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Five language and tagset independent stochastic taggers, handling morphological and contextual 
information, are presented and tested in corpora of seven European languages (Dutch, English, 
French, German, Greek, Italian and Spanish), using two sets of grammatical tags; a small set 
containing the eleven main grammatical classes and a large set of grammatical categories common 
to all languages. The unknown words are tagged using an experimentally proven stochastic 
hypothesis that links the stochastic behavior of the unknown words with that of the less probable 
known words. A fully automatic training and tagging program has been implemented on an IBM 
PC-compatible 80386-based computer. Measurements of error rate, time response, and memory 
requirements have shown that the taggers" performance is satisfactory, even though a small 
training text is available. The error rate is improved when new texts are used to update the 
stochastic model parameters. 

1. Introduct ion 

In the natural language processing community, there has been a growing awareness of 
the key importance that lexical and corpora resources, especially annotated corpora, 
have to play, both in the advancement of research in this area and in the develop- 
ment of relevant products. In order to reduce the huge cost of manually creating such 
corpora, the development of automatic taggers is of paramount importance. In this 
respect, the ability of a tagger to handle both known and unknown words, to improve 
its performance by training, and to achieve a high rate of correctly tagged words, is 
the criterion for assessing its usability in practical cases. 

Several taggers based on rules, stochastic models, neural networks, and hybrid 
systems have already been presented for Part-of-speech (POS) tagging. Rule-based 
taggers (Brill 1992; Elenius 1990; Jacobs and Zernik 1988; Karlsson 1990; Karlsson et 
al. 1991; Voutilainen, Heikkila, and Antitila 1992; Voutilainen and Tapanainen 1993) 
use POS-dependent constraints defined by experienced linguists. A small error rate 
has been achieved by such systems when a restricted, application-dependent POS set 
is used; e.g., an error rate of 2-6 percent has been reported by Marcus, Santorini, and 
Marcinkiewicz (1993) using the Penn Treebank corpus. Nevertheless, if a large POS set 
is specified, the number of rules increases significantly and rule definition becomes 
highly costly and cumbersome. 

Stochastic taggers use both contextual and morphological information, and the 
model parameters are usually defined or updated automatically from tagged texts 
(Cerf-Danon and E1-Beze 1991; Church 1988; Cutting et al. 1992; Dermatas and Kokki- 
nakis 1988, 1990, 1993, 1994; Garside, Leech, and Sampson 1987; Kupiec 1992; Maltese 
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and Mancini 1991; Meteer, Schwartz, and Weischedel 1991; Merialdo 1991; Pelillo, 
Moro, and Refice 1992; Weischedel et al. 1993; Wothke et al. 1993). These taggers are 
preferred when tagged texts are available for training, and large tagsets and multilin- 
gual applications are involved. In the case where additionally raw untagged text is 
available, the Maximum Likelihood training can be used to reestimate the parameters 
of HMM taggers (Merialdo 1994). 

Connectionist models have been used successfully for lexical acquisition (Eineborg 
and Gamback 1993; Elenius 1990; Elenius and Carlson 1989; Nakamura et al. 1990). 
Correct classification rates up to 96.4 percent have been achieved in the latter case by 
testing on the Teleman Swedish corpus. On the other hand, a time-consuming training 
process has been reported. 

Recently, several solutions to the problem of tagging unknown words have been 
presented (Charniak et al. 1993; Meteer, Schwartz, and Weischedel 1991). Hypotheses 
for unknown words, both stochastic (Dermatas and Kokkinakis 1993, 1994; Maltese 
and Mancini 1991; Weischedel et al. 1993), and connectionist (Eineborg and Gamback 
1993; Elenius 1990) have been applied to unlimited vocabulary taggers. In taggers that 
are based on hidden Markov models (HMM), parameters of the unknown words are 
estimated by taking into account morphological information from the last part of the 
word (Dermatas and Kokkinakis 1994; Maltese and Mancini 1991). Accurate tagging of 
seven European languages has been achieved in the first case (error rates of 3-13 per- 
cent for a detailed POS set), but an enormous amount of training text is required 
for the estimation of the parameters for unknown words. Similar results have been 
reported by Maltese and Mancini (1991) for the Italian language. Weischedel et al. 
(1993) have used four categories of word morphology, such as inflectional endings, 
derivational endings, hyphenation, and capitalization. For the case in which only a 
restricted training text is available, a simple, language- and tagset-independent HMM 
tagger has been presented by Dermatas and Kokkinakis (1993), where the HMM pa- 
rameters for the unknown words are estimated by assuming that the POS probability 
distribution of the unknown words and the POS probability distribution of the less 
probable words in the small training text are identical. 

In this paper, five natural language stochastic taggers that are able to predict POS 
of unknown words are presented and tested following the process of developing anno- 
tated corpora (the most recently fully tagged and corrected text is used to update the 
model parameters). Three stochastic optimization criteria and seven European lan- 
guages (Dutch, English, French, German, Greek, Italian and Spanish) and two POS 
sets are used in the tests. The set of main grammatical classes and an extended set 
of detailed grammatical categories is the same in all languages. The testing material 
consists of newspaper texts with 60,000-180,000 words for each language and an En- 
glish EEC-law text with 110,000 words. This material was assembled and annotated 
in the framework of the ESPRIT-291/860 project "Linguistic Analysis of the European 
Languages." In addition, we present transformations of the taggers' calculations to a 
fixed-point arithmetic system, which are useful for machines without floating-point 
hardware. 

The taggers handle both lexical and tag transition information, and without per- 
forming morphological analysis can be used to annotate corpora when small training 
texts are available. Thus, they are preferred when a new language or a new tagset 
is used. When the training text is adequate to estimate the tagger parameters, more 
efficient stochastic taggers (Dermatas and Kokkinakis 1994; Maltese and Mancini 1991; 
Weischedel et al. 1993) and training methods can be implemented (Merialdo 1994). 

The structure of this paper is as follows: in Section 2 the stochastic tagging models 
are presented in detail. In Section 3 the influence of the training text errors and the 
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sources of stochastic tagger errors are discussed, followed, in Section 4, by a short pre- 
sentation of the implementation. In Section 5, statistical measurements on the corpora 
and a short description of the taggers' performance is given. Detailed experimental 
results are included in Appendices A and B. 

2. Stochastic Tagging Models 

A stochastic optimal sequence of tags T, to be assigned to the words of a sentence 
W, can be expressed as a function of both lexical P(W [ T) and language model P(T) 
probabilities using Bayes' rule: 

To -- argmaxP(T [ W) = argmax P(W [ T) • P(T) = argmaxP(W [ T) • P(T) (1) 
P(W) T T T 

Several assumptions and approximations on the probabilities P(W [ T) and P(T) 
lead to good comprises concerning memory and computational complexity. 

2.1 Hidden Markov Model (HMM) Approach 
The tagging process can be modeled by an HMM by assuming that each hidden tag 
state produces a word in the sentence, each word wi is uncorrelated with neighboring 
words and their tags, and each tag is probabilistic dependent on the N previous tags 
only. 

2.1.1 Most probable tag sequence (HMM-TS). The optimal tag sequence for a given 
observation sequence of words is given by the following equation: 

N M M 

Z~ HMM-TS) --  a r g m a x P ( h ) H  P(ti [ ti-1 . . . . .  h) H P(ti ] t i - 1 , . . . ,  t i-N) H P(wi [ ti) 
tl,...,tM i=2 i=N+I i=1 

(2) 
where M is the number of words in the sentence W. 

The optimal solution is estimated by the well-known Viterbi algorithm. The first- 
(Rabiner 1989) and second- (He 1988) order Viterbi algorithms have been presented 
elsewhere. Recently, Tao (1992) described the Viterbi algorithm for generalized HMMs. 

2.1.2 Most probable tags (HMM-T). The optimal criterion is to choose the tags that 
are most likely to be computed independently at each word event: 

To HMM-T) = {tio, tio -----argmaxP(ti[W)}, 
ti 

i = 1,M (3) 

The optimum tag tio is estimated using the probabilities of the forward-backward 
algorithm (Rabiner 1989): 

rio -- argmax P(ti, W) = argmax P(ti, wl,. •., wi)P(wi+l,..., WM [ ti) (4) 
ti ti 

The probabilities in equation 4 are estimated recursively for the first- (Rabiner 
1989) and second-order HMM (Watson and Chung 1992). 

The main difference between the optimization criteria in 2.1.1 and that in 2.1.2 
results from the definition of the expected correct tagging rate; the HMM-TS model 
maximizes the correctly tagged sentences, while the HMM-T model maximizes the 
correctly tagged words. 
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2.1.3 Stochastic hypothesis for the unknown words. When a new text is processed, 
some words are unknown to the tagger lexicon (i.e. they are not included in the training 
text). In this case, in order to use the forward-backward and the Viterbi algorithm we 
must estimate the unknown word's conditional probabilities P(w I t). Methods for the 
estimation of these probabilities have already been proposed (e.g. the use of word 
endings morphology). Nevertheless, these methods fail if only a small training text is 
available because of the huge number of events not occurring in this text, such as pairs 
of tags and word endings. To address the above problem we have approximated the 
conditional probabilities of the unknown word tags by the conditional probabilities of 
the less probable word tags, i.e. tags of the words occurring only once. In the following 
we demonstrate experimentally that this approximation is valid and independent of 
the training text size. 

Figures 1 and 2 show the probability distributions of the tags in the training text 
(known words) and that of the words occurring only once in this text for the English 
and French language, respectively. Furthermore, the tags' probability distribution of 
the words that are not included in the training text and are characterized as unknown 
words is shown. This distribution is measured in a different open testing text, i.e. 
a text that may include both known and unknown words. The measurements were 
carried out on newspaper text and split into two parts of the same size--the training 
and the open testing text. Each part contained 90,000 words for the English text and 
50,000 words for the French text. In this experiment, a tagset comprising the main 
grammatical categories was used: Verb (Vet), Noun (Nou), Adjective (Adj), Adverb 
(Adv), Pronoun (Pro), Preposition (Pre), Article/Determiner (A-D), Conjunction (Con), 
Particle (Par), Interjection (Int), Miscellaneous (Mis; i.e., tags that cannot be classified 
in the previous categories). 

This experiment has two significant results: 

a .  The probability distribution of the tags of unknown words is significantly different 
from the distribution for known words, while it is very close to the probability 
distribution of the tags of the less probable known words both in the English 
and French text. 

b. A number of closed and functional grammatical classes has very low probability 
for both unknown and words occurring only once, e.g., the tags article, 
determiner, conjunction, pronoun, miscellaneous in English text, and 
article, determiner, conjunction, pronoun, interjection and miscellaneous 
in French text. 

In the English text, verbs, adjectives and conjunctions are more frequent than in 
the French text. On the other hand, prepositions in the French text have a 0.05 greater 
probability, which is also the most significant difference between the distributions of 
the two languages. Prepositions in the words occurring only once and in unknown 
words are minimal in the English text, while in the French text one out of ten unknown 
words is a preposition. The text coverage by prepositions is 11.2 percent for the English 
and 16.2 percent for the French corpus. This difference increases significantly in the 
lexicon coverage: 0.47 percent for the English and 1.54 percent for the French lexicon. 

In Figures 3 and 4, the results of chi-square tests that measure the difference 
between the probability distribution of the tags of the less probable words and that 
of the unknown words are shown. Various sizes of training text and two sets of 
grammatical categories, the main set (11 classes) and an extended set (described in 
detail in Section 5) were used. 
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Figure 1 
Distribution of the main grammatical classes of the known and unknown words and the 
words occurring only once in English text. 
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Figure 2 
Distribution of the main grammatical classes of the known and unknown words and the 
words occurring only once in French text. 
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Specifically, the grammatically labeled text of 180,000 word entries of the English 
language was separated into two parts: the training text, where the tag probabilities 
distribution of the less probable words was estimated, and the open testing text, where 
the tag probabilities distribution of the unknown words was measured. Multiple chi- 
square experiments were carried out by transferring successively a portion of 30,000 
words from the open testing text to the training text and by modifying the word 
occurrence threshold from 1 to 15 in order to determine the experimentally optimal 
threshold. Words having an occurrence below or equal to this threshold in the training 
text are counted as less probable words. The results of the tests shown in Figures 3 and 
4 include threshold values up to 15 because the difference between the distributions 
for values greater than 15 increases significantly. 

As shown in the above figures, the close relation between the tested probabil- 
ity distributions is evident for all sizes of training and testing text. Furthermore, we 
observe that: 

a .  

b. 

C. 

d. 

e .  

The chi-square distance between the tag probability distributions is 
minimized for low values of the word occurrence threshold. In the tagset 
of main grammatical classes, this distance is minimized for threshold 
values less than three, four, or five, depending on the training text size. 
In the extended set of grammatical classes the distance is minimized in 
all cases for the threshold value one; i.e., when only the words occurring 
once in the training text are regarded as less probable words. 

In the English text the chi-square distance between the tag. probability 
distributions is minimized for 120,000 words training text for the set of 
main grammatical classes and for 60,000 words for the extended set. The 
same results are measured in the French text. 

There is no significant variation in the chi-square test results for 
additional training text. 

The closed and functional grammatical classes can be estimated 
automatically as the less probable grammatical classes of the less 
probable words in the tagged text. (The manual definition process is 
time-consuming when a set of detailed grammatical classes is used). 

The probability distribution of some grammatical classes of the unknown 
words changes significantly when the size of the training text is 
increased. These changes can be measured in the training text from the 
tags' distribution of the less probable words. 

Similar results have been achieved by testing the Dutch, German, Greek, Italian, 
and Spanish texts, both with the tagset of the main grammatical categories and with 
the common extended set of grammatical categories. 

Based on the above we can complete both optimization criteria of the HMM for- 
mulation, given in 2.1.1 and 2.1.2, by calculating the conditional probability of the 
unknown word tags using Bayes' rule: 

P(Unknown word [ ti) = 
P(t i[  Unknown word)P(Unknown word) 

P(ti) 

P(ti ] Less probable word)P(Unknown word) (5) 
- -  P(ti) 
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Figure 3 
Chi-square test for the main grammatical classes' distribution of the unknown and the less 
probable words in the English text for various training text sizes. 
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Figure 4 
Chi-square test for the distribution of the grammatical tags of the unknown words and the 
less probable words in the English text, for the extended tagset of grammatical classes and 
various training text sizes. 
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The probability P(Unknown word) is approximated in open testing texts by mea- 
suring the unknown word frequency. Therefore the model parameters are adapted each time 
an open testing text is being tagged. The probability P(t I Less probable word) and the 
tags probability P(t) are measured in the training text. Finally, each tag-conditional 
probability of the unknown word tags is normalized: 

L 

~_, P(wj [ ti) + P(Unknown word I ti) = 1, 
j = l  

Vi = 1, T (6) 

where L is the number of the known words and T is the number of tags. 

2.2 Tagging without Lexical Probabilities 
When the corresponding lexical probabilities p(w I t) are not available in the dictionary 
that specifies the possible tags for each word, a simple tagger can be implemented by 
assuming that each word wi in a sentence is uncorrelated with the assigned tag ti; e.g., 
p(wi l ti) = p(wi). 

In this case the most probable tag sequence, according to equation 2, is given by: 

N M 

T~MLM) = argmaxP(h)1-IP(t i  [ t i - b . . . , h )  1-I P(ti [ t i -1 , . . . , t i -N)  
tl,...,tM i=2 i = N + I  

(7) 

which is a Nth-order Markovian chain for the language model (MLM). 
Taggers based on MLM require the training process to store each tag assigned to 

every lexicon entry and to define the unknown word tagset. 

2.2.1 Stochastic hypothesis for the unknown words. The unknown word tagset is 
defined by the selection of the most probable tags that have been assigned to the less 
probable words of the training text. In this way the unknown words' ambiguity is 
decreased significantly. The word occurrence threshold used to define the less prob- 
able words and a tag probability threshold used to isolate the less probable tags are 
estimated experimentally. 

Extensive experiments have shown insignificant differences in the tagging error 
rate when alternative word occurrence thresholds have been tested. The best results 
are obtained when values less than 10 are used. In this paper the word occurrence 
threshold has been set to one in all experiments. 

3. Tagger Errors 

3.1 Errors in the Training Text 
Taggers based on the HMM technique compensate for some serious training problems 
inherent in the MLM approach. The most important one is the presence of errors in 
the training text. This situation appears when uncorrected tags or analysts' mistakes 
remain in the text used to estimate the stochastic model parameters. These errors 
generate tag assignments that are not valid. In MLM taggers these tags are equally 
weighted to the correct ones. In contrast, in HMM taggers invalid assignments are 
biased by the very low value of the corresponding conditional probability of the tags 
(the wrong tag rarely appears in the specific word environment), which decreases the 
overall probability for incorrect tag assignments. 
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Another important issue concerns the HMM ability to handle lexicon information, 
e.g., to find how frequently the tags have been assigned to each lexicon entry. In some 
languages, taggers based on HMMs almost reduce the prediction error to the half 
compared to the MLM approach. 

3.2 Tagger prediction errors 
Generally, tagger errors can be classified into three categories: 

a .  

b. 

C. 

Errors due to inadequate training data. When the model parameters are 
estimated from a limited amount of training data, tagging errors appear 
because of unknown or inaccurately estimated conditional probabilities. 
Various interpolation techniques have been proposed for the estimation 
of the model parameters for unseen events or to smooth the model 
parameters (Church and Gale 1991; Essen and Steinbiss 1992; Jardino 
and Adda 1993; Katz 1987; McInnes 1992). 

Errors due to the syntactical or grammatical style of the testing text. This type of 
error appears when the testing text has a style unknown to the model 
(i.e., a style used in the open testing text, not included in the training 
text). It can be reduced by using multiple models that have been 
previously trained in different text styles. 

Errors due to insufficient model hypotheses. In this case the model hypotheses 
are not satisfied; e.g., there are strong intra-tag relations in distances 
greater than the model order, idiomatic expressions, language dependent 
exceptions, etc. A general solution to the variable length and depth of 
dependency for HMM has been already proposed (Tao 1992), but has not 
been implemented in taggers. 

4. Implementation 

In this section we present techniques to speed up the tagging process and avoid un- 
derflow or overflow phenomena during the estimation of the optimum solution. These 
techniques do not increase the prediction error rate or have only minimal influence 
on it, as proven in the experiments. 

Two modules consume the majority of the tagger computational time. The first 
module extracts from the model parameters the intra-tag and the word-tag conditional 
probabilities requested by the second module, which computes the optimum solution 
by multiplying the corresponding conditional probabilities. Binary search maximizes 
the searching speed of the first module, while the following three transformation 
techniques decrease the computing time of the second module, avoid underflow or 
overflow phenomena, and use the faster and low-cost fixed-point arithmetic system. 

4.1 Logarithmic Transformation 
The stochastic solutions described by equations 2 and 7 are computed by multiplying 
several conditional probabilities. The floating-point multiplications of these probabili- 
ties are transformed into an equal number of floating-point additions, by computing 
the logarithm of the optimum criterion probability. This technique solves the under- 
flow problem which arises when many small probabilities are multiplied, and accel- 
erates the tagger response time. 
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4.2 Fixed-Point Transformation 
The fixed-point transformation converts the floating-point logarithmic additions into 
an equal number of fixed-point additions. It is realized by the following quantization 
process: 

[ / m a x  (ln(Pmin)-ln(Px))] (8) Ix ---- Round Mw ln(Pmin) 

where: Px is a conditional probability, P m i n  is the minimum conditional probability in 
the model parameter set,/max is the maximum integer of the fixed-point arithmetic 
system, Mw is the maximum number of words in a sentence and Round[.] is a quan- 
tization function mapping real numbers into the nearest integer. 

After the logarithmic and the fixed-point transformation, equations 2 and 7 be- 
come: 

N 

I (HMM-Ts) -- argmaxI(tl) + ~_,I( t i l t i_l , . . . ,h)  
tl,...,tM i=2 

M M 

+ ~_, I(ti ] t i-1,. . . , t i-N) + ~ I ( w i  I ti) (9) 
i = N + l  i=1 

N M 

I~ MLM) = argmaxI(tl) + ~__I(ti I ti_, . . . .  ,tl) + ~ I(ti I ti_,,...,ti-N) (10) 
tl ..... tM i=2 i = N + I  

The quantization function approximates the computations, producing theoretically dif- 
fering solutions. In practice the prediction error differences measured for all languages, 
taggers, and tagsets were less than 0.02 percent. 

4.3 Scaling 
The solution obtained by the forward-backward algorithm cannot be logarithmically 
transformed because of the presence of summations. It is well known that for HMMs 
the forward and backward probabilities tend exponentially to zero. The scaling process 
introduced in this case multiplies the forward and backward probabilities by a scaling 
factor at selective word events in order to keep the computations within the floating- 
point dynamic range of the computer (Rabiner 1989). 

4.4 Hardware--Software 
The taggers have been realized under MS-DOS using a 32-bit C compiler. The lexicon 
size is limited by the available RAM. A mean value of 35 bytes per word is allocated. 
The tagger speed exceeds the rate of 500 word/sec  in a 80386 (33MHz) for all languages 
and tagsets in text with known words. A maximum memory requirement of 930Kb 
has been measured in the experiments described in this paper. 

A set of symbols and keywords (a sentence separators set) and the maximum 
length of a sentence are the only manually defined parameters when the HMM taggers 
are applied. 

In the MLM taggers, the word occurrence threshold that isolates the less probable 
words and the tag probability threshold used to reject the less probable tags from the 
unknown words tagset are the manually defined parameters. 

The training process has been designed to estimate or update the model param- 
eters from fully tagged text without any manual intervention. Therefore, frequency 
measurements are defined or updated as model parameters instead of conditional 
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Table 1 
Size of the corpora. 

Text Dutch English French German Greek Italian Spanish 

Newspaper 110,000 180,000 100,000 100,000 120,000 160,000 60,000 
EEC-Law --  110,000 . . . . .  

Table 2 
ESPRIT 291/860: Project partners. 

Country Partner 

England 
France 
Germany 

Greece 

Italy 
Italy 
Netherlands 
Spain 

Acorn Computers Limited 
Centre National de la Recherche Scientifique (CNRS), LIMSI Division 
Ruhr - Universitaet Bochum, Lehrstuhl fur Allgemeine Elektrotechnik 
und Akustik 
University of Patras, Wire Communications Laboratory (WCL), Speech and 
Language Group 
Ing. C. Olivetti & C., S.p.A. 
Centro Studi Applicazioni in Tecnologie Avanzate - CSATA 
Katholieke Universiteit Nijmegen, Dienst A-Faculteiten 
Universidad National de Educacion a Distancia (UNED), Madrid 

probabilities that are computed afterwards by using the corresponding relative fre- 
quencies. 

5. Performance of the Systems 

5.1 Taggers 
Five taggers have been realized and tested using bi-POS and tri-POS transition prob- 
abilities. Specifically, the first- and the second-order MLM (MLM1 and MLM2, re- 
spectively), the first- and the second-order HMM of the most probable tag sequence 
criterion (HMM-TS1 and HMM-TS2, respectively), and the first-order HMM of the 
most probable tag criterion (HMM-T1) have been realized. 

5.2 Corpora 
The tagger performance has been measured in extensive experiments carried out on 
corpora of seven languages, English, Dutch, German, French, Greek, Italian and Span- 
ish, annotated according to detailed grammatical categories. In Table 1, the type and 
the size of these corpora is shown. They are part of corpora selected in the framework 
of the ESPRIT-I project 291/860: "Linguistic Analysis of the European Languages" 
(1985-1989) by the project partners (Table 2) and annotated by using semi-automatic 
taggers. Manual correction was performed by experienced, native analysts for each 
language separately. In all languages the entries were tagged as they appeared in the 
text. In the German corpus, for example, where multiple words are concatenated, the 
words were not separated. 

5.3 Tagsets 
Two sets of grammatical tags were isolated from a unified set of grammatical categories 
defined in the ESPRIT I project 291/860 (ESPRIT-860, Internal report, 1986): 
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Table 3 
Extended set of grammatical categories. 

Main grammatical categories Detailed grammatical information 

Adjective, Noun, Pronoun 

Adverb 
Article, Determiner, Preposition 
Verb 

Regular base comparative superlative interrogative person 
number case 
Regular base comparative superlative interrogative 
Person number case 
Tense voice mood person number case 

Table 4 
Number of grammatical tags. 

Text Dutch English French German Greek Italian Spanish 

Main set 9 News: 10, Law: 10 10 11 11 10 10 
Extended set 50 News: 43, Low: 36 14 116 443 121 121 

Table 5 
Word ambiguity in the newspaper corpus. 

Tagset English Dutch German French Greek Italian Spanish 

Main set 1.336 1.111 1.3 1.69 1.209 1.62 1.197 
Extended set 1.417 1.291 1.878 1.705 1.855 1.729 1.25 

a. 

b. 

A common tagset of 11 main grammatical categories for each language, 
as described in 2.1.3. 

An extended set including common categorization of the grammatical 
information for all languages, as shown in Table 3. In some languages a 
number of grammatical categories is not applicable. The depth of 
grammatical analysis and the grammatical structure of each language 
produce a different number of POS tags. In Table 4 the number of POS 
tags used for each language and each set of grammatical categories is 
shown. 

5.4 Corpus Ambiguity 
The corpus ambiguity was measured by the mean number of possible tags for each 
word of the corpus for both sets of grammatical tags (Table 5). The most ambiguous 
texts are the French, Italian, and English in the tagset of main grammatical classes and 
the German, Greek, Italian, and French in the extended set of grammatical categories. 

In Figure 5 the percent occurrence of unknown words in an open testing text of 
10,000 words is shown versus the size of the training text. 

The Italian and Greek corpora have the greatest number of unknown words fol- 
lowed by the Spanish corpus (for the available results with restricted training text). 

Taking into account the word ambiguity in the training text (Table 5), the occur- 
rence of unknown words in the open testing text (Figure 5), and the hypothesis that 
the unknown word tagset and the application tagset are the same, the ambiguity of 
the open testing corpus for both sets of grammatical categories was computed for a 
50,000-word training corpus (Table 6). 
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Figure 5 
Percentage of unknown words in open testing text of 10,000 words for various sizes of the 
training text. 

Table 6 
Corpus ambiguity in newspaper open testing text. 

Tagset English Dutch German French Greek Italian Spanish 

Main set 8.75 7.83 9.9 9.19 9.32 8.5 8.5 
Extended set 37.03 42.78 103.07 12.8 367.25 99.86 100.69 

For the set of main grammatical classes the ambiguity of the open testing corpus 
is more or less the same for all languages, varying from a minimum of 7.83 tags per 
word in the Dutch text to a maximum of 9.32 in the Greek corpus. For the extended 
set of grammatical categories three types of corpora can be distinguished: 

a. The most ambiguous is the corpus of the Greek language, because of the 
great number of grammatical tags (443) and the strong presence of 
unknown words in the open testing text. 

b. In the German, Spanish, and Italian texts the same ambiguity is 
measured. 

c. The least ambiguous are the Dutch and French texts. 

Taking into account the previous results, it is important to note that the great dif- 
ferences between languages in text ambiguity, in the presence of unknown words and 
in the statistics of the grammatical categories, e.g. the different occurrence of preposi- 
tions in English and French corpora, prevent a direct comparison of languages from 
the taggers' error rate. Apart from a few obvious observations given in Section 5.7, 
such a comparison would require a detailed examination of the corpora and the tag- 
gers' errors by experienced linguists. Therefore, the prediction error rates presented in 
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Table 7 
Lexicon size for 100,000-word training text. 

Language Dutch English French German Greek Italian 

Lexicon size 13,700 12,200 13,500 8,900 17,400 15,300 

this paper should be regarded only as indication of the probabilistic taggers' efficiency 
in each separate language when small training texts are available. 

5.5 Experiments 
The corpora were divided into 10,000-word entries. All parts except the last one were 
used to create (initially) and update the model parameters successively. The last part 
was tagged each time after the model parameters were updated, giving results of the 
tagger performance on open testing text. The influence of the application tagset on the 
tagger performance was measured by testing the two totally different tagsets described 
in Section 5.3. 

The experimental process was repeated for each language, tagset and tagger. 
Thus a total number of 2 (tagsets) • 5 (taggers) ~ [7 (languages) + 1 (Test on English 
EEC-law text)] = 80 experiments was carried out. 

5.6 Tagger Speed and Memory Requirements 
In Figures 6 and 7 the tagger speed and the memory requirements after the last mem- 
ory adaptation process are presented for all taggers and languages, and for the ex- 
tended tagset. 

The Greek and Italian corpora have a great number of lexical entries (different 
word forms) for the same amount of 100,000-word training text, as shown in Table 7. 
As a result these taggers require more memory (Figure 7). In contrast, the small size 
of the German lexicon decreases the required memory. 

Tagger speed is closely related to the corpus ambiguity (Table 6). The ambiguity 
of the Greek corpus is more than three times greater than the next one, the German 
corpus. 

The significant influence of the training text size on tagger speed is proven by 
comparing the experimental results in the English corpus (newspaper and EEC-Law). 
When the taggers are trained using the 170,000 words of the English newspaper corpus, 
a greater number of lexicon entries and a greater number of transition probabilities 
(Figure 7) is measured than in the case of the EEC-law corpus (100K words training 
text). The model becomes more complex, but tagger speed is slightly higher because of 
the greater size of the training text, which reduces the presence of unknown words in 
the testing text. Generally, tagger speed increases when the training text is increased. 

5.7 Tagger Error Rate 
The actual tagger error rates for all experiments are given in Appendices A and B. In 
this section we present a discussion of these error rates. 

The error rate depends strongly on the test text and language, and the type and 
size of the tagset. The worst results have been obtained for the Greek language because 
of its significantly greater ambiguity, the number of tags (requiring significantly greater 
training text), and its freer syntax. 

In the main category of tagset experiments, the model parameters for the MLM 
systems are estimated accurately when the training text exceeds 50,000-90,000 words, 
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Figure 8 
Unknown word error rate for the HMM-TS2 tagger and the set of main grammatical 
categories. 

in contrast to the extended tagset experiments, where a greater-size training text for 
the German, Greek, and Spanish languages is required. This phenomenon becomes 
stronger in taggers based on the HMM where the accuracy of the P(w J t) estimation is 
proportional to the word and the tag frequency of occurrence in the training text. Thus, 
for all tagsets and languages a larger training text is required in order to minimize the 
error rate. 

The taggers based on the HMM reduce the prediction error almost to half in 
comparison to the same order taggers based on MLM. Strong dependencies on the 
language and the estimation accuracy of the model parameters influence this reduction. 
The alternative HMM solutions give trivial performance differences, confirming recent 
results obtained in the Treebank corpus by using an HMM tagger (Merialdo 1991). 

Concerning the performance of the taggers in unknown words, we present in Fig- 
ure 8 as an example the HMM-TS2 error rate for the tagset of the main grammatical 
categories, which is also the worst case for this set of grammatical categories. Gener- 
ally the error rate decreases when the training text is increased. The stochastic model 
is successful for only half of the unknown words for the Italian text and for approx- 
imately two out of three unknown words for the English text. In all other languages 
the HMM-TS2 tagger gives the correct solution for three out of four unknown words. 

Similar results are achieved when the extended set of grammatical categories is 
tested. In this case the unknown word error rate increases about 10-20 percent for 
all the languages except the Greek language. In the Greek text the error rate reaches 
approximately 65 percent when 100,000-word text is used to define the parameters of 
the HMM. 

The unknown words, which initially cover about 25-35 percent of the text, are 
reduced to 8-15 percent when all the available text is used as training data. In the ma- 
jority of the experiments, the tagger error rate decreases when new text updates the 
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model parameters. Trivial differences of the tagger learning rates between languages 
and tagsets show the efficiency of the training method in estimating the model transi- 
tion probabilities for the tested languages and the validity of the stochastic hypothesis 
for the unknown words. 

6. Conc lus ion  

In this paper five automatic, stochastic taggers that are able to tag unknown words 
have been presented. The taggers have been tested in newspaper corpora of seven 
European languages and an EEC-law text of the English language using two sets of 
grammatical categories. When new training text updates the model parameters, the 
tagging error rate changes as expected: in text with unknown words a lower error rate 
is measured, proving the efficiency of the relative frequencies learning method and 
the validity of the hypothesis for the unknown words' stochastic behavior. 
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Appendix A: Tests in the Main Grammatical Categories Set 
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Appendix B: Tests in the Extended Grammatical Categories Set 
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