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In this paper we present a scheme to extend a recognition algorithm for Context-Free Gram- 
mars (CFG) that can be used to derive polynomial-time recognition algorithms for a set of for- 
malisms that generate a superset of languages generated by CFG. We describe the scheme by 
developing a Cocke-Kasami-Younger (CKY)-like pure bottom-up recognition algorithm for Lin- 
ear Indexed Grammars and show how it can be adapted to give algorithms for Tree Adjoining 
Grammars and Combinatory Categorial Grammars. This is the only polynomial-time recognition 
algorithm for Combinatory Categorial Grammars that we are aware of. 

The main contribution of this paper is the general scheme we propose for parsing a variety of 
formalisms whose derivation process is controlled by an explicit or implicit stack. The ideas pre- 
sented here can be suitably modified for other parsing styles or used in the generalized framework 
set out by Lang (1990). 

1. I n t r o d u c t i o n  

This paper presents a scheme to extend known recognition algorithms for Context-Free 
Grammars (CFG) in order to obtain recognition algorithms for a class of grammatical 
formalisms that generate a strict superset of the set of languages generated by CFG. 
In particular, we use this scheme to give recognition algorithms for Linear Indexed 
Grammars (LIG), Tree Adjoining Grammars (TAG), and a version of Combinatory 
Categorial Grammars (CCG). These formalisms belong to the class of mildly context- 
sensitive grammar formalisms identified by Joshi (1985) on the basis of some properties 
of their generative capacity. The parsing strategy that we propose can be applied to 
the formalisms listed as well as others that have similar characteristics (as outlined 
below) in their derivational process. Some of the main ideas underlying our scheme 
have been influenced by the observations that can be made about the constructions 
used in the proofs of the equivalence of these formalisms and Head Grammars (HG) 
(Vijay-Shanker 1987; Weir 1988; Vijay-Shanker and Weir 1993). 

There are similarities between the TAG and HG derivation processes and that of 
Context-Free Grammars (CFG). This is reflected in common features of the parsing 
algorithms for HG (Pollard 1984) and TAG (Vijay-Shanker and Joshi 1985) and the 
CKY algorithm for CFG (Kasami 1965; Younger 1967). In particular, what can happen 
at each step in a derivation can depend only on which of a finite set of "states" the 
derivation is in (for CFG these states can be considered to be the nonterminal symbols). 
This property, which we refer to as the context-freeness property, is important because 
it allows one to keep only a limited amount of context during the recognition process, 
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which results in polynomia l  t ime algorithms. In the recognit ion algori thms ment ioned  
above  for CFG, HG, and TAG this is reflected in the fact that  the recognizer  can encode 
intermediate  stages of the der ivat ion with a bounded  n u m b e r  of states. An ar ray  is 
used whose  entries are associated with  a given componen t  of the input. In the case of 
the CKY algori thm, the presence of a part icular  nontermina l  in an ar ray  entry  is used 
to encode the fact that the nonterminal  derives the associated substr ing of the input.  
The context-freeness of CFG has the consequence that there is no need to encode the 
way, or ways,  in which a nonterminal  came to be placed in an array entry. 

In this respect, the der ivat ion processes of CCG and LIG wou ld  appear to differ 
f rom that of CFG. In these sys tems u n b o u n d e d  stacklike structures replace the role 
p layed  by  nonterminals  in controlling der ivat ion choices. This wou ld  seem to suggest  
that the context-freeness p roper ty  of CFG, HG, and  TAG derivat ions no longer holds. 
U n b o u n d e d  stacks can encode an u n b o u n d e d  n u m b e r  of earlier der ivat ion choices. In 
fact, while the pa th  sets 1 of CFG, HG, and  TAG der ivat ion trees are regular  languages,  
the pa th  sets of CCG and LIG are context-free languages.  With respect  to recognit ion 
algori thms,  this suggests  that  the ar ray  (whose entries contain nonterminals  in the 
case of CFG) would  need to contain complete  encodings of u n b o u n d e d  stacks giving 
an exponential  t ime algori thm. 

However ,  in LIG and CCG, the use of stacks to control der ivat ions is l imited in 
that  different branches  of a der ivat ion cannot  share stacks. Thus, despi te  the above  
observat ions,  the context-freeness p roper ty  does in fact hold. A detai led explanat ion 
of w h y  this is so will be presented below. We propose  a me thod  to extend the CKY 
algor i thm to handle  the l imited use of stacks found  in CCG and LIG. We have  chosen to 
adap t  the CKY algor i thm since it is the s implest  fo rm of bo t tom-up  parsing.  A similar 
approach  using Earley a lgor i thm is also possible, a l though not considered here. Since 
the use of the stacks is mos t  explicit in the LIG formal i sm we describe our  approach  in 
detail  by  deve lop ing  a recognit ion a lgor i thm for LIG (Sections 2 and  3). We then show 
h o w  the general  approach  suggested in the parser  for LIG can be tailored to CCG (in 
Section 4). In the above discussion TAG has been  g rouped  with  HG. However ,  TAG 
can also be v iewed  as mak ing  use of stacks in the same w a y  as LIG and CCG. In 
Section 5 we  show h o w  the LIG algor i thm presented in Section 3 can be adap ted  for 
TAG. 

2. Linear Indexed  Grammars  

An Indexed G r a m m a r  (Aho 1968) can be v iewed  as a CFG in which  objects are nonter-  
minals  with an associated stack of symbols .  In addi t ion to rewri t ing nonterminals ,  the 
rules of the g r a m m a r  can have  the effect of push ing  or p o p p i n g  symbols  on top of the 
stacks that are associated with each nonterminal .  Gazdar  (1988) discussed a restricted 
fo rm of Indexed G r a m m a r s  in which the stack associated with  the nontermina l  on the 
left of each product ion  can only be associated with  one of the occurrences of non-  
terminals  on the right of the product ion.  Stacks of b o u n d e d  size are associated with  
other occurrences of nonterminals  on the right of the product ion.  We call this Linear 
Indexed G r a m m a r s  (LIG). 2 

1 The path set of a tree is the set of strings labeling paths from the root to the frontier of the tree. The 
path set of a tree set is the union of path sets of trees in the set. 

2 The name Linear Indexed Grammars is used by Duske and Parchmann (1984) to refer to a different 
restriction on Indexed Grammars in which production was restricted to have only a single nonterminal 
on their right-hand side. 
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Definition 2.1 
A LIG, G, is denoted by (VN, VT, VI, S, P) where 

VN is a finite set of nonterminals, 
VT is a finite set of terminals, 
VI is a finite set of indices (stack symbols), 
S c VN is the start symbol, and 
P is a finite set of productions. 

We adopt  the convention that (~, fl (with or without  subscripts and primes) de- 
note members of V~, and ~ denotes a stack symbol. As usual, A, B, C will denote 
nonterminals, a, b, c will denote terminals, and u, v, w will denote members of V~. 

Definition 2.2 
A pair consisting of a nonterminal,  say A, and a string of stack symbols, say (~, will 
be called an object of the grammar and will be written as A (c~). Given a grammar, G, 
we define the set of objects Vc(G) = { A ((~) I A C VN, (~ E V~ }. 

We use T to denote strings in (Vc(G) U VT)*. We write A(-.~) to denote the non- 
terminal A associated with an arbitrary stack (~ with the string on top. Also, we use 
A () to denote that an empty stack is associated with A. The general form of a pro- 
duction in a LIG is: 
a (.. (~) --+ W l a l  (oL1)w2... ai-1  (oq-1) wiai  (.. oq) Wi+lai+ 1 (oq+ 1)...  A n (o@) Wn+ 1 for n > 
0 and wl . . . ,  W,+l are members of V~-. 

Definition 2.3 
The derivation relation, ~ ,  is defined below. If the above production is used then for 
any fl ~ V{, T1, T2 E (Vc(G) U Wv) *: 

T1A (rico T2 ~ TlWlA1 (o~1)W2... Ai-1 (oq-1) wiAi (tic, i)Wi+lAi+l (Oq+l) 
• .. An (oln) wn+IT2. 

We use ~ as the reflexive, transitive closure of ~ .  As a result of the linearity in 
the general form of the rules, we can observe that the stack flc~ associated with the 
object in the left-hand side of the derivation and flc~i associated with one object in 
the right-hand side have the initial part fl in common. In the derivation above, we 
will say that this object a i (flOq) is the distinguished child of A (flo0. Given a deriva- 
tion, the distinguished descendant relation is the reflexive, transitive closure of the 
distinguished child relation. 

The language generated by a LIG, G, L(G) = { w I S( )  ~ w }. 

Example 2.1 
The LIG, G = ({ S, T }, { a, b, c }, { ")/a~ "Yb )~ S~/9) generates ( wcw ] w C {a, b} + } where P 
contains the following productions. 

S ( . . ) - * a S ( . . % )  S(..)--~bS(..q/b) S(..)---~ T(. . )  

T( . .%)-- ,  T( . . )a  T(..',/b)-+ T( . . )b  T ( ) - -*c  

A derivation tree for the string abbcabb is given in Figure 1. 
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Figure 1 
Derivation tree for LIG. 

In this paper  rather than adopt ing the general form of rules as given above, we 
restrict our  attention to grammars  whose  rules have the following form. In fact, this 
can be easily seen to constitute a normal  form for LIG. 

1. A (c0 ~ c where  ~ C VT U {c} and length of c~, len (,9<) >>_ 1. 

2. A (.. "/1 . . .  Q/m) ----> Ap (.. Vp) As (O<s) where  m > 0. 

3. a ('" '71". "Ym) --" As (OLs) ap (.. ~p) where m > 0. 

4. A ("71. . .  7m) "--+ Ap (.. 7p) where m > 0. 

We allow at most  two symbols in the r ight-hand side of product ions because we 
intend to develop CKY-style algorithms. In the above rules we say that AF (.. "yp) is 
the primary constituent and As (c~s) is the secondary constituent. Notice also that 
in a derivation using such a rule, the p r imary  consti tuent yields the dist inguished 
child. (In grammatical  theories that use a stack of subcategorized arguments,  the top 
of the stack in the pr imary  consti tuent determines which secondary consti tuent it can 
combine with.) 

2.1 Terminators 
Let us consider how we may  extend the CKY algori thm for the recognition of LIG. 
Given a fixed grammar  G and an input  al • .. an, the recognition algori thm will complete 

an n x n array P such that an encoding of A (cO is stored in P [i, d] if and only if A (oQ 
ai. . .  ai+d-1. The algori thm will operate  bottom-up.  For example, if G contains the rule 
a ('" ")11... "Ym) ---+ ap  (.. "~p) A s (O~s) and we find an encoding of Ap (O<p'yp) in P Ii, dp] and 
an encoding of As (C~s) in P Ii + dp~ ds] then an encoding of A (C~p'yl... "Ym) will be stored 
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in P Ii, dp + dsl. What encoding scheme should be used? The most  s traightforward 
possibility would  be to store a complete encoding of A (c~p3,~... 3,m) in P [i, dp + ds]. 
However,  in general, if an object A (~) derives a string of length d then the length of 
o~ is  (,.9(d). 3 Hence there can be O(/d) objects that derive a substring of the input  (of 
length d), for some constant k. Hence, the space and time complexi ty of this algori thm 
is exponential  in the worst  case. 4 

The inefficiency of this approach can be seen by drawing an analogy with the 
following algori thm for CFG. Suppose rather than storing sets of nonterminals  in each 
array entry, we store a set of trees containing all derivation subtrees that yield the 
corresponding substring. The problem with this is that the number  of derivation trees is 
exponential  with respect to the length of the string spanned. However ,  there is no need 
to store derivation trees since in considering the combination of subderivation trees 
in the CFG, only the nonterminals at the root of the tree are relevant in determining 
whether  there is a product ion that licenses the combination. 

Likewise because of the last-in first-out behavior  in the manipulat ion of stacks 
in LIG, we will argue that it is not  necessary to store the entire stack. For instance, 
consider the derivation (depicted by the tree shown in Figure 2) f rom the point  of 
view of recording the derivation in a bot tom-up parser (such as CKY). Let a node ~?1 
labeled B (fl3,1 . . .  3,k... 3,m) be a distinguished descendant of a node ~1 labeled A (fl3,1 . . .  3,k) 
as shown in the figure. Viewing the tree bottom-up,  let the node ~], labeled A (fl3,1 • •. 3,k), 
be the first node  above the node ~71, labeled B (fl3,1 •. • 3,k. • • 3,m), where 3,k gets exposed 
as the top of the stack. Because of the last-in first-out behavior, every  distinguished 
descendant  of ~] above 711 will have a label of the form A I (fl3,1 . . .  3,k~) where  len (~) > 1. 
In order  to record the derivation from A (fl3,1 . . .  3,k) it would  be sufficient to store A 
and 3'1 .. • 3,k if we could also access the entry that records the derivation from At (fl3,t). 
In the entry for ~?, using a pointer to the entry for At (fl3,t) would  enable the recovery 
of the stack below the top k symbols, 3,1 • .. "Yk. However ,  this scheme works well only 
when  k _> 2. For instance, when  k = 1, suppose we recorded only A, 3,1, and a pointer  
to entry for At (fl3,t). Suppose that we are looking for the symbol below 3,1, i.e., the 
top of ft. Then it is possible that in a similar way the latter entry could also record 
just At~ 3,t, and a pointer  to some other entry to retrieve ft. This situation can occur 
arbitrarily many  times. 

Consider the derivation depicted in Figure 3. In this derivation we have indi- 
cated the branch containing only the distinguished descendants.  We will assume that 
the node labeled D (f13,, ..-3,k-13,~ . - .  3/~n ,) is the closest distinguished descendant  of 
C (fl3,1..-3,k-13,~) such that every  node between them will have a label of the form 
C'  (fl"Yl-. ,  3,k-13,~ O/) where  len (~') > 1. Therefore, any node between that labeled 

C (fl3,1..-3,k-13,~) and B(fl3,1...3,rn) will have a label of the form C" (fl3,1..-"~k-10/') 
where fen (c~") > 1. N o w  the entries representing derivations from both A(fl3,1. . .  
3,k-13,k) and C (fl3,1... 3,k-13,~) could point  back to the entry for the derivation from 
At (fl3,t), whereas the entry for C' (fl3,1 ...3,k-13,~c~') will point  back to the entry for 
A 

We shall now formalize these notions by defining a terminator.  

3 For instance, consider the grammar in Example 2.1 and the derivation in Figure 1. In general we can 

have derivations of the form T (q'a3"~) ~ cab n. However, if there exists productions of the form 
A (c~) --~ ~ then the length of the stack in objects is not even bounded by the length of strings they 
derive. 

4 The CCG parsing algorithms that have been proposed so far follow this strategy (Pareschi and 
Steedman 1987; Tomita 1988). 
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H 1 

Figure 2 
Recovering the rest of stack-1. 

)m Z 
Figure 3 
Recovering the rest of stack-2. 

v v 

Figure 4 
Definition of a Terminator. 

