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The kinds of tree representations used in a treebank corpus can have a dramatic effect on perfor- 
mance of a parser based on the PCFG estimated from that corpus, causing the estimated likelihood 
of a tree to differ substantially from its frequency in the training corpus. This paper points out that 
the Penn 1I treebank representations are of the kind predicted to have such an effect, and describes 
a simple node relabeling transformation that improves a treebank PCFG-based parser's average 
precision and recall by around 8%, or approximately half of the performance difference between 
a simple PCFG model and the best broad-coverage parsers available today. This performance 
variation comes about because any PCFG, and hence the corpus of trees from which the PCFG is 
induced, embodies independence assumptions about the distribution of words and phrases. The 
particular independence assumptions implicit in a tree representation can be studied theoretically 
and investigated empirically by means of a tree transformation / detransformation process. 

1. Introduction 

Probabalistic context-free grammars (PCFGs) provide simple statistical models of nat- 
ural languages. The relative frequency estimator provides a straightforward way of 
inducing these grammars from treebank corpora, and a broad-coverage parsing system 
can be obtained by using a parser to find a maximum-likelihood parse tree for the input 
string with respect to such a treebank gram_mar. PCFG parsing systems often perform 
as well as other simple broad-coverage parsing system for predicting tree structure 
from part-of-speech (POS) tag sequences (Charniak 1996). While PCFG models do not 
perform as well as models that are sensitive to a wider range of dependencies (Collins 
1996), their simplicity makes them straightforward to analyze both theoretically and 
empirically. Moreover, since more sophisticated systems can be viewed as refinements 
of the basic PCFG model (Charniak 1997), it seems reasonable to first attempt to better 
understand the properties of PCFG models themselves. 

It is well known that natural language exhibits dependencies that context-free 
grammars (CFGs) cannot describe (Culy 1985; Shieber 1985). But the statistical in- 
dependence assumptions embodied in a particular PCFG description of a particular 
natural language construction are in general much stronger than the requirement that 
the construction be generated by a CFG. We show below that the PCFG extension of 
what seems to be an adequate CFG description of PP attachment constructions per- 
forms no better than PCFG models estimated from non-CFG accounts of the same 
constructions. 

More specifically, this paper studies the effect of varying the tree structure repre- 
sentation of PP modification from both a theoretical and an empirical point of view. 
It compares PCFG models induced from treebanks using several different tree repre- 
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sentations, including the representation used in the Penn II treebank corpora (Marcus, 
Santorini, and Marcinkiewicz 1993) and the "Chomsky adjunction" representation now 
standardly assumed in generative linguistics. 

One of the weaknesses of a PCFG model is that it is insensitive to nonlocal re- 
lationships between nodes. If these relationships are significant then a PCFG will be 
a poor language model. Indeed, the sense in which the set of trees generated by a 
CFG is "context free" is precisely that the label on a node completely characterizes the 
relationships between the subtree dominated by the node and the nodes that properly 
dominate this subtree. 

Roughly speaking, the more nodes in the trees of the training corpus, the stronger 
the independence assumptions in the PCFG language model induced from those trees. 
For example, a PCFG induced from a corpus of completely flat trees (i.e., consisting of 
the root node immediately dominating a string of terminals) generates precisely the 
strings of training corpus with likelihoods equal to their relative frequencies in that 
corpus. Thus the location and labeling on the nonroot nonterminal nodes determine 
how a PCFG induced from a treebank generalizes from that training data. Generally, 
one might expect that the fewer the nodes in the training corpus trees, the weaker the 
independence assumptions in the induced language model. For this reason, a "flat" 
tree representation of PP modification is investigated here as well. 

A second method of relaxing the independence assumptions implicit in a PCFG is 
to encode more information in each node's label. Here the intuition is that the label on 
a node is a "communication channel" that conveys information between the subtree 
dominated by the node and the part of the tree not dominated by this node, so all 
other things being equal, appending to the node's label additional information about 
the context in which the node appears should make the independence assumptions 
implicit in the PCFG model weaker. The effect of adding a particularly simple kind 
of contextual information--the category of the node's parent--is also studied in this 
paper. 

Whether either of these two PCFG models outperforms a PCFG induced from the 
original treebank is a separate question. We face a classical "bias versus variance" 
dilemma here (Geman, Bienenstock, and Doursat 1992): as the independence assump- 
tions implicit in the PCFG model are weakened, the number of parameters that must 
be estimated (i.e., the number of productions) increases. Thus while moving to a class 
of models with weaker independence assumptions permits us to more accurately de- 
scribe a wider class of distributions (i.e., it reduces the bias implicit in the estimator), 
in general our estimate of these parameters will be less accurate simply because there 
are more of them to estimate from the same data (i.e., the variance in the estimator 
increases). 

This paper studies the effects of these differing tree representations of PP modifi- 
cation theoretically by considering their effect on very simple corpora, and empirically 
by means of a tree transformation/detransformation methodology introduced below. 
The corpus used as the source for the empirical study is version II of the Wall Street 
Journal (WSJ) corpus constructed at the University of Pennsylvania, modified as de- 
scribed in Charniak (1996), in that: 

• root nodes (labeled ROOT) were inserted, 

• the terminal or lexical items were deleted (i.e., the terminal items in the 
trees were POS tags), 

• node labels consisted solely of syntactic category information (e.g., 
grammatical function and coindexation information was removed), 
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• the POS tag of auxiliary verbs was replaced with AUX, 

• empty nodes (i.e., nodes dominating the empty string) were deleted, and 

• any resulting unary branching nodes dominating a single child with the 
same node label (i.e., which are expanded by a production X ~ X) were 
deleted. 

2. PCFG Models of Tree Structures 

The theory of PCFGs is described elsewhere (e.g., Charniak [1993]), so it is only sum- 
marized here. A PCFG is a CFG in which each production A ~ o~ in the grammar's 
set of productions P is associated with an emission probability P(A ~ o~) that satisfies 
a normalization constraint 

P(A ~ ~) = 1 
o~:A---~o~EP 

and a consistency or tightness constraint not discussed here, that PCFGs estimated 
from tree banks using the relative frequency estimator always satisfy (Chi and Geman 
1998). 

