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Much work has been done on the statistical analysis of text. In some cases reported in the lit- 
erature, inappropriate statistical methods have been used, and statistical significance of results 
have not been addressed. In particular, asymptotic normality assumptions have often been used 
unjustifiably, leading to flawed results. 

This assumption of normal distribution limits the ability to analyze rare events. Unfortu- 
nately rare events do make up a large fraction of real text. 

However, more applicable methods based on likelihood ratio tests are available that yield good 
results with relatively small samples. These tests can be implemented efficiently, and have been 
used for the detection of composite terms and for the determination of domain-specific terms. 
In some cases, these measures perform much better than the methods previously used. In cases 
where traditional contingency table methods work well, the likelihood ratio tests described here 
are nearly identical. 

This paper describes the basis of a measure based on likelihood ratios that can be applied to 
the analysis of text. 

1. Introduct ion 

There has been a recent trend back towards the statistical analysis of text. This trend 
has resulted in a number of researchers doing good work in information retrieval and 
natural language processing in general. Unfortunately much of their work has been 
characterized by a cavalier approach to the statistical issues raised by the results. 

The approaches taken by such researchers can be divided into three rough cate- 
gories. 

. 

. 

Collect enormous volumes of text in order to make straightforward, 
statistically based measures work well. 

Do simple-minded statistical analysis on relatively small volumes of text 
and either 'correct empirically' for the error or ignore the issue. 

3. Perform no statistical analysis whatsoever. 

The first approach is the one taken by the IBM group researching statistical ap- 
proaches to machine translation (Brown et al. 1989). They have collected nearly one 
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billion words of English text from such diverse sources as internal memos, technical 
manuals, and romance novels, and have aligned most of the electronically available 
portion of the record of debate in the Canadian parliament (Hansards). Their efforts 
have been Augean, and they have been well rewarded by interesting results. The sta- 
tistical significance of most of their work is above reproach, but the required volumes 
of text are simply impractical in many settings. 

The second approach is typified by much of the work of Gale and Church (Gale 
and Church this issue, and in press; Church et al. 1989). Many of the results from their 
work are entirely usable, and the measures they use work well for the examples given 
in their papers. In general, though, their methods lead to problems. For example, mu- 
tual information estimates based directly on counts are subject to overestimation when 
the counts involved are small, and z-scores substantially overestimate the significance 
of rare events. 

The third approach is typified by virtually all of the information-retrieval literature. 
Even recent and very innovative work such as that using Latent Semantic Indexing 
(Dumais et al. 1988) and Pathfinder Networks (Schvaneveldt 1990) has not addressed 
the statistical reliability of the internal processing. They do, however, use good statis- 
tical methods to analyze the overall effectiveness of their approach. 

Even such well-accepted techniques as inverse document frequency weighting of 
terms in text retrieval (Salton and McGill 1983) is generally only justified on very 
sketchy grounds. 

The goal of this paper is to present a practical measure that is motivated by statis- 
tical considerations and that can be used in a number of settings. This measure works 
reasonably well with both large and small text samples and allows direct comparison 
of the significance of rare and common phenomena. This comparison is possible be- 
cause the measure described in this paper has better asymptotic behavior than more 
traditional measures. 

In the following, some sections are composed largely of background material or 
mathematical details and can probably be skipped by the reader familiar with statistics 
or by the reader in a hurry. The sections that should not be skipped are marked with 
**, those with substantial background with *, and detailed derivations are unmarked. 
This 'good parts' convention should make this paper more useful to the implementer 
or reader only wishing to skim the paper. 

2. The Assumption of Normality * 

The assumption that simple functions of the random variables being sampled are 
distributed normally or approximately normally underlies many common statistical 
tests. This particularly includes Pearson's X 2 test and z-score tests. This assumption is 
absolutely valid in many cases. Due to the simplification of the methods involved, it 
is entirely justifiable even in marginal cases. 

When comparing the rates of occurrence of rare events, the assumptions on which 
these tests are based break down because texts are composed largely of such rare 
events. For example, simple word counts made on a moderate-sized corpus show 
that words that have a frequency of less than one in 50,000 words make up about 
20-30% of typical English language news-wire reports. This 'rare' quarter of English 
includes many of the content-bearing words and nearly all the technical jargon. As an 
illustration, the following is a random selection of approximately 0.2% of the words 
found at least once but fewer than five times in a sample of a half million words of 
Reuters' reports. 
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abandonment 
aerobics 
alternating 
altitude 
amateur 
appearance 
assertion 
barrack 
biased 
bookies 
broadcaster 
cadres 
charging 
clause 
collating 
compile 
confirming 
contemptuously 
corridors 
crushed 
deadly 
demented 

detailing landscape seldom 
directorship lobbyists sheet 
dispatched malfeasances simplified 
dogfight meat snort 
duds miners specify 
eluded monsoon staffing 
enigmatic napalm substitute 
euphemism northeast surreptitious 
experiences oppressive tall 
fares overburdened terraced 
finals parakeets tipping 
foiling penetrate transform 
gangsters poi turbid 
guide praised understatement 
headache prised unprofitable 
hobbled protector vagaries 
identities query villas 
inappropriate redoubtable watchful 
inflamed remark winter 
instilling resignations 
intruded ruin 
unction scant 

The only word in this list that is in the least obscure is poi (a native Hawaiian dish 
made from taro root). If we were to sample 50,000 words instead of the half million 
used to create the list above, then the expected number of occurrences of any of the 
words in this list would be less than one hal l  well below the point where commonly 
used tests should be used. 

If such ordinary words are 'rare,' any statistical work with texts must deal with 
the reality of rare events. It is interesting that while most of the words in running text 
are common ones, most of the words in the total vocabulary are rare. 

Unfortunately, the foundational assumption of most common statistical analyses 
used in computational linguistics is that the events being analyzed are relatively com- 
mon. For a sample of 50,000 words from the Reuters' corpus mentioned previously, 
none of the words in the table above is common enough to expect such analyses to 
work well. 

3. The Tradition of  Chi-Squared Tests * 

In text analysis, the statistically based measures that have been used have usually 
been based on test statistics that are useful because, given certain assumptions, they 
have a known distribution. This distribution is most commonly either the normal or 
X 2 distribution. These measures are very useful and can be used to accurately assess 
significance in a number of different settings. They are based, however, on several 
assumptions that do not hold for most textual analyses. 

The details of how and why the assumptions behind these measures do not hold 
is of interest primarily to the statistician, but the result is of interest to the statistical 
consumer (in our case, somebody interested in counting words). More applicable tech- 
niques are important in textual analysis. The next section describes one such technique; 
implementation of this technique is described in later sections. 
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Figure 1 
Normal and binomial distributions. 

4. Binomial  Dis tr ibut ions  for Text Analys i s  ** 

Binomial distributions arise commonly in statistical analysis when the data to be ana- 
lyzed are derived by counting the number of positive outcomes of repeated identical 
and independent experiments. Flipping a coin is the prototypical experiment of this 
sort. 

The task of counting words can be cast into the form of a repeated sequence 
of such binary trials comparing each word in a text with the word being counted. 
These comparisons can be viewed as a sequence of binary experiments similar to coin 
flipping. In text, each comparison is clearly not independent of all others, but the 
dependency falls off rapidly with distance. Another assumption that works relatively 
well in practice is that the probability of seeing a particular word does not vary. Of 
course, this is not really true, since changes in topic may cause this frequency to 
vary. Indeed it is the mild failure of this assumption that makes shallow information 
retrieval techniques possible. 

To the extent that these assumptions of independence and stationarity are valid, 
we can switch to an abstract discourse concerning Bernoulli trials instead of words in 
text, and a number of standard results can be used. A Bernoulli trial is the statistical 
idealization of a coin flip in which there is a fixed probability of a successful outcome 
that does not vary from flip to flip. 

In particular, if the actual probability that the next word matches a prototype is p, 
then the number of matches generated in the next n words is a random variable (K) 
with binomial distribution 

P(K = k) = pk(1-- p)n-k ( n 

whose mean is np and whose variance is np(1 -p).  If np(1-p) > 5, then the distribution 
of this variable will be approximately normal, and as np(1 - p) increases beyond that 
point, the distribution becomes more and more like a normal distribution. This can be 
seen in Figure 1 above, where the binomial distribution (dashed lines) is plotted along 
with the approximating normal distributions (solid lines) for np set to 5, 10, and 20, 
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Table 1 
Error introduced by normal approximations. 

p(k > 1) 
Using binomial Est. using normal 

np = 0 . 0 0 1  0.000099 0.34 X 10 -217 

np = 0.01 0.0099 0.29 X 10 -22 

np -- 0.1 0.095 0.0022 
np= 1 0.63 0.5 

wi th  n fixed at 100. Larger values of n with np held constant  give curves that are not  
visibly different f rom those shown.  For these cases, np ~ np(1 - p). 

This agreement  be tween  the binomial  and normal  distributions is exactly wha t  
makes  test statistics based on assumpt ions  of normal i ty  so useful in the analysis of 
exper iments  based on counting. In the case of the binomial  distribution, normal i ty  
assumpt ions  are general ly considered to hold well  enough  when  np(1 - p) > 5. 

The situation is different when  np(1 - p )  is less than 5, and  is dramatical ly  different 
when  np(1 - p )  is less than 1. First, it makes  much  less sense to approx imate  a discrete 
distribution such as the binomial  with a cont inuous distribution such as the normal.  
Second, the probabili t ies compu ted  using the normal  approx imat ion  are less and  less 
accurate. 

Table 1 shows the probabil i ty  that one or more  matches  are found in 100 words  
of text as compu ted  using the binomial  and  normal  distributions for np = 0.001, 
np = 0.01, np = 0.1, and np = 1 where  n = 100. Most  words  are sufficiently rare so 
that even for samples  of text where  n is as large as several  thousand,  np will be at 
the bo t tom of this range. Short phrases  are so numerous  that np << 1 for a lmost  all 
phrases  even when  n is as large as several  million. 

Table 1 shows that for rare events,  the normal  distribution does not even approx-  
imate the binomial  distribution. In fact, for np -- 0.1 and  n = 100, using the normal  
distribution overest imates  the significance of one or more  occurrences by a factor of 
40, while for np = 0.01, using the normal  distribution overest imates  the significance by  
about  4 x 1020. When  n increases beyond  100, the numbers  in the table do not change 
significantly. 

If this overes t imat ion were  constant,  then the est imates using normal  distributions 
could be corrected and would  still be useful, but  the fact that the errors are not constant  
means  that methods  dependen t  on the normal  approximat ion  should not be used to 
analyze Bernoulli trials where  the probabil i ty of posit ive outcome is very  small. Yet, 
in m a n y  real analyses of text, compar ing  cases where  np -- 0.001 with cases where  
np > 1 is a c o m m o n  problem. 

5. L i k e l i h o o d  Rat io  Tests  * 

There is another  class of tests that  do not depend  so critically on assumpt ions  of 
normality. Instead they use the asymptot ic  distribution of the general ized likelihood 
ratio. For text analysis and similar problems,  the use of likelihood ratios leads to 
very  much  improved  statistical results. The practical effect of this i m p r o v e m e n t  is that 
statistical textual analysis can be done  effectively wi th  very  much  smaller  vo lumes  of 
text than is necessary for conventional  tests based on a s sumed  normal  distributions, 
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and it allows comparisons to be made between the significance of the occurrences of 
both rare and common phenomenon. 

5.1 Parameter Spaces and Likelihood Functions 
Likelihood ratio tests are based on the idea that statistical hypotheses can be said 
to specify subspaces of the space described by the unknown parameters of the sta- 
tistical model being used. These tests assume that the model is known, but that the 
parameters of the model are unknown. Such a test is called parametric. Other tests are 
available that make no assumptions about the underlying model at all; they are called 
distribution-free. Only one particular parametric test is described here. More informa- 
tion on parametric and distribution-free tests is available in Bradley (1968) and Mood, 
Graybill, and Boes (1974). 

The probability that a given experimental outcome described by kl,..., kn will be 
observed for a given model described by a number of parameters Pl, p2,.., is called 
the likelihood function for the model and is written as 

H(pl,p2,...;kl,...,km) 
where all arguments of H left of the semicolon are model parameters, and all argu- 
ments right of the semicolon are observed values. In the continuous case, the proba- 
bility is replaced by a probability density. With binomial and multinomials, we only 
deal with the discrete case. 

For repeated Bernoulli trials, m = 2 because we observe both the number of trials 
and the number of positive outcomes and there is only one p. The explicit form for 
the likelihood function is 

H(p;n'k)=pk(1-P)"-k ( k ) 

The parameter space is the set of all values for p and the hypothesis that p = p0 
is a single point. For notational brevity the model parameters can be collected into a 
single parameter, as can the observed values. Then the likelihood function is written 
a s  

H(~;k) 
where w is considered to be a point in the parameter space f~, and k a point in the 
space of observations K. Particular hypotheses or observations are represented by 
subscripting f~ or K respectively. 

More information about likelihood ratio tests can be found in texts on theoretical 
statistics (Mood et al. 1974). 

5.2 The Likelihood Ratio 
The likelihood ratio for a hypothesis is the ratio of the maximum value of the likelihood 
function over the subspace represented by the hypothesis to the maximum value of 
the likelihood function over the entire parameter space. That is, 

A = max~f~° H(a;; k) 
max~en H(a;; k) 

where f~ is the entire parameter space and f~0 is the particular hypothesis being tested. 
The particularly important feature of likelihood ratios is that the quantity - 2  log )~ 

is asymptotically X 2 distributed with degrees of freedom equal to the difference in 
dimension between f~ and f~0. Importantly, this asymptote is approached very quickly 
in the case of binomial and multinomial distributions. 
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5.3 Likelihood Ratio for Binomial and Multinomial Distributions 
The comparison of two binomial or mult inomial  processes can be done rather  easily 
using likelihood ratios. In the case of two binomial distributions, 

H ( p l , p 2 ; k l , r l l ,  ka, n a ) ~ - p l k l ( 1 - - p l ) n l - k l  ( nl p2 k2 (1 - p2) n2-k2 (n2).k2 

The hypothesis  that the two distributions have the same under lying parameter  is 
represented by  the set {(pl, p2) I Pl = p2}. 

The likelihood ratio for this test is 

= maxpH(p, p; kl, nl, k2, n2) 

maxpl ,p2 H(pl, P2; kl,//1, k2,//2)" 

These maxima are achieved with Pl = ~ and P2 = ~ for the denominator,  and 

for the numerator.  This reduces the ratio to P = ~1+~2 

maxp L(p, kl , nl )L(p, k2, n2) 

maxp, ,p2 L(pl , kl , nl )L(p2, k2~ /'/2 ) 

where  
L(p,k, n) = pk(1 -- p)n-k. 

Taking the logari thm of the likelihood ratio gives 

- 2  log ,~ = 2 [log L(pl, kl, nl) + log L(p2, k2, n2) - log L(p, kl, nl) - log L(p, k2, n2)] • 

For the mult inomial  case, it is convenient  to use the double  subscripts and the abbre- 
viations 

so that we can write 

The likelihood ratio is 

Pi = pli~ p2i~ . . . ~ pji~ . . . 

Ki ~- kli~k2i~.. .~kji~. . .~ 

Q = ql,q2~.. .~qj, . . .~ 

H ( P I ' P 2 ; K I ' n l , K 2 ,  n2) = I I  rli! I I  pjikji" 
i=1,2 j kji! 

)~ = maxQ H(Q, Q;K1, nl, K2~ n2) 
max/'l,p2 H ( P1, P2; KI ~ nl , K2~ n2)" 

This can be separated in a similar fashion as the binomial case by using the function 

LIP, K/- IId 
J 

)~= maXQL(Q, K1)L(Q, K2) 
maxp,,e2 L(P1, K1)L(P2, K2)" 
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This expression implicitly involves n b e c a u s e  ~ j  kj = n. 
Maximizing and taking the logarithm, 

-2  log A = 2 [log n(Pl, K 1 ) -}- log L(P2~ K2) -- log L(Q, K~) - log L(Q, K2)] 

where 

and 

pji - ~-.~ikji 

~ i  kji 
qJ - G i j k /  

If the null hypothesis holds, then the log-likelihood ratio is asymptotically X 2 dis- 
tributed with k/2  - 1 degrees of freedom. When j is 2 (the binomial), - 2  log )~ will be 
X 2 distributed with one degree of freedom. 

If we had initially approximated the binomial distribution with a normal distri- 
bution with mean np and variance np(1 - p), then we would have arrived at another 
form that is a good approximation of -2  log ~ when np(1 - p) is more than roughly 5. 
This form is 

(kji - niqj) 2 
- 2 1 o g , ~  .~.  ~/~/qj~_--q~ 

where 

~ i k j i  
qJ = kji 

as in the multinomial case above and 

ni --- y ~  kji. 
J 

Interestingly, this expression is exactly the test statistic for Pearson's X 2 test, although 
the form shown is not quite the customary one. Figure 2 shows the reasonably good 
agreement between this expression and the exact binomial log-likelihood ratio derived 
earlier where p -- 0.1 and nl -- n2 -- 1000 for various values of kl and k2. 

Figure 3, on the other hand, shows the divergence between Pearson's statistic and 
the log-likelihood ratio when p = 0.01, nl = 100, and n2 -- 10000. Note the large 
change of scale on the vertical axis. The pronounced disparity occurs when k I is larger 
than the value expected based on the observed value of k2. The case where nl < n2 
and ~ > ~ is exactly the case of most interest in many text analyses. 

T~e convergence of the log of the likelihood ratio to the asymptotic distribution is 
demonstrated dramatically in Figure 4. In this figure, the straighter line was computed 
using a symbolic algebra package and represents the idealized one degree of freedom 
cumulative X 2 distribution. The rougher curve was computed by a numerical experi- 
ment in which p -- 0.01, nl = 100, and n2 = 10000, which corresponds to the situation 
in Figure 3. The close agreement shows that the likelihood ratio measure produces 
accurate results over six decades of significance even in the range where the normal 
X 2 measure diverges radically from the ideal. 
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Log-likelihood versus Pearson X 2 
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Log-likelihood versus Pearson X 2 
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6. Practical Resul ts  

6.1 Bigram Ana lys i s  o f  a Smal l  Text 
To test the efficacy of the likelihood methods ,  an analysis was  m a d e  of a 30,000-word 
sample  of text obtained f rom the Union Bank of Switzerland, with the intention of 
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Ideal versus simulated Log-likelihood 

finding pairs of words that occurred next to each other with a significantly higher 
frequency than would be expected, based on the word frequencies alone. The text was 
31,777 words of financial text largely describing market conditions for 1986 and 1987. 

The results of such a bigram analysis should highlight collocations common in 
English as well as collocations peculiar to the financial nature of the analyzed text. 
As will be seen, the ranking based on likelihood ratio tests does exactly this. Similar 
comparisons made between a large corpus of general text and a domain-specific text 
can be used to produce lists consisting only of words and bigrams characteristic of 
the domain-specific texts. 

This comparison was done by creating a contingency table that contained the 
following counts of each bigram that appeared in the text: 

k(A B) I k("~ A B) I 
k(A~B) k(~A ,,~B) 

where the ~ A B represents the bigram in which the first word is not word A and the 
second is word/3. 

If the words A and B occur independently, then we would expect p(AB) = p(A)p(B) 
where p(AB) is the probability of A and B occurring in sequence, p(A) is the probability 
of A appearing in the first position, and p(B) is the probability of B appearing in the 
second position. We can cast this into the mold of our earlier binomial analysis by 
phrasing the null hypothesis that A and B are independent as p(A I B) = p(A [,~ B) = 
p(A). This means that testing for the independence of A and B can be done by testing 
to see if the distribution of A given that B is present (the first row of the table) is 
the same as the distribution of A given that B is not present (the second row of the 
table). In fact, of course, we are not really doing a statistical test to see if A and B are 
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independent ;  we know that they are generally not independent  in text. Instead we just 
want  to use the test statistic as a measure that will help highlight particular As and 
Bs that are highly associated in text. 

These counts were analyzed using the test for binomials described earlier, and the 
50 most  significant are tabulated in Table 2. This table contains the most  significant 
200 bigrams and is reverse sorted by  the first column, which contains the quanti ty 
- 2  log &. Other  columns contain the four counts from the contingency table described 
above, and the bigram itself. 

Examination of the table shows that there is good correlation with intuitive feelings 
about  how natural  the bigrams in the table actually are. This is in distinct contrast with 
Table 3, which contains the same data except that the first column is computed  using 
Pearson's ~2 tes t  statistic. The overestimate of the significance of items that occur only 
a few times is dramatic. In fact, the entire first port ion of the table is dominated  by 
bigrams rare enough to occur only once in the current  sample of text. The misspelling 
in the bigram 'sees posibilities' is in the original text. 

Out of 2693 bigrams analyzed, 2682 of them fall outside the scope of applicability 
of the normal X 2 test. The 11 bigrams that were suitable for analysis with the X 2 test 
are listed in Table 4. It is notable that all of these bigrams contain the word the, which 
is the most  common word  in English. 

7. Conclus ions  

Statistics based on the assumption of normal  distribution are invalid in most  cases 
of statistical text analysis unless either enormous  corpora are used, or the analysis is 
restricted to only the very  most common words  (that is, the ones least likely to be of 
interest). This fact is typically ignored in much of the work  in this field. Using such 
invalid methods  may  seriously overestimate the significance of relatively rare events. 
Parametric statistical analysis based on the binomial or mult inomial  distribution ex- 
tends the applicability of statistical methods  to much smaller texts than models  using 
normal  distributions and shows good promise in early applications of the method.  

Further work is needed to develop software tools to allow the straightforward 
analysis of texts using these methods.  Some of these tools have been developed and 
will be distributed by the Consort ium for Lexical Research. For further  information 
on this software, contact the author  or the Consort ium via e-mail at ted@nmsu.edu or 
lexical@nmsu.edu. 

In addition, there are a wide variety of distribution free methods  that may  avoid 
even the assumption that text can be modeled  by mult inomial  distributions. Measures 
based on Fischer's exact method  may  prove even more satisfactory than the likelihood 
ratio measures described in this paper. Also, using the Poisson distribution instead of 
the mult inomial  as the limiting distribution for the distribution of counts may  provide 
some benefits. All of these possibilities should be tested. 

8. Summary  of  Formulae ** 

For the binomial case, the log likelihood statistic is given by 

- 2  log & = 2 [log L(pl~ kl~ ?/1 ) q- log L(p2~ k2, ?/2) -- log L(p, kl, nl) - log L(p, k2, ?/2)] 

where  
logL(p, n, k) = k logp  + (n - k) log(1 - p) 

also, pl = k z p2 = ~ and p = k~+ka 
n I ' ~t 2 ' n I q - ? l  2 • 
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Table 2 
Bigrams Ranked by Log-Likelihood Test 

- 2  log A k(AB) k(A ~ B) k(,,~ AB) k(~  A ~ B) A B 

270.72 110 2442 111 29114 the 
263.90 29 13 123 31612 can 
256.84 31 23 139 31584 previous 
167.23 10 0 3 31764 mineral 
157.21 76 104 2476 29121 at 
157.03 16 16 51 31694 real 
146.80 9 0 5 31763 natural 
115.02 16 0 865 30896 owing 
104.53 10 9 41 31717 health 
100.96 8 2 27 31740 stiff 
98.72 12 111 14 31640 is 
95.29 8 5 24 31740 qualified 
94.50 10 93 6 31668 an 
91.40 12 111 21 31633 is 
81.55 10 45 35 31687 1 
76.30 5 13 0 31759 balance 
73.35 16 2536 1 29224 the 
68.96 6 2 45 31724 accident 
68.61 24 43 1316 30394 terms 
61.61 3 0 0 31774 natel 
60.77 6 92 2 31677 will 
57.44 4 11 1 31761 great 
57.44 4 11 1 31761 government 
57.14 13 7 1327 30430 part 
53.98 4 1 18 31754 waste 
53.65 4 13 2 31758 machine 
52.33 7 61 27 31682 rose 
52.30 5 9 25 31738 passenger 
49.79 4 61 0 31712 not 
48.94 9 12 429 31327 affected 
48.85 13 1327 12 30425 of 
48.80 9 4 872 30892 continue 
47.84 4 41 1 31731 2 
47.20 8 27 157 31585 competition 
46.38 10 472 20 31275 a 
45.53 4 18 6 31749 per 
44.36 7 0 1333 30437 course 
43.93 5 18 33 31721 generally 
43.61 19 50 1321 30387 level 
43.35 20 2532 25 29200 the 
43.07 6 875 0 30896 to 
43.06 3 1 10 31763 french 
41.69 3 29 0 31745 3 
41.67 3 1 13 31760 knitting 
40.68 4 5 40 31728 25 
39.23 9 5 1331 30432 because 
39.20 5 40 25 31707 stock 
38.87 2 0 1 31774 scanner 
38.79 3 0 48 31726 pent 
38.51 3 23 1 31750 firms 
38.46 4 2 98 31673 restaurant 
38.28 3 12 3 31759 fell 
38.14 6 4 432 31335 climbed 
37.20 6 41 70 31660 total 
37.15 2 0 2 31773 hay 
36.98 3 10 5 31759 current 

swiss 
be 
year 
water 
the 
terms 
gas 
to 
insurance 
competition 
likely 
personnel 
estimated 
expected 
2 
sheet 
united 
insurance 
of 
c 
probably 
deal 
bonds 
of 
paper 
exhibition 
slightly 
service 
yet 
by 
september 
to 
nd 
from 
positive 
100 
of 
good 
of 
stock 
register 
speaking 
rd 
machines 
000 
of 
markets 
cash 
up 
surveyed 
business 
back 
by 
production 
crop 
transactions 
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Table 3 
Bigrams Ranked by X 2 Test 

31777.00 3 0 0 31774 natel 
31777.00 1 0 0 31776 write 
31777.00 1 0 0 31776 wood 
31777.00 1 0 0 31776 window 
31777.00 1 0 0 31776 upholstery 
31777.00 1 0 0 31776 surveys 
31777.00 1 0 0 31776 sees 
31777.00 1 0 0 31776 practically 
31777.00 1 0 0 31776 poultry 
31777.00 1 0 0 31776 physicians'  
31777.00 1 0 0 31776 paints 
31777.00 1 0 0 31776 maturi ty  
31777.00 1 0 0 31776 listeriosis 
31777.00 1 0 0 31776 la 
31777.00 1 0 0 31776 instance 
31777.00 1 0 0 31776 cans 
31777.00 1 0 0 31776 bluche 
31777.00 1 0 0 31776 a313 
24441.54 10 0 3 31764 mineral 
21184.00 2 0 1 31774 scanner 
20424.86 9 0 5 31763 natural 
15888.00 1 1 0 31775 suva 's  
15888.00 1 1 0 31775 suva's  
15888.00 1 1 0 31775 responsible 
15888.00 1 1 0 31775 red 
15888.00 1 1 0 31775 joined 
15888.00 1 1 0 31775 highest 
15888.00 1 1 0 31775 generating 
15888.00 1 1 0 31775 enables 
15888.00 1 1 0 31775 dessert 
15888.00 1 1 0 31775 consolidated 
15888.00 1 1 0 31775 catalytic 
15888.00 1 1 0 31775 bread 
15888.00 1 1 0 31775 bottlenecks 
15888.00 1 1 0 31775 bankers '  
15888.00 1 1 0 31775 appenzell  
15888.00 1 1 0 31775 56 
15888.00 1 1 0 31775 56 
15888.00 1 1 0 31775 46 
15888.00 1 1 0 31775 43 
15888.00 1 1 0 31775 43 
15888.00 1 0 1 31775 wheel 
15888.00 1 0 1 31775 shops 
15888.00 1 0 1 31775 selected 
15888.00 1 0 1 31775 propelled 
15888.00 1 0 1 31775 overcapacities 
15888.00 1 0 1 31775 listed 
15888.00 1 0 1 31775 liquid 
15888.00 1 0 1 31775 incl. 
15888.00 1 0 1 31775 fats 
15888.00 1 0 1 31775 drastically 
15888.00 1 0 1 31775 completing 
15888.00 1 0 1 31775 cider 
15888.00 1 0 1 31775 bicycle 
15888.00 1 0 1 31775 auctioning 
15887.50 2 0 2 31773 hay 

c 
offs 
pulp  
frames 
leathers 
expert 
posibilities 
drawn 
farms 
fees 
varnishes 
hovered 
bacteria 
presse 
280 
casing 
crans 
intercontinental 
water  
cash 
gas 
responsibilities 
questionable 
clients 
ink 
forces 
density 
modest  
conversations 
cherry 
lagging 
converter 
grains 
booking 
association's 
abrupt  
513 
O82 
520 
classified 
502 
drive 
joined 
collections 
railcars 
arising 
job 
fuels 
cellulose 
oils 
deteriorate 
constructions 
apples 
tags 
collections 
crop 
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Table 4 
Bigrams where X 2 analysis is applicable. 

)~2 k(AB) k(A ,-. B) k(~ AB) k(~ A .., B) A B 

525.02 110 2442 111 29114 the swiss 
286.52 76 104 2476 29121 at the 
51.12 26 2526 66 29159 the volume 

6.03 4 148 2548 29077 be the 
4.48 1 73 2551 29152 months the 
4.31 1 71 2551 29154 increased the 
0.69 4 70 2548 29155 1986 the 
0.42 7 62 2545 29163 level the 
0.28 4 60 2548 29165 again the 
0.12 5 2547 67 29158 the increased 
0.03 18 198 2534 29027 as the 

For the mul t inomia l  case, this statistic becomes  

- 2  log A = 2 [log L(P1, K1) + log L(P2~ K2) - log L(Q, K1) - log L(Q, K2)] 

where  

qj 

log L(P, K) 

kji 
Pji - ~j kji 

= ~ k j l o g p j  

J 
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