
Robust Learning, Smoothing, and 
Parameter Tying on Syntactic Ambiguity 
Resolution 

Tung-Hui Chiang* 
National Tsing Hua University 

Keh-Yih Su* 
National Tsing Hua University 

Yi-Chung Lin *t 
National Tsing Hua University 

Statistical approaches to natural language processing generally obtain the parameters by using the 
maximum likelihood estimation (MLE ) method. The MLE approaches, however, may fail to achieve 
good performance in difficult tasks, because the discrimination and robustness issues are not taken 
into consideration in the estimation processes. Motivated by that concern, a discrimination- and 
robustness-oriented learning algorithm is proposed in this paper for minimizing the error rate. In 
evaluating the robust learning procedure on a corpus of 1,000 sentences, 64.3% of the sentences 
are assigned their correct syntactic structures, while only 53.1% accuracy rate is obtained with 
the MLE approach. 

In addition, parameters are usually estimated poorly when the training data is sparse. Smooth- 
ing the parameters is thus important in the estimation process. Accordingly, we use a hybrid 
approach combining the robust learning procedure with the smoothing method. The accuracy rate 
of 69.8% is attained by using this approach. Finally, a parameter tying scheme is proposed to 
tie those highly correlated but unreliably estimated parameters together so that the parameters 
can be better trained in the learning process. With this tying scheme, the number of parameters 
is reduced by a factor of 2,000 (from 8.7 x 108 to 4.2 x lOS), and the accuracy rate for parse 
tree selection is improved up to 70.3% when the robust learning procedure is applied on the tied 
parameters. 

1. Introduct ion  

Resolution of syntactic ambiguity has been a focus in the field of natural language 
processing for a long time. Both rule-based and statistics-based approaches have been 
proposed to attack this problem in the past. For rule-based approaches, knowledge is 
induced by linguistic experts and is encoded in terms of rules. Since a huge amount 
of fine-grained knowledge is usually required to solve ambiguity problems, it is quite 
difficult for a rule-based approach to acquire such kinds of knowledge. In addition, the 
maintenance of consistency among the inductive rules is by no means easy. Therefore, a 
rule-based approach, in general, fails to attain satisfactory performance for large-scale 
applications. 

In contrast, a statistical approach provides an objective measuring function to eval- 
uate all possible alternative structures in terms of a set of parameters. Generally, the 
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statistics of parameters are estimated from a training corpus by using well-developed 
statistical theorems. The linguistic uncertainty problems can thus be resolved on a solid 
mathematical basis. Moreover, the knowledge acquired by a statistical method is al- 
ways consistent because all the data in the corpus are jointly considered during the 
acquisition process. Hence, compared with a rule-based method, the time required 
for knowledge acquisition and the cost needed to maintain consistency among the ac- 
quired knowledge sources are significantly reduced by adopting a statistical approach. 

Among the statistical approaches, Su and Chang (1988) and S u e t  al. (1991) pro- 
posed a unified scoring function for resolving syntactic ambiguity. With that scoring 
function, various knowledge sources can be unified in a uniform formulation. Previous 
work has demonstrated that this scoring function is able to provide high discrimina- 
tion power for a variety of applications (Su, Chiang, and Lin 1992; Chen et al. 1991; 
Su and Chang 1990). In this paper, we start with a baseline system based on this 
scoring function, and then proceed with different proposed enhancement methods. A 
test set of 1,000 sentences, extracted from technical manuals, is used for evaluation. A 
performance of 53.1% accuracy rate for parse tree selection is obtained for the base- 
line system, when the parameters are estimated by using the maximum likelihood 
estimation (MLE) method. 

Note that it is the ranking of competitors, instead of the likelihood value, that 
directly affects the performance of a disambiguation task. Maximizing the likelihood 
values on the training corpus, therefore, does not necessarily lead to the minimum 
error rate. In addition, the statistical variations between the training corpus and real 
tasks are usually not taken into consideration in the estimation procedure. Thus, min- 
imizing the error rate on the training corpus does not imply minimizing the error rate 
in the task we are really concerned with. 

To deal with the problems described above, a variety of discrimination-based learn- 
ing algorithms have been adopted extensively in the field of speech recognition (Bahl 
et al. 1988; Katagiri et al. 1991; Su and Lee 1991, 1994). Among those approaches, the 
robustness issue was discussed in detail by Su and Lee (1991, 1994) in particular, and 
encouraging results were observed. In this paper, a discrimination oriented adaptive 
learning algorithm is first derived based on the scoring function mentioned above 
and probabilistic gradient descent theory (Amari 1967; Katagiri, Lee, and Juang 1991). 
The parameters of the scoring function are then learned from the training corpus us- 
ing the discriminative learning algorithm. The accuracy rate for parse tree selection is 
improved to 56.4% when the discriminative learning algorithm is applied. 

In addition to the discriminative learning algorithm described above, a robust 
learning procedure is further applied in order to consider the possible statistical vari- 
ations between the training corpus and the real task. The robust learning process 
continues adjusting the parameters even though the input training token has been 
correctly recognized, until the score difference between the correct candidate and the 
top competitor exceeds a preset threshold. The reason for this is to provide a tolerance 
zone with a large margin for better preserving the correct ranking orders for data in 
real tasks. An accuracy rate of 64.3% for parse tree selection is attained after this robust 
learning algorithm is used. 

The above-mentioned robust learning procedure starts with the parameters ob- 
tained by the maximum likelihood estimation method. However, the MLE is notori- 
ously unreliable when there is insufficient training data. The MLE for the probability 
of a null event is zero, which is generally inappropriate for most applications. To 
avoid the sparse training data problem, the parameters are first estimated by various 
parameter smoothing methods (Good 1953; Katz 1987). An accuracy rate for parse 
tree selection is improved to 69.8% by applying the robust learning procedure to the 
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smoothed parameters. This result demonstrates that a better initial estimate of the pa- 
rameters gives the robust learning procedure a chance to obtain better results when 
many local maximal points exist. 

Finally, a parameter tying scheme is proposed to reduce the number of parameters. 
In this approach, some less reliably estimated but highly correlated parameters are tied 
together, and then trained through the robust learning procedure. The probabilities of 
the events that never appear in the training corpus can thus be trained more reliably. 
This hybrid (tying + robust learning) approach reduces the number of parameters by 
a factor of 2,000 (from 8.7 x 108 to 4.2 x 105) and achieves 70.3% accuracy rate for parse 
tree selection. 

This paper is organized as follows. A unified scoring function used for integrating 
knowledge from lexical and syntactic levels is introduced in Section 2. The results 
of using the unified scoring function are summarized in Section 3. In Section 4, the 
discrimination- and robustness-oriented learning algorithm is derived. The effects of 
the parameter smoothing techniques on the robust learning procedure are investigated 
in Section 5. Next, the parameter tying scheme used to enhance parameter training 
and reduce the number of parameters is described in Section 6. Finally, we discuss 
our conclusions and describe the direction of future work. 

2. A Unified Probabilistic Score Function 

Linguistic knowledge, including knowledge of lexicon, syntax, and semantics, is es- 
sential for resolving syntactic ambiguities. To integrate various knowledge sources in a 
uniform formulation, a unified probabilistic scoring function was proposed by Su et al. 
(1991). This scoring function has been successfully applied to resolve ambiguity prob- 
lems in an English-to-Chinese machine translation system (BehaviorTran) (Chen et al. 
1991) and a spoken language processing system (Su, Chiang, and Lin 1991; 1992). The 
unified probabilistic scoring function derived for the syntactic disambiguation task is 
summarized in the following sections. 

2.1 Definition 
An illustration of syntactic ambiguities for an input sentence W (= w~ = {wl, w2 . . . . .  
Wn}) is shown in Figure 1, where wi (i = 1, n) stands for the ith word of the input 
sentence. In this figure, LeXk (1 < k ~ m) stands for the kth lexical sequence out 
of M possible sequences. Synj,k (1 ~ j < Nk) is the jth alternative syntactic structure 
corresponding to LeXk, and Nk is the number of possible syntactic structures associated 
with LeXk. The disambiguation process is formulated as the process of finding the most 
plausible syntactic structure Synj,~ for the input word sequence. In other words, this 

process is to find the index (d, k) such that P(Synj, k, Lex~ I w~) represents the maximum 
value among different syntactic structures, as shown in Equation 1: 

(j, lc) = argmax{P(Synj,k, LeXk I w~)} (1) 
j,k 

The integrated scoring function for the syntactic structure Synj,k is defined as 

Score( Synj,k ) = P(Synj,k, LeXklW~) 
= P(Synj,k I LeXk, W~) x P(LeXk I w~) 
= Ssyn(Synj,k) x Slex(LeXk) 

(2) 
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W={ wlwz.. Wr, } 

LeXl ~ Synl'l 
SynN~j 

Lex2 

Lexk ~ Synl'k 

SynNk,k 

LeXM ~ SynNu,M 

Figure 1 
An illustration of the syntactic ambiguities for an input word sequence W. 

where Ssyn(Synj,k) (= P(Synj,k I LeXk, W~) ) denotes the syntactic scoring function, and 
Sle x (LeXk) (= P(LeXk I w~) ) denotes the lexical scoring function. 

In the following derivation, we assume that little additional information can be 
provided by the words w~ to the syntactic structure Synj,k after the lexical sequence 
LeXk is given. 1 The syntactic scoring function is thus approximated as the following 
equation: 

Ssyn(Synj,k) = P(Synj,k l LeXk, W~) ~, P(Synj,k l LeXk) (3) 

Accordingly, the integrated scoring function P(Synj,k, LeXk [ W~) is represented as fol- 
lows: 

P(Synj,k, LeXk I w~) ~, P(Synj,k I LeXk) x P(LeXk I w~). (4) 

Detailed discussion of the lexical and syntactic scoring functions is given in the fol- 
lowing sections. 

2.2 Lexical Score Funct ion  
The lexical score for the kth lexical sequence LeXk associated with the input word se- 
quence w~ is expressed as follows (Chiang, Lin, and Su 1992): 

Slex(LeXk) = P(LeXk I w~) = P (c~i~ l w~) 

1 Note that the effect of word sense on the syntax disambiguation task is considered in a semantic 
scoring function, which is not discussed in this paper. Interested readers are referred to Chang, Luo, 
and Su (1992). 
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ok, n , ) 
= P(w ) (5) 

_ Slex(LeXk) 
P(wD 

where Ck,i stands for the part of speech assigned to wi. Since P(w~) is the same for 
all possible lexical sequences, it can be ignored without affecting the final results. 
Therefore, we use STyx(. ) instead of Slex(') in the following derivation. 

