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Unification-based grammar formalisms use feature structures to represent linguistic knowledge. 
The only operation defined on feature structures, unification, is information-combining and 
monotonic. Several authors have proposed nonmonotonic extensions of this formalism, as for 
a linguistically adequate description of certain natural language phenomena some kind of default 
reasoning seems essential. We argue that the effect of these proposals can be captured by means 
of one general, nonmonotonic, operation on feature structures, called default unification. We 
provide a formal semantics of the operation and demonstrate how some of the phenomena used to 
motivate nonmonotonic extensions of unification-based formalisms can be handled. 

1. Introduct ion 

While monotonicity is often desirable from a formal and computational perspective, it 
is at odds with a considerable body of linguistic work. Default principles, default rules, 
and default feature-values can be found in many linguistic formalisms and are used 
prominently in work on phonology, morphology, and syntax. In spite of their great 
expressive power and flexibility, unification-based grammar formalisms (see Shieber 
1986a, for an introduction) are in general not very successful in modeling such de- 
vices. Unification is an information-combining, monotonic, operation on feature struc- 
tures, whereas the implementation of default devices typically requires some form of 
nonmonotonicity. In this paper, we present a nonmonotonic operation on feature struc- 
tures, which enables us to implement the effects of a number of default devices used 
in linguistics. As the operation is defined in terms of feature structures only, an impor- 
tant characteristic of unification-based formalisms, namely that linguistic knowledge 
is encoded in the form of feature structures, is preserved. 

In the next section, we present an overview of linguistic phenomena that are best 
described using defaults. We also argue that previous proposals for handling these 
phenomena in a unification-based setting are unsatisfactory. Section 3 provides the 
formal background for the central part of the paper, Section 4, in which a definition 
of default unification is presented. Section 5 briefly presents some applications of this 
operation and the final section draws some conclusions concerning the role of non- 
monotonicity in unification-based formalisms. 

2. Prev ious  Work 

There are a number of phenomena that suggest that unification-based grammar for- 
malisms might profit from the addition of some form of nonmonotonicity, and several 
authors have in fact suggested such extensions. In this section, we argue that these 
proposals suffer from a number of shortcomings. Most importantly, previous propos- 
als have either been highly restricted in scope or have been presented in very informal 
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terms, thus leaving a number of questions concerning the exact behavior of the pro- 
posed extensions unanswered. 

An overview of the issues that call for the addition of non-monotonic reasoning 
and of some of the proposals in that direction is presented below. 

• Exceptional Rules. Consider a language in which the vast majority of 
verbs cannot precede its subject, whereas a small number of exceptional 
verbs can. The rule accounting for inverted structures would probably 
require that verbs occurring in it be marked as +INV (i.e. (INV) : +). As a 
consequence, all regular verbs must be marked explicitly as --INV (to 
prevent them from occurring in the inversion rule). Note that, in a 
unification-based grammar, there is no need to mark the exceptional 
verbs as +INV, which leads to the rather counterintuitive situation that 
regular verbs need to be marked extra, whereas the exceptional ones can 
remain underspecified. A more natural solution would be to assign all 
verbs the specification qNV by default (either by means of template 
inheritance or by means of lexical feature specification defaults as used 
in Generalized Phrase Structure Grammar [GPSG; Gazdar et al. 1985]) 
and to overwrite or block this specification in the exceptional cases. The 
possibility of incorporating an overwrite operation in a unification-based 
formalism is mentioned in Shieber (1986a, p. 60). 

• Feature Percolation Principles. Both GPSG and Head-driven Phrase 
Structure Grammar (HPSG; Pollard and Sag 1987) adopt the so-called 
Head Feature Convention (HFC). In GPSG, the HFC is a default principle: 
head features will normally have identical values on mother and head, 
but specific rules may assign incompatible values to specific head 
features. In unification-based formalisms, it is impossible to express this 
principle directly. Adding the constraint (Xo head) = (Xi head) to every 
rule of the form Xo --~ X1. . .  Xn (with Xi (1 K i < n) the head of the rule 
and assuming all head features to be collected under head) will not do, as 
it rules out the possibility of exceptions altogether. Shieber (1986b) 
therefore proposes to add this constraint conservatively, which means that, 
if the rule already contains conflicting information for some head feature 
f, the constraint is replaced by a set of constraints (Xo head f ')  = 
(Xi head f'), for all head features f '  # f. 

• Structuring the Lexicon. Flickinger, Pollard, and Wasow (1985), 
Flickinger (1987), De Smedt (1990), Daelemans (1988), and others, have 
argued that the encoding and maintenance of the detailed lexical 
descriptions typical for lexicalist grammar formalisms benefits greatly 
from the use of (nonmonotonic) inheritance. In Flickinger, Pollard, and 
Wasow (1985), for instance, lexical information is organized in the form 
of frames, which are comparable to the templates (i.e., feature structures 
that may be used as part of the definition of other feature structures) of 
PATR-II (Shieber 1986a). A frame or specific lexical entry may inherit 
from more general frames. Frames can be used to encode information 
economically and, perhaps more importantly, as a means to express 
linguistic generalizations. For instance, all properties typical of verbs are 
defined in the VERB-frame, and properties typical of auxiliaries are 
defined in the AUX-frame. The AUX-frame may inherit from the 
VERB-frame, thus capturing the fact that an auxiliary is a kind of verb. 
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In this approach, a mechanism that allows inheritance of information by 
default (i.e., a mechanism in which local information may exclude the 
inheritance of more general information) is of great importance. Without 
such a mechanism, a frame may contain only properties that hold 
without exception for all items that inherit from this frame. In practice, 
however, one often wants to define the properties that are typical for a 
given class in the form of a frame, without ruling out the possibility that 
exceptions might exist. In unification-based formalisms, templates can 
play the role of frames, but as unification is used to implement 
inheritance, nonmonotonic inheritance is impossible. 

• Inflectional Morphology. In PATR-II the lexicon is a list of inflected 
word forms associated with feature structures. The only tools available 
for capturing lexical generalizations are templates (see above) and lexical 
rules. Lexical rules may transform the feature structure of a lexical entry. 
An example is the rule for agentless passive (Shieber 1986a, p. 62), which 
transforms the feature structure for transitive past participles into a feature 
structure for participles occurring in agentless passive constructions. 
Lexical rules can only change the feature structure of a lexical entry, not 
its word form, and thus, the scope of these rules is rather restricted. 
While the examples in Flickinger, Pollard, and Wasow (1985) and Evans 
and Gazdar (1989a,b) suggest that the latter restriction can be easily 
removed, it is not so obvious how a unification-based grammar 
formalism can cope with the combination of rules and exceptions typical 
for (inflectional) morphology. For instance, it is possible to formulate a 
rule that describes past tense formation in English, but it is not so easy 
to exclude the application of this rule to irregular verbs and to describe 
(nonredundantly) past tense formation of these irregular verbs. Evans 
and Gazdar (1989a,b) present the DATR-formalism, which, among other 
things, contains a nonmonotonic inference system that enables an elegant 
account of the blocking-phenomenon just described. The examples used 
throughout their presentation are all drawn from inflectional 
morphology and illustrate once more the importance of default 
reasoning in this area of linguistics. 

• Gapping. In Kaplan (1987) it is observed that gapping constructions and 
other forms of nonconstituent conjunction can be analyzed in Lexical 
Functional Grammar (Bresnan and Kaplan, 1982) as the conjunction of 
two functional-structures (f-structures), one of which may be incomplete. 
The missing information in the incomplete f-structure can be filled in if it 
is merged with the complete f-structure, using an operation called 
priority union. Priority union of two f-structures A and B is defined as an 
operation that extends A with information from B that is not included 
(or filled in) in A. As not all information in B is present in the priority 
union of A and B, this operation introduces nonmonotonicity. 

The proposals for incorporating the kind of default reasoning that is required for 
each of the phenomena above are both rather diverse and idiosyncratic and, further- 
more, suffer from a number of shortcomings. 

The Head Feature Convention and Feature Specification Defaults of GPSG, for instance, 
appear to be motivated with a very particular set of linguistic phenomena in mind 
and also are rather intimately connected to peculiarities of the GPSG-formalism. What 
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is particularly striking is the fact that two different conceptions of default appear  to 
play a role: a head feature is exempt  f rom the HFC only if this would  otherwise lead 
to an inconsistency, whereas a feature is exempt  from having the value specified in 
some feature specification default  (among others) if this feature covaries with another  
feature. 

Overwrite and add conservatively are also highly restricted operations. From the 
examples given in Shieber (1986a) it seems as if overwri t ing can only be used to 
add or substitute (nonmonotonically) one atomic feature value in a given (possibly 
complex) feature structure (which acts as default). Add  conservatively, on the other 
hand, is only used to add one reentrancy (as far as possible) to a given feature structure 
(which acts as nondefault).  An additional restriction is that add conservatively is well 
behaved only for the kind of feature structures used in GPSG (that is, feature structures 
in which limited use is made  of covariation or reentrancy). Consider  for instance the 
example in (1). 1 Adding the constraint (Xo head) = (X1 head) to (1) conservatively 
could result in either la  or lb.  

Example 1 

Go 

X1 

head 

head 

a. 
Xo 

X1 

head 

head 

b. 
X0 

X1 

head 

head 

As add conservatively and overwri t ing are, in a sense, mirror  images of each 
other, it is tempting to generalize the definitions of these operat ions and to think of 
them as operations on arbitrary feature structures, whose effect is equivalent  to that 
of priority union. Thus, given two feature structures FSD (the default) and FSND (the 
nondefault) ,  adding FSp to FSND conservatively would  be equivalent  to overwri t ing 
FSD with FSND, and to the priority union  of FSND and FSD (i.e. FSND/FSD in the 
notat ion of Kaplan [1987]). However ,  in light of the example above, it should be clear 
that such a generalization is highly problematic. Other  examples wor th  considering 
are 2 and 3. 

1 Whether this kind of situation can occur in GPSG probably depends on whether one is willing to 
conclude from examples such as: 

S[COMPo~] ---* {[SUBCATa]}, H[COMP NIL] (Gazdar et al. 1985, p. 248) 

that covariation of arbitrary categories is in principle not excluded in this formalism. 

186 



Gosse Bouma Feature Structures and Nonmonotonicity 

Example 2 

Example 3 

g:r~a FSND= [ g:b ] 

Again, if we try to combine the two feature structures along the lines of any one of 
the operations mentioned above, there are at least two possible results (note that in 
Example 3, we could either preserve the information that features f and g are reentrant, 
or preserve the information that f : a), and there is no telling which one is correct. 

Two conclusions can be drawn at this point. First of all, on the basis of the ex- 
amples just given, it can be concluded that a nonmonotonic operation on feature 
structures that relies (only) on the fact that the result should be consistent must be 
very restricted indeed, as more generic versions will always run into the problem that 
there can be several mutually exclusive solutions to solving a given unification conflict. 
Second, claims that the operations add conservatively, overwriting, and priority union are 
equivalent are unwarranted, as no definitions of these operations are available that are 
sufficiently explicit to determine what their result would be in moderately complex 
examples such as 1-3. 

The approach exemplified by Flickinger (1987) and others is to use a general- 
purpose knowledge representation formalism to represent linguistic information and 
model default inheritance. Feature structures are defined as classes of some sort, which 
may inherit from other, more generic, classes. The inheritance strategy used says that 
information in the generic class is to be included in the specific class as well, as 
long as the specific class does not contain local information that is in conflict with 
the information to be inherited. Such an inheritance strategy will run into problems, 
however, if reentrancies are generally allowed. For instance, think of the examples 
presented above as involving a generic class FSD from which a specific class FSND 
inherits. The inheritance procedure in, for instance, Flickinger (1987, p. 59ff) does not 
say anything about which one of the possible results will be chosen. 

The work of Evans and Gazdar (1989a,b), finally, is not easily incorporated in a 
unification-based formalism, as they use semantic nets instead of feature structures to 
represent linguistic information. That is, although the syntax of DATR is suggestively 
similar to that of, for instance, PATR-II, DATR descriptions do in fact denote graphs 
that differ rather substantially from the graphs used to represent feature structures (see 
Evans and Gazdar 1989b). The nonmonotonic reasoning facilities of DATR therefore 
are not directly applicable in a unification-based formalism either. 

We conclude that a formally explicit definition of a nonmonotonic operation on 
feature structures is still missing. In particular, the interaction of reentrancy and non- 
monotonicity is a subtle issue, which has not been given the attention it deserves. That 
there is a need for nonmonotonic devices is obvious from the fact that several authors 
have found it necessary to introduce partial solutions for dealing with nonmonotonic- 
ity in a unification-based setting. The intuitions underlying these proposals appear to 
be compatible, if not identical, and thus it seems attractive to consider an operation 
that subsumes the effects of the proposals so far. Default Unification, as defined below, 
is an attempt to provide such an operation. 
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3. Feature Structures and Unif ication 

Feature structures are often depicted as matrices of attribute-value pairs where values 
are either atoms or feature structures themselves and, furthermore, values may  be 
shared by different attributes in the feature structure. Feature structures can be defined 
using a description language, such as the one found in PATR-II (Shieber 1986a) or in 
Kasper and Rounds (1986; 1990). For instance, 4a is a description of 4b. 

Example 4 

a. ( (f) = a 
(g f )  = a 
(g f )  = Igg)  

f ' a  

Following the approach of Kasper and Rounds (1986; 1990), and others, we represent 
feature structures formally as finite (acyclic) automata (the definition below is taken 
from Dawar and Vijay-Shanker 1990): 

Def in i t ion  
A finite acyclic automaton A is a 7-tuple 

(Q, ~, P, 6, q0, F, "~/where: 

1. Q is a nonempty  finite set of states, 

2. G is a countable set (the alphabet), 

3. 1 ~ is a countable set (the output  alphabet), 

4. ~ : Q x G --* Q is a finite partial function (the transition function), 

5. q0EQ,  

6. FC_Q,  

7. )~ : F --* P is a total function (the output  function), 

8. the directed graph (Q, E) is acyclic, where pEq iff for some 
l E Y~,6(p,I) = q, 

9. for every q E Q, there exists a directed path from q0 to q in (Q, E), and 

10. for every q E F, 6(q, I) is not defined for any l. 

We will frequently write QA, GA, etc. for the set of states of automaton A, the alphabet 
of A, etc. 

The relationship between the matrix notation and the automaton concept should 
be obvious. The following automaton M is, for instance, equivalent to the matrix in 4b. 
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Example 5 

QM = {q0,ql,q2,q3} ~SM(q2,g) = q 3  
~M = {f ,g}  ~M(q2,f) = q3 
FM = {a} FM = {ql,q3} 
6M(qo,f) = q l  /~M(ql) = a 
~M(qo~g) "~" 92 AM(93 ) = a 

Note that ~M(qo,gf) = ~M(qo,gg) = 9 3 ,  2 which represents the fact that the two paths 
(gf) and (gg) are reentrant. Unification is defined in terms of subsumption, a relation 
that imposes a partial ordering on automata: 

Definit ion 
An automaton A subsumes  an au tomaton  B (A _ B) iff there is a homomorph i sm h 

from A to B such that: 

1. h(6A(q,l) = ~s(h(q),l), 

2. &B(h(q)) = &A(q) for all q E FA, and 

3. h(qoA) = qoB- 

Intuitively, A u B if B extends the information in A. A = B if A _ B and B U A. 
Unification of two automata A and B (A U B) is the least upper bound of these automata 
under  subsumption.  If no upper  bound  exists, unification fails. 

The semantics of descriptions (sets of formulae of the description language) is 
given in terms of satisfaction: 

Definit ion 
An automaton A = (Q, G, F, 6, q0, F, ;~) satisfies a description D (A ~ D) or a formula 

(A ~ q~) in the following cases: 

A ~ D  
A~a 
A ~ (p) -- D 
A ~ (pl) = (p2) 

iff for all q~ E D :A ~ q~, 
iff Q = F = {q0} and &(q0) = a, 
iff 6(qo, p) is defined and qo/P ~ D, 
iff 6(qo, pl) = ~(q0, p2). 

qo/P is the automaton obtained from A by making ~(q0, P) the initial state and 
removing all inaccessible states. There is always a unique minimal element  in the 
subsumption hierarchy that satisfies a description D. This element is the denotat ion 
of D. 3 

2 rS(q, pl) is defined for pl ff ~* as 6(6(q, p), 1). 
3 Much  of the formal  work  on feature s t ructures  is concerned wi th  the semant ics  of  feature s t ructure  

descr ipt ions  involv ing  dis junct ion and  negation.  Such descr ipt ions  do not  denote  a un ique  feature 
structure,  bu t  denote  sets of feature structures.  Such extens ions  are not  taken into considerat ion here. 
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4. Default Unification 

Default reasoning with feature structures requires the ability to modify feature struc- 
tures nonmonotonically. Unification does not have this ability, as it can only replace a 
feature structure by more specific instances of that structure. Below, we define default 
unification as an operation that merges parts of one feature structure (the default ar- 
gument) with another feature structure (the nondefaul t  argument). We write AU!B for 
the default unification of the default feature structure A and the nondefault  feature 
structure B. The operation has the following characteristics: 

1. It has a declarative semantics and is procedurally neutral. That is, if 
A -- A' and B = B', then (AU!B) = (A'U!B'). 

2. It is monotonic only with respect to the nondefault  argument.  That is, 
B U (AU!B) is always true, but in general A U (AU!B) will not hold. 

3. It never fails. If A is fully incompatible with B, (AU!B) = B. 

4. It gives a unique result. 

5. Reentrancies in the nondefaul t  argument  may  be replaced by a weaker set 
of reentrancies if necessary (this is the add conservatively operation of 
Shieber (1986b)). 

Intuitions about default unification appear to be more clear in those cases where 
feature structures do not contain any reentrancies. Therefore, we will first define de- 
fault unification for this case, moving to the general case in Section 4.2. Section 4.3. 
deals with the incorporation of add conservatively. 

4.1 Default Unification without Reentrancies 
Subsumption suggests a straightforward definition of an operation that has properties 
1-4 above. 

Definition 
Default Unification (first version) AU!B = A ~ U B, where A ~ is the maximal (i.e. most  
specific) element in the subsumption ordering such that A' r- A and A ~ U B is defined. 

From this definition of U!, it follows immediately that properties 1-3 hold. The 
fact that default unification has a unique result follows from the fact that A' is unique 
(up to isomorphism). 4 Note furthermore that from tile requirement that A ~ must  be the 
maximal it follows that no information contained in A is left out in AU!B unnecessarily. 

4 Unici ty of A p is p roved  as follows: A s s u m e  that  there is an  A" such  that  (1) A" ~ X ,  (2) A t E A and  
A" U A, (3) A t U B and  A" U B are defined,  and  (4) both  A t and  A" are maximal .  We show that  these 
a s s u m p t i o n s  are inconsistent.  From (2) it fol lows that  A t U A" is def ined and  ( X  U A ' )  D A. From (3) it 
follows that  ( X  U A ' )  U B is defined (since, if there are no reentrancies,  it ho lds  in general  that  if X U Y, 
Y U Z, and  X u Z are defined,  X u Y U Z is defined).  But then, if (A t U A ' )  = A t or (A t U A ' )  = A ' ,  
either condi t ion (1) or (4) is not  met ,  or, if A t U A" ~ A t ~ A ' ,  condi t ion (4) is not  met.  D 
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An example of default unification is presented below (where nil is used to represent 
the empty feature structure): 

Example 6 

A = 

f : a  

ii! g:  g:  a 

B = 
f:a ] 

g .  :b] ] 

a ! 
f ; a  

[ nii g:  
g : na 

A ' U B =  

f : a  

f: f:a 
g:  g:  g : b  

The definition of default unification above relies crucially on the fact that there 
is a unique maximal element A' unifiable with B. In Section 2, we argued that such 
an approach is only feasible for a limited domain. In particular, once reentrancies 
are introduced, A' is no longer guaranteed to be unique, and the definition above is 
therefore not easily generalized. Fortunately, it is also possible to define AU!B without  
requiring unifiability of some element A t with B explicitly. This definition, which will 
be extended below, defines AU!B in terms of the difference of the two arguments A 
and B. 

Definition 
Difference (first version) The difference of two automata A and B is the maximal 
element A - B that meets the following conditions: 

1. A - B U _ A ,  

2. if 8a-B(q0,p) is defined, then there is no prefix p' of p such that 
6B(qO,P') E FB, 

3. if ~a-B(q0,p) E FA-B then ~8(q0,P) is undefined. 

Definition 
Default Unification (second version) 
Atd!B = (A - B) U B. 

It should be obvious that characteristics 1-3 continue to hold. Uniqueness follows 
in this case from the fact that the difference operation will give a unique result. (A - B 
can be constructed from A by checking for each state in A whether it must  be removed 
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or not and ensuring that the resulting automaton is connected.) For instance, assuming 
A and B to be defined as in Example 6, we find that A - B is: 

Example 7 

Note that in A - B all parts that are identical in A and 13 are removed,  whereas  this was 
not the case for A', as defined in Definition 3.1. The outcome of default  unification, 
however,  is identical in both cases. The reason for this restriction on A - B will become 
apparent  below. 

While default  unification monotonical ly extends the nondefaul t  a rgument  (i.e. B E 
AU!B) and nonmonotonical ly  extends the default  argument ,  the operat ion itself is 
monotonic  in its default  a rgument  and nonmonotonic  in its nondefaul t  argument.  The 
theorem below proves monotonici ty  for the default  argument;  that is, a more  specific 
default  a rgument  will lead to a more  specific outcome of default  unification: 

Theorem 1 
For all feature structures A, B, and C, not containing reentrancies, if A F- B then 
(ALl!C) _ (BU!C). 

Proof 
It suffices to show that (A - C) G (B - C), or in other words: 

1. if ,X(6A-C(qo~p) ) = a then ,X(6B-c(qo~P)) = a, and 

2. if 6A-C(qo,P) is defined then 6B-c(q0,p) is defined. 

If these two conditions are met,  there is a homomorph i sm from A - C to B - C as 
required by the definition of subsumption.  (Remember that there are no reentrancies.) 

Case (1): If .X(6A-C(qO, p)) = a, then (i))~(6B(qo, p)) = a (since A - C _G_ A U B) and 
from the definition of A - C it follows that (ii) there is no prefix p' of p such that 
6c(qo, p') c Fc nor  is ~c(q0,p) defined. From (i) and (ii) it follows that ~B-c(q0,p) is 
defined and that ~(6~-c(q0, p)) = a. 

Case (2): If ~A-C(q0, p) is defined and 6A-C(qO, p) (~ FA-C (otherwise this case re- 
duces to case (1)), it follows that (i) 6B(q0, p) is defined, and (ii) there is no prefix p~ of 
p such that ~c(q0, p') E Fc. From (i) and (ii) it follows that ~B-C(q0, p) is defined. • 

Note, however,  that addit ion of nondefaul t  information does not necessarily lead 
to a more  specific result. That is, the dual  of Theorem 1. does not  hold: 

Example 8 

if B E_ C then (ALl!B) G (ALl!C) 

The reason is that addit ion of nondefaul t  information may  lead to a larger amount  
of default  information being removed,  and thus, the resulting feature-structures AU!B 
and AU!C can be incompatible. An example that falsifies 8 is presented below. 
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Example 9 

A =  ~ : a ]  

B =  L~:b] Au!B= 

: b AU!C = 

b 

b 

Finally, for feature structures wi thout  reentrancies, the following distribution law 
holds: 

Theorem 2 
For all feature structures A, B, and C, not  containing any reentrancies and such that 
A U B is defined, (A U B)U!C -- (AU!C) td (BU!C) 

Proof 
Since (AUB)U!C = ( (AUB) -C)WC and (AU!C)U(BU!C)= ( ( A - C ) U C ) W ( ( B - C ) U C ) =  
(A - C) U (B - C) U C, it suffices to prove that (A U B) - C = (A - C) U (B - C). Let 
D = ( A O B ) - C a n d E = ( A - C ) u ( B - C ) . I t m u s t b e s h o w n t h a t ( 1 ) D E E a n d ( 2 )  
E G D .  

Case (1): If A(6o(qo,p)) = a, then (i) A(~AuB(qo,p)) = a and thus A(6A(qo,p)) = a 
or A(~B(q0,p)) = a (since there are no reentrancies) and (ii) there is no prefix p' of 
p such that 6c(qo,p') c Fc, nor  is 8c(qo,p) defined. From (i) and (ii) it follows that 
A(6A-c(qo,p)) = a or A(SB-C(qo,P)) = a, and thus that A(6E(qo, p)) = a. Similarly, if 
8D(qo, p) is defined (but not an end state), it follows that 6,~(qo, p) or 8B(qO, p) is defined 
and that there is no prefix p' of p such that 6c(qo, p) EFc. Therefore, either 8A-C(qO, p) 
or 6B-C(qo,p) is defined, and thus 8E(qO,P) is defined. It follows that D _u E. 

Case (2): If A(SE(qo,p)) = a, then )~(SA-c(qo,p)) = a or A(SB-c(qo,p)) = a (since 
there are no reentrancies). Therefore, A(SAuB(qo,P)) = a and also, there is no prefix p' 
of p such that 6c(qo,p') E Fc, nor  is ~c(qo,P) defined. It follows that A(6D(qo,p)) = a. 
Similarly if ~E(qO, p) is defined but  not  an end state, 6D(qO, p) is defined. It follows that 
E U D .  • 

As long as Theorem 2. holds, it is possible to define default  unification by  de- 
composing the default  a rgument  into simpler feature structures and adding these 
(nonmonotonically) to the nondefaul t  argument.  This approach appears  to underl ie  
some of the previous proposals,  but  is inadequate  once reentrancies enter the picture. 

4.2 Default Unification with Reentrancies 
Taking reentrancies into account requires an extension of the difference operation. 
If we allow either default  or nondefaul t  information to refer to an extension of a 
nondefaul t  or default  reentrancy, respectively, there is in general no unique maximal 
element  subsuming A and unifiable with B. A slight modification of Examples 2 and 3 
will illustrate this. 

Example 10 
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Example 11 
A =  [ f : [T]~ : a] ] B : [ ~  : a] [ g : [f : b] ] 

In Example 10, there is default  information that refers to an extension of a non- 
default  reentrancy. A - B could be constructed from .4 by  removing either the fact that 
(if) : a or (gf) : b. In 11, nondefaul t  information refers to an extension of a default  
reentrancy. In this case, we could either remove the reentrancy (and the fact that 
(gf) : a) or remove the fact that (if) : a and (gf) : a and preserve the reentrancy. Nei ther  
solution subsumes the other. To avoid such problems, it is best to avoid interaction 
between reentrancies and other information altogether and to treat reentrant  nodes  
in a similar fashion as atomic nodes. That  is, we remove  default  reentrancies if they 
refer to defined parts of the nondefaul t  automaton,  and default  information in general 
is r emoved  if it refers to extensions of nondefaul t  reentrancies. Thus, the difference 
operat ion can be extended as follows: 

Definition 
Difference (final version) The difference of A and B is the maximal  e lement  A - B in 
the subsumpt ion  ordering that meets the following conditions: 

1. A - B U _ A ,  

2. if 6A-B(qO,P) is defined, then there is no prefix pt of p such that 
6B(qo,p') E FB or 6B(qo,P') = 6B(qo,P")(p' • p"), 

3. if 6A-~(qO,P) C FA-B then 6B(qo,p) is undefined,  

4. (4) if 6A-B(qO,P) --- 6A-B(qO,P')(p ~ p') then 6B(qo,p) and 6B(qO,P') are 
undefined.  

The definition of default  unification remains as before: 

Definition 
Default Unification (= second version) 
AU!B --- (A - B) t3 B. 

Again, characteristics 1-4 of default  unification ment ioned in the introduct ion of 
this section hold. Uniqueness of the result follows from the fact that A - B is unique.  
(A - B can be constructed in this case as follows: for all paths p, if 6A(q0, p) = 6A(q0, P'), 
and p is defined in B, introduce a new value for ~A(q0, p) such that the automata  that 
have ~A(q0, p) and 6A(qo, p') as initial state are isomorphic.  Next, check for all states in 
the modif ied au tomaton  whether  they must  be removed  and ensure that the resulting 
au tomaton  is connected.) 

The monotonici ty  propert ies  of default  unification also remain as before. The the- 
orem below is the relevant generalization of Theorem 1. 

Theorem 3 
For all feature structures A, B, and C, if A G B then (AU!C) U (BU!C) 

Proof 
It suffices to show that A - C ___ B - C, or in other  words: 

1. if ~(6A-C(qo, p)) = a, then ,~(6B-C(qO, p)) = a, 
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2. if 6A-c(qo,p) = 6A-C(qo,p') then 6B-c(qo,p) = ~B-C(qo,P'), and 

3. if ~x-c(q0, p) is defined, then ~B-C(q0~p) is defined. 

If these three conditions are met,  there is a homomorph i sm from A - C to B - C as 
required by  the definition of subsumption.  

Case (1): If /~(6A-c(qo,p)) = a, then (i) ~(~B(qO,P)) = a ( since A - C E A _G B) 
and (ii) from the definition of A - C, it follows that there is no prefix p' of p such 
that 6c(q0, p') EFc or 6c(qo, p') = 6c(q0~ p"), nor  is ~c(q0, p) defined. From (i) and (ii) it 
follows that ~B-C(q0~ p) is defined and that A(~B-c(q0, p)) = a. 

Case (2): Similarly, if 6A-C(qO,p) = ~A-C(q0,p'), then (i) 6B(qo,p) = ~B(qo~P'), and 
(ii) there is no prefix p' of p such that ~c(q0,p') E Fc or 6c(qo,p') = 6c(qo,p') nor  is 
6c(q0, p) defined. From (i) and (ii) it follows that 6B-c(q0, p) = 6B-c(q0, p'). 

Case (3): If 6A-c(qo,p) is defined and ~A-C(q0,p) ~ FA-C (otherwise this case re- 
duces to case (1)) and 6A-C(qO,P) not reentrant  (otherwise this case reduces to case 
(2)), it follows that (i) ~B(qo,P) is defined, and (ii) there is no prefix p' of p such that 
6c(qo,p') E Fc or 6c(qo,p') = ~c(q0,p"). From (i) and (ii) it follows that ~B-C(qO, P) is 
defined. • 

The distribution law, however,  continues to hold only in one direction: 

Theorem 4 
For all feature structures A, B, and C, such that A U B is defined, (AU!C) U (BU!C) £- 
(A u B)u!c 

Proof 
As in the previous section, it suffices to prove that (A - C) U (B - C) __U (A U B) - C. 
From the fact that X E X' and Y G Y' implies (X u Y) G (X' u Y'), it follows that 
((A - C) U (B - C)) £- (A U B). Now, as in the previous proof, if some path p is atomic, 
reentrant, or merely defined in ( A -  C) U (B - C), it follows that (i) p is atomic, reentrant,  
or defined in A U B and (ii) there is no atomic or reentrant  path  p' in C that is a prefix 
of p, nor  is p defined in C if p is atomic or reentrant  in (A - C) u (B - C). It follows 
that p is atomic, reentrant,  or defined in (A U B) - C. • 

An illustration of this result is given below. Note  that 12 also illustrates that the 
converse of Theorem 4. no longer holds. 

Example 12 

A = 

B= [g :a]  

c =  [g:b]  
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4.3 Add Conservatively 
Defining default unification as (A - B) U B will fail to capture the idea of Shieber's 
(1986b) add conservatively, as the difference operation completely removes a default 
reentrancy if one of the paths leading to it is also defined in the nondefault  argument.  
However, linguistic applications, such as an encoding of the Head Feature Convention, 
indicate that a more subtle approach should be taken. In particular, if a default struc- 
ture contains the information that ( P / =  (P'), whereas in the nondefault  structure (pl) 
is defined for some feature l, we want  to treat only I as an exception to the general 
rule that ( P / =  (P'/, and preserve the information that Ipl') = (p'l' I (for l' # I). 

We implement  this idea using the following operation: 

Definition 
Let A and B be automata. The extension of A relative to B (Ext(A, B)) is the minimal 

(i.e. most  general) element Ext(A, B) such that 

1. A G Ext(A~B), 

2. if ~A(qO,P) = ~A(qO,p') and ~B(qo,pql) is defined (for some pql E ~*), then 
~Ext(A,B) (qo, pql') = ~Ext(A,B) (qo, p'ql') (wherever possible) for all 1 / E G. 

The automaton A is extended, sometimes somewhat  redundantly,  with reentrant 
paths that are extensions of paths already reentrant in A. Ext(A, B) is nevertheless 
usually more informative than A itself, as the addition of a path pl blocks unification 
with feature structures in which p receives an atomic value. Note furthermore that path 
extensions are not always possible; that is, if 6A(qO,p) E FA and 6B(qo, pl) is defined, 
there is no extension of A in which pl is defined. (This explains the wherever possible). 
In order to get all relevant path-extensions, G will in general be the set of all features 
defined in the grammar, al though in particular cases G can be restricted to a smaller 
set (the set of head-features, for instance). 

We are now ready to give a definition of default unification that incorporates 
the effects of add conservatively. To avoid confusion, we use the operator t3ac! for this 
extended version of default unification. 

Definition 
Default Unification (final version) 
AOac!B = (Ext(A, B) - B) 0 B. 

An example of default unification involving reentrancies is presented below. We 
assume that the set of features G = {f,g}. 

Example 13 

A = 

B = 

Ext(A, B) = 

I i [ r : a  ]] 

I 
f ' [ ]  f:F1 X : [  

f : [  
X : [  
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] E x t ( A , B )  - B = g fg n~ [ : ] 

(Ex t (A ,  B) - B) U B = 

The example shows that default unification is slightly more restrictive than add con- 
servatively, since the original reentrancy is removed even though A and B would have 
been unifiable. The reason is of course that this will guarantee uniqueness of the result 
of default unification, whereas this is not the case for add conservatively. 

5. Linguistic Applications of Default Unification 
In this section, we sketch how default unification can be incorporated in a grammar 
formalism and argue briefly that this can be an alternative for some of the extensions 
mentioned in Section 2. 

5.1 Nonmonotonic Template Inheritance 
In grammar formalisms such as PATR-II, feature structures are defined as sets of 
equations and templates. Each equation or template denotes a feature structure (i.e. 
the minimal feature structure that satisfies the equation or the equations that make 
up the template definition), and the denotation of a set of such elements is simply the 
unification of all their denotations. Incorporation of default unification requires that a 
distinction is made between default and nondefault information. In the notation used 
here, nondefault information is prefixed by a "!'. The feature structure denoted by a 
definition that contains both default and nondefault information is arrived at by first 
unifying all default information and unifying all nondefault information. Next, the 
two feature structures are combined by means of default unification (tAac!). 

If templates are incorporated as default information, the feature structure denoted 
by the template is inherited nonmonontonically. (Monotonic inheritance is possible as 
well of course: this is achieved by prefixing a template with "!'.) As an illustration, 
consider the following fragment, in which an attempt is made to encode some of the 
peculiarities of the English auxiliary system in a lexicalist grammar: 

Example 14 N P  

V E R B  

V P  

A U X  

: ( (cat) = n 
(nform) = norm ). 

: ( ( c a t )  = v 

( a u x )  - -  - 

(inv) = - ). 
:(  V E R B  

(subcat first) = N P  
(subcat rest) = empty  ). 

: ( V E R B  
! ( a u x )  = + 

!(inv) = + 
(subcat first) = V P  
(subcat rest first) = N P  
(subcat rest rest I -- empty  
!(subcat f irst  subcat f irst  nform I = 

(subcat rest f irst  nform I ). 
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Adding the equations !(aux} : + and !(inv} : +5 to the definition of AUX has an ef- 
fect comparable to that of the overwrite-operation of (C;hieber 1986a, p. 60). The AUX 
template inherits from VERB by default, but the equations just mentioned block in- 
heritance of the values for (inv} and (aux}. However, default unification allows us to 
do more. An auxiliary does not subcategorize for an ordinary NP subject, nor does 
it subcategorize for a complement VP that subcategorizes for an ordinary NP subject. 
Rather, the restrictions to be placed on the nform of the subject are inherited from the 
embedded VP: 

Example 15 
a. it will annoy Kim that she lost 
b. *Sue will annoy Kim that she lost 

This dependency between elements of the subcat list is encoded in the final equation, 
which also suppresses (or overwrites) the default value for (nform}. The denotation of 
AUX is thus: 

Example 16 

cat : v 
aux : + 
inv : + 

subcat : 

first : 

r e s t  : 

c a t  : v 

a R x  : - -  

inv : - 

[ [ca t :np  1 ] f i r s t :  
subcat : nform : [ ]  

rest : empty 

f l r s t : [ n f o r m : ~ ]  ] 
. [ cat : np 

rest : empty 

The nonmonotonic inheritance regime is flexible enough to allow for exceptions 
to exceptions. Gazdar et al. (1985, p. 65) observe that at least in some dialects of 
English, the auxiliary might cannot occur in inverted structures. This is expressed in 
the following lexical entry, in which might inherits nonmonotonically from AUX, which 
itself inherits nonmonotonically from VERB: 

Example 17 
might :( AUX 

! ( inv}=-  ). 

There is an important difference between the approach to nonmonotonic inheri- 
tance sketched here and the majority of inheritance-based formalisms used for Knowl- 
edge Representation, which has to do with the way in which templates are evaluated. 
If a template is used as part of the definition of another feature structure, all we need 
to know to determine the denotation of this feature structure is the denotation of this 

5 Note  that  the feature INV as u sed  here  indicates only whe the r  a (lexical) i tem m a y  occur in an  inver ted 
structure.  It does  not  d i s t inguish  be tween  inver ted and  non inver ted  clauses.  
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template (which is a feature structure). H o w  this template was defined (as a set of 
equations or as a combination of (more general) templates, as a combination of de- 
fault and nondefaul t  information or not) is completely irrelevant to its meaning. Thus, 
the denotat ion of A U X  would  remain as before, if we defined it as: 

Example 18 

A U X  : ( (cat) = v 
(aux)  = + 
(inv) = + 

. 

Consequently, the denotat ion of might is not  affected by  this change in definition either. 
The role of classes (or frames) in inheritance-based systems, however,  as described 

in, for instance, Touretzky (1986), is rather different. To determine the denotat ion of a 
class might that inherits from a class A U X ,  we not only need to know the contents of 
A U X ,  but also the classes from which A U X  inherits. The latter is important  for resolv- 
ing multiple-inheritance conflicts. If the class might inherits from both A U X  and VERB, 
for instance, and A U X  in its turn inherits from VERB as well, information inherited 
from A U X  must  take precedence over  information from VERB, as the former  is more  
specific than the latter. In our  nonmonotonic  inheritance mechanism for templates, 
such reasoning is impossible. Adding the template VERB as default  information to the 
definition of the template (or lexical entry) might would  lead to a unification failure 
of the default  information, and thus the definition as a whole would  be considered as 
illegal. 6 This is as it should be, we believe, given the fact that the inheritance hierarchy 
as such should not  play a role in determining the meaning of templates. The denota-  
tion of the template A U X  is the feature structure in 16 (i.e., whether  it is defined as 
in 14 or as in 18 is irrelevant), and from that it is impossible to conclude that A U X  
inherits from VERB, and thus the kind of reasoning used to justify the resolution of 
feature conflicts used in Touretzky (1986) is not applicable in our  case. 

5.2 Lexical Defaults 
The definition of auxiliaries above is still unsatisfactory in that it predicts that auxil- 
iaries subcategorize for verbal complements  that are specified as (aux) = - .  Clearly, 
this requirement  is too strong (although it is correct for the auxiliary do). One way  to 
solve this problem is to redefine the A U X - t e m p l a t e  as: 

Example 19 

AUX : . ° .  

(subcat first cat) = v 
(subcat first subcat first) = N P  
(subcat first subcat rest) = empty 

6 Of course, it is possible to combine incompatible default information if we impose the correct ordering 
explicitly. This can be done by using definitions (i.e. a set of equations in brackets) in definitions: 

might : ( (VERB !AUX) 
!(inv) -= -- ). 

This is equivalent to the definition of might given in 17, albeit more complex and possibly misleading. 
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This solution seems inelegant, however, as it reconstructs part of the VP-template in 
order to express the correct subcategorization requirements. Thus, the obvious gen- 
eralization that an auxiliary subcategorizes for a VP is missed by this redefinition. 
The source of this inelegance is the fact that VP inherits from VERB, and that VERB 
contains default information about properties typical for verbs. However, while these 
properties hold for the vast majority of verbs, it is not the case that if an element 
subcategorizes for a verbal complement, the default properties need to hold for the 
complement as well. What is needed here is a distinction between properties that hold 
by default for all members of a class and default properties that can be assumed to 
hold if a lexical item subcategorizes for members of this class. While the latter can be 
expressed safely by means of templates, the former are more adequately expressed in 
the form of lexical defaults. 

The extension of unification-based formalisms witlh lexical defaults can be imple- 
mented using default unification. The effect of lexical defaults is comparable to that 
of lexical Feature Specification Defaults in GPSG. A lexical default is a statement of the 
form Name: Ant  ~ Cons, where Ant  and Cons are feature structure descriptions. The 
interpretation of lexical defaults is that the feature structure of each lexical entry that 
is subsumed by the antecedent of a lexical default is extended, by means of default 
unification, with the contents of the consequent. Lexical entries are thus compiled in 
two stages: first, the denotation of the feature structure description is computed and 
next, the lexical defaults are applied to this feature structure. 

Consider for example the following lexical defaults: 

Example 20 

FSD1 : 
FSD2 : 

VERB ) ~ ( ( a u x ) = - ) .  
( a u x ) = -  ) ~ ( ( i n v ) = -  ). 

The fragment in 14 and 17 is assumed to be redefined as follows: 

Example 21 

V E R B :  
VP:  

A U X  : 

might: 

( c a t )  = v ). 
VERB 
(subcat first) = NP 
(subcat rest) = empty ). 
VERB 
( a u x )  = + 

(subcat first) = VP 
• . .  ) .  

A U X  
(inv) = - ). 

Each verbal lexical item will be extended with the information (aux) = - ,  unless it 
is an auxiliary of course, since in that case, the lexical entry is already specified as 
(aux) = +. Only nonauxiliary verbs are extended with the information (inv) = - 
(FSD2). 7 Auxiliaries remain unspecified for this feature, thus capturing the fact that 

7 The evaluation of these two lexical defaults is thus order-sensitive, The same situation can in principle 
arise in GPSG as well, although the particular example given here is avoided in GKPS by 
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auxiliaries can, but not necessarily do, occur in inverted structures. 8 The exceptional 
character of might is expressed in this case by adding explicitly the information that it 
cannot invert. 

The problem sketched at the beginning of this section is now resolved. An auxiliary 
subcategorizes for a VP, which in its turn inherits from the template VERB. However, 
since the latter template no longer contains default information that should hold for 
lexical entries only, an auxiliary no longer subcategorizes for verbal complements that 
are (aux) : - .  Auxiliaries that subcategorize for a restricted set of verbal complements, 
such as do, which requires a (aux) : - complement, can be encoded by adding the 
relevant constraint to their lexical entries. 

5.3 Specialization of Reentrancies 
Another important property of default unification is that it enables us to define ex- 
ceptions to a reentrancy. Consider for instance the following GPSG rule (where H 
indicates the head of the rule): 

Example 22 

s x 2  [-subj] 

The symbol S can be analyzed as the feature structure in 23. Applying the Head Feature 
Convention to the rule in 22 amounts to adding to H all head features compatible with 
head features in S. Using default unification, this is implemented in 24 as a default 
reentrancy that equates the head features of S and H. 

Example 23 

S :(  (head n) = - 
(head v) = + 
(head bar) = 2 
(head subj) = + . 

Example 24 

S-rule X0 ~ X1 X2; 
( X o )  = s 

(Xl head bar) = 2 
!(X2 head subj) = - 
(Xo head) = (X2 head) 

The final equation in 24 both implements the HFC and defines X2 as the head daughter. 
An exception to the reentrancy is the fact that IX2 head subj) = - ,  which is therefore 
represented as nondefault information. In this approach, the HFC is part of the rules 
itself and thus, the effect of Shieber's (1986b) special-purpose compilations step, which 
adds the HFC conservatively, is achieved directly. 

implementing the effect of FSD2 above as a feature coocurrence restriction. 
8 Note that, as in GPSG, the feature INV plays a double role by indicating both an item's potential to 

occur in inverted structures as well as indicating whether  a given structure is inverted or not. 
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6. Conclusions 

We have shown in the preceding sections that it is possible to incorporate nonmono- 
tonicity in a unification-based formalism, while at the same time preserving the idea 
that linguistic knowledge is represented in the form of feature structures. 

In spite of their great flexibility, unification-based formalisms are in general not 
very well equipped to deal with linguistic rules or generalizations that have a default 
character and for which exceptions exist. In Sections 4 and 5 we hope to have demon- 
strated that a nonmonotonic operation on feature structures combined with straight- 
forward extensions of the description languages used in unification-based formalisms 
enables a satisfactory account of the phenomena mentioned in the introduction. The 
applications illustrate that default unification can be used to give linguistically ap- 
pealing implementations of certain natural language phenomena, not that it would be 
impossible to account for these facts using unification only. Thus, default unification 
serves to extend the expressive power of unification-based formalisms, but leaves the 
representation method of unification-based formalisms, in which linguistic objects are 
represented as feature structures, unchanged. Comparing default unification to earlier 
proposals, we believe that an advantage of our approach is that it is general, in the 
sense that one operation is used to achieve the effects of overwriting, add conservatively, 
nonmonotonic template inheritance, and priority union. Also, whereas previous proposals 
do not seem to be well behaved for feature structures containing reentrancies, default 
unification is defined for feature structures of arbitrary complexity. 

D6rre et al. (1990) suggest that the use of nonmonotonic devices in unification- 
based formalisms will, for the time being, be limited to off-line extensions of these 
formalisms; that is, extensions whose effect can be computed at compile time and re- 
sult in ordinary feature structures. They also note that while there may be linguistic 
arguments in favor of more dynamic notions of default reasoning, from a computa- 
tional point of view the off-line approach is clearly preferred. Default unification, as 
used in the previous section, is an example of an off-line extension, as the effects of 
nonmonotonic template inheritance, lexical defaults, and the meaning of rule defini- 
tions in which default and non-default information is combined, can be computed at 
compile time. Again, this emphasizes the point that incorporation of default unification 
in principle only extends the expressive power of unification-based formalisms. 
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