
Supertagging: An Approach to Almost
Parsing

Srinivas Bangalore*
AT&T Labs - Research

Aravind K. Joshi t
University of Pennsylvania

In this paper, we have proposed novel methods for robust parsing that integrate the flexibility
of linguistically motivated lexical descriptions with the robustness of statistical techniques. Our
thesis is that the computation of linguistic structure can be localized iflexical items are associated
with rich descriptions (supertags) that impose complex constraints in a local context. The su-
pertags are designed such that only those elements on which the lexical item imposes constraints
appear within a given supertag. Further, each lexical item is associated with as many supertags
as the number of different syntactic contexts in which the lexical item can appear. This makes
the number of different descriptions for each lexical item much larger than when the descriptions
are less complex, thus increasing the local ambiguity for a parser. But this local ambiguity can
be resolved by using statistical distributions of supertag co-occurrences collected from a corpus
of parses. We have explored these ideas in the context of the Lexicalized Tree-Adjoining Gram-
mar (LTAG) framework. The supertags in LTAG combine both phrase structure information and
dependency information in a single representation. Supertag disambiguation results in a repre-
sentation that is effectively a parse (an almost parse), and the parser need "only" combine the
individual supertags. This method of parsing can also be used to parse sentence fragments such as
in spoken utterances where the disambiguated supertag sequence may not combine into a single
structure.

1. Introduction

In this paper, we present a robust parsing approach called supertagging that integrates
the flexibility of linguistically motivated lexical descriptions with the robustness of
statistical techniques. The idea under lying the approach is that the computat ion of
linguistic structure can be localized if lexical items are associated with rich descriptions
(supertags) that impose complex constraints in a local context. This makes the number
of different descriptions for each lexical item much larger than when the descriptions
are less complex, thus increasing the local ambiguity for a parser. However, this local
ambiguity can be resolved by using statistical distributions of supertag co-occurrences
collected from a corpus of parses. Supertag disambiguation results in a representation
that is effectively a parse (an almost parse).

In the linguistic context, there can be many ways of increasing the complexity of
descriptions of lexical items. The idea is to associate lexical items with descriptions that
allow for all and only those elements on which the lexical item imposes constraints to
be within the same description. Further, it is necessary to associate each lexical item
with as many descriptions as the number of different syntactic contexts in which the

* 180 Park Avenue, Florharn Park, NJ 07932. E-mail: srini@research.att.com
t Department of Computer and Information Sciences and Institute for Research in Cognitive Science,

University of Pennsylvania, Philadelphia, PA 19104. E-maih joshi@linc.cis.upenn.edu

(~) 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 2

lexical item can appear. This, of course, increases the local ambiguity for the parser.
The parser has to decide which complex description out of the set of descriptions
associated with each lexical item is to be used for a given reading of a sentence, even
before combining the descriptions together. The obvious solution is to put the burden
of this job entirely on the parser. The parser will eventually disambiguate all the de-
scriptions and pick one per lexical item, for a given reading of the sentence. However,
there is an alternate method of parsing that reduces the amount of disambiguation
done by the parser. The idea is to locally check the constraints that are associated
with the descriptions of lexical items to filter out incompatible descriptions. 1 During
this disambiguation, the system can also exploit statistical information that can be
associated with the descriptions based on their distribution in a corpus of parses.

We first employed these ideas in the context of Lexicalized Tree Adjoining gram-
mars (LTAG) in Joshi and Srinivas (1994). Although presented with respect to LTAG,
these techniques are applicable to other lexicalized grammars as well. In this paper, we
present vastly improved supertag disambiguation results--from previously published
68% accuracy to 92% accuracy using a larger training corpus and better smoothing
techniques. The layout of the paper is as follows: In Section 2, we present an overview
of the robust parsing approaches. A brief introduction to Lexicalized Tree Adjoining
grammars is presented in Section 3. Section 4 illustrates the goal of supertag disam-
biguation through an example. Various methods and their performance results for
supertag disambiguation are discussed in detail in Section 5 and Section 6. In Sec-
tion 7, we discuss the efficiency gained in performing supertag disambiguation before
parsing. A robust and lightweight dependency analyzer that uses the supertag out-
put is briefly presented in Section 8. In Section 9, we will discuss the applicability of
supertag disambiguation to other lexicalized grammars.

2. Related A p p r o a c h e s

In recent years, there have been a number of attempts at robust parsing of natural lan-
guage. They can be broadly categorized under two paradigms--finite-state-grammar-
based parsers and statistical parsers. We briefly present these two paradigms and
situate our approach to robust parsing relative to these paradigms.

2.1 Fin i te -State-Grammar-based Parsers
Finite-state-grammar-based approaches to parsing are exemplified by the parsing sys-
tems in Joshi, (1960), Abney (1990), Appelt et al. (1993), Roche (1993), Grishman (1995),
Hobbs et al. (1997), Joshi and Hopely (1997), and Karttunen et al. (1997). These sys-
tems use grammars that are represented as cascaded finite-state regular expression
recognizers. The regular expressions are usually hand-crafted. Each recognizer in the
cascade provides a locally optimal output. The output of these systems is mostly in the
form of noun groups and verb groups rather than constituent structure, often called
a s h a l l o w parse. There are no clause-level attachments or modifier attachments in the
shallow parse. These parsers always produce one output, since they use the longest-
match heuristic to resolve cases of ambiguity when more than one regular expression

1 The use of descriptions for primitives to capture constraints locally has a precursor in AI. The Waltz
algorithm (Waltz 1975) for labeling vertices of polygonal solid objects can be thought of in these terms.
Waltz made the description of vertices more complex by including information about the incident
edges, associated surfaces and other information. This increases the local ambiguity but the local
constraints on the complex descriptions are strong enough to efficiently disambiguate the descriptions.
Of course, Waltz did not use statistical information for disambiguation. See also Joshi (1998).

238

Bangalore and Joshi Supertagging

matches the input string at a given position. At present none of these systems use
any statistical information to resolve ambiguity. The grammar itself can be partitioned
into domain-independent and domain-specific regular expressions, which implies that
porting to a new domain would involve rewriting the domain-dependent expressions.
This approach has proved to be quite successful as a preprocessor in information
extraction systems (Hobbs et al. 1995; Grishman 1995).

2.2 Statistical Parsers
Pioneered by the IBM natural language group (Fujisaki et al. 1989) and later pursued
by, for example, Schabes, Roth, and Osborne (1993), Jelinek et al. (1994), Magerman
(1995), Collins (1996), and Charniak (1997), this approach decouples the issue of well-
formedness of an input string from the problem of assigning a structure to it. These
systems attempt to assign some structure to every input string. The rules to assign a
structure to an input are extracted automatically from hand-annotated parses of large
corpora, which are then subjected to smoothing to obtain reasonable coverage of the
language. The resultant set of rules are not linguistically transparent and are not easily
modifiable. Lexical and structural ambiguity is resolved using probability information
that is encoded in the rules. This allows the system to assign the most-likely structure
to each input. The output of these systems consists of constituent analysis, the degree
of detail of which is dependent on the detail of annotation present in the treebank that
is used to train the system.

There are also parsers that use probabilistic (weighting) information in conjunction
with hand-crafted grammars, for example, Black et al. (1993), Nagao (1994), Alshawi
and Carter (1994), and Srinivas, Doran, and Kulick (1995). In these cases the proba-
bilistic information is primarily used to rank the parses produced by the parser and
not so much for the purpose of robustness of the system.

3. Lexicalized Grammars

Lexicalized grammars are particularly well-suited for the specification of natural lan-
guage grammars. The lexicon plays a central role in linguistic formalisms such as LFG
(Kaplan and Bresnan 1983), GPSG (Gazdar et al. 1985), HPSG (Pollard and Sag 1987),
CCG (Steedman 1987), Lexicon Grammar (Gross 1984), LTAG (Schabes and Joshi 1991),
Link Grammar (Sleator and Temperley 1991), and some version of GB (Chomsky 1992).
Parsing, lexical semantics, and machine translation, to name a few areas, have all ben-
efited from lexicalization. Lexicalization provides a clean interface for combining the
syntactic and semantic information in the lexicon. We discuss the merits of lexical-
ization and other related issues in the context of partial parsing and briefly discuss
Feature-based Lexicalized Tree Adjoining Grammars (LTAGs) as a representative of
the class of lexicalized grammars.

Feature-based Lexicalized Tree Adjoining Grammar (FB-LTAG) (Joshi, Levy, and
Takahashi 1975; Vijay-Shanker 1987; Schabes, AbeillG and Joshi 1988; Vijay-Shanker
and Joshi 1991; Joshi and Schabes 1996) is a tree-rewriting grammar formalism unlike
context-free grammars and head grammars, which are string-rewriting formalisms.
The primitive elements of FB-LTAGs are called elementary trees. Each elementary tree
is associated with at least one lexical item on its frontier. The lexical item associated
with an elementary tree is called the anchor of that tree. An elementary tree serves as a
complex description of the anchor and provides a domain of locality over which the an-
chor can specify syntactic and semantic (predicate argument) constraints. Elementary
trees are of two kinds: (a) initial trees and (b) auxiliary trees. In an FB-LTAG gram-
mar for natural language, initial trees are phrase structure trees of simple sentences

239

Computational Linguistics Volume 25, Number 2

containing no recursion, while recursive structures are represented by auxiliary trees.
Elementary trees are combined by substitution and adjunction operations. The result
of combining the elementary trees is the derived tree and the process of combining the
elementary trees to yield a parse of the sentence is represented by the derivation tree.
The derivation tree can also be interpreted as a dependency tree with unlabeled arcs
between words of the sentence. A more detailed discussion of LTAGs with an example
and some of the key properties of elementary trees is presented in Appendix A.