Like the standard tagging procedures (Garside, Leech, and Sampson 1987; Church 
1989; Merialdo 1991), the probability terms P(w~ I k,n Ck3 ) and P(c~i~) in Equation 5 can 
be approximated as follows, respectively: 

n n 

P (w~ I C~:1) ~- I-[ P ( wi I i-1 £~:1) ~ I-[ P ( wi I gk, i) W 1 • 
i=1 i=1 

(6) 

(kn) [9 Ckll 
n 

I IP(ck ,  i ck'i-l~ 
k,1 ] 

i=1 

{ ~.~lP(Ck, i ICk, i-1), 

I-[ P(Ck, i ] Ck, i-1, Ck,i-2), 
i=1 

bigram model 

trigram model 
(7) 

Therefore, the lexical score Slex(LeXk) is expressed as: 

;l 
* k,i-l"~ P(wilCk, i) S'ex(Lexk) ~ I-[ P (Ck, i [ Ck, , ) X 

i=1 

n 

I-[ P(Ck,i l Ck,i_l) X P(wi [ £k,i), bigram model 
in1 

1-I P(ck,i ] Ck,i-l,Ck, i-2) X P(wi l Ck, i), trigram model 
i=1 

(8) 

2.3 Syntactic Scoring Function 
Conventional stochastic context-free grammar (CFG) approaches (Wright and Wrigley 
1991) evaluate the likelihood probability of a syntactic tree by computing the product 
of the probabilities associated with the grammar rules being applied. Such a formu- 
lation implies that the application of a rule is both independent of the applications 
of the other rules, and independent of the context under which a context-free rule is 
applied. However, a language that can be expressed with a CFG does not imply that 
the associated rules can be applied in an independent and context-free manner, as im- 
plicitly assumed by a stochastic context-free grammar approach. To include contextual 
information and consider the relationship among the grammar rules, in this paper we 
follow the formulation in Sue t  al. (1989, 1991) for syntactic score evaluation. 

To show the computing mechanism for the syntactic score, we take the tree in Fig- 
ure 2 as an example. The basic derivation of the syntactic score includes the following 
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A L8={ A } 

/ ' N ~  L T = { B  C } 
B C 

L s = { B F c 4 } 

D E F G L4= { B c 3 c 4 } 

I t, It,, I t, c,,} 
cl c2 c3 c4 L 2 = {  D c 2 c a c 4 } 

L 1 = {  c 1 c 2 c 3 c 4 } 

ACTION 

REDUCE SHIFT 

Figure 2 
The decomposition of a given syntactic tree X into different phrase levels. 

steps. First, the tree is decomposed into a number of phrase levels, such as L1, L2, . . . ,  L8 
in Figure 2. A phrase level is a sequence of symbols (terminal or nonterminal) that 
acts as an intermediate result in parsing the input sentence, and is also called a senten- 
tial form in formal language theory (Hopcroft and Ullman 1974). In the second step, we 
formulate the transition between phrase levels as a context-sensitive rewriting process. 
With the formulation, each transition probability between two phrase levels is calcu- 
lated by consulting a finite-length window that comprises the symbols to be reduced 
and their left and right contexts. 

Let the label ti in Figure 2 be the time index for the ith state transition, which 
corresponds to a reduce action, and Li be the ith phrase level. Then the syntactic score 
of the tree in Figure 2 is defined as: 

Ssyn ( Treex ) =- P(L8, L7 . . . .  ,L2 ILl) 

= P(L8 I L7, . . . ,L1) x P(L7 ] L6 , . . . ,LD x . . .  x P(L2 I L1) 

P(L8 I L7) x P(L7 I L6) x . . .  x P(L2 ILl). (9) 

The transition probability between two phrase levels, say P(L7 I C6), is the product of 
the probabilities of two events. Taking P(L7 I L6) as an example, the first probability 
corresponds to the event that {F, G} are the constituents to be reduced, and the sec- 
ond probability corresponds to the event that they are reduced to C. The transition 
probability can thus be expressed as follows: 

P(L7 I L6) = P(F,G arereduced I input is {B,F,G}) 
x P(C *-- FG I F, G are reduced; input is {B,F, G}). 

(lO) 

According to the results of our experiments, the first term is equal to one in most 
cases, and it makes little contribution to discriminating different syntactic structures. 
In addition, to simplify the computation, we approximate the full context {B,F,G} 
with a window of finite length around {F, G}. The formulation for the syntactic scoring 
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function can thus be expressed as follows: 

Ssyn ( Treex ) P(A r (O},B,C, ($}) x P(C f {B},F,6, {$}) 
X''" X P(D I {0},c1,(c2,c3,c4}) 
P(A ]17,B,C, r7) x P(C ]16,F,G, r6) x ... x P(D ] ll,Cl, rl), (11) 

where Tree× is the parse tree X, $ and 0 correspond to the end-of-sentence marker and 
the null symbol, respectively; and li and ri represent the left and right contexts to be 
consulted in the ith phrase level) respectively. In the above equation, it is assumed that 
each phrase level is highly correlated with its immediately preceding phrase level but 
less correlated with other preceding phrase levels. In other words, the inter-level cor- 
relation is assumed to be a first-order Markov process. In addition, for computational 
feasibility, only a finite number of left and right contextual symbols are considered in 
the formulation. If M left context symbols and N right context symbols are consulted 
in evaluating Equation 9, the model is said to operate in the LMRN mode. 

Notice that the last formula in Equation 9 corresponds to the rightmost deriva- 
tion sequence in a generalized LR parser with left and right contexts taken into account 
(Su et al. 1991). Such a formulation is particularly useful for a generalized LR pars- 
ing algorithm, in which context-sensitive processing power is desirable. Although the 
context-sensitive model in the above equation provides the ability to deal with intra- 
level context-sensitivity, it fails to catch inter-level correlation. In addition, the formulation 
of Equation 9 will result in the normalization problem (Suet al. 1991; Briscoe and Carroll 
1993) when various syntactic trees have different number of nodes. An alternative for- 
mulation, which compacts the highly correlated phrase levels into a single one, was 
proposed by Suet  al. (1991) to resolve the normalization problem. For instance, for the 
syntactic tree in Figure 2, the syntactic score for the modified formulation is expressed 
as follows: 

Ssyn(Treex) ~ P(Ls, L7,L6 I L5) x P(L5 [L4) x P(L4,L3 I L2) x P(L2 ILl) 

~, P(L8 ]L5) × P(L5 ]L4) x P(L4 ]L2) x P(L2 ]L1). (12) 

Each pair of phrase levels in the above equation corresponds to a change in the LR 
parser's stack before and after an input word is consumed by a shift operation. Because 
the total number of shift actions, equal to the number of product terms in Equation 12, 
is always the same for all alternative syntactic trees, the normalization problem is 
resolved in such a formulation. Moreover, the formulation in Equation 12 provides 
a way to consider both intra-level context-sensitivity and inter-level correlation of the 
underlying context-free grammar. With such a formulation, the capability of context- 
sensitive parsing (in probabilistic sense) can be achieved with a context-free grammar. 

It is interesting to compare our frameworks (Sue t  al. 1991) with the work by 
Briscoe and Carroll (1993) on probabilistic LR parsing. Instead of assigning probabili- 
ties to the production rules as a conventional stochastic context-free grammar parser 
does, Briscoe and Carroll distribute probability to each state so that the probabilities 
of the transitions from a state sum to one; the preference to a SHIFT action is based 
on one right context symbol (i.e., the lookahead symbol), and the preference for a RE- 
DUCE action depends on the lookahead symbol and the previous state reached after 
the REDUCE action. With such an approach, it is very easy to implement (mildly) 
context-sensitive probabilistic parsing on existing LR parsers, and the probabilities 
can be easily trained. The probabilities assigned to the states implicitly imply different 
preferences for left-hand side contextual environment of the reduced symbol, since a 
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state, in general, can indicate part of the past parsing history (i.e., the left context) 
from which the current reduced symbol follows. 

However, because of the implicit encoding of the parsing history, a state may 
fail to distinguish some left contextual environments correctly. This is not surprising, 
because the LR parsing table generator would merge certain states according to the 
context-free grammar and the closure operations on the sets of items. Therefore, there 
are cases in which the same string is reduced, under different left contexts, to the same 
symbol at the same state and return to the same state after reduction. For instance, if 
several identical constructs, e.g., [X --* a], are allowed in a recursive structure X ~, and 
the input contains a Y followed by three (or more) consecutive Xs, e.g., "YXXX," then 
the reduction of the second and third Xs will return to the same state after the same 
rule is applied at that state. Under such circumstances, the associated probabilities 
for these two REDUCE actions will be identical and thus will not reflect the different 
preferences between them. 

In our framework, it is easy to tell that the first REDUCE action is applied when 
the two left context symbols are {Y,X}, and the second REDUCE is applied when the 
left context is two Xs under an L2R1 mode of operation. Because such recursion is not 
rare, for example, in groups of adjectives, nouns, conjunction constructs, prepositional 
phrases in English, the estimated scores will be affected by such differences. In other 
words, we use context symbols explicitly and directly to evaluate the probabilities 
of a substructure instead of using the parsing state to implicitly encode past history, 
which may fail to provide a sufficient characterization of the left context. In addition, 
explicitly using the left context symbols allows easy use of smoothing techniques, such 
as deleted interpolation (Bahl, Jelinek, and Mercer 1983), clustering techniques (Brown 
et al. 1992), and model refinement techniques (Lin, Chiang, and Su 1994) to estimate the 
probabilities more reliably by changing the window sizes of the context and weighting 
the various estimates dynamically. This kind of improvement is desirable when the 
training data is limited. 

Furthermore, Briscoe and Carroll (1993) use the geometric mean of the probabil- 
ities, not their product, as the preference score, to avoid biasing their procedure in 
favor of parse trees that have a smaller number of nodes (i.e., a smaller number of 
rules being applied.) The geometric mean, however, fails to fit into the probabilis- 
tic framework for disambiguation. In our approach, such a normalization problem is 
avoided by considering a group of highly correlated phrase levels as a single phrase 
level and evaluating the sequence of transitions for such phrase levels between the 
SHIFT actions. Alternatively, it is also possible to consider each group of highly corre- 
lated phrase levels as a joint event for evaluating its probability when enough data is 
available. The optimization criteria are thus not compromised by the topologies of the 
parse trees, because the number of SHIFT actions (i.e., the number of input tokens) is 
fixed for an input sentence. 

3. Baseline Model 

To establish a benchmark for examining the power of the proposed algorithms, we 
begin with a baseline system, in which the parameters are estimated by using the MLE 
method. Later, we will show how to improve the baseline model with the proposed 
enhancement mechanisms. 

3.1 Experimental Setup 
First of all, 10,000 parsed sentences generated by BehaviorTran (Chen et al. 1991), a 
commercialized English-to-Chinese machine translation system designed by Behavior 
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Design Corpora t ion  (BDC), were  collected. The domain  for this corpus  is compu te r  
manua l s  and  documents .  The correct parts  of speech and  parse  trees for the collected 
sentences were  verified by  linguistic experts. The corpus  was  then r andomly  parti-  
t ioned into a training set of 9,000 sentences and  a test set of the remain ing  1,000 
sentences to el iminate possible systematic  biases. The average  n u m b e r  of words  per  
sentence for the training set and  the test set were  13.9 and  13.8, respectively. In the 
training set, there were  1,030 unambiguous  sentences, while 122 sentences were  un- 
amb iguous  in the test set. On the average,  there were  34.2 alternative parse  trees per  
sentence for the training set, and 31.2 for the test set. If we  excluded those unambigu-  
ous sentences, there were  38.49 and  35.38 alternative syntactic structures per  sentence 
for the training set and  the test set, respectively. 

3.1.1 Lexicon and Phrase Structure Rules. In the current  system, there are 10,418 
distinct lexicon entries, extracted f rom the 10,000-sentence corpus. The g r a m m a r  is 
composed  of 1,088 phrase  structure rules that are expressed in terms of 35 terminal  
symbols  (parts of speech) and  95 nonterminal  symbols.  

3.1.2 Language  Models .  Usually, a more  complex mode l  requires more  parameters ;  
hence it f requently introduces more  est imation error, a l though it m a y  lead to less 
mode l ing  error. To invest igate the effects of model  complexi ty  and  est imation error on 
the d isambiguat ion  task, the following models ,  which account  for var ious  lexical and  
syntactic contextual information,  were  evaluated: 

. 

. 

. 

4. 

Lex(L12) + Syn(L1): this model  uses a b ig ram mode l  in comput ing  lexical 
scores and the L1 m o d e  of operat ion in comput ing  syntactic scores. The 
n u m b e r  of pa ramete r s  required is (10,418 x 35) + (35 x 35) + 
(96, 699 x 95) -- 9, 492, 260. 3 

Lex(L2)+Syn(L1): this model  uses a t r igram mode l  in comput ing  lexical 
scores and the L1 m o d e  of operat ion in comput ing  syntactic scores. The 
n u m b e r  of pa ramete r s  required is (10,418 x 35) + (35 x 35 x 35) + 
(96,699 x 95) = 9,533,910. 

Lex(L1)+Syn(L2): this mode l  uses a b ig ram mode l  in comput ing  lexical 
scores and the L2 m o d e  of operat ion in comput ing  syntactic scores. The 
n u m b e r  of pa ramete r s  required is (10, 418 x 35) + (35 x 35) + 
(96, 699 x 95 x 95) = 873, 014, 330. 

Lex(L2)+Syn(L2): this mode l  uses a t r igram mode l  in comput ing  lexical 
scores and  the L2 m o d e  of operat ion in comput ing  syntactic scores. The 
n u m b e r  of pa ramete r s  required is (10,418 x 35) + (35 x 35 x 35) + 
(96, 699 x 95 x 95) = 873, 055, 980. 

2 L1 means to consult one left-hand side part of speech, and L2 means to consult two left-hand side 
parts of speech. 

3 The number of parameters for Lex(L1) and Lex(L2) modes is (Nw x Nt) + N 2 and (Nw x Nt) + N 3, 
respectively, where Nw(= 10,418) stands for the number of words in the lexicon, and Nt(= 35) denotes 
the number of distinct terminal symbols (parts of speech). The number of parameters for Syn(L1) and 
Syn(L2) modes is Np x Nnt and Np x N2t, respectively, where Nnt(---- 95) denotes the number of 
nonterminal symbols, and Np (= 96, 699) is the number of patterns corresponding to all possible reduce 
actions. Each pattern is represented as a pair of [current symbols, reduced symbol]. For instance, 
[{B,C},{A}] is the pattern corresponding to the reduce action A +- BC in Figure 2. 

329 



Computational Linguistics Volume 21, Number 3 

3.1.3 Performance Evaluations. We will evaluate the above-mentioned models in two 
measures: accuracy rate and selection power. The measure of accuracy rate of parse tree 
selection has been widely used in the literature. However, this measure is unable to 
identify which model is better if the average number of alternative syntactic structures 
in various tasks is different. For example, a language model with 91% accuracy rate 
for a task with an average of 1.1 alternative syntactic structures per sentence, which 
corresponds to the performance of random selection, is by no means better than the 
language model that attains 70% accuracy rate when there are an average of 100 
alternative syntactic structures per sentence. Therefore, a measure, namely Selection 
Power (SP), is proposed in this paper to give additional information for evaluation. 
SP is defined as the average selection factor (SF) of the disambiguation mechanism on 
the task of interest. The selection factor for an input sentence is defined as the least 
proportion of all possible alternative structures that includes the selected syntactic 
structure. 4 A smaller SP value would, in principle, imply better disambiguation power. 
Formally, SP is expressed as 

1~-~ l ~ ri (13) 
sd(i) = N n-i S P  - E[SF] ~ ~ i=1 = 

ri where sf(i) = G is the selection factor for the ith sentence; ni is the total number of 
alternative syntactic structures for the ith sentence; ri is the rank of the most preferred 
candidate. The selection power for a disambiguation mechanism basically serves as 
an indicator of the selection ability that includes the most preferred candidate within 
a particular (N-best) region. A mechanism with a smaller SP value is more likely to 
include the most preferred candidate for some given N-best hypotheses. 

In general, the measures of accuracy rate and the selection power are highly cor- 
related. But it is more informative to report performance with both accuracy rate and 
selection power. Selection power supplements accuracy rate when two language mod- 
els to be compared are tested on different tasks. 

3.2 Summary of Baseline Results 
The performances of the various models in terms of accuracy rate and selection power 
are shown in Table 1; the values in the parentheses correspond to performance exclud- 
ing unambiguous sentences. Table 1 shows that better performance (both in terms of 
accuracy rate and selection power) can be attained when more contextual informa- 
tion is consulted (or when more parameters are used). The improvement in resolution- 
of syntactic ambiguity by using more lexical contextual information, however, is not 
statistically significant s when the consulted contextual information in the syntactic 
models is fixed. For instance, the test set performance for the Lex(L1)+Syn(L2) model 
is 52.8%, while the performance for the Lex(L2)+Syn(L2) model is only 53.1%. With this 
small performance difference, we cannot reject the hypothesis that the performance of 
the Lex(L1)+Syn(L2) model is the same as that of the Lex(L1)+Syn(L2) model. On the 
other hand, if the consulted lexical contexts are fixed, the performance of the syntactic 
disambiguation process is improved significantly by using more syntactic contextual 

4 The term "most preferred candidate" means the syntactic structure most preferred by people even 
when there is more than one arguably correct syntactic structure. However, throughout this paper, both 
the expressions "most preferred syntactic structure" and "correct syntactic structure" refer to the syntactic 
structure most preferred by our linguistic experts. 

5 The conclusions drawn throughout this paper are all examined based on the testing hypothesis 
procedure for a significance level a = 0.01 (Gillick and Cox 1989). 
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Table 1 
The baseline performance: (a) training set; (b) test set. Values in parentheses correspond to 
performance excluding unambiguous sentences. 

Part-of-Speech Accuracy Rate Parse Tree 

in Word in Sentence Accuracy Rate Selection 
Model (%) (%) (%) Power 

Lex(L1)+Syn(L1) 99.62 (99.59) 95.6 (95.0) 75.4 (72.3) 0.34 (0.26) 
Lex(L2)+Syn(L1) 99.64 (99.61) 95.9 (95.4) 75.8 (72.7) 0.34 (0.26) 
Lex(L1)+Syn(L2) 99.67 (99.64) 96.1 (95.6) 78.7 (75.9) 0.34 (0.25) 
Lex(L2)+Syn(L2) 99.69 (99.67) 96.5 (96.0) 79.0 (76.4) 0.33 (0.25) 

(a) Training set performance 

Part-of-Speech Accuracy Rate Parse Tree 

in Word in Sentence Accuracy Rate Selection 
Model (%) (%) (%) Power 

Lex(L1)+Syn(L1) 98.89 (98.80) 88.7 (87.13) 49.3 (42.3) 0.45 (0.38) 
Lex(L2)+Syn(L1) 98.93 (98.84) 88.9 (87.36) 49.7 (42.7) 0.45 (0.38) 
Lex(L1)+Syn(L2) 98.82 (98.71) 88.0 (86.33) 52.8 (46.2) 0.44 (0.37) 
Lex(L2)+Syn(L2) 98.89 (98.79) 88.5 (86.90) 53.1 (46.6) 0.44 (0.37) 

(b) Test set performance 

information. For example, a 53.1% accuracy rate is attained for the Lex(L2)+Syn(L2) 
model, while the accuracy rate is 49.7% for the Lex(L2)+Syn(L1) model. This result 
indicates that the context-free assumption adopted by most stochastic parsers might 
not hold. 

4. Discrimination- and Robustness-Oriented Learning 

Although MLE possesses many nice properties (Kendall and Stuart 1979), the criterion 
of maximizing likelihood value is not equivalent to that of minimizing the error rate 
in a training set. The maximum likelihood approach achieves disambiguation indirectly 
and implicitly through the estimation procedure. However, correct disambiguation 
only depends on the ranks, rather than the likelihood values, of the candidates. In other 
words, correct recognition will still be obtained if the score of the correct candidate is 
the highest, even though the likelihood values of the various candidates are estimated 
poorly. Motivated by this concern, a discrimination-oriented learning procedure is 
proposed in this paper to adjust the parameters iterafively such that the correct ranking 
orders can be achieved. 

