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Natural language processing will not be able to compete with traditional information retrieval 
unless high-coverage techniques are developed. It is commonly agreed that a poor encoding of 
the semantic lexicon is the bottleneck of many existing systems. A hand encoding of semantic 
knowledge on an extensive basis is not realistic; hence, it is important to devise methods by 
which such knowledge can be acquired in part or entirely by a computer. But what type of 
semantic knowledge could be automatically learned, from which sources, and by what methods? 
This paper explores the above issues and proposes an algorithm to learn syncategorematic 
concepts from text exemplars. What is learned about a concept is not its defining features, 
such as kinship, but rather its patterns of use. 

The knowledge acquisition method is based on learning by observations; observations are 
examples of word co-occurrences (collocations) in a large corpus, detected by a morphosyntactic 
analyzer. A semantic bias is used to associate collocations with the appropriate meaning relation, 
if one exists. Based upon single or multiple examples, the acquired knowledge is then generalized 
to create semantic rules on concept uses. 

Interactive human intervention is required in the training phase, when the bias is defined 
and refined. The duration of this phase depends upon the semantic closure of the sublanguage 
on which the experiment is carried out. After training, final approval by a linguist is still 
needed for the acquired semantic rules. At the current stage of experimentation of this system, 
it is unclear whether and when human supervision could be further reduced. 

1. Four Important Questions in Lexical Semantics 

In the past few years there has been a growing interest in the field of lexical semantics. 
It is now commonly agreed that the the acquisition of the semantic lexicon is a central 
issue in computational linguistics. The major contributions on this topic are collected 
in Computational Linguistics (1987), Evens (1988), and Zernik (in press). 

Research in lexical semantics is, however, rather heterogeneous in scope, methods, 
and results. Paraphrasing the famous "What, when and how?" questions introduced by 
Kathleen McKeown (1985) in her studies on language generation, we pose four similar 
questions that we believe important to understand the consequences of conceptual and 
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linguistic decisions in lexical semantics: 

. 

. 

Why? Why is lexical semantics useful in the first place? Linguists and 
psychologists are interested in the study of word senses to shed light on 
important aspects of human communication, such as concept formation 
and language use. Lexicographers need computational aids to analyze in 
a more compact and extensive way word definitions in dictionaries. 
Computer scientists need semantics for the purpose of natural language 
processing. 

• The option and choices in lexical semantics are deeply related to the 
ultimate objective of research. 1 

What? What is encoded in a semantic lexicon? Each word is a world. 
Despite the interest that semantics has received from the scholars of 
different disciplines since the early history of humanity, a unifying 
theory of meaning does not exist. In practice, the type and quality of the 
expressed phenomena again depend upon the end user: a psychologist, a 
lexicographer, or a computer. For example, much work on lexical 
acquisition from dictionaries produces lexical entries in a format that is 
clearly useful for lexicographers (see the many examples in Byrd (1987) 
and Boguraev (1989)), but their utility for the purpose of automatic 
language processing is less evident. In fact, the output of a lexical 
analyzer is an entry in which several semantic and syntactic fields are 
identified, but many of these fields are raw text. 

In psychology and linguistics, semantic knowledge is modeled with very deep, 
more or less formal, expressions (see Figure 1 in Section 2). Often semantic mod- 
els focus on some very specific aspect of language communication, according to the 
scientific interest of a scholar. 

In natural language processing (NLP hereafter), lexical entries typically express 
linguistic knowledge as commonsensically understood and used by humans. The en- 
tries are entirely formatted in some knowledge representation language and can be 
manipulated by a computer. Within the field of NLP, many options are still possible, 
as summarized in Section 2. 

. Where? What are the sources of lexical semantic knowledge? 

• Introspection is often a source of data, no matter what is the 
background of the scientist. However, introspection poses 
theoretical and implementation problems. Theoretical, because 
"different researchers with different theories would observe 
different things about their internal thoughts. . ."  (Anderson 
1989). Implementation, because consistency becomes a major 
problem when the size of the lexicon exceeds a few hundred 
entries. 