4. Supertags

Part-of-speech disambiguation techniques (POS taggers) (Church 1988; Weischedel et
al. 1993; Brill 1993) are often used prior to parsing to eliminate (or substantially reduce)
the part-of-speech ambiguity. The POS taggers are all local in the sense that they use
information from a limited context in deciding which tag(s) to choose for each word.
As is well known, these taggers are quite successful.

In a lexicalized grammar such as the Lexicalized Tree Adjoining Grammar (LTAG),
each lexical item is associated with at least one elementary structure (tree). The elemen-
tary structures of LTAG localize dependencies, including long-distance dependencies,
by requiring that all and only the dependent elements be present within the same
structure. As a result of this localization, a lexical item may be (and, in general al-
most always is) associated with more than one elementary structure. We will call these
elementary structures supertags, in order to distinguish them from the standard part-
of-speech tags. Note that even when a word has a unique standard part of speech, say
a verb (V), there will usually be more than one supertag associated with this word.
Since there is only one supertag for each word (assuming there is no global ambiguity)
when the parse is complete, an LTAG parser (Schabes, Abeill6, and Joshi 1988) needs
to search a large space of supertags to select the right one for each word before com-
bining them for the parse of a sentence. It is this problem of supertag disambiguation
that we address in this paper.

Since LTAGs are lexicalized, we are presented with a novel opportunity to elimi-
nate or substantially reduce the supertag assignment ambiguity by using local informa-
tion, such as local lexical dependencies, prior to parsing. As in standard part-of-speech
disambiguation, we can use local statistical information in the form of n-gram models
based on the distribution of supertags in an LTAG parsed corpus. Moreover, since
the supertags encode dependency information, we can also use information about the
distribution of distances between a given supertag and its dependent supertags.

Note that as in standard part-of-speech disambiguation, supertag disambiguation
could have been done by a parser. However, carrying out part-of-speech disambigua-
tion prior to parsing makes the job of the parser much easier and therefore speeds
it up. Supertag disambiguation reduces the work of the parser even further. After
supertag disambiguation, we would have effectively completed the parse and the
parser need "only" combine the individual structures; hence the term "almost pars-
ing." This method can also be used to associate a structure to sentence fragments and
in cases where the supertag sequence after disambiguation may not combine into a
single structure.

4.1 Example of Supertagging
LTAGs, by virtue of possessing the Extended Domain of Locality (EDL) property, 2 as-
sociate with each lexical item, one elementary tree for each syntactic environment that

2 EDL is described in Appendix B.

240

Bangalore and Joshi Supertagging

Table 1
Examples of syntactic environments where the supertags shown in Figure 1 would be used.

Supertag Construction Example

al Nominal Predicative
a 2 Noun Phrase
a 3 Topicalization
a4 Adjectival Predicative
as Noun Phrase
fll Determiner
t2 Nominal Modifier
a 6 Nominal Predicative

Subject Extraction
a 7 Imperative
t3 Determiner
t4 Adjectival Modifier
as Nominal Predicative

Subject Extraction
a 9 Noun Phrase
al0 Nominal Predicative
c~11 Transitive Verb
a12 Adjectival Predicative

Subject Extraction
a13 Noun Phrase

this is the purchase
the price
Almost everything, the price includes
this is ancillary
the company
the company
purchase order
what is the price

include the share price
two hundred men
ancillary unit
which are the companies

purchases have not increased.
this is the price
the price includes everything
what is ancillary

companies have not been profitable

the lexical i tem m a y appear in. As a result, each lexical i tem is invar iably associated
with more than one e lementary tree. We call the e lementary structures associated wi th
each lexical i tem super par ts-of-speech (super POS) or supertags. 3 Figure 1 illustrates
a few e lementary trees associated wi th each word of the sentence: the purchase price
includes two ancillary companies. Table 1 provides an example context in which each
super tag shown in Figure 1 wou ld be used.

The example in Figure 2 illustrates the initial set of super tags assigned to each
word of the sentence: the purchase price includes two ancillary companies. The order of the
super tags for each lexical i tem in the example is not relevant. Figure 2 also shows
the final super tag sequence assigned by the supertagger, which picks the best su-
per tag sequence using statistical informat ion (described in Section 6) about individual
super tags and their dependencies on other supertags. The chosen super tags are com-
b ined to derive a parse. Without the supertagger, the parser wou ld have to process
combinat ions of the entire set of trees (at least the 17 trees shown); wi th it the parser
need only process combinat ions of 7 trees.

5. Reducing Supertag Ambiguity Using Structural Information

The structure of the super tag can be best seen as provid ing admissibil i ty constraints
on syntactic env i ronments in which it m a y be used. Some of these constraints can be
checked locally. The following are a few constraints that can be used to de termine the
admissibil i ty of a syntactic env i ronment for a supertag: 4

3 For the purpose of this paper, we suppress the features associated with the supertags.
4 Mitch Marcus pointed out that these tests are similar to the generalized shaper tests used in the

Harvard Predictive Analyzer (Kuno 1966).

241

Computational Linguistics Volume 25, Number 2

Sr

/N
NPo~ VP

V NP I

I I
N

t

¢3q

D NP*

the purchase

]~1 ~2

NP s, s, NP

NB s, i NPoJ- VP

~ ve

I " " ° , I
price I] companies ~haea, ~n~y

~2 0~3 Or4 a s

sq

/ ~ Sr Nr sq

NPo VP I~ o VP
] ~ N~ / ~ A NI a NPo vp
• 0 v ~ [/ / \ D D e t P ; I / ~

J I,, , Vl "* I " ; 7
[two ancillary I

Sq
NP Sr S ~ NP

I / x I
N v Nr, ~ .L v'/"NA~ N

I I I v NP,~ I I

I companies purchase p.~, ilKllld~ a~U)ary

~9 O~lO Q:II ~12 ~13

NP

D NP*

I
the

the

N~ NP s N r NP

N Nf* N ~ D DetP/* A N f* N

purchase price includes two ancillary companies

f12 0¢2 0t l l /33 /~4 0¢13

p u r c h a s e pr ice i n c l u d e s two a n c i l l a r y c o m p a n i e s .

Figure 1
A selection of the supertags associated with each word of the sentence: the purchase price
includes two ancillary companies.

Span of the supertag: Span of a supertag is the min imum number of
lexical items that the supertag can coven Each substitution site of a
supertag will cover at least one lexical item in the input. A simple rule
can be used to eliminate supertags based on the span constraint: if the
span of a supertag is larger than the input string, then the supertag
cannot be used in any parse of the input string.

242

Bangalore and Joshi Supertagging

Sent: the purchase price includes two ancillary companies.

Initial al OL2 0~3 a4 a5
Assignment fll f12 (3¢6 a7 f13 f14 a8

O~9 OL10 C~¢11 OL12 OL13

Final
Assignment 131 f12 a2 au /33 f14 a13

Figure 2
Supertag disambiguation for the sentence: the purchase price includes two ancillary
companies.

Table 2
Supertag ambiguity with and without the use of structural constraints.

System Total # of Words Average # of Supertags/Word

Without Structural Constraints 48,783 47.0
With Structural Constraints 48,783 25.0

• Left (Right) span constraint: If the span of the supertag to the left (right)
of the anchor is larger than the length of the string to the left (right) of
the word that anchors the supertag, then the supertag cannot be used in
any parse of the input string.

• Lexical items in the supertag: A supertag can be eliminated if the
terminals appearing on the frontier of the supertag do not appear in the
input string.

Supertags with the built-in lexical item by, that represent passive constructions are
typically eliminated from being considered during the parse of an active sentence.

More generally, these constraints can be used to eliminate supertags that cannot
have their features satisfied in the context of the input string. An example of this is
the elimination of supertag that requires a wh+ NP when the input string does not
contain wh-words.

Table 2 indicates the decrease in supertag ambiguity for 2,012 WSJ sentences
(48,763 words) by using the structural constraints relative to the supertag ambigu-
ity without the structural constraintsP

These filters prove to be very effective in reducing supertag ambiguity. The graph
in Figure 3 plots the number of supertags at the sentence level for sentences of length
2 to 50 words with and without the filters. As can be seen from the graph, the supertag
ambiguity is significantly lower when the filters are used. The graph in Figure 4 shows
the percentage drop in supertag ambiguity due to filtering for sentences of length 2 to
50 words. As can be seen, the average reduction in supertag ambiguity is about 50%.
This means that given a sentence, close to 50% of the supertags can be eliminated
even before parsing begins by just using structural constraints of the supertags. This
reduction in supertag ambiguity speeds up the parser significantly. In fact, the supertag

5 WSJ Section 20 of the Penn Treebank.

243

Computational Linguistics Volume 25, Number 2

of Supertgas x 103

2.80

2.60

2.40

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

A,U
i...."

, . . . " . . !
"V" " l . d i -d

i

I'V7
:i

- ,

.,. :" :" : " . i "" ... ~ i
. , . . , .

:

0.00 10.00 20.00 30.00 40.00 50.00

'Without Filters
XViiii'i~i//~rs"

Sentence Length

F igu re 3
C o m p a r i s o n of n u m b e r of s u p e r t a g s w i t h a n d w i t h o u t f i l ter ing for sen tences of l e n g t h 2 to 50
words .

ambiguity in XTAG system is so large that the parser is prohibitively slow without
the use of these filters.

Table 3 tabulates the reduction of supertag ambiguity due to the filters against
various parts of speech: Verbs in all their forms contribute most to the problem of
supertag ambiguity and most of the supertag ambiguity for verbs is due to light verbs
and verb particles. The filters are very effective in eliminating over 50% of the verb
anchored supertags.

Even though structural constraints are effective in reducing supertag ambiguity,
the search space for the parser is still sufficiently large. In the next few sections, we
present stochastic and rule-based approaches to supertag disambiguation.

6 The description of the part-of-speech tags is provided in Marcus, Santorini, and Marcinkiewicz (1993).

244

Bangalore and Joshi Supertagging

Percentage

80.00] ~ ~

75.130

70.00

65.00

60.00

,~oo III ~ ~ t , /i ~ / / / /
~,ii~o III / / / . / , \ .,,t,_ .. ?r-t,/ v I / ~ i \ , f HI
40.00 III l , / ~ '~I I lit
~,oo II ! l i l y

III I,,, ~,.oo IIII

ILl " " ~o.oo i ~ III

"°° II '~ I] 10.00]

,.oo II IIII
o.oo II _ , . IIII

Sentence Length
10.00 20.00 30.00 40.00 50.00

Figure 4
Percentage drop in the number of supertags with and without filtering for sentences of length
2 to 50 words.

6. Models, Data, Experiments, and Results

Before proceeding to discuss the various models for supertag disambiguation, we
would like to trace the time course of development of this work. We do this not only
to show the improvements made to the early work reported in our 1994 paper (Joshi
and Srinivas 1994), but also to explain the rationale for choosing certain models of
supertag disambiguation over others. We summarize the early work in the following
subsection.

6.1 Early Work
As reported in Joshi and Srinivas (1994), we experimented with a trigram model as
well as the dependency model for supertag disambiguation. The trigram model that
was trained on (part-of-speech, supertag) pairs, instead of (words, supertag) pairs,
collected from the LTAG derivations of 5,000 WSJ sentences and tested on 100 WSJ
sentences produced a correct supertag for 68% of the words in the test set. We have
since significantly improved the performance of the trigram model by using a larger

245

Computational Linguistics Volume 25, Number 2

Table 3
The effect of filters on supertag ambiguity tabulated against part of speech.

POS Average # of Supertags Average # of Supertags Percentage Drop
without Filters with Filters in Supertag Ambiguity

VBP 516.5 250.0 51.6
VB 435.8 224.9 48.4

VBD 209.0 100.7 51.8
VBN 188.2 74.7 60.3
MD 167.2 121.0 27.6
VBZ 165.1 71.6 56.6
VBG 100.7 49.8 50.5
RP 34.5 30.9 10.5
IN 24.3 20.9 14.0
JJS 23.8 12.7 46.9

WRB 23.1 14.3 38.2
JJR 22.7 14.2 37.7
JJ 21.7 13.5 37.9

20.0 10.7 46.6
NN 19.8 10.7 46.0

NNS 17.0 10.5 38.6
NNP 15.0 10.2 31.9
NNPS 15.0 10.2 32.1

LS 15.0 15.0 0.0
FW 15.0 15.0 0.0

-RRB- 15.0 10.7 28.4
-LRB- 15.0 12.3 18.0
RBR 14.9 9.5 36.3
RBS 14.9 6.1 59.2
CC 14.8 3.4 76.9
EX 14.0 5.8 58.7
CD 13.3 9.9 25.8
TO 11.3 10.8 4.5
PRP 10.7 5.3 50.2
UH 10.0 3.0 70.0
RB 10.0 5.3 46.4
" 6.0 3.2 46.7
: 5.5 3.2 42.1

PDT 5.4 4.9 9.0
WP 4.6 2.9 35.8
WP$ 4.0 1.8 56.2
DT 3.9 3.1 21.8

PRP$ 3.8 2.9 22.2
3.0 1.0 65.4

POS 2.5 2.1 13.9
WDT 1.2 1.1 5.5

training set and incorporating smoothing techniques. We present a detailed discussion
of the model and its performance on a range of corpora in Section 6.5. In Section 6.2,
we briefly mention the dependency model of supertagging that was reported in the
earlier work.

6.2 Dependency Model
In an n-gram model for disambiguat ing supertags, dependencies between supertags
that appear beyond the n-word w i n d o w cannot be incorporated. This limitation can
be overcome if no a priori bound is set on the size of the w i n d o w but instead a

246

Bangalore and Joshi Supertagging

probability distribution of the distances of the dependent supertags for each supertag
is maintained. We define dependency between supertags in the obvious way: A su-
pertag is dependent on another supertag if the former substitutes or adjoins into the
latter. Thus, the substitution and the foot nodes of a supertag can be seen as specify-
ing dependency requirements of the supertag. The probability with which a supertag
depends on another supertag is collected from a corpus of sentences annotated with
derivation structures. Given a set of supertags for each word and the dependency
information between pairs of supertags, the objective of the dependency model is to
compute the most likely dependency linkage that spans the entire string. The result
of producing the dependency linkage is a sequence of supertags, one for each word
of the sentence along with the dependency information.

Since first reported in Joshi and Srinivas (1994), we have not continued experiments
using this model of supertagging, primarily for two reasons. We are restrained by
the lack of a large corpus of LTAG parsed derivation structures that is needed to
reliably estimate the various parameters of this model. We are currently in the process
of collecting a large LTAG parsed WSJ corpus, with each sentence annotated with
the correct derivation. A second reason for the disuse of the dependency model for
supertagging is that the objective of supertagging is to see how far local techniques can
be used to disambiguate supertags even before parsing begins. The dependency model,
in contrast, is too much like full parsing and is contrary to the spirit of supertagging.

6.3 N-gram Models with Smoothing
We have improved the performance of the trigram model by incorporating smoothing
techniques into the model and training the model on a larger training corpus. We
have also proposed some new models for supertag disambiguation. In this section,
we discuss these developments in detail.

Two sets of data are used for training and testing the models for supertag dis-
ambiguation. The first set has been collected by parsing the Wall Street Journal 7, IBM
Manual, and ATIS corpora using the wide-coverage English grammar being developed
as part of the XTAG system (Doran et al. 1994). The correct derivation from all the
derivations produced by the XTAG system was picked for each sentence from these
corpora.

The second and larger data set was collected by converting the Penn Treebank
parses of the Wall Street Journal sentences. The objective was to associate each lexical
item of a sentence with a supertag, given the phrase structure parse of the sentence.
This process involved a number of heuristics based on local tree contexts. The heuris-
tics made use of information about the labels of a word's dominating nodes (parent,
grandparent, and great-grandparent), labels of its siblings (left and right) and siblings
of its parent. An example of the result of this conversion is shown in Figure 5. It
must be noted that this conversion is not perfect and is correct only to a first order
of approximation owing mostly to errors in conversion and lack of certain kinds of
information such as distinction between adjunct and argument preposition phrases,
in the Penn Treebank parses. Even though the converted supertag corpus can be re-
fined further, the corpus in its present form has proved to be an invaluable resource
in improving the performance of the supertag models as is discussed in the following
sections.

7 Sentences of length < 15 words.

247

Computational Linguistics Volume 25, Number 2

(("S"
("NP-SBJ" ("NNP Mr.") ("NNP Vinken"))
("VP" ("VBZ is")
("NP-PRD"
("NP" ("NN chairman"))
("PP" ("IN of")
("NP"
("NP" ("NNP Elsevier") ("NNP N.V."))
(- ,,)

("NP" ("DT the") ("NNP Dutch") ("VBG"
"))))))

(,,.,,)))

"publishing") ("NN" "group

Mr.//NNP//B_Nn
Vinken//NNP//A_NXN
is//VBZ//B_Vvx
chairman//NN//A_nx0Nl
of//IN//B nxPnx
Elsevier//NNP//B_Nn
N.V.//NNP//A_NXN
,//,//B_nxPUnxpu
the//DT//B_Dnx
Dutch//NNP//B_Nn
publishing//VBG//B_Vn
group//NN//A_NXN
.//.//B_sPU

(noun modifier)
(head noun)
(auxiliary verb)
(predicative noun)
(noun-attached preposition)
(noun modifier)
(head noun)
(appositive comma)
(determiner)
(noun modifier)
(participle verb, nominal modifier)
(head noun)
(sentence punctuation)

Figure 5
The phrase structure tree and the supertags obtained from the phrase structure tree for the
WSJ sentence: Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

6.4 Unigram Model
Using structural information to filter out supertags that cannot be used in any parse
of the input string reduces the supertag ambiguity but obviously does not eliminate
it completely. One method of disambiguating the supertags assigned to each word
is to order the supertags by the lexical preference that the word has for them. The
frequency with which a certain supertag is associated with a word is a direct measure
of its lexical preference for that supertag. Associating frequencies with the supertags
and using them to associate a particular supertag with a word is clearly the simplest
means of disambiguating supertags. Therefore a unigram model is given by:

where

Supertag(wi) -- tk 9 argmaxtkPr(tk I wi). (1)

frequency(tk, wi)
Pr(tk l wi) = frequency(wi) (2)

Thus, the most frequent supertag that a word is associated with in a training
corpus is selected as the supertag for the word according to the unigram model. For
the words that do not appear in the training corpus we back off to the part of speech
of the word and use the most frequent supertag associated with that part of speech
as the supertag for the word.

248

Bangalore and Joshi Supertagging

Table 4
Results from the unigram supertag model.

Data Set Training Set Test Set Top n Supertags % Success

XTAG Parses 8,000 3,000 n = 1 73.4%
n = 2 80.2%
n = 3 80.8%

Converted Penn Treebank Parses 1,000,000 47,000 n = I 77.2%
n = 2 87.0%
n = 3 91.5%

6.4.1 Experiments and Results. We tested the performance of the unigram model on
the previously discussed two sets of data. The words are first assigned standard parts
of speech using a conventional tagger (Church 1988) and then are assigned supertags
according to the unigram model. A word in a sentence is considered correctly su-
pertagged if it is assigned the same supertag as it is associated with in the correct
parse of the sentence. The results of these experiments are tabulated in Table 4.

Although the performance of the unigram model for supertagging is significantly
lower than the performance of the unigram model for part-of-speech tagging (91%
accuracy), it performed much better than expected considering the size of the supertag
set is much larger than the size of part-of-speech tag set. One of the reasons for this
high performance is that the most frequent supertag for the most frequent words--
determiners, nouns, and auxiliary verbs--is the correct supertag most of the time.
Also, backing off to the part of speech helps in supertagging unknown words, which
most often are nouns. The bulk of the errors committed by the unigram model is
incorrectly tagged verbs (subcategorization and transformation), prepositions (noun
attached vs. verb attached) and nouns (head vs. modifier noun).

6.5 N-gram Model
We first explored the use of trigram model of supertag disambiguation in Joshi and
Srinivas (1994). The trigram model was trained on (part-of-speech, supertag) pairs
collected from the LTAG derivations of 5,000 WSJ sentences and tested on 100 WSJ
sentences. It produced a correct supertag for 68% of the words in the test set. A major
drawback of this early work was that it used no lexical information in the supertagging
process as the training material consisted of (part-of-speech, supertag) pairs. Since that
early work, we have improved the performance of the model by incorporating lexical
information and sophisticated smoothing techniques, as well as training on larger
training sets. In this section, we present the details and the performance evaluation of
this model.

In a unigram model, a word is always associated with the supertag that is most
preferred by the word, irrespective of the context in which the word appears. An
alternate method that is sensitive to context is the n-gram model. The n-gram model
takes into account the contextual dependency probabilities between supertags within
a window of n words in associating supertags to words. Thus, the most probable
supertag sequence for an n-word sentence is given by:

= argmaxTPr(T1, T2 TN) * Pr(W1, W2,... , WN I T1, T2 TN) (3)

where Ti is the supertag for word Wi.

249

Computational Linguistics Volume 25, Number 2

To compute this using only local information, we approximate, assuming that the
probability of a word depends only on its supertag

N

Pr(W1, W2 WN I T1, T2 TN) ~ I I Pr(Wi l Ti) (4)
i=1

and also use an n-gram (trigram, in this case) approximation

N

Pr(T1, T2 TN) ,,~ 1-I Pr(Ti I Zi-2, Zi-1) (5)
i=1

The term Pr(Ti I Ti-2, Ti-1) is known as the contextual probability since it indicates
the size of the context used in the model and the term Pr(Wi I Ti) is called the word
emit probability since it is the probability of emitting the word Wi given the tag Ti.
These probabilities are estimated using a corpus where each word is tagged with its
correct supertag.

The contextual probabilities were estimated using the relative frequency estimates
of the contexts in the training corpus. To estimate the probabilities for contexts that
do not appear in the training corpus, we used the Good-Turing discounting technique
(Good 1953) combined with Katz's back off model (Katz 1987). The idea here is to
discount the frequencies of events that occur in the corpus by an amount related to
their frequencies and utilize this discounted probability mass in the back off model to
distribute to unseen events. Thus, the Good-Turing discounting technique estimates
the frequency of unseen events based on the distribution of the frequency of the counts
of observed events in the corpus. If r is the observed frequency of an event, and Nr
is the number of events with the observed frequency r, and N is the total number
of events, then the probability of an unseen event is given by N1/N. Furthermore,
the frequencies of the observed events are adjusted so that the total probability of all
events sums to one. The adjusted frequency for observed events, r*, is computed as

Nr+l
r * = (r + l) * Nr (6)

Once the frequencies of the observed events are discounted and the frequencies
for unseen events are estimated, Katz's back off model is used. In this technique, if the
observed frequency of an < n-gram, supertag> sequence is zero then its probability
is computed based on the observed frequency of an (n - 1)-gram sequence. Thus,

15r(T3IT1, T2) = Pr(T3]T1, T2) if Pr(T31T1, T2) > 0

= a(T1, T2) * Pr(T31T2) if Pr(T21T1) > 0
= Pr(T31T2) otherwise

Pr(T2IT1) = Pr(T2IT1) if Pr(T2IT1) > 0
= fl(T1) * Prl(T2) otherwise

where a(Ti, Tj) and fl(Tk) are constants to ensure that the probabilities sum to one.
The word emit probability for the (word, supertag) pairs that appear in the training

corpus is computed using the relative frequency estimates as shown in Equation 7. For
the (word, supertag) pairs that do not appear in the corpus, the word emit probability
is estimated as shown in Equation 8. Some of the word features used in our imple-

250

Bangalore and Joshi Supertagging

mentation include prefixes and suffixes of length less than or equal to three characters,
capitalization, and digit features.

N(Wi, Ti)
Pr(WdTi) - N(Ti) if N(Wi, Ti) > 0 (7)

= Pr(UNKITi) • Pr(word_features(Wi)[Ti) otherwise (8)

The counts for the (word, supertag) pairs for the words that do not appear in the
corpus is estimated using the leaving-one-out technique (Niesler and Woodland 1996;
Ney, Essen, and Kneser 1995). A token UNK is associated with each supertag and its
count NUN K is estimated by:

NI(Tj)
Pr(UNK[Tj) -

N(Tj) + ~]

Pr(UNKITj) • N(Tj)
NUNK(Tj) = 1 -- PF(UNKITj)

where NI(Tj) is the number of words that are associated with the supertag Tj that
appear in the corpus exactly once. N(Tj) is the frequency of the supertag Tj and
NUNK(Tj) is the estimated count of UNK in Tj. The constant 7/is introduced so as to
ensure that the probability is not greater than one, especially for supertags that are
sparsely represented in the corpus.

We use word features similar to the ones used in Weischedel et al. (1993), such
as capitalization, hyphenation, and endings of words, for estimating the word emit
probability of unknown words.

6.5.1 Experiments and Results. We tested the performance of the trigram model on
various domains such as the Wall Street Journal (WSJ), the IBM Manual corpus and the
ATIS corpus. For the IBM Manual corpus and the ATIS domains, a supertag annotated
corpus was collected using the parses of the XTAG system (Doran et al. 1994) and
selecting the correct analysis for each sentence. The corpus was then randomly split
into training and test material. Supertag performance is measured as the percentage
of words that are correctly supertagged by a model when compared with the key for
the words in the test corpus.

Experiment 1: (Performance on the Wall Street Journal corpus). We used the two sets of
data, from the XTAG parses and from the conversion of the Penn Treebank parses to
evaluate the performance of the trigram model. Table 5 shows the performance on the
two sets of data. The first data set, data collected from the XTAG parses, was split
into 8,000 words of training and 3,000 words of test material. The data collected from
converting the Penn Treebank was used in two experiments differing in the size of the
training corpus--200,000 words 8 and 1,000,000 words9--and tested on 47,000 words 1°.
A total of 300 different supertags were used in these experiments.

Experiment 2: (Performance on the IBM Manual Corpus and ATIS). For testing the perfor-
mance of the trigram supertagger on the IBM Manual corpus, a set of 14,000 words

8 Sentences in wsJ Sections 15 through 18 of Penn Treebank.
9 Sentences in WSJ Sections 00 through 24, except Section 20 of Penn Treebank.

10 Sentences in WSJ Section 20 of Penn Treebank.

251

Computational Linguistics Volume 25, Number 2

Table 5
Performance of the supertagger on the WSJ corpus.

Data Set Size of Training Size of
Training Set Test Set

(Words) (Words)

% Correct

XTAG Parses 8,000 Unigram 3,000 73.4%
(Baseline)
Trigram 3,000 86.0%

Converted 200,000 Unigram
Penn Treebank (Baseline) 47,000 75.3%

Parses Trigram 47,000 90.9%
1,000,000 Unigram

(Baseline) 47,000 77.2%
Trigram 47,000 92.2%

Table 6
Performance of the supertagger on the IBM Manual corpus and ATIS corpus.

Corpus Size of Training Set (Words) Training Size of Test Set (Words) % Correct

IBM Manual 14,000 Unigram
(Baseline) 1,000 77.8%
Trigram 1,000 90.3%

ATIS 1,500 Unigram
(Baseline) 400 85.7%
Trigram 400 93.8%

correctly supertagged was used as the training corpus and a set of 1,000 words was
used as a test corpus. The performance of the supertagger on this corpus is shown
in Table 6. Performance on the ATIS corpus was evaluated using a set of 1,500 words
correctly supertagged as the training corpus and a set of 400 words as a test corpus.
The performance of the supertagger on the ATIS corpus is also shown in Table 6.

As expected, the performance on the ATIS corpus is higher than that of the WSJ
and the IBM Manual corpus despite the extremely small training corpus. Also, the
performance of the IBM Manual corpus is better than the WSJ corpus when the size
of the training corpus is taken into account. The baseline for the ATIS domain is
remarkably high due to the repetitive constructions and limited vocabulary in that
domain. This is also true for the IBM Manual corpus, although to a lesser extent.
The trigram model of supertagging is attractive for limited domains since it performs
quite well with relatively insignificant amounts of training material. The performance
of the supertagger can be improved in an iterative fashion by using the supertagger
to supertag larger amounts of training material, which can be quickly hand-corrected
and used to train a better-performing supertagger.

6.5.2 Effect o f Lexica l v e r s u s C o n t e x t u a l I n f o r m a t i o n . Lexical information contributes
most to the performance of a POS tagger, since the baseline performance of assigning
the most likely POS for each word produces 91% accuracy (Brill 1993). Contextual
information contributes relatively a small amount towards the performance, improv-
ing it from 91% to 96-97%, a 5.5% improvement. In contrast, contextual information
has greater effect on the performance of the supertagger. As can be seen, from the
above experiments, the baseline performance of the supertagger is about 77% and the
performance improves to about 92% with the inclusion of contextual information, an

252

Bangalore and Joshi Supertagging

improvement of 19.5%. The relatively low baseline performance for the supertagger
is a direct consequence of the fact that there are many more supertags per word than
there are POS tags. Further, since many combinations of supertags are not possible,
contextual information has a larger effect on the performance of the supertagger.

6.6 Error-driven Transformation-based Tagger
In an error-driven transformation-based (EDTB) tagger (Brill 1993), a set of pattern-
action templates that include predicates that test for features of words appearing in
the context of interest are defined. These templates are then instantiated with the ap-
propriate features to obtain transformation rules. The effectiveness of a transformation
rule to correct an error and the relative order of application of the rules are learned
using a corpus. The learning procedure takes a gold corpus in which the words have
been correctly annotated and a training corpus that is derived from the gold corpus by
removing the annotations. The objective in the learning phase is to learn the optimum
ordering of rule applications so as to minimize the number of tag mismatches between
the training and the reference corpus.

6.6.1 Experiments and Results. A EDTB model has been trained using templates
defined on a three-word window. We trained the templates on 200,000 words 11 and
tested on 47,000 words 12 of the WSJ corpus. The model performed at an accuracy of
90%. The EDTB model provides a great deal of flexibility to integrate domain-specific
and linguistic information into the model. However, a major drawback of this approach
is that the training procedure is extremely slow, which prevented us from training on
the 1,000,000 word corpus.

7. Supertagging before Parsing

The output of the supertagger, an almost parse, has been used in a variety of applica-
tions including information retrieval (Chandrasekar and Srinivas 1997b, 1997c, 1997d)
and information extraction (Doran et al. 1997), text simplification (Chandrasekar, Do-
ran, and Srinivas 1996, Chandrasekar and Srinivas 1997a), and language modeling
(Srinivas 1996) to illustrate that supertags provide an appropriate level of lexical de-
scription needed for most applications.

The output of the supertagger has also been used as a front end to a lexicalized
grammar parser. As mentioned earlier, a lexicalized grammar parser can be conceptu-
alized to consist of two stages (Schabes, AbeillG and Joshi 1988). In the first stage, the
parser looks up the lexicon and selects all the supertags associated with each word of
the sentence to be parsed. In the second stage, the parser searches the lattice of selected
supertags in an attempt to combine them using substitution and adjunction operations
so as to yield a derivation that spans the input string. At the end of the second stage,
the parser would not only have parsed the input, but would have associated a small
set of (usually one) supertags with each word.

The supertagger can be used as a front end to a lexicalized grammar parser so
as to prune the search-space of the parser even before parsing begins. It should be
clear that by reducing the number of supertags that are selected in the first stage, the
search-space for the second stage can be reduced significantly and hence the parser
can be made more efficient. Supertag disambiguation techniques, as discussed in the

11 WSJ Sections 15 to 18 of the Penn Treebank.
12 WSJ Section 20 of the Penn Treebank.

253

Computational Linguistics Volume 25, Number 2

Table 7
Performance improvement of 3-best supertagger over the 1-best supertagger on the WSJ
corpus.

Data Set Size of Size of Training % Correct
Test Set Training Set
(Words) (Words)

Converted
Penn Treebank

Parses

47,000 200,000

1,000,000

Trigram 90.9%
(Best Supertag)

Trigram 95.8%
(3-Best Supertags)

Trigram 92.2%
(Best Supertag)

Trigram 97.1%
(3-Best Supertags)

previous sections, attempt to disambiguate the supertags selected in the first pass,
based on lexical preferences and local lexical dependencies, so as to ideally select one
supertag for each word. Once the supertagger selects the appropriate supertag for
each word, the second stage of the parser is needed only to combine the individual
supertags to arrive at the parse of the input. Tested on about 1,300 WSJ sentences with
each word in the sentence correctly supertagged, the LTAG parser took approximately
4 seconds per sentence to yield a parse (combine the supertags and perform feature
unification). In contrast, the same 1,300 WSJ sentences without the supertag annotation
took nearly 120 seconds per sentence to yield a parse. Thus the parsing speedup gained
by this integration is a factor of about 30.

In the XTAG system, we have integrated the trigram supertagger as a front end to
an LTAG parser to pick the appropriate supertag for each word even before parsing
begins. However, a drawback of this approach is that the parser would fail completely
if any word of the input is incorrectly tagged by the supertagger. This problem could be
circumvented to an extent by extending the supertagger to produce n-best supertags
for each word. Although this extension would increase the load on the parser, it
would certainly improve the chances of arriving at a parse for a sentence. In fact,
Table 7 presents the performance of the supertagger that selects, at most, the top three
supertags for each word. The optimum number of supertags to output to balance
the success rate of the parser against the efficiency of the parser must be determined
empirically.

A more serious limitation of this approach is that it fails to parse ill-formed and
extragrammatical strings such as those encountered in spoken utterances and unre-
stricted texts. This is due to the fact that the Earley-style LTAG parser attempts to
combine the supertags to construct a parse that spans the entire string. In cases where
the supertag sequence for a string cannot be combined into a unified structure, the
parser fails completely. One possible extension to account for ill-formed and extra-
grammatical strings is to extend the Earley parser to produce partial parses for the
fragments whose supertags can be combined. An alternate method of computing de-
pendency linkages robustly is presented in the next section.

8. Lightweight Dependency Analyzer

Supertagging associates each word with a unique supertag. To establish the depen-
dency links among the words of the sentence, we exploit the dependency requirements

254

Bangalore and Joshi Supertagging

encoded in the supertags. Substitution nodes and foot nodes in supertags serve as slots
that must be filled by the arguments of the anchor of the supertag. A substitution slot
of a supertag is filled by the complements of the anchor while the foot node of a
supertag is filled by a word that is being modified by the supertag. These argument
slots have a polarity value reflecting their orientation with respect to the anchor of
the supertag. Also associated with a supertag is a list of internal nodes (including
the root node) that appear in the supertag. Using the structural information coupled
with the argument requirements of a supertag, a simple heuristic-based, linear time,
deterministic algorithm (which we call a lightweight dependency analyzer (LDA))
produces dependency linkages not necessarily spanning the entire sentence. The LDA
can produce a number of partial linkages, since it is driven primarily by the need to
satisfy local constraints without being driven to construct a single dependency link-
age that spans the entire input. This, in fact, contributes to the robustness of LDA and
promises to be a useful tool for parsing sentence fragments that are rampant in speech
utterances, as exemplified by the Switchboard corpus.

Tested on section 20 of the Wall Street Journal corpus, which contained 47,333
dependency links in the gold standard, the LDA, trained on 200,000 words, produced
38,480 dependency links correctly, resulting in a recall score of 82.3%. Also, a total of
41,009 dependency links were produced by the LDA, resulting in a precision score of
93.8%. A detailed evaluation of the LDA is presented in Srinivas (1997b).

9. Applicability of Supertagging to other Lexicalized Grammars

Although we have presented supertagging in the context of LTAG, it is applicable to
other lexicalized grammar formalisms such as CCG (Steedrnan 1997), HPSG (Pollard
and Sag 1987), and LFG (Kaplan and Bresnan 1983). We have implemented a broad
coverage CCG grammar (Doran and Srinivas 1994) containing about 80 categories
based on the XTAG English grammar. These categories have been used to tag the
same training and test corpora used in the supertagging experiments discussed in this
paper and a supertagger to disambiguate the CCG categories has been developed. We
are presently analyzing the performance of the supertagger using the LTAG trees and
the CCG categories.

The idea of supertagging can also be applied to a grammar in HPSG formalism
indirectl~ by compiling the HPSG grammar into an LTAG grammar (Kasper et al.
1995). A more direct approach would be to tag words with feature structures that
represent supertags (Kempe 1994). For LFG, the lexicalized subset of fragments used
in the LFG-DOP model (Bod and Kaplan 1998) can be seen as supertags.

An approach that is closely related to supertagging is the reductionist approach to
parsing that is being carried out under the Constraint Grammar framework (Karlsson
et al. 1994; Voutilainen 1994; Tapanainen and J/irvinen 1994). In this framework, each
word is associated with the set of possible functional tags that it may be assigned
in the language. This constitutes the lexicon. The grammar consists of a set of rules
that eliminate functional tags for words based on the context of a sentence. Parsing
a sentence in this framework amounts to eliminating as many implausible functional
tags as possible for each word, given the context of the sentence. The resultant out-
put structure might contain significant syntactic ambiguity, which may not have been
eliminated by the rule applications, thus producing almost parses. Thus, the reduc-
tionist approach to parsing is similar to supertagging in that both view parsing as
tagging with rich descriptions. However, the key difference is that the tagging is done
in a probabilistic setting in the supertagging approach while it is rule based in the
constraint grammar approach.

255

Computational Linguistics Volume 25, Number 2

We are currently developing supertaggers for other languages. In collaboration
with Anne Abeill~ and Marie-Helene Candito of the University of Paris, using their
French TAG grammar, we have developed a supertagger for French. We are currently
working on evaluating the performance of this supertagger. Also, the annotated cor-
pora necessary for training supertaggers for Korean and Chinese are under develop-
ment at the University of Pennsylvania.

A version of the supertagger trained on the WSJ corpus is available under GNU
Public License from http: / / www.cis.upenn.edu / ~xtag / swrelease.html.

10. Conclusions

In this paper, we have presented a novel approach to robust parsing distinguished from
the previous approaches to robust parsing by integrating the flexibility of linguistically
motivated lexical descriptions with the robustness of statistical techniques. By associat-
ing rich descriptions (supertags) that impose complex constraints in a local context, we
have been able to use local computational models for effective supertag disambigua-
tion. A trigram supertag disambiguation model, trained on 1,000,000 (word, supertag)
pairs of the Wall Street Journal corpus, performs at an accuracy level of 92.2%. After
disambiguation, we have effectively completed the parse of the sentence, creating an
almost parse, in that the parser need only combine the selected structures to arrive at
a parse for the sentence. We have presented a lightweight dependency analyzer (LDA)
that takes the output of the supertagger and uses the dependency requirements of the
supertags to produce a dependency linkage for a sentence. This method can also serve
to parse sentence fragments in cases where the supertag sequence after disambigua-
tion may not combine to form a single structure. This approach is applicable to all
lexicalized grammar parsers.

Appendix A: Feature-based Lexicalized Tree Adjoining Grammar

Feature-based Lexicalized Tree Adjoining Grammar (FB-LTAG) is a tree-rewriting gram-
mar formalism, unlike context-free Grammars and head grammars, which are string-
rewriting formalisms. FB-LTAGs trace their lineage to Tree Adjunct Grammars (TAGs),
which were first developed in Joshi, Lev36 and Takahashi (1975) and later extended
to include unification-based feature structures (Vijay-Shanker 1987; Vijay-Shanker and
Joshi 1991) and lexicalization (Schabes, AbeillG and Joshi 1988). For a more recent and
comprehensive reference, see Joshi and Schabes (1996).

The primitive elements of FB-LTAGs are called elementary trees. Each elemen-
tary tree is associated with at least one lexical item on its frontier. The lexical item
associated with an elementary tree is called the anchor of that tree. An elementary
tree serves as a complex description of the anchor and provides a domain of locality
over which the anchor can specify syntactic and semantic (predicate argument) con-
straints. Elementary trees are of two kinds: (a) Initial Trees and (b) Auxiliary Trees. In
an FB-LTAG grammar for natural language, initial trees are phrase structure trees of
simple sentences containing no recursion, while recursive structures are represented
by auxiliary trees.

Examples of initial trees (c~s) and auxiliary trees (fls) are shown in Figure 6. Nodes
on the frontier of initial trees are marked as substitution sites by a "1", while exactly
one node on the frontier of an auxiliary tree, whose label matches the label of the root
of the tree, is marked as a foot node by a ",". The other nodes on the frontier of an
auxiliary tree are marked as substitution sites.

Each node of an elementary tree is associated with two feature structures (FS),

256

Bangalore and Joshi Supertagging

Detl~]

I
D [agr: <I> []]

['":[=: :""i
I

the

m,[]
[agr: <1>]

DetP$ [agr: <I> []] N [agr: <l:q

Lnum : sing]]

I
company

S~ [mode : iud~mpl

ode : <4:~

,x~p,$ [agr: <3> [I VP [.gr: <3,]
tmoa, : <4> []
agr : <1>]

ode : <2>J

I
I agr: <'>[] /
[mode : <2> ppartJ
[mode: ppart]

I
acquired

o¢2 ~3

VPr[]
~ : < l > [l]

ode : <2> []J

v[~,: <1> 1 vP. []
[mode: <2>j [mode: ge~
~gode : ind 1

Inum: sing~
[3rdsing : +]J

I
is

w , []
agr: <1> []]

ode : <2> []]

V[agr:<~> 1 VP* []
[mode: <2> 1 [mode: ppart]
[mode" geq

I
being

B 1

Figure 6
Elementary trees for the sentence: the company is being acquired.

B2

the top and the bottom. The bot tom FS contains information relating to the subtree
rooted at the node, and the top FS contains information relating to the supertree at
that node. 13 Features may get their values f rom three different sources:

• Morphology of anchor: f rom the morphological information of the lexical
items that anchor the tree.

• Structural characteristics: from the structure of the tree itself (for

13 N o d e s m a r k e d for subs t i t u t i on are assoc ia ted w i t h on ly the top FS.

257

Computational Linguistics Volume 25, Number 2

(b)

Figure 7
Substitution and adjunction in LTAG.

example, the mode = ind/ imp feature on the root node in the c~3 tree in
Figure 6).

The derivation process: from unification with features from trees that
adjoin or substitute.

Elementary trees are combined by substitution and adjunction operations. Sub-
stitution inserts elementary trees at the substitution nodes of other elementary trees.
Figure 7(a) shows two elementary trees and the tree resulting from the substitution
of one tree into the other. In this operation, a node marked for substitution in an
elementary tree is replaced by another elementary tree whose root label matches the
label of the node. The top FS of the resulting node is the result Of unification of the
top features of the two original nodes, while the bottom FS of the resulting node is
simply the bottom features of the root node of the substituting tree.

In an adjunction operation, an auxiliary tree is inserted into an elementary tree.
Figure 7(b) shows an auxiliary tree adjoining into an elementary tree and the result
of the adjunction. The root and foot nodes of the auxiliary tree must match the node
label at which the auxiliary tree adjoins. The node being adjoined to splits, and its top
FS unifies with the top FS of the root node of the auxiliary tree, while its bottom FS
unifies with the bottom FS of the foot node of the auxiliary tree. Figure 7(b) shows
an auxiliary tree and an elementary tree, and the tree resulting from an adjunction
operation. For a parse to be well-formed, the top and bottom FS at each node should
be unified at the end of a parse.

The result of combining the elementary trees shown in Figure 6 is the derived
tree, shown in Figure 8(a). The process of combining the elementary trees to yield a
parse of the sentence is represented by the derivation tree, shown in Figure 8(b). The
nodes of the derivation tree are the tree names that are anchored by the appropriate
lexical items. The combining operation is indicated by the type of the arcs (a broken
line indicates substitution and a bold line indicates adjunction) while the address of
the operation is indicated as part of the node label. The derivation tree can also be
interpreted as a dependency tree with unlabeled arcs between words of the sentence,
as shown in Figure 8(c).

A broad-coverage grammar system, XTAG, has been implemented in the LTAG
formalism. In this section, we briefly discuss some aspects related to XTAG for the
sake of completeness. A more detailed report on XTAG can be found in XTAG-Group
(1995). The XTAG system consists of a morphological analyzer, a part-of-speech tag-
ger, a wide-coverage LTAG English grammar, a predictive left-to-right Earley-style
parser for LTAG (Schabes 1990), and an X-windows interface for grammar develop-
ment (Doran et al. 1994). The input sentence is subjected to morphological analysis

258

Bangalore and Joshi Supertagging

Sr [agr : <1> [3rdsing : 4
/ I " m : singll

[mode : <2> lnd J

[agr: <1>] llrPr [agr: <1> 1
[mode : <2:>]

DeIP [agr: <1>] N [agr: <1>] V [agr: <1>] VP [:~ , <.3> c~ 1
[mode : <2>J tmode : <4> ge~

[mode : <4>J [mode : <6> ppartJ

[i I
[mode : <6>J

I
acquired

(~)

~nx lV [acquired] acquired

aNXdxN [company] ~Vvx [being] company being

! I I I
~DXD [the] fWvx [is] the is

(b) (c)

Figure 8
(a) Derived tree, (b) derivation tree, and (c) dependency tree for the sentence: the company is
being acquired.

and is tagged with parts of speech before being sent to the parser. The parser retrieves
the elementary trees that the words of the sentence anchor and combines them by
adjunction and substitution operations to derive a parse of the sentence. The gram-
mar of XTAG has been used to parse sentences from ATIS, IBM Manual and WSJ
corpora (TAG-Group 1995). The resulting XTAG corpus contains sentences from these
domains along with all the derivations for each sentence. The derivations provide

259

Computational Linguistics Volume 25, Number 2

predicate argument relationships for the parsed sentences.

Appendix B: Key Properties of LTAGs

In this section, we define the key properties of LTAGs: lexicalization, Extended Domain
of Locality (EDL), and factoring of recursion from the domain of dependency (FRD),
and discuss how these properties are realized in natural language grammars written
in LTAGs. A more detailed discussion about these properties is presented in Joshi
(1985, 1987), Kroch and Joshi (1985), Schabes, AbeillG and Joshi (1988), and Joshi and
Schabes (1996).

Definition
A grammar is lexicalized if it consists of:

• a finite set of elementary structures (strings, trees, directed acyclic
graphs, etc.), each structure anchored on a lexical item.

• lexical items, each associated with at least one of the elementary
structures of the grammar

• a finite set of operations combining these structures.

This property proves to be linguistically crucial since it establishes a direct link
between the lexicon and the syntactic structures defined in the grammar. In fact, in lex-
icalized grammars all we have is the lexicon, which projects the elementary structures
of each lexical item; there is no independent grammar.

Definition
The Extended Domain of Locality (EDL) property has two parts:

.

.

Every elementary structure must contain all and only the arguments of
the anchor in the same structure.

For each lexical item, the grammar must contain an elementary structure
for each syntactic environment the lexical item might appear in.

Part (1) of EDL allows the anchor to impose syntactic and semantic constraints on
its arguments directly since they appear in the same elementary structure that it an-
chors. Hence, all elements that appear within one elementary structure are considered
to be local. This property also defines how large an elementary structure in a grammar
can be. Figure 9 shows trees for the following example sentences:

(1)

(2)

(3)

John seems to like Mary.

John hit Mary.

Who did John hit?

Figure 9(a) shows the elementary tree anchored by s e e m that is used to derive a raising
analysis for sentence 1. Notice that the elements appearing in the tree are only those
that serve as arguments to the anchor and nothing else. In particular, the subject NP

260

Bangalore and Joshi Supertagging

Sq

Sr RI~ Sr

nV0~ VP
V~n NTo~ VP

~ v / " NP1
V NPI$ 1~ V Vl~mf*

I I I
seems hit hit E

(a) (b) (c)

Figure 9
(a) Tree for raising analysis, anchored by seems; (b) transitive tree; (c) object extraction tree for
the verb hit.

(John in sentence 1) does not appear in the elementary tree for seem since it does not
serve as an argument for seem. Figure 9(b) shows the elementary tree anchored by the
transitive verb hit in which both the subject NP and object NP are realized within the
same elementary tree.

LTAG is distinguished from other grammar formalisms by possessing part (2) of
the EDL property. In LTAGs, there is one elementary tree for every syntactic environ-
ment that the anchor may appear in. Each elementary tree encodes the linear order
of the arguments of the anchor in a particular syntactic environment. For example, a
transitive verb such as hit is associated with both the elementary tree shown in Fig-
ure 9(b) for a declarative transitive sentence such as sentence 2, and the elementary
tree shown in Figure 9(c) for an object extracted transitive sentence such as sentence 3.
Notice that the object noun phrase is realized to the left of the subject noun phrase in
the object extraction tree.

As a consequence of the fact that LTAGs possess the part (2) of the EDL property,
the derivation structures in LTAGs contain the information of a dependency structure.
Another aspect of EDL is that the arguments of the anchor can be filled in any order.
This is possible because the elementary structures allocate a slot for each argument of
the anchor in each syntactic environment that the anchor appears in.

There can be many ways of constructing the elementary structures of a grammar so
as to possess the EDL property. However, by requiring that the constructed elementary
structures be "minimal," the third property of LTAGs namely, factoring of recursion
from the domain of dependencies, follows as a corollary of EDL.

Definit ion
Factoring of recursion from the domain of dependencies (FRD): Recursion is factored

away from the domain for the statement of dependencies.

In LTAGs, recursive constructs are represented as auxiliary trees. They combine
with elementary trees by the operation of adjunction. Elementary trees define the
domain for stating dependencies such as agreement, subcategorization, and filler-gap
dependencies. Auxiliary trees, by adjunction to elementary trees, account for the long-
distance behavior of these dependencies.

261

Computational Linguistics Volume 25, Number 2

An additional advantage of a g rammar possessing FRD and EDL propert ies is that
feature structures in these grammars are extremely simple. Since the recursion has been
factored out of the domain of dependency, and since the domain is large enough for
agreement, subcategorizafion, and filler-gap dependencies, feature structures in such
systems do not involve any recursion. In fact they reduce to typed terms that can be
combined by simple term-like unification.

Acknowledgments
This work was done when the first author
was at the University of Pennsylvania. It
was partially supported by NSF grant
NSF-STC SBR 8920230, ARPA grant
N00014-94 and ARO grant
DAAH04-94-G0426. We would like to thank
Steven Abney, Raman Chandrasekar,
Christine Doran, Beth Ann Hockey, Mark
Liberman, Mitch Marcus, and Mark
Steedman for useful comments and
discussions which have helped shape this
work. We also thank the reviewers for their
insightful comments and suggestions to
improve an earlier version of this paper.

References
Abne~ Steven. 1990. Rapid incremental

parsing with repair. In Proceedings of the
6th New OED Conference: Electronic Text
Research, pages 1-9, University of
Waterloo, Waterloo, Ontario, Canada.

Alshawi, Hiyan and David Carter. 1994.
Training and scaling preference functions
for disambiguation. Computational
Linguistics, 20(4):635-648.

Appelt, D., J. Hobbs, J. Bear, D. J. Israel, and
M. Tyson. 1993. FASTUS: A finite-state
processor for information extraction from
real-world text. In Proceedings oflJCAI-93,
Charnbery, France, September.

Black, Ezra, Fred Jelinek, John Lafferty,
David M. Magerman, Robert Mercer, and
Salim Roukos. 1993. Towards
History-based Grammars: Using Richer
Models for Probabilistic Parsing. In
Proceedings of the 31st Ann ual Meeting,
pages 31-37, Columbus, OH. Association
for Computational Linguistics.

Bod, Rens and Ronald Kaplan. 1998. A
probabilistic corpus-driven model for
lexical-functional analysis. In Proceedings
of COLING-ACL "98: 36th Annual Meeting of
the Association for Computational Linguistics
and 17th International Conference on
Computational Linguistics, Montreal,
Quebec, Canada, August.

Brill, Eric. 1993. Automatic grammar
induction and parsing free text: A
transformation-based approach. In
Proceedings of the 31st Annual Meeting,

Columbus, OH. Association for
Computational Linguistics.

Chandrasekar, R., Christine Doran, and B.
Srinivas. 1996. Motivations and methods
for text simplification. In Proceedings of the
16th International Conference on
Computational Linguistics (COLING'96),
Copenhagen, Denmark, August.

Chandrasekar, R. and B. Srinivas. 1997a.
Automatic induction of rules for text
simplification. Knowledge-based Systems,
10:183-190.

Chandrasekar, R. and B. Srinivas. 1997b.
Gleaning information from the web:
Using syntax to filter out irrelevant
information. In Proceedings of AAA11997
Spring Symposium on NLP on the World Wide
Web.

Chandrasekar, R. and B. Srinivas. 1997c.
Using supertags in document filtering:
The effect of increased context on
information retrieval effectiveness. In
Proceedings of Recent Advances in NLP
(RANLP) '97, Tzigov Chark, Bulgaria,
September.

Chandrasekar, R. and B. Srinivas. 1997d.
Using syntactic information in document
filtering: A comparative study of
part-of-speech tagging and supertagging.
In Proceedings of RIAO'97, Montreal,
Quebec, Canada, June.

Charniak, Eugene. 1997. Statistical parsing
with a context-free grammar and word
statistics. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence
AAA/, pages 47-66, Menlo Park, CA.

Chomsk~ Noam. 1992. A Minimalist
Approach to Linguistic Theory. MIT Working
Papers in Linguistics, Occasional Papers
in Linguistics, No. 1.

Church, Kenneth Ward. 1988. A stochastic
parts program and noun phrase parser
for unrestricted text. In 2nd Applied
Natural Language Processing Conference,
pages 136-143, Austin, TX.

Collins, Michael. 1996. A new statistical
parser based on bigram lexical
dependencies. In Proceedings of the 34th
Annual Meeting, Santa Cruz, CA.
Association for Computational
Linguistics.

Doran, Christine, Dania Egedi, Beth Ann

262

Bangalore and Joshi Supertagging

Hockey, B. Srinivas, and Martin Zaidel.
1994. XTAG System--A wide coverage
grammar for English. In Proceedings of the
17th International Conference on
Computational Linguistics (COLING'94),
Kyoto, Japan, August.

Doran, Christine, Michael Niv, Breckenridge
Baldwin, Jeffrey Reynar, and B. Srinivas.
1997. Mother of Perl: A Multi-tier pattern
description language. In Proceedings of the
International Workshop on Lexically Driven
Information Extraction, Frascati, Italy, July.

Doran, Christine and B. Srinivas. 1994. A
wide-coverage CCG parser. In Proceedings
oJ: the 3rd TAG+ Conference, Paris, France.

Fujisaki, T., F. Jelinek, J. Cocke, E. Black
and T. Nishino. 1989. A probabilistic
parsing method for sentence
disambiguation. In Proceedings of the 1st
Annual International Workshop of Parsing
Technologies, Pittsburgh, PA.

Gazdar, G., E. Klein, G. Pullum, and I. Sag.
1985. Generalized Phrase Structure Grammar.
Harvard University Press, Cambridge,
MA.

Good, I. J. 1953. The population frequenceis
of species and the estimation of
population parameters. Biometrika 40 (3
and 4), pages 237-264.

Grishman, Ralph. 1995. Where's the syntax?
The New York University MUC-6 System.
In Proceedings of the Sixth Message
Understanding Conference, Columbia, MD.

Gross, Maurice. 1984. Lexicon-grammar and
the syntactic analysis of French. In
Proceedings of the lOth International
Conference on Computational Linguistics
(COLING'84), Stanford, CA.

Hobbs, Jerry R., Douglas Appelt, John Bear,
David Israel Megumi Kameyama, Mark
Stickel, and Mabry Tyson. 1997. FASTUS:
A cascaded finite-state transducer for
extracting information from
natural-language text. In E. Roche and Y.
Schabes, editors, Finite State Devices for
Natural Language Processing. MIT Press,
Cambridge, MA.

Hobbs, Jerry R., Douglas E. Appelt, John
Bear, David Israel Andy Kehler, Megumi
Kamayama, David Martin, Karen Myers,
and Mabry Tyson. 1995. SRI International
FASTUS system MUC-6 test results and
analysis. In Proceedings of the Sixth Message
Understanding Conference, Columbia, MD.

Jelinek, Fred, John Lafferty, David M.
Magerman, Robert Mercer, Adwait
Ratnaparkhi, and Salim Roukos. 1994.
Decision tree parsing using a hidden
derivation model. In Proceedings from the
ARPA Workshop on Human Language
Technology Workshop, March.

Joshi, Aravind K. 1960. Computation of
syntactic structure. In Advances in
Documentation and Library Science,
volume III, Part 2. Interscience Publishers,
Inc., NY.

Joshi, Aravind K. 1985. Tree adjoining
grammars: How much context sensitivity
is required to provide a reasonable
structural description? In D. Dowty, I.
Karttunen, and A. Zwicky, editors, Natural
Language Parsing. Cambridge University
Press, Cambridge, U.K., pages 206-250.

Joshi, Aravind K. 1987. An introduction to
tree adjoining grammars. In A. Manaster
Ramer, editor, Mathematics of Language.
John Benjamins, Amsterdam.

Joshi, Aravind K. 1998. Role of constrained
computational systems in natural
language processing. Artificial Intelligence,
103:117-132.

Joshi, Aravind K. and Philip Hopely. 1997.
A parser from antiquity. Natural Language
Engineering, 2(4).

Joshi, Aravind K., L. Levy, and M.
Takahashi. 1975. Tree adjunct grammars.
Journal of Computer and System Sciences.

Joshi, Aravind K. and Yves Schabes, 1996.
Tree-adjoining grammars. In Handbook of
Formal Languages and Automata.
Springer-Verlag, Berlin.

Joshi, Aravind K. and B. Srinivas. 1994.
Disambiguation of super parts of speech
(or supertags): Almost parsing. In
Proceedings of the 15th International
Conference on Computational Linguistics
(COLING'94), Kyoto, Japan, August.

Kaplan, Ronald and Joan Bresnan. 1983.
Lexical-functional grammar: A formal
system for grammatical representation. In
J. Bresnan, editor, The Mental
Representation of Grammatical Relations. MIT
Press, Cambridge, MA.

Karlsson, F., A. Voutilainen, J. Heikkil~i, and
A. Anttila. 1994. Constraint Grammar: A
Language-Independent System for Parsing
Unrestricted Text. Mouton de Gruyter,
Berlin and NY.

Karttunen, L. J-P. Chanod, G. Grefenstette,
and A. Schiller. 1997. Regular expressions
for language engineering. Natural
Language Engineering, 2(4).

Kasper, Robert, Bernd Kiefer, Klaus Netter,
and K. Vijay-Shanker. 1995. Compilation
of HPSG to TAG. In Proceedings of the 33rd
Annual Meeting, Cambridge, MA.
Association for Computational
Linguistics.

Katz, Slava M. 1987. Estimation of
probabilities from sparse data for the
language model component of a speech
recognizer. IEEE Transactions on Acoustics,

263

Computational Linguistics Volume 25, Number 2

Speech and SignalProcessing, 35(3):400-401.
Kempe, Andre. 1994. Probabilistic Tagging

with Feature Structures. In Proceedings of
the 15th International Conference on
Computational Linguistics (COLING'94),
Kyoto, Japan, August.

Kroch, Anthony S. and Aravind K. Joshi.
1985. The linguistic relevance of tree
adjoining grammars. Technical Report
MS-CIS-85-16, Department of Computer
and Information Science, University of
Pennsylvania.

Kuno, S. 1966. Harvard predictive analyzer.
In David G. Hays, editor, Readings in
Automatic Language Processing. American
Elsevier Pub. Co., NY.

Magerman, David M. 1995. Statistical
decision-tree models for parsing. In
Proceedings of the 33rd Annual Meeting.
Association for Computational
Linguistics.

Marcus, Mitchell M., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313-330.

Nagao, Makoto. 1994. Varieties of heuristics
in sentence processing. In Current Issues in
Natural Language Processing: In Honour of
Don Walker. Giardini with Kluwer.

Ney, Herman, Ute Essen, and Reinhard
Kneser. 1995. On the estimation of 'small'
probabilities by leaving-one-out. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 17(2).

Niesler, T. R. and P. C. Woodland. 1996. A
variable-length category-based n-gram
language model. In Proceedings, IEEE
ICASSP.

Pollard, Carl and Ivan A. Sag. 1987.
Information-Based Syntax and Semantics.
Vol. 1: Fundamentals. CSLI.

Roche, Emmanuel. 1993. Analyse syntaxique
transformationelle du francais par
transducteurs et lexique-grammaire. Ph.D.
thesis, Universite Paris 7.

Schabes, Yves. 1990. Mathematical and
Computational Aspects of Lexicalized
Grammars. Ph.D. thesis, Computer Science
Department, University of Pennsylvania.

Schabes, Yves, Anne AbeillG and Aravind
K. Joshi. 1988. Parsing strategies with
'lexicalized' grammars: Application to
Tree Adjoining Grammars. In Proceedings
of the 12th International Conference on
Computational Linguistics (COLING'88),
Budapest, Hungary, August.

Schabes, Yves and Aravind K. Joshi. 1991.
Parsing with lexicalized tree adjoining
grammar. In M. Tomita, editor, Current
Issues in Parsing Technologies. Kluwer

Academic Publishers.
Schabes, Y., M. Roth, and R. Osborne. 1993.

Parsing the Wall Street Journal with the
inside-outside algorithm. In Proceedings of
the European ACL.

Sleator, Daniel and Davy Temperley. 1991.
Parsing English with a Link Grammar.
Technical Report CMU-CS-91-196,
Department of Computer Sdence,
Carnegie Mellon University.

Srinivas, B. 1996. "Almost parsing"
technique for language modeling. In
Proceedings of lCSLP96 Conference,
Philadelphia, PA.

Srinivas, B. 1997a. Complexity of Lexical
Descriptions and its Relevance to Partial
Parsing. Ph.D. thesis, University of
Pennsylvania.

Srinivas, B. 1997b. Performance evaluation
of supertagging for partial parsing. In
Proceedings of the International Workshop on
Parsing Technologies, September.

Srinivas, B., Christine Doran, and Seth
Kulick. 1995. Heuristics and parse
ranking. In Proceedings of the 4th Annual
International Workshop on Parsing
Technologies, Prague, September.

Steedman, Mark. 1987. Combinatory
grammars and parasitic gaps. Natural
Language and Linguistic Theory, 5:403--439.

Steedman, Mark editor. 1997. The Syntactic
Interface. MIT Press, Cambridge, MA and
London, England.

Tapanainen, Pasi and Timo J~irvinen. 1994.
Syntactic analysis of natural language
using linguistic rules and corpus-based
patterns. In Proceedings of the 15th
International Conference on Computational
Linguistics (COLING'94), Kyoto, Japan,
August.

Vijay-Shanker, K. 1987. A Study of Tree
Adjoining Grammars. Ph.D. thesis,
Department of Computer and Information
Science, University of Pennsylvania.

Vijay-Shanker, K. and Aravind K. Joshi.
1991. Unification based tree adjoining
grammars. In J. Wedekind, editor,
Un~'cation-based Grammars. MIT Press,
Cambridge, MA.

Voutilainen, Atro. 1994. Designing a Parsing
Grammar. Publications of the Department
of General Linguistics, University of
Helsinki.

Waltz, D. 1975. Understanding line
drawings of scenes with shadows. In P.
Winston, editor, Psychology of Computer
Vision, MIT Press.

Weischedel, Ralph, Richard Schwartz, Jeff
Palmucci, Marie Meteer, and Lance
Ramshaw. 1993. Coping with ambiguity
and unknown words through

264

Bangalore and Joshi Supertagging

probabilistic models. Computational
Linguistics, 19(2):359-382, June.

XTAG-Group, The. 1995. A lexicalized tree

adjoining grammar for English. Technical
Report IRCS 95-03, University of
Pennsylvania.

265

