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Default unification has been used in several linguistic applications. Most of them have utilized 
defaults at a metalevel, as part of an extended description language. We propose that allowing 
default unification to be a fully integrated part of a typed feature structure system requires 
default unification to be a binary, order independent function, so that it acquires the perspicuity 
and declarativity familiar from normal unification-based frameworks. Furthermore, in order to 
respect the behavior of defaults, default unification should allow default reentrancies and values 
on more general types to be overridden by conflicting default information on more specific types. 
We define what we believe is the first version of default unification to fully satisfy these criteria, 
and argue that it can improve the representation of a range of phenomena in syntax, semantics 
and the lexico-pragmatic interface. 

1. Introduct ion 

The utility of defaults in linguistic representat ion has been widely  discussed (for an 
overview, see Daelemans, de Smedt, and Gazdar  [1992]). The most  common  linguistic 
application for default  inheritance is to encode lexical generalizations (e.g., Boguraev 
and Pustejovsky 1990; Briscoe, Copestake, and Boguraev 1990; Vossen and Copestake 
1993; Daelemans 1987; Evans and Gazdar  1989a, 1989b, 1996; Flickinger, Pollard, and 
Wasow 1985; Flickinger 1987; Flickinger and Nerbonne  1992; Kilgarriff 1993; Krieger 
and Nerbonne  1993; Sanfilippo 1993; Shieber 1986a), but  defaults have also been used 
for specification in syntactic theory (e.g., Gazdar  1987; Shieber 1986b), and for the 
analysis of gapping constructions (Kaplan 1987) and ellipsis (Grover et al. 1994). In 
Lascarides et al. (1996), we argued for the role of defaults both in descriptions of 
the lexicon and grammar  and to allow the linguistic component  to make defeasible 
proposals  to discourse processing/pragmatics .  Most current  constraint-based systems 
either do not  suppor t  defaults or only allow them at a metalevel,  as par t  of an extended 
description language. Our aim is to allow defaults as a fully integrated par t  of a typed  
feature structure system. 1 

In general, a l though there have been several approaches to formalizing default  
inheritance within feature structure languages by  defining an operat ion of default  uni- 
fication (some examples are cited in Section 1.2), these have failed to achieve the com- 
bination of perspicuity, declarativity, and expressibility familiar f rom unification-based 
approaches to nondefaul t  inheritance. The version of default  unification described in 
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Lascarides et al. (1996) was more  satisfactory in this respect, but  not  wi thout  its prob- 
lems (see Section 1.2). Our  aim here is to present  an alternative version of default  
unification, which overcomes those flaws, and also to give detailed examples of vari- 
ous ways in which constraint-based systems can utilize defaults, and the requirements  
that these impose on the formalism. 

1.1 Criteria for Default  Unification 
Lascarides et al. (1996) list a number  of desiderata for default  unification, which we 
repeat  here (with some amendments  to the justifications): 

. 

2. 

. 

. 

. 

Nondefaul t  information can be dist inguished f rom default  information 
and is always preserved.  
We intend our  representat ion language to supplement  rather  than 
supplant  existing work  using monotonic  inheritance within f rameworks  
such as HPSG. Nondefaul t  processing is crucial to parsing and 
generat ion in a unification-based framework,  because unification failure 
is required to prevent  ungrammatical  structures. From this perspective,  it 
seems reasonable to expect  grammars  and lexicons to have a monotonic  
backbone, which encodes the main architectural propert ies  of the feature 
structures. Since construction of grammars  and lexicons is error-prone,  
we believe that g rammar  writers will want  to prevent  accidental 
overr iding of such structural information by  ensuring that it is 
indefeasible. We therefore believe that it is desirable that defaults be 
explicitly marked,  and, as shown by Young and Rounds (1993), this is a 
necessary condit ion for the order- independence of default  unification 
(criterion 5, below). 

Default  tmification never  fails unless there is conflict in nondefaul t  
information. 
The usual assumption about  conflicting defaults is that they do not result 
in an inconsistent knowledge  state (e.g., Reiter 1980). So, it is clearly 
desirable that unification failure does not  occur as a side effect of the 
way  default  information is defined. 

Default  unification behaves like monotonic  unification in the cases where  
monotonic  unification would  succeed. 
We want  to use the same notions of unification, subsumption,  etc. with 
respect to both  default  and nondefaul t  feature structures. This will 
enable us to use default  unification to extend existing monotonic  
approaches to linguistic analysis, rather than replacing them. 

Default  unification returns a single result, deterministically. 
As we will describe in Section 3, there are definitions of default  
unification in which a disjunction of feature structures may  be produced.  
While there is nothing wrong  with such definitions formally, they are 
practically inconvenient,  since they can result in a multiplication of 
structures; and they are only suitable for implementat ions that allow 
disjunction. 

Default  unification can be described using a binary, order - independent  
(i.e., commutat ive  and associative) operation. 
The main failing of most  definitions of default  unification is that they are 
not  order- independent .  Having an order -dependent  operat ion in the 
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. 

description language is inelegant, but it has been regarded as acceptable, 
because all the structures to be unified are in a fixed hierarchy and an 
inheritance order can therefore be imposed (there will be a difference 
between top-down vs. bottom-up inheritance, for instance). However, 
order dependence undermines many of the arguments in favor of 
constraint-based grammar formalisms: that is, that processing can be 
seen as a uniform accumulation of constraints and is independent of the 
algorithm that controls evaluation order. For instance, an 
order-dependent operation causes problems for strategies such as lazy 
evaluation. More fundamentally, we have argued (e.g., in Lascarides and 
Copestake, in press) that it is necessary for the lexicon to propose default 
information that may be overridden by pragmatics. In a discourse 
situation, however, it is impossible to predict which pieces of 
information are to be unified in advance of starting the discourse parsing 
process, so the interface between discourse processing and 
order-dependent lexical processing would have to take into account the 
order in which the unification operations are done, which is impractical. 

Defaults can be given a precedence ordering such that more specific 
information overrides less specific information. 
This is the usual assumption made about inheritance hierarchies, and is 
necessary if exceptions to a generalization themselves have exceptions. 
The approach to default unification that we will describe in this paper 
allows any defaults to be overridden by defaults which are associated 
with more specific types: thus priority ordering reflects the type 
hierarchy ordering. (In Section 6.2, we will mention other possibilities for 
imposing a priority order on defaults.) 

Barring criterion 6, all of the above properties are necessary for making default 
unification behave as much like normal unification as possible, save that (default) infor- 
mation can be overridden. These criteria ensure that the default unification operation 
has properties familiar from monotonic unification, such as determinacy, the way infor- 
mation is accumulated, the conditions when unification fails, and order independence. 
Since this guarantees that default unification shares many of the properties of normal 
unification, a "seamless transition" is possible between the monotonic approach to 
linguistic analysis supplied by normal unification, and the extension to these analy- 
ses provided by supplying default constraints and default unification operating over 
them. We will justify these assumptions with respect to particular linguistic examples 
in Section 4. In this paper, we define an order-independent typed default unification 
operation called YADU (Yet Another Default Unification), which we believe is the first 
definition of default unification that fulfills all of the above criteria. 

1.2 Prev ious  Def in i t ions  of  Defau l t  Operat ions  on  Feature Structures 
There have been a number of previous definitions of default unification, including 
those given by: van den Berg and Pr6st (1991), Bouma (1990, 1992), Calder (1991), 
Carpenter (1993), Copestake (1992, 1993), Russell, Carroll, and Warwick-Armstrong 
(1991), and Russell et al. (1993). These definitions were all based on Kaplan's sketch 
of priority union (Kaplan 1987) and are asymmetric since one feature structure (FS) is 
taken to be indefeasible while the other is defeasible. This operation is not commuta- 
tive or associative (Carpenter 1993). Although there are some applications for which 
an asymmetric operation is useful (see Section 6.5), the order dependency makes it un- 
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desirable as a basis for inheritance, as we discussed above. Furthermore, since these 
definitions do not allow for statements of precedence order in defaults, the inheritance 
hierarchy has to be stipulated separately. 

Young and Rounds (1993) define an order-independent version of default unifica- 
tion using Reiter's default logic (Reiter 1980) to model the operation. But it does not 
allow for precedence between defaults based on specificity (criterion 6, above). The 
most straightforward way of extending the definition to meet criterion 6 would be to 
extend Reiter's default logic so that it validates specificity, but as Asher and Morreau 
(1991), Lascarides and Asher (1993), and Lascarides et al. (1996) argue, all such exten- 
sions to Reiter's default logic either impose ordering constraints on the application 
of logical axioms in proofs (e.g., Konolige 1988), or they impose a context-sensitive 
translation of the premises into the formal language (e.g,. Brewka 1991). So extending 
Young and Rounds' definition in this way comes at the cost of an underlying for- 
mal semantics that has separately defined order constraints on the logical axioms, or 
context-sensitive translation. 

Lascarides et al. (1996) use conditional logic to extend Young and Rounds' def- 
inition to typed feature structures, describing an operation called Persistent Default 
Unification (PDU). They use a conditional logic precisely because these logics are able 
to validate nonmonotonic patterns of inference involving specificity without impos- 
ing ordering constraints on the application of axioms or imposing context-sensitive 
translation on the premises. In order to allow default inheritance in type hierarchies, 
precedence of default values in PDU is determined by the specificity of the types at 
which the default is introduced. PDU thus meets criterion 6 for nonreentrant informa- 
tion, but it can't validate the overriding of default reentrancy by conflicting default 
values introduced by a more specific type. This is partly because the logic underlying 
PDU demands that the default values on paths are worked out independently of one 
another. Since PDU can't compare values on paths that, by default, share nodes, we 
were forced to make the design decision that default reentrancies always survive, and 
if the default values on the shared node that are introduced by a more specific type 
conflict, then the value on the shared node in the result is _1_, indicating unification 
failure. 

This failure to fully meet criterion 6 restricts PDU's linguistic application, as we 
will show in Section 4. There are also problems in interpreting FSs containing _1_. Such 
structures cannot be treated as normal FSs and the operation, DefFill, which converts 
a partially defeasible FS to a monotonic one (necessary, for instance, when defaults are 
being used to allow concise description of classes of lexical entry, as we will discuss 
in Sections 2 and 4) has a complex definition because of the need to allow for _1_. 
Furthermore, as we discuss briefly in Section 3.6.3, PDU can result in FSs that are 
not well-formed with respect to the distinction between simple values and FS values. 
We also found that the complexity of the definition of PDU made it difficult to use. 
These problems led us to develop the alternative definition, YADU, presented here. 
Like PDU, YADU can be formalized in a conditional logic, but in this paper we will 
give a definition in terms of an algebraic operation on FSs. These algebraic definitions 
are easier to follow, and provide much simpler proofs of theorems than the conditional 
logic (cf. the theorems for PDU in Lascarides et al. [1996]). 

In the next section, we give an informal overview of YADU, by means of a worked 
example. This is followed in Section 3 by the formal definitions, some illustrative ex- 
amples, and an explicit comparison with PDU. In Section 4, we describe some linguistic 
examples in detail and discuss the requirements they impose on the default unification 
operation. Section 6 covers some alternative and extended definitions, including one 
that makes use of Carpenter's (1992) inequalities. 
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verb ] 
PAST : 
PASTP 
PASSP : [] / [] 

regverb 1 
PAST : /+ed 

pst-t-vb 1 
PAST : /+t ] 

Figure 1 
Constraint descriptions for a type hierarchy for inflections: informal notation. 

2. An Informal Overview of YADU 

YADU is based on the intuitively simple idea of incorporating the maximal amount of 
default information, according to its priority. We will use a simple example in order 
to illustrate the operation and to contrast it with the PDU operation discussed in 
Lascarides et al. (1996). Suppose we wish to encode the following information about 
the suffixes of English verbs: 

. 

2. 

3. 

Past participle and passive participle suffixes are always the same. 

Past tense suffixes are usually the same as participle suffixes. 

Most verbs have the past suffix +ed. 

We assume a paradigm style of encoding with separate features for each suffix: here 
the past tense suffix slot is indicated by the feature PAST, past participle by PASTP, and 
passive participle by PASSP. Figure 1 shows a fragment of a type hierarchy, which is 
intended to show informally how the generalizations above could be encoded in this 
way. The figure uses the conventional AVM notation for FSs, but with the addition of 
a slash, which indicates that material to its right is to be treated as default. All features 
have both nondefault and default values, but where the nondefault value is T (i.e., 
the most general type in the bounded complete partial order) we omit it: e .g. , /+ed is 
equivalent to T/+ed. We omit both the slash and the default value if the nondefault 
value is equal to the default value. Default reentrancy between nodes is indicated by 
slashes preceding the labels: e.g., in the constraint for verb in Figure 1, PASTP and 
PASSP are necessarily coindexed, while PAST is defeasibly coindexed with both of 
them. The intention of describing such a hierarchy is that verbs such as walk can be 
defined as regverbs, while sleep, for example, would be a pst-t-verb. We assume that 
inflectional rules are responsible for ensuring that the correct affix is realized, but we 
will not give details of such rules here. 

However the slashed notation used in Figure I cannot in general contain sufficient 
information to ensure order independence, as was shown in Lascarides et al. (1996). 
As we will show in more detail in Section 3, additional information is required, which 
encodes part of the history of a series of default unifications. Lascarides et al. referred 
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Iverb ]  verb ] 
PAST: | PAST: :% 
PASTP 7[] / / { } I PASTP 

t PASSP : [] t PASSP : [] 

regyerb ] / {  l[ PAST: +ed PAST: T] / [  regverbPAST: +ed ] 'regverb/} 

I 
pst-t-verb ] [ pst-t-verb ] / ( ( [  +t ], pst-t-verb) } 
PAST: T J / [ PAST: +t J ' ~ ' t  PAST: 

Figure 2 
Type hierarchy using PDU. 

to the structure that encoded this information as a tail. In that paper, a tail was nota- 
tionally equivalent  to a set of atomic feature structures labeled with a type. An atomic 
FS is defined as in Carpenter  (1993), i.e., it cannot  be decomposed  into simpler FS. 
Intuitively, an atomic FS in the tail represents a piece of default  information that was 
in t roduced at some point  in the series of default  unifications that resulted in the cur- 
rent structure. The type that labels an atomic FS in a tail serves to prioritize the default  
information given by  the atomic FS-- the  priori ty being de termined  by  the posit ion of 
this type in the type hierarchy (more specific types have higher  priority). 

In Lascarides et al. (1996), we used a tripartite structure consisting of an indefeasi- 
ble typed  feature structure, a defeasible TFS and the tail, wri t ten in a slashed notation: 
Indefeasible/Defeasible/Tail .  The full PDU-style representat ion corresponding to Fig- 
ure 1 is shown in Figure 2 (the atomic FSs shown here are notat ionally equivalent  to 
the path:value pairs used in Lascarides et al.). 

Note  that in Figure 2 the tails do not  contain all the default  information; in partic- 
ular, they contain only path  value structures, and do not  contain equalities on paths 
(i.e., reentrancies). This contr ibuted to PDU failing to achieve all the criteria ment ioned  
in Section 1.1. YADU is different f rom PDU, in that it will achieve these criteria. In 
contrast, the tails in YADU contain information about  reentrancy. This means  that, 
unlike in PDU, it is not  necessary to maintain the defeasible TFS as a substructure in 
the representation, since it can be calculated directly f rom the indefeasible structure 
and the tail. Thus for YADU we use bipartite structures, which we write Indefeasi- 
ble/Tail.  We will refer to these as typed  default  feature structures (TDFSs). The YADU 
representat ions corresponding to Figure 2 are shown in Figure 3. 