• Psycholinguistic experiments, such as verbal protocols, are more 
appropriate, because they produce observable and measurable 

1 This is not to say that there is a clear cut among the interests of linguists, psychologists, and computer 
scientists. We believe that, just to take one example, a poor knowledge of the results and methods of 
lexicography, linguistics, and cognitive science in part motivates the nonstriking success of NLP in 
developing large-scale systems (Velardi 1990). 
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example 1 from (Leech 1981): 
boy = +animate -adul t  +male 

example 2 from (Mel~uk 1987): 
help = 
Y carrying out Z, X uses his resources W in order for W to help 
Y to carry out Z; the use of resources by X and the carrying out of Z 
by Y are simultaneous 

example 3 from (Schank 1972): 
throw = 
actor PROPELs and object from a source LOCation to a 
destination LOCation 

Figure 1 
Examples of conceptual meaning representation in the literature 

. 

data. One of the largest hand-encoded semantic lexicons 
(Dahlgren 1989 and Dahlgren, communication to AAAI90 
Stanford seminars) was built by asking subjects to freelist 
features common to objects. Despite the scientific interest of 
such experiments, they cannot be extensively repeated for the 
purpose of acquiring several thousand word sense definitions. 
On-line corpora and dictionaries are widely available today and 
provide experimental evidence of word uses and word 
definitions. The major advantage of on-line resources is that in 
principle they provide the basis for very large experiments, even 
though at present the methods of analysis are not fully 
developed. This paper describes an experiment in lexical 
acquisition from corpora. 

How? The final issue is implementation. Implementation may be thought 
of at various levels. It is the hard work of implementing a system in a 
real domain, or the more conceptual task of defining a mathematical 
framework to manipulate the objects defined within a linguistic model. 

Quite obviously the "hows" in the literature are much more than the "wheres" 
and "whats'. No classification of lexical semantic methods is attempted here for sake 
of brevity. In Section 5 we examine the research that is more closely related to the 
problem under examination in this paper, i.e. lexical acquisition for natural language 
processing. 

2. "What?": Meaning Representation in a Semantic Lexicon 

This section further considers the issue: what knowledge can be encoded in a seman- 
tic lexicon? We will not attempt an overall survey of the field of semantics, which 
has provided material for many fascinating books; rather, we will focus on the very 
practical problem of representing language expressions on a computer, in a way that 
can be useful for natural language processing applications, e.g. machine translation, 
information retrieval, user-friendly interfaces. 
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In the field of NLP, several approaches have been adopted to represent semantic 
knowledge. We are not concerned here with semantic: languages, which are relatively 
well developed, but with meaning representation principles. 

A thorough classification of meaning types was attempted by Leech in his book 
on semantics (Leech 1981). In surveying the meaning representation styles adopted 
in the computational linguistic literature, we found that many implemented natural 
language processors adopt one of the following two meaning types for the lexicon: 
conceptual (or deep) and collocative (or superficial). 

. 

. 

Conceptual meaning. Conceptual meaning is the cognitive content of 
words; it can be expressed by features or by primitives: conceptual 
meaning is "deep" in that it expresses phenomena that are deeply 
embedded in language. 

Collocative meaning. What is communicated through associations between 
words or word classes. Collocative meaning is "superficial" in that it 
does not seek "the real sense" of a word, but rather "describes" its uses 
in everyday language, or in some subworld language (economy, 
computers, etc.). It provides more than a simple analysis of 
co-occurrences, because it attempts an explanation of word associations 
in terms of meaning relations between a lexical item and other items or 
classes. 

The conceptual vs. collocative distinction in computational linguistics closely cor- 
responds to the defining vs. syncategorematic features distinction in psychology. 
Syncategorematic 2 concepts (Keil 1989) are those "almost entirely defined by their 
pattern of use, and (the) others by almost pure belief." The use of syncategorematic 
concepts is supported by evidence from psycholinguistic studies. Humans more nat- 
urally describe word senses with their characteristics and relations with other words 
than with kindship and other internal features. Not surprisingly, a similar "natural- 
ness" is observed in the examples of collocative meaning descriptions. Examples show 
an evident similarity and are easily readable, whereas concept definitions in the con- 
ceptual framework are very different in different papers, and more obscure. 3 