596 



K. Vijay-Shanker and David J. Weir Parsing Some Constrained Grammar Formalisms 

Definit ion 2.4 
Suppose that we have the derivation tree in Figure 4 that depicts the following deriva- 
tion: 

A (fl3q . . .  %-17) ~ uB (fl'Ya . . .  q/k--lq/k.' '  q/m) W 
uAt  (flq/t) As (O~s) w 
u v w  

or similarly: 

A (flq/1"'- q/k-lq/) uB (flq/1... q/k- lq/ i . . ,  q/m) W 
uAs (Ols) A t  (flq/t) w 
l~ V W 

where  the following conditions hold 

2 < k < m  

The nodes labeled B (flq/1 . . .  q / k - l q / k  . . . q/m) and At (flq/t) are dist inguished 
descendants  of the node labeled A (flq/1 . . .  q/k-lq/) in the respective trees. 

For any distinguished descendent  labeled C (c~') between the nodes 

labeled A (flq/1... ")~k-lq/) and B (flq/1.-. q/k- lq /k ' ' '  q/m), O/ is of the form 
flq/1 • • • q/kC~ where len (c~) > 1. Note that the nodes labeled 
a (flq/1... q/k-lq/) and B (flq/1... q/k-lq/k ' '"  q/m) need not be different. 

The node labeled At (flq/t) is the k-terminator of the node labeled A (flq/1 . . .  q/k-lq/). 

When it is clear from context, rather than saying that a node is a terminator  of 
another  we will assume that terminators have been defined on objects that participate 
in a derivation as well. For instance, in the above derivations, we will say that At (flq/t) 
is the k-terminator of A (fl71 . . .  7k-l"Y). Also when  the derivation is clear from context, 
we will omit the mention of the derivation (or derivation tree). Additionally, we will 
say that a node (object) has a terminator, if it has a k-terminator for some k. 

We will now state some properties of terminators that influence the design of our  
recognition algorithm. 

Definit ion 2.5 
Given a grammar,  G, define MCL(G) (Maximum Change in Length) as: 
MCL(G) = max { m ] A (.. q/1. . . q/m) --* T1Ap ('" ~p) T2 is a product ion of G } 

Henceforth,  we will write MCL since the grammar  in question will always be known 
from context. 

Observation 2.1 
In a derivation tree, if a node (say ~) has a k-terminator (say ~t) then ~t is a dis- 
t inguished descendant  of ~/. If the node ~/is labeled A (flc~) (where len (c~) = k) then 
the node 7/t must  be labeled A t (flq/t) for some At  C VN and q/t ff VI. Furthermore,  
2 < k < MCL. 

Observation 2.2 
In a derivation tree, if a node has a k-terminator then it has a unique terminator.  
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If ~/is the node in question then we are claiming here that not  only does it have a 
unique k-terminator but  also that there does not exist k ~ with k' ~ k such that ~ has a 
kMerminator. To see why  this is the case, let some node ~? have a k-terminator (for some 
k), say ~t. Using Observation 2.1 we can assume that they are labeled A (fl~l . . .  ~k-l"Y) 
and At (flq/t), respectively, where  we have (k -1 )  > 1. From the definition of terminators 
we can assume that the parent  of the terminator, ~/t, is a node (say ~') that has a label of 
the form B (fl3'1 . . .  "/k-l"~k... "Ym). Since (from the definition of terminators) every  node  
between ~ and 7/~ (inclusive) must  have a label of the form C (fl'Yl -. .  ")'k-la ~) where  
len (a ~) >_ 1, it immediately follows that Tit is the closest distinguished descendant  of 
such that the length of the stack in the object labeling ~]t is strictly less than the length 
of the stack in the object labeling ~/. From this, the uniqueness of terminators follows. 

Observation 2.3 
Consider the derivation A (fl"Yl . . .  "Yk-l"~) ~ uAt (fl"Yt) w ~ uvw where  At (fl'~t) is the 

k-terminator of A (fl~/1---'Tk-l"Y). Then for any fl' and v', if At (fl'~'t) ~ v' then we 

have the derivat ion A (fl'~l . . .  "/k-~"/) ~ uAt (fl"Yt) w ~ uv'w where  At (fl"~t) is the 

k-terminator of A (fl"~l . . .  3~k-~'Y). 
This follows from the fact that the derivat ion of uAt (fl"yt) w from A (fl'Yl . . .  "Yk-l"7) 

is independent  of ft. Therefore we can replace At (fl')'t) ~ v by At (fl'"/t) = ~  v'. This 
is a very  impor tant  proper ty  that is crucial for obtaining polynomial- t ime algorithm. 

Note that not all nodes have terminators. For example,  if a node labeled A (a) is the 
parent  of a node labeled a (i.e., corresponding to the use of the product ion A (a) --* a 
where  a is a terminal symbol) then obviously this node  does not have a terminator. 

Definit ion 2.6 
Given a grammar,  G, we define MTL(G) (Maximum Length in, Terminal production) 
a s :  

MTL(G) = max { len (a) ] A (a) --* c is a product ion  of G where  ~ c VT (_J{¢} }. 

As in the case of MCL, we will use MTL rather than MTL(G). 

Observation 2.4 
In the derivation A (a) ~ w if len (a) > MTL then A (a) has a terminator. 

There must  be at least two steps in the above derivat ion since len (a) > MTL. 
However ,  we can assume that the node  (say 7) in quest ion labeled by the object 

1 
A (a) has a distinguished descendant,  say ~/~, with label B (fl) such that B (fl) ~ ¢. 
Therefore, len (fl) <_ MTL and we may  rewrite w as u¢v. Since fen (a) > len (fl) we 
can find the closest dist inguished descendant  of ~/labeled C (a ~) for some C, a ~ such 
that len (a ~) < fen (a). That node is the terminator  of ~] f rom the arguments  made  in 
Observation 2.2. 

The above observations will be used in the following sections to explain the way  
in which we represent derivations in the parsing table. We conclude this section with 
an observation that has a bearing on the steps of the recognition algorithm. 
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Observation 2.5 
Consider the following derivation. 

a (fl'~l""" "/k-l) T I A .  (fl~/l... ')'k-l"Yk) T2 
l~llap (fl71... 7k-17k) U2 
Ul Vl At (fl'/t) v2u2 
Ul Vl WV2U2 

where Ap (fiVe... "Yk-l'Yk) is the distinguished child of A (f17~... ')'k-l) and At (flVt) is the 
k-terminator of Ap (fl71..- 7k-l"Yk). At (fl~t) is the (k - 1)-terminator of A (fl71 .-- ")'k-l) 
if and only if k > 2. If k = 2 then A (fl71) has a terminator if and only if At (fl'Tt) 
does. In fact, in this case, if At (fl'Tt) has a kMerminator then that terminator is also the 
k~-terminator of A (flVt). 

This can be seen by considering the derivation shown in Figure 3 and noting the 
sharing of the terminator of C (fl3'1.-. 7k-17~) and A (fl"/1-.. 7k-l")/k) • 

3. Recognition Algorithms 

As in the CKY algorithm we will use a two-dimensional array, P, such that if A (c~) 
ai.. • ai+d-1 then a representation of this derivation will be recorded with an encoding of 
A ((~) in P [i, d]. Here we assume that the given input is al . . .  an. We start our discussion 
by considering the data structures we use to record such objects and derivations from 
them. 

3.1 Anatomy of an Entry 
We mentioned earlier that the stack in an object can be unboundedly  large. We must  
first find a compact way to store encodings of such objects whose size is not bounded 
by the grammar. In this section we provide some motivation for the encoding scheme 
used in the recognition algorithm by considering the bottom-up application of the rule 
and the encoding of the primary constituent: 

A (.. 'y1. . .'~m) --* Ap ("~/p) As (,~s) 

The Head. An object with nonterminal Ap and top of stack "Tp will match the primary 
category of this rule. Thus, the first requirement is that at least this much of the object 
must  be included in every entry since it is needed to determine if the rule can apply. 
This component  is denoted lap, vp / and  called the head of the entry. Thus, in general, 
an entry in P Ii, d I with the head {A,'~/ encodes derivations of ai...ai+cl-1 from an 
object of the form A (fl'y) for some f l ¢  V 7. 

Terminator-pointer. An encoding of the object Ap (fl'Tp) (the primary constituent) that 
derives the substring a i . . .  ai+dp_ 1 ( o f  the input string al • • .  an) will be stored in the array 
element P {i, dp] in our CKY-style recognition algorithms. Now consider the encoding 
of Ap (fl'yp) for some sufficiently long fl-yp. While the head, lAp, ~p), of the entry is 
sufficient to determine whether the object in question can match the primary category 
of the rule, we will need to store more information in order that we can determine the 
content of the rest of the stack. In the above production, if m = 0 then the combination 
of Ap (fl~/p) and As (~s) results in A (fl). In order to record the derivation from A (fl), 
we need to know the top symbol in the stack fl, i.e., the symbol below the top of 
the stack associated with the primary constituent. We need to recover the identity of 
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this symbol from the encoding of the pr imary  category. This is w h y  we int roduced 
the notion of terminators. As ment ioned in Section 2.1, terminators can be used to 
access information about  the rest of the stack. In the encoding of Ap (fl'yp), we will 
store information that allows us to access the encoding of its terminator. The part  of 
the entry encoding the terminator  will be called terminator pointer. 

The  Middle.  Note that the object Ap (fl,yp) (in the derivation Ap (fl3'p) = ~  a i . . .  a i+dp-1)  
can have a k-terminator where k is be tween 2 and MCL. Therefore, from Observa- 
tion 2.1 it follows that the terminator-pointer  can only be used to determine the ( k + l )  st 
symbol f rom the top. Therefore, assuming that fl = fl"yl • .. "Yk-1, the terminator-pointer  
will allow us to access fl~. (Recall from the definition, a k-terminator of A (fl"yl . . .  "Yk-13'p) 
will have the form At (fl"Yt). Thus the (k + 1) st symbol f rom the top in A (fl-yp) is the 
same as the symbol below the top of the stack of the terminator.) Thus, we will need 
to record the string "yl - ' '  "Yk-1 in the encoding of Ap (fl'q/1 . . .  3'k-1~'p) as well. This part  
of the entry will be called the middle .  

To summarize,  the entry stored in P [i, dp] (where f l"yl . . .  "Yk-l"Yp is assumed to be 
sufficiently long that we know A m (fl '71-..  7k-l"Yp) is guaranteed to have a termina- 
tor) will have a head,  (Ap,-yp); and a tail comprised of a middle ,  "Yl..-'Yk-1; and a 
terminator-pointer. Note that the length of the middle  must  be at least one, but  at 
most  MCL - 1, since from Observation 2.1, we know 2 < k < MCL. We will call an 
entry of this kind a te rminator- type  entry. 

We will now discuss what  we need to store in order  to point  to the termina- 
tor. Suppose we would  like to record in P[i,d] the derivat ion of ai . . .a i+d-1  f rom 
A (fl'Yl... 7k-l"Y) as shown below. We assume that At (fl'yt) is the terminator  in this 
derivation. 

a (fl"/1... 'Yk-l"Y) ai. .. a t_ lAt  (fl')'t) at+dt . . . ai+d-1 
ai • • • a t - l  at • • • a t + d t - l  at q-dt • • • ai+d-1 

~- ai • •. ai+d-1 

From Observation 2.3, it follows that it would  be sufficient to u s e  ((at~ "Ytl~ [t~ dt]) as 
the terminator-pointer.  This is because any entry with the head (At~ ")'tl in P It, dt] will 

represent in general a derivation At (fl"Yt) ~ a t . . .  at+dr-1. This not  only matches the 
above case, but  even if fl' ~ fl, f rom the Observation 2.1, we have 

A (fl '"/1.. .  "Yk-lq/) ~ a i . . .  a t - l A t  (fl'"/t) at+dr.., aiq-d--1 ~ a i . . .  ai+d-1. 

Thus, the use of the head information (plus the two indices) in the terminator-pointer  
captures the essence of Observat ion 2.3. It is this structure-sharing that allows us to 
achieve polynomial  bounds  for space and time. Note  that the string der ived from 
the terminator, at . . .a t+dr- i ,  is a substring of ai . . .a i+d-1.  In such a case, i.e., when  
i G t and i +  t >>_ t + dr, we will say that /t, dt/ <_ { i~dl .  We define {t, dt/ < {i, dl if 
{t, dtl <_ {i, dl and {t, dtl # {i, dl. Since any terminator- type entry in P[i,d] can only 
have terminator-pointers of the form ( { A t ,  "Ytl ~ {t, dtl  ) where  It, dtl <_ {i, dl, the number  
of terminator- type entries in P [i, d] is O(d2). 

Definition 3.1 
Given a grammar,  G, define MSL(G) (Maximum Secondary consti tuent 's  stack Length) 
as MSL(G) = max { len (as) I As (e~s) is the secondary consti tuent of a product ion  } 

Hencefor th  we will use MSL rather than MSL(G). 
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We n o w  consider the question of when  a te rminator - type  entry  is appropr ia te .  Of  

course, if A (~) ~ a i . . .  ai+d-1 we could store such an entry in P Ii, dpl only when  A (c~) 
has a terminator  in this derivation. From Observa t ion  2.4 we k n o w  that if len (c~) > 
MTL then there exists a terminator  of A (~) in this derivation.  However ,  it is possible 
that for some g r a m m a r  MSL > MTL. Therefore even when  len (c~) > MTL (i.e., the 
object has a terminator)  A (~) can still match  the secondary  category of a rule if len (c~) G 
MSL. In order  to verify that an object matches  the secondary  category of a rule we 

need to consider the entire stack in the object. When  A (~) ~ a i . . .  ai+d-1 and length 
of ~ does not  exceed MSL, it would  be convenient  to store A as well  as the entire 
stack c~ because such an object can potential ly match  a secondary  category of a rule. 
To be certain that such an object is stored in its entirety when  len (~) < MSL, the 
terminator- type  entry can only be used  when  len (c~) > max(MSL~ MTL). However ,  
we  prefer  to use the terminator- type  entry for represent ing a der ivat ion f rom A (~) 
only when  its terminator,  say At (fl), is such that len (fl) >_ max(MSL~ MTL) rather  than 
when  len (c~) > max(MSL~ MTL). Again, we  point  out that  this choice is m a d e  only for 
convenience and because we  feel it leads to a s impler  algori thm. The alternate choice 
could also be made,  which would  lead to a slightly different algori thm. 

Definition 3.2 
Define the constant  TTC (Terminal-Type Case) as TTC = m a x ( M S L  MTL). In a deriva-  

tion A (fl71 . . .  7k) ~ W we will say that A (flY1 -. .  Vk) has the TC-proper ty  iff it has a 
k-terminator,  say At (flTt), such that  len (flVt) _> TTC. 

If A (fl31 . . .  3k) ~ ai . . .  ai+d_l, where  A (fl31 .-.  3k) does not  have  the TC-proper ty  then 
we record the object in its entirety in P Ii~ d]. In order  for such an entry to have  the 
same format  as the terminator- type  entry, we say that the entry  has a head  /A~ 3k); a 
tail with a middle  31.- .  7k-1 and a nil terminator-pointer .  Note  that  in this case the 

middle  can be an e m p t y  string; for instance, when  we encode A (V) ~ ai. .  • ai+d-1. In 
general, if c~ = f13 then we say top (~) = 3 and rest (c~) = ft. If o~ = ¢ then we say that  
top (c~) = rest (c~) ~- ~. 

To summar ize ,  the structure of an entry in P Ii, d I is described by  the following 
rules. 

• An entry consists of a head and a tail. 

• A head consists of a nonterminal  and a stack symbol.  

• A tail consists of a middle  and  a terminator-pointer.  The exact nature  of 
the middle  and  the terminator-pointer  are as given below. 

- -  The terminator-pointer  m a y  be of the fo rm (IAt~ 7tl~ [t~dtl) 
where  At E VN~ 3t E W I and It~ dtl <_ li~ d). In this case, the middle  
is a string of stack symbols  of length at least one. This fo rm of a 
terminator  pointer  is used in the encoding of a der ivat ion f rom 
an object if its terminator  has a stack length greater  than or 
equal  to TTC. Recall that we  had  called this type of an entry  a 
terminator-type entry. 
A terminator-pointer  can be a nil. Then the middle  is a (possibly 
empty)  string of stack symbols.  However ,  the length of the 
middle  is less than TTC + MCL - 1. This fo rm of a te rminator  
pointer  is used in the encoding of a der ivat ion f rom an object if 
it does not  satisfy the TC-property;  i.e., either it has no 
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terminator  or if the terminator  exists then its stack length is less 
than TTC. 

3.2 Recognition Algorithms for LIG 
Since the full algori thm involves a number  of cases, we develop it in stages by restrict- 
ing the forms of productions.  The first algori thm that considers the most  restricted 
form of product ions introduces much  of what  lies at the core of our  approach. Next 
we relax these restrictions to some degree. After giving the algori thm at this stage, 
we switch to discuss how this algori thm can be adapted  to yield one for CCG. Later, 
in Section 5, we consider further relaxation of the restrictions on the form of LIG 
productions,  which can help us produce  an algori thm for TAG. 

Regardless of which set of restrictions we consider, in every  algori thm we shall 
establish that the following proposi t ion holds. 

Proposition 3.1 
• ((at  ~k) (')'1.-. "Yk-1, ((at,,,/t), [t, dt]))) E P[i,d] if and only if for some 

fl c v~, 

a (fl~'l... "Yk-l"/k) ~ ai . . .  a t - la  (fl"/t) at+dt-1...ai+d-1 
ai. . .ai+a-1 

where At (fl"/t) is the k-terminator of A (fl"/1 ' ' '  "Yk) and len (fl'Yt) >_ TTC. 

• ((A,'yk) (3'1...Tk-1,nil)) E P[i,d] i f a n d  only if 

a ( ' ) ' 1 . . .  q/k-lq/k) ~ ai...ai+d-1 

where in this derivation A ("/1 . . .  "Yk-l'Yk) does not have the TC-property. 

3.2.1 Algor i thm 1. Recall that the general form of rules that are to be considered are 
as follows. 

1. A (c~) --* c where  e ¢ {e} U VT, and len (c~) > 1. 

2. A(..'y~. . ' rm)~ Ap(..'~p)As(~s) 

3. a(..~l..."ym)----~ as(ozs)ap (.."fp). 

4. a ( " ~ l . . . 3 ' m ) ~ A p ( " 3 ' p ) .  

At this stage we assume that the following restrictions hold of the above rules. 

In the first type of product ion we assume that e c VT and len (c~) > 1. 
Thus MTL > 1. 

len (C~s) _> 1 in product ions of type 2 and type 3, i.e., MSL > 1. 

There are no product ions of type 4. 

We will now give the following rules that specify how entries get added in the 
parsing array. The control structure of the algori thm (a CKY-style dynamic  program- 
ming structure) will be added  later. We assume that the input  given is al . . .  an, where  
n > l .  
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Ini t ia l izat ion Phase 
In the initialization phase of the algori thm we store lexical objects (objects deriving a 
terminal symbol in one step) entirely in a single entry. In other words,  

Rule 1.L 
A (c~) ---~ a a = ai l < i < n  

( {A, top (c~)} (rest (ee), nil)) ¢ P[ i, 1] 

Induct ive  phase  
Here product ions of type 2 and type 3 will be considered. Let us assume the presence 
of the following product ion in the grammar:  A (.. "Yl . . .  " /m)  --+ Ap (.. %) As (o~s). 5 

Suppose that while considering which entries are to be included in P [i, d] we find 
the following for some dp, ds such that dp + ds = d. 

• The entry ((Ap,,ypl ( f lp , tpp) )E  P[i, dp]. This is consistent with the rule 's  

pr imary  constituent. Regardless of whether  tpp = nil or not, for some 

fl E V~: Ap (flflp'yp) ~ ai...ai+dp-1. That is, when  tpp = nil we have 

• The entry ((As, top (o~s)) (rest (c~s), nil)) E P [i + dp, ds]. This is consistent 
with the rule's secondary object. Thus if d = dp + ds we may  assume 

As (Ols) ~ ai+dp . . . ai+d_l. 

From the presence of the two entries specified above (and the derivations they rep- 

resent) we have A (flflp'Yl . . .  7m) ~ Ap (flflp'yp) As (c~s) ~ ai . . .  ai+d-1. This derivation 
must  be recorded with an entry in P [i, d]. The content of the entry depends  on sev- 
eral factors: the value of m; whether  or not the terminator-pointer  in the entry for the 
pr imary  constituent (i.e., tpp) is nil; and the length of the middle  in this entry (i.e., tip). 
These determine whether  or not the new entry will be a terminator- type entry. We 
have cases for m = 0, m = 1 and m _> 2. 

CASE W H E N  m = 0 
The new object to be stored is A (flflp). The top of the stack in this object can be 
obtained from the stack associated with the pr imary  constituent. H o w  this is done 
depends on whether  the entry encoding the pr imary  constituent is of terminator  type 
or not. 

When m = 0 and tpp = nil 
This means that the pr imary  constituent has been represented in its entirety; i.e., the 
pr imary  constituent is Ap (flpTp). Since tpp = nil the pr imary  consti tuent does not satisfy 
the TC-property (i.e., it does not have a terminator with a stack of length greater than 
or equal to TTC), the new constituent too cannot be encoded using a terminator- type 
entry. Therefore, 

Rule 2.ps.L 

(lAp, 3'pl (tip, nil)) ¢ P[i, dp] ((As, top(c~s)) (rest(o~s),nil) ) C P[i +dp, d -dp] 

( IA, t°P (flp) l (rest (flp),nil) ) E P[i,d] 

5 Similar arguments can be used when we consider the production: A (.. 3'1 ... 7m) --* As (C~s) Ap (" 3'p). 
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The following rule is the counterpar t  of Rule2.ps.L 6 that corresponds to the use of the 
product ion A (..) ~ As (C~s) Ap (.. 7p). 

Rule 2.sp.L 

( (As, top(c~s)) (rest(c~s),nil) ) • P[i, ds] ((Ap, Vp ) (tip,nil)) • P[i + d s , d -  ds] 
((A, top (tip)) (rest (tip),nil) ) • P[i,d] 

W h e n  m = 0 a n d  tpp ~ nil 
Let the entry for the pr imary  consti tuent be ((Ap, 7p) (tip, ((At, 7t), It, dr]))). Since the 
pr imary  constituent is Ap (flflpTp) we will assume that its terminator  is At (fl'Yt) where  
len (flVt) > TTC. Note  also that len (flp'yp) > 2. The entry for the new object (A (flflp)) 
is determined based on whether  len (tip) = 1 or len (tip) > 1. In the latter case the 
len (flpVp)-terminator of the pr imary  consti tuent is the len (&)- terminator  of the new 
object. This is not  so in the former  case, as noted in Observat ion 2.5. 

Considering the latter case first, i.e., len (tip) > 1, we may  write tip as 71...'Yk-lVk 
where  k > 2. Since in this case the new object and the pr imary  consti tuent have the 
same terminator  and since the pr imary  consti tuent has the TC-proper ty  (tpp ~ nil), 
the new object must  also be encoded with a terminator- type entry. Thus we have the 
following rule: 

Rule 3.ps.L 

((Ap,~/p)('y1...3%tpp)) •P[i ,  dp] 
tpp = ((At,vt), [t, dt]) ,k >_ 2 ((As, top (c~s)) (rest (c~s), nil)) • P [i + dp, d - dp] 

( (A , "Yk l  ( " Y 1 . . . T k - l , t p p ) )  c P [ i , d  1 

Hencefor th  we shall give the ps versions of the rules only and omit  sp versions. 
Now let us consider the case when  len (tip) = 1. Rewriting tip as 71, the entries 

represent derivation for fl E V~ (len (fl'yl) = len (fl"/t) > TTC). 

a (ti"/1) ~ a p  (ti"/l"/p) A s  (0@) 

ai . . . at- l At (tiTt ) at+a,.., ai+ap- l As (C~s) 

ai . . . a t _  la t  . . . at+d t_  lat+dt • . .  ai+dp_ laiq-d p . . .  a i+d_l  

where  At (ti'Yt) is the 2-terminator of Ap (ti"/l"Yp)- From Observation 2.5 it follows that 
if At(tiVt) has a terminator  then the terminator  of A(ti'yl) in this derivat ion is the 
same as the terminator  of At (fl'Yt); and if At (fl'Yt) has no terminator  then neither does 
A (ti'Yl). Additionally, in this derivation A (ti'yl) satisfies the TC-proper ty  if and only 
if At (ti'Yt) has the TC-property. That is, we should use a terminator- type entry to 
record this derivation from A (ti'Yl) if and only if a terminator- type entry has been 
used for At (tiTt). Since these two objects share the same terminator  (if it exists) the 
terminator-pointer  must  be the same when  we record derivations from them. There- 
fore, suppose we use the terminator-pointer  of ((Ap, ½) (tip, ((At, "Yt), [t, dt]))) to lo- 
cate an entry ((At, "Yt) (tit, tPt)) • P It, dr]. This would  suggest the addit ion of the entry 

6 Here L indicates a rule we use in LIG parsing; ps indicates that the primary constituent appears before 
the secondary constituent. Similarly, sp will be used to indicate that the secondary constituent appears 
before the primary constituent. 
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(IA, "/1)(tit, tpt) ) to P[i,d], regardless of whether or not tPt = nil. However, we give 
the two cases (tpt = nil or tPt = (IAr, %1, [r, dr]) for some At, %, r, dr) in the form of 
two different rules. This is because (as we shall see later) these two rules will have to 
appear in different points of the control-structure of the parsing algorithm. 

Rule 4.ps.L 

((Ap, 7p) (71, ((At, 7t),  [t, dt]) ) ) 
cP[i, dp] 

((As, top (c~s) ) (rest (c~s), nil)) 
¢ P[i+dp,d-dp] 

( (At, Tt) (fit,nil)) 
E P[t, dt] 

( (A, 71) (fit,nil)) E P[i,d] 

Rule 5.ps.L 

( (Ap, vp) (71, ( (At, 7t) , [t, dt] ) ) ) 
¢ P[i,d~,] 

((As, top (c~s) ) (rest (C~s), nil)) 
¢ P[i+dp,d-dp] 

((At, "~/t) (fit, tPt) ) 
 P[t, at] 

tpt = ((Ar,'Yr), Jr, dr]) 
((A, 7"/1) (flt,tpt) ) E P[i,d] 

C A S E  W H E N  m -- 1 

The length of the stack in the new object is equal to that of the primary object. In 
fact, the terminator of the primary object (if it exists) is the same as the terminator of 
the new object, and when the primary object has no terminator neither does the new 
object. Therefore the encoding of the new object can easily be derived from that of the 
primary object by simply modifying the head (to change the top of the stack symbol). 
Thus we have: 

Rule 6.ps.L 

((Ap,'Tp) (tip, nil)) ¢ P[i, dp] ((As, top(c~s)) (rest(c~s),nil)) c P [ i + d p , d - d p ]  
((A,")'I) (tip, nil)) ¢ P[i,d] 

Rule 7.ps.L 

( (Ap, 7p) (tip, ((At, 7t) , [t, dt] ) ) ) ¢ P [i, dp] ( ( A~ , top ( c~s ) ) (rest(as), nil)) E P [ i + dp , d - dp ] 

C A S E  W H E N  m > 2 

If the primary constituent is Ap (titip,,/p) then the new constituent is A (tiflp'Yl... "/m). In 
fact, in this case, we have the primary constituent being the m-terminator of 
A (fltip3'l... "Ym). Of course, this does not mean that the derivation from the new object 
should be recorded with the use of a terminator-type entry. We use the terminator-type 
entry only when len (tip3'p) ~ TTC. In order to determine the length of this stack we 

have to use the entry for the primary constituent (i.e., (IAp,.Tp)(tip, t p p ) l E  PIi, dp]) 
and consider whether this is a terminator-type entry or not (i.e., whether tpp = nil or 
not). 
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W h e n  m _> 2 and tpp ~ nil 
Therefore the length of the stack of the terminator of the primary constituent is greater 
than or equal to TTC. This means that stack length of the primary constituent (the 
terminator of the new object) exceeds TTC. Thus we have the following rule: 

Rule 8.ps.L 

({Ap,'Tp) (tip, tpp) ) ¢ P[i, dp] 
tpp = (Iat,'~t), It, dr]) ({As, top (C~s)) (rest (as), nil)) E P[i +dp, d - dpl 

(/A, ~m) (")/1.-. "/m-l, ( {Ap, "yp) , [i, dp]) ) ) c P[i,d] 

W h e n  m _> 2 and tpp = nil 
The primary constituent (which is the terminator of the new object) should be repre- 
sented in its entirety. Therefore, in order to determine whether we have to encode the 
new object with a terminator-type entry or not, we have to look at the entry for the 
primary constituent. Thus we obtain the following rules: 

Rule 9.ps.L 

len (tip'yp) < TTC 
( IAp, 3,pl (tip, nil)) E P[i, dp] ((As, top (as)) (rest (as), nil)) E P [i + dp, d - dp] 

( {A, ~m) (tipVl . . . Tm-l,nil) ) E P[i,d] 

Rule 10.ps.L 

len (tip-yp) > TTC 
( (Ap, 7p) (tip, nil)) c P[i, dp] ( IAs, top (as)) (rest (~s), nil)) E P [i + dp, d - dp] 

((A, "Ym) ('Yl... "/m-l, (lAp, "/p) , [i, dp] ) ) ) C P[i,d] 

In the discussions that follow, we find it convenient to refer to the entries mentioned in 
the above rules as either antecedent entries (or entries that appear in the antecedent) of 
a rule or consequent entry (or entry that appears in the consequent) of a rule. For ex- 
ample, (lAp, q/pl (tip, nil)) in PIi, dpl and ( IAs,top(e~s)l (rest (c~s),nil) ) in PIi + dp,d - dpl 
are the antecedent entries of Rule 10.ps.L and ( IA, "Yml ('Y'"" "Ym--l~ ( I ap~ "~p I '  [i, dp] ) ) ) 
that is added to P [i, d I is the entry in the consequent of Rule 10.ps.L. 

3.3 T he  Control  Structure 
We will start by giving a simple control structure for the recognition algorithm that 
follows the dynamic programming style used in the CKY algorithm. 
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In this section we modify the notation for entries slightly. In the above discussion, 
the terminator-pointer of a terminator-type entry contains a pair of indices repre- 
senting input positions. Thus, in effect, P is a four-dimensional array. As an alter- 
native to saying that (( A, 3,) (fl, (CA', 3"), [t,d;]))) is in P[i,d] we will sometimes say 
(C A, -y)(fl, (A', 3/))) is in P[i, d] [t, dt]. A l s o  as an alternative to saying (C A, oe)(fl, nil)) 
is in P[i,d] we will sometimes say ((A, c,) (fl, nil)) is in P[i,d][O,O]. Thus P can be 
considered to be an array of size n x n x (n + 1) x (n + 1). 

In the specification of the algorithm (Figure 5) we will not restate all the rules we 
discussed in the previous section. Instead we will only indicate where in the control 
structure each rule fits. As an example, when we state "Use Rule 2.ps.L with dp = d"  
within the i, d, and d' loops we mean the following: for current values of i, d, and d' (and 
hence dp, ds) consider every production of the form A (.. "Yl . . .  7m) --+ Ap (.. 7p) As (as) 
with m = 0. For each such production, look for entries of the form ((Ap, 7p) (tip, nil)) E 
P [i, dp] [0,0] for some tip and ( (As, top (as) ) (rest (as), nil) ) E P [i + dp, d - dp] [0,0]. In the 
event we find such entries, we add ((A, top (tip)) (rest (flp),nil)) to P[i,d] [0,0] if it is 
not already there. 

Since the entries in P[i, d] have the form ( (A, -,/) (fl, (CAt, 3q) , It, dt] ) ) ) (where (t, dt) G 
(i,d)) or the form (CA,')')(fl, nil)), there are O(d 2) many  entries in P[i,d] (where 
1 G i < n and 1 G d G n - d). Thus space complexity of this algorithm is O(nd). 
Note that within the body within the r loop will be at tempted for all possible values 
of i, d, d', t, dt, r, dr. Since the range of each loop is O(n), the time complexity is O(n7). 

The asymptotic complexity of the above algorithm can be improved to O(n 6) with 
a simple rearrangement of the control structure. The key point here is that the steps 
involving the use of rules 5.ps.L and 5.sp.L can be split into two parts each. Consider, 
for example, the use of the Rule 5.ps.L, which is repeated below. 

Rule 5.ps.L 

((Ap,',/p) (~I, ((At, q:t) , [t, dt]) ) ) 
EP[i, dp] 

((A,, top ( o~, ) ) (rest (c~), nil)) 
GP[i+dp,d-dp] 

((At, ")'t) (fit, tpt) ) 

tpt = ((Ar,")'r), [r, dr]) 

((A, q'l) (fit, ((Ar,'Yr), [r, dr]))) E P[i,d] 

This rule corresponds to the use of the production A (..) ~ Ap (.. q/p) As (as). The values 
of i, d, d', t, d t a r e  necessary to determine the span of the substrings derived from the 
primary constituent and the secondary constituent, and the values of i, d, t, dt, r, dr a r e  

needed to locate the entry for the terminator, i.e., (CAt,,) , t)(fi t ,  (CAr,"/r), [r, dr]))) and 
to place the new entry in the appropriate parsing table element. That is, the values of 
r and dr a r e  not required for the first part and the value of d' need not be known for 
the second part. This indicates that the second part need not be done within the loop 
for dq Therefore, we can modify the control structure in the following way. Within 
the t loop (which appears within the loops for d, i, d',dt) we find the entries for the 
primary and secondary constituents. Having found the two relevant entries, we must 
record the head of the new entry (A, tip) and the terminator-pointer of the primary 
constituent, i.e., (CAt, ~t), [t, dt]). We can do this by using a two-dimensional array 
called TEMP where we store CA, q'l, At, 7t). Outside the d' loop (and hence outside the 
loops for t and dt as  well), but within the loops for i and d, we can have the loops 
that vary t, dt, r, dr (note (r, dr) < (t, dr)) in order to locate the entry for the terminator 
by using the information recorded in TEMP. Finally, having found the entry for the 
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Algorithm 1 
begin 

for i:= 2 to n do 
Ini t ial izat ion phase 

Use Rule 1 
for d := 2 to n do % d loop 

f o r i : = l t o n - d + l d o % i l o o p  
begin 

f o r d ' : = l t o d - l d o  % d ' l o o p  
begin 

Use Rule 2.ps.L, 6.ps.L, 9.ps.L, 10.ps.L with dp = d'. 

for dt := (d' - 1) to 1 do % dt loop 
for t := i to (i + d' - dt) do % t' loop 

begin 
Use Rule 3.ps.L, 4.ps.L, 7.ps.L, 8.ps.L with dp = d' 

for dr :-- dt to 1 do 
for r := t to t + dt - dr do 

begin 
Use Rule 5.ps.L with dp = d' 

end 
% end of dr loop 

% end of r loop 
end 

% end of t loop 
% end of dt loop 
f o r  dt : =  ( d  - d '  - 1) to 1 do % dt loop 

for t := (i + d') to (i + d - dr) do % t' loop 
begin 

Use Rule 3.ps.L, 4.ps.L, 7.ps.L, 8.ps.L with ds = d' 

for dr := dt - 1 to 1 do 
for r := t to (t + dt - dr) do 

begin 
Use Rule 5.sp.L with ds = d' 

end 
% end of r loop 

% end of dr loop 
end 

% end of t loop 
% end of dt loop 

end 
% end of d' loop 

end 
% end of i loop 

% end of d loop 

Figure 5 
Algorithm 1. 
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terminator we then store the resulting entry in P [i, d]. These steps are captured by the 
following rules. For a specific value of (i, d) we have 

Rule 5.i.ps.L 

( (Ap, q/p) (71, ( (At, q/t) , It, dr]))) 
C P[i, dp] 

((As, top (C~s)) (rest (C~s), nil)) 
e[ i  + clp, cl - G] 

(A, q/1,At, 7t) E TEMP[t, dt] 

Rule 5.ii.ps.L 

(a~"/l~.,z~t,q/t) E TEMP[t, dt] ((At, q/t) (fit, ((Ar, q/r), [r, dr]))) C P[t, dt] 
((A,q/1) (fit, ((Ar, q/r), [r, dr]))) C P[i,d] 

Similarly, we assume we have the pair Rule 5.i.sp.L and Rule 5.ii.sp.L corresponding 
to Rule 5.sp.L. This leads to the algorithm given in Figure 6. In this algorithm we drop 
the sp rules and specify the ps rules only for the sake of simplicity. 

The correctness of Algorithm 2 can be established from the correctness of Algo- 
rithm 1 (which is established in Appendix A) and the following Lemma. 

Lemma 3.1 
Given a grammar G and an input a l . . .an an entry ((A, q/} (fl, tp)) is added to P[i,d] 
by Algorithm 1 if and only if ((A,q/) (fl, tp)) is added to P[i,d] by Algorithm 2. 

Outline of Proof: Using induction on d. The base case corresponding to d = 1 in- 
volves only the initialization step, which is the same in the two algorithms. The 
only difference between the two algorithms (apart from the control structure) is the 
use of Rule 5.ps.L (and Rule 5.sp.L) by Algorithm 1 versus the use of Rule 5.i.ps.L 
and Rule 5.ii.ps.L (Rule 5.i.sp.L and Rule 5.i.sp.L) in Algorithm 2. Rule 5.ps.L is 
used to add  entries of the form ((A, ~Yl)(fit, ((ar~ q/r)~ Jr, dr]))). We can establish that 
((A, ,`/1) (fit, ((Ar, q/r), [r, dr]))) is added to P [i, d] due to the application of Rule 5.ps.L 
if and only if there exist entries of the form ((Ap, q/p) ('71, ((At, q/t), [t, dt]))) in P[i, dp]; 
((As, top(c~s))(rest(c~s),nil)) in P[i+dp,d-dp];  ((at, q/t)(flt~((ar, q/r)~[Y~dr])) ) in 

P It, dt]; and the production A (..) --* Ap (.. q/p) As (~s). Using induction, we can estab- 
lish that these entries exist if and only if (A, q/1,At~ q/t) is added to TEMP[t, dt] using 
Rule 5.ps.i.L (or Rule 5.sp.i.L) and ((A, q/1) (fit, ((Ar, q/r), Jr, dr]))) is added to P[i,d] 
using Rule 5.ii.ps.L. 

4. Combinatory Categorial Grammars 

Combinatory Categorial Grammars (CCG) (Steedman 1985, 1986) are extensions of 
Classical Categorial Grammars in which both function composition and function ap- 
plication are allowed. In addition, forward and backward slashes are used to place 
conditions concerning the relative ordering of adjacent categories that are to be com- 
bined. 

Definition 4.1 
The set of categories generated from a set, VN, of atomic categories is defined as the 
smallest set such that all members of VN are categories, and if cl, c2 are categories then 
so are (Cl/C2) and (el\e2). 
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Algorithm 2 
begin 

for i:= 1 to n do 
Initialization phase 
Use Rule 1 

f o r d : = 2 t o n d o % d l o o p  
for i := 1 to n -  d + 1 do % i loop 

begin 
Initialize TEMP It, dt] to ~ for all (t~ dt) ~ (i~ d) 

f o r d p : = l t o d - l d o  %dploop  
Use Rule 2.ps.L, 6.ps.L, 9.ps.L, 10.ps.L 

for dt := dp - 1 to 1 do % dt loop 
for t := i to i + dp - dt do % t loop 

Use Rule 3.ps.L, 4.ps.L, 5.i.ps.L, 7.ps.L, 8.ps.L 
% end of t loop 

% end of dt loop 
% end of dp loop 
for dt := d - 1 to 1 do % dt loop 

for t := i to i + d - dt do % t loop 
for dr := dt - 1 to 1 do 

for r := t to t + dt - dr do 
begin 

Use Rule 5.ii.ps.L 
end 

% end of r loop 
% end of dr loop 

% end of dt loop 
% end of t loop 

end 
% end of i loop 

% end of d loop 

Figure 6 
Algorithm 2. 

Definition 4.2 
A CCG, G, is d e n o t e d  by  (VT, VN, S~f~ R)  w h e r e  

VT is a finite set of  te rminals  (lexical items), 
VN is a finite set of  non te rmina l s  (a tomic categories),  
S is a d i s t ingu i shed  m e m b e r  of  VN, 
f is a func t ion  that  m a p s  each e lement  of VT to a finite set of  categories ,  
R is a finite set of c o m b i n a t o r y  rules, w h e r e  c o m b i n a t o r y  rules  have  the fo l lowing  
form. 

1. A fo rwa rd  rule  has  the fo l lowing  f o r m  where  m > 0. 

(x/y)  (yllZl[2... ImZm) ---4. (XllZll2... [mZm) 

2. A b a c k w a r d  rule has  the fo l lowing  f o r m  where  m > 0. 

(y11Zl12... ImZm) ( x \ y )  ---+ (XIIZl12... ]mZm) 
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Here x,y, z l , . . .  ,Zm are meta-variables and h , . . - ,  [m E {\ ,  /}.  For m -- 0 these rules 
correspond to function application and for m > 0 to function composition. Note that 
the set R contains a finite subset of these possible forward and backward rules; i.e., 
for a given CCG only some of the combinatory rules will be available. 

Definition 4.3 
In the forward and backward rules given above, we say that (x/y) (resp. (x\y)) is the 
pr imary  constituent of the forward (resp. backward) rules and (y]1zl[2... ]mZm) is the 
secondary  consti tuent of the rule. The notion of a distinguished child is defined as in 
the case of LIG, i.e., a category is the distinguished child of its parent  if it corresponds 
to the pr imary  consti tuent of the rule used. As before, the distinguished descendant  
is the reflexive, transitive closure of the distinguished child relation. 

In discussing CCG we use the notational conventions that the variables ] and 
c (when used with or wi thout  primes and subscripts) range over  the forward and 
backward slashes and categories, respectively. We use x,y, z for meta-variables; a, fl 
for strings of directional categories (i.e., a string of the form ]1Cl]2.,. ]nOn from some 
n ~ 0); and A, B, C for atomic categories (i.e., members  of VN). 

Derivations in a CCG, G = (VT, VN~ S,f ,  R), involve the use of the combinatory 
rules in R. Let ~ be defined as follows, where T1 and T2 are strings of categories 

G 

and terminal symbols. 

If ClC 2 ---+ C is an instance of a rule in R, then TlCT 2 ~ "~1ClC2T2 . 
G 

If c C f(a) for some a c VT and c is a category, then TlCT2 ~ TlaT2. 

The string languages generated by a CCG, G, L(G) = { w ] S ~ w ] w E V~ }. 
G 

Example 4.1 
The following CCG generates { wcw ] w E {a, b} + }. Let G = ({at b, c}, {S, T, A, B}, S,f ,  R) 
where 

f(a) = (A, T \ A / T ,  T \A}  f(b) = {B, T \B/T ,  T\B} f(c) = ( S / T }  

The set of rules R includes the following three rules. 

y (x\y) ~ x (x/y) (y \z l /z2)  ---+ (y\z l /z2)  (x/y) (y\zl) ~ (y\zl)  

In each of these rules, the target of the category matched with x must  be S. 7 Figure 7 
shows a derivation of the string abbcabb. 

We find it convenient  to represent  categories in a minimally parenthesized form 
(i.e., wi thout  parentheses unless they are needed to overr ide the left associativity of 
the slashes), where minimally parenthesized form is defined as follows. 

7 Following Steedman (1985), we allow certain very limited restrictions on the substitutions of variables 
in the combinatory rules. A discussion on the use of such restrictions is given in Vijay-Shanker and 
Weir (in press). However, we have not included this in the formal definition since it does not have a 
significant impact on the algorithm presented. 
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A S~A 

S~A~B 

B 

b 

S~AkBkB 

S~B/T 

S'~JF 

SIT T'Odr 

I I 
a 

c 

T~B/F 

I 
b 

T~B 

I 
b 

Figure 7 
CCG example derivation tree. 

Defini t ion 4.4 
• A is the minimally parenthesized form of A where A C VN. 

• If c l , . . . , c ,  are the minimally parenthesized forms of categories c~,.. . ,  c" 
respectively, then (a l lc l l2 . . .  Incn) is the minimally parenthesized form of 
(( '- '  (allc~)12'' ")l~c'). 

A category c is in minimally parenthesized form if c is the minimally parenthesized 
form of itself. 

Defini t ion 4.5 
Let a category c = A l l C 1 1 2 . . .  [nCn be in minimally parenthesized such that n > 0, 
A E VN, and Cl, . . . ,  Cn are minimally parenthesized categories. 

• The target category of c = al lClI2. . .  InCn denoted by tar(c) is A. 

• The arity of c = AllC112...  InCn, denoted as arity (c), is n. 

• The argument categories of c = AllC 112... Inch denoted by 
args (c) = { ci ] 1 < i < n }. 

4.1 CCG and LIG 
Before showing how the general parsing scheme illustrated by the LIG recognition 
algorithm can be instantiated as a recognition algorithm for CCG, we show that CCG 
and LIG are very closely related. The details of the examination of the relationship 
between CCG and LIG may be found in Weir and Joshi (1988) and Weir (1988). 

A minimally parenthesized category (AIlc 112... InCn) can be viewed as the atomic 
category, A, associated with a stack of directional argument categories, ILC112... Inc,. 
The rule 

( x / y )  ( y l l Z l l 2 . . .  ImZm) ~ ( X I 1 Z l l 2 . . .  ImZm) 
! ! ! ! 

has a s  a n  instance (ApieCe. . .  InCh~As) (Asl iCl}2. . .  ImCm) --~ (apieCe. . .  InCnllCll2... ImCm) 
I I I I I I as we l l  as (A~L~c~... InCn/(Asl c )) (AI'c'L~c~I2... I,~cm) ~ (&l~c'~... I~Cnh~lL2... Imam) 
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! ! as an instance. Thus x matches the category (Apl~c ~ . . .  [nCn), y matches an atomic cat- 
egory As in the first example and a nonatomic category (As]~C ') in the second, and 
each zi matches ci for 1 ( i ( m. A derivation involving the second instance (viewed 
bot tom-up) can be seen as popping  the top directional argument  /(Asl'c') from the 
pr imary  category and pushing the m directional arguments  IlCl]2.-. ImCm • Thus, each 
instance of the combinatory rule appears to closely resemble a LIG production.  For 
example, in case of the second instance we have 

ap  (.. ILC112... ImCm) ---+ ap  ( . . / (As] 'c ' ) )  As (['c'11c112... ImCm) . 

We now show that, like the set of stack symbols of a LIG, the set of directional argu- 
ment  categories that we need to be concerned with is finite. 

Definition 4.6 
Let c be a useful  category with respect to a grammar  G if and only if c ~ w for 
some w E V~. The set of argument categories, args (G) of a CCG, G = (VT~ VN~ S,f,  R), 
is defined as args (G) = Uc~f(a) args (c). 

Observation 4.1 
If c is a useful category then args (c) c args (G), a finite set determined by  the gram- 
mar, G. 

This observation can be shown by an induction on the length of the derivation 
of some string from c. The base case corresponds to a lexical assignment and hence 
trivially args (c) C args (G). The inductive step corresponds to the use of a combination 
using a rule of the form 

( x / y )  (yllZll2... ImZm) ---+ (XIlZll2... ImZm ) 

or 

(yllZll2...]mZm) ( x \ y )  ~ (XIlZll2...ImZm) 

By inductive hypothesis,  any useful category matching either (x/y)} (x\y) or 
(y]lZll2... ImZm) must  take its arguments  from args (G) (a finite set) and therefore the 
resulting useful category also shares this property. 

The above proper ty  makes it possible to adapt  the LIG algori thm for CCG. Note 
that in the CKY-style CCG recognition we only need to record the derivations from 
useful categories. From Observation 4.1 it follows that the lexical category assignment, 
f ,  determines the number  of "stack" symbols we need to be concerned with. Therefore, 
only one of the variables (x) in a combinatory rule is essential in the sense that the 
number  of categories that it can usefully match is not bound  by  the grammar.  There- 
fore, it would  be possible to map  each combinatory rule to an equivalent  finite set of 
instances in which ground categories (from args (G)) were substituted for all variables 
other than x; i.e., y, zl}. . .Zm in the combinatory rule above. This would  result in a 
grammar  that was a slight notational variant of a LIG where the CCG variable x and 
the LIG notation .- perform similar roles. However ,  for the purpose  of constructing a 
recognition algorithm it is both unnecessary and undesirable to expand the number  of 
rules in this way. We adapt  the LIG algori thm so that it, in effect, constructs appropriate  
instances of the combinatory rules as needed dur ing the recognition process. 
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4.2 Recognition of CCG 
The first step in modifying the LIG algori thm is to define the constants MSL and MTL 
for the case of CCG. Let G -- (VT, VN, S , f ,  R) be a CCG. These definitions follow im- 
mediately from the similarities between CCG combinatory rules and LIG productions.  

Observation 4.2 
If we were to express a combinatory rule 

( x / y )  (yIlZl...ImZm) ~ (X]IZ1...]mZm) 

in terms of LIG product ion 

A ("")'1..."/m) "-'+ Ap (""yp) As(o@) 

then we have the following correspondences:  

• % w i t h / y .  

• "~i with = ]izi for 1 < i < m, i.e., "Y1 ' ' '  "Ym with IlZl . . .  ]mZm. 

• A = Ap. 

• As (as) with y h z ~ . . .  ImZm . 

Given such a direct correspondence between combinatory rules and LIG productions,  
we will define the following constants to be used in the the CCG algori thm with 
minimal explanation. 

• MTL is the max imum arity of a lexical category. Thus, 
MTL = max { arity (c) ] c c f(a), a C VT }. 

• MSL should be the max imum arity of a useful category that can match 
the secondary category of a rule. Note  that a category matching 
(y]lZ1]2-.. ImZm) will have an arity that is the sum of m and the arity of 
the category matching y. Furthermore,  note that since y is an argument  
of the pr imary  category it must  be bound  to a member  of args (G). Thus, 
MSL = max { m ] (y[lz112... ]mZm) } is the secondary category of a rule in 
R + max { arity (c) ] c E args (G) }. 

• Note that in the case of CCG, MCL need not  be defined independent ly  
of MSL. 

• As before, we define TTC as TTC = max { MSL, MTL }. 

Since directional categories play the same role that stack symbols have in LIG, we 
revise the notions of length top ( ) and rest ( ) as follows. We say that the string of direc- 
tional arguments  categories ]lCl I2"'" InCh has a length n, i.e., len (IlCl 12.-. ]nCn) = n. Note  
that arity ((A]1c112... InCn)) = len ([1Cl]2... ]nCn) = n. We define top ((IlCl]2... InCn)) = 
[nCn and rest ((]1c112... ]nCn)) = ]1Cl ]2.-. ]n--lCn--1 • Additionally, top (¢) = rest (~) = ¢. 

4.2.1 Terminators in CCG. We can define a k-terminator in essentially the same way  
as in the case for LIG. Note that a category shares its target category with all of its 
dist inguished descendants.  
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Def in i t ion  4.7 
Suppose that we have the following derivation: 

a f l l l C l  . . . Ik_ lCk_l lC ~ u a f l l l C l  . .  . ]k_ lCk_l lkCk .  . . ImCm 

==~ U a f l / C p  CpllCl . . . IkCk. . . ImCm 

ldVW 

W 

W 

or similarly 

a f l l l C l . . . I k _ l C k - l l C  ~ U a f l l l C l . . . I k _ l C k _ l l k C k . . . I m C  m W 

u CpllCl...[kCk...ImCm Af t \c ,  w 
UVW 

where the following conditions hold 

• fl is a string of direction categories, i.e., fl E ({/~ \}args (G))*. 

• k - l > l ,  

• A f l l l C l . . .  Ik-lCk-llkCk... ImCm and Afl /c  are distinguished descendents of 
a f l l l C l  . . . I k_ lCk_l  [C 

• any distinguished descendent  between Afl/Cp and AflllCl . . .  ]k-lCk-llC can 
be expressed in the form afll~cl . . .  Ik-lCk-1 le~ where len (c~) >_ 1 

We say that Aft/@ is the len (11Cl . . .  Ik_lCk_llc)-terminator of Af l l l c l . . .  Ik_lCk_l[C. 

Note that cp need not be atomic. Hence if we write the secondary category as 
cpllcl . . .  ImCm we are not  necessarily expressing it in minimal parenthesis form. 

4.2.2 Ana tomy of a CCG Entry. In the CCG algorithm we will use entries that have a 
form similar to that of the entries in the LIG algorithm. The choices we make are based 

on Observation 4.2. For a derivation AllCl . . .  Ijcj ~ al . . .  ai+d-1 (where the input  is 
a l . . .  an), we will have an entry in P Ii~ d] with a head IA~ IjCjl, w h e r e  A E VN, Ij C {\~/}, 
and cj E args (G). 

First consider the case when  a terminator- type entry is used. The terminator- 
type entry is applicable when  Aflllcl . . .  Ik-lCk-11c has a k-terminator, say A f l l t c t  where 
len  (flltCt) ~_ TTC. As before we say that in such a c a s e  A f l l l C l . . .  ]k_lCk_ 11c satisfies the 
TC-property. Assuming the terminator derives the substring at . . .  at+d~-l, we can use 
the terminator-pointer  (llctl~ [t~ dtl) and a middle  I1c1... Ik_lCk_l . Notice that since the 
target of the category Alf l] lc l . . .  Ik-lCk-11C as well as the target of its terminator  is A 
and since A is already noted in the head, it is not recorded in the terminator-pointer.  

For entries that are not terminator-pointer,  the entire category is noted in the 
entry. Such an entry has the form (IA~ Ijcj~ (11cl... Ij-lCj-l, nil)) assuming that j > 1. 
However ,  it is possible that j = 0. In this case the category being represented is A, 
and the entry will be writ ten as (IA~ c I (~ nil)). In general, we use the non- terminator-  
type entry for recording a derivation from As  when  it has no terminator  or when  the 
terminator, say a f l l t C t  (rewriting c~ as  flllCl... Ik-lCk-1 [C) is such that l en  (flltCt) ~__ TTC; 
i.e., when  the category As  does not  satisfy the TC-property. 

4.2.3 CCG Algori thm. It is straightforward to derive the rules for the CCG recognition 
algori thm from those used in LIG algorithm. Using Observation 4.2, we can now give 
the rules for the CCG algori thm with no explanation. 
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Rule 1.C 
Ac~cf(a)  a = a i  l < i < n  

Assume the combinatory rule (x/y) 

W h e n  m = 0 a n d  tpp = nil 

Rule 2.ps.C 

((Ap,/Cp) (tip, nil)) C P[i, dp] 

((Ap, top (~)) (rest (c~), nil)) E P[i, 1] 

(YllZl --. ImZm) ---+ (XIlZl . . .  ImZm). 

Asc~s = Cp 
((As, top (C~s)) (rest (C~s), nil)) E P [i + de, d - dp] 

((Ap, top (tip)) (rest (tip),nil) ) E P[i,d] 

W h e n  m = 0 a n d  tpp ¢ nil 

Rule 3.ps.C 

tp e = ((I,c,), [t,d~]) 
k > 2  Asc~s = Cp 

((As, top(as)) (rest(o~s),nil) ) C P[i + de,d-de] 

( (Ap, IkCk) (llCl.. .  Ik_lCk_i, tpp) ) ~ P[i,d] 

Rule 4 . p s . C  

((ap,/ep) (lie1, ((]tct), [t, dt]) ) ) 
E P[i, dp] 

Asc~s = Cp 
((As, top (cts)) (rest (C~s), nil) ) 

~ P[ i+de,  a - d e ]  
( ( )) (A e, ]tct) tit, nil 

* P[t, dt] 

((Ap, I1c,) (tit,nil)) C P[i,d] 

Rule 5.ps.C 

((Ae,/ce) O~c,, ((Ltc,), [t,d,]))) 
C P[i, de] 

Asc~s = Cp 
((At, top (C~s)) (rest (C~s), nil)) 

cP[ i+dp ,d-de]  

tpt-~ ((IrCr), [r, dr]) 
( (Ae, ltct) (ti,, tp,) ) 

((A e, Ilcl) (tir, tPt) ) C P[i,d] 

W h e n  m - -  1 

Rule 6.ps.C 

( (Ap, /Cp) (tip, nil)) C P[i, dp] 
Asc~s = CpllCl 

((As, top(c~s)) (rest(c~s),nil) ) C P[i + dp,d-d,]  

((A e, ]1c,) (tie,nil)) E P[i,d] 
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Rule 7.ps.C 

( (Ap, /Cp) (flp, ( (Itct) , [t, dt] ) ) ) c Pfi, dp] 
As~s = Cp[lCl 

((As,top(c~s)l (rest(c~s),nil)) C P[i +dp~d-dp] 
((Ap, llCl ) (tip, ((ItCt), [t, dt]) ) ) C P[i,d] 

When m > 2 and tpp ~ nil 

Rule 8.ps.C 

tpp = ( l l t c t l ,  [t~dt]) 
(IAp, /Cp> (tip, tpp) ) E PIi, dp] 

As~s = CpllCl . . .  ImCm 
( IA~, top (c~s) l (rest (c~s), nil)) E P [i + dp, d - dp] 

( (Ap, ImCm} (11Cl... Im--lCm--l~ ( (/Cp) , [i, dp] ) ) ) C P[i,d] 

When m > 2 and tpp = nil 

Rule 9.ps.C 

len (tip/@) < TTC 
((Ap,/Cp) (tip,nil)) E PIi, dp] 

asoz s = CpllCl . . . ]mCm 
( IAs, top (c~s) ) (rest (c~s), nil) ) E P [i + dp, d - dp] 

(lap, Imem) (tip]lCl . . . Im-lCm--l,nil) ) E P[i,d] 

Rule 10.ps.C 

len (tip/ep) > TTC 
((Ap,/Cp) (tip, nil)) E P[i, dp] 

a s o  @ = CpllCl . . . [mCm 
((As, top(c~s)) (rest(c~s),nil) ) c P[i + dp,d -dp] 

( ( a p ,  IrnCrn} (11Cl... Irn--lCm--l~ (( /Cp} , Ii, dp]) ) ) C P[i ,d]  

Proposition 4.1 
The CCG recognition algorithm can be seen to establish the following. 

• (lAp, Ic~ (t3, (lltctl, [t~ dt]))) C P [i~ d] if and only if there is some c~ such 

that Ac~tilc ~ ai.. .  ai+d-1 and the (len (/3) + 1)-terminator (Aozltct) of 
Ac~tilc derives the string at.. .  at+dr-1 and len (O~ltCt) ~ TTC. 

• ((Ap, top(cO~, (rest(cO, nil,)) E P[i,d] if and only if Ac~ ~ ai...ai+d-1 
and either Ac~ has no terminator or its terminator, say Ac~ t is such that 
len (c~') < TTC. 

5. TAG Recognition 

We begin this section by first considering how to extend our algorithm for LIG to 
handle unary  productions. This will be needed to show we can instantiate our scheme 
to give a recognition algorithm for TAG. 

5.1 Handling Unary Productions and Epsilon Productions 
We will now show how the LIG algorithm given earlier can be extended to consider 
unary productions of the form A (.. ~ 1 . . .  "Ym) -'-9 Ap (.. 3'p) as well as e productions of 
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the form: A (c~) --+ e. However, we will now assume that m G 2 in productions of the 
form A (.. 2/1 . . .  q/m) --+ T1ap ('" q/p) T2. Thus, henceforth MCL < 2. Note that this refers 
to both unary  and binary productions. This additional restriction does not change 
the generative power. We have introduced these restrictions in order to reduce the 
number  of cases we have to consider and also because we can restrict our attention 
to the productions that are used in the TAG to LIG construction. 

Consider the processing of a binary production A (.. 2/1 . . .  2 / m )  ---+ Ap (.. "yp) As (as). 
Since CKY-style parsers work bottom-up, we check to see if the primary and secondary 
categories derive adjacent strings (say ai...ai+dp-1 and ai+dp...ai+dp+&, respectively) 
and then we store an encoding for the new object that results from the combination. 
The processing of unary  productions is similar except that we do not have to consider 
a secondary constituent. The rules that express the processing of such productions will 
be very similar to those for the binary productions. For example, consider Rule 2.ps.L 
for the binary production A (..) ---+ Ap (.. ",/p) As (C~s). 

Rule 2.ps.L 

((Ap,,yp) (tip, nil)) E P[i, dp] ((As,top(e~s)) (rest(e~s),nil)) E P [ i + d p , d - d p ]  

( ( A, top (tip)) (rest (tip), nil) ) E P [ i, d] 

Given a unary  production A (..) --+ Ap (.. 2/p) we have the Rule 2.u.L (where u stands 
for unary). 

Rule 2.u.L 
((Ap,',/p) (tip,nil)) c P[i, dp] 

((A, top (G) ) (rest (&) ,n i l ) )  E P[i,d] 

In addition, with the introduction of e productions, we have to consider derivations 
of strings of length d -- 0. We shall assume that if A (c~) ~ e then an encoding of 
A (~) will be stored in P[i, 0] (for all i). We must  also consider the possibility that the 
primary constituent or the secondary constituent derive the empty string, i.e., dp = 0 
or ds = 0. Processing of such cases becomes similar to that of unary  productions. 

To indicate the additional processing required due to the introduction of unary  
productions and the possibility of the derivation of the empty string, let us consider 
Rule 8.ps.L. "Use Rule 8.ps.U' can be paraphrased as follows. 

If there exists a production A (.. 71 . . .  2/m) -+ A m ('" 7p) As (C~s) where 
m >__ 2, el = ((Ap,q'p)(flp,(at, 'Tt))) belongs to P[i,d][t, dt] and e2 = 
((As, top (C~s))(rest (c~s), nil)) belongs to P[i +dp, d - dp] [0, 0] then add 
e3 = ((A~'ym)(qrl...~/m-l,(Ap~2/p))) to P[i,d][i~dp] if e3 is not already 
present in this array element. 

If we allow ~ productions it is possible that ds --- d -  dp -- 0. Consider the case where we 

have As (as) ~ c. That is, we expect the entry e2 to be present in P [i + d, 0] [0, 0]. This 
means that the resulting entry e3 must  be added to P [i, d] [i, d] since we now have 
dp = d. Note that the addition of e3 = ((A,"/m)("yl..."Yrn--l~ZZ~p~p~)) (that encodes 
the derivation from A (fl'yl . . .  %) for some fl) can result in more entries being added  
to the same array element P [i, d] [i, d] (for instance, when we have the production 
B (--2/~ . . .  2/~) --+ A (-. "Ym)). This is similar to the prediction phase in Earley's algorithm 
and the state construction in LR parsing. Based on this analogy, we will define our 
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notion of closure. Closure (e,i,d,t, dt) will add entries to PIi, d] It, dr] or PIi, d] Ii, d] that 
result from the inclusion of the entry P Ii, d] It, dt] by considering unary  productions 
(or binary productions when the primary or secondary constituent derives the empty 
string). Before we define Closure () we note that for each occurrence in the algorithm 
of "use Rule X" is replaced by "use closure of Rule X." For example, "Use closure of 
Rule 8.ps.U' stands for 

If we have the production A ("~1. . . ?m) ~ Ap (.. %) As (C~s) where m ~ 2, 
el = (IAp, ~pl (flp,At~',/t) ) belongs to PIi, d] It, dt] and 
e2 = ( IAs~ top (C~s) l (rest (C~s)~ nil) ) belongs to P Ii + dp~ d - dp] IO~ 0] and 
e3 ~- (/a~ '~m/(~/1-.. "Ym-l~ap~ "Yp)) does not belong to P[i,d] Ii, dp] then 
add e3 to PIi, d] Ii~dp] and then invoke Closure (e3,i~d~i~dp). 

Closure is defined as follows: 

Closure ( e, il, dl , t, dr) 
begin 

use closure of Rule 2.ps.L, 6.ps.L, 7.ps.L, 8.ps.L, 9.ps.L, 10.ps.L 
with d = dp and the entry e as the primary constituent in the antecedent. 

use closure of Rule 2.sp.L, 6.sp.L, 7.sp.L, 8.sp.L, 9.sp.L, 10.sp.L 
with ds -- d and the entry e as the secondary constituent in the antecedent. 

use closure of Rule 2.u.L, 6.u.L, 7.u.L, 8.u.L, 9.u.L, 10.u.L 
with d = dp and the entry e as the primary constituent in the antecedent. 

end. 

Note Rule 3 does not apply since we have to assume MCL _< 2 (hence any ter- 
minator is a 2-terminator and the length of the middle in a terminator-type entry is 
always one). We have not included Rule 4 and Rule 5 while computing the closure. 
These correspond directly to the completor step in Earley's algorithm and to the pop- 
ping of stack elements and hence are not considered a part of the closure. They have 
to be applied later in the control structure. 

We will now consider the effect of including unary rules on the control structure of 
the algorithm. Le t / / i l ,  dl/~/i2, d2/ /G/ / i3 ,  d3/~ lid, dd/ / i f  and only if (1) (il, dl/ < (i3, d3/ 
or (2) /il~ dl/ --- /i3~ d3/and/i2~ d2/ < (i4~ dd/. The simplicity of the loop structure in the 
algorithms seen thus far stems from the fact that for any parsing rule if the entry in the 
consequent is to be added to P Ii3, d3] Iid~ dd] based on the existence of an antecedent 
entry in P Iil, dl] I/'2, d2], then Ilil, dl l ,  lid, d211 ~ Ili3, d31~ lid, dd}l. This no longer holds 
when we consider Rule 5.u.L or Rule 5.ps.L when the secondary constituent derives the 
empty string. Consider the following derivation (and the presence of the productions 
assumed) for a sufficiently long fl: 

a (flo~) ~ a 1 (fl"~l) ~ A2 (fl~l~Y2) ~ A3 (fl'y) ~ ai . . .  ai+d-1 

Consider the addition of an entry e3 to P[i,d] It, dr] (for some It, dtl) to record the 
derivation from A3 (fl'y). Closure (e3~ i, d, t, dr) is invoked, resulting in the addition of 
e2 (corresponding to A2 (fl'Y13'2)) to P[i, d] Ii, d]. From Rule 5.u.L and the presence of 
entry e2 and e3 we would add el (corresponding to a l  (fl3/1) to P Ii, d] It, dt]). This could 
result in the need to add more entries to P Ii, d] Ii, d], which in turn could cause new 
entries being added back to PIi, d] It, dt], and so on. Thus we have a situation where 
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initialization phase 

for loops for d, i, d' as before 
begin 

consider closure of Rules in Rule set I 
for dt :-- d' - 1 to 1 do 

for t := i to i + d' - dt  do 
repeat 

consider closure of Rules in Rule set II 
for dr := dt - 1 to 1 do 

for r := t to t + dt - dr do 
consider closure of Rules 5.ps.L and Rule 5.u.L 

until no new entries are added to P[i,d] [t~dt] 

Figure 8 
Control structure with unary productions. 

an antecedent  entry in P[i,d] It, dr] ((t, dt) < (i,d)) causes an entry to be added  to 
P [i, d] [i, d], which, acting as an antecedent  entry, causes a new entry to be added  to 

P[i,d] It, dr]. 
A simple strategy to take care of this situation would  be to add another  loop 

within the t loop (as shown in the partial control structure given in Figure 8) that is 
repeated until  no new entries are added  to P [i, d] It, dt]. It is s traightforward to prove 
the correctness of the algori thm with this addit ional loop and also that the asymptot ic  
complexi ty remains the same. The latter is the case because only a bounded  number  
of entries can belong to P[i,d] It, dr] for any fixed value of i, d, t, dr, and hence the 
repeat  loop can be i terated only a bounded  number  of times (as de termined by the 
grammar).  In the partially specified control structure given in Figure 8, we have not  
considered the sp rules. Also we only consider the changes that need to be made  to 
Algori thm 1; the changes to Algori thm 2 can be made  in a similar fashion. Finally, for 
purposes  of abbreviation, we have grouped Rules 2.ps.L, 6.ps.L, 9.ps.L, and 10.ps.L 
together and called it the Rule set I, and Rules 3.ps.L, 4.ps.L, 7.ps.L, and 8.ps.L the 
Rule set II. 

The repeat  loop shown in Figure 8 is not needed  in some situations. Consider 
the derivat ion and the sequence of addit ion of entries, e3~ e2~ el, as discussed above. 
Viewing this derivat ion as a bot tom-up recognizer would,  we have a "prediction" from 
entry e3 fol lowed by a "complet ion" that results in the entry el. In this case the two 
entries both encode objects with the same stack length. We generalize this situation 
and call such derivations auxil iary derivations (named after auxiliary trees in TAG). 

a (fl"Yl) ~ TIA1 (fl~/l"/2)T2 ~ TlUAt (fl'Tt)wT2 ~ UlUAt ( f l " Y t ) W W l  

where  At (fl'Tt) is the 2-terminator of A1 (fl"/1"/2). We will say that this auxiliary deriva- 
tion spans at least one terminal if len (UlUWWl) _> 1. Notice that if for a particular gram- 
mar every  auxiliary derivation spans at least one terminal, then the extra repeat  loop 
added  becomes unnecessary. This is because now, with this assumption,  for every  pars- 
ing rule if the entry in the consequent  is to be added  to P [/3~ d3] [i4~ dd] based on the exis- 
tence of an antecedent  entry in P[/1, dl] [12~ d2] then ((il, d l ) ,  (12~ d2)) -< ((i3, d3), (i4~ dd)). 
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We end this section by  noting that in the case of a lexicalized TAG, we can verify 
that every  auxiliary derivat ion spans at least one terminal, and hence in the TAG 
algori thm we do not have to include this addit ional repeat loop. 

5.2 Tree Adjoining Grammars 
Tree Adjoining Grammars  (TAG) is a tree generating formalism introduced by Joshi, 
Levy, and Takahashi (1975). A TAG is defined by a finite set of trees composed by 
means of the operat ion of tree adjunction. 

Definition 5.1 
A TAG, G, is denoted  by (VN, VT~ 57 Iv A) where  
VN is a finite set of nonterminals  symbols, 
VT is a finite set of terminal symbols, 
S E VN is the start symbol, 
I is a finite set of initial trees, 
A is a finite set of auxiliary trees. 

An initial tree is a tree with root labeled by S and internal nodes and leaf nodes 
labeled by nonterminal  and terminal symbols, respectively. An auxil iary tree is a tree 
that has a leaf node (the foot node) that is labeled by the same nonterminal  that labels 
the root node. The remaining leaf nodes are labeled by terminals and all internal nodes 
labeled by nonterminals.  The path from the root node to the foot node of an auxiliary 
tree is called the spine of the auxiliary tree. An e lementary  tree is either an initial 
tree or an auxiliary tree. We will use c~ to refer to an initial tree, and fl to refer to 
an auxiliary tree. "y may  be used to refer to either an elementary tree or a tree that is 
der ived from an e lementary tree. 

We will call a node in an elementary tree an elementary node. We can give a 
unique name to each elementary node by using an elementary node address. An 
elementary node  address is a pair composed of the name of the elementary tree to 
which the node belongs and the address of the node  within that tree. We will assume 
the standard addressing scheme where the root node has an address c. If a node 
addressed # has k children then the k children (in left to right order) have addresses 
# • 1 , . . . ,  # • k. Thus, if dV" is the set of natural  numbers  then # E W'*. In this section 
we will use # to refer to addresses and ~/to refer to e lementary node addresses. In 
general, we can write ~ = IV, #/ where  3  ̀ is an elementary tree and # E Domain (3'). 
We will use Domain (3') for the set of addresses of the nodes in % 

Definition 5.2 
Let 3  ̀be a tree with internal node labeled by a nonterminal  A. Let fl be an auxiliary 
tree with root and foot node labeled by the same nonterminal  A. The tree, 3`~, that 
results from the adjunction of fl at the node in 3  ̀labeled A (as shown in Figure 9) is 
formed by removing the subtree of 3  ̀rooted at this node,  inserting fl in its place, and 
substituting it at the foot node of ft. 

Each elementary node is associated with a selective adjoining (SA) constraint that 
determines the set of auxiliary trees that can be adjoined at that node. In addition, 
when adjunction is manda to ry  at a node it is said to have an obl igatory adjoining 
(OA) constraint. Figure 9 shows how constraints are associated with nodes in trees 
der ived from adjunctions. Whether  fl can be adjoined at the node  (labeled by A) in 3  ̀
is de termined by c, the SA constraint of the node. In 3 r̀ the nodes contributed by fl 

621 



Computational Linguistics Volume 19, Number 4 

Acl 

A c2 

A c2 

aN 

Figure 9 
The operation of adjoining. 

have the same constraints as those associated with the corresponding nodes in ft. The 
remaining nodes in 7' have the constraints of the corresponding nodes in 3 .̀ 

Given/* E Domain (3`), by LABEL(% # / w e  refer to the label of the node addressed 
/* in 7. If the tree in question is clear from context, we will simply use LABELI#/. 
Similarly, we will use SA(%/*) (or SA(#)) and OA(% #) (or OA(/*)) to refer to the SA 
and OA constraints of a node addressed /* in a tree 3 .̀ Finally, we will use ft (/3) to 
refer to the address of the foot node of an auxiliary tree/3. 

To be precise, we define the adjunction of/3 at a node in 7 with address /* as 
follows. This operation is defined when /3  is included in the SA constraints of node 
addressed # in 3 .̀ If the operation is defined, we will use ADJ (3`, #,/3) to refer to the tree 
that results. Let 3'' = AD3 (%/*,/3). Then the nodes in 3'' and their labels and adjoining 
constraints are defined as follows. 

• Domain (-y') = {/.1 I /.1 E D o m a i n ( 7 ) , / . 1  ~ / * ' / * 2 ,  for  s o m e / * 2  E Af*} U 

{/* ",1 [/.1 E Domain (fl)} U {#. ft (fl)'/~l I/* "/.1 C Domain (3'), and/ .1 • e} 

• When/ .1  C Domain (3`) such that/ .1 # /*  •/.1 for some/.1 E d~ f*}, i.e., the 
node in ~ with address/.1 is not equal to or dominated by the node 
addressed/* in 3,: 

LABEL(-/',/*~) = LABEL('),,/.1), 
- -  S A ( 3 " , / . 1 )  = S A ( 3 ` , / . 1 ) ,  
- -  OA(7',/*1) = OA(-y,/.1), 

• when /* '>1  E Domain (7') such that #1 C Domain(fl): 

LABEL(7',/*. >1) = LABEL(fl,/*I), 
- -  S A ( " / t , / * " / . 1 )  = SA(fl,/.1), 
- -  OA(3`',/*'/*1) ~ -  OA(fl,/.1), 

• when/* ,  ft (fl)./.1 E Domain (3") such that/*./ .1 C Domain (7) and/ .1 # e: 

LABEL ('T t , /*-  ft (/3). /.1) = LABEL (-y, # . /xl  ), 
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{z S {IBt,IB2} 
s 

b s {131,132} 

b s ¢  a 

Figure 10 
Example of a TAG G. 

- -  SA(3/, # • ft (fl) - it1 ) = SA('y,# - #1}, 
OA(~/', # - ft (fl). #~) = O A ( % # .  #1), 

In general, if # is the address of a node in "~ then by (% #) we refer to the elementary 
node address of the node that contributes to its presence, and hence its label and 
constraints. 

The tree language, T(G), generated by a TAG, G, is the set of trees derived starting 
from an initial tree such that no node in the resulting tree has an OA constraint. The 
(string) language, L(G), generated by a TAG, G, is the set of strings that appear on the 
frontier of trees in T(G).  

Example 5.1 
Figure 10 gives a TAG, G, which generates the language {wcw I w E {a, b}+}. The 
constraints associated with the root and foot of fl specify that no auxiliary trees can 
be adjoined at these nodes. This is indicated in Figure 10 by associating the empty set, 
G with these nodes. An example derivation of the strings aca and abcab is shown in 
Figure 11. 

5.3 TAG and LIG 
In this section, we examine bottom-up recognition of a TAG. In doing so, we construct 
a LIG that simulates the derivations of the TAG. Based on this construction, we derive 
a recognizer for TAG from the algorithms given earlier. 

Consider bottom-up TAG recognition. Having recognized the substring dominated 
by an elementary node there are two possible actions: (1) move up the tree by combin- 
ing this node with its siblings; or (2) consider adjunction at that node. In bottom-up 
recognition, the second action (i.e., adjunction) must be considered before the first. 
Therefore, there are two phases involved in the consideration of each node. On enter- 
ing the bottom phase of a node, having just combined the derivations of its children, 
we predict an adjunction. On entering the top phase, having just finished adjunction 
at that node, we must now combine with any siblings in order to move up the tree. 
Note that in the bottom phase we may also predict that there is no adjunction at the 
node (if there is no OA constraint on that node) and hence move to its top phase 
directly. 

Figure 12 shows why, because of the nature of the adjoining operation, TAG can be 
seen to involve stacking. Suppose, during recognition, the bottom phase of a node, 7], 
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3,1 

c~ S {[31,[52} 

I 
c 

Figure 11 
Sample derivations in G. 

s ~  

a S {61,~2} 

Soo a 

I 
c 

s ~  

a S~  

b S {[51,[52} 

Sq~ b 

S ~  a 

I 
c 

Figure 12 
Stacking in a TAG. 

has been reached. When adjunction by the auxiliary tree fl is predicted, control shifts 
to the bottom phase of fl's foot node. As we move up the spine of fl it is necessary to 
remember that fl was adjoined at 7. On reaching the top phase of fl's root we must  
return to (the top phase of) 7. Therefore, the adjunction point, ~7, must  be propagated 
up the spine of ft. In general, we may  need to propagate a stack of adjunction points 
as we move up the spine as shown in Figure 12 where 3'2 is obtained by adjoining 131 
at a node ~11 on the spine of ft. From this figure, it can be seen that the information 
about the adjunction points (that must  be propagated along the spine of an auxiliary 
tree) follows the stack (last-in first-out) discipline. Notice also that only the nodes on 
the spine participate in the propagation of adjunction points. 

Consider how a LIG that simulates this process can be constructed. The details of 
the equivalence between LIG and TAG can be found in Vijay-Shanker (1987). In the 
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LIG, we use two nonterminals,  t and b to capture the differences between the top and 
bot tom phases associated with a node. The stack holds an appropriate  sequence of 
adjunction points in the form of e lementary node addresses. The top of the stack is 
the elementary node address of the node that is currently being visited (thus all objects 
have at least one element on the stack). Nodes  that are not on the spine, or belong to 
an initial tree, do not participate in the propagat ion of adjunction points. Therefore, the 
objects for such nodes will have stacks that contain only their e lementary node address. 

The set of LIG product ions is determined as follows. We assume that internal 
e lementary nodes have either a single child labeled by a terminal symbol (or ~), or 
exactly two children labeled by nonterminals.  In this discussion below, we will use ~] 
for a node and its e lementary node address interchangeably. 

1. If ?7 is a node that is labeled e where  ~ c V T U{~} then we will include 
t 07) ---+ c. 

2. If ?Tp and qs are the children of a node ?7 such that the left sibling ~/p (and 
hence ?7) is on the spine then the following holds: (1) the object 
corresponding to ~/p can have an unbounded ly  large stack, whereas the 
object for ?7s will have a stack of size one; (2) the top of the stack in these 
objects will be ?Tp and ~Ts; (3) combination of these two sibling nodes is 
possible only after the top parts of these nodes are reached; (4) the stack 
in the object for ~]p must  be propagated to object for 77, except that the 
top symbol ?7p is replaced by ?7; (5) when  the two sibling nodes are 
combined we reach the bot tom part  of ?7. Hence, we include the 
product ion b (.. ?7) ---+ t (.. ?Tp) t 07s). 

3. If ?7p, ~]s are children of ~ as in the previous case except that ?7p is the 
right sibling and is on the spine, then we include the product ion 
b ('" n) -~ t(ns) t (..'qp). 

4. If ?Tp, qs, and 77 are as before except that neither sibling is on the spine of 
an auxiliary tree then we include the product ion b (.. ?/) ~ t (.- ?7p) t 07s). 

5. If ?7p is the only child of 77 we have b (.. ?7) --+ t (-- 77p ). 

6. If ?7 is a node where fl can be adjoined and we are at the bot tom of ~7, 
then, by predicting adjunction by  fl, control moves  to the bot tom part  of 
771 (the foot node of fl). This is illustrated in Figure 13. In this case we 
add the product ion b (.. 77771) --+ b (.. 77). When there is no OA constraint at 
77 then we can predict  that no adjunction takes place. This is captured 
with the product ion t (.. 7/) --+ b (-- ?7). 

7. Suppose we have reached the top part  of the root node,  772, of the 
auxiliary tree ft. The corresponding object has the nonterminal  t with 772 
on top of the stack and the node at which fl was adjoined is immediately 
below 772. Having reached the top of the root node  of fl we must  return 
to the top of the node where fl was adjoined. This is accomplished with 
the product ion t (..) ---+ t (.. 72) (see Figure 13). 

Figure 13 captures the essence of the connection between TAG and LIG-- in  par- 
ticular the way  the adjoining operat ion in TAG can be simulated in LIG. This figure 
is also useful in order  to unders tand the notion of terminators. As in the case of CCG, 
the construction of the LIG equivalent  of the given grammar  is unnecessary. However ,  
as in the case of CCG, this discussion of the connection between TAG and LIG can be 
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7 
J 

n 1 

t (I~l) 

I 

b(r'n) 

/ \  
Figure 13 
TAG/LIG relationship. 

used to motivate the choices we make in the form of entries in TAG parser as well as 
the rules in the algorithm. 

5.4 Recognit ion of TAG 
We now give a CKY-style recognition algori thm for TAG. But first we shall consider 
the LIG constructed from a given TAG as described in Section 5.3. Given this LIG 
grammar,  consider the objects der ived and the form of entries that will be used by  the 
LIG algorithm. 

• If ~ is an e lementary node address of a node on the spine of an auxiliary 
tree, say fl, then any object that has ~ as the top symbol of its stack must  
be of the form A (~h . . .  7]k~]t~) where  k > 0, A C {t, b}, and/I t  is the 
elementary node address of a node  where  fl can be adjoined. 
Furthermore,  in any derivation, the terminator  of A (~t77) will be b (~rlt). 

• For this LIG, MSL = MTL = TTC = 1 and MCL = 2. Hence it follows that 
any terminator  is a 2-terminator. From the discussion above, an object 
A (9~) (where A C {t, b} and len (~) > 0) has a terminator  if and only if 
is an e lementary node  address of a node on the spine of an auxiliary tree. 

• Consider the forms of entries for a LIG in this form. First, the length of 
the middle  in a terminator- type entry will be one always, since any 
terminator  is a 2-terminator. Note that the terminator  of A (9~t~) will be 
b ( ~ t ) .  Thus, a terminator  type entry in a parsing array entry, say P [i, d] 
will have the form ({A,~)O]t, ({b,~lt}, [t, dt]))) where A c {t,b} and 
It, dr} < li, d}. Note that {b, ~Tt) in the terminator-pointer  is redundant .  

• From the discussion above, a non- terminator - type  entry wilt be used to 
record derivations from A (7) where  A E {t, b} and r/ is  the e lementary  
node address of a node that belongs to an initial tree or of a node that is 
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not on the spine of an auxiliary tree. To record this object the entry 
((A, 71, nil) would have been used. 

From the above discussion it makes sense that terminator-type entries in the TAG 
parser have the form ((A, T]/ (7t, t, dt)) where A E {t,b}, 7 is an elementary node 
address of a node on the spine of an auxiliary tree, say fl, and /'It is the elementary 
node address of a node where fl can be adjoined in. A non-terminator- type entry has 
the form ((A, 7), nil) where A E {t, b}, and 7 is an elementary node address of a node 
that is not on the spine of an auxiliary tree. 

Finally, consider an auxiliary derivation in the LIG obtained from a TAG as de- 
scribed in Section 5.3. Recall that an auxiliary derivation has the form 

A (~71) ~ TIA1 (~')'172) T2 
T~uAt (9~"yt) w T  2 

In this case we would have: 

• 3/1 = "Yt, 

• A = A1 = t, 

• At = b, and 

• "72 is the root of an auxiliary tree that can be adjoined at the node whose 
elementary node address is given by ~?t. 

Since every auxiliary tree in a lexicalized TAG has at least one terminal node in its 
frontier, every auxiliary derivation spans at least one terminal in the LIG we have 
constructed. 

5.5 Recognition Algorithm 
We begin with a description of the cases involved in TAG recognition algorithm. 

Predicting adjunction: During the recognition phase, on reaching the 
bottom part of a node 7, we predict adjunction by each auxiliary tree, fl 
that can be adjoined at 7 as determined by its SA constraints. As given 
in Case 6 of the construction in Section 5.3, this prediction is captured 
with the LIG production b (.. ~/~]1) -~ b (.. 7) where 71 is the foot node of 
the auxiliary tree, ft. Depending on whether 7 is on the spine of an 
auxiliary tree or not, we have the following counterparts of Rule 8.u.L 
and Rule 10.u.L: 

Rule 8.u.T 

71 = (fl, ft(fl)) fl c SA(7) ((b,7) (~h,t, dt)) E P[i,d] 
((b, 111) (7, i,d) ) C P[i,d] 

Rule 10.u.T 

7, = (f l~ft( f l ))  fl C SA(7) ((b~7)~ni l )  E P[i~d] 
((b, 71) (7, i,d)) E P[i,d] 
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As in the second part of Case 6 of the LIG construction (i.e., when there 
is no OA constraint at the node ~7) we have the following counterparts of 
Rule 6.u.L and Rule 7.u.L: 

Rule 6.i.u.T 
OA(rl) =false ((b,r/)(r]t,t, dt)) E P[i,d] 

((t,•) (,t , t ,  dt)) E P[i,d] 

Rule 7.i.u.T 
OA(~)) =false ((b,~7),nil) E P[i,d] 

((t, rl),nil) E P[i,d] 
Left sibling on the spine: This corresponds to Case 2 of the LIG 
construction. The following rule that captures this situation corresponds 
to Rule 7.ps.L. 

Rule 7.ps.T 

~p is left child of 
~?p is on the spine of an auxiliary tree 
((t,~/p/(,,,t, dt)) E P[i, dp] 

~/p is right child of 7/ 
((t, ~/s), nil) C P [i + dp, d - dp] 

((b,,) 01t, t, dt) ) C P[i,d] 

The following covers Case 4 of LIG construction where the two siblings 
are not on the spine or belong to an initial tree and corresponds to 
Rule 6.ps.L (or Rule 6.sp.L). 

Rule 6.ps.T 

r/p is left child of z/ 
r/is not on the spine of any auxiliary tree 
((t,,p} ,nil) C P[i, dp] ~p is right child of 

(t, rls}, nil) E P [i + dp, d -- dp] 
((b, rl} ,nil) E P[i,d] 

Right sibling on the spine: Corresponding to Case 3 of LIG construction 
and Rule 7.sp.L we have 

Rule 7.sp.T 

rls is left child of ~1 
((t,,s} ,nil) E P[i, ds] 

~/p is right child of 
Wp is on the spine of an auxiliary tree 
((t,,p} (Zlt, t, dt)) E P[i+ds,d-ds]  

((b, rl) (rlt, t, dt)) C P[i,d] 

Single child case: Corresponding to Case 5 of LIG construction, 
Rule 7.u.L and Rule 6.u.L. 

Rule 7.ii.u.T 

~p is only child of 
rlp ison the spine of some auxiliary tree ((t,~/p} (rlt, t, dt)) E e[i,d] 

((b,,) (rlt, t, dt)) C P[i,d] 
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Rule 6.ii.u.T 

~/p is only child of ~/ 
is not on the spine of any auxiliary tree ( ( t ,%) ,n i l )  E P[i,d] 

((b,r/) ,nil) E P[i,d] 

Complet ing  an adjunction: Corresponding to Case 7 of the construction 
and depending on whether  the node of adjunction is on the spine of an 
auxiliary tree, we  have the following counterparts of Rule 4.u.L, 
Rule 5.u.L. 

Rule 4.u.T 

((t,~lp) (zlt, t, dt)) E P[i,d] 
~?t is not on the spine of any auxiliary tree 

((b,z]t),nil) E Pit, dr] 
((t , , t)  ,nil) E P[i,d] 

Rule 5.u.T 

((t,•e) (,t ,t ,  dt)) E P[i,d] 
7/t is on the spine of an auxiliary tree 

((b,r]t) (l']r, Gdr) ) E P[t, dt] 
((t,~]t) (~lr, r, dr)) E P[i,d] 

From the nature of entries being created it will follow that if ~]p = (fl, e), 
for some auxiliary tree fl, then fl is adjoinable at z]t. Similarly, if 
~t ~- (fl ' ,  #)  for some auxiliary tree fl', then fl' is adjoinable at/'Jr. 

Scanning a terminal symbol:  If z/is a node labeled by a terminal 
matching the i th input  symbol, ai, then we have (corresponding to 
Rule 1.L): 

Rule 1.T 
LABEL(7])=ai l < i < n 

((t, r/), nil) E P[i, 1] 

Scanning empty  string: If ~ is a node labeled by e, then we have 
(corresponding to Rule lx.L): 

Rule 1.e.T 
LABEL(z]) = e 

(It, n) ,nil) E P[i,0] 

This concludes our discussion of the parsing rules for TAG. With the correspon- 
dences with the LIG parsing rules given (via the number ing of rules), these rules may  
be placed in the control structure as suggested in Section 5.1. As noted earlier, in the 
case of a lexicalized TAG, since every auxiliary derivation spans at least one terminal 
we  do not require the repeat loop discussed in Section 5.1. 
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6. Conclusion 

In this paper  we have presented a general scheme for parsing a set of grammar  for- 
malisms whose derivation process is controlled by (explicit or implicit) stacking ma- 
chinery. We have shown how this scheme can be instantiated to give polynomial  
time algorithms for LIG, CCG, and TAG. In the case of CCG, this provides the only 
polynomial  parsing algori thm (apart f rom a slight variant of this scheme given in 
Vijay-Shanker and Weir (1990)) we are aware of. 

The main contribution of this paper  is the general recognition scheme and defi- 
nitions of some notions (e.g., terminators,  data structures sharing of stacks) crucial to 
this scheme. We believe that these ideas can be suitably adapted  in order  to produce  
parsing schemes based on other CFG parsing algorithms (such as Earley's algorithm). 
For instance, the definition of terminator  given here was tailored for pure  bot tom-up 
parsing. In the case of Earley's algorithm, a bot tom-up parser with top-down predic- 
tion, an additional notion of terminator  for the top-down prediction component  can 
be obtained in a straightforward manner.  

We have also introduced a new method  of representing derivations in a TAG, one 
that we believe is appropriate  in capturing the stacking that occurs dur ing  a TAG 
derivation. The derivations themselves represented can be in another  TAG that we 
call the derivation grammar  (see Vijay-Shanker and Weir (1993)). 

We have not discussed the extraction of parses after the recognition is complete 
because of space considerations. However ,  an algori thm to extract the parses and build 
a shared forest representat ion of all parses for CCG was proposed  in Vijay-Shanker 
and Weir (1990). This scheme was based on the approach we have taken in our  general 
scheme. The method  of extracting parses and representing them using a shared forest 
given in Vijay-Shanker and Weir (1990) can be generalized in a s traightforward manner  
to be compatible with the generalized recognition scheme given here. 
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Appendix A: Correctness of Algorithm 1 

We will now prove the correctness of Algorithm 1. In doing so, we will start by 
observing some properties of the rules and the control structure used. 

Firstly, given an input  is a l . . .  an, we can note that every  entry added  by a rule 
(i.e., consequents of rules) satisfies the requirements for the terminator- type and n o n -  
terminator- type entries; viz., if ((A,'y)(/3, ((At, "Yt), It, dr]))) is added to an array ele- 
ment  P [i, d] then 

• A, At E VN, 

• %'YtEVI,  

• fl E V + where 1 < len(fl) <_ M C L -  1 and 

• (t, dt) < li, d) < (1, n) where d _> 2. 

We can also note that if ((A,'71 (fl, nil)) is added to P[i,d] then 

• A E V N ,  

• "yEVI, 

• f l E V  7 w h e r e 0 ~ l e n ( f l )  K T T C + M C L - 1  and 

• d>_l .  

These can be verified from noting the form of the rules and by  simple induction on 
(i, d/. We can also observe from the control structure given that entries to P [il, dl ][/2, d21 
are added before entries are added to PIi3,d3] [id,dd] if and only if (il,dll < (i3,d31 or 
(/1, dl) = (/3, d3) and (/2, d2) > (/4, dd). This observation can be used to show that when  

631 



Computational Linguistics Volume 19, Number 4 

a rule is considered for the purposes  of adding an entry to P[il,dl] [/2,d2] then the 
array elements specified in the antecedent  of that rule would  have already been filled. 
Verifying these properties of the algori thm enables us to establish the correctness of 
the algori thm more easily. 

Theorem A.1 

if and only if 

((A, 7) (c~, ((At, 7t), [t, dt]))) C P[i,d] 

A (flo~"y) ~ a i .  . . a t - l A t  ( f l3/ t)  a t .  . . a i + d _ l  

ai . • • a i + d - 1  

for some fl such that At (fl3/t) is the len (aT)-terminator of A (fla'~) in this 
derivation and len (flVt) k TTC. 

((A,7) (o~,nil)) E P[i,d] 
if and only if 

A (oc'y) ~ ai...ai+d-1 
where  A (a7) does not have the TC-property,  i.e., A (aT) has no 
terminator  in this derivat ion or the terminator, say At (fl3q), is such that 
len (flTt) < TTC. 

Proof  of Soundness:  
We prove  the soundness by inducting on d. The base case corresponds to d = 1. We 
have to consider only entries of the form ((A,'y)(c~,nil)) in P[i, 1]. Such entries are 
added  only by  the application of Rule 1. Therefore, we have A (~/)  --+ a and a = ai. 
Hence A (c~,y) ~ ai as required. 

Now, for the inductive step, let d > 2. Any entry ( (A,3 ' / (a ,  tp)) added  to P[i,d] 
where  d > 2 must  be due  to a rule other than Rule 1.L. This means  that we have either 
a product ion A (.. "/1... 3'm) --* Ap (.. 3'p) As (C~s) or A (.. 71. . .  "Ym) --+ As (O~s) A m ('" q/p). Let 
us assume that the first product ion was used. We will discuss the cases for m = 0, 
m = 1, and m _> 2 separately. 

Let m = 0. In this case the product ion is A (..) --* Ap (.. ",/p) As (as). Then 
the entry ((A, "~) (a, tp)) should have been added by using one of rules 
1.ps.L through 5.ps.L. We take Rule 4.ps.L as a representative. If 
((A, "Yl) (fit, nil)) were to be added as a result of this rule, then we have 

to show that A (fit"Y1) : ~  ai. . .  ai+d-1 where  A (fit"Y1) does not  meet  the 
TC-property. Since (i, dp) < (i, d I, (i +dp, d - ds) < (i, d), and (t, tit) ( (i, d) 
the inductive hypothesis  applies to the three entries in the antecedent.  
Thus, we have for some a the following derivations: 

A t  (fit '}q) 

A~ (o~s) 
a t . . .  a t + d t - 1  

ai+dp • . .  a i + d _ l  

a i .  • • a t - l A t  (oz"/t) a t+dr .  • • a i+dp-1  

ai • .  • a i+dp-1  
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such that At (fltTt) does not meet the TC-property. However, Ap (ol'/l'/p) 
satisfies the TC-property and furthermore At (o~'/t) is the 2-terminator of 
Ap (c~'/l'/p). From Observation 2.1, we can also infer the existence of the 
following derivation. 

Ap (flt'/l'/p) ~ ai. . .at-lAt (flt'/t)at+dt . . .ai+dp-1 
ai. . .  ai+dp-1 

Combining this derivation with the derivation from As (c~s) we have 

a ( f l t ' / 1 ) ~  

ai • • .  at_l At (flt'Tt ) at+dr.  • • a i+dp- l  ai+dp • • • a i+d-1  

a i . . .  a i+d_l  

From Observation 2.5, we know that the terminator of At (fit'~t) in this 
derivation is also the terminator of A (fit'~l) (and if At (fit'~t) has no 
terminator then neither does A (fit'/I)). Since At (fit'~t) does not satisfy the 
TC-property (i.e., it does not have a terminator with stack length greater 
than or equal to TTC), A (fit'~l) does not satisfy the TC-property either. 
Thus we have shown the existence of the required derivation. 

Let m = 1. Therefore the production may be written as 
A (.. "/1) --+ Ap (.. %) As (oes). This time we will take Rule 6.ps.L as a 
representative. Hence, we can assume that the entry added to P [i, d] has 
the form ((A,'/1)(tip, nil)). Since (i, dp) < (i,d), and 
(i + dp, d - d s )  < (i, d), the inductive hypothesis applies to the two entries 
in the antecedent. Thus, we have the following derivations: 

Ap (gp'/,) a ,  ai+  -i 
As (Oes) ~ ai+G.., ai+d-1 

Therefore we have the derivation: 

A (tip'/l) ~ a p  (tip'~p) As (c~s) 
ai . . . . . .  a i+dp- l  ai+dp • • • a i+d-1  

= ai • •.  a i+d-1  

Note that any terminator of Ap (tip'~p) is also the terminator of A (tip'~l) 
(and if Ap (tip'~p) has no terminator then neither has A (flpVl)). Since 
Ap (tip'~p) does not meet the TC-property in this derivation (from 
inductive hypothesis), neither does A (tip'~p). Thus we have shown the 
existence of the required derivation. 

Let m > 2. We will consider the application of Rule 10.ps.L as a 
representative. Again, applying the inductive hypothesis we have the 
following derivations: 

A p  (tip')p) ~ a i . . . a i + d p - 1  

A s ( o @ )  ~ a i + d p . . . a i + d _  1 
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where len (flpTp) > TTC. Combining the two derivations, we have: 

A ( t i p " Y 1 . . .  "Ym) ap (~p-yp) As (as) 
ai  . . . . . .  ¢ l i+dp_ l ai-bdp • . .  a i + d _  l 

ai  • • • a i q - d - I  

Since m > 2, Ap (tip'/p) is the m-terminator of A (flp"Yl.. .  "Ym) in the above 
derivation. Since fen (flp'yp) >_ TTC, we have shown the existence of the 
required derivation and that A (tip71...'Ym) satisfies the TC-property. 

In a similar manner  we can consider other rules (including those that assume a pro- 
duct ion of the form A (.. "Yl ' . .  "Ym) ---+ As (c~s) Ap (.. 7p)) as well. 

Proof  of Completeness:  
We will now show the completeness of Algori thm 1. This time we use induction on 

the number  of steps in a derivation. Suppose A (fl) ~ ai . . .ai+d-1; we have to show 
that there is a corresponding entry (as specified in Theorem A.1) in P[i, d]. 

The base case corresponds to l = 1. From the form of the product ions  being 
considered we can assume that d = 1 and that there exists a product ion  A (~) ~ ai. 
Rule 1 would  apply and thus we have the required entry. 

Let A (fl) ~ a i . . .  ai+d-i where l >__ 1. The first product ion  used in this derivat ion 
must  have the form A (.. "rl . . . "Ym)--+ A p  ( "  ")'p) As (C~s) or A (.. 3Zl... "ym)---+ As (ees) Ap (.. "yp). 
We will only assume that the product ion is A (..q,~ . . .  q,,,) ~ Ap (.. 7p)As (c~s). Argu- 
ments  similar to the one given below can be used when  the product ion  of the form 
A (.. "~1 . . .  7m) --+ As (%) Ap (.. %) is involved as the first step of the derivation. 

Case m = 0: We begin by considering the case when  m = 0. Since the first product ion 

used in A (fl) = ~  ai. . . ai+d-1 is A (..) ---+ Ap (.. "yp) As (C~s), we can write the derivat ion 
a s  

A (fl) ~ Ap (9"Yp) As (c~s) 
ai . . .ai+dp-lAs (o~s) 

ai  . . . a i + d p - l a i + 4  . . . a i + d - 1  

for some I < dp< d and lp + ls = I. Applying the inductive hypothesis  to the derivation 

A s  (o@) ~ ai+clp . . .  a i + d - 1 ,  w e  can assume the existence of the entry 

(IAs, tOp(~s)) (rest(C~s),nil) ) 

in P [i + dp, d - d p ] .  
In order  to show the existence of the appropriate  type of entry corresponding to 

the derivation of a i . . .  ai+cl-1 from A (fl), we need to consider whether  A (fl) satisfies the 
TC-property in this derivation. This could depend  on whether  the pr imary  consti tuent 

A, (flpVp) does. Since the inductive hypothesis  applies for the derivat ion Ap (flVp) G 
a i . . .  ai+dp-1. Let us start by assuming that A (fl) satisfies the TC-property. This means  
that it has a (say) (k + 1)-terminator whose stack length is greater than or equal to TTC. 
Expressing fl as flt71 . . .  7k, we can then rewrite the derivation from A (fl) as follows. 

a ( f l t " Y l . . .  ~ k )  ~ a p  ( f i t l Y 1 . . .  ~k"Yp) A s  (o@) 

a i  . . . a t -  l A t  (f l t"Yt ) at+at . . .  a i + d r -  l a i  +d p . . .  a i + d - 1  

ai  . • • a t - l a t  • • .  a t + d t - l a t + d  t • .  • a i + d - 1  
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where At ( f l tq / t )  is the terminator of Ap (fltq/~... q/kq/p). Thus, len ( f l tq / t )  ~ TTC and k _> 1. 
Now, A t  (fltq/t) is the terminator of A (fltq/1 . ' '  q/k) if and only if k > 1 (from Observa- 
tion 2.5). 

Let k > 1. At (fltq/t) is the terminator of A (fltq/1 . . .  q/k) and len (fit'~t) >_ TTC. 
Thus, A (fltq/1 . . "  q/k) satisfies the TC-property. Therefore we must  show 
that the entry ((A, q/k) (q/1 . . .  q/k-l, ((At, q/t)~ [t, dt]))) belongs to P[i,d]. By 
inductive hypothesis we may  assume 
( (Ap, q/p) ("/1. . . q/k, ((At, q/t) , [t, dt]))) belongs to P[i, dp]. Now all the 
conditions in the antecedent of Rule 3.ps.L have been met and thus we 
have shown the existence of the appropriate entry to record the 
derivation of a i . . .  ai+d_l from A (fl). 

Let k -- 1. From Observation 2.5 it follows that the k'-terminator of 
A t  (fltq/t) (if it exists) is also the k~-terminator of A (fltq/1), and if At (fltq/t) 
has no terminator then neither does A (fltq/1). Therefore A (fl) = A (flt'yl) 
satisfies the TC-property if and only if At (fit'~t) does. Suppose At (fltq/t) 
satisfies the TC-property; then all conditions stated in the antecedent of 
Rule 5.ps.L are met and the appropriate entry is added to record the 
derivation from A (fl). On the other hand,  if At (fit'/t) does not satisfy the 
TC-property then all conditions stated in the antecedent of Rule 4.ps.L 
are met and the appropriate entry is added to record the derivation 
from A (fl). 

Case m = 1" Here we are concerned with the situation where A (.. ")/1) ---+ Ap (.- q/p) As (as) 
is the first production used in the derivation of a i . . .  ai+d-1 from A (fl). Rewriting fl as 
flpq/1 we have 

A (flpq/1) ~ Ap (flpq/p) As(~s) 
a i . . . . . .  a i + d p - l a i + d p  • . .  a i + d _ l  

Applying the inductive hypothesis we have 

((As, top (C~s) ) (rest (o~s), nil)) c P [i +dp, d - dp] . 

Now any k-terminator of Ap (tipq/p) is also the k-terminator of A (tipq/1) (and if Ap (tipq/,) 
has no terminator then neither does A (flpq/1)). That is, A (flpq/1) satisfies the WC- 
property in this derivation if and only if Ap (fl/~p) does. If Ap (flpq/p) does not satisfy 
the TC-property, then, by inductive hypothesis, we have ((Am, q/p)(tip, nil)) c P[i, dp]. 
Thus the entries corresponding to the antecedents of Rule 6.ps.L exist and the algo- 
ri thm would have added the entry ((A,q/1)(tip,nil)) c P[i,d] as desired. If A m (flpq/p) 
does satisfy the TC-property then Rule 7.ps.L would add the required entry to record 
the derivation from A (fl). 

Case m > 2" Finally, consider that case when m > 2. The given derivation may  be 
expressed as 

A (flpq/,...q/m) = ~  Ap (flpq/p) As (as) 
ai  . . . . . .  a i + d p - l  ai+dp • • • a i + d - 1  

= ai  • • . a i + d - 1  

Applying the inductive hypothesis we have 

((As, top (C~s) ) (rest (C~s), nil)) E P [i +dp, d -dp] .  
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Since Ap (flp3`p) is the m-terminator of A (tip3`1... 3`m), we have to consider its length 
in order to know whether A (flp'Yl ... 3`m) satisfies the TC-property, i.e., how it must be 
represented. Suppose len (flp3`p) < TTC, then by inductive hypothesis we have the en- 
try ((Ap, 3`p) (tip,nil)) E P[i, dp]. Thus all antecedents of Rule 9.ps.C have been found. 
Since the terminator of A (tip3`1 ... 3`m) has a stack of length less than TTC, the required 
entry, ((A,3`m)(flfYl... '~m-l,nil)), is added by the algorithm by the application of 
Rule 9.ps.L. Suppose len (flp3`p) >__ TTC, then Ap (flp3`p) may or may not be represented 
as a terminator-type entry. Let us take the case where Ap (flp3`p) does not satisfy the 
WC-property. Again by inductive hypothesis, we have the entry ((Ap, 3'p)(tip,nil)) E 
P[i, dp]. Since len (flp3`p) > TTC and the antecedents entries of Rule 10.ps.L exist, the al- 
gorithm would add ((A, 3`m)(3'1-.. 3̀ m--1~ (~ap~ 3`pl ~ [i~dp]))) to P[i~d] as desired. If we 
had assumed Ap (flp3`p) satisfies the TC-property, then by applying the inductive hy- 
pothesis we can guarantee the existence of the entries corresponding to the antecedent 
of Rule 8.ps.L, and therefore the algorithm would have added 

((A~ 3`m)(3`1 ..-3`m-1, ( (Ap, "YPI , [i, dp] ) ) ) 

to P [i, d] as desired. 
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