There are two operations in YADU: one involves combining two TDFSs to form 
< >  

another  TDFS, which we will notate M, and another  takes a TDFS and returns a TFS, as 
discussed below. M corresponds to unifying the indefeasible TFSs of the input  TDFSs 
u s i n g  the normal  definition of typed  unification, and taking the set union of their 
tails, wi th  removal  of elements that are inconsistent with the combined indefeasible 
structure. The full TDFSs corresponding to the constraints in Figure 3 after inheritance 
are shown in the left-hand column of Figure 4. 

Note that the tails may  contain conflicting information. In general, for any opera- 
tion that makes use of default  information, we want  to know which elements in the 
tail "win." We therefore also def ine  an operat ion on a TDFS, DefFS, which returns a 
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] FPAST: [] ] ,verb},  verb {{ L PASTP : [] PAST : 
PASTP 7-[] / ([ PAST: [] ] ,verb}} 
PASSP :'[] PASSP : [ ] ]  

regverb ] PAST: T ] / { ( [  PAST: +ed ], regverb}} 

I 
pst-t-verb ] PAST: T ] /{( [PAST:  +t],  pst-t-verb}} 

Figure 3 
Type hierarchy using YADU. 

PAST : 
PASTP ], verb}, 

r PAST : : %  ], verb} } / PASTP ( [ PASSP L PASSP : [] 

I verb ] 
PAST : 
PASTP ~[] 
PASSP : [] 

regverb ] 
PAST : T 
PASTP : [] / 
PASSP : [] 

PAST: [] v 
([PASSP: [ ] ] '  erb}, 
([ PAST: +ed],  regverb}} 

regverb ] 
PAST : [] +ed 
PASTP : [] 
PASSP : [] 

pst-t-verb ] 
PAST: T 
PASTP : [] / 
PASSP : [] 

!FPAST : [] 1 vprh~ 
\[PASSP: [ ] ] '  ~ ~/, 
([ PAST: +ed ], regverb}, 
([ PAST: +t l, pst-t-vb}} 

pst-t-verb ] 
PAST : [] +t 
PASTP : [] 
PASSP : [] 

Figure 4 
TDFSs and default structures after inheritance using YADU. 

single default TFS (corresponding to the default  structure in PDU). The default struc- 
tures corresponding to the TDFSs are shown in the right-hand column in Figure 4. A 
default  TFS is calculated from a TDFS by  unifying in the maximal set of compatible 
elements of the union of the tails to the nondefaul t  TFS in priority order. In this case, 
the priority order is given by  the ordering in the type hierarchy, that is pst-t-verb is 
strictly more specific than regverb, which is strictly more specific than verb. In the 
case where there are no conflicts in the tail, this straightforwardly amounts  to the uni- 
fication of the atomic FSs in the tail, as in the structures shown for verb and regverb 
in Figure 4. For pst-t-verb, the intermediate results of successively unifying in the tail 
elements according to their specificity ordering are shown below. 

1. 
rP st't-vb ] r pst-t-vb ] 

[PAST: +t] U /PAST: V = /PAST: +t 
/ PASTP : [] / PASTP : [] 
L PASSP : [] k PASSP : [] 
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. 

. 

r pst-t-vb ] 
[ PAST : +ed ] is incompatible with || PAsTpPAST: +t: [] 

L PASSP : [] 

r pst-t-vb 1 r pst-t-vb 1 
{[PAST: ~ ] , r P A S T :  ~ ] } N  ]PAST:+t  ] = [PAST: • + t |  

L PASSP L PASTP ] PASTP : [] ] PASTP : [] | 
LPASSP : [] LPASSP : [] J 

Thus the conflict between the information on regverb and pst-t-verb is resolved in 
the favor of the latter, since it is more specific. This is the reason for separating verb 
and reg-verb in the example above, since we want  the +t value to override the +ed 
information on regverb while leaving intact the default reentrancy which was specified 
on verb. If we had not done this, there would  have been a conflict between the defaults 
that was not resolved by priority. In such cases, we take the generalization of the 
competing defaults, but  for simplicity we leave the details to Section 3, where the 
definition of YADU is given. 

Note that in examples such as this one, defaults are being used to capture lexical 
generalizations, but  the suffixes seen by the morphological analyzer must  be nonde- 
feasible, otherwise incorrect strings such as sleeped would  be accepted, because the 
default +t could be overridden. We refer to such defaults as nonpersistent since the 
tails of the TDFSs must  be incorporated into the indefeasible structure at the interface 
between the lexicon and the rest of the system. This is the analogue of the operation 
called DefFill in Lascar|des et al. (1996), but, In contrast to PDU, YADU DefFill simply 
amounts  to taking the defeasible structure, constructed as described above, since this 
is guaranteed to be a valid TFS that is more specific than the indefeasible structure. 
For our purposes, it is convenient to define DefFill as returning a TDFS with an empty 
tail (see Section 3.3 and Section 4). For instance: 

{([PAST : :% 1 verb), PASTP ." rP st't'vb ] / ([PAST: % ~ [pst-t-vb 7 
PASSP ) = / ( }  DefFill( | PAST : T ], verb), PAST : [] +t | 

| PASTP : [] ], regverb/, PASTP : [] | 
LPASSP : [] ([PAST : +ed PASSP : [] ] 

([ PAST: +t],  pst-t-vb)} 
It will be apparent that the tail notation for TDFSs can become quite cumber- 

some. For cases where there are no conflicts in the tails and where the priority order 
corresponds to the type of the indefeasible TFS, we can use the slash notation that 
we initially introduced in Figure 1. This notation can be used as a shorthand for the 
description of type constraints, and in fact it is generally convenient to use it in the 
description language, rather than to specify tails individually. We will formalize the 
relationship between the abbreviatory notation and the full TDFSs in Section 3, and 
use it when  discussing examples where possible. 

Before concluding this section, we should note that there is a contrast in behavior 
between the PDU and YADU operation, in that with YADU a default value could 
override a default reentrancy, which was not possible in the earlier work. The reason 
for making the reentrancy between PAST and PASSP default on verb was that these 
forms differ in some classes of irregular verbs (e.g., speak, spoke, spoken). In PDU, the 
default reentrancy could only have been overridden by a nondefaul t  value. Arguably 
however, the specification of the vowel change and suffixation for this class ought  also 
to be defeasible, because of a subclass of these verbs, such as weave, which are also 
found with the regular suffixation pattern (wove~weaved, woven~weaved) (cf. Russell 
et al. 1993). Since such a treatment of dual  forms rests on a number  of somewhat  
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aMb =_1_ aMc =_1_ bMc =_1_ 

Figure 5 
Nonassociativity of asymmetric default unification. 

controversial assumptions, we will not give details here. However, we will discuss an 
alternative example where default values must survive when default reentrancies are 
overridden in Section 4. 

3. Typed Default Feature Structures and YADU 

In Section 1.1, we argued in favor of criterion 1 for default unificafion--nondefault 
information can be distinguished from default information and is always preserved-- 
on the basis that we want the default portions of linguistic analyses to extend rather 
than replace existing monotonic analyses. But the standard language of TFSs does not 
distinguish between default and nondefault information. In the previous section, we 
informally extended the TFS language with tails. In this section, we give the formal 
definition of this richer representation scheme of TDFSs. 

First, we consider the interplay between criterion 1 and criterion 5--default uni- 
fication is a binary, order-independent operation. This is because the demands placed 
by order independence affect the kind of representation scheme we require. 

3.1 Requirements for Order Independence 
As we mentioned in Section 1.2, the versions of default unification based on Kaplan's 
priority union (e.g., Carpenter 1993) are binary operations on TFSs, where the LHS TFS 
represents nondefault information and the RHS TFS is default information. Roughly 
speaking, the result of unifying these two TFSs together is: the LHS TFS unified with 
as much information as possible from the RHS TFS while remaining consistent. An 
example is shown in Figure 5. Clearly, such an operation is noncommutative, because 
changing the order of the arguments changes which information is default and which 
is nondefault. The examples in Figure 5 also show that such an operation is nonasso- 
ciative. 

Our demand for order independence requires us to define a symmetric operation. 
But this means that we cannot treat one TFS as specifying wholly indefeasible infor- 
mation and the other as wholly defeasible, as is done in Figure 5. Such an operation 
is never commutative, because changing the order of arguments changes what's de- 
fault. So, we must explicitly mark in the information structures which information 
is to be treated as default and which is nondefault. Thus, as demonstrated in Young 
and Rounds (1993) and Lascarides et al. (1996), criterion 1 above is a prerequisite to 
criterion 5. 

To achieve both criteria 5 and 6, further extensions to the language of TFSs are 
necessary. We must also keep track of certain default information that was overrid- 
den during unification, and we must keep track of the specificity of this overridden 
information. This is because this information must sometimes influence the results of 
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tl U t2 U t3 a M b  = J_ dMb = _1_ a n d  = c 

TFSI: [ ~ : / a ]  TFS2: [~2:/b] TFS3: [~3:/d] 

TFSiM>TFS2 = [ ~ : / a  ] 

(TFSi~TFS2) M>TFS3 [ ~ /c ] 

TFS1 M (TFS2 M TFS3) = :/a 

Figure 6 
Nonassociativity without tails. 

subsequent default  unifications if it is to meet the specified criteria. To see this, sup- 
pose we didn ' t  keep track of this information. And  suppose we at tempt to default 
unify the three TFSs given in Figure 6, according to the principles laid out  earlier, that 
a maximal amount  of default information is incorporated, according to its priority, 
into the result. 2 Then the operation would  be nonassociative, as shown. 

In Figure 6, when  TFS2 and TFS3 are default unified together first, the fact that the 
default value d appeared on the attribute F in TFS3 is lost in the result. The default 
value d is compatible with the most specific default information given in TFS1, that is 
subsequently tmified with this result, and so this value d should also be incorporated 
into the final result. The fact that it is not contributes to the order dependence. Ensuring 
that d plays the necessary part  in the unification operation is possible if, upon unifying 
TFS2 and TFS3, we record the fact that F : /d  with specificity t3 was in the unification 
history, a l though it is currently overr idden by conflicting default values. Subsequent 
default unification operations on this result can then check these "records," to see if 
information that was overr idden earlier should now be incorporated into the current 
result. The tails that we introduced in Section 2 serve this "bookkeeping" purpose. 

This maintenance of a partial history of default information is the cost we must  pay  
for being able to define default  unification as a binary, order-independent operation. 
The assumption of a binary operation is problematic since by the very definition of 
nonmonotonicity, one cannot in general divide the premises into groups, work out 
the inferences from those groups, and expect the inferences to survive the whole. The 
only way  to gain order independence,  therefore, is to ensure that each time the binary 
operation is performed, it is influenced by the necessary pieces of information that are 
"outside" the immediate  context of the FSs it is unifying. Tails cover this necessary 
information by recording sufficient information for us to define the default unification 
operation so that it has all the desired properties. In Lascarides et al. (1996), we argued 
in formal detail w h y  tails were necessary. Here, we have just hinted at the motivation, 
by means of Figure 6. The formal discussion is quite lengthy and technical, and since 
it detracts from the main purpose of this paper, which is to produce a more powerful  
default unification than was presented there, we refer the reader to Lascarides et al. 

2 In this example and those following, we adopt the convention that a, b, c refer to types that correspond 
to values in untyped FSs: that is, types for which no feature is appropriate. We'll refer to these as 
simple value types or simple values. We use t, u, v for types that may label a node which has features. 
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(1996) for the relevant details. Indeed, the tails we have defined here contain more 
information than those in our previous paper: specifically tails here record default 
reentrancies, which were previously recorded only in the default structure, without 
associated specificity information. This "bigger" tail is the cost of defining a more 
powerful operation than PDU, one in which default reentrancies can be overridden 
by default values. However, this also means that YADU does not require that default 
TFSs be part of the TDFS. 

The purpose of this section is to extend the representation of typed information 
so it can go beyond TFSs as required. We do this in a way similar to that of Lascarides 
et al. (1996), but omit the default structure. As we suggested in Section 2, from an 
informal perspective, a TDFS contains a typed feature structure (TFS), which specifies 
what is indefeasible, and tails, which specify defeasible information. For instance in 
(1), the value of the path F.G is b by default, but the existence of the paths F.G and 
H, and the value a for H are nondefault. 

(1) 1/ I ] F: [ G : T ]  {( F: [ G : b ]  ,t/} 
H : a  

In general, a tail consists of a set of pairs, where the first member of the pair is an 
atomic FS (that is, a single path or path equivalence) and the second member is a type. 
The atomic FS in such a pair must record default information that (a) is compatible 
with the indefeasible information in the TDFS and (b) was introduced by a TDFS F 
that was used as an argument to (at least) one of the series of default unifications 
that resulted in the TDFS being considered. The second member of the pair is the root 
type of F. The position of this root type in the type hierarchy, which we assume to be 
a finite bounded complete partial order (Carpenter 1992), determines the specificity 
or priority of the default information given by the atomic FS. For original TDFSs 
(i.e., those TDFSs that aren't derived through default unification), the tails are strictly 
default information, in the sense that unifying them with the indefeasible information 
returns something more specific. 3 During a series of default unifications, tails will 
record (strictly) default information from original TDFSs together with its specificity. 
For example, suppose a TDFS has a tail of the following form: 

(EF : a] , t2) ,  

/ I ~ :  ~ ] ' t 3 / }  

This means that to produce the TDFS with this tail, we unified: a TDFS that had 
a root type tl and the strictly defeasible path F:G:b; a TDFS that had root type t2 
and the strictly defeasible path F:a; and a TDFS that had root type t3 and the strictly 
defeasible information that the F- and G-paths share the same value. These TDFSs 
may have contained further information; e.g., the latter TDFS may have contained the 
information that not only did F- and G- by default share the same values, whatever 

3 Furthermore, the elements of the tail of a derived TDFS (i.e., derived via default unification) are also 
strictly default, unless somewhere in the unification history two TDFSs F1 and F2 were unified, where 
the indefeasible information in F1 is strictly default in F2. 
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they are, but  also that, indefeasibly, F's value is c and G's value is c (where c is a 
super type  of a and b) as given in the TDFS below: 

(2) 

The point  is that tails don ' t  record all the information that forms par t  of the unification 
history; they only record the strictly default  information that is compatible with the 
LHS TFS in the TDFS. We explain this in more  detail below. 

3.2 The  Def in i t ion  of  a TDFS 
A TDFS is a TFS (which intuit ively represents the indefeasible information), plus a 
tail (which intuit ively is a record of default  information that p layed a par t  in building 
the TDFS, and which is compatible with the indefeasible TFS). We use the definition 
of unification in the definition of TDFSs to constrain the relationship be tween the TFS 
and its tail in the required way  (i.e., to ensure any atomic FS in the tail is compatible 
with the TFS). And  the TFS in a TDFS is adapted  from Carpenter ' s  (1992) definition. 
The relevant definitions follow: 

Def in i t ion  1: The  Type Hierarchy 
A type hierarchy is a finite bounded  complete partial o rder /Type ,  _G/. 

Def in i t ion  2: Typed Feature Structures 
A typed  feature structure defined on a set of features Feat, a type hierarchy (Type, El 
and a set of indices N is a t u p l e / Q ,  r, 6, 0), where: 

• Q is a finite set of nodes,  

• r c Q (this is the root node;  see conditions 1 and 2 below) 

• 0 : Q ~ Type is a partial typing function (this labels nodes  with types). 

• 6 : Q x Feat ~ Q is a partial feature value function (this connects nodes 
with arcs labeled with features). 
Note  that for notational convenience we m ay  write a sequence of 
features El...Fk as ~r, and 6( . . .  (6(n, F1),F2). . .Fk)  as 6(n, Tr). 

Furthermore,  the following must  hold: 

1. r isn't a &descendant.  

2. All members  of Q except r are &descendants  of r. 

3. There is no node  n or pa th  ~r such that 6(n, 7r) = n. 

(Conditions 1 and 2 ensure we have a directed graph rooted at r. Condi t ion 3 ensures 
this directed graph is acyclic.) 

