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Comprehension grammars for a sample of ten languages (English, Dutch, German, French, 
Spanish, Catalan, Russian, Chinese, Korean, and Japanese) were derived by machine learning from 
corpora of about 400 sentences. Key concepts in our learning theory are: probabilistic association of 
words and meanings, grammatical and semantical form generalization, grammar computations, 
congruence of meaning, and dynamical assignment of denotational value to a word. 

1. Introduct ion 

Our approach to machine learning of language combines psychological, linguistic, and 
logical concepts. We believe that the five central features of our approach--probabilistic 
association of words and meanings, grammatical and semantical form generalization, 
grammar computations, congruence of meaning, and dynamical assignment of deno- 
tational value to a word--are either new, or are new in their present combination. An 
overview of these concepts and related ones is given in Section 2.1. Two prior papers 
describing this approach, first presented at two conferences in 1991, are Suppes, Liang, 
and B6ttner (1992) and Suppes, B6ttner, and Liang (1995). 

Using the theory embodying the concepts just listed, we report on our machine 
learning program of corpora from ten natural languages. Following our earlier work, 
we use a robotic framework. The computer program based on the theory learns a 
natural language from examples, which are commands occurring in mechanical as- 
sembly tasks (e.g., Go to the screw, Pick up a nut, Put the black screw into the round hole). A 
major improvement here, in comparison to Suppes, B(Sttner, and Liang (1995), is that 
the association relation is generalized from a unique correspondence between words 
and the program's internal representation of their meaning to a many-to-one relation, 
which permits different words to be associated to the same internal representation. 
This change is particularly important for the purpose of capturing case variation in 
word forms in inflecting languages such as Russian or German. 

The robotic framework and the associated corpora we test our program on are 
certainly restricted, although we have implemented our learning program on Robot- 
world, a standard robot used in academic settings for development purposes. In the 
present paper, however, we have deliberately formulated the general learning axioms 
of our theory so they do not depend on the robotic framework. The axioms are meant 
to apply to many kinds of systematic language use, more or less in the sense of sub- 
languages, (see Kittredge and Lehrberger [1982]). We are already deep into our next 
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area of application, machine understanding of physics word problems, and we have 
not needed to change the general formulation of our theory to accommodate this quite 
different problem of language learning. 

In this paper, we first describe our theory of machine learning of natural lan- 
guage (Section 2), and then describe the corpora in ten languages that we u s e d  for 
experimental purposes (Section 3). The languages are: English, Dutch, German, French, 
Spanish, Catalan, Russian, Chinese, Korean, Japanese. In Section 4 we describe some 
empirical results, especially the comprehension grammars generated from learning 
the languages. Finally, in Section 5 we discuss related work and the most pressing 
unsolved problems. 

2. Theory 

The theory that underlies our learning program is given in terms of a system of axioms. 
We begin with a general formulation, which is then made more special and technical 
for the robotic framework of this paper. 

Any learning program that is given the counterpart of the command Get the black 
screw in French Prends une vis noire, Russian Voz'mi chjornuj vint, or Japanese Kuroi 
nejikugi o tore finds itself confronted with at least the following problems: (i) to learn 
the meanings of words, (ii) to learn a grammar from a training set for each utterance 
to be comprehended, and (iii) to learn the semantic structure of each utterance. Our 
theoretical solution to these problems will become clear in what follows. 

2.1 Central Concepts of the Theory 
We give here an informal characterization of the key concepts used in our theory. 

Association. This is the key learning concept. We use the classical concept of association 
to establish the connection between unknown words in a language and their meaning. 
The principle of association goes back at least to Aristotle, and certainly was used 
extensively by eighteenth-century philosophers like Hume long before psychology 
had become an experimental science. The fundamental role of association as a basis 
for conditioning is thoroughly recognized in modern neuroscience and is essential 
to the experimental study of the neuronal activity of a variety of animals. For similar 
reasons, its role is just as central to the learning theory of neural networks, now rapidly 
developing in many different directions. 

We have not made explicit use of neural networks, but have worked out our theory 
of language learning at a higher level of abstraction. In our judgment, the difficulties 
we face need to be solved before a more detailed theory is developed. The choice 
of some level of abstraction is inevitable in all work of the present kind--a fact not 
always appreciated by interested bystander. Whatever the level of abstraction, there 
is one general issue about association that must be faced: is association probabilis- 
tic or deterministic? For us, the forming of associations is probabilistic rather than 
deterministic, which is a reflection of the complexity of the underlying process. 

Here, formally, association is a binary relation between commands, words, and 
grammatical forms, on the one hand, and their corresponding representations in the 
internal language of the program, on the other hand. All words in each of the ten 
languages of the experiment are completely unknown to the program at the beginning 
of learning. The internal language, defined in Section 2.3, is not learned, but given from 
the beginning. 
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Working memory. The learning program has a short-term working memory for process- 
ing the command it is presented. The memory holds its content for the time period of a 
single trial. The first group of learning axioms describes the association computations 
that take place in working memory during the course of a trial. 

Long-term memory. This memory also can change from trial to trial, but it stores asso- 
ciations and grammatical forms that remain unchanged when they are correct for the 
application being considered. The way the state of long-term memory changes from 
trial to trial is described in Section 2.4.1, in the second set of learning axioms. 

Generalization. A distinct principle of generalization generates grammatical forms and 
their associated semantic forms. The methods used combine those of context-free gram- 
mars and model-theoretic semantics for formal languages. 

The concept of generalization is widely used in psychological theories of learning. 
The kind of generalization used here is restricted to the generation of grammatical 
forms and grammatical rules from concrete utterances. For example, the phrase the 
nut generalizes to the grammatical form the O, where O is the category of objects. 
(More elaborate examples are considered later.) 

Memory trace. When a generalization of any of the several kinds we use is made, the 
particular word association on which it is based is stored with it in long-term memory, 
as the memory trace justifying the generalization. 