A general adaptive learning algorithm for minimizing the error rate in the train- 
ing set was proposed by Amari (1967) using the probability descent (PD) method. 
The extension of PD, namely the generalized probability descent method (GPD), was 
also developed by Katagiri, Lee, and Juang (1991). However, minimizing the error 
rate in the training set cannot guarantee that the error rate in the test set is also min- 
imized. Discrimination-based learning procedures, in general, tend to overtune the 
training set performance unless the number of available data is several times larger 
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than the number of parameters (based on our experience). Overtuning the training 
set performance usually causes performance on the test set to deteriorate. Hence, the 
robustness issue, which concerns the possible statistical variations between the training 
set and the test set, must be taken into consideration when we adopt an adaptive 
learning procedure. In this section, we start with a learning algorithm derived from 
the probabilistic descent procedure (Katagiri, Lee, and Juang 1991). The robust learn- 
ing algorithm explored by Su and Lee (1991, 1994) is then introduced to enhance the 
robustness of the system. 

4.1 Discrimination-Oriented Learning 
To link the syntactic disambiguation process with the learning procedure, a discrim- 

• W n ination function, namely gj,k(1) ,  for the syntactic tree Synj,k, corresponding to the 
lexical sequence LeXk and the input sentence (or word sequence) w~, is defined as 

gj,k(W~) -- logP(Synj,k, LeXk I w~) (14) 

Since log(.) is a monotonic increasing function, we can rewrite the criterion for syn- 
tactic disambiguation in Equation 1 as the following equation: 

(d, 1() = argmax{gj,k (w~) } (15) 
j,k 

According to Equation 2, Equation 8, and Equation 12, the discrimination function 
can be further derived as follows: 

gj,k(W~) = log Ssyn (Synj) + log Slex(LeXk) 

~ _ _ _ (  j,i--1 ~ [ _ l o g P ( C k , i l C k , l , 1 } j  } ~ [ - logP  (hj, i n h;, 1 )] -}- k,i-1 wn'~] 
i = 1  i = 1  

~-  - -  n • q -  x r l 

i = 1  

= -I[ j,kll 2 (16)  

_k,i-1 . ,,~11/2. Asy,~(j,i) = [- log P(Lj,i I -j,1 jj • ~j,k = where Alex(k,i) = [--logP(Ck,i l C-k,1 ,wlJ~ , 1J'i-1~]1/2 
[&syn (J, 1), ~Zex (k, 1) , . . . ,  "~s~,n (,J, n), Alex (k, n)] is regarded as a parameter vector composed 
of the lexical and syntactic score components, and II,~j,kll is defined as the Euclidean 
norm of the vector 'I~j,k. However, in such a formulation, the lexical scores as well as the 
syntactic scores are assumed to contribute equally to the disambiguation process. This 
assumption is inappropriate because different linguistic information may contribute 
differently to various disambiguation tasks. Moreover, the preference scores related to 
various types of linguistic information may have different dynamic ranges. Therefore, 
different scores should be assigned different weights to account for both the contri- 
bution in discrimination and the dynamic ranges. The discrimination function is thus 
modified into the following form: 

gj,k (W~) = -- Wsyn A2y, (j, i) + Wle x ~ex (k, i) 
i = 1  i = 1  

~j,k 2 = - (17) 
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where Wtex and Wsyn stand for the lexical and syntactic weights, respectively; they are 
set to 1.0 initially, q~j,k corresponds to a transformation of the original vector q~j,k and 
is represented as the following equation: 

^ 

~,k [ ~l (J'l) ~1 (k 1) ~1 (j'n) ~A1 ( k ) ]  : Wsyn~syn , ,Wlex.~lex , , . . . ,Wsyn~syn  • ,Wle x lex , n  

: [As~n(j, 1),Alex(k, 1) . . . .  ,Asyn(j,n),Alex(k,n)] (18) 

The whole parameter set, denoted by A, thus includes the lexical weight, Wtex, the 
syntactic weight, Wsyn, the lexical parameters Alex = {Atex(i,j)}vi,j and the syntactic 
parameters Asyn = { Asyn(i,j) }vi,j; i.e., 

A = {Wlex, Wsyn } U Alex U Asyn (19) 

The decision rule for the classifier to select the desired output, according to Eq. (17), 
is represented as follows: 

(j, i) = argmaxgj,k(W~) 

o r  

j,k 

( d , k ) : a r g m a x  l -  }j,k 2}. (20) 
j,k k 

Let the correct syntactic structure associated with the input sentence be Syn,~,~. 
Then the misclassification distance, denoted by d~, k, for selecting the syntactic structure 
Synj, k as the final output  is defined by the following equation: 

A) I = [ - -go~ , f l  ( W l ) ]  2 - --gd,~(Wl 

(21) 

Such a definition makes the distance be the difference of the lengths (or norms) of the 
score vectors in the parameter space. Furthermore, d j, k is differentiable with respect 
to the parameters. Note that according to the definition in Equation 21, an error will 
occur if ddz > 0, i.e., 114.,~ll > 114'j,~[I. 

Next, similar to the probabilistic-descent approach (Amari 1967), a loss function 
Ij,~(A) is defined as a nondecreasing and differentiable function of the misclassification 
distance; i.e., lj,k(A) = l(dj,k(w~; A)). To approximate the zero-one loss function defined 
for the minimum-error-rate classification, the loss function, as in Amari (1967), is de- 
fined as 

{ t a n - l ( ~ ) d d , k > 0  (22) 
l(d;,~) = 0 otherwise 

where do is a small positive constant. It has been proved by Amari (1967) that the 
average loss function will decrease if the adjustments in the learning process satisfy 
the following equation: 

At+l = At q- 6At, 

6At = -e(t)  UVl(d;, k(w~; A)), (23) 
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where  e(t) is a positive function, which usually decreases with time, to control the 
convergence speed of the learning process; U is a positive-definite matrix, which is 
assumed to be an identity matrix in the current implementation, and 27 is the gradient 
operator. Hence, it follows from Equation 23 that the ith syntactic parameter  compo- 

x(t+l) (a, i), corresponding to the correct  candidate ,  Syn~ ,~  in the (t + 1)-th iteration, nent ,,syn 
would be adjusted according to the following equation: 

{ ~(t+l)(a,i) ( t )  • ( t )  • 
,,syn ~- - /~syn(OGl) - } -A)~syn(~ , l ) ,  ifl14~,~[I > 114j,~ll, 
k ( t + l )  ( O  G i) (t)  • )~syn ( a ,  O, o therwise ,  ~syrl 

(24) 

where  A,~!~)n (a, i) is the amount  of adjustment and is computed as follows: 

x(t) (a, i) (t) • do -,syn 
A)~sy n (oz, l) -~ - e ( t )  " d2 ^ + d2 • Wsy,  " 

a,k 114.,,11 
(25) 

Meanwhile,  the syntactic parameter  component  corresponding to the top incorrec t  can-  
didate  would be adjusted according to the following formulae: 

. ( t + l )  / ^ asyn (3, i) . ( t ) , ^ i )  (t) ^ = Asyn(3, - - A , ~ s y n ( 3 ,  i ) ,  ifl[q~,,,~ll > 114~,~11, 

.(t+l),  ^ )~sy, (3, O, o therwise ,  asyn (3, i) (t) ^ • 
(26) 

. ( t )  ,^ i)  ( t ) ^ do A s y n  (3, 
A)~svn(3, i) = - e ( t )  . 2 2 " Wsyn • 

d~ + d o 114j,~ll 

The learning rules for adjusting the lexical parameters can be represented in a similar 
manner:  

. For the lexical parameters corresponding to the correct candidates: 

- - ( tq -1)  . . . .  ( t )  • ( t )  • 
= A/~lex(fl ,  t), [14j,kl[, Ale x (~ ,1)  "~lex( f l ,  l )  - -  /f 114~,~11 > 

( t + l )  :~ ( t )  • 
)~lex ( f l ,  l) ,  )~tex (fl ,  , ) o therwise ,  

(27) 

. 

do x(t) t~ i) "'lex k t~" AA}te)x(fl, i) = - e ( t )  . d2 ĵ,k q- d2 " Wlex " --II ~a , f l  II 

For the lexical parameters corresponding to the top candidate: 

(t+l) ^ = / ~ l e x ( k , O _ A / k t e x ( k , O ,  ifll~,~,fl[ I > [14d,kl[ ' "~lex (k, i) (t) ^ . (t) ^ • 

k ( t + l ) { ~  i) (t) ^ • "'lex w ,  )~lex ( k, O, o therwise ,  
(28) 

(t)  ^ - 
do Ale x (k, z) 

A )~}te)x ([¢, i) = - e (  t ) " d 2  ^ 7 9  " W l e x  " - -  

j,k + a[~ 114Z,k[I 
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In addition, the syntactic and lexical weights are adjusted as follows: 

( t + l )  ,(t) A , (t) 
Wsyn -~ ~syn q-~wsyn, ifll'i',~,~ll > [14'j,~ll, 
_ (t+l) , (t) o therwise  Wsyn ~syn, 

(29) 

[~=l,~2yn(~__ n 2 ^  ,i)   sy,0,i) 
A ,(t) ¢(t) do i=1 
~-.~syn = - - ~  " 2 2 " ]' 

d + d o II& , ll 114'pll 
L 

.(t+l) . (t) A,(t) 
' %  = W ex +  tex' ifl14 , ll > 114 , 11, 
_ ( t + l )  ,(t) otherwise ,  Wle x ~ Wle x, 

)~2ex(fl, i) ~ "~2ex(k,i) 
A ,  (t) ¢(t) do i=1 
~ l e x  = 2 d 2 ^ + d 2  / 114j ll 5,k 

I 

(3o) 

As the parameters are adjusted according to the learning rules described above, the 
score of the correct candidate will increase and the score of the incorrect candidate 
will decrease from iteration to iteration until the correct candidate is selected. 

The ratio of the syntactic weight to the lexical weight, i.e., Wsyn/Wlex, finally turns 
out to be 1.3 for the Lex(L2)+Syn(L2) model after the discriminative learning procedure 
is applied. This ratio varies with the adopted language models, but is always larger 
than 1.0. This result matches our expectation, because the syntactic score should pro- 
vide more discrimination power than the lexical score in the syntactic disambiguation 
task. 

The experimental results of using the discriminative learning procedure with 20 
iterations are shown in Table 2. For comparison, the corresponding results before 
learning, i.e., the baseline results, are repeated in the upper row of each table entry. 
For the Lex(L2)+Syn(L2) model, the accuracy rate for parse tree disambiguation in the 
trairting set is improved from 79.04% to 92.77%, which corresponds to a 65.5% error 
reduction rate. However, only a 7.03% error reduction rate is observed in the test set, 
from 53.10% to 56.40%. Similar tendencies are also observed for the other models. 

Since the discriminative learning procedure only aims at minimizing the error 
rate in the training set, the training set performance can usually be tuned very closely 
to 100% when a large number of parameters are available. However, the performance 
improvement for the test set is far less than that for the training set, since the statistical 
variations between the training set and the test set are not taken into consideration 
in the learning procedure. For investigating robustness issues in more detail, a robust 
learning procedure and the associated analyses are provided in the following section. 

4.2 Robust Learning 
As discussed in the previous section, the discriminative learning approach aims at 
minimizing the training set errors. The error rate measured in the training set is, in 
general, over-optimistic (Efron and Gong 1983), because the training set performance 
can be tuned to approach 100% by using a large number of parameters. The parameters 
obtained in such a way frequently fail to attain an optimal performance when used in 
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Table 2 
Performance with discriminative learning: (a) training set; (b) test set. Values in parentheses 
correspond to performance excluding unambiguous sentences. 

Part-of-Speech Accuracy Rate Parse Tree 

in Word in Sentence Accuracy Rate Selection 
Model (%) (%) (%) Power 

Lex(L1)+Syn(L1) 99.62 (99.59) 
+ Discrimination Learning 99.95 (99.94) 

Lex(L2)+Syn(L1) 99.64 (99.61) 
÷ Discrimination Learning 99.97 (99.96) 

Lex(L1)+Syn(L2) 99.67 (99.64) 
+ Discrimination Learning 99.96 (99.95) 

Lex(L2)+Syn(L2) 99.69 (99.67) 
+ Discrimination Learning 99.97 (99.97) 

95.57 (94.99) 75.43 (72.26) 0.34 (0.26) 
99.32 (99.23) 92.04 (91.02) 0.30 (0.21) 

95.93 (95.41) 75.81 (72.69) 0.34 (0.26) 
99.53 (99.47) 92.29 (91.29) 0.30 (0.21) 

96.07 (95.56) 78.69 (75.93) 0.34 (0.25) 
99.40 (99.32) 92.54 (91.58) 0.30 (0.21) 

96.46 (96.00) 79.04 (76.34) 0.33 (0.25) 
99.61 (99.56) 92.77 (91.83) 0.30 (0.21) 

(a) Training set performance 

Part-of-Speech Accuracy Rate Parse Tree 

Model 
in Word in Sentence Accuracy Rate Selection 

(%) (%) (%) Power 

Lex(L1)+Syn(L1) 98.89 (98.80) 
+ Discrimination Learning 98.82 (98.72) 

Lex(L2)+Syn(L1) 98.93 (98.84) 
+ Discrimination Learning 99.05 (98.97) 

Lex(L1)+Syn(L2) 98.82 (98.71) 
+ Discrimination Learning 98.88 (98.78) 

Lex(L2)+Syn(L2) 98.89 (98.79) 
+ Discrimination Learning 98.92 (98.83) 

88.7 (87.1) 49.3 (42.3) 0.45 (0.38) 
88.0 (86.3) 55.5 (49.3) 0.42 (0.34) 

88.9 (87.4) 49.7 (42.7) 0.45 (0.38) 
90.1 (88.7) 55.3 (49.1) 0.42 (0.34) 

88.0 (86.3) 52.8 (46.3) 0.44 (0.37) 
88.2 (88.6) 56.6 (50.6) 0.42 (0.34) 

88.5 (86.9) 53.1 (46.6) 0.44 (0.37) 
88.3 (86.7) 56.4 (50.3) 0.42 (0.34) 

(b) Test set performance 

a real application. This over-tuning phenomenon happens mainly because of the lack 
of sufficient sampling data and the possible statistical variations between the training 
set and the test set. 

To achieve better performance for a real application, one must  deal with statistical 
variation problems. Most adaptive learning procedures stop adjusting the parameters 
once the input training token has been classified correctly. For such learning proce- 
dures, the distance between the correct candidate and other competitive ones may  be 
too small to cover the possible statistical variations between the training corpus and 
the real application. To remedy this problem, Su and Lee (1991, 1994) suggested that 
the distance margin between the correct candidate and the top competitor should be 
enlarged, even though the input token is correctly recognized, until the margin ex- 
ceeds a given threshold. A large distance margin would provide a tolerance region 
in the neighborhood of the decision boundary  to allow possible data scattering in the 
real applications (Su and Lee 1994). A promising result has been observed by applying 
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this robust learning procedure to recognize the alphabet of E-set in English (Su and 
Lee 1991, 1994). 

To enhance robustness, the learning rules from Equation 24 to Equation 30 are 
modified as follows. Following the notations in the previous section, the correct syn- 
tactic structure is denoted by Syn~,fl, and the syntactic structure of the strongest com- 
petitor is denoted by Synj, k, whose score may either rank first or second. 

. For the syntactic and lexical parameters corresponding to the correct 
candidate: 

. ( t + l )  / a~y. ta, i) . ( t ) ,  i) (t) = A~y. (a, + A~y.  (a, i), 

. ( t + l )  : Asy n (0~, i) (t) • 
if ( l 1 4 j -  114~,zll) < (31) 
otherwise 

(t) • ~(t+l) . . . .  .~ (t){R i) + A,~lex(fl, l), lex ( / ~ , I )  ~- lexV-'" 
. ( t + l )  . . . .  (t) 
%x tP, z) = ~lex(fl, i), 

if(ll'i'~,kll- 114~,~11) < (32) 
otherwise 

. For the syntactic and lexical parameters corresponding to the strongest 
competitor: 

. ( t + l )  . . . .  ,~(t )  : ^  i '  (t) ^ 
Asyn ~,J,l) m syn(,3, ) - -  A / ~ s y n ( 3 ,  i ) ,  
,(t+l) . . . .  (t) ^ • 
Asy,, U,z) ~sy.(3,z), 

if(ll4~,kll- 114~,:11) < 6, 
otherwise 

(33) 

{ A}et:l)(~:,i) = A (t):f" i) (t)(k,i), lex \'~l - -  AiS le  x 
. ( t + l )  : f  .\ /~(t) (~, i ) ,  
Ale x ~K, 1) lex 

i / ( l l4p l l -  114~:11) < 6, 
otherwise 

(34) 

The learning rules of the syntactic and lexical weights are modified as 
follows: 

,(t+l) _ ,(t) A (t) 
w s y n  - - w s y n T t - / . A W s y n  

( t+l )  . (t) 
w s y n  : ~ V s y n ,  

i f ( l l 4 J -  [14~,~11) < 6, 

otherwise 
(35) 

{ • ( t+ l )  ~ (t) A (t) 
~lJle x z ~lJle x -F L-~Wle x ,  

. ( t + l )  = w(t) 
tV lex lex ' 

i f ( l l ~ J -  114~,~11) < e~, 
otherwise 

(36) 

The margin 6 in the above equations can be assigned either absolutely or relatively, 
as suggested in Su and Lee (1991, 1994). Currently, the relative mode with a 30% 
passing rate (i.e., 30% of the training tokens pass through the margin) is used in our 
implementation. 

The simulation results, compared with the results obtained by using the discrim- 
inative learning procedure, are shown in Table 3. Table 3(a) shows that performances 
with robust learning in the training set are a little worse than those with discrimination 
learning for the L1 syntactic language models. Nevertheless, they are a little better for 
the L2 syntactic language model. All these differences, however, are not statistically 
significant. On the contrary, the results with robust learning for the test set, as shown 
in Table 3(b), are much better in all cases. The robust learning procedure achieves 
more than 8% improvement compared with the discriminative learning procedure for 
all language models. It is evident that the robust learning procedure is superior to the 
discriminative learning procedure in the test set. 
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Table 3 
Performance with robust learning: (a) training set; (b) test set. Values in parentheses 
correspond to performance excluding unambiguous sentences. 

Part-of-Speech Accuracy Rate Parse Tree 

*Learning in Word in Sentence Accuracy Rate Selection 
Model Procedure (%) (%) (%) Power 

+DL 99.95 (99.94) 99.32 (99.23) 92.04 (91.02) 0.42 (0.34) 
Lex(L1)+Syn(L1) +RL 99.90 (99.89) 98.77 (98.61) 91.84 (90.79) 0.38 (0.29) 

+DL 99.97 (99.96) 99.53 (99.47) 92.29 (91.29) 0.42 (0.34) 
Lex(L2)+Syn(L1) +RL 99.92 (99.92) 99.06 (98.93) 92.08 (91.05) 0.38 (0.30) 

+DL 99.96 (99.95) 99.40 (99.32) 92.54 (91.58) 0.42 (0.34) 
Lex(L1)+Syn(L2) +RL 99.92 (99.92) 99.03 (98.91) 92.94 (92.03) 0.38 (0.30) 

+DL 99.97 (99.97) 99.61 (99.56) 92.77 (91.83) 0.42 (0.34) 
Lex(L2)+Syn(L2) +RL 99.93 (99.93) 99.19 (99.08) 93.12 (92.23) 0.38 (0.30) 

(a) Training set performance 

Part-of-Speech Accuracy Rate Parse Tree 

*Learning in Word in Sentence Accuracy Rate Selection 
Model Procedure (%) (%) (%) Power 

+DL 98.82 (98.72) 88.0 (86.3) 55.5 (49.3) 0.42 (0.34) 
Lex(L1)+Syn(L1) +RL 99.23 (99.16) 91.5 (90.3) 63.8 (58.8) 0.38 (0.29) 

+DL 99.05 (98.97) 90.1 (88.7) 55.3 (49.1) 0.42 (0.34) 
Lex(L2)+Syn(L1) +RL 99.27 (99.21) 91.5 (90.3) 64.2 (59.2) 0.38 (0.29) 

+DL 98.88 (98.78) 88.2 (88.6) 56.6 (50.6) 0.42 (0.34) 
Lex(L1)+Syn(L2) +RL 99.19 (99.12) 90.9 (89.6) 63.7 (58.7) 0.38 (0.30) 

+DL 98.92 (93.83) 88.3 (86.7) 56.4 (50.3) 0.42 (0.34) 
Lex(L2)+Syn(L2) +RL 99.18 (99.10) 90.7 (89.4) 64.3 (59.3) 0.38 (0.30) 

(b) Test set performance 

~DL and RL denote "Discriminative Learning" and "Robust Learning," respectively 

5. Parameter Smoothing for Sparse Data 

The above-ment ioned robust learning algori thm starts with the initial parameters  esti- 
mated by  using MLE method.  MLE, however,  frequently suffers from the large estima- 
tion error caused by  the lack of sufficient training data in m an y  statistical approaches.  
For example,  MLE gives a zero probabili ty to events that were never  observed in the 
training set. Therefore, MLE fails to provide  a reliable result if only a small number  of 
sampling data are available. To overcome this problem, Good (1953) proposed  using 
Turing's formula as an improved  estimate over  the wel l -known MLE. In addition, Katz 
(1987) proposed  a different smoothing technique, called the Back-Off procedure,  for 
smoothing unreliably est imated n-gram parameters  with their correlated (n-1)-gram 
parameters.  To investigate the effects of parameter  smoothing on robust  learning, both  
these techniques are used to smooth the est imated parameters ,  and then the robust  
learning procedure  is applied based on those smoothed parameters.  These two smooth-  
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ing techniques are first summarized in the following section. The investigation for the 
smoothing/robust learning hybrid approach is presented next. 

5.1 The Smoothing Procedures 
5.1.1 Turing's Formula. Let N be the sample size (the number of training tokens) and 
nr be the number of events that occur exactly r times. Then the following equation 
holds: 

N = y '~r .  nr (37) 
r 

The maximum likelihood estimate PML for the probability of an event e occurring r times 
is defined as follows: r 

PML(e) = ~ (38) 

The estimate based on Turing's formula (Good 1953) is given by the following equation: 

r • 

PTU(e) = ~ (39) 

where 
r* = (r + 1) nr+l (40) 

Hr 

The total probability estimate, using Turing's formula, for all the events that actu- 
ally occurred in the sample space is equal to 

PTU(e) = 1 nl (41) 
N e:C(e)>0 

where C(e) stands for the frequency count of the event e in the sample. This, in turn, 
leads to the following equation: 

nl (42) ~_~ PTLI(e)= 
e:C(e)=0 

According to Turing's formula, the probability mass nl /N  is then equally distributed 
over the events that never occur in the sample. 

5.1.2 Back-off Procedure. Katz (1987) proposed a back-off procedure to estimate pa- 
rameters for an m-gram model, i.e., the conditional probability of a word given the 
(m-l) preceding words. This procedure is summarized as follows: 

PTU(Wm I w~n-1), 

PBF(Wm I m - - 1  O~(W~-I)PBF( wm I Wl ) = 
PBF( wm I Warn-l) 

m - 1  W2 ) 

if C(wD > o 

if C(w"~) = 0, and C(w~) > O, 

if C(wV) = o 
Wm 

(43) 

where 

Ol(W~ n-1 ) = 

1 - Y~ PBF(Wm ]W~ n-l) 
w~:C(wD>O 

1 - ~_~ PBF(Wm ]w~ '-1) 
w,.:C(wD>O 

(44) 
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is a normalized factor such that 

PBF(Wm I WT) + Z PBF(Wm I WT) = 1 (45) 
wm:C(wD>0 wm:C(wT)=0 

Compared with Turing's formula, the probability for an m-gram that does not occur 
in the sample is "backed off" to refer to its corresponding (m-1)-gram probability. 

Table 4 gives the experimental results for using the maximum likelihood (ML), Tur- 
ing (TU) and back-off (BF) estimation procedures. The results show that smoothing the 
unreliable parameters degrades the training set performance; however, it improves the 
performance for the test set. Among the estimators, the maximum likelihood estimator 
provides the best results for the training set, but it is the worst on the test set. Both 
Turing's and the back-off procedures perform better than the maximum likelihood 
procedure. This means that smoothing unreliable parameters is absolutely essential if 
only limited training data are available. 

Compared with Turing's procedure, the back-off procedure is 1 ~ 2% worse in 
all cases. After examining the estimated parameters by using these two smoothing 
procedures, we found that some syntactic parameters for null events were assigned 
very large values by the Back-Off procedure, while they were assigned small proba- 
bilities by Turing's formula. A typical example is shown as follows. The reduce action 
"n quan --* NLM*" given the left contexts [P*, N2] never occurred in the training set. 
But, the probability of P( n quan --~ NLM* [ [n quan] reduced; L2=P*, LI=N2) is finally 
replaced by the probability of P( n quan ~ NLM* I In quan] reduced) in the Back-Off 
estimation procedure. Since the probability P( n quan --+ NLM* I [n quan] reduced) has 
a large value (= 0.25), the probability P( n quan ~ NLM* I [n quan] are reduced; L2=P*, 
LI=N2) is accordingly large also. From the estimation point of view, the parameters 
for null events may be assigned better estimated values by using the Back-Off method; 
however, these parameters do not necessarily guarantee that the discrimination power 
will be better improved. Take the sentence "A stack ofpinfeed paper three inches high may 
be placed underneath it" as an example. The decomposed phrase levels and the corre- 
sponding syntactic scores for the correct and the top candidate are shown in Table 5 
(a) and (b), respectively. We find that the main factor affecting the tree selection is the 
sixth phrase level, which corresponds to the reduce action % quan --* NLM*" with the 
left two contextual symbols P* and N2 for the top candidate. As described above, the 
probability P( n quan --* NLM* I [n quan] reduced; L2=P*, LI=N2) is assigned a large 
value in the Back-Off estimation procedure. However, to correctly select the right syn- 
tactic structure in this example, P( quan ~ QUAN I [quan] reduced; L2=P*, LI=N2) 
should be greater than P( n quan ~ NLM* I [n quan] reduced; L2=P*, LI=N2). This 
requirement may not be met by any estimation procedure, since the above two prob- 
abilities are estimated from two different outcome spaces (one conditioned on [quan], 
and the other conditioned on [n, qua n]). Therefore, even though the Back-Off procedure 
may give better estimates for the parameters, it cannot guarantee that the recognition 
result can be improved. The comparison between Turing's procedure and the Back- 
Off procedure thus varies in different cases. In fact, the Back-Off estimation did show 
better results in our previous research (Lin, Chiang, and Su 1994). Nevertheless, we 
will show in the next section that the selection of a smoothing method is not crucial 
after the robust learning procedure has been applied. 

Furthermore, comparing the results in Table 3 and Table 4, we find that the perfor- 
mance with the robust learning procedure is much better than that with the smooth- 
ing techniques. Although both the adaptive learning procedures and the smoothing 
techniques show improvement, the robust learning procedure, which emphasizes dis- 
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Table 4 
Performance for lexical and syntactic disambiguation with various estimators. Values in 
parentheses correspond to performance excluding unambiguous sentences. (ML: Maximum 
Likelihood estimator; TU: TUring's formula; BF: Back-Off technique.) 

Part-of-Speech Accuracy Rate Parse Tree 

Estimation in Word in Sentence Accuracy Rate Selection 
Model Method (%) (%) (%) Power 

ML 99.62 (99.59) 95.57 (94.99) 75.43 (72.26) 0.34 (0.26) 
Lex(L1)+Syn(L1) TU 99.43 (99.38) 93.47 (92.62) 69.63 (65.71) 0.36 (0.28) 

BF 99.40 (99.35) 93.18 (92.30) 67.33 (63.11) 0.37 (0.28) 

ML 99.64 (99.61) 95.93 (95.41) 75.81 (72.69) 0.34 (0.26) 
Lex(L2)+Syn(L1) TU 99.48 (99.44) 94.09 (93.32) 70.12 (66.26) 0.36 (0.28) 

BF 99.45 (99.41) 93.81 (93.01) 67.86 (63.70) 0.37 (0.28) 

ML 99.67 (99.64) 96.07 (95.56) 78.69 (75.93) 0.34 (0.25) 
Lex(L1)+Syn(L2) TU 99.45 (99.40) 93.79 (92.99) 72.13 (68.53) 0.35 (0.27) 

BF 99.39 (99.33) 93.03 (92.13) 67.48 (63.27) 0.36 (0.28) 

ML 99.69 (99.67) 96.46 (96.00) 79.04 (76.34) 0.33 (0.25) 
Lex(L2)+Syn(L2) TU 99.49 (99.45) 94.22 (93.48) 72.48 (68.92) 0.35 (0.27) 

BF 99.44 (99.39) 93.56 (92.72) 67.87 (63.71) 0.36 (0.28) 

(a) Training set performance 

Part-of-Speech Accuracy Rate Parse Tree 

Estimation in Word in Sentence Accuracy Rate Selection 
Model Method (%) (%) (%) Power 

ML 98.89 (98.80) 88.7 (87.1) 49.3 (42.3) 0.45 (0.38) 
Lex(L1)+Syn(L1) TU 99.03 (98.95) 89.5 (88.0) 53.9 (47.5) 0.43 (0.36) 

BF 99.01 (98.92) 88.9 (87.4) 52.4 (45.8) 0.44 (0.36) 

ML 98.93 (98.84) 88.9 (87.4) 49.7 (42.7) 0.45 (0.38) 
Lex(L2)+Syn(L1) TU 99.08 (99.00) 90.0 (88.6) 54.3 (48.0) 0.43 (0.35) 

BF 99.09 (99.01) 90.1 (88.7) 53.2 (46.7) 0.44 (0.36) 

ML 98.82 (98.71) 88.0 (86.3) 52.8 (46.2) 0.44 (0.37) 
Lex(L1)+Syn(L2) TU 98.98 (98.89) 89.1 (87.6) 56.5 (50.5) 0.42 (0.34) 

BF 99.02 (98.94) 89.1 (87.6) 54.4 (48.1) 0.43 (0.35) 

ML 98.89 (98.79) 88.5 (86.9) 53.1 (46.6) 0.44 (0.37) 
Lex(L2)+Syn(L2) TU 99.05 (98.97) 89.7 (88.3) 56.6 (50.6) 0.42 (0.34) 

BF 99.10 (99.02) 90.1 (88.7) 55.1 (48.9) 0.43 (0.35) 

(b) Test set performance 

crimination capabil i ty rather  than mere ly  improv ing  est imation process, achieves a 
bet ter  result. Since the phi losophies  of per formance  i m p r o v e m e n t  for these two al- 
gor i thms are different (one f rom the estimation point  of v iew and the other f rom the 
discrimination point  of view), it is interesting to combine  these two algori thms and 
invest igate the effect of the robust  learning procedure  on the smoothed  parameters .  
Detailed discussion on this hybr id  approach  is addressed  in the fol lowing section. 
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Table 5 
The decomposed phrase levels associated with the sentence "A stack ofpinfeed paper three inches 
high may be placed underneath it," and the corresponding scores with the Back-Off estimation 
method for (a) the correct candidate and (b) the top candidate. The shaded rows indicate the 
different patterns between the two parse trees. 

word current symbols ~ reduced symbol score 

1 A $ $ art -~ DET -0.0030 

2 stack $ $ DET n --~ N2 -0.5483 

3 of $ 

4 pinfeed N 2  

N2 p ~ P* -0.0072 

r . n ---," " " ~ ' P" - N1 . , -0A221 

I ~ " N l n  ~ , N 2  - • ; " "~Q,3611 5 paper • N2 P* 

7 i ~ e s  N2 
,, , , ,  ! 

