Errors in Detecting Speech Repairs 902 839 
Errors in Correcting Speech Repairs 1,460 1,363 
Errors in Identifying Within-Turn Boundaries 3,260 3,199 

Table 15 
Speech repair detection and correction results for full model. 

Detection Correction 

Recall Precision Error Rate Recall Precision Error Rate 

All Repairs 76.79 86.66 35.01 65.85 74.32 56.88 
Abridged 75.88 82.51 40.18 75.65 82.26 40.66 
Modification 80.87 83.37 35.25 77.95 80.36 41.09 
Fresh Starts 48.58 69.21 73.02 36.21 51.59 97.76 
Modification and Fresh Starts 73.69 83.85 40.49 63.76 72.54 60.36 

9. Comparison 

Comparing the performance of our model to others that have been proposed is prob- 
lematic. First, there are differences in corpora. The Trains corpus is a collection of 
dialogues between two people, both of whom realize that they are talking to an- 
other person. The ATIS corpus (MADCOW 1992), on the other hand, is a collection 
of human-computer dialogues. The rate of repairs in this corpus is much lower and 
almost all speaker turns consists of just one contribution. The Switchboard corpus 
(Godfrey, Holliman, and McDaniel 1992) is a collection of human-human dialogues, 
which are much less constrained and about a much wider domain. Even more extreme 
are corpora of professionally read speech. A second problem is that different systems 
employ different inputs; for instance, does the input include POS tags, utterance seg- 
mentation, or hand-transcriptions of the words that were uttered? We also note that 
this work is the first proposal that combines the detection and correction of speech 
repairs, the identification of intonational phrases and discourse markers, and POS tag- 
ging, in a framework that is amenable to speech recognition. Hence our comparison 
is with systems that address only part of the problem. 

9.1 Speech Repairs 
Table 15 gives the results of the full model for detecting and correcting speech re- 
pairs. The overall correction recall rate is 65.9% with a precision of 74.3%. In the 
table, we also report the results for each type of repair using the Exact Repair met- 
ric. To facilitate comparisons with approaches that do not distinguish between mod- 
ification repairs and fresh starts, we give the combined results of these two cate- 
gories. 

Bear, Dowding, and Shriberg (1992) investigated the use of pattern matching of 
the word correspondences, global and local syntactic and semantic ill-formedness, 
and acoustic cues as evidence for detecting speech repairs. They tested their pattern 
matcher on a subset of the ATIS corpus from which they removed "all trivial" repairs, 
repairs that involve only the removal of a word fragment or a filled pause. For their 
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pattern-matching results, they achieved a detection recall rate of 76% with a precision 
of 62%, and a correction recall rate of 44% with a precision of 35%. They also tried 
combining syntactic and semantic knowledge in a "parser-first" approach--first try to 
parse the input and if that fails, invoke repair strategies based on word patterns in the 
input. In a test set containing 26 repairs Dowding et al. 1993, they obtained a detection 
recall rate of 42% with a precision of 85%, and a correction recall rate of 31% with a 
precision of 62%. 

Nakatani and Hirschberg (1994) proposed that speech repairs should be detected 
in a "speech-first" model using acoustic-prosodic cues, without relying on a word 
transcription. In order to test their theory, they built a decision tree using a training 
corpus of 148 turns of speech. They used hand-transcribed prosodic-acoustic features 
such as silence duration, energy, and pitch, as well as traditional text-first cues such 
as presence of word fragments, filled pauses, word matches, word replacements, POS 
tags, and position of the word in the turn, and obtained a detection recall rate of 86% 
with a precision of 91%. The cues they found relevant were duration of pauses between 
words, word fragments, and lexical matching within a window of three words. Note 
that in their corpus, 73% of the repairs were accompanied by a word fragment, as 
opposed to 32% of the modification repairs and fresh starts in the Trains corpus. 
Hence, word fragments are a stronger indicator of speech repairs in their corpus than 
in the Trains corpus. Also note that their training and test sets only included turns 
with speech repairs; hence their "findings should be seen more as indicative of the 
relative importance of various predictors of [speech repair] location than as a true test 
of repair site location" (page 1612). 

Stolcke and Shriberg (1996b) incorporated repair resolution into a word-based 
language model. They limited the types of repair to single and double word repetitions 
and deletions, deletions from the beginning of the sentence, and filled pauses. In 
predicting a word, they summed over the probability distributions for each type of 
repair (including no repair at all). For hypotheses that include a repair, the prediction 
of the next word was based upon a cleaned up representation of the context, and took 
into account whether a single or double word repetition was predicted. Surprisingly, 
they found that this model actually degrades performance, in terms of perplexity and 
word error rate. They attributed this to their treatment of filled pauses: utterance- 
medial filled pauses should be cleaned up before predicting the next word, whereas 
utterance-initial ones should be left intact, a distinction that we make in our model by 
modeling intonational phrases. 

Siu and Ostendorf (1996) extended a language model to account for three roles 
that words such as filled pauses can play in an utterance: utterance-initial, part of 
a nonabridged repair, or part of an abridged repair. By using training data with 
these roles marked and a function-specific variable n-gram model (i.e., use a differ- 
ent context for the probability estimates depending on the function of the word), 
and summing over each possible role, they achieved a perplexity reduction of 82.9 to 
81.1. 

9.2 Utterance Units and Intonational Phrases 
We now contrast our intonational phrase results with the results of other researchers 
in phrases, or other definitions of utterance units. Table 16 gives our performance. 
Most methods for detecting phrases use end-of-turn as a source of evidence; however, 
this is jointly determined by both participants. Hence, a dialogue system, designed to 
participate in the conversation, will not be able to take advantage of this information. 
For this reason, we focus on turn-internal intonational phrase boundaries. 
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Table 16 
Intonational phrase results for full model. 

Recall Precision Error Rate 

Within Turn 71.76 70.82 57.79 
End of Turn 98.05 94.17 8.00 
All Boundaries 84.76 82.53 33.17 

Wightman and Ostendorf (1994) used preboundary lengthening, pausal durations, 
and other acoustic cues to automatically label intonational phrases and word accents. 
They trained a decision tree to estimate the probability of a phrase boundary given 
the acoustic context. These probabilities were fed into a Markov model whose state is 
the boundary type of the previous word. For training and testing their algorithm, they 
used a single-speaker corpus of news stories read by a public radio announcer. With 
this speaker-dependent model, they achieved a recall rate of 78.1% and a precision of 
76.8%. 4 However, it is unclear how well this will adapt to spontaneous speech, where 
repairs might interfere with the cues that they use, and to speaker independent testing. 

Wang and Hirschberg (1992) also looked at detecting intonational phrases. Using 
automatically labeled features, including POS tag of the current word, category of 
the constituent being built, distance from last boundary, and word accent, they built 
decision trees to classify each word as to whether it has an intonational boundary. 
Note that they do not model interactions with other tasks, such as POS tagging. With 
this approach, they achieved a recall rate of 79.5% and a precision rate of 82.7% on a 
subset of the ATIS corpus. Excluding end-of-turn data gives a recall rate of 72.2% and 
a precision of 76.2%. These results group speech repairs with intonational boundaries 
and do not distinguish between them. In their corpus, there were 424 disfluencies 
and 405 turn-internal boundaries. The performance of the decision tree that does not 
classify disfluencies as intonational boundaries is significantly worse. However, these 
results were achieved with one-tenth the data of the Trains corpus. 

Kompe et al. (1995) combined acoustic cues with a statistical language model 
to find intonational phrases. They combined normalized syllable duration, length of 
pauses, pitch contour, and energy using a multilayered perceptron that estimates the 
probability Pr(vilci), where vi indicates if there is a boundary after the current word 
and ci is the acoustic features of the neighboring six syllables. This score is combined 
with the score from a statistical language model, which determines the probability of 
the word sequence with the hypothesized phrase boundary inserted using a backoff 
strategy. 

Pr ( VilCi ) Pr ~ (... wi-  1 W i V i W i +  1 W i +  2 " " " ) 

Building on this work, Mast et al. (1996) segmented speech into speech acts as the first 
step in automatically classifying them and achieved a recognition accuracy of 92.5% 
on turn-internal boundaries using Verbmobil dialogues. This translates into a recall 
rate of 85.0%, a precision of 53.1%, and an error rate of 90.1%. Their model, which 
employs rich acoustic modeling, does not account for interactions with speech repairs 
or discourse markers, nor does it redefine the speech recognition language model. 

Meteer and Iyer (1996) investigated whether modeling linguistic segments, seg- 
ments with a single independent clause, improves language modeling. They computed 

4 Derivat ions  of recall and  precis ion rates are g iven  in detai l  in H e e m a n  (1997). 
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the probability of the sequence of words with the hypothesized segment boundaries 
inserted into the sequence. Working on the Switchboard corpus, they found that pre- 
dicting linguistic boundaries improved perplexity from 130 to 127. Similar to this 
work, Stolcke and Shriberg (1996a) investigated how the language model can find the 
boundaries. Their best results were obtained by using POS tags as part of the input, 
as well as the word identities of certain word classes, in particular, filled pauses, con- 
junctions, and certain discourse markers. However, this work does not incorporate 
automatic POS tagging and discourse marker identification. 

9.3 D i scourse  Markers  
The full model results in 533 errors in discourse marker identification, giving an er- 
ror rate of 6.43%, a recall of 97.26%, and a precision of 96.32%. Although numerous 
researchers have noted the importance of discourse markers in determining discourse 
structure, there has not been a lot of work in actually identifying them. 

Hirschberg and Litman (1993) examined how intonational information can distin- 
guish between discourse and sentential interpretation for a set of ambiguous lexical 
items. They used hand-transcribed intonational features and only examined discourse 
markers that were one word long, as we have. They found that discourse usages were 
either an intermediate phrase by themselves (or in a phrase consisting entirely of am- 
biguous tokens), or they are first in an intermediate phrase (or preceded by other 
ambiguous tokens) and are either de-accented or have a low word accent. In a mono- 
logue of approximately 12,500 words, their model achieved a recall rate of 63.1% with 
a precision of 88.3%. Many of the errors occurred on coordinate conjuncts, such as 
and, or, and but, which proved problematic for annotating as well, since "the discourse 
meanings of conjunction as described in the literature . . .  seem to be quite similar to 
the meanings of sentential conjunction" (page 518). 

Litman (1996) used machine learning techniques to identify discourse markers. 
The best set of features for predicting discourse markers were lengths of intonational 
and intermediate phrase, positions of token in intonational and intermediate phrase, 
composition of intermediate phrase (token is alone in intermediate phrase or phrase 
consists entirely of potential discourse markers), and identity of the token. The algo- 
rithm achieved a success rate of 85.5%, which translates into a discourse marker error 
rate of 37.3%, in comparison to the rate of 45.3% for Hirschberg and Litman (1993). 
Direct comparisons with our error rate of 6.4% are problematic since our corpus is five 
times as large and we use task-oriented human-human dialogues, which include a lot 
of turn-initial discourse markers for coordinating mutual belief. In any event, the work 
of Litman and Hirschberg indicates the usefulness of modeling intermediate phrase 
boundaries and word accents. Conversely, our approach does not force decisions to be 
made independently and does not assume intonational annotations as input; rather, 
we identify discourse markers as part of the task of searching for the best assignment 
of discourse markers along with POS tags, speech repairs, and intonational phrases. 

10. C o n c l u s i o n  and Future Work 

In this paper, we redefined the speech recognition language model so that it also 
identifies POS tags, intonational phrases, and discourse markers, and resolves speech 
repairs. This language model allows the speech recognizer to model the speaker's 
utterances, rather than simply the words involved. This allows it to better account for 
the words involved and allows it to return a more meaningful analysis of the speaker's 
turn for later processing. The model incorporates identifying intonational phrases, 
discourse markers, and POS tags, and detecting and correcting speech repairs; hence, 
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interactions that exist between these tasks, as well as the task of predicting the next 
word, can be modeled. 

Constraining our model to the hand-transcription, it is able to identify 71.8% of all 
turn-internal intonational boundaries with a precision of 70.8%, identify 97.3% of all 
discourse markers with a precision of 96.3%, and detect and correct 65.9% of all speech 
repairs with a precision of 74.3%. These results are partially attributable to accounting 
for the interaction between these tasks: modeling intonation phrases improves speech 
repair detection by 7.4% and correction by 6.3%; modeling speech repairs improves 
intonational phrase identification by 3.5%; modeling repair correction improves re- 
pair detection by 8.3%; modeling repairs and intonational phrases improves discourse 
marker identification by 15.4%; and removing the modeling of discourse markers de- 
grades intonational phrase identification by 2.0%, speech repair detection by 4.8%, 
and speech repair correction by 5.2%. Speech repairs and intonational phrases create 
discontinuities that traditional speech recognition language models and POS taggers 
have difficulty modeling. Modeling speech repairs and intonational phrases results in 
a 9.5% improvement in POS tagging and a 7.0% improvement in perplexity. Part of 
this improvement is from exploiting silences to give evidence of the speech repairs 
and intonational phrase boundaries. 

More work still needs to be done. First, with the exception of pauses, we do not 
consider acoustic cues. This is a rich source of information for detecting (and dis- 
tinguishing between) intonational phrases, interruption points of speech repairs, and 
even discourse markers. It would also help in determining the reparandum onset of 
fresh starts, which tend to occur at intonational boundaries. Acoustic modeling is also 
needed to identify word fragments. The second area is extending the model to incor- 
porate higher level syntactic and semantic processing. This would not only allow us 
to give a much richer output from the model, but it would also allow us to account 
for interactions between this higher-level knowledge and modeling speakers' utter- 
ances, especially in detecting the ill-formedness that often occurs with speech repairs. 
It would also aid in finding richer correspondences between the reparandum and 
alteration, such as between the noun phrase and pronoun in the following example. 

Example 36 (d93-14.3 utt27) 

the engine can take as many ~ , ~  it can take up to three loaded boxcars 
• • y 

Y 

re,aran,~ume ~ zp et alteration 

The third area of future research is to show that our model works on other languages. 
Although the model encodes the basic structure of speech repairs, intonational phrases, 
and discourse markers, actual parameters are learned from a training corpus. Prelim- 
inary work on a Japanese corpus indicates that the model is not language specific 
(Heeman and Loken-Kim 1999). The fourth and most important area is to incorporate 
our work into a speech recognizer. We have already used our POS-based model to 
rescore word-graphs, which results in a one percent absolute reduction in word error 
rate in comparison to a word-based model (Heeman 1999). Our full model, which ac- 
counts for intonational phrases and speech repairs, should lead to a further reduction, 
as well as return a richer understanding of the speech. 
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