A PCFG defines a probability distribution over the (finite) parse trees generated 
by the grammar, where the probability of a tree T is given by 

PO-) = H P(A-+ c~) cT(A~) 
A-*rxEP 

where Cr(A ~ o~) is the number of times the production A ~ oL is used in the 
derivation T. 

The PCFG that assigns maximum likelihood to the sequence ~ of trees in a treebank 
corpus is given by the relative frequency estimator. 

G(A ~ ~) = C~(A -~ ~) 
~,V~(NuT)* C~(A ~ o/) 

Here C~ (A ~ o~) is the number of times the production A --~ oz is used in derivations 
of the trees in ~. 

This estimation procedure can be used in a broad-coverage parsing procedure as 
follows: A PCFG G is estimated from a treebank corpus ~ of training data. In the work 
presented here the actual lexical items (words) are ignored, and the terminals of the 
trees are taken to be the part-of-speech (POS) tags assigned to the lexical items. Given 
a sequence of POS tags to be analyzed, a dynamic programming method based on the 
CKY algorithm (Aho and Ullman 1972) is used to search for a maximum-likelihood 
parse using this PCFG. 

3. Tree Representations of Linguistic Constructions 

For something so apparently fundamental to syntactic research, there is considerable 
disagreement among linguists as to just what the right tree structure analysis of var- 
ious linguistic constructions ought to be. Figure 1 shows some of the variation in PP 
modification structures postulated in generative syntactic approaches over the past 30 
years. 

The flat attachment structure was popular in the early days of transformational 
grammar, and is used to represent VPs in the WSJ corpus. In this representation both 
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VP 

Verb NP PP  PP  

ate dinneron the tablewith a fork 
Flat representation 

VP 

VP PP  PP  

Verb NP on the tablewith a fork 
I I 

ate dinner Two level representation 

VP 

VP PP 

VP PP  with a fork 

V e r b ~ P  on the~table 
I I 

ate dinner 
Adjunction representation 

Figure 1 
Different tree representations of PP modification. 

arguments  and adjuncts are sisters to the lexical head,  and so are not  directly distin- 
guished in the tree structure. 

The adjunction representat ion was in t roduced by  Chomsky  (it is often called 
"Chomsky  adjunct ion ' ) ;  in that representat ion arguments  are sisters to the lexical 
head,  while adjuncts are adjoined as sisters to a phrasal  node: either a maximal  pro- 
jection (as shown in Figure 1) or a " l -ba r "  projection in the "X-bar" theory of g rammar  
and its descendants.  

The third representat ion depicted in Figure 1 is a mixed representat ion in which 
phrases with adjuncts have exactly two levels of phrasal  projection. The lower level 
contains the lexical head,  and all adjuncts are at tached as sisters to a maximal  projection 
at the higher  level. To a first approximation,  this is the representat ion used for NPs 
with PP modifiers or complements  in the WSJ corpus used in this study. 1 

If the s tandard linguistic intuit ion that the number  of PP modifiers permi t ted  in 
natural  language is u n b o u n d e d  is correct, then only the Chomsky  adjunction repre- 
sentation trees can be generated by  a CFG, as the other two representat ions depicted 
in Figure 1 require a different product ion  for each possible n u m b er  of PP modifiers. 
For example,  the rule schema VP ~ V NP PP*, which generates the flat a t tachment  
structure, abbreviates an infinite number  of CF productions.  

In addition, if a t reebank using the two-level representat ion contains at least one 
node  with a single PP modifier, then the PCFG induced  f rom it will generate Chomsky  
adjunction representations of multiple PP modification, in addit ion to the two-level 
representations used in the treebank. (Note that this is not  a criticism of the use of 
this representat ion in a treebank, but  of model ing such a representat ion with a PCFG). 
This raises the question: how should a parse tree be interpreted that does not  fit the 
representational  scheme used to construct  the t reebank training data? 

1 The Penn treebank annotation conventions are described in detail in Bies et al. (1995). The two-level 
representation arises from the conventions that "postmodifiers are Chomsky-adjoined to the phrase 
they modify" (11.2.1.1) and that "consecutive unrelated adjuncts are non-recursively attached to the NP 
they modify" (11.2.1.3.a) (parenthetical material identifies relevant subsections in Bies et al. [1995]). 
Arguments are not systematically distinguished from adjunct PPs, and "only clausal complements of 
NP are placed inside [the innermost] NP" as a sister of the head noun. However, because certain 
constructions are encoded recursively, such as appositives, emphatic reflexives, phrasal titles, etc., it is 
possible for NPs with more than two levels of structure to appear. 
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As noted above, the WSJ corpus represents PP modification to NPs using the two- 
level representation. The PCFG estimated from sections 2-21 of this corpus contains 
the following two productions: 

P(NP ~ NPPP)  = 0.112 

P ( N P ~ N P P P P P )  = 0.006 

These productions generate the two-level representations of one and two PP adjunc- 
tions to NP, as explained above. However, the second of these productions will never 
be used in a maximum-likelihood parse, as the parse of sequence NP PP PP involving 
two applications of the first rule has a higher estimated likelihood. 

In fact, all of the productions of the form NP ~ NP ppn where n > 1 in the PCFG 
induced from sections 2-21 of the WSJ corpus are subsumed by the NP ~ NP PP 
production in this way. Thus PP adjunctions to NP in the maximum-likelihood parses 
using this PCFG always appear as Chomsky adjunctions, even though the original 
treebank uses a two-level representation! 

A large number of productions in the PCFG induced from sections 2-21 of the 
WSJ corpus are subsumed by higher-likelihood combinations of shorter, higher-prob- 
ability productions. Of the 14,962 productions in the PCFG, 1,327 productions, or just 
under 9%, are subsumed by combinations of two or more productions. 2 Since the 
subsumed productions are never used to construct a maximum-likelihood parse, they 
can be ignored if only maximum-likelihood parses are required. Moreover, since these 
subsumed productions tend to be longer than the productions that subsume them, 
removing them from the grammar reduces the average parse time of the exhaustive 
PCFG parser used here by more than 9%. 

Finally, note that the overgeneration of the PCFG model of the two-level adjunc- 
tion structures is due to an independence assumption implicit in the PCFG model; 
specifically, that the upper and lower NPs in the two-level structure have the same 
expansions, and that these expansions have the same distributions. This assumption is 
clearly incorrect for the two-level tree representations. If we systematically relabel one 
of these NPs with a fresh label, then a PCFG induced from the resulting transformed 
treebank no longer has this property. The "parent annotation" transform discussed 
below, which appends the category of a parent node onto the label of all of its nonter- 
minal children as sketched in Figure 2, has just this effect. Charniak and Carroll (1994) 
describe this transformation as adding "pseudo context-sensitivity" to the language 
model because the distribution of expansions of a node depends on nonlocal context, 
viz,, the category of its parent. 3 This nonlocal information is sufficient to distinguish 
the upper and lower NPs in the structures considered here. 

Indeed, even though the PCFG estimated from the trees obtained by applying the 
"parent annotation" transformation to sections 2-21 of the WSJ corpus contains 22,773 
productions (i.e., 7,811 more than the PCFG estimated from the untransformed corpus), 
only 965 of them, or just over 4%, are subsumed by two or more other productions. 

2 These were found by parsing the right-hand side fl of each production A ~ fl with the treebank 
grammar: if a higher-likelihood derivation A --~+ fl can be found then the production is subsumed. As 
a CL reviewer points out, Krotov et al. (1997) investigate rule redundancy in CFGs estimated from 
treebanks. They discussed, but did not irwestigate, rule subsumption in treebank PCFGs. 

3 The parser described by Magerman and Marcus (1991) also made use of this "parent" information. 
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(a) VP (b) VP ̂ S 

V NP V NPAVP 

NP PP NP^NP PP^NP 

Det N P NP Det N P NP^PP 

Det N Det N 

Figure 2 
Trees before and after "parent annotation." Note that while the PCFG induced from tree (a) 
can generate Chomsky adjunction structures because it contains the production NP--~NP PP, 
the PCFG induced from tree (b) can only generate two-level NPs. 

4. A Theoretical Investigation of Alternative Tree Structures 

We can gain some theoretical insight into the effect that different tree representations 
have on PCFG language models by considering several artifical corpora whose esti- 
mated PCFGs are simple enough to study analytically. PP attachment was chosen for 
investigation here because the alternative structures are simple and clear, but presum- 
ably the same points could be made for any construction that has several alternative 
tree representations. Correctly resolving PP attachment ambiguities requires informa- 
tion, such as lexical information (Hindle and Rooth 1993), that is simply not available 
to the PCFG models considered here. Still, one might hope that a PCFG model might be 
able to accurately reflect general statistical trends concerning attachment preferences 
in the training data, even if it lacks the information to correctly resolve individual 
cases. But as the analysis in this section makes clear, even this is not always obtained. 

For example, suppose our corpora only contain two trees, both of which have 
yields V Det N P Det N, are always analyzed as a VP with a direct object NP and 
a PP, and differ only as to whether the PP modifies the NP or the VP. The corpora 
differ as to how these modifications are represented as trees. The dependencies in 
these corpora (specifically, the fact that the PP is either attached to the NP or to the 
VP) violate the independence assumptions implicit in a PCFG model, so one should 
not expect a PCFG model to exactly reproduce any of these corpora. As a CL reviewer 
points out, the results presented here depend on the assumption that there is exactly 
one PP. Nevertheless, the analysis of these corpora highlights two important points: 

• the choice of tree representation can have a noticable effect on the 
performance of a PCFG language model, and 

• the accuracy of a PCFG model can depend not just on the trees being 
modeled, but on their frequency. 

4.1 The Penn II Representations 
Suppose we train a PCFG on a corpus ~1 consisting only of two different tree structures: 
the NP attachment structure labeled (A1) and the VP attachment tree labeled (B0 
depicted in Figure 3. These trees are called the "Penn II" tree representations here 
because these are the representations used to encode PP modification in version II 
of the WSJ corpus constructed at the University of Pennsylvania. Suppose that (A0 
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(A1) VP 

V NP 

NP PP 
/ N  / N  

Det N P NP 
/ N  

Det N 

(B1) VP 
.....-y----..._ 

V NP PP 
/ N  / N  

Det N P NP 

Det N 

Figure 3 
The training corpus ~1. This corpus, which uses Penn II tree representations, consists of the 
trees (A1) with relative frequencyf and the trees (B1) with relative frequency 1 - f .  The PCFG 
f~l is estimated from this corpus. 

occurs in the corpus with relative f r equencyf  and (B1) occurs with relative frequency 
1-f. 

In fact, in the WSJ corpus, structure (A1) occurs 7,033 times in sections 2-21 and 
279 times in section 22, while structure (B1) occurs 7,717 times in sections 2-21 and 
299 times in section 22. Thus f ~ 0.48 in both the F2-21 subcorpora and the F22 
corpus. 

Returning to the theoretical analysis, the relative frequency counts C1 and the 
nonuni t  production probability estimates P1 for the PCFG induced from this two-tree 
corpus are as follows: 

R CI(R) ]51 (R) 
VP -~ V NP f f 
V P ~ V N P P P  1 7  f 1 - f  
NP ~ Det N 2/(2 + f )  
NP ~ NP PP f f/(2 +f) 

Of course, in a real treebank the counts of all these productions would  also include 
their occurrences in other constructions, so the theoretical analysis presented here is 
but  a crude idealization. Empirical studies using actual corpus data are presented in 
Section 5. 

Thus the estimated likelihoods using P1 of the tree structures (A1) and (B1) are: 

PI(A1) -- 
(2 + f ) a  
4 (1 - f )  

PI(B1) -- 
(2 +f )2  

Clearly P l ( a l )  < f  and ]51(B1) < (1 - f )  except at f =  0 a n d f  = 1, so in general 
the estimated frequencies using ]~1 differ from the frequencies of (A~) and (B1) in the 
training corpus. This is not too surprising, as the PCFG Pl assigns nonzero probability 
to trees not in the training corpus (e.g., to trees with more than one PP). 

In any case, in the parsing applications mentioned earlier the absolute magni tude 
of the probability of a tree is not of direct interest; rather we are concerned with 
its probability relative to the probabilities of other, alternative tree structures for the 
same yield. Thus it is arguably more reasonable to ignore the "spurious" tree structures 
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Figure 4 
The estimated relative frequency f of NP attachment. This graph shows f as a function of the 
relative frequency f of NP attachment in the training data for various models discussed in the 
text. 

generated by Pl but not present in the training corpus, and compare the estimated 
relative frequencies of (A1) and (Ba) under Pl to their frequencies in the training data. 

Ideally the estimated relative frequency fl of (A1) 

= PI(T = A l : r  • {A1, B1}) 

Pl(A1) 

P i ( A 1 )  q- P i ( B 1 )  

f2 
2 - f  

will be close to its actual f requencyf  in the training corpus. The relationship between 
f and fl is plotted in Figure 4. As inspection of Figure 4 makes clear, the value of fl 
can diverge substantially f romf.  For example, a t f  = 0.48 (the estimate obtained from 
the WSJ corpus presented above)f l  = 0.15. Thus a PCFG language model induced 
from the simple two-tree corpus above can underestimate the relative frequency of 
NP attachment by a factor of more than 3. 

4.2 Chomsky Adjunction Representations 
Now suppose that the corpus contains the following two trees (A2) and (B2) of Fig- 
ure 5, which are the Chomsky adjunction representations of NP attached and VP 
attached PP's, respectively, with relative frequencies f and 1 - f  as before. Note that 
unlike the Penn II representations, the Chomsky adjunction representation represents 
NP and VP modification by PPs symmetrically. 
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(A2) VP (B2) VP 

V NP VP PP 

NP PP V NP P NP 

Det N P NP Det N Det N 

Det N 

Figure 5 
The training corpus ~2. This two-tree corpus, which uses Chomsky adjuncfion tree 
representations, consists of the trees (A2) with relative frequencyf and the trees (B2) with 
relative frequency 1 - f .  The PCFG P2 is estimated from this corpus. 

The counts C2 and the nonunit production probability estimates P2 for the PCFG 
induced from this two-tree corpus are as follows: 

R C2(R) P2(R) 
VP ~ V NP 1 1/(2 - f )  
VP ~ VP PP 1 ~ f  (1 - f ) / ( 2  - f )  
NP ~ Det N 2/(2 + f )  
NP ~ NP PP f f/(2 +f) 

The estimated likelihoods using P2 of the tree structures (A2) and (B2) are: 

4f 
P2(A2) = 

(4 - f2 ) (2  +f)2  

P2(B2) = 4(1 - f )  
(4 _f2)2 

As in the previous subsection, P2(A2) Kf and P2(B2) < (1 - f )  because the PCFG 
assigns nonzero probability to trees not in the training corpus. Again, we calculate the 
estimated relative frequencies of (A2) and (B2) under P2. 

= P2(T-~ A2:T E {A2,B2}) 

_ f - a f  
2f 2 - f - 2  

The relationship b e t w e e n / a n d  f2 is also plotted in Figure 4. The value off2 can diverge 
from f,  although not as widely as fl. For example, a t f  = 0.48f2 = 0.36. Thus the precise 
tree structure representations used to train a PCFG can have a marked effect on the 
probability distribution that it generates. 

4.3 Flattened Tree Representations 
The previous subsection showed that inserting additional nodes into the tree structure 
can result in a PCFG language model that better models the distribution of trees in the 
training corpus. This subsection investigates the effect of removing the lower NP node 
in the WSJ NP modification structure, again resulting in a pair of more symmetric tree 
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VP 
/ N  

V NP 

Det N PP 
/ N  

P NP 

Det N 

(B3) VP 

V NP PP 

Det N P NP 

Det N 

Figure 6 
The training corpus ~3. The NP modification tree representation used in the Penn II WSJ 
corpus is "flattened" to make it similar to the VP modification representation. The PCFG P3 is 
estimated from this corpus. 

structures, as shown in Figure 6. As explained in Section 1, flattening the tree structures 
in general corresponds to weakening the independence assumptions in the induced 
PCFG models, so one might expect this to improve the induced language model. 

The counts C3 and the nonunit production probability estimates P3 for the PCFG 
induced from this two-tree corpus are as follows: 

a C3(R) G(R) 
VP ~ V NP f f 
VP ~ VP NP PP 1 - - f  1 - f  
N P - * D e t N  2 -  d 1 - d / 2  
NP ~ Det N PP f f/2 

The estimated likelihoods using P3 of the tree structures (A3) and (B3) are: 

Y P3 (A3) - 
2 (1 -f/2) 

P3(B3) = (1 - f ) ( 1  - f / 2 )  2 

As before P3(A3) < f and P3(B3) < (1 --f), again because the PCFG assigns nonzero 
probability to trees not in the training corpus. The estimated relative frequency f3 of 
(a3) relative to (B3) under P3 is: 

= P3(T ~- A3 :T C {A3, B3}) 

d 2 
2 - 3 f + 2 f  2 

The relationship between f and f3 is also plotted in Figure 4. The value of f3 di- 
verges from f ,  as before: a t f  = 0.48f3 = 0.23. As Figure 4 shows, the estimated relative 
frequency f3 using the flattened tree representations is always closer to f than the es- 
timated relative frequency fl using the Penn II representations, but  is only closer to f 
than the estimated relative frequency f2 using the Chomsky adjunction representations 
for f greater than approximately 0.7. 
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(A4) VP ̂ S 

V NP~VP 

NP^NP PP^NP 

Det N P NP^PP 

Det N 

(B4) VP^S 
i_i-7-----._... 

V NP^VP PP^VP 

Det N P NP^PP 

Det N 

Figure 7 
The training corpus ~4. This corpus, which uses Penn II treebank tree representations in which 
each preterminal node's parent's category is appended onto its own label, consists of the trees 
(A4) with relative frequencyf and the trees (B4) with relative frequency 1 - f .  The PCFG P4 is 
estimated from this corpus. 

4.4 Penn II Representations with Parent Annotation 
As mentioned in Section 1, another way of relaxing the independence assumptions 
implicit in a PCFG model is to systematically encode more information in node labels 
about their context. This subsection explores a particularly simple kind of contextual 
encoding: the label of the parent of each nonroot nonpreterminal node is appended to 
that node's label. The labels of the root node and the terminal and preterminal nodes 
are left unchanged. 

For example, assuming that the Penn II format trees (A1) and (B1) of Section 4.1 
are immediately dominated by a node labeled S, this relabeling applied to those trees 
produces the trees (A4) and (B4) depicted in Figure 7. 

We can perform the same theoretical analysis on this two-tree corpus that we 
applied to the previous corpora to investigate the effect of this relabeling on the PCFG 
modeling of PP attachment structures. 

The counts C4 and the nonunit production probability estimates P4 for the PCFG 
induced from this two-tree corpus are as follows: 

R 
VP ̂ S -+ V NP ̂  VP 
VP ̂  S ~ V NP ̂  VP PP ̂  VP 
NP^VP ~ Det N 
NP ̂  VP --+ NP ~ NP PP ̂  NP 

C4(R) P4(R) 

11(;  f 1 - f  

; 1 - f f  

The estimated likelihoods using P4 of the tree structures (A4) and (B4) are: 

P4 (A4) .~ f2 

P4(B4) : ( l - f )  2 

As in the previous subsection P4(a4) < f and P4(B4) < (1 --f). Again, we calculate 
the estimated relative frequencies of (a4) and (B4) under P4. 

= P4(7" : A4 : 9- e {A4, B4}) 

f 
f2 + (1 - f ) 2  
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The relationship between f and f4 is plotted in Figure 4. The value of f4 can diverge 
from f ,  just like the other estimates. For example, a t f  = 0.48 f4 = 0.46, which is closer 
to f than any of the other relative frequency estimates presented earlier. (However, 
f o r f  less than approximatel^y 0.38, the relative fre^quency estimate using the Chomsky 
adjunction representations f2 is closer to f than f4). Thus as expected, increasing the 
context information in the form of an enriched node-labeling scheme can improve the 
performance of a PCFG language model. 

5. Empirical Investigation of Different Tree Representations 

The previous section presented theoretical evidence that varying the tree representa- 
tions used to estimate a PCFG language model can have a noticeable impact on that 
model's performance. However, as anyone working with statistical language models 
knows, the actual performance of a language model on real language data can often 
differ dramatically from one's expectations, even when it has an apparently impeccable 
theoretical basis. For example, on the basis of the theoretical models presented in the 
last section (and, undoubtedly, a background in theoretical linguistics) I expected that 
PCFG models induced from Chomksy adjunction tree representations would perform 
better than models induced from the Penn II representations. However, as shown in 
this section, this is not the case, but some of the other tree representations investigated 
here induce PCFGs that do perform noticeably better than the Penn II representations. 

It is fairly straightforward to mechanically transform the Penn II tree representa- 
tions in the WSJ corpus into something close to the alternative tree representations 
described above, although the diversity of local trees in the WSJ corpus makes this 
task more difficult. For example, what is the Chomsky adjunction representation of a 
VP with no apparent verbal head? In addition, the Chomsky adjunction representa- 
tion requires argument PPs to be attached as sisters of the lexical head, while adjunct 
PPs are attached as sisters of a nonlexical projection. Argument PPs are not systemat- 
ically distinguished from adjunct PPs in the Penn II tree representations, and reliably 
determining whether a particular PP is an argument or an adjunct is extremely dif- 
ficult, even for trained linguists. Nevertheless, the tree transformations investigated 
below should give at least an initial idea as to the influence of different kinds of tree 
representation on the induced PCFG language models. 

5.1 The Tree Transformations 
The tree transformations investigated in this section are listed below. Each is given a 
short name, which is used to identify it in the rest of the paper. Designing the tree 
transformations is complicated by the fact that there are in general many different 
tree transformations that correctly transform the simple cases discussed in Section 4, 
but behave differently on more complex constructions that appear in the WSJ corpus. 
The actual transformations investigated here have the advantage of simplicity, but 
many other different transformations would correctly transform the trees discussed in 
Sections 3 and 4 and be just as linguistically plausible as the transforms below, yet 
would presumably induce PCFGs with very different properties. 

Id is an identity transformation, i.e., it does not modify the trees at all. This 
condition studies the behavior of the Penn II tree representation used in 
the WSJ corpus. 

NP-VP produces trees that represent PP modification of both NPs and VPs using 
Chomsky adjunction. The NP-VP transform is the result of exhaustively 
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NP NP 
NP ~ ~ / x . N 2  NP p ~ p p ,  

NP a PP  ~ ~ NP a PP  ~ ~ 

A ~ A NP ~ A ~ A dx NP 
A ,/-k A / -k  

VP VP 
v P  

p 
fl p p  c~.J  ~ ~ fl p p  L~.J 

Figure 8 
Producing Chomsky adjunction tree representations. The four tree transforms depicted here 
are exhaustively reapplied to produce the Chomsky adjunction tree representations from 
Penn II tree representations in the NP-VP transformation. In the N'-V' transformation the 
boxed NP and VP nodes are relabeled with N' and V' respectively. In these schema a is a 
sequence of trees of length 1 or greater and fl is a sequence of trees of length 2 or greater. 

N ! . V  ! 

Flatten 

applying all four of the tree t ransforms depicted in Figure 8. The first and 
fourth transforms turn NP and VP nodes  whose  r ightmost  child is a PP 
into Chomsky adjunction structures, and the second and third transforms 
adjoin final PPs with a following comma punctuat ion  into Chomsky  ad- 
junction structures. The constraints that a > 1 and fl > 2 ensures that these 
transforms will only apply  a finite number  of time to any given subtree. 

produces  trees that represent  PP modification of NPs and VPs with a Chom- 
sky adjunction representat ion that uses an intermediate level of X t struc- 
ture. This is the result of repeatedly applying the four transformations de- 
picted in Figure 8 as in the NP-VP transform, with the modification that 
the new nonmaximal  nodes  are labeled N t or V' as appropriate  (rather 
than NP or VP). 

produces  trees in which NPs have a flatter structure than the two-level 
representat ion of NPs used in the Penn II treebank. Only  subtrees con- 
sisting of a parent  node  labeled NP whose  first child is also labeled NP 
are affected by  this transformation. The effect of this t ransformation is 
to excise all the children nodes labeled NP from the tree, and to attach 
their children as direct descendants  of the parent  node,  as depicted in the 
schema below. 

NP NP 

NP fll . . .  NP ~,~ cq ¢h . . .  o~,~ fin 
A / -h  A / -k  / ~  /-'x /--'~ /--'x 

/ - k  / -~  
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Parent appends to each nonroot nonterminal node's label its parent's category. 
The effect of this transformation is to produce trees of the kind discussed 
in Section 4.4. 

5.2 Evaluat ion  of  Parse Trees 
It is straightforward to estimate PCFGs using the relative frequency estimator from 
the sequences of trees produced by applying these transforms to the WSJ corpus. We 
turn now to the question of evaluating the different PCFGs so obtained. 

None of the PCFGs induced from the various tree representations discussed here 
reliably identifies the correct tree representations on sentences from held-out data. It is 
standard to evaluate broad-coverage parsers using less-stringent criteria that measure 
how similiar the trees produced by the parser are to the "correct" analysis trees in 
a portion of the treebank held out for testing purposes. This study uses the 1,578 
sentences in section 22 of the WSJ corpus of length 40 or less for this purpose. 

The labeled precision and recall figures are obtained by regarding the sequence 
of trees e produced by a parser as a multiset or bag E(e) of edges, i.e., triples IN, 1, r / 
where N is a nonterminal label and 1 and r are left and right string positions in yield 
of the entire corpus. (Root nodes and preterminal nodes are not included in these 
edge sets, as they are given as input to the parser). Relative to a test sequence of trees 
e r (here section 22 of the WSJ corpus) the labeled precision and recall of a sequence 
of trees e with the same yield as e t are calculated as follows, where the n operation 
denotes multiset intersection. 

IE(e) n E(e')l 
Precision(e) - 

IE(e)l 

IE(e) n E(e')l 
Recall(e) - 

IE(e')l 

Thus, precision is the fraction of edges in the tree sequence to be evaluated that 
also appear in the test tree sequence, and recall is the fraction of edges in the test tree 
sequence that also appear in tree sequence to be evaluated. 

It is straightforward to use the PCFG estimation techniques described in Section 2 
to estimate PCFGs from the result of applying these transformations to sections 2- 
21 of the Penn II WSJ corpus. The resulting PCFGs can be used with a parser to 
obtain maximum-likelihood parse trees for the POS tag yields of the trees of the held- 
out test corpus (section 22 of the WSJ corpus). While the resulting parse trees can 
be compared to the trees in the test corpus using the precision and recall measures 
described above, the results would not be meaningful as the parse trees reflect a 
different tree representation to that used in the test corpus, and thus are not directly 
comparable with the test corpus trees. For example, the node labels used in the PCFG 
induced from trees produced by applying the parent transform are pairs of categories 
from the original Penn II WSJ tree bank, and so the labeled precision and recall measures 
obtained by comparing the parse trees obtained using this PCFG with the trees from 
the tree bank would be close to zero. 

One might try to overcome this by applying the same transformation to the test 
trees as was used to obtain the training trees for the PCFG, but then the resulting 
precision and recall measures would not be comparable across transformations. For 
example, as two different Penn II format trees may map to the same flattened tree, the 
flatten transformation is in general not invertible. Thus a parsing system that produces 
perfect flat tree representations provides less information than one that produces per- 
fect Penn II tree representations, and one might expect that all else being equal, a 
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~ Transform 

Transformed trees 

~! ~ Count local trees 

PCFG 

Yield ~ Parse 

WSJ22trees ~ W S J 2 2 s t r i n g s ~ P a r s e s  

~ 7  DetransfOrm 
• 

Precision/Recall / - Detransformed parses 

Evaluation 
Figure 9 
The tree transformation/detransformation process. 

Parsing system using flat representations will score higher (or at least differently) in 
terms of precision and recall than an equivalent one producing Penn II representations. 

The approach developed here overcomes this problem by applying an additional 
tree transformation step that converts the parse trees produced using the PCFG back 
to the Penn II tree representations, and compares these trees to the held-out test trees 
using the labeled precision and recall trees. This transformation/detransformation pro- 
cess is depicted in Figure 9. It has the virtue that all precision and recall measures 
involve trees using the Penn II tree representations, but it does involve an additional 
detransformation step. 

It is straightforward to define detransformers for all of the tree transformations 
described in this section except for the flattening transform. The difficulty in this case 
is that several different Penn II format trees may map onto the same flattened tree, 
as mentioned above. The detransformer for the flattening transform was obtained by 
recording for each distinct local tree in the flattened tree representation of the training 
corpus the various tree fragments in the Penn II format training corpus it could have 
been derived from. The detransformation of a flattened tree is effected by replacing 
each local tree in the parse tree with its most frequently occuring Penn II format 
fragment. 

This detransformation step is in principle an additional source of error, in that a 
parser could produce flawless parse trees in its particular tree representation, but the 
transformation to the corresponding Penn II tree representations might itself introduce 
errors. For example, it might be that several different Penn II tree representations can 
correspond to a single parse tree, as is the case with a parser producing flattened tree 
representations. To determine if detransformation can be done reliably, for each tree 
transformation, labeled precision and recall measures were calculated comparing the 
result of applying the transformation and the corresponding detransformation to the 
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Table 1 
The results of an empirical study of the effect of tree structure on PCFG models. Each column 
corresponds to a sequence of trees, either consisting of section 22 of the WSJ corpus or 
transforms of the maximum-likelihood parses of the yields of the section 22 subcorpus with 
respect to different PCFGs, as explained in the text. The first row reports the number of 
productions in these PCFGs, and the next two rows give the labeled precision and recall of 
these sequences of trees. The last four rows report the number of times particular kinds of 
subtrees appear in these sequences of trees, as explained in the text. 

22 22 Id Id NP-VP N'-V' Flatten Parent 

Number of rules 2,269 1 4 , 9 6 2  14,297 14,697 22,652 22,773 
Precision 1 0.772 0.735 0.730 0.735 0.745 0.800 
Recall 1 0.728 0.697 0.705 0.701 0.723 0.792 
NP attachments 279 0 67 330 69 154 217 
VP attachments 299 424 384 0 503 392 351 
NP* attachments 339 3 67 399 69 161 223 
VP* attachments 412 668 662 150 643 509 462 

test corpus trees with the original trees of the test corpus. In all cases except for the flat- 
tening t ransform these precision and recall measures were  always greater than 99.5%, 
indicating that the t ransformat ion/det ransformat ion  process is quite reliable. For the 
flattening t ransform the measures were greater than 97.5%, suggesting that while the 
error in t roduced by  this process is noticable, the t ransformat ion/de t ransformat ion  pro- 
cess does not  introduce a ve ry  large error  on its own. 

5.3 Resul ts  
Table 1 presents an analysis of the sequences of trees p roduced  via this detransforma- 
tion process applied to the maximum-l ikel ihood-parse trees. The columns of this table 
correspond to sequences of parse trees for section 22 of the WSJ corpus. The column 
labeled "22" describes the trees given in section 22 of the WSJ corpus, and the co lumn 
labeled "22 Id" describes the maximum-l ikel ihood-parse trees of section 22 of the WSJ 
corpus using the PCFG induced from those very  trees. This is thus an example of 
training on the test data, and is often assumed to provide  an uppe r  b o u n d  on the per- 
formance of a learning algorithm. The remaining columns describe the sequences of 
trees p roduced  using the t ransformat ion/de t ransformat ion  process described above. 

The first three rows of the table show the number  of product ions  in each PCFG 
(which is the number  of distinct local trees in the corresponding t ransformed training 
corpus), and the labeled precision and recall measures for the de t ransformed parse 
trees. 

Randomizat ion tests for paired sample data were  per fo rmed  to assess the signifi- 
cance of the difference be tween  the labeled precision and recall scores for the ou tpu t  
of the Id PCFG and the other  PCFGs (Cohen 1995). The labeled precision and recall 
scores for the Flatten and Parent  t ransforms differed significantly f rom each other and 
also from the Id t ransform at the 0.01 level, while neither the NP-VP nor  the N'-V ~ 
t ransform differed significantly f rom each other or the Id t ransform at the 0.1 level. 

The remaining rows of Table 1 show the number  of times certain tree schema 
appear  in these (detransformed) tree sequences. The rows labeled NP attachments 
and VP at tachments provide  the number  of times the following tree schema, w h i c h  
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represent a single PP attachment, match the tree sequence. 4 In these schema, V can be 
instantiated by any of the verbal preterminal tags used in the Penn II corpus. 

VP VP 

V NP V NP PP 
A A A A  A NP PP 

A A 

The rows labeled NP* attachments and VP* attachments provide the number of 
times that the following more relaxed schema match the tree sequence. Here oL can be 
instantiated by any sequence of trees, and V can be instantiated by the same range of 
preterminal tags as above. 

VP VP 

V NP V NP PP o~ 
A A AAA  NP PP 

A A L 2 x  

5.4 D i s c u s s i o n  
As expected, the PCFGs induced from the output of the Flatten transform and Parent 
transform significantly improve precision and recall over the original treebank PCFG 
(i.e., the PCFG induced from the output of the Id transform). The PCFG induced from 
the output of the Parent transform performed significantly better than any other PCFG 
investigated here. As discussed above, both the Parent and the Flatten transforms in- 
duce PCFGs that are sensitive to what would be non-CF dependencies in the original 
treebank trees, which perhaps accounts for their superior performance. Both the Flatten 
and Parent transforms induced PCFGs that have substantially more productions than 
the original treebank grammar, perhaps reflecting the fact that they encode more con- 
textual information than the original treebank grammar, albeit in different ways. Their 
superior performance suggests that the reduction in bias obtained by the weakening 
of independence assumptions that these transformations induce more than outweighs 
any associated increase in variance. 

The various adjunction transformations only had minimal effect on labeled preci- 
sion and recall. Perhaps this is because PP attachment ambiguities, despite their im- 
portant role in linguistic and parsing theory, are just one source of ambiguity among 
many in real language, and the effect of the alternative representations is only minor. 

Indeed, moving to the purportedly linguistically more realistic Chomsky adjunc- 
tion representations did not improve performance on these measures. On reflection, 
perhaps this should not be surprising. The Chomsky adjunction representations are 
motivated within the theoretical framework of Transformational Grammar, which ex- 
plicitly argues for nonlocal, indeed, non-context-free, dependencies. Thus its poor per- 

4 The Penn II markup scheme permits a pseudo-attachment notation for indicating ambiguous 
attachment. However, this is only used relatively ilffrequently--the pseudo-attachment markup only 
appears 27 times in the entire Penn II treebank--and was ignored here. Pseudo-attachment structures 
count as VP attachment structures here. 
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formance when used as input to a statistical model that is insensitive to such de- 
pendencies is perhaps to be expected. Indeed, it might be the case that inserting the 
additional adjunction nodes inserted by the NP-VP and Nt-V ~ transformations above 
have the effect of converting a local dependency (which can be described by a PCFG) 
into a nonlocal dependency (which cannot). 

Another initially surprising property of the tree sequences produced by the PCFGs 
is that they do not reflect at all well the frequency of the different kinds of PP attach- 
ment found in the Penn II corpus. This is in fact to be expected, since the sequences 
consist of maximum-likelihood parses. To see this, consider any of the examples analyzed 
in Section 4. In all of these cases, the corpora contained two tree structures, and the 
induced PCFG associates each with an estimated likelihood. If these likelihoods differ, 
then a maximum-likelihood parser will always return the same maximum-likelihood 
tree structure each time it is presented with its yield, and will never return the tree 
structure with lower likelihood, even though the PCFG assigns it a nonzero likelihood. 

Thus the surprising fact is that these PCFG parsers ever produce a nonzero number 
of NP attachments and VP attachments in the same tree sequence. This is possible 
because the node label V in the attachment schema above abbreviates several different 
preterminal labels (i.e., the set of all verbal tags). Further investigation shows that 
once the V label in NP attachment and VP attachment schemas is instantiated with 
a particular verbal tag, only either the relevant NP attachment schema or the VP 
attachment schema appears in the tree sequence. For instance, in the Id tree sequence 
(i.e., produced by the standard tree bank grammar) the 67 NP attachments all occurred 
with the V label instantiated to the verbal tag AUX. 5 

It is worth noting that the 8% improvement in average precision and recall ob- 
tained by the parent annotation transform is approximately half of the performance 
difference between a parser using a PCFG induced directly from the tree bank (i.e., 
using the Id transform above) and the best currently available broad-coverage parsing 
systems, which exploit lexical as well as purely syntactic information (Charniak 1997). 

In order to better understand just why  the parent annotation transform performs so 
much better than the other transforms, transformation/detransformation experiments 
were performed in which the parent annotation transform was performed selectively 
either on all nodes with a given category label, or all nodes with a given category label 
and parent category label. Figure 10 depicts the effect of selective application of the 
parent annotation transform on the change of the average of precision and recall with 
respect to the Id transform. It is clear that distinguishing the context of NP and S nodes 
is responsible for an important part of the improvement in performance. Merely dis- 
tinguishing root from nonroot S nodes--a  distinction made in early transformational 
grammar but  ignored in more recent work-- improves average precision and recall 
by approximately 3%. Thus it is possible that the performance gains achieved by the 
parent annotation transform have little to do with PP attachment. 

6. C o n c l u s i o n  

This paper has presented theoretical and empirical evidence that the choice of tree 
representation can make a significant difference to the performance of a PCFG-based 
parsing system. What makes a tree representation a good choice for PCFG modeling 
seems to be quite different to what makes it a good choice for a representation of a lin- 
guistic theory. In conventional linguistic theories the choice of rules, and hence trees, 

5 This tag was introduced by Charniak (1996) to distinguish auxiliary verbs from main verbs. 
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Figure 10 
The effects of selective application of the Parent transform. Each point corresponds to a PCFG 
induced after selective application of the Parent transform. The point labeled All corresponds 
to the PCFG induced after the Parent transform to all nonroot nonterminal nodes, as before. 
Points labeled with a single category A correspond to PCFGs induced after applying the 
Parent transform to just those nodes labeled A, while points labeled with a pair of categories 
A^B correspond to PCFGs induced applying the Parent transform to nodes labeled A with 
parents labeled B. (Some labels are elided to make the remaining labels legible). The x-axis 
shows the difference in number of productions in the PCFG after selective parent transform 
and the untransformed treebank PCFG, and the y-axis shows the difference in the average of 
the precision and recall scores. 

is usually influenced by  considerations of parsimony;  thus the Chomsky  adjunction 
representation of PP modification may  be preferred because it requires only a sin- 
gle context-flee rule, rather than a rule schema abbreviating a potential ly u n b o u n d ed  
number  of rules that would  be required in flat tree representations of adjunction. But 
in a PCFG model  the additional nodes  required by  the Chomsky adjunction represen- 
tation represent  independence  assumptions that seem not to be justified. In general, 
in selecting a tree structure one faces a bias/variance trade-off, in that tree structures 
with fewer nodes  a n d / o r  richer node  labels reduce bias, but  possibly at the expense 
of an increase in variance. A tree t ransformat ion/det ransformat ion methodo logy  for 
empirically evaluating the effect of different tree representations on parsing systems 
was developed in this paper. The results presented earlier show that the tree represen- 
tations that incorporated weaker  independence  assumptions per fo rmed  signficantly 
better in the empirical studies than the more  linguistically mot ivated Chomsky  ad- 
junction structures. 

Of course, there is nothing particularly special about  the particular tree trans- 
formations studied in this paper: other t ransforms co u ld - - an d  shou ld - -be  studied 
in exactly the same manner. For example,  I am current ly using this methodology  
to s tudy the interaction between tree structure and a "slash category" node  label- 
ing in tree representations with empty  categories (Gazdar et al. 1985). While the 
work  presented here focussed on PCFG parsing models,  it seems that the general  
t ransformat ion/det ransformat ion approach can be applied to a wider  range of prob- 
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lems. For example ,  it wou ld  be interesting to know to wha t  extent the pe r fo rmance  
of more  sophist icated pars ing systems,  such as those described by  Collins (1996) and  
Charniak  (1997), depends  on the part icular  tree representat ions they are t rained on. 
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