....... , i ,- h/gh $ 

..... 9 may ...... $ ,, 

. . . .  I 0  ! b ~  . . . . .  $ 

11 placed " N3 

i 2  underneath AUX V" 

. 1 3  it • ~$ $ 

QUAN ' rl ~ n • " ' - I , 8434  

' * " ! A " : $ } N2 P N2 QU N n a ~ NO t - t 7 9 2 4  

N3 mod l  - )  m o d l  - -0;5172 

N 3  mode'be ~AUX~ . ', . ~oo48  
AUX ' . v ~ V l ,  " ' " - O . ~ 7  

N3 AUX V l  P" pron:-~ $ 2  

(a) Correct Candidate 

-1~.7~4 

word 

1 A $ $ 

2 stack $ $ 

3 of $ N2 

4 pin feed N2 P* 

5 paper P* N2 

current symbols --) reduced symbol score 

art --) DET -0.0030 

DET n --~ N2 -0,5483 

p -~ P* -0.0072 

n ~ N 2  : , ~03658 

n -~ n ~0.3528 

7 inches P* N2 

.... 8 high P" N2 

..... 9 may N2 N3 

.... 10,  ...... ~ $ " $ 
p~ced $ N3 

underneath N3 Vl  

~3 . $ I 
$, 

i 

NLM* n - ~  N2 ' ~1~2297 

. . . . .  N 2 a ~  N3 . . . . . . . .  ; ...... ~ 6 0 6  
m0d~--~ AUX i , ;;001;99; 

N2 P '  N2 N 3  AUX v ~ N 3  ~! !60;6 

v ~ V I  

t 
• , N3 vl P': p r o .  - ,  s2 
(b) Top Candidate 

5.2 Robust  Learning on  the Smoothed  Parameters 
The hybrid approach first uses a smoothing technique to estimate the initial param- 
eters. Afterwards, the robust learning procedure is applied based on the smoothed 
parameters. The advantages of this approach are two-fold. First, the power of the 
scoring function is enhanced since the smoothing techniques can reduce the estima- 
tion errors, especially for unseen events. Second, the parameters estimated from the 
smoothing techniques give the robust learning procedure a better initial point and are 
more likely to reach a better solution when many local optima exist in the parameter 
space. In other words, the smoothing techniques indirectly prevent the learning pro- 
cess from being trapped in a poor local optimum, although reducing the estimation 
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Table 6 
Performance with the smoothing/robust learning hybrid approach. Values in parentheses 
correspond to performance excluding unambiguous sentences. (ML+RL: Maximum Likelihood 
estimator/Robust Learning; TU+RL: TUring's formula/Robust Learning; BF+RL" Back-Off 
technique/Robust Learning.) 

Part-of-Speech Accuracy Rate Parse Tree 

Estimation/ in Word in Sentence Accuracy Rate Selection 
Model Learning (%) (%) (%) Power 

ML+RL 99.90 (99.89) 98.77 (98.61) 91.84 (90.79) 0.31 (0.22) 
Lex(L1)+Syn(L1) TU+RL 99.88 (99.87) 98.59 (98.41) 90.89 (89.71) 0.31 (0.22) 

BF+RL 99.88 (99.87) 98.57 (98.38) 90.76 (89.56) 0.31 (0.22) 

ML+RL 99.92 (99.92) 99.06 (98.93) 92.08 (91.05) 0.31 (0.22) 
Lex(L2)+Syn(L1) TU+RL 99.90 (99.89) 98.82 (98.67) 91.20 (90.06) 0.31 (0.22) 

BF+RL 99.89 (99.89) 98.76 (98.59) 90.93 (89.76) 0.31 (0.22) 

ML+RL 99.92 (99.92) 99.03 (98.91) 92.94 (92.03) 0.30 (0.21) 
Lex(L1)+Syn(L2) TU+RL 99.90 (99.90) 98.89 (98.71) 91.72 (90.65) 0.31 (0.22) 

BF+RL 99.89 (99.88) 98.74 (98.58) 91.18 (90.04) 0.31 (0.22) 

ML+RL 99.93 (99.93) 99.19 (99.08) 93.12 (92.23) 0.30 (0.21) 
Lex(L2)+Syn(L2) TU+RL 99.91 (99.90) 98.92 (98.78) 91.79 (90.73) 0.31 (0.22) 

BF+RL 99.90 (99.89) 98.90 (98.76) 91.40 (90.29) 0.31 (0.22) 

(a) Training set performance 

Part-of-Speech Accuracy Rate Parse Tree 

Estimation/ in Word in Sentence Accuracy Rate Selection 
Model Learning (%) (%) (%) Power 

ML+RL 99.23 (99.16) 91.5 (90.3) 63.8 (58.8) 0.38 (0.30) 
Lex(L1)+Syn(L1) TU+RL 99.37 (99.32) 92.3 (91.7) 67.1 (62.5) 0.37 (0.28) 

BF+RL 99.34 (99.28) 92.3 (91.2) 67.1 (62.5) 0.37 (0.28) 

ML+RL 99.27 (99.21) 91.5 (90.3) 64.2 (59.2) 0.38 (0.29) 
Lex(L2)+Syn(L1) TU+RL 99.39 (99.33) 92.8 (91.8) 68.0 (63.6) 0.37 (0.28) 

BF+RL 99.36 (99.30) 92.5 (91.5) 67.9 (63.4) 0.37 (0.28) 

ML+RL 99.19 (99.12) 90.9 (89.6) 63.7 (58.7) 0.38 (0.30) 
Lex(L1)+Syn(L2) TU+RL 99.38 (99.32) 92.9 (91.9) 69.3 (65.0) 0.37 (0.28) 

BF+RL 99.37 (99.32) 92.8 (91.8) 69.1 (64.8) 0.37 (0.28) 

ML+RL 99.18 (99.10) 90.7 (89.4) 64.3 (59.3) 0.38 (0.30) 
Lex(L2)+Syn(L2) TU+RL 99.45 (99.40) 93.7 (92.8) 69.8 (65.6) 0.37 (0.28) 

BF+RL 99.39 (99.34) 93.3 (92.4) 69.2 (64.9) 0.37 (0.28) 

(b) Test set performance 

errors by  using these methods  does not directly improve the discrimination capabil- 
ity. Experimental  results using this hybrid approach are shown in Table 6, where  the 
results using the (ML+RL) mode  are also listed for reference. 

Significant improvement ,  compared  with the (ML+RL) mode,  has been observed 
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by using the smoothed parameters at the initial step before the robust learning proce- 
dure is applied. With this hybrid approach, better results are obtained using a more 
complex language model, such as Lex(L2)+Syn(L2). However, there is no significant 
performance difference achieved by using the (TU+RL) and the (BF+RL) approaches 
for all language models, even though Turing's smoothing formula was shown to be- 
have better than the Back-Off procedure before applying the robust learning proce- 
dure. This is not surprising because starting the robust learning procedure with dif- 
ferent initial points would still lead to the same local optimum if the starting region, 
where the initial points are located, has only one local optimum. By using Turing's 
formula/Robust Learning hybrid approach for the Lex(L2)+Syn(L2) model, the ac- 
curacy rate for parse tree selection is improved to 69.2%, which corresponds to a 
34.3% error reduction compared with the baseline of 53.1% accuracy. The superiority 
in terms of both discrimination and robustness for the hybrid approach is thus clearly 
demonstrated. 

6. Parameter Tying 

The investigation described in Section 5 has shown that smoothing is essential before 
the robust learning procedure is applied. Nevertheless, although we get better initial 
estimates by smoothing parameters corresponding to rare events, these parameters 
still cannot be trained well in the robust learning procedure, because such parameters 
are seldom or never touched by the training process. Unfortunately, this problem 
occurs frequently in statistical language modeling. This happens because, in general, 
to reduce modeling errors, a model accounting for more contextual information is 
desired. However, a model incorporating more contextual information would have 
a larger number of null event parameters, which will not be touched in the learning 
procedure. 

To overcome this problem, a novel approach is proposed in this paper to train the 
null event parameters by tying them to their highly correlated parameters, and then 
adjusting them through the robust learning procedure. Basically, the reasons for using 
this approach are two-fold. First, the number of parameters can be reduced by using 
the tying scheme. Secondly, this tying scheme gives parameters for rare events more 
chance to be touched in the learning procedure and thus they can be trained more 
reliably. The details are addressed below. 

6.1 Tying Procedure 
The tying procedure includes the following two steps: 

. Initial Estimation: For an m-gram model, the conditional probability 
P(x~ I m-1 x I ) is estimated by the following equation: 

P(Xm I m-1 C(Xl . . . . .  Xm-I,X ) (46) 

where V denotes the vocabulary and C(.) stands for the frequency count 
of an event in the training set. If ~y~v  C( xl . . . .  ,Xm-l ,y )  > Q~, where Qa 
is a present threshold, it is assumed that the estimated value of 
P(xm ]x~ n-l) is reliable and no action is required in this situation. On the 
other hand, if Y ~ v  C(Xl . . . .  , Xm-1, y) < Qa, the estimated value of 

P(xm I m-1 x I ) i s  x 1 ) is regarded as unreliable. In this case, P(xm ] m-1 
substituted by the smoothed value of the (m - 1)-gram probability 

344 



Tung-Hui Chiang et al. Robust Learning, Smoothing, and Parameter Tying 

Table 7 
The number of parameters before and after the tying process. Note that the parameters of 
P(W I C) are not tied. 

Model 

Number of Number of Number of 
Lexical Parameter Syntactic Total 

P(W]C) P(Ci]Cj)  Parameter Parameters 

Lex(L1)+Syn(L1) 

Lex(L2)+Syn(L1) 

Lex(L1)+Syn(L2) 

Lex(L2)+Syn(L2) 

Before Tying 304,630 1225 96699*95 9,492,260 
After Tying 304,630 760 98,195 403,595 

Ratio 1.0 0.62 0.0106 0.0425 

Before Tying 304,630 42875 9 6 6 9 9 * 9 5  9,533,910 
After Tying 304,630 4,199 98,195 407,024 

Ratio 1.0 0.098 0.0106 0.0427 

Before Tying 304,630 1225 96699*(95*95) 873,014,330 
After Tying 304,630 760 112,114 417,504 

Ratio 1.0 0.62 0.00013 0.000478 

Before Tying 304,630 42875 96699*(95*95) 873,055,980 
After Tying 304,630 4,199 112,114 420,943 

Ratio 1.0 0.098 0.00013 0.000482 

. 

P(Xm ] X2n-1) .  Currently, Qe is set to ten times the size of the possible 
outcomes of Xm, i.e., Qa = [10 x (the number of possible tags)] for the 
part-of-speech transition parameters. 

Tying Procedure: Consider the m-gram events {Xl,..., Xm-1, Yi}, Myi C V, 
which have the same (m-1)-gram history {Xl,..., Xm--1}. Each of the 
probabilities P(Yi ] Xl . . . . .  Xm-1), Vyi C V is first assigned a smoothed 
value in the above step. To give these parameters more chance to be 
trained during the robust learning process, we tie together the 
parameters whose corresponding events appear less than Qn times in the 
training set. That is, the parameters P(Yk ] Xl, x2 . . . .  , Xm-1), Yk C V, are 
tied if the associated events satisfy the following conditions: 

C(x1,... ,xm-l,yi) < Qa, and C(Xl,.. . ,Xm-l,yk) < Qn, yk E V, (47) 
yiff_ V 

where Qn is currently set to 2. 

The numbers of parameters before and after tying for each language model are tab- 
ulated in Table 7. This table shows that the number of parameters is greatly reduced 
after the tying process, especially for the L2 syntactic models. 

6.2 Robust Learning on the Tied Parameters 
After the parameters are estimated and tied through the tying procedure, the robust 
learning algorithm is applied on the tied parameters. The experimental results are 
shown in Table 8. The results with the TU+RL hybrid approach are also listed for ref- 
erence. The performance with the Tying/Robust Learning hybrid approach, as shown 
in Table 8, deteriorates somewhat in the training set because the tying procedure de- 
creases the modeling resolution. However, the test set performance with this hybrid 
approach is slightly (but not significantly) better than the Turing's formula/Robust 
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Table 8 
Performance of different language models with the various hybrid approaches. Values in 
parentheses correspond to performance excluding unambiguous sentences. TY+RL: TYing 
parameters/Robust Learning. 

Part-of-Speech Accuracy Rate Parse Tree 

Estimation/ in Word in Sentence Accuracy Rate Selection 
Model Learning (%) (%) (%) Power 

TU+RL 99.88 (99.87) 98.59 (98.41) 90.89 (89.71) 0.31 (0.22) 
Lex(L1)+Syn(L1) TY+RL 99.86 (99.85) 98.33 (98.12) 89.81 (88.49) 0.31 (0.23) 

TU+RL 99.90 (99.89) 98.82 (98.67) 91.20 (90.06) 0.31 (0.22) 
Lex(L2)+Syn(L1) TY+RL 99.87 (99.86) 98.48 (98.28) 89.89 (88.58) 0.31 (0.23) 

TU+RL 99.90 (99.90) 98.89 (98.71) 91.72 (90.65) 0.30 (0.21) 
Lex(L1)+Syn(L2) TY+RL 99.88 (99.87) 98.60 (98.42) 90.61 (89.40) 0.31 (0.22) 

TU+RL 99.91 (99.90) 98.92 (98.78) 91.79 (90.73) 0.30 (0.21) 
Lex(L2)+Syn(L2) TY+RL 99.89 (99.88) 98.80 (98.64) 90.71 (89.51) 0.31 (0.22) 

(a) Training set performance 

Part-of-Speech Accuracy Rate Parse Tree 

Estimation/ in Word in Sentence Accuracy Rate Selection 
Model Learning (%) (%) (%) Power 

TU+RL 99.37 (99.32) 92.7 (91.7) 67.1 (62.5) 0.37 (0.28) 
Lex(L1)+Syn(L1) TY+RL 99.36 (99.31) 92.8 (91.8) 67.5 (63.0) 0.37 (0.28) 

TU+RL 99.39 (99.33) 92.8 (91.8) 68.0 (63.6) 0.37 (0.28) 
Lex(L2)+Syn(L1) TY+RL 99.39 (99.33) 92.9 (91.9) 68.3 (63.9) 0.37 (0.28) 

TU+RL 99.38 (99.32) 92.9 (91.9) 69.3 (65.0) 0.37 (0.28) 
Lex(L1)+Syn(L2) TY+RL 99.39 (99.33) 92.9 (91.9) 69.4 (65.2) 0.36 (0.28) 

TU+RL 99.45 (99.40) 93.7 (92.8) 69.8 (65.6) 0.37 (0.28) 
Lex(L2)+Syn(L2) TY+RL 99.43 (99.38) 93.5 (92.6) 70.3 (66.2) 0.36 (0.27) 

(b) Test set performance 

Learning approach. In addition, it reduces the large number of parameters, and thus 
greatly eases the memory constraints for implementing the system. 

A summary illustrating the performance improvement by using the proposed 
enhancement mechanisms for the Lex(L2)+Syn(L2) model is shown in Table 9. The 
proposed tying approach, after being combined with the robust learning procedure, 
significantly reduces the error rate compared with the baseline (36.67% error reduction 
is achieved, from 53.1% to 70.3%). Moreover, the number of parameters is reduced to 
less than 1/2000 of the original parameter space. 

7. Conclus ions  and Future Work 

An integrated scoring function capable of incorporating various knowledge sources to 
resolve syntactic ambiguity problems is explored in this paper. In the baseline model, 
the parameters are estimated by using the maximum likelihood method. The MLE 
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Table 9 
Summary of performance for the Lex(L2)+Syn(L2) model using various performance 
enhancement methods. Values in parentheses correspond to performance excluding 
unambiguous sentences. 

Testing Set Performance 

Part-of-Speech Accuracy Rate Parse Tree 

in Word in Sentence 
Model: Lex(L2)+Syn(L2) (%) (%) 

Accuracy Rate Selection 
(%) Power 

Baseline 98.89 (98.79) 88.50 (86.90) 53.1 (46.6) 0.44 (0.37) 

+ Robust Learning 99.18 (99.10) 90.70 (89.41) 64.3 (59.3) 0.38 (0.30) 

+ TU Smoothing 99.05 (98.97) 89.70 (88.27) 56.6 (50.6) 0.42 (0.34) 

+ TU Smoothing 
+ Robust Learning 99.45 (99.40) 93.70 (92.82) 69.8 (65.6) 0.37 (0.28) 

+ Tying parameter 
+ Robust Learning 99.43 (99.38) 93.50 (92.60) 70.3 (66.2) 0.36 (0.27) 

approach fails to achieve satisfactory performance because the discrimination and ro- 
bustness issues are not considered in the estimation process. To improve performance, 
a discrimination- and robustness-oriented method is adopted to directly pursue the 
correct ranking orders of possible alternative syntactic structures. In addition, this 
learning procedure is able to resolve problems resulting from statistical variations 
between the training corpus and real tasks. 

The effects of parameter smoothing for null events with Turing's formula and 
the Back-Off method are investigated in this paper. A better initial estimate of the 
parameters makes the robust learning procedure achieve better performance when 
many local optima exist in the parameter space. Significant improvement of 34.3% 
error reduction rate is attained when we apply the robust learning procedure on the 
smoothed parameters. 

Finally, a parameter tying scheme for rare events is proposed so that the unreli- 
ably estimated parameters are tied and trained together through the robust learning 
procedure. Thus, this approach makes it possible to tune all the parameters through 
the learning process. In addition, the number of parameters is significantly reduced 
with the tying process. The reduction of the number of parameters is over 99% for 
each language model. Moreover, the accuracy rate of 70.3% for parse tree selection, or 
36.7% error reduction rate, is obtained by using this novel approach. 

To explore the areas for further improving the system, the remaining errors have 
been examined. It was found that a very large portion of errors result from attachment 
problems, including prepositional phrase (PP) attachment and modification scope for 
adverbial phrases, adjective phrases, and relative clauses, while less than 10% of the 
errors arise because of incorrect part-of-speech tagging. To further improve the lexical 
scoring module, some refinement mechanisms developed for our part-of-speech tagger 
(Lin, Chiang, and Su 1994) will be incorporated into this system. As for the attachment 
problems, we found that the system appears to have a preference for local attachment, 
which is not always inappropriate. The current model fails to deal with such problems 
because only syntactic information from two left contextual nonterminal symbols is 
consulted for computation. To resolve the attachment problems, integrating seman- 
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tic information, such as word  sense collocations, would  be required. In addition, to 
enable the system to take into account information associated with long-distance de- 
pendency, we plan to modify  the syntactic model  so that it can evaluate structural 
dependency across various subtrees in the parse history. A large number  of parameters  
will inevitably be required for such a formulation, and a large training corpus is thus 
needed for training. A boots t rapping procedure  for parameter  estimation with respect 
to a very  large corpus, therefore, will be applied in future research. 
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