Both conceptual (defining) and collocative (syncategorematic) features are formally 
represented in the NLP literature using some subjective, human-produced set of prim- 
itives (conceptual dependencies, semantic relations, conceptual categories) on which 
there is no shared agreement at the current time. As far as conceptual meaning is 
concerned, the quality and quantity of phenomena to be shown in a representation 
is subjective as well: the linguist relies mostly on his/her introspection. Collocative 
meaning can rely on the solid evidence represented by word associations; the inter- 
pretation of an association is subjective, but valid associations are an observable, even 
though vast, phenomenon. 

In principle, the inferential power of collocative, or surface, meaning represen- 
tation is lower than for conceptual meaning, because it does not account for many 

2 Since the terms surface semantics, collocative meaning, and syncategorematic features all refer to the 
very fact that concepts (in humans and computers) are frequently described by lists of characteristics 
and usage types, we will use all the above terms interchangeably. 

3 Notice in the examples of collocative meaning descriptions that the "is-a" relation is conceptual, not 
collocative, in nature. Kindship relations are very important in NLP because they provide the basis for 
inferences in semantic interpretation. However, the classification of word senses in type hierarchies is a 
conceptually very complex, almost unsolvable problem. 
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important aspects of human communication, such as beliefs, preconditions, and knowl- 
edge of cause-effect relations. These phenomena cannot be captured by an analysis of 
meaning relations between uttered words in a sentence. 

Despite this, collocative meaning has been shown to be a useful knowledge scheme 
for a number of computer applications in language processing. In Niremburg (1987), 
the validity of this approach is demonstrated for TRANSLATOR, a system used for 
machine translation in the computer subworld. A semantic knowledge framework in 
the style of collocative meaning is also adopted in Ace (Jacobs 1987), which has been 
used by the TRUMP language analyzer in a variety of applications. 

In our previous work on semantic knowledge representation (Pazienza 1988, Ve- 
lardi 1988, Antonacci 1989) we showed that a semantic dictionary in the style of col- 
locative meaning is a powerful basis for semantic interpretation. 

The knowledge power provided by the semantic lexicon (about 1000 manually en- 
tered definitions) was measured by the capability of the language processor DANTE to 
answer a variety of questions concerning previously analyzed sentences (press agency 
releases on economics). It was found that, even though the system was unable to per- 
form complex inferences, it could successfully answer more than 90% of the questions 
(Pazienza 1988). 4 

Representing word senses and sentences with surface semantics is hence useful 
(though not entirely sufficient) for many NLP applications. 

An additional and very important advantage of surface semantics is that it makes it 
feasible to acquire large lexicons, as discussed in the following sections. "Acquirability" 
in our view is extremely important to evaluate a knowledge representation framework. 

3. "Where?": Sources for Acquiring Lexical Semantic Knowledge 

Acquiring semantic knowledge on a systematic basis is quite a complex task. One 
needs not to look at metaphors or idioms to find this; even the interpretation of 
apparently simple sentences is riddled with such difficulties that it is difficult to isolate 
a piece of the problem. A manual codification of the lexicon is a prohibitive task, 
regardless of the framework adopted for semantic knowledge representation; even 
when a large team of knowledge enterers is available, consistency and completeness 
are a major problem. We believe that automatic or semi-automatic acquisition of the 
lexicon is a critical factor in determining how widespread the use of natural language 
processors will be in the next few years. 

Recently a few methods were presented for computer-aided semantic knowledge 
acquisition. The majority of these methods use standard on-line dictionaries as a source 
of data. 

The information presented in a dictionary has in our view some intrinsic limita- 
tions: 

• definitions are often circular; e.g., the definition of a term A may refer to 
a term B that in turn points to A; 

• definitions are not homogeneous as far as the quality and quantity of 
information provided: they can be very sketchy, or give detailed 

4 The test was performed over a six-month period on about 50 occasional visitors and staff members of 
the IBM Rome scientific center, unaware of the system capabilities and structure. The user would look 
at 60 different releases, previously analyzed by the system (or re-analyzed during the demo), and freely 
ask questions about the content of these texts. See the referenced papers for examples of sentences and 
of (answered and not answered) query types. 
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structural information, or list examples of use-types, or describe more 
internal features; 

a dictionary is the result of a conceptualization effort performed by some 
human specialist(s); this effort may not be consistent with, or suitable for, 
the objectives of an application for which a language processor is built. 