Denotational value. When a child learning a first language, or an older person learning a 
second language, first encounters utterances in that new language, nondenoting words 
are not marked in any uniform way. There is some evidence that various prosodic 
features are used in English and other languages to  help the child, but in any case 
their denotational role must be learned. 

Here a separate learning procedure is introduced to compute dynamically the de- 
notational value of each word, with the limit being 1 for having a denotation and 0 for 
being nondenoting. Denoting words such as nut refer to elements of our categories; 
good examples of nondenoting words are definite and indefinite articles. Intuitively, 
only denoting words should acquire associations to elements of the environment, in- 
cluding possible actions, as represented internally. Several mean learning curves for 
denotational value are presented in Section 4. 

Congruence. By using a concept of semantic congruence inspired by geometry, we sim- 
plify the grammars and at the same time permit direct comparisons across languages. 
The intuitive idea of such congruence is simple: two strings of a natural language are 
congruent when they have identical representations in the internal language. 

Various strong and weak senses of congruence can be used to get varying degrees 
of closeness of meaning. The idea is not to be caught in the search for a single concept 
of synonymy, just as in modern geometry we are not caught in a single concept of 
congruence. In affine geometry, for example, there is a weaker sense of congruence than 
in Euclidean geometry, but it is also easy to get a commonsense notion of congruence 
that is stronger than the Euclidean one, namely congruence that requires sameness of 
orientation. Our use of congruence of meaning in this article is restricted. In particular, 
we only analyze congruence of nondenoting words. 

Comprehension grammar. Most linguistic analysis is concerned with grammars detailed 
enough to produce natural utterances of the language being studied. A comprehension 
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grammar, in contrast, as we characterize it here, can generate a superset of utterances. 
The rules are required only to lead to the correct semantic interpretation of an utter- 
ance of the language. Robots, like very young children, can easily have the capacity to 
understand language before they can produce it. Although it is difficult and subtle to 
collect accurate and anything-like-complete data on the comprehension grammar gen- 
erated by very young children, the evidence is overwhelming that they comprehend 
much more than they can produce. 

2.2 Background Assumptions 
We state informally as background assumptions two essential aspects of any language 
learning device. First, there is the problem of how the internal representation of an 
utterance heard for the first time is generated by the learner. Second, at the other 
end of the comprehension process, so to speak, there is the problem of generating a 
semantic interpretation of a new utterance, but one that falls within the grammar and 
semantics already constructed by the learner. 

In any complete theory, both of these processes require thorough formal analysis, 
but as will become clear, this analysis is not necessary for the framework of this article. 
We give only a schematic formulation here. 

. 

. 

Association by contiguity. When a learner is presented a sentence that it 
cannot interpret, it associates the utterance to patterns in its contiguous 
environment whose internal representations may be, but are not 
necessarily, induced by the free or coerced actions of the learner. 

Comprehension-and-response axiom. If a learner is presented a 
sentence, then using the associations and grammatical rules stored in 
long-term memory, the learner attempts to construct a semantic 
interpretation of the sentence and respond accordingly. 

2.3 Internal Language 
We use Lisp for the internal language of the study reported here, but in current ongoing 
work of machine learning of physics word problems we take the internal language 
to be a language for physical equations, close to what is ordinarily used in physics. 
In the present study the internal language is stored in memory prior to learning and 
does not undergo any change during learning. 

The set of expressions of the internal language is specified by the grammar in 
Table 1 with lexical categories A1, A2, A3, A5 (= action), REL (= relation), PROP 
(= property), OBJ (= object property) and phrasal categories A (= action), S (= set 
of objects), O (= object), G (= region), and DIR (= direction). The lexicon of our inter- 
nal language is given in Table 2. We refer to the elements of the lexical categories as 
internal symbols. The operations, such as fal and fa2 (read as form action), all have a 
straightforward procedural interpretation in a given robotic environment. 

The English words used in Table 2 reflect an English lexicon, but the syntax of 
the internal language is Lisp, not English. Our categories closely match conventional 
linguistic categories: A corresponds to the category of a (imperative) sentence, A1 to 
the category of transitive verbs, REL to the category of prepositions, PROP to the 
category of adjectives, OBJ to the category of common nouns, DIR to the category of 
adverbs, G to the category of prepositional phrases, O to the category of (determined) 
noun phrases, and S to the category of nominal groups. We chose, however, not to 
refer to these categories by their usual linguistic labels, since we think of them as 
semantic categories. 
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Table 1 
Grammar of internal language. 

1 A 
II A 

III A 
IV A 
V A 

VI G 
VII DIR 

VIII O 
IX O 
X S 

XI S 

- - ,  ffam A1 O) 
0Ca2 A2 G) 

---+ 0Ca3 A 3 0  G) 
(fa5 A5 DIR O) 

--* ffas A5 O) 
Off REL O) 

--* (fd REL) 
--* (io S) 

(so S) 
-~ fro PROP S) 
--* (fo OBl *) 

Table 2 
Lexicon of internal language. 

Categories 

OBJ PROP REL A1 A2 A3 A5 

Semantic Operations 

$screw ' $1arge Sup Sget Sgo $put $pick fal (form-action) 
Snut Smedium Son Splace far 
$washer $small $into fa3 
$hole  $square $above fa5 
$plate $hexagonal $to fr (form-region) 
Ssleeve Sround $behind fdir (form-direction) 

$black io (identify-object) 
$red so (select-object) 
$gray fo (form-object) 

The grammar of the internal language would derive the following Lisp structure 
for the internal representation of the action corresponding to the English command 
Get a screw, where the asterisk • refers to the set of objects present in a certain visual 
environment: 

Ocal $get (so (leo $screw *))). (1) 

Let 7 = 0 co $screw *). Then 7 itself is the minimal  Lisp expression in (1) containing 
only the internal symbol $screw, and (so (fo $screw ,)) is the maximal Lisp expression 
in (1) containing only the internal symbol $screw. We use this distinction later. 

2.4 General Learning Ax ioms  
We now turn to our learning axioms, which naturally fall into two groups: those for 
computations using working memory and those for changes in the state of long-term 
memory. We use a distinction about kinds of memory that is standard in psycholog- 
ical studies of human memory, but the details of our machine-learning process are 
not necessarily faithful to human learning of language, and we make no claim that 
they are. On the other hand, our basic processes of association, generalization, specifi- 
cation and rule-generation almost certainly have analogues in human learning, some 
better understood than others at the present time. In the general axioms formulated in 
this section we assume rather little about the specific language of the internal repre- 
sentation, although the examples that illustrate the axioms use the internal language 
described in the preceding section. 
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Notation. Concerning notat ion used in the axioms, we generally use Latin letters for 
sentences or their parts, whatever  the natural  language, and we use Greek letters to 
refer to internal representations of sentences or their parts. Turning now to specific 
notation, the letters a, b , . . .  refer to words  in a sentence, and the Greek letters a,  f l , . . .  
refer to internal symbols. The symbol s refers to an entire sentence, and correspond- 
ingly ¢ to an entire internal representation. Grammatical  forms---either sentential or 
term forms- -a re  denoted  by  g or also g(X)  to show a category argument  of a form; 
correspondingly the internal representations of a grammatical  form are denoted  by  
,~ or -y(X). We violate our  Greek-Latin letter convent ion in the case of semantic cate- 
gories or category variables X, X', Y, etc. We use the same category symbols in both  
grammatical  forms and their internal representations. 

To insure that the proper  semantic meaning is carried from a natural  language 
sentence to its internal representation, or vice versa, we index multiple occurrences 
of the same category in a given sentence and the corresponding occurrences in its 
internal representation. An example of this indexing is given later. 

2.4.1 Axioms of Learning. The first set of axioms relates to computat ions  using work- 
ing memory.  

Axiom 1.1 Probabilistic Association. 
On any trial, let s be associated to c~, let a be in the set of words  of s not  associated 
to any internal symbol of a, and let ~ be in the set of internal symbols not current ly 
associated with any word  of s. Then pairs (a, a)  are sampled,  possibly using the current  
denotational  value, and associated, i.e. a ~ ~. 

The probabilistic sampling in the case Get the screw could lead to the incorrect asso- 
ciations get ~,, $screw, the ,,~ $get and no association for screw, for there are only two 
symbols to be associated to in the internal representation. 

Axiom 1.2 Form Generalization. 
If g(g'i) "~ ")'(')'~), gl "~ 3'~, and "~' is derivable from X, then g(Xi) ~ "/(Xi), where  i is the 
index of occurrence. 

From the associations given after Axiom 1.1 we would  derive the incorrect general- 
ization: 

OBJ A1 screw ~ (fal A1 (io (fo OBJ *))). (2) 

The correct one is: 
A1 the OBJ ,,~ (fal (io (fo OBJ *))). (3) 

Axiom 1.3 Grammar-Rule Generation. 
If g ~ -y and -y is derivable f rom X, then X --* g. 

Corresponding to Axiom 1.3, we now get the incorrect rule: 

A --* OB] A1 screw. 

The correct one is: 
A --~ A1 the OBJ. 

(4) 

(s) 

Axiom 1.4 Form Association. 
If g(g') ,-~ ~,(~/) and g' and "y' have the corresponding indexed categories, then g' ~ 3,'. 
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From (2), we get the incorrect form association: 

OBJ ~ (io (fo OB l ,)). (6) 

The correct one - - to  be learned from more trials--is der ived from (3): 

the OBJ ,,~ (io (fo OBJ *)). (7) 

Axiom 1.5 Form Specification. 
If g(Xi) "~ 3`(Xi), gl ,,~ 3`,, and 3" is derivable from X, then g(g;) N 3"(3"~). 

As the inverse of Axiom 1.2 using the incorrect generalization given after Axiom 1.2, 
we use 1.5 to infer: 

Get the screw ~ (fal $get (io (fo $screw , ))) .  

Axiom 1.6 Content Deletion. 
The content of working memory is deleted at the end of each trial. 

All the axioms of the second set (outlined below) deal with changes in the state 
of long-term memory.  

Axiom 2.1 Denotational Value Computation. 
If at the end of trial n, a word  a in the presented verbal stimulus is associated with 
some internal symbol or, then d(a), the denotational  value of a, increases and if a is 
not so associated, d(a) decreases. Moreover, if a word  a does not  occur on a trial, then 
d(a) stays the same unless the association of a to an internal symbol c~ is broken on 
the trial, in which case d(a) decreases. 

Because this axiom is conceptually less familiar, we give a more  detailed example 
later. 

Axiom 2.2 Form Factorization. 
If g ,-~ 3' and g' is a substring of g that is already in long-term m em o ry  and g' and 3'/ 
are derivable from X, then g and 3' are reduced to g(X) and 3`(X). Also g(X) ,,~ "y(X) is 
stored in long-term memory,  as is the corresponding grammatical  rule generated by 
Axiom 1.4. 

We illustrate this axiom by a simple example, which seems complex because the 
premises take three lines, and we have two conclusions, an association, and the cor- 
responding grammatical  rule. Let: 

g ~ 3`: a I the OBJ ,,~ (fal A1 (io OCo OBJ , ) ))  
g' ,-~ 3`': the OB] ,-~ (io (fo OBJ ,)) 

X :  0 --* the OBJ 
a l  O ,-~ 0Ca1 A1 O) 

A ~ A 1 0  

Axiom 2.3 Form Filtering. 
Associations and grammatical  rules are removed  from long-term m em o ry  at any time 
if they can be generated. 
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In the previous example, g ~ 7 can now be removed from long-term memory, and so 
can A --* A1 the OBJ learned as an example of Axiom 1.3. 

Axiom 2.4 Congruence Computation. 
If w is a substring of g, w t is a substring of g' and they are such that 

(a) g ,-~ "~ and g' ~ % 

(b) g' differs from g only in the occurrence of w' in place of w, 

(c) w and w' contain no words of high denotational value, 

then w' ~ w and the congruence is stored in long-term memory. 

Using Axiom 2.4, reduction of the number of grammatical rules for a given natural 
language is further achieved by using congruence of meaning (Suppes 1973, 1991). 
Consider the following associations of grammatical forms: 

die Schraube ,,~ ( io (I:o $screw , ) )  

der Schraube ~ ( io (fo $screw ,)) .  

(8) 
(9) 

Association (8) and (9) differ only with respect to the article. The article in (8) is in 
the nominative and accusative case, the article in (9) is in the genitive and dative case. 
What is important here is that there is no difference in the respective internal repre- 
sentations. We therefore call (8) congruent with (9) and collect the differing elements 
into a congruence class IDA] = {die, der} where DA = definite article. This allows us 
to reduce the two grammatical forms (8) and (9) into one: 

[DA] Schraube ~ (io (I:o $screw ,)) .  (10) 

Notice that reduction by virtue of congruence is risky in the following way. We may 
lose information about the language to be learned. For instance, collapsing the gender 
distinction exhibited by the difference between (8) and (9) will make us incapable of 
distinguishing between the following sentences: 

Steck die Schraube in das Loch 

Steck die Schraube in die Loch. 

(11) 

(12) 

Whereas (11) is grammatical, (12) is not. As long as our focus is on comprehension 
grammar, a command like (12) will probably not occur, but for purposes of production, 
congruence in its present form should not be used. 

Axiom 2.5 Formation of Memory Trace. 
The first time a form generalization, grammatical rule, or congruence is formed, the 
word associations on which the generalization, grammatical rule, or congruence is 
based are stored with it in long-term memory. 

Using our original example after Axiom 1.3, the incorrect associations would be stored 
in long-term memory, but, with more learning, later deleted (2.6 (a)). 
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Axiom 2.6 Deletion of Associations. 
(a) When  a word  in a sentence is g iven a new association, any  pr ior  

association of that word  is deleted f rom long- term memory.  

(b) If a ,-~ c~ at the beginning of a trial, a appea r s  in the ut terance s g iven on 
that trial but  c~ does not  appea r  in the internal representat ion ~ of s, then 
the association a ,-~ a is deleted f rom long- term memory.  

(c) If no internal representat ion is genera ted f rom the occurrence of a 
sentence s, cr is then given as the correct internal representation,  and  if 
there are several  words  in s associated to an internal symbol  c~ of cr such 
that the n u m b e r  of occurrences of these words  is greater  than the 
n u m b e r  of occurrences of c~ in or, then these associations are deleted. 

Axiom 2.7 Deletion of Form Association or Grammatical Rule. 
If a ,-~ ~ is deleted, then any  form generalization, g rammat ica l  rule, or congruence for 
which a ~ a is a m e m o r y  trace is also deleted f rom long- term memory.  

Of the thirteen axioms, only three need  to be more  specific to the s tudy  repor ted  
here. These three are Axiom 1.1 Probabilistic Association, Axiom 1.4 Form Association, 
and  Axiom 2.1 Denotat ional  Value Computa t ions ,  which are given a more  specific 
technical formulat ion in Section 2.5. Axiom 1.4 especially is g iven a m u c h  more  detailed 
formulat ion.  

2.5 Specialization of Certain Axioms and Initial Conditions 
Axiom 1.1' Probabilistic Association. 
On any trial n, let s be associated to cr in accordance with  Background Assumpt ion  
1, let A be the set of words  of s not  associated to any  internal symbol  of or, let d, (a) 
be the current  denotat ional  value of each such a in A and let A be the set of internal 
symbols  not  current ly associated with  any  word  of s. Then 

(i) 

(ii) 

an e lement  a is un i formly  sampled  wi thout  rep lacement  f rom A, 

at the same time, an e lement  a is sampled  wi thout  rep lacement  f rom A 
with the sampl ing  probability: 

(iii) The sampled  pairs  are associated, i.e. a ,-~ c~. 

(iv) Sampl ing continues until either the set A or the set A is empty.  

Due to the probabilistic nature  of this procedure  (Axiom 1.1) there are several  
possible outcomes.  Consider, for example ,  Get the screw, which has the internal rep- 
resentation OCal $get (io (fo $screw , ))) .  The sampl ing  process might  generate  any  one 
of six different possible pairs,  such as get ,,~ $screw and screw ~ $get. Since there 
are three words  occurring in the verbal  command ,  there are in principle six ways  to 
associate the three words  of the c o m m a n d  to the two symbols  of the internal expres-  
sion. 
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Axiom 1.4' Form Association. 
Let g ,-~ 3' at any step of an association computat ion on any trial. 

(a) If X occurs in g and (f0 X ,)  occurs in % then X ~ (fo X *). 

(b) If (i) w X  is a substring of g with g ~ 3  ̀such that w = a, which is a word 
with low denotational value, or if X is preceded by a variable, or is the 
first symbol of g, w = ~, the empty symbol, and (ii) 3 '̀ (X) is the maximal 
Lisp form of 3  ̀containing the occurrence of X and no other occurrence of 
categories, then: 

w X  - 3 ` ' ( x ) .  

(c) If (i) XlWl " "  Wm-lXm is a substring of g, where the Xi, i = 1 , . . . ,  m are 
not necessarily distinct category names and wi are substrings, possibly 
empty, or words that have no association to internal symbols on the 
given trial, and (ii) 7'(X~o) . . . .  , X~(m)) is the minimal Lisp form of 3  ̀
containing X.(1) . . . .  , X~(m), then: 

X l  W 1 . . .  Wm_  l X m  ,',, T(XTr(1 ) . . . . .  XTc(m) ), 

where 7c is a permutat ion of the numbers  1 . . . . .  m. 

To show how Axiom 1.4' works, assume we have arrived at the following associ- 
ation of grammatical forms: 

A1 the PROP OBI ~ (fal A1 (io (fo PROP (fo OBJ ,)))) (13) 

which could be obtained as a generalization, for instance, from the command  Get the 
red screw with the words correctly associated. 

From Axiom 1.4'(a), we may  infer: 

OBJ ~ OCo OBJ *). (14) 

From Axiom 1.4'(b), we infer: 

PROP OBJ ~ (fo PROP (fo OBJ ,)). (15) 

From Axiom 1.4'(c), we infer: 

the PROP OBJ ,,~ (io (fo PROP (fo OBJ *))). (16) 

Using Grammar-Rule Generation (Axiom 1.3), and the grammar of the internal 
language (Table 1), we infer from (14) and Rule XI of Table 1: 

S --, OBJ. (17) 

From (15), Rule X of Table 1 and Form Generalization (Axiom 1.2): 

PROP S ~ (/Co PROP S), (18) 

and finally from Grammar-Rule Generation (Axiom 1.3): 

S --* PROP S (19) 
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as a rule of English grammar .  We also derive f rom (16), (15) and  the internal g r a m m a r  
using Axiom 1.2: 

the S ~ (io S) (20) 

and then again  by  Grammar -Rule  Generation: 

0 ~ the S (21) 

as a rule for our  English grammar .  
Before the introduction of the axioms in Section 2.4, we p romised  to give an 

example  of indexing of categories to preserve  meaning.  Such indexing can be avoided  
for the restricted corpora  here, but  is needed  for more  general  purposes .  Here  is an 
example  f rom our  corpus  showing  h o w  it works.  Consider  the sentence: 

Put the nut on the screw. 

The correct g rammat ica l  form and associated internal representat ion would,  wi th  in- 
dexing, look like this: 

A3 the OBJ1 REL the OBJ2 ~ (fa 3 A3 (io (fo OBJ1 ,))Oct REL (io OCo OBJ2 , ) ) ))  

where  postscr ipt  numera l s  are used  for indexing OBJ. 

A x i o m  2.1 / Denota t iona l  Value Computa t ions .  
If at the end  of trial n a word  a in the presented verbal  s t imulus is associated with 
some internal symbol  a of the internal representat ion cr of s, then: 

dn+l(a ) = (1 - O)dn(a) + O, 

and if a is not  associated with  some denot ing internal symbol  a of the internal repre- 
sentation: 

dn+l(a) = (1 - O)dn(a). 

Moreover,  if a word  a does not  occur on trial n, then: 

dn+l (a) = dn(a), 

unless the association of a to an internal symbol  a is b roken  on trial n, in which  case: 

dn+l(a) = (1 - e)d,,(a). 

To show h o w  the computa t ion  of denotat ional  value (Axiom 2.1) works,  let us 
consider further  the associations given are get ,,~ $screw, the ,,~ $get. Let us further  
assume that  at the end of this trial: 

d(get) = 0.900 
d(screw) = 0.950 

d(the) = 0.700. 

On the next  trial the verbal  c o m m a n d  is: 

Get the nut. 
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As a result, we end this trial with: 

get ~ Sget, nut  ,,~ $nut 

and with the association of the deleted (Axiom 2.6 (a)). Using 0 = 0.03, as we usually 
do, we now have: 

d(get) = 0.903 
d(the) = 0.679. 

After, let us say, three more occurrences of the without  any association being formed,  
the denotat ional  value would  be further  reduced to 0.620. If the co m m an d  Get the sleeve 
is given and sleeve has not  previously occurred and get ,,~ $get, then we m ay  see how 
sleeve has a higher probabili ty of being associated to $sleeve than the. For under  the 
hypotheses  given, the sampling probabilities for the and sleeve would  be: 

d(the) 0.620 
p(the) = d(the) + d(sleeve) - 0.620 + 1 

- 0.383 

and: 
d(the) 1 

p(steeve) = d(the) + d(sleeve) - 1.62~ - 0.617. 

The dynamical  computa t ion  of denotat ional  value continues after initial learning even 
when  no mistakes are being made. As a consequence high-frequency words  such as 
a and the in English and ba in Chinese have their denotat ional  values approach zero 
rather quickly, as can be seen from the learning curves in Figures 1 and 2 in Section 
4. (From a formal point, it is useful to define a word  as n o n d en o t i n g  if its asymptotic  
denotat ional  value is zero, or, more realistically, below a certain threshold.) 

This particular linear learning model  with two parameters ,  dl(a), and 0, could 
easily be replaced by  more  elaborate alternatives. 

Initial conditions. At the beginning of trial 1, the association relation ,-~, the congruence 
relation ~ and the set of grammatical  rules is empty. Moreover,  the initial denotat ional  
value dl (a) is the same for all words  a. 

3. The Corpora 

To test our  system, we applied it to corpora of ten different languages. These languages 
are: English, Dutch, German,  French, Spanish, Catalan, Russian, Chinese, Korean, and 
Japanese. The size of our  corpora varied from 400 to 440 sentences. The corpora in the 
ten languages cover an almost identical set of internal structures. They could not  be 
made  completely identical for the following reason: an in ternalqanguage word  that 
was translated by  one word  in one language, say £, might  require two or more  words  
(depending on context) in another  language £' .  As a consequence,  £~ might  not  be 
learnable from the same corpus of 400 sentences that suffice for language £. To arrive 
at a complete learning of all the words,  we therefore either added  sentences as, e.g. in 
Spanish, or r emoved  sentences, as in Japanese. 

The most  impor tant  variat ion requirement  on the various corpora was that two 
words  of a given language that were in tended to correspond to two internal symbols 
must  not  always co-occur if the correct meaning were to be learned. For example,  
if nimm and Schraube only occurred in the single command  Nimm die Schraube! there 
would  be no assurance that the in tended associations Schraube ,,~ $screw and nimm 
$get would  ever be learned, no matter  how m an y  learning trials there were. 
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We also want to note that in the Japanese case we deleted all the sentences trans- 
lating $above as an internal symbol (ten sentences), because in Japanese above and on 
are expressed by the same word ue. 

Despite careful instruction of our translators, we are not sure whether the transla- 
tions sound natural in all cases and would in fact be used in a robotic working envi- 
ronment. To check this, however, would go far beyond what can be done by standard 
translation methods and requires field studies of language use in a working environ- 
ment. In cases of a lexical gap, we used very simple devices. For example, French has 
no single idiomatic word for the nonspatial meaning of the English adjective medium, 
so we used the circumlocutionary phrase de taille moyenne. In some cases we avoided 
technical language where a single word consists of two morphemes and expresses two 
internal denoting symbols. As might be expected, this occurs frequently in German. 
For example, Rundschraube expresses the idea of round screw that is the property round 
and the object screw. 

In the case of Catalan, we set in advance the denotational value for a few words as 
different from the initial value of 1. We did so because there were many nondenoting 
words, in our sense, and these nondenoting words uniformly co-occurred with certain 
action verbs, so that within our limited corpus the intuitively correct denotational 
value could be learned only with a probability less than one. We therefore set the 
initial denotational value for the words d and de at 0.05. 

To obtain a successful learning performance on a corpus, it is often useful to make 
some modifications in the corpus. In the final tests of a theory such changes are, of 
course, undesirable. The changes we did make are described below. 

The introduction of pick up created many problems because of the special nature of 
this verb and relation in English. In many languages the notion of picking something 
up is expressed by a single action verb with no additional preposition required. This 
created an important problem: individual words in the corpus of a given natural 
language sometimes denoted more than one internal symbol. Our solution (admittedly 
artificial but the only really artificial solution we had to adopt), was to split such words 
into two parts: 

French: ramasse into ra and masse 

Spanish: recoge into rec and oge 

Catalan: recull into re and cull 

Russian: podnimi into pod and nimi 

Korean: cip&ela into cip and &ela 

Japanese: toriagero into tori and agero 

This absence of isomorphism of the semantic categories of words across languages is 
not surprising, as has been observed in Bowerman (1996) and Choi and Bowerrnan 
(1991). What is identified as the same action and different relations in one language 
may be identified as different actions and the same relation in another language. 

4. Empirical Results 

In summarizing our results in this section, we first present some learning results, 
followed by the congruence classes of nondenoting words in our sense. We then use 
these abstract classes to simplify and facilitate the summary table of semantically based 
grammatical rules of comprehension generated from the ten languages. 
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Table 3 
Comprehension lexica for ten comparable corpora. 

Symbols with 
Nondenoting More Than 1 

Words W o r d s  Association 

English 28 2 0 
Dutch 38 3 2 
German 49 10 9 
French 42 7 5 
Spanish 40 7 6 
Catalan 42 8 8 
Russian 75 0 16 
Chinese 33 8 0 
Korean 31 4 1 
Japanese 31 4 1 

Lexicon. In Table 3 we specify for each natural language the number of words learned. 
We count as different words different inflected forms of what, according to dictionary 
usage, is the same word. As might be expected, Russian has the largest number of 
internal symbols with more than one association, just because of its rich inflectional 
patterns. 

Learning. A natural question is whether or not the order of presentation of the sen- 
tences in the corpora was fixed in advance to facilitate learning. The answer is that the 
order was not fixed. For each language the sentences presented were chosen randomly 
without replacement from the corpus of approximately 400 sentences. 

Compared to most neural-net rates of learning, the learning was rapid. In each 
of the ten languages, one cycle through the entire corpus was sufficient to produce a 
comprehension grammar that was intuitively correct. In contrast, and somewhat para- 
doxically, even for a corpus of only 400 sentences, the standard mean learning curves, 
theoretically based on random sampling of sentences are computationally not feasible, 
as we proved in Suppes, Liang, and B6ttner (1992). In this same earlier paper, based 
on some very large runs--in fact, mean learning curves computed from up to 10,000 
sample paths--we conjectured that the mean learning rate for the kind of corpora we 
have studied is polynomically bound. The learning of the ten languages studied in this 
paper quite clearly supports the conjecture for our theoretical framework of learning. 

In Figures 1, 2, and 3 we show mean learning curves for the denotational value 
of words for English, Chinese and German. The averaging in this case is over the 
total number of denoting or nondenoting words in a given corpus. The number of 
nondenoting words in the three languages is 2, 8 and 10, respectively, as also shown 
in Table 3. As would be expected, for the three languages the rate of learning the 
denotational value of nondenoting words is inversely proportional to their number, 
an argument from pure frequency of occurrence in the corpora. This is not the whole 
story, as can be seen by comparing the Chinese and German mean curves, even though 
the number of nondenoting words is very close. 

Congruence classes. In general in order to compare the rules being used by languages, 
we consolidated across languages as much as possible. The most important extension 
of congruence classes across languages was to introduce the empty word ~, so that 
when no nondenoting word appeared in a particular place, a given language could 
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Figure 1 
Mean denotational learning curves for English. The upper curve is for denoting words, with 
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Mean denotational learning curves for Chinese. 
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Figure 3 
Mean denotational learning curves for German. 

still be included in the group of languages using that rule. This has as a consequence 
that the grammatical rules were differentiated only by the order of occurrence of the 
semantic categories in the rule and not by the appearance of nondenoting words. In 
other words, two rules that have exactly the same semantic categories appearing in 
exactly the same order, independent of the appearance of nondenoting words, are 
treated as the same rule. (See Table 5). It is our feeling that this kind of congruence 
reduction is desirable in order to get a real semantic comparison of the comprehension 
grammars generated for different languages. The occurrence of c in Table 4 indicates 
that the language used the same grammatical rule as another language, but with no 
nondenoting word occurring. 

A consequence of what has just been said is that a particular grammatical rule 
with congruence notation may permit an instantiation in a given language of a gram- 
matical form not instantiated in the corpus itself. For the purposes of comprehension 
as opposed to production, this does not lead to difficulties. 

There are a number of descriptive remarks to be made about Table 4. Congruence 
class ")'1 is made up of various forms of definite articles, including in the case of 
Russian, and Japanese, the null word e, because these two languages do not standardly 
use a definite article. The same remark applies to class "Y2 for indefinite articles. In 
introducing classes 3'1 and 3'2 across languages we are admittedly introducing a coarse- 
grained but useful clustering of nondenoting words that function rather similarly in 
different languages. More refinements of congruence of meaning and use could lead 
to the division of 3'1, and also ~/2, into several smaller classes. 

The class 3'3 is specific to French because several words are required to express the 
idea of medium as in medium screw, namely the phrase de taille moyenne. We recognize the 
resulting analysis is a distortion of the natural semantics of the French. The distortion 
arises from the English lexical bias, but not grammatical bias, built into our fixed set 
of denoting words in the internal language. 
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Table 4 
Congruence Classes. The languages are, from left to right, English, Dutch, 
German, French, Spanish, Catalan, Russian, Chinese, Korean, and 
Japanese. 

E D G F S C R C h  K J 

7,/1 t h e  h e t  d i e  le  el el e n a g e  k u  c 

d e  das  I I 1 z h e g e  ¢ e 

d e r  Ia la la 

d e m  

d e n  

"Y2 a e e n  e i n  u n  u n  ~ ~ y i g e  h a n  - 

e i n e  u n e  u n a  

e i n e m  

e i n e n  

e i n e r  

7)'3 - - - de  ta i l l e  ¢ e - - 

")'4 6- £ £ ~ - -  - -  £ ( 6. n o  

£ 

"Y5 . . . . .  e e n o  t o k o r o  

n o  

76 e ¢ e de  d e  d e e 

e e de  

"Y7 . . . . . .  0 

'78 . . . . .  ba  e e 

"r9 . . . . .  u l  o 

l u l  

"/1o . . . . .  ~ n i  

"y3~ . . . . . . .  z a i  - - 
( 

"Y12 . . . . . . .  c h a o  e e 

"~3 . . . . . . .  n a 4  ¢ n i  

n a 4 l i  

"Y14 e ¢ ~ c j u n t o  a l e - - - 
ff ff 

Given that Chinese is not an inflected language, as German is, the number  of 
nondenot ing words in Table 4 is large. We cannot discuss in detail all of these particles. 
The particle b a  occurs before noun phrases describing direct objects of actions. The 
particle z a i  occurs before noun  phrases describing objects of relations. We note that 
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the grammar for Chinese given in Table 5 has the following two rules: 

[%] o c 

and: 

G---* REL [76] 0 

But to put zai before a relation word is not correct Chinese. This superset causes no 
problem for comprehension, and the correct instances are when ¢ is used rather than 
zai. Remarks very similar to those for zai apply to chao. The difference in their use 
reflects a semantic distinction we do not need for comprehension but would need for 
production. The particle zai is used mainly in connection with relations of position 
such as on and under. In contrast chao is used in connection with the direction of 
motion. 

Rules. An overview of the resulting grammars for the ten languages is given in Table 5. 
In the first column we list the production rules in the order of internal-language 
production rules (cf. Table 1). In the next columns we list the languages in the following 
order: English, Dutch, German, French, Spanish, Catalan, Russian, Chinese, Korean, 
Japanese. To each internal production rule corresponds in general a set of language 
specific rules. In the case of Rules VII and XI the set is a unit set for the obvious 
reason that no variation can arise in our limited internal language. Clearly in a more 
general setting, in the case of Rule VII, for example, relations could have modifying 
properties. 

The most important contrast between the Indo-European and Asian languages is 
that in the Indo-European languages the imperative verb expressing action is usually 
at the beginning of an utterance, but in the Asian languages it is usually in final 
position. See, for example, the two rules derived from Rule II. The first is for the 
seven Indo-European languages and the second for the three Asian languages. Similar 
remarks hold for the three rules derived from Rule III. 

This well-known contrast between the two groups of languages leads to a more 
systematic question about the rules given in Table 5. Does the set of rules correspond- 
ing to each rule of the internal language exhaust the possible permutations of the 
order of the semantic categories? Surprisingly the answer is affirmative except for the 
set generated by Rule III, which has only three members rather than six. 

However, reflecting only on the three languages controlled as native speakers by 
the authors of this article, we can give simple examples within the vocabulary and 
conceptual framework of our various corpora exhibiting two of the missing permuta- 
tions: 

A3 G O 
E: Put near the washer a screw. 
G: Leg neben die Scheibe eine Schraube. 

G A3 O 
E: Near the washer put a 
G: Neben die Scheibe leg eine 

Ch: Zai nage dianquan fujin fang yige 

s c r e w .  

Schraube. 
luosiding 
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Table 5 
Comprehension grammars for ten comparable corpora. 

Production Rules E D G F S C R Ch K J 

I A ~ A I + O  + + + + + + + 
a ---+ [')'8] q- O q- [~'9] q- A1 + + + 

II A ---* A2 Jr [3'14] "~ G + + + + + + + 
A ~ [712] q- G Jr [3`13] q- A2 + + + 

III A --+ A3 + O + G + + + + + + + 
A ~ [78] + O + A3 + [3'11] -}- G + 
A --. O + [79] q- G ~- [710] + A3 + q- 

IV  A -+ As + DIR + O + 
A "--~ As + O + DIR + 
A --+ DIR + O + A5 + 
a ~ [3`8] q- O 4- [3`9] 4- As + DIR + + 
A ---* DIR + A5 + O + + + + 
A ~ O +  [3"7] + D I R + A 5  + 

V A - - - ~ A 5 + O  + + + + + + 
A -~ o + [77] + As + 

VI G - - ~ R E L + [ % ] + O  + + + + + + + + 
G --. O + [v5] + REL + + + 

VII DIR---. REL + + + + + + + + + + 

VIII 0 - - . [ 7 2 ] + S  + + + + + + + + + + 
o -~ [3`~] + s + 

IX  0 - - . [ 7 1 ] + S  + + + + + + + + + + 
O --+ [77] + S + 

X S ~ P R O P + [ 3 ' 4 ] + S  + + + + + + + + 
S --+ S + [3"3] + PROP + + + 

XI  S -* OBJ + + + + + + + + + + 

For the third missing permuta t ion ,  we obtained f rom our  Korean informant  the fol- 
lowing example:  

K: 
G O A3 
ku nasapati yephey (han) nasa-lul nohala. 

the washer  near  (one) screw pu t  

The close correspondence  be tween  Tables 1 and  5 is, as a mat te r  of principle,  
misleading.  Al though the grammat ica l  rules of Table 5 are der ived via Axiom 1.3 
directly f rom the pr imi t ive  grammat ica l  rules of the internal language,  as given in 
Table 1, this need not  be the case. The larger corpus  that  is a superset  of the one 
studied here for English, Chinese, and  G e r m a n  has examples  requir ing der ived internal 
g rammat ica l  rules in app ly ing  Axiom 1.3. A G e r m a n  example  of this phenomenon ,  
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taken from Suppes, B6ttner, and Liang (1995), is: 

A --* A4 [einen] S D [der] PROP ist. 

An instance of this rule is: 

Heb eine Mutter hoch, die nicht grofl ist. 

5. Related Work and Unsolved Problems 

By far the most extensive research on language learning has been on children's learning 
of their first language. Rather extensive theoretical treatments are to be found in Wexler 
and Culicover (1980) and in Pinker (1984, 1989). Some of this work is related to ours, 
but not in a central way in terms of the details of theoretical ideas. For example, 
Wexler and Culicover assume the learner already has a deep context-free grammar of 
the language in question, and learning is centered on the learning of transformations. 
In contrast, we begin with no grammar of the language to be learned. We make no 
detailed claims of the relevance of our work to children's learning, but connections 
undoubtedly exist at a certain level. 

In the past decade or so there has been a relatively small number of articles or 
books on machine learning of natural language. Langley and Carbonell (1987) provide 
an excellent overview of research up to the date of their publication. Compared to 
other research in this area, ours is more semantically than syntactically driven. This 
semantic commitment is also evident in the recent work of Feldman et al. (1990, 1994) 
and Siskind (1990, 1992, 1994), which is also the work closest to our own. Feldman 
et al. (1990) describe in direct and simple terms their original idea. First, the learn- 
ing system is presented pairs of pictures and true natural language statements about 
the pictures. Second, the system is to learn the language well enough to determine 
whether or not a new sentence is true of the accompanying picture. Feldman et al.'s 
(to appear) approach to language learning separates the learning of the grammar from 
the learning of the lexical concepts. The grammar is learned by use of Bayesian in- 
ference over a set of possible grammars and model merging. Siskind's original work 
(1992), his dissertation, was in the context of naive physics, but focused also on the 
algorithms children may use in learning language. This work is continued in Siskind 
(1994), but with any assumption of prior language knowledge eliminated. The con- 
centration is on lexical acquisition via possible internal representations of meaning. 
Although Siskind (1994) concentrates entirely on lexical meaning, his seven-step pro- 
cedure, which constitutes a learning algorithm, bears resemblance at the top level but 
not in detail to our procedure. Siskind (1991) has a concept that is certainly different 
but similar in certain respects to our concept of denotational value equal to 0 in the 
limit for nondenoting words. His ideas are, however, not probabilistic, and he does 
not present any learning curves. He does offer in his concept of temperature (1994) a 
treatment of homonymy, which we do not. 

In spite of our considering ten languages, the present test of our theory must be 
regarded as very preliminary in character. The theory needs to be extended to solve a 
variety of pressing unsolved problems. We restrict ourselves to four problems, but it 
is a mark of the still-primitive character of theoretical developments in this area, ours 
and others, that any informed reader can quickly double or triple this list. In our view, 
large scale experimentation is premature for the kind of theory we are developing until 
more conceptual problems are solved: 

• Learning of Anaphora. Even very restricted and sometimes rather 
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artificial uses of natural  language are usually saturated with uses of 
anaphora.  Physics word  problems are a good example. 

• Learning temporal  features.  The ordinary use of language marks 
temporal  sequences of events in a rich variety of ways. Much systematic 
discourse in science and technology requires continual time and tense 
distinctions that must  be learned. 

• Learning mul t ip le  meanings.  Troublesome examples already exist in 
robotic use, e.g., screw as both a noun and a verb in English. Much more 
exotic are the many  meanings of washer in English: ring of metal  (our 
robotic case), a machine for washing, a raccoon, and so forth. 

• Learning concepts as well  as words. It can well be claimed that concepts 
should be learned, not  just words that stand for them. At present  our  
theory offers nothing in this respect, a l though we have begun some 
systematic work  involving multivariate ne twork  models  (Suppes and 
Liang, to appear). 

Serious applications of our  theory must  await  serious progress on these and other 
problems. 
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