The unification operat ion N on TFSs is defined here along the lines of Carpenter  
(1993), in terms of subsumpt ion  on typed  feature structures. First a little notation: Let F 
be a TFS. Then 7r ------F ~" means  that F contains path  equivalence or reentrancy be tween 
the paths ~r and ~r' (i.e., 6(n,~r) = 6(n, ~r') where  n is the root node  of F); and ~F0r) = o- 
means  that the type on the path  ~r in F is cr (i.e., PF0r) = cr if and only if O(6(n,~r)) = or, 
where  n is the root node  of F). Subsumpt ion is then defined as follows: 
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Definition 3: Subsumption of Typed Feature Structures 
F subsumes F', wri t ten F ~ G_ F, if and only if: 

• Tr ~F 7r' implies ~ ~F' WI 

• ~F0r) = t implies ~VF, 0r ) = t' and t' G_ t 

The subsumpt ion hierarchy is a bounded  complete partial order. 
Unification is defined in terms of subsumption: 

Definition 4: Unification 
The unification FNF ~ of two feature  structures F and F' is taken to be the greatest lower 
bound  of F and F ~ in the collection of feature structures ordered by  subsumption.  

Thus F H F' = F" if and only if F" G F, F" _G F ~ and for every  F'" such that F'" .G F and 
F m U F ~ it is also the case that F "~ u F ' .  

With this g roundwork  in place, we can now give the formal definition of TDFSs: 

Definition 5: Typed Default Feature Structures 
A typed default  feature structure defined on a set of features Feat, a type hierarchy 
/Typ e, G / a n d  a set of indices N is a t up le / I ,  T / where: 

• I is a typed feature s t ruc tu re /Q ,  r, 0, 5 / on a set of features Feat, a type 
h ierarchy/Type,  G_/and a set of indices N, as defined in Definition 2 (i.e., 
it's a rooted directed acyclic graph); 

• T is a tail: that is, it is a set of pairs, where: 

the first member  of the pair  is an atomic FS, as defined in 
(Carpenter 1993); that is, a single path, or a path  equivalence; 
and 
the second member  of the pair is a type; 

Furthermore,  for any element  IF, t / E T, I N F # 3_. (This condit ion ensures that all 
the atomic FSs in the tails are compatible with the indefeasible information. However ,  
these atomic FSs ma y  be incompatible with each other). (Note that in this paper  we 
make use of the notational convent ion that a TDFS/ / ,  T / can be wri t ten as I/T). 

As we have ment ioned before, we will use the tail of a TDFS as a device for keeping 
a record of the default  information from the TDFSs that, through default  unification, 
were used to form the TDFS in question. The definition of default  unification we give 
below will ensure that tails do indeed provide  this record keeping service. However ,  
since tails can contain mutual ly  incompatible information, a TDFS (and hence the 
result of the default  unification operation), does not  explicitly represent  which default  
information in the tail "wins." So as well as defining default  unification, we also define 
an operat ion on TDFSs, which we call DeJFS (standing for default  FS), which uses the 
indefeasible TFS and the tail to produce  a TFS that represents the default  information 
corresponding to that TDFS. That is, it determines which elements of the tail win. 
Because this TFS represents the default  information, DefFS(I/T) is called a default  TFS 
(relative to I/T). 
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3.3 The Definition of ~ and DefFS 
< >  

We now formally describe the operations M and DeJFS, and in Section 3.7 and the 
appendix  we will l~r>ove that these have the propert ies  we set out  in Section 1.1. 

The operat ion M operates over TDFSs to produce  a TDFS. M> is built  up from a 
combination of set union  and of the unification operat ion M, which operates on TFSs 
(that is, typed  feature structures as defined in Carpenter  [1992]). To define M, we also 
need to talk about  the first and second members  of the pairs in the tail: 

Definition 6: Projection of Tails 
Let T be a tail; i.e., a member  of atomic FSs x Type. Then: 

pfs(T) = { 4 : ( 4 ,  t) E T } a n d  

pt(T) = { t : ( 4 , t )  ET}  

Informally, ~> takes two TDFSs, and produces  a new TDFS I /T,  where  I is the 
(monotonic) unification of the TFSs in the argument  TDFSs, and T is the union  <o>f 
the tails, wi th  all information that 's incompatible with I removed.  In other words,  M 
serves to accumulate  the indefeasible information in I, and accumulate the defaults 
that are compatible with I in T. The formal definition is as follows: 

< >  

Definition 7: M 
Let F1 =aq I1/T 1 and F2 =a~ I2/T 2 be two TDFSs, and let F12 =a# F1M>F2. Furthermore,  
assume F12 =aef 112/T 12. Then I12 and T 12 are calculated as follows: 

. 

. 

The Indefeasible Part: 
I12 = /1  N I2 
That  is, the indefeasible TFS is the unification of the indefeasible parts of 
the arguments.  

The Tail T12: 
T 12 =eq(T 1 U T  2)\BOt 12 

where  Bot 12 are all the elements T of T 1 U T 2 where  the atomic FS ~0fs(T) 
is incompatible with ha. That is: 

Bot 12 = {T E (T 1 U T 2) : ~0ds(T ) M I12 = -[-}  

F1 ~>F2 returns a TDFS F12. F12 represents the indefeasible informat ion in bo th  F1 and F2. 
Also, th rough the tail T 12, it represents the defeasible information that can potential ly 
play a role in defining what  holds by  default  either in F12 itself, or in some other  
TDFS built  f rom F12 via M>. As we ment ioned  before, we need  to define a fur ther  
operat ion that computes  which elements in the tail T 12 provide  the winning default  
information relative to F12. This is done in the DefFS operat ion given below, which 
computes  a (default) TFS from a TDFS. 

DefFS is built  up  f rom a combinat ion of the unification and generalization oper- 
ations M and U, which operate on TFSs. General izat ion is the opposite of unification. 
The generalization of two feature structures is defined to be the most  specific feature 
structure that contains only information found  in both  feature structures. 

Definition 8: Generalization 
The generalization F tA F ~ of two feature structures is defined to be their lowest  uppe r  
bound  in the subsumpt ion  ordering. 
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Thus F U F' = F" if and only if F _G F',  F' _G_ F" and for every  F"' such that F G F"' and 
U G_ U" then F" _G U ' .  

The operat ion DefFS on TDFSs also uses an extended version of Carpenter ' s  (1993) 
credulous default  unification, which in turn is defined in terms of M. We extend it here, 
in that the second argument  of the operation, instead of it being a single FS, will be a set 
of atomic FSs that may  be mutual ly  incompatible. Carpenter ' s  definition of credulous 
default  unification is as follows: 

Def in i t ion  9: (Carpenter 1993) 
The result of credulously adding the default  information in G to the strict information 
in F is given by: 

< G' F Me G = {F M G' : _~ G is maximally specific wr t  the subsumpt ion hierarchy such 
that F M G' is defined} 

An example of the operat ion is given in (3). Where t' u t: 

(3) 

One can see that credulous default  unification is asymmetric,  and doesn ' t  re turn a 
single result deterministically. It doesn ' t  meet  the criteria we specified in Section 1.1. 
Nevertheless,  DefFS will have the desired properties,  even though it is defined in terms 

< 
of Mc. The extended definition, which works on a set of atomic FSs, is given below: 

< 
F1 Mca {G1 . . . . .  Gn} = {F1 M F2 : F2 is the unification of a maximal  subset of 

{G1 . . . . .  Gn} such that Fa M F2 is defined} 

We will want  to iterate credulous default  unification in what  happens  below, and for 
< 

this purpose,  we define Mcs as follows: 

< 
Def in i t ion  10: Credu lous  Defau l t  Unif icat ion Mcs on  Sets  
Let Y:I be a set of TFSs {F1 . . . . .  Fn}, and ~2 a set of atomic FSs. Then 

< < < 

• ~'1 [']cs 0 2  = {fl Mca 02 . . . .  , F n  nca g 2 }  

The definition of DefFS will manipulate  tails in a certain way, and the following 
way  of parti t ioning tails plays an impor tant  role in defining how defaults behave 
under  DeJFS: 

Def in i t ion  11: The  Specif icity Partition of  a Tail 
Let T be a tail. Then #1 . . . . .  ~m is ,a Specificity Partition of T if: 

T = # I U . . . U # m  

and 

#1 = { ( ¢ , t )  E T :  
fli = {(¢, t)  E T :  

V(¢', t') c T, t' 72- t} 
~(¢', t') C #i-a where  t' u t and 
V(¢", t") C T \ (#1 U. . .  U #i-1), t" G t} 2 < i < m  
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Intuitively, #1 is the set of pairs in T with the most  specific types, ~2 is the set 
of pairs in T with the next  most  specific types, and so on. Parti t ioning tails in order  
of specificity enables us to define DefFS so that default  information on more specific 
types overrides that on more  general types. 

Having set up this groundwork ,  we ' re  now  in a position to define DefFS on TDFSs 
< 

in terms of LJ and Iqcs on TFSs. 

Definition 12: The Operation DefFS 
Let F be a TDFS I/T. Then 

D e l E S ( F )  = I_J((I I-lcs < ~Vfs(~l)  ) ~]cs • • • ~]cs P f s ( # n ) )  

where  <#1 . . . . .  ~n> is a specificity part i t ion on T. 

According to this definition, DefFS(F) is the generalization of the credulous default  
unification of: I, the atomic FSs in #1 , . . . ,  and the atomic FSs in #m, in that order. 
By notational convention,  we occasionally write Di for DefFS(Fi). So DefFS(F12) ~-def 
DefFS(I12/Z 12) =def DelES(F1 ~q>F2) --~4 D12. 

Note that in Lascarides et al. (1996), we defined the default  structure as par t  of 
the TDFS. We could have done this here too (and in fact did so in earlier drafts of 
this paper)  but  the current  formulat ion makes the contrast  with PDU clearer, since in 
YADU the default  s tructure does not  carry any information in addit ion to the tai l-- i t  
is calculated purely  to see which parts of the tail win, in the current  structure. In 
Section 3.7 and the appendix,  we will prove  formally that n> together with this defini- 
t ion DefFS for comput ing  default  structures achieve the effects we desire. Note further  <> 
that this means  the implementa t ion of the F1 operat ion itself is a trivial extension to 
ordinary unification. Construct ing the default  s tructure is more  complex, but  this is 
not  a necessary par t  of the actual unification step. For instance, in the use of defaults 
described in Section 2, the default  structure is only calculated once for a given lexical 
entry: it is not  necessary to calculate default  structures for intermediate types in the 
hierarchy, for instance. We will discuss this further  in Section 5. 

For completeness,  we also define the operat ion DefFill, which takes a TDFS and 
returns a TDFS with the default  information incorporated.  This is required for non- 
persistent defaults, as discussed in Section 4. 

Definition 13: The Operation DefFill 
Let F be a TDFS I/T. Then 

DefFill( F) -- DefFS( F) / { } 

With respect to the definitions we have given in this section, we should note that 
we are using an extremely weak  notion of typing, and not  imposing any appropriate-  
ness conditions on the TFSs or requiring that unification maintain well-formedness.  
The basic strategy for making the definitions of N> and DefFS respect well-formedness 
conditions on types is straightforward,  since the set of wel l - formed TDFSs can be de- 
fined as the set of TDFSs for which the indefeasible component  meets the applicable 
constraints, and the use of N in the definitions can be replaced by  a variant  of uni- 
fication that maintains well-formedness,  hence guaranteeing that the default  feature 
structure is also well-formed. We omit  the details, since we want  to keep the definition 
of the default  operat ion as general as possible, and there are a number  of different 
constraint languages within feature structure f rameworks  (e.g., Alshawi et al. 1991; 
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Carpenter 1992; D6rre and Eisle 1991; Emele and Zajac 1990; Gerdemann and King 
1994; Krieger and Sch/ifer 1994; de Paiva 1993; Smolka 1989). In fact, in the examples 
in this paper, the only use we make of types is functionally equivalent to the use of 
templates in untyped  FS systems, so going into the details of well-formedness with 
respect to one particular system seems redundant .  

3.4 Unification at Nonroot Nodes 
In grammars based on the use of (T)FSs, it is often necessary to be able to unify 
structures at nodes other than the root. For example, if grammar rules or schemata 
are described as TFSs (as we will assume in Section 4), then the instantiation of a rule 
by a daughter  will involve unifying a substructure TFS in the rule with the complete 
TFS for the daughter. This is straightforward for TFSs, because 6(r, 7r), if defined, is 
itself the root node of a TFS: 

Definition 14: SubTFS 
Let I = / Q ,  r, 6, 0 / be a TFS, and let 6(r, 7r) be defined. Then the sub-TFS I' of I that 's 
rooted at 6(r, ~r), written SubTFS(/, :r), is the TFS/Q' ,  6(r, 7r), 6', O'/, where: 

. 

2. 

3. 

Q' c Q are those nodes that are &descendants of 6(r, 70; 

6' is the projection of 6 onto Q'; and 

01 is the projection of 0 onto Q,. 

For TDFSs, the situation is slightly more complex, because the definition of sub- 
structure has to include relevant elements of the tail, as well as the indefeasible 
(sub)structure. 

Definition 15: SubTDFS 
Let F be a TDFS I /T  and ~r be a path. Then 

SubTDFS(F, 7r) = SubTFS(I, 7r) / SubTail(T, 7r) 

where 

SubTail(T, Tr) = { / F ' , t / c  T:  There is an element IF, t) E T such that 
r is the root node of F and 6(r, ~r) is defined; and 
F 1 = SubTFS(F, ~r)} 

Similarly, we can define the prefixation of a TDFS by a path as follows: 

Definition 16: SuperTFS 
Let I = / Q ,  r, 6, 0 / be a TFS and ~r = F1. . .  Fn be a path. Then SuperTFS(I, ~r), which is 
the TFS prefixed with the path ~r, i s / Q  I, r I, 6/, 0/1, such that: 

. 

2. 

. 

Q' = Q u r' u {ql . . . . .  qn-1} 

6' is a partial feature value function defined on Q', such that 
6'(r',F1) = 91, 6t(ql,F2) = 92 . . . . .  6t(qn-a, Fn-1) = qn-l,6t(qn_l, Fn) = l'; and 
6'(q,F) = 6(q,F) for all q C Q and all features F. 

0' is a partial typing function on Q', such that 0(q) = O(q) for all q E Q, 
and is undefined otherwise. 
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Definition 17: SuperTDFS 
Let F be a TDFS I/T and ~r be a path. Then 

SuperTDFS(F, ~-) = SuperTFS(L ~)/T' such that 

T' = {{F',t) : IF, t) E T and F' = SuperTFS(F, Tr)} 

Note that in both  SubTDFS and SuperTDFS, the specificity of the tail elements is 
left unchanged  and thus the specificity of a tail e lement  m ay  not  be in a partial order  
relationship with the root type of the indefeasible structure. 

3.5 Basic TDFSs and Abbreviatory Conventions 
When initially specifying TDFSs, as type constraints, for instance, it is useful to al- 
low tails to be constructed from pairs of TFSs, where  the first member  of the pair  is 
regarded as indefeasible and the second member  is t reated as defeasible. Obviously 
it only makes sense to do this if the default  TFS is compatible with the indefeasible 
structure, so that the defeasible information FSD augments  the indefeasible informa- 
tion FSi in some respects. We will assume that the tail is the most  specific strictly 
default  information that is specified by  the indefeasible and defeasible TFSs (you can 
compute  this by  checking which information is in FSi N FSD and absent in FSi), plus 
the priori ty given by  the (default) root type (which means  that the type on the root 
node  of either FSI or FSD must  be defined). We will call the TDFS constructed in this 
way  f rom the indefeasible TFS FSi and defeasible TFS FSD a basic TDFS. Basic TDFSs 
are special TDFSs, because there will be no conflict in the tails (since the tail is der ived 
from two compatible TFSs). 

Definition 18: Basic TDFSs 
Let FSi and FSD be typed  feature structures, where  FSi is regarded as indefeasible and 
FSD as defeasible. Furthermore,  suppose that the root  node  of FSi is typed,  or the root 
node  of FSD is typed,  and that FSi N FSD ~ 3_ (so FS~ and FSD are compatible). Then 
the basic TDFS BasicTDFS(FSi, FSD) of FSi and FSD is the TDFS FSi/T, such that: 

T = {(F, t}: t is the root  type on FSD n FSi, and F is an atomic TFS such that: 
(a) FS~ ~ F; 
(b) FSD N FSi G F; and 
(c) there 's  no other  atomic FS F' such that F' E F and F' satisfies 
conditions (a) and (b)} 

Note that the basic TDFS der ived from FS~ and FSD is indeed a TDFS, since FSi 
and T satisfy all the conditions given in Definition 5. In particular, for any IF, t} c T, 
F N FSi ~ _1_, since FSD N FSi ~ 3-, and ID N FSi _G F N FSi. It is also impor tant  to stress 
that, in general, DefFS(BasicTDFS(FS~,FSD)) ~ FSD. To see this, note  that it follows 
from the definition of DefFS and the fact that all elements in T are compatible with FSi 
that DefFS(FSi/T) G FSi. But it is not  necessarily the case that FSD G F&, because FSD 
will not  in general repeat  the information in FSi. However ,  we will see in Section 3.7 
and the appendix  that FSi N FSD = DefFS(BasicTDFS(FSi, FSD)). 

For basic TDFSs, we can make some abbreviations, as suggested in Section 2. 
That  is, we  can use a single AVM representat ion where  we have IndefeasibleValue/ 
DefeasibleValue (IndefeasibleValue is omit ted when  it's T,  and the slash is omit ted when  
IndefeasibleValue = DefeasibleValue). Thus, for example,  (4) can be represented as (5). 
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(4) 

(5) 

] H:F: laG:T]  / {( : [ G : b ] ] , t ) }  

F: : /b] 
H:  

Where appropriate, we will use such abbreviations in the examples that follow. 

3.6 Examples 
We will prove that the operation has the properties specified in Section 1.1 in the 
next section, but first, we will illustrate how the operation works by means of specific 
examples. 

3.6.1 Specificity. The following example demonstrates that default reentrancies are 
overridden by conflicting default information of a more specific type. 

Where t E t' and a N b = 3_, we will calculate: 

and the defeasible result of this default unification, i.e., 

DefFS([~G:'~b]N>[~://~]] ) 

• I12 : [~G::TT_] [--] [~: ~_] : [~ " 
• r 12 = (T 1 U r 2) \ Bot 12 

v = { ( [ F :  : b ] , t / }  

T 2 = { ( [ F :  ~ ] G :  ,t ')} 

Bot 12 = 0 

So 

T 12 = (T 1UT 2)\BOt 12 

= {([F:a],t),([G:b],t),([~::[~],t')} 
Therefore 

[G':~'/~b]~~[~::',l~]] = t '  [~G::-~-] / {([F:a],t),([?:b],t),([~::~]],t)} 
We now calculate the resulting defeasible structure: 

The specificity partition of T 12 is (#1, #2), where: 

#1 = { ( [ F : a ] , t ) , ( [ G : b ] , t ) }  

# 2 :  {([(~: ~] ],t ')} 
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So 
D12 =d~ DeSFS(I12/T12) = [-]((I12 ncs ~Ofs(~l)) ncs ~fs(~2)) 

nc~{ IF a] [G b] } 

Hence 

D12 = De/FS(  ~::'~b] N : / /~  ) 

= De fFS(  : T  T / { ( [ F : a ] , t ) , ( [ G : b ] , t ) , ( [ ~ : ~ ] , t ' ) }  ) 

3.6.2 The N i x o n  D i a m o n d .  The credulous unification operation ~cs does not generally 
return a deterministic result. However, N does, even though it is defined in terms of 

Ncs. This is because N generalizes over the credulous options. The following example 
illustrates this. 

Where t and t' are in no specificity ordering, and 

t N t t ---- t" 

arab = & 
a u b =  c 

We will calculate: 
~.  t# 

and the defeasible result of this unification, i.e., 

/12 ~- : I-1 : 

r," 1 = F.T 
[G: T] 

r 12 = ( r  1UT 2 ) \ B O t  12 

r 1 = { ( [ F : a ] , t ) , ( [ O : b ] , t ) }  

Z 2 = {( [~ : :  ~ ] , t ' )}  

Bot 12 = 0 
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So 

T 12 = (T 1UT 2)\BOt 12 

= { ( [ F : a ] , t ) , ( [ G : b ] , t } , ( [ ~ :  ~ ] , t ' > }  

Hence 
t r t" 

[ ~ : : , ~ b ] ~ E ~ , : , ~ ]  = L~':rT ] / {([F:a],t),![G;b],t),([~::~],t)} 

We now calculate the resulting defeasible structure: 

The specificity partition of Z 12 is T 12 itself (since both t and t' are the 
most specific types in T12). 

< 

D12 =~f DefFS(F12) = U((I12 ncs pfs(T12))) 

=u( t" I < 

{ [F : a],  [G : b] ,  [~:  ~ ]  } ) 

E t" rt,, [t,, 

Hence 

3.6.3 Atomic Values and Feature Values. The default unification operation PDU de- 
fined in Lascarides et al. (1996) did not respect even the weakest notion of well- 
formedness: that there are some atomic types for which no features are appropriate. 
Thus the formalism is too weak even to be able to define an analogue of untyped FS 
systems, where nodes that have (atomic) values cannot also have features. For exam- 
ple, even if a is intended to be a simple value type (i.e., a has no appropriate features 
and no subtypes with appropriate features) the following is true: Where t E t' and a 
rq u = _l_, 

I 1 [~ :/a] PDU F : / [ ~ : b ]  = : / [ ~ : b ]  

This problem with PDU stems from the fact that the defeasible results of the operation 
for each node were calculated independently. In this example, the result for the path 
F:G is independent  of the outcome for the path F. This independence allowed the use 
of a polynomial algorithm, but at the cost of producing default TFSs that were not 
well-formed (both in the way outlined above and also in that the result could contain 
nodes typed _L), which causes problems for the definition of DeJFill (i.e., the operation 
for producing a well-formed TFS from a TDFS). In contrast, YADU is not calculated on 
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a path-by-path basis: atomic FSs are incorporated into the default result only if they 
unify with the complete structure. As we demonstrate here, one consequence is that 
we don't get ill-formed results of the sort demonstrated above. The cost of this is that 
the known algorithms for calculating default TFSs in YADU are worst-case factorial 
in complexity, as discussed in Section 5. 

Let's calculate the following: Where t E t' and a M u = _1_, 

[" ] 
and the defeasible result of this, i.e., 

So 

I12 = II H I2 = [ ~ : T] 

T 12 = (T 1UT 2)\BOt 12 
T 1 = { { [ F : a ] , t ) }  

T 2 = {{[F:u], t ' ) ,{[F: [G:b]] , t '}}  
Bot 12 = 0 

T 12 = (T 1 U T 2) \ Bot 12 

= {{[W:a], t) , ([F:u], t ' / ,{[F:  [G 

Therefore the specificity partition of T 12 is {#1, ~2), where: 

],r/} 

{/[F:a],t}} 
#2 = {( [F:u] , t ' ) , ( [F:  [G:b] ] , t ' )}  

D12 -~ o(((I12 ncs pfs(~l)) ncs g~fs(#2)) 

Ncs { [ F : u ] ' [ F :  [ G : b ] ]  i} ! 

(because [~: I n  [F :u]  and [p :a ]  M [F: [ : ]] bothfail) 

Hence 

{ { [ F  : a ] , t ) ,  

D e f F S ( [ ~ : / a ] M > [ ~ : / [ ~  b] ] ) =  OefFS([~ T] / {[F:u],t '}, 
: : {[F: [G:b] ] , t ' )}  
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3.7 The Properties  of  N> and DefFS 
We now state the theorems that demonstra te  that defaults have the propert ies that we 
specified in Section 1.1. The proofs for these theorems are given in the appendix.  The 
rest of the paper  can be unders tood  wi thout  reading the appendix.  In what  follows, 
we continue to use the notational convent ion that Fi =~es Ii/Ti and DefFS(Fi) = Di. 

First, criterion 1 is satisfied: nondefaul t  information can be dist inguished from 
default  information and is always preserved.  Nondefaul t  and default  information are 

< >  

distinguished as a direct result of our  definition of TDFSs. N preserves all nonde-  
fault information, because the nondefaul t  result of N> is defined in terms of N on the 
nondefaul t  parts of the arguments,  and N preserves information. 

Second, criterion 2 is satisfied: default  unification never  fails unless there is conflict 
< >  < >  

in nondefaul t  information. We assume F1 F7 F2 fails if and only if F1 N F2 = _l_/0. But 
I12 = 3_ if only if I1 N I2 = 3_. That is, N> fails only if there is conflict in the nondefaul t  
~>formation I1 and/2.  And T 12 = 0 whenever  I12 = _l_ by  the definition of T 12 given in 
r7. So default  unification fails only if monotonic  unification does. And note that w h en  
Fi ~-~F2 fails, D12 =~e DefFS(_L/O) = 3_. 

We have already shown, in Section 3.6, that the definitions of ~ and DefFS sat- 
isfy criterion 6: defaults can be given a precedence ordering such that more  specific 
information overrides less specific information. 

Now all that 's left are criteria 3, 4, and 5. We start with criterion 5. We have divided 
< >  

the operat ion of comput ing  the default  result of two TDFSs into two opera t ions - -N 
and then DefFS. Default  unification is order  independent  if ~> is a con~nutat ive and 
associative binary operation. In that case, the default  result DefFS will be the same, 
regardless of the order  in which the TDFSs were unified, since the arg~ument to De/FS 
will be the same. Roughly speaking, the proof  that N> is commutat ive  and associative is 

< >  . 

done in parts: we prove  that the indefeasible par t  of N is commutat ive  and associative, 
and we prove that the definition of tails given by  ~ is commutat ive  and associative. 
The relevant lemmas and theorems that suppor t  this are specified below, and they are 
proved  in the appendix.  

Lemmas 1 and 2 ensure that as far as tails are concerned,  the order  of arguments  
of TDFSs to ~ doesn ' t  matter: 

L e m m a  1 
Tails are commutative.  That is T 12 = T 21. 

L e m m a  2 
Tails are associative. That is: T (12)3 = T 1(23) 

Lemmas 3 and 4 are necessary for proving both  criterion 4 (default unification 
returns a single result, deterministically), and criterion 5 (default unification is order  
independent) .  Lemmas 3 and 4 ensure that the default  unification on TDFSs and the 
default  results of the operat ion both return a single result deterministically, as required 
by  criterion 4. 

L e m m a  3 
< >  

N is a function. That is, TDFS1 ~-~TDFS2 is a unique TDFS. 

L e m m a  4 
DefFS is a function. That is, DefFS(TDFS) is a unique TFS. 
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These l emmas  contr ibute to the proofs  of l emmas  5 and  6, which  in turn  are used  
to p rove  theorem 1, which ensures  criterion 5 is met:  

Lemma 5 
M is commuta t ive .  That  is: 

F 12 =a~ /.12/T 12 
F 21 

=a~ I21/T21 

Lemma 6 
M is associative. That  is: 

F(12)3 =d~ /-(12)3/T(12)3 

= F1(23 ) 

=a~ I1(23)/T1(23) 

Theorem 1 
M is an o rder - independen t  b inary  function. 

Note  that  it follows immedia te ly  f rom this theorem that  regardless  of the order  in 
which  a set of TDFSs are default  unified, the default  result  as g iven b y  the opera t ion 
DefFS is the same. In particular,  D12 ~- D21, and  D(12)3 = D1(23). 

We n o w  turn to criterion 3 f rom Section 1.1: Default  unification behaves  like mono-  
tonic unification in the cases where  monotonic  unification wou ld  succeed. This crite- 
r ion is essentially about  cases where  there is no conflict in the a rguments  to be default  
unified. When  there is no conflict, M> should  give the same results as M. In our  case, 
this needs  explication for two reasons. First, we  have  dis t inguished default  f rom non-  
default  informat ion  in our  TDFSs- -as  required by  criterion 1 - - a n d  so M and r3 w o r k  
on different types  of arguments :  the fo rmer  is def ined on TDFSs whereas  the latter 
is defined on TFSs. Therefore,  we  mus t  refine wha t  we  m e a n  by: M gives the same 
result  as M. Here  we  assume that  it means  that  w h e n  there is no conflict be tween  the 
a rguments ,  M and  DefFS should  give the same results as M for the indefeasible TFSs 
and  the defeasible TFSs respectively. That  is, where  

F12 =def/-1/Zl ~>/-2/T2 
and 

and 

DefrS(Fi) Di 

112 = 11 M/2, 

D12 = D1 M D2 

In other words ,  on the defeasible part ,  DefFS(Fl~-~F2) ~> DefFS(F1) ]-] DefFS(F2). Note  
that  I12 = 11 M 12 follows trivially f rom the definit ion of M, regardless of whe ther  there 
is conflict or not. We m u s t  show that  w h e n  there is no conflict be tween  the a rguments  
to N, D12 = D1 M D2. 

The second thing that  m u s t  be  explicated is the condit ions unde r  which  the ar- 
gument s  to M--namely ,  two TDFSs- -a re  said to conflict. When  default  unification is 
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defined in terms of TFSs (e.g., Carpenter  1993), the concept  of conflict is clear: the 
TFSs conflict if their unification is _L. However ,  because we have dist inguished default  
from nondefaul t  information in TDFSs to satisfy criterion 1, and we have in t roduced 
tails into TDFSs to satisfy criterion 5, our  definition of when  two TDFSs conflict is 
necessarily a little more complex. What  should conflict mean  in this case? There are 
at least two alternatives. First, two TFDSs conflict if D1 M D2 = _L. In other words,  they 
conflict if DefFS(F1) M DefFS(F2) = _L. Second, two TDFSs conflict if the information 
in the two tails conflicts, either with each other or with the accumulated indefeasible 
information /12. That is, the two TDFSs conflict if I12 N fafs(Z 1) V1 fafs(T 2) = _L. Note 
that given that T 1 potential ly contains mutual ly  incompatible information (in the TFS 
sense), and similarly for T 2, and in general Z i contains more information than Di (by 
the definition of DefFS), the latter condition of conflict is much  weaker  than the former  
condition. As it turns out, we can prove  that D12 = D1 M D2 (i.e., ~> behaves like M 
when  there is no conflict) only in the case where  there is no conflict in the latter sense. 
This is given in theorem 2 below. 

Theorem 2: The Typed Unification Property 
Let F1, F2 be TDFSs, and suppose 

I12 M pfs(T l) V1 pfs(T 2) ¢ _k 

Then 
D12 = D1 M D2 

In other words: 
DelES (El N>F2) -= DefFS (El) r] DelES (F2) 

In general, ~ does not  reduce to M when  there is no conflict be tween the defeasible 
TFSs (i.e., when  D1 N D2 7 ~ _L). The following example demonstrates  this: 
Where 

t l  u t2 u t3 
a M c = _ L  
b M c = _ L  
a U b = T  

[~1 TI/ {((I!: ~]l,tl ). <>[t3 ] 
c::. .],t2), ([c b],t2)} n[~::; / {([F:<],t3)} 

We just show how to calculate the defeasible TFS D12 =ao, DefFS(Fi~~F2): 

D12 ) 
~.s { IF <] } / 

: ~ / ( [  ~ s  ]~'~ E..1 ~ ~1~/~-~F <l~/ 
"({[  ~ S'][~: S ~ ] }~'~ ~F<~ / 

= [~ s.]'[ ~G s b] 
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G:: I 
Thus D12 ~ D1 N D2 in this case, even though 

[, 
G :: ~¢ 

We have suggested that because TDFSs contain more information than the defaults 
that win, the notion of conflict is more complex than in Carpenter (1992, 1993) and 
Bouma (1992). Their definitions of default unification correspond to the situations 
where we are unifying basic TDFSs. This is because these record default information 
but, like Carpenter's and Bouma's accounts, they don't track overridden default values 
from the unification history (because there hasn't been any unification his<to>ry). We can 
prove that the typed unification property for basic TDFSs is one where H reduces to 
M when there is no conflict among the TFS components. The corollary I below follows 
from the above theorem and the following lemma: 

Lemma 7: DefFS for Basic TDFSs 
Let F be a basic TDFS I /T  derived from the indefeasible TFS I and the defeasible TFS 
ID. Then 

DefFS(F) =de: D = I MID 

Corollary 1: The Typed Unification Property for Basic TDFSs 
If TDFS1 and TDFS2 are basic TDFSs derived from I1 and ID,, and/2 and ID2 respectively, 
and 11 I7 ID1 N 12 IN ID2 ~ _L (i.e., D1 N D2 ~ _L), then 

D12 = D1 H D2 

= IiMIDiMhVIlD2 

Thus criterion 3 holds, refined as required because of the more complex informa- 
tion structures (i.e., TDFSs) that are necessary in order to meet the other criteria. 

3.8 Comparison between PDU and YADU 
For convenience, we summarize the major similarities and differences between PDU 
and YADU here. 

. 

. 

. 

Both PDU and YADU can be defined using conditional logic. However, 
unlike PDU, YADU has a simple interpretation as an algebraic operation, 
which is what we have given here. This considerably simplifies the 
proofs that the operation has the desired properties. 

PDU does not fully satisfy our criterion 6 from section Section 1.1, 
because default coindexations cannot be overridden by default values. In 
contrast, YADU allows coindexations to be overridden by default values. 
This is because (a) the defaults on paths are not computed independently 
of one another, and (b) YADU keeps track of overridden default 
reentrancies in the tails. 

Furthermore, because tails are extended this way in YADU compared 
with PDU, the default structure in a TDFS does not need to be defined 
separately; it is computable directly from the indefeasible TFS and the 
tail. 

80 



Lascarides and Copestake Default Representation 

. 

. 

PDU can result in default TFSs that are not well formed, in that they 
contain 3_, or violate a very basic notion of well-formedness. This 
necessitates a complex DefFill operation in order to utilize the default 
structures. In contrast, in YADU, the default structures are guaranteed to 
be well-formed and DefFill is basically equivalent to treating the default 
structure given by DefFS as being nondefault. 

YADU can be extended to handle default inequalities (see Section 6.1 
below); PDU cannot be extended this way. 

4. Linguistic Examples 

In this section, we go through some linguistic examples where defaults can be utilized. 
The aim of this section is to illustrate ways in which the use of defaults can simplify 
and enhance monotonic grammars, concentrating on syntax and (compositional and 
lexical) semantics. In particular, of course, our aim is to show the linguistic utility of the 
particular assumptions we have made in defining YADU. We do not have space here 
to systematically illustrate the ways in which defaults may be utilized in a grammar, 
though the papers listed in Section I give many more examples, which can, in general, 
also be modeled within the current framework (with the main exception being some 
uses that require asymmetric defaults, discussed in Section 6.5, below). We have tried 
to give examples that have not, to our knowledge, been extensively discussed in the 
previous default unification literature. 

We assume an HPSG-like framework, but we have tried to give an explanation 
in enough detail for readers who are relatively unfamiliar with HPSG to follow the 
examples. In HPSG, the basic linguistic structure is the sign. Signs may be lexical or 
phrasal, but always correspond to constraints that may be represented using typed fea- 
ture structures. In what follows, we will instead use TDFSs, and take various liberties 
with the feature geometry for ease of exposition. However, although much simplified, 
the treatment in the grammar fragments here is substantially based on that assumed 
in the English Resource Grammar (ERG) under development at CSLI (Flickinger, Sag, 
and Copestake, in preparation). The ERG itself has been developed without making 
use of defaults up to this point, using the DISCO/PAGE system (Uszkoreit et al. 1994), 
but it also runs within the LKB system (Copestake 1992). YADU has been implemented 
within the latter system, replacing the earlier version of default unification described 
in Copestake (1993). 

Before giving detailed examples, however, we must make some further remarks 
on the assumptions we are making about persistent and nonpersistent defaults in 
these fragments. In the example of inflectional morphology that we gave in Section 2, 
we mentioned that the defaults could not persist beyond the lexicon, since the values 
for the suffixes must be treated as hard information by the parser/generator. More 
generally, we distinguish between defaults used in the description of some object in 
the grammar (that is, a lexical sign, a lexical rule or a grammar rule/schema), which 
we refer to as nonpersistent defaults, and defaults that are intended to contribute to 
the output of the grarmnar (in particular, the logical form), which we term persistent 
defaults. In fact, most of the examples we will discuss here make use of nonpersistent 
defaults, and where we intend defaults to be persistent we will distinguish this with 
a subscript p following the slash in the case of the abbreviatory notation, and with an 
annotation on the tail in the full description. 4 

4 In principle at least, there can be a mixture of defaults of varying persistence in the tail of a TDFS, and 
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In the examples  below, as in Section 2, we  assume  that  nonpers is tent  defaults 
m a y  be par t  of type constraints. This is in line wi th  the practice fol lowed in the ERG, 
where  some types  are pure ly  lexical, that  is, they are only  util ized in the descript ion 
of lexical entries and  are irrelevant to the parse r /genera to r .  However ,  some g r a m m a r  
wri ters  deprecate  such use of types,  and  capture  the cor responding  general izat ions 
wi th  macros  or templates.  For our  current  purposes ,  this cont roversy  is of l imited 
relevance, since the same TDFSs that  we  are describing as constraints on types  could 
al ternat ively be used  as the values  of templates.  The only requi rement  is that, in order  
to have  a compat ib le  not ion of specificity, the templates  mus t  fo rm a part ial  order  
(which will be  natura l ly  true if they are used  as an inheri tance hierarchy) so that  
templa te  order  can replace type  order  in the de te rmina t ion  of specificity in YADU 
(as discussed in Section 6.2). Under  these circumstances,  nonpers is tent  defaults wou ld  
mos t  natura l ly  be  seen as par t  of the descript ion language.  For fur ther  discussion 
of the t y p e / t e m p l a t e  distinction, in the context of a defaul t  inheri tance system, see 
Lascarides et al. (1996). 

4.1 Modals  
One ve ry  s t ra ight forward example  of the utility of defaults  in descript ions of syntactic 
behav ior  is the t rea tment  of ought in English. It behaves  as a moda l  verb  in mos t  re- 
spects: it inverts,  it can be nega ted  wi thou t  do, it takes the contracted negat ion oughtn't, 
and it does not  have  distinct inflected forms  ( though we will ignore morphologica l  
issues here). However ,  unlike mos t  modals ,  it requires the to-infinitive, as shown  in 
(6a-d), ra ther  than  the base  fo rm of the verb. The moda l  is to behaves  similarly, as 
shown  in (6e), a l though it inflects. 5 

(6) a. I ough t  to finish this paper.  

b. * I ough t  finish this paper.  

c. You ough tn ' t  to disagree wi th  the boss. 

d. Ough t  we  to use this example?  

e. You are not  to argue. 

Here  we  sketch a t rea tment  of modals  that  al lows ought to be an exception to 
the general  class, just wi th  respect  to the value of the at tr ibute on its c o m p l e m e n t  
specification, which  specifies whe ther  ought expects a base  or infinitival complement .  
We also briefly introduce the syntactic feature geome t ry  we  will also a s sume  for all 
the examples  that  follow. 

Figure 7 shows a constraint  specification for a type  modal ,  which  we assume  
is the lexical type of all moda l  verbs  including ought. This constraint  is responsible 
for the characteristic behav ior  of moda l s  ment ioned  above.  Because we  are ignor ing 
morphology,  the figure only shows the SYNSEM (syntax/semant ics )  par t  of the lexical 

the DefFill operation must be defined so that it is sensitive to this distinction and only incorporates 
defaults of the appropriate persistence. To do this, we can define a partial order on persistence markers 
and add a persistence marker as an extra component to the definition of a tail. DefFill is then defined 
relative to a particular persistence, and incorporates all tails marked as having that persistence or any 
persistence that is prior in the partial order. Since none of the examples that follow make use of mixed 
persistence tails, we ignore this complication here. 

5 For some speakers the infinitive without to is possible or even preferred with ought in nonassertive 
contexts. For others, ought does not share the other properties of modals we have listed here. We will 
ignore these dialect variations here, and simply assume the grammaticality pattern shown in (6). 
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modal 

SYNSEM : 
HEAD AUX : t i e  ] ] 

HEAD VFORM : /bse 
VALCOMPS: ( VALCOMPS : 0 ) 

Figure 7 
Constraint on type modal. 

head-comp-phrase 
ORTH : could sleep 

HEAD: [] 
SYNSEM: [VALCOMPS:o]  

m°"a' I ] ORTH: could 
HD-DTR: HEAD: [] [AUX: true] 

SYNSEM : [ VAL COMPS : ( [] ) 

ORTH : sleep 

L[HEAD V F O R M v A L  COMPS : , bse] NON-HD-DTRS: ( SYNSEM : [] , )/ 

Figure 8 
Structure of an HPSG-style phrase for could sleep. 

sign, and we will ignore the semantics of modals for this example. Subcategorization 
properties of signs are specified via valence (VAL) features, which describe a list of 
specifications with which the SYNSEM values of other signs may be unified. For verbs, 
the relevant valence features are SUBJ (subject) and COMPS (complements), though 
we have systematically omitted SUBJ in this example for simplicity. The constraint 
given on modal for the value of the COMPS list means that it may only contain a 
single element. That element must have a verbal HEAD, a single member subject list, 
and an empty complements list: i.e., it must be a verb phrase. Thus the constraint 
means that modals are restricted to taking a single verb phrase complement, which 
we assume here is obligatory. The value of the VFORM of the complement is specified 
by default to be bse, which is true of verbs and verb phrases where the head is a base 
form, but not of infinifivals (which have VFORM inf). 

Figure 8 illustrates the complement selection mechanism in operation. It shows a 
simple instance of a head complement phrase consisting of a modal (could) and its verb 
phrase complement (sleep). As we mentioned above, phrases are represented as TDFSs. 
Generalizations about phrases, or schemata, are represented as constraints on types 
and correspond to grammar rules in other frameworks. Here head-comp-phrase is a 
type, corresponding to head-complement phrases, as we will discuss in more detail in 
Section 4.2. Headed phrases have features HD-DTR, indicating the head of the phrase, 
which in this case corresponds to the structure for the modal verb could, and NON- 
HD-DTRS, which corresponds to a list of the other daughters. Here NON-HD-DTRS 
is a singleton, corresponding to the verb phrase sleep. The head-complement schema 
constrains the list of SYNSEMs of the NON-HD-DTRS signs to be equal to the COMPS 
list of the head daughter. 

The constraint for modal in Figure 7 also specifies that the HEAD AUX value of 
modal signs is true indefeasibly. This controls the behavior with respect to various 
lexical rules. For instance, negation is implemented via a lexical rule which, among 
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Description for could: 

Structure for could: 

Description for ought: 

Structure for ought: 

modal ] 
ORTH: could 

modal 
ORTH: could 

[ H E A D A U X : t i e  ] ] 
HEAD VFORM : bse 

SYNSEM : VAL COMPS : ~ VAL COMPS : 0 ) 

• modal ] 
ORTH: ought 
SYNSEM VAL COMPS : (IHEAD VFORM : inf]) 

• modal 
ORTH : ought 

[ H E A D A U X : t i e  ] ] 
HEAD VFORM : inf 

SYNSEM : VAL COMPS : ( VAL COMPS : 0 

Figure 9 
Examples of lexical description for modal verbs• 

other things, adds a structure compatible with not to the beginning of the complement 
list of the verb. This lexical rule only applies to verbs such as auxiliaries and modals 
which, unlike other verbs, have a value for SYNSEM HEAD AUX compatible with 
true. The AUX feature also controls the application of the inversion lexical rule. 

The lexical specification for could, which we take as an example of a normal modal, 
is also shown in Figure 9. The only idiosyncratic information given here is the morphol- 
ogy (though of course in the full entry there is also a specification of the semantics). 
Thus the TFS for could inherits all the information from the constraint on the type 
modal. Note, however, that the default for the VFORM of the complement must be 
nonpersistent, and thus the actual TFS for the lexical sign is calculated via DefFill, 
with the result that is shown in Figure 9. The structure for could sleep, which is derived 
from the sign shown in Figure 9, is shown in Figure 8 (for details on constructing 
this, see Section 4.2). In contrast, the lexical specification for ought overrides the de- 
fault value inherited from modal with the nondefault value inf for the VFORM of its 
complement. So ought cannot combine with sleep in the manner shown in Figure 8, as 
required. 

This is a very simple example but it illustrates that the use of defaults allows the 
grammar to capture the generalization that most modals take a base form complement. 
It is possible to devise a monotonic encoding that would produce the same lexical FSs 
but the various behaviors characteristic of modals would have to be split into different 
constraints, so that ought could inherit some but not all of them. This would not capture 
the intuition that ought is the exceptional case. Furthermore a monotonic encoding 
requires extra types. With the example as shown here, it appears that the monotonic 
encoding would require two additional types compared to the default encoding, one 
for ought and is to (and also used to, for speakers for whom this is a modal) and the 
other for all other modals. However, in the full English Resource Grammar, seven 
types are duplicated to allow for ought. The real gain in conciseness from allowing 
defaults is therefore more significant than our simplified example suggests. 
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phrase 

non-hd-ph hd-ph 

hd-adj -ph hd-nexus-ph 

hd-fill-ph hd-comp-ph hd-subj-ph hd-spr-ph 

non-hd-ph non-headed-phrase 
h d - p h  headed-phrase 

hd-adj-ph head-adjunct-phrase 
hd-nexus-ph head-nexus-phrase 
hd-fill-ph head-filler-phrase 
hd-comp-ph head-complement-phrase 
hd-subj-ph head-subject-phrase 
hd-spr-ph head-specifier-phrase 

Figure 10 
Hierarchy of phrases from Sag (1997). 

4.2 Defaults in Constructions 
Default inheritance can also be utilized in the description of rules, schemata, or con- 
structions within the grammar itself. Recent work within HPSG has demonstrated 
the utility of describing a hierarchy of phrasal types in a manner analogous to the 
more familiar lexical hierarchy. As we mentioned in the previous example, in HPSG, 
phrasal types play a similar role to rules in other frameworks, systematically relating 
the mother of a phrase to its daughters. Sag (1997), in an account of relative clause 
constructions, defines a general type phrase, from which various subtypes of phrase 
inherit (Figure 10). Sag uses defaults in his description of the phrasal hierarchy, but 
we go through the example in detail here, in order to demonstrate more formally how 
default unification operates in this case. 

We will not go into the full details of the hierarchy here, since our main concern 
is to demonstrate the way in which defaults are used. We will just consider the con- 
straints on headed-phrase (shown in Figure 11) and the way these are inherited by 
some of its subtypes. 6 The Head Feature Principle (HFP), which states that the HEAD 
value of the mother is identical to that of the head daughter, is unchanged from earlier 
work on HPSG (e.g., Pollard and Sag 1994, 34) and is not default. In contrast the Va- 
lence Principle (VALP) and the Empty Complement Constraint (ECC) are both stated 
in terms of defaults. VALP is a reformulation of the Valence Principle in Pollard and 
Sag (1994, 348). Here SUBJ (subject), SPEC (specifier) and COMPS (complements) are 
all valence features, and the effect of the constraint is to specify that these should be 
identical on the head daughter of a phrase and the mother, unless a more specific 
phrase type overrides this. The exceptions to the generalization that valence informa- 
tion is identical on the head daughter and mother are the phrase types where the 
individual valence features are satisfied. For example, in a head-complement phrase, 
the complements of the head of the phrase are instantiated and the COMPS list of the 
mother will be empty (as shown above in the example in Figure 8). ECC is a simpler 

6 The constraints are presented slightly differently from Sag (1997), since he sometimes omits features on 
paths when specifying constraints, but for the sake of clarity we show full paths here. We have also 
added the feature VAL, as in the ERG and the example above. 
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[ SYNSEM HEAD : [] ] 
Head Feature Principle (HFP): L HD-DTR SYNSEM HEAD : [] 

SYNSEMVAL: SPR: /[] 

Valence Principle (VALP): COMPS : /[] 
[ SUBJ : / [] ] 

HD-DTR SYNSEM VAL : [ SPR: / [] 
L c o M P s  : / [ ]  

Empty Complement  Constraint (ECC): HD-DTR SYNSEM VAL COMPS : /o ] 

Figure 11 
The HFP, VALP, and ECC constraints (abbreviatory notation). 

hd'PiSEAD 
SS : [ VAL : 

HD-DTR SS : 

[] ] 
SUBJ: list 1 
SPR: list 
COMPS: list 
HEAD [] 

SUBJ: list I 1 VAL: SPR: list 
• COMPS: list 

SS VAL SUBJ : [] ] ,  hd-phr),  
HD-DTR SS VAL SUBJ : [] 

.1 

SS VAL SPR : [] 1' hd-phr),  
HD-DTR SS VAL SPR : [] 

.]  

SS VAL COMPS : [] 1' hd-phr),  
HD-DTR SS VAL COMPS : [] 

.1 

HD-DTR SS VAL COMPS : o ] , h d ' p h r ) }  

Figure 12 
Expressing the HFP, VALP, and ECC constraints as a single TDFS (SS here is an abbreviation 
for SYNSEM). 

constraint which states that, by default, headed-phrases have head daughters with an 
empty  complement  list. It is important  to note that a l though Sag states HFP, VALP, 
and ECC as three separate constraints, this is equivalent to treating their conjunction 
as a single constraint on the type headed-phrase,  as shown in Figure 12 (for clarity we 
use the full indefeasible/tail  notation for a TDFS). Note that one advantage of order 
independence in our definition of defaults is that the result of specifying constraints 
individually is guaranteed to be equivalent to stating them as a single TDFS, leading 
to greater perspicuity in the definition of a grammar. 

In Figure 13, we show the constraint specifications on the types head-nexus- 
phrase, head-complement-phrase,  and head-specifier-phrase, as given by Sag (with 
modifications as above). The constraint on head-nexus-phrase refers to how the se- 
mantic content is shared between mother  and head daughter  (a default version of this 
constraint that actually removes the need for the type head-nexus-phrase will be dis- 
cussed in Section 6.1). For head-complement-phrase  and head-specifier-phrase, the 
attribute NON-HD-DTRS corresponds to a list of the daughters  of the phrase excluding 
the head. As in Figure 8, elements of the appropriate valence feature are instantiated 
by the SYNSEMs of the nonhead daughters.  

There is a complication here: the constraint on head-complements-phrase given 
by Sag is intended to be read as specifying that an arbitrary number  of complements 
(possibly zero) correspond to the value of the COMPS feature. In fact, this cannot be 
directly implemented as written in the framework we assume here. The required effect 
can be achieved with a recursive type, or, on the assumption that the complements list 
can contain no more than four elements, multiple subtypes can be specified, each with 
a fixed number  of complements. For simplicity, we have assumed the latter encoding 
style here, which we illustrate with two schemata in Figure 13, for the zero complement  
(head-zero-comp-phrase) and the one complement  cases (head-one-comp-phrase). 
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head-nexus-phrase 

head-spr-phrase 

head-comp-phrase 
(. . .  notation) 

head-zero-comp-phrase 

head-one-comp-phrase 

Figure 13 
Constraints on phrases. 

SYNSEM : [] ] CONT 
HD-DTR SYNSEM CONT : [] .1 

SYNSEM VAL SPR : l) ] 
HD-DTR SYNSEM VAL SPR : ( [] ) 
NON-HD-DTRS : ([SYNSEM : [] ], 

I SYNSEM VAL COMPS : o 
HD-DTR SYNSEM VAL COMPS : i ~ .,[]) 
NON-HD-DTRS : ([ SYNSEM : [] ""I SYNSEM : [] ]> 

SYNSEM VAL COMPS : o ] 
HD-DTR SYNSEM VAL COMPS : o 
NON-HD-DTRS : o 

SYNSEM VAL COMPS : o ] 
HD-DTR SYNSEM VAL COMPS : 
NON-HD-DTRS : ([ SYNSEM : [] 1) -)  

([]  

Figure 14 shows the final structures for the schemata for the head-complement- 
phrases and head-specifier-phrase, after inheritance from the supertypes and mak- 
ing the default properties nondefault.  7 Note that in the head-one-complement-phrase 
schema, the ECC is overridden, as is the part of VALP that concerns the coindexa- 
tion between the complements of the head-daughter  and the mother, while in head- 
specifier-phrase, the coindexation of the specifier has been overridden. 

One interesting point is that the specification language discussed in Section 3.5 
allows for a very succinct encoding of constraints which, like the valence principle, 
state that a set of features are identical by default. Figure 15 shows this alternative 
encoding for VALP: the default TFS states one coindexation, between the VAL features 
for mother and head daughter. Because the definition of BasicTDFS states that a path 
equivalence will be present in the tail for each case where a node can be reached by two 
distinct paths, the TDFS contains tail elements indicating a path equivalence not only 
for VAL, but  also for all paths that extend VAL, i.e., SUBJ, COMPS, and SPR (for clarity, 
we have shown the type list explicitly, rather than using the angle-bracket notation: 
list has no appropriate features). Thus the TDFS has one extra tail element compared 
to the version we gave in Figure 12, but  this extra element will be overridden in all 
of the schemata (except head-zero-comp-phrase, if we use the encoding assumed in 
Figure 13). 8 

Thus the use of defaults allows a more concise specification of the phrase hier- 
archy, enabling generalizations to be captured that would  be obscured with a purely 
monotonic treatment. Al though these constraints could be captured in a system with- 
out defaults, either they would  have to be stipulated redundantly,  in multiple points in 
the hierarchy, or extra types would  have to be introduced so that multiple inheritance 
could be used to distribute properties appropriately. This latter option would  consid- 

7 Sag (1997) suggests that the constraints are converted from default to nondefault for all maximally 
specific phrasal types, which means that these must have a special status. A more straightforward 
approach is to assume that the terminal schemata are analogous to lexical entries, rather than being 
types in their own right. 

8 This encoding style also has potential in the representation of lexical rules, where these are represented 
as single TDFS with an input and an output feature, since the default TFS in the specification can state 
that the input is equal to the output. This allows a much more succinct description than is possible in 
an unextended monotonic language, where feature values must be explicitly duplicated. 
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head-zero-comp-phrase  schema 

head-one-comp-phrase  schema 

head-spr-phrase schema 

Figure 14 
Expanded schemata. 

" HEAD 

SYNSEM : VAL : 

L CONT 

HD-DTR SYNSEM : 

NON-HD-DTRS : () 

[] SUBj:  ] 
SPR : 
COMPS: o 
[ ]  
H E A D :  [ ]  

VAL : SPR : 
COMPS: o 

CONT: [] 

HEAD : [] ] 

| SPR: [] SYNSEM : [ VAL : [ SUBJ : [] 
/ L COMPS : o 
L CONT : [ ]  

H E A D :  [ ]  
SUBJ : [] 

HD-DTR SYNSEM : VAL : SPR: [] 
COMPS : ~ []) 

CONT: [] 
NON-HD-DTRS : ([ SYNSEM : [] ]) 

F HEAD : [] ] 
SUBJ: [] ] 

SYNSEM: ]VAL: [ S P R : o  ] Lco ! °Mes : 
HEAD: [] 

SUBJ . ) 
HD-DTR SYNSEM : VAL : SPR : 

COMPS: o 
CONT: [] 

NON-HD-DTRS : ([ SYNSEM : [] ]) 

erably complicate the hierarchy for the set of default  constraints that Sag considers. In 
neither case could the valence principle be stated as a single generalization. The only 
way  in which this would  be possible in a monotonic  system would  be if the constraint 
language were enriched. This example shows the utility of allowing overr iding of 
default  pa th  equivalence statements. This would  not  be possible with some previous 
versions of default  unification, including Russell, Carroll, and Warwick-Armstrong 
(1991), Russell et al. (1993), and the second version of the LKB default  unification 
given in Copestake (1993). It is also not  al lowed in Young and Rounds (1993), which 
is the only order - independent  version of default  unification of which we are aware 
apart  f rom PDU and YADU. 

4.3 Agreement  and Semantic  Plurality 
We turn now to an example involving a more  complex use of YADU, in which it 
is necessary to allow default  values to survive when  default  pa th  equivalence state- 
ments  are overr idden.  The example concerns the relationship of number  agreement  to 
semantic notions of plurali ty and massness in English nouns.  It is partially based on a 
t reatment  given in Copestake (1992), but  the use of YADU enables a more  satisfactory 
encoding of the central intuition, which is that agreement  usually, but  not  always, 
follows the semantics. 

To explain the account, we must  first briefly introduce the style of semantic en- 
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 '%AD [] ] 
SUBJ : list ] 

SS: IVAL: SPR:l is t  | ] 
BasicTDFS( CPS: list J [SS VAL: [] 

' SSVAL [][CPS o] ) HD-DTR : : 

SUBJ: list 
HD-DTR SS : VAL : SPR : list 

CPS: list 

[- hd-phr [SS VAL : ] 
HD-DTR [] ] / FHEAD [] {( ~ VAL: ,hd-phr) ,  

SUBJ : list ] [ SS VAL SUBJ : [] , hd-phr),  
| SS : VAL : SPR : list | ( [ HD-DTR SS VAL SUBJ : [] 

= CPS list ] / ( [ SS VAL SPR: [i3 ], hd-phr),  
[ HD-DTR SS VANL SPR : [] 

HD-DTR SS: i S~UBJ : list ] ([ SS VAL CPS: [ ]  ~ ], hd-phr),  [ HD-DTR SS VAL CPS [] 
/ S P R : l i s t  | 
tCPS: l i s t  J ( [ H D - D T R S S V A L C P S : / o ] ) }  

Figure 15 
Encoding VALP using the Basic TDFS notation (SYNSEM is abbreviated SS, COMPS is CPS). 

coding used in the ERG. This is known as Minimal Recursion Semantics (MRS) and is 
described in detail in Copestake et al. (1995), though for the sake of simplicity we  will 
ignore most  of the details in these examples, including all discussion of quantification. 
The semantics (i.e., the value for the CONTENT feature) for the lexical sign for dog is 
shown in (7a). This has an interpretation roughly equivalent to that of (7b). 

(7) a. 
[INDEX: i[AGRNUi:sg]_dog_rel 

LISZT: ( INST : [] 

b. Ax[dog(x)] 

The feature INDEX in (7a) indicates the equivalent of the lambda variable in (7b). 
Features on the index indicate agreement, in the usual w a y  in HPSG: here the noun will 
agree with a verb that takes singular agreement (we only consider number  agreement 
here). The LISZT contains a list of relations, which is a singleton here as for most  
lexical signs (composition of the semantics proceeds by  appending LISZTs). The type 
of the relation, _dog_tel, indicates the predicate name. The initial underscore in the 
type name is a notational convention to indicate a lexical predicate, so that we  can 
for instance distinguish the type noun_rel, which is a general type for noun relations 
in the type hierarchy, and _noun_rel, which is the relation corresponding to the noun  
noun. The argument  to the predicate is indicated by  INST, which is coindexed with 
the value of INDEX. 

This structure has to be augmented  to represent semantic plurality and individ- 
uation (i.e., the mass / coun t  distinction) since the AGR N U M  feature will not always 
make the appropriate distinctions. Although in normal count  nouns (such as dog in its 
most  usual interpretation) number  agreement and semantics are in step, this is not  true 
for all nouns. Some nouns,  such as scissors or trousers, that denote bipartite objects have 
obligatory plural agreement. Other count  nouns, such as gallows and barracks, show 
variable agreement, even when  referring to a single object (Quirk et al. 1985). Mass 
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te rms usual ly  take singular agreement ,  bu t  there are exceptions, such as clothes, which 
a l though it behaves  semantical ly as a mass  term, nonetheless  takes plural  agreement .  
Here  we  will a ssume that  semantic  p lu ra l i ty / ind iv idua t ion  is indicated by  a predicate  
modifier,  as i l lustrated in (8). 

(8) 
single enti ty &x[Struth(x)] 
plural  enti ty )~x[Ptruth(x)] 
un ind iv idua ted  enti ty ,~x[Mtruth(x)] 

One t ruth  is self-evident. 
Some truths are self-evident. 
There is m u c h  truth in that. 

For simplicity, we  have  a s sumed  that  all occurrences of noun  predicates  are modif ied  
either by  M, P, or S (corresponding to mass ,  singular, and  plural)  though  it does  not  
mat te r  if one of these subcases is taken to cor respond  to the unmodi f i ed  predicate,  or 
if the structure a s sumed  is more  complex,  since all that  mat te rs  for current  pu rposes  is 
that  there is some th ree-way  distinction in the formal  semantics.  Similarly, we  need  not  
go into the details of the cor responding  models  ( though see Krifka [1987] for example) .  

One w a y  of captur ing the distinction in MRS is to add  another  feature to the 
relation to record the predicate  modifier,  which  we will call PLMOD. The values  of 
this slot are irrelevant f rom the perspect ive  of the formal  semantics,  as long as we  
can make  a th ree-way  distinction. However ,  in order  to facilitate the provis ion  of the 
default  relat ionship be tween  semantic  values  and  agreement ,  we  will use the values  
sg, pl, and  mass ,  where  the first two types  also cor respond  to possible values  of the 
AGR N U M  slot. The hierarchy for these atomic types  is shown  at the top of Figure 16. 

We can n o w  capture  the general izat ions about  semantics  and  agreement  as shown  
in Figure 16. The type  n o u n - s i g n  is a sub type  of sign, and  mass - s ign  is a sub type  
of n o u n - s i g n  (along wi th  types  for count  nouns,  pair  nouns,  and  so on, which  are 
not  s h o w n  here). Encoding the general izat ions at the s ign level al lows inflectional 
informat ion  to be included, though  we do not  show this here. But another  reason 
for not  us ing the rel hierarchy is that  we  wan t  types  such as _truth_rel to be  neutral  
be tween  mass  and  count. The default  general izat ion about  nouns  is that  the value of 
the PLMOD and the AGR N U M  paths  are coindexed.  This defaul t  will r emain  intact 
for ord inary  count  nouns.  For mass  nouns,  as shown  in Figure 16, there is a default  
value for the AGR N U M  feature of sg and  a nondefaul t  value of m a s s  for the PLMOD 
feature. The lexical entries for clothing and clothes both  inherit  f rom m a s s - n o u n ,  but  
the latter has  AGR N U M  of pl. We m a k e  the usual  a s sumpt ion  that  DefFill operates  
on these lexical entries, to give the results shown  in Figure 17. For this example ,  we  
have  m a d e  use of default  reentrancy, and  the fact that a default  va lue  can survive  on 
a node  for which  a default  pa th  equivalence was  overr idden,  which  was  not  the case 
in PDU. 9 

4.4 Persistent  De fau l t s  and the Interface b e t w e e n  the Lexicon and Pragmatics  
The utility of persis tent  defaults  in the interface be tween  the lexicon and  pragmat ics  
was  discussed in some detail  in Lascarides et al. (1996), and  f rom a more  linguistic 
perspect ive  in Lascarides and  Copes take  (in press). However ,  since this sort  of use was  
an impor tan t  par t  of the mot iva t ion  for deve lop ing  PDU and YADU, we will give one 

9 Note that it is not actually the case for this example that a default value is overriding a default path 
equivalence, although this is allowed in YADU, as we have discussed. The value of AGR NUM is 
indefeasibly agrnum, which is incompatible with the indefeasible value mass for the PLMOD of 
mass-nouns. However, in PDU this conflict would have resulted in the value ± on the relevant node in 
the default structure, and the default value sg on AGR NUM would thus in effect have been ignored. 
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number 

mass agrnum 

sg pl 

"noun-sign 

SS CONT LISZT : 
noun_rel 
PLMOD : number / [~  
INST AGR NUM : agrnum/[] 

mass-sign 
noun_rel 

SS CONT LISZT : < PLMOD : mass 
INST AGR NUM : / sg  

mass-sign 
ORTH : clothes 

F 
SS CONT LISZT | _clothes_tel 

: < | INST AGR NUM 
L 

) 

ORTH:  clothing 
: pl I ~ SS CONT LISZT : < _clothing_rel 

Figure 16 
Relating agreement and semantics for nouns (SYNSEM is abbreviated SS). 

mass-sign ] 
ORTH: clothes 

SYNSEM CONT LISZT : ( PLMOD : mass > 
INST AGR NUM : pl 

• mass-sign 
ORTH: clothing [do,hio.e, ] 
SYNSEM CONT LISZT : < PLMOD : mass ) 

INST AGR NUM : sg 

Figure 17 
Expanded and DefFilled lexical signs. 

e x a m p l e  here ,  w h i c h  w a s  n o t  d i s c u s s e d  in  the  f o r m e r  p a p e r  a n d  w a s  o n l y  c o n s i d e r e d  
b r i e f ly  a n d  i n f o r m a l l y  in  the  latter.  

Verbs  such  as  drink, eat, a n d  bake h a v e  b o t h  i n t r a ns i t i ve  a n d  s t r ic t  t r a n s i t i ve  uses .  
Both u se s  h a v e  v e r y  s im i l a r  m e a n i n g s ,  s ince  for  these  ve rbs ,  i n t r a n s i t i v e  u se s  i m p l y  
a p a t i e n t  (in c o n t r a s t  to kick, for  ins tance) ,  b u t  as  p o i n t e d  o u t  b y  F i l l m o r e  (1986) a n d  
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others, the intransitive uses have more specific default interpretations. In the absence 
of information to the contrary, (9a) means (9b), (10a) means (10b), and (11a) means 
(11b): 

(9) a. John drinks all the time. 

b. John drinks alcohol all the time. 

(10) a. We've already eaten. 

b. We've already eaten a meal. 

(11) a. I spent yesterday afternoon baking. 

b. I spent yesterday afternoon baking cookies, cakes, or bread. 
(as opposed to ham, apples, or potatoes, for example) 

These defaults can be overridden by arbitrary background information, for example: 

(12) As long as we're baking anyway, we may as well do the ham now too. 
(due to Silverstein, cited in Fillmore [1986]) 

A purely pragmatic explanation for the default for bake seems implausible, since 
there is no evident real-world explanation. For instance it would be difficult to claim 
that people usually bake flour-based products as opposed to natural ones. A historical 
justification could be suggested, since the Oxford English Dictionary (second edition) 
says of bake: 

primarily used of preparing bread, then of potatoes, apples, the flesh 
of animals. 

However, synchronically, the default interpretation seems to have become lexicalized: 
even if the speaker often cooks potatoes by baking but very rarely prepares bread or 
cakes, (11a) still implies (11b). This implies that the default is associated conventionally 
with the word bake, rather than arising as a consequence of its meaning. The assump- 
tion we make about the boundary between the lexicon and pragmatics is that the 
lexicon is responsible for encoding the relationship between word forms and mean- 
ings, and that pragmatics only has access to meanings. Under these assumptions, the 
default must be encoded lexically, but in such a way that it can be overridden in 
the right discourse context. This motivates the use of a persistent default: that is, one 
which is not converted to hard information, in contrast to the descriptive defaults dis- 
cussed in the previous examples (for further details and justification of these general 
assumptions, see Lascarides and Copestake [in press]). 

One way of describing an entry for bake that covers both transitive and intransitive 
uses is sketched in Figure 18. We first go over the indefeasible part of the structure, 
which will be the same for other verbs that take an optional noun phrase complement. 
The VAL COMPS value is a singleton, which is constrained to have HEAD noun and 
an empty complements list, i.e., to be a noun phrase. However, unlike in our earlier 
examples, we have also shown the feature OPT on the complement. A complement 
is treated as optional if its value of OPT is (compatible with) true (the details of the 
schemata that achieve this are not relevant here). As before, we use the MRS style of 
encoding semantics in TFSs. The INDEX value of the complement is coindexed with 
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- ORTH : bake 

SYNSEM : 

VAL COMPS : 

-OPT : true 
H E A D  : noun 
VALCOMPS : 0 

INDEX 

CONT : 
LISZT : 

CONTLISZT:  { | A R G 1  : [] O[]  
\ L ARG2, [] 

[] 

[]/P / [ flour-based._rel ] [INST: [] J} 

Figure  18 
Simplified representation for intransitive and transitive bake. 

the object slot in the main relation for the semantics of the verb. The MRS structure 
for the verb relation corresponds to bake(x,y) where  x is coindexed with the index 
on the subject, and y with the object. The ® in the CONT LISZT value of the verb is 
shor thand for a complex feature structure that has the effect of appending  the noun  
phrase semantics to that of the verb. 

The default  part  of the structure concerns the semantics for the noun  phrase 
complement ,  which conventionally would  not  be instantiated. Here, however,  the 
LISZT is stated, by  default, to be the singleton relation flour-based_tel.  1° Note the 
subscript p, indicating that the default  is persistent: that is, it is not  subject to the 
lexical De, Fill. The effect of this is that the object of bake is given a default  semantics 
indicating that it is a flour-based substance. We assume that flour-based_rel is a type 
that is incompatible with all lexical relational types, and thus any explicit object will 
overr ide this specification. However ,  in an intransitive use the default  semantics will 
be retained, giving a representat ion that can be represented in a linear notat ion as: 
bake(e, x, y) A/f lour-based(y) .  The manner  in which this can be over r idden  by  prag- 
matics in examples such as (12) is outside the scope of this paper, but  is discussed in 
Lascarides and Copestake (in press). 

With a suitably rich constraint language, one could devise a monotonic  encoding 
that would  allow for an underspecif ied entry for bake, which could be specialized ei- 
ther to have an obligatory complement  or to be strictly intransitive with the additional 
flour-based_rel. However ,  such a treatment would  not  allow for overr iding by  prag- 
matics in contexts such as (12). Furthermore,  it should be clear that this sort of use of 
defaults is only possible if defaults can be dist inguished from indefeasible parts of the 
structure, and if they persist beyond  the lexicon, and that an approach such as PDU 
or YADU is therefore required for such examples. 

10 In a full treatment the default semantics would also contain a quantifier. In fact the implicit object must 
have narrow scope existential quantification. Combining YADU with a semantic representation capable 
of representing quantifier scope in an underspecified fashion means that this can be made to follow 
from a general default assignment of scope. However the details are outside the scope of this paper. 
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5. Theoretical and Practical Complexity Issues 

Whe<n> discussing the complexity properties of YADU, we have to distinguish between 
the N operation, which involves the combination of two TDFSs, and DefFS, the calcu- 
lation of the default structure from a TDFS. One reason for drawing this distinction is 
that, in a practical system, it may be necessary to carry out the former operation much 
more frequently than the latter. As we mentioned in Section 3, it is only necessary to 
construct the default feature structure at some interface: for example, at the interface 
between the lexicon and the parser/generator (as in the examples in Sections 4.1, 4.2, 
and 4.3) or between the grammar and the pragmatic component (as in the examples 
in Section 4.4). In fact, only one DeJFS operation is necessary per lexical entry (or other 
gran~nar object), regardless of the depth or complexity of the inheritance hierarchy. 
Similarly, one DeJFS is required per parse for the use of persistant defaults. This is for- 
tunate, since the combination operation has considerably better complexity properties 
than the calculation of the default structure. 

simply involves unification of typed feature structures, set union of tails, and 
removal of tail elements that are incompatible with the indefeasible structure. Check- 
ing path-value tail elements for unifiability with the indefeasible structure involves 
checking one pair of types to see if they are compatible. Checking path-equivalence 
elements is roughly equivalent to unifying the relevant parts of the indefeasible struc- 
ture: in the worst case this could amount to unifying two TFSs of (n - 1)/2 nodes each 
per tail-element, where n is the number of nodes in the indefeasible structure. But, 
although we defined H as requiring the elimination of tail elements that are incom- 
patible with the default, we could equivalently have left this to the DefFS operation, 
and simply accumulated tail elements via set union. This is an insignificant overhead 
on normal unification, since the tail elements have very simple structures. 

In contrast, the worst-case properties of the calculation of the default TFS are un- 
pleasant. Recall that this operation involves partitioning the tail and then carrying out 
a step similar to asymmetric default unification as described by Carpenter (1993) for 
each partition. The only known algorithms for computing asymmetric default unifi- 
cation are factorial in the number of atomic FSs in the worst case (Carpenter 1993). 
Thus, for a partition with t tail elements, the worst-case performance is proportional 
to t! in the number of individual unification operations, where each unifcation could 
involve up to (n - 1)/2 nodes, as above. 

In practice, YADU is much better behaved on realistic examples than this would 
suggest. The first point to make is that, as far as operations on TFSs themselves are 
concerned, the DefFS operation can be implemented as a series of normal unification 
steps. One consequence of this is that the use of YADU does not incur any significant 
overhead with respect to ordinary unification when there are no tail elements. The 
only additional requirement for YADU is that there be a slot at the top level of an 
object's representation to store its tail. We mention this because it contrasts with some 
other extensions to TFS formalisms: implementations of disjunction, for example, gen- 
erally require that the TFS data structures and unification algorithms be considerably 
more complex, with a consequent overhead in performance even for nondisjunctive 
structures. Another mitigating factor is that it is easy for a grammar writer to tell in 
advance whether a particular use of defaults is likely to be computationally expensive. 
The worst-case complexity behavior only occurs in situations where there are interac- 
tions between path equivalence statements that are not resolved by specificity. While 
it is possible to invent pathological examples that have very deleterious performance 
characteristics, it is not clear that comparable cases will often arise in real grammars, 
especially if defaults are being used in a rather conservative fashion to extend a mono- 
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tonic core grammar. Consider the example in Section 4.1, for instance. There is only a 
single path value element in the tails of any of the structures described, and this will 
straightforwardly either conflict or be compatible with an indefeasible atomic value. 
Indeed in examples like this, the reduction in the numbers of types involved compared 
to the purely monotonic encoding could potentially lead to an efficiency gain. 

As we mentioned above, since PDU is polynomial, it has much better worst-case 
behavior than YADU. However, making a realistic comparison is not straightforward. 
The combination operation in PDU is more complex than in YADU, since it is neces- 
sary to calculate default TFSs at every stage as well as tails. The constant overhead 
compared to ordinary unification is higher and the implementation of PDU is trick- 
ier than YADU. Furthermore, there is a trade-off between complexity behavior and 
intuitiveness. The reason that PDU has better complexity behavior is that it always 
accumulates default reentrancies. If there is a clash with default values, the default 
reentrancies win-- if  there is a clash with indefeasible values, the coindexed nodes in 
the default structure are set to 3_, indicating inconsistency, and the DefFill operation 
must subsequently take care of constructing a valid TFS by removing the default path 
equivalences. However, this can lead to cases where potentially valid default path 
equivalences are removed. 

Thus, in PDU the sort of example that leads to the factorial worst-case complexity 
in YADU is treated specially, in that maximal information is not incorporated from 
the default structure. Roughly speaking, for these corner cases, there is a trade-off 
between the complexity behavior in YADU, and the complex behavior of PDU. 11 But 
our main practical reason for preferring YADU over PDU is that PDU can behave in 
unintuitive ways in examples where YADU would have nonproblematic complexity 
behavior. It is also worth noting that YADU will not be slow if the tail partitions are 
kept small, which is something the grammar writer can control. 

6. Extensions and Alternatives 

In this section, we briefly consider some variants on the definition of YADU that are 
useful in specific circumstances. 

6.1 Inequalities 
We have come across a number of cases where it would be useful to be able to over- 
ride a default reentrancy without specifying conflicting values for the paths involved. 
For example, consider the type hierarchy shown in Figure 10 and repeated in Fig- 
ure 19 for convenience. For most of the subtypes of headed-phrase, the CONTENT 
of the mother should be equivalent to the CONTENT of the head daughter. This 
holds for head-subject-phrase, head-comps-phrase, and head-specifier-phrase and 
their subtypes, but it is not true for head-adjunct-phrases, where the content value 
of the mother is equal to the content value of the single non-head-daughter. It would 
seem natural to specify the generalization on the supertype headed-phrase as a de- 
fault constraint, as shown in Figure 20, and to override the default on the subtype 
head-adjunct-phrase. This would allow the simplification of the hierarchy as shown 
in Figure 21. However, in standard YADU, there is no way to express the idea that 
the coindexation between mother and non-head-daughter should hold instead of the 
coindexation between mother and head-daughter, since, as far as this structure goes, 

11 Similar remarks also apply to the contrast between Bouma's (1990, 1992) and Carpenter's (1993) 
versions of asymmetric default unification. 

95 



Computational Linguistics Volume 25, Number 1 

phrase 

non-hd-ph hd-ph 

hd-adj-ph hd-nexus-ph 

hd-fill-ph hd-comp-ph hd-subj-ph hd-spr-ph 

Figure 19 
Hierarchy of phrases from Sag (1997). 

[ SYNSEM CONT : /[] ] 
HD-DTR SYNSEM CONT : /[] 

Figure 20 
Default version of the semantics principle. 

phrase 

non-hd-ph hd-ph 

hd-adj-ph hd-fill-ph hd-comp-ph hd-subj-ph 

Figure 21 
Simplification of hierarchy. 

[ SYNSEM CONT: [] ] 
head-adjunct-phrase | HD-DTR SYNSEM CONT : [] J k NON-HD-DTRS SYNSEM CONT : [] 

Figure 22 
Inequalities overriding default equalities. 

hd-spr-ph 

these coindexations are mutual ly  compatible. Of course, the CONTENT values of the 
head- and non-head- daughters  should not be unified in any instantiation of this 
schema, but  since the range of values for each is indefinitely large, there is no way  of 
giving them mutual ly  incompatible types. Thus the type head-nexus-phrase had to 
be introduced, as a place to state a monotonic constraint on the relationship between 
semantics values, but  this type is otherwise unmotivated and somewhat  unintuitive. 

This sort of situation can be avoided by making use of inequalities, as defined 
by Carpenter (1992). Intuitively, what  is required in order to specify the constraint in 
Figure 21 on headed-phrase is to say that the constraint on the schema head-adjunct- 
phrase stipulates explicitly that its head-daughter  content is not equal to the content 
on the mother, as shown in Figure 22. 

To achieve this formally takes only a very minor modification to the definitions 
already given. First, one must  change the definition of TFSs and tails, so that they 
include inequalities. The relation ~/+C Q x Q is added  to the tuple that currently 
defines TFSs (Definition 2), and a fifth condition is added  to the four that are already 
in that definition, which ensures that ~ is a relation of the right sort (see Carpenter 
[1992]): 

• ~/-~C Q x Q is an anti-reflexive and symmetric relation. 

Atomic FSs in tails are extended, so that they include path inequalities (as well as 
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the existing path:values and path equalities)• The definition of TDFSs is the same as 
before, except that it is now based on this new definition of TFSs and the new tails. 

Second, the definition of subsumption changes as in Carpenter (1992)• First, some 
notation: re ~F re' means 6(r, re) ~ 6(r, re'), Where r is the root node of the TFS. 

Definition 19: Inequated Subsumption 
F subsumes F', written F' G_ F, if and only if: 

• 71" ~ F  r e l  implies r e  ~ F '  re' 

• re ~ re' implies re g~r, re' 

• 5c'F(re) = t implies ~F,(re) = t' and t' G t 

The definitions of M and U remain the same, save that the new notion of inequated 
subsumption is used. The resulting operations are still well behaved, in that they are 
order independent,  and return a single result deterministically (see Carpenter [1992])• 

• . • < >  

The definitions of M and DefFS DefFill and BasicTDFS all remain the same, and the 
lemmas and theorems given in Sections 3.7 still hold, with the proofs unchanged as 
given in the appendix. These proofs still hold largely because they depend only on 
the well-behaved nature of set union, M, and U. 

Note that an inequality can arise in a derived TDFS (or its corresponding default 
TFS) only if that inequality existed in one of the TDFSs (or tails) that were used to build 
it via M. Inequalities not explicitly in this input never arise m the result• Consequently, 
this corresponds to a relatively weak notion of negation. One might  learn through M 

< >  v . . 

or through M that two nodes cannot be equal because they have mcompabble types, 
but  this does not mean that these nodes stand in the inequality relation defined by ~z+. 
However, one can always convert a TFS into a unique most general fully inequated 
TFS, as defined in Carpenter (1992) (where a fully inequated TFS is one where any two 
incompatibly typed nodes in the TFS stand in the inequality relation defined by ~,z+). 
Thus, one can define a version of DefFS that always outputs a unique fully inequated 
default TFS also. Furthermore, every TDFS has a unique most general fully inequated 
TDFS: it amounts  to the unique most general fully inequated TFS, plus the tail. 

As far as we are aware, no other version of default unification has been specified 
that allows for inequalities. In particular, PDU cannot be extended straightforwardly 
to handle inequalities, because it is computed on a path-by-path basis• Consequently, 
an attempt to PDU a TDFS with an indefeasible path equality and a TDFS with a 
default inequality on the same paths results in an ill-formed TDFS. We think that the 
fact that incorporating default inequalities is possible with such a small change to the 
definition of YADU attests to its elegance. 

6.2 Specificity ordering 
Note that al though we have consistently used the type hierarchy to give a specificity 
ordering to tail elements, the only real requirement to be able to define DefFS is that the 
tail elements have specificity markers that are in a partial order. Hence the defaults that 
"win" in a TDFS could be determined by an ordering other than the type hierarchy. In 
fact, any partial order could be utilized: all that is necessary is to indicate the specificity 
in the tails and to make the definition of the partition of tails sensitive to the relevant 
partial order. Specifically, the second member of the pairs in the tails, which we have 
defined as types, should be replaced with specificity information of the relevant sort, 
and the specificity partition of a tail defined accordingly. The definitions of ~ and 
DefFS then proceed as before. 
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T 

w u 

t v 

Standard definition 
Fine-grained definition 

Figure 23 
Effect of fine-grained tails. 

DefFS(BasicTDFS([F: T ], IF :  t ] ) ~ > [ F : u ] / { } )  = IF :  T ] 
DefFS(BasicTDFS([F T ] , [ F  t ] ) N [ F  u] /{})  IF v] 

The fact that prioritization of defaults need not be linked to the type hierarchy 
means that it is straightforward to adapt  YADU to un typed  feature structures or, in 
general, to a system where some form of templatic inheritance is used instead of the 
type hierarchy. It also might  be useful if an ordering is given by some component  ex- 
trinsic to the FSs, such as an ordering based on probabilities. It would  even be possible 
to add a finer grain of specificity to the type hierarchy by creating a specificity order- 
ing of tail elements within types, for instance so that for a type t, specificity markers 
t 1, t 2 . . . . .  t n were defined so that within-type priority followed numerical  ordering. The 
potential utility of this is shown by the example in Section 2, where the two types verb 
and regverb were distinguished simply in order to acheive the correct prioritization. 
An alternative would  have been to use a single type verb with two distinct specificity 
markers verb I and verb 2 to get the desired priorities on the defaults. 

6.3 Fine-Grained Structures 
One point that we glossed over slightly is the use of atomic FSs within a typed frame- 
work (as opposed to the un typed  FSs assumed in Carpenter [1993]). In the definition 
for BasicTDFS given in Section 3, we assumed that if a path 7r had  a value t, then there 
would  be one corresponding path-value atomic FS in the tail. But there is another 
possibility, which is to have additional structures in the tail, corresponding to each 
supertype of t: e.g., if w were a supertype of t, then there would  also be an atomic 
FS in the tail where the path 7r was associated with the value w. This would  give 
a finer-grained notion of maximal incorporation of information, since there might  be 
a situation where t was incompatible with a type u in the nondefaul t  FS (or it was 
incompatible with a more specific default FS) but  where u N w resulted in some more 
specific type v, which would  survive in the YADU result (see Figure 23). 

To extend tails this way, one must  change the definition of basic TDFSs, to remove 
the condition (c) from the original definition, which ensured that only the most specific 
information was included in the tail. So the new definition is: 

Def in i t ion  20: Fine-Grained Basic TDFSs  
Let I and ID be typed feature structures, where I is regarded as indefeasible and ID as 
defeasible. Furthermore, suppose that I N ID ~ 3_ (SO I and ID are compatible). Then 
the fine-grained basic TDFS BasicTDFS(I, ID) of I and ID is the TDFS I/T, such that: 

T = { (F, t) : t is the root type on ID N I, and F is an atomic TFS such that: 
(a) I ~ F; 
~o) SDnSEF} 

The existing definitions of ~ and DefFS will then provide the finer-grained notion 
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of maximal incorporation of default information, from these fine-grained basic TDFSs. 
Extending tails this way is useful for the treatment of lexical rules, as discussed 

in Briscoe and Copestake (1995). However it has the obvious disadvantage of con- 
siderably increasing the number of atomic FSs that must be considered, with adverse 
effects on efficiency. 

6.4 Credulous YADU 
Another way in which the definition could be varied would be to omit the general- 
ization step from DeJFS, which ensures that the default result of a TDFS is a single 
TFS, and to have a credulous variant of DefFS instead, which would be analogous to 
Carpenter's (1993) credulous asymmetric default unification: 

Definition 21: Credulous DefFS 
Let F be a TDFS I/T. Then 

DefFS(F) = ( I  Flcs< Pfs (#1)) r-lcs...< II-lcs< ~Ofs (#n) 

where {#1 . . . . .  # n /  is a specificity partition on T. 

We argued in Section 1.1 that a unique result is preferable in order to avoid mul- 
tiplication of disjunctive structures, but disjtmctive results might be useful in cases 
where there are multiple alternative structures (e.g., in modeling dreamed~dreamt, see 
Russell et al. [1993]). 

6.5 Asymmetric Default Unification 
We should point out that although we believe order-independent default unification is 
preferable to asymmetric default unification for many applications, there are situations 
where the latter is required. YADU could not replace asymmetric default unification 
in Grover et al.'s (1994) treatment of ellipsis. It is also not directly suitable for en- 
coding lexical rules: it is conventional to write lexical rules using a sort of default 
notation that is intended to be interpreted as meaning that the output of the rule is 
identical to the input except where otherwise specified, but formalizing this calls for 
an asymmetric notion of default (see Briscoe and Copestake [1995]). Similarly, Copes- 
take (1992) argues that it is useful to be able to encode irregular lexical entries as 
inheriting by default from the output of lexical rule application (e.g., the entry for 
children could inherit from the result of applying a lexical rule for plural formation 
to the entry for child but override the orthography). This requires asymmetric default 
unification, where the TFS that results from the application of the lexical rule is treated 
as defeasible and the specification on the lexical entry is treated as hard information. 
The current LKB implementation thus allows both types of default unification (which 
is straightforward, since YADU is implemented using a series of asymmetric default 
unification operations). 

7. Conclusion 

We have argued that for default unification to achieve the combination of perspicuity 
and declarativity familiar from normal unification, default unification should share 
some of its properties--such as determinacy and order independence. At the same 
time, default unification should respect the behavior of defaults, such as the overrid- 
ing of default information by more specific conflicting defaults. We have also argued 
here and elsewhere (Lascarides and Copestake, in press) that some linguistic phenom- 
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ena suggest that there are conventional default constraints that persist beyond  the 
lexicon, and are potentially overridden by more open-ended reasoning with (default) 
pragmatic knowledge in a discourse context. This requires a definition of default uni- 
fication where the default results of unification are marked as default, and thus distin- 
guished from the indefeasible results. We provided a definition of default unification 
known as YADU, which intuitively models the incorporation of the maximal amount  
of default information into the result, by adapting Carpenter 's  (1993) version of asym- 
metric default unification to the situation where default and nondefaul t  information 
is distinguished in a single structure and defaults may  have different priorities. Our 
definition was formally proven to meet the above requirements. We suggested that 
such a definition of default unification can improve the declarativity of existing uses 
of default inheritance within the lexicon because it does not require one to pre-specify 
the order in which information is to be accumulated. 

Despite YADU's factorial worst-case complexity behavior, its use does not signifi- 
cantly decrease overall system performance when  compared to a monotonic encoding 
for the examples we have tried in the LKB system. These results are preliminary and 
obviously only true relative to our particular implementat ion and style of grammar  
encoding, but  they lead us to believe that the worst-case complexity behavior does not 
preclude the use of YADU in typed feature structure implementations. Al though we 
only discussed a few examples in Section 4, we believe these illustrate the potential 
utility of defaults in a range of different contexts within a grammar and lexicon. We 
hope to report on a comparison between the monotonic and YADU versions of the 
English Resource Grammar  in a later paper. 

Appendix 

Proof of Lemma 1 
First we prove that B o t  12 = Bot 21. Note that by  order independence of M, I12 : /21. And 
by order independence of set union T 1 U T 2 = T 2 U T 1. So 

Bot 12 =des {(F, t> c T 1 U T 2 such that I12 N F = _L} 

= {(F,t> c T2UT 1 such that I21MF = _L} 
=ee/ Bot 21. 

So: 

T 12 _ 
--de/ 

--de/ 

(T 1 U T 2) \ Bot 12 

(T 2 U T 1) \ Bot 21 

T 21 [] 

Proof of Lemma 2 

T(12)3 ~de/ 
Bot (12)3 =~e/ 

(T 12 U T 3) \ Bot (12)3 

{(F, t> E T 12 U Z 3 such that I(12)3 N F = _L} 
{(F, t I C T 12 such that I(12)3 [-1 F = _L}U 
{ (F , t  I E T 3 such that/(12)3 M F  = _L} 

Let (F, t> C T (12)3. Then: 

(a) (F, t> c T 12 \ Bot(12)3; o r  
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(b) (F, t) E T 3 \ Bot (12)3 

Suppose (b). Then (F, t) E T 3 and/(12)3 N F ~ ±. 
Therefore, (F, t) E T 2 U T 3. Furthermore, by the definition of typed tmification, 

I(12)3 = I1(23) G /23. Therefore, s ince  I1(23 ) I--1F ~ _L, I23 N F ~ ±. So (F, t) C T 23. Further- 
more, /1(23)  N F = I(12) 3 [7 F ~ 3_. So (F, t) ~ Bot 1(23), and therefore (F, t) E T 1(23). 

Now suppose (a) holds. Then (F, t) E ((T 1 U T 2) \ Bot 12) \ Bot (12)3. But Bot 12 C Bot (12)3. 
So either: 

(i) 

(ii) 

IF, t I E T 1 \ Bot(12)3; or 

IF, tl ~ T 2 \ Bot (12)3 

Suppose (i) holds• Then (F, t) E T 1 and I(12)3 N F ~ .L. So I1(23 ) N F ~ K by the order 
independence of typed unification. So (F, t) E T 1 \ Bot 1(23) C T 1(23) . 

Suppose (ii) holds• Then (F, t) c T 2 and I(12)3NF ~ ±. So/1(23) MF ~ _1_, and therefore 
I23 N F ~ ±. So (F, t) ~ Bot 23, and so (F, t) E T 23. Furthermore, since I1(23) [~ F ~ ±, 
(F, t) ~ Bot 1(23). And so (F, t) E T 1(23). 

So T (12)3 c T 1(23). 
By symmetry, T 1(23) C T (12)3. 

Therefore T 1(23) = T 1(23). [] 

Proof of Lemma 3 
The indefeasible TFS of TDFS1 M TDFS2 is unique because M is deterministic. The tail 
is unique because set union and M are deterministic• [] 

Proof of Lemma 4 
The specificity partition of a tail is unique because the type hierarchy is a complete par- 
tial order. Furthermore, M and U are deterministic. Therefore the result of DefFS(TDFS) 
is unique. [] 

Proof of Lemma 5 
Let us consider the M of the TDFSs Fl ,and F2. The indefeasible part of F1 M F2 is the 

• , < >  . ~  T 2 1  same as the indefeasible part  of F2 • F1 because M is commutative. The tails T 12 
by lenuna 1. So F12 -~ F21. So N is commutahve.  [] 

Proof of Lemma 6 
One needs to prove: 

1. I(12)3 =I1(23) 

2. T(12) 3 z T(12) 3 

<C>ase 1 follows immediately from the associativity of M. Case 2 holds by len~na 2. So 
M is associative• [] 

Proof of Theorem 1 
Follows immediately from lemmas 3, 5 and 6. [] 

Proof of Theorem 2 
T 12 = T 1 U Z 2, because I12 N pl(T 1) ~ K, and I12 N pl(T 2) ~ _l_. 
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Let #1 . . .  #n be a Specificity Partition Tail of T 12. Then by  the definition of DefFS: 

< < < 

D12 = 0(I12 [-]cs ~?J~(#l) [-]cs... n~ m/t(#.)) 

But by  assumption 112 N ~Ofs(#l) ~ _L. So by  the definition of Mcs: 

I12 hcs ~Vfs(#l) ----/12 V1 ~Ofs(#X) ~6 3- 

Similarly (112 M P~(#i)) M Pfs(#2) ~ 3_. So by  the definition of Mcs: 

((s12 fi<~ ~I~(#1)) rice pit(#2) = h2 n ~i~(#,) n ~i~(#2) 

By similar arguments  for #3 , . . . ,  #n: 

D12 = U((I12 tics ~3fs(#l)).. .  tics ~?fs(#n)) 
= U(]12 0 gOfs(#l) n . . .  n pf~(#.)) 
= I~2 n ~i~(T ~2) 

= h n ~ ( T  ~) n S2 n mi~(T 2) 

By a similar argument  to that above: 

D1 

D2 

So 

as required. [] 

Proof  of  L e m m a  7 
For any basic TDFS 1/T: 

1. 

2. 

3. 

= I1 M pl(T 1) 

= I2 M pl(T 2) 

D12 = D1 [-1 D2 

T is its o wn  specificity partition; 

M~ss(T ) • W; and 

VF C p~(T), I M F # 3_. 

So by  the definitions of u and Mes: 

Def~S(S/T) = u(S ncs < ~,(W)) = S n ~ ( W )  

Thus we need to prove that 

I n S D  = S n  ~s~(T) 

But this follows immediately  by  the definition of T for BasicTDFS(I, ID) (T is the set of 
atomic TFSs that are subsumed  by  I rG ID but  not  subsumed  by  I). [] 
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Proof of Corollary 1 
Similarly to the proof  given in the above lemma: Di = Ii r-1 pIs(T i) for i = 1,2. So, since 
D1 F1 D2 ~ _L: 

11 N pfs(T 1) N I2 N PSs(T 2) = I12 n Pss(T 1) M p~(T 2) 
# ± 

So by theorem 2: 

D12 = D1 N D2 

= I1MID1M12MID2 [] 
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