A second approach is using corpora rather than human-oriented dictionary entries. 
Corpora provide experimental evidence of word uses, word associations, and such 
language phenomena as metaphors, idioms, and metonyms. Corpora are a genuine, 
"naive" example of language use, whereas dictionaries result from an effort of intro- 
spection performed by language experts, i.e. lexicographers. Corpora are more inter- 
esting than dictionaries as a source of linguistic knowledge, just as tribes are more 
interesting than "civilized" communities in anthropology. 

The problem and at the same time the advantage of corpora is that they are raw 
texts; dictionary entries use some formal notation that facilitates the task of linguistic 
data processing. 

No computer program may ever be able to derive formatted data from a com- 
pletely unformatted source. Hence the ability to extract lexical semantic information 
from a corpus depends upon a powerful set of mapping rules between phrasal patterns 
and human-produced semantic primitives and relations. In machine learning, this is 
referred to as the semantic bias. 

There is no evidence of innate conceptual primitives, apart from some very gen- 
eral ones (time, animacy, place, etc.), and even on these there is no shared agreement. 
We must hence accept the intrinsic limitation of using a bias whose source is the intro- 
spection of a single, or of a community of scientists. But even though the symbols we 
choose are arbitrary, their role is the prediction of basic statements, i.e. the processing 
of NL sentences in a way that is useful to some computational purpose, and should 
be evaluated on this ground. 

4. A Method for the Acquisition and Interpretation of a Semantic Lexicon 

Our research on lexical acquisition from corpora started in 1988, when a first version 
of the system was built as utility for the DANTE natural language processor (Velardi 
1989), a system that analyzes press agency releases on finance and economics. The 
current version, described hereafter, is a self-contained tool on which we are running 
a large experiment using a nationwide corpus of enterprise descriptions (overall, more 
than one million descriptions). The objective is to derive a domain-dependent semantic 
lexicon of 10,000 entries to be used for information retrieval in the sub-domain of 
agricultural enterprises (Fasolo 1990). The project is a cooperative effort among the 
Universities of Ancona and Roma II, and the CERVED, the company that owns and 
manages the database of all commercial enterprises registered at the Chambers of 
Commerce in Italy. 

In the current version, the system is able to acquire syncategorematic concepts, 
learning and interpreting patterns of use from text exemplars. Generated lexical entries 
are of the type shown in Figure 2 of Section 2. We do not exclude the possibility of 
acquiring defining features from dictionary entries and query collections at a later 
stage of this project. At present, however, we are interested in fully exploring the 
power of collocative semantics for NLP. We are also interested in the analysis of the 
linguistic material that is being produced by the system. 

In what follows the methodology is described in detail. 
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example 1 from (Velardi 1988) 

agreement = 
is_a decision_act 
participant person, organization 
theme transaction 
cause communication_exchange 
manner interesting important effective ... 

example 2 from (Niremburg 1987): 
person = 

isa creature 
agent_of take put find speech-action mental-action 
consist_of hand foot... 
source_of speech-action 
destination_of speech-action 
power human 
speed slow 
mass human 

Figure 2 
Examples of collocative meaning representation in the literature 

4.1 What Is Given 
The input to the system is: 

. a list of syntactic collocates, e.g. subject-verb, verb-object, 
noun-preposition-noun, noun-adjective, etc. extracted through 
morphologic (Russo 1987) and syntactic analysis of the selected corpus. 
The level at which syntactic analysis should be performed to derive 
collocates is a matter of debate. In Smadja (1989) it is suggested that 
parsing can be avoided by simply examining the neighborhood of a 
word w at a distance of +5. Our experience demonstrates that this 
algorithm produces too many collocations, of which a minority are 
actually semantically related. 

At the other extreme is full syntactic parsing, as performed in Velardi 
(1989). This is computationally too expensive for large corpora and fails 
to produce useful collocations when sentences are not fully grammatical, 
as for example in the agricultural businesses database. A typical text in 
this corpus is: 

vendita al minuto di legno da costruzione e manufatti in abete 
produzione mobili di legno e di metallo 

(*) retail sale of wood for construction and hand-manufactured in 
fir-tree production furniture of wood and of metal 

A better trade-off between speed and accuracy is to enable syntactic 
parsing of sentence parts and use some context-dependent heuristics to 
cut sentences into clauses (Fasolo 1990). However, the +5 collocations are 
also collected for a reason that will be clarified later on. 
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. A semantic bias. The semantic bias is the kernel of any learning algorithm, 
as no system can learn much more than what it already knows (Micalski 
1983). This consists of: 

(a) a domain-dependent concept hierarchy. This is a many-to-many 
mapping from words to word sense names and an ordered list of 
conceptual categories. 

The hypothesis of hand-entering a type hierarchy would not 
require an unreasonable amount of time, because the task is 
comparable to entering a morphologic lexicon (Russo 1987). The 
problem is rather a conceptual one. The way humans categorize 
concepts in classes is far from being understood. Mere property 
inheritance seems to be inadequate at fully modeling 
categorization in humans (Lakoff 1987; Rosch 1975), and this 
very fact discouraged us from attempting some automatic 
hierarchy acquisition in the framework of machine learning 
(Gennari 1989). The limitations of current machine learning 
approaches when applied to language learning are discussed in 
Section 5. 

We consider the problem of acquiring type hierachies as an 
open issue, to which more thought and more research are being 
devoted in our current work. 

(b) a set of domain-dependent conceptual relations, and a 
many-to-many mapping (synt-sem) between syntactic relations 
and the corresponding conceptual relations (see Velardi 1988 
and Antonacci 1989 for extensive examples of 
syntax-to-semantics mapping); 

(c) a set of coarse-grained selectional restrictions on the use of 
conceptual relations, represented by concept-relation-concept 
(CRC) triples. CRCs are expressed in Conceptual Graph notation 
(Sowa 1984). 

4.2 The Output 
The system produces two types of output: 

1. a set of fine-grained CRCs, that are clustered around concepts or around 
conceptual relations; 

2. an average-grained semantic knowledge base, organized in CRC triples. 

The semantic knowledge base is acquired from a source sub-corpus and is used, before 
a final approval, for the semantic interpretation of sentences in a test-bed sub-corpus. 
The semantic interpreter is basically that described in Velardi (1988) and in other 
papers, to which the interested reader may refer. 

Such terms as 'fine,' 'average,' and 'coarse' are obviously fuzzy. To the extent this 
makes sense, we ranged the above terms as follows: 

fine-grained CRC are those in which concepts directly map into content 
words (e.g. [COW] ~- (PATIENT) , -  [BREED]). These CRCs are true 
because they are observed in the domain subworld. 
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ii) average-grained CRC are those in which concepts are fathers or 
grand-fathers of content-word concepts. These CRC are 'typically' true, 
as they may have a limited number of exceptions observed in the 
domain sublanguage (e.g. [ANIMAL] ~-- (PATIENT) ~-- [BREED] is 
typically true, even though breeding mosquitoes is quite odd). 

iii) coarse-grained CRC are those in which concepts are at a higher level in 
the taxonomy (e.g. [ACTION] --~ (BENEFICIARY) -~ 
[ANIMATE_ENTITY]). They state necessary, but not sufficient, conditions 
on the use of conceptual relations. 

The notion of "high-level" and "low-level" in a taxonomy is also relative to the ap- 
plication domain. For example, in a computer world, the concept COMPUTER_SOFT- 
WARE may be rather high-level. 

4.3 Learning Syncategorematic Concepts from Text Exemplars 
To acquire syncategorematic knowledge on concepts, the algorithm proceeds as fol- 
lows: For any syntactic collocate sc(wl,w2): 

1. Restrict the set of conceptual relations that could correspond to the 
syntactic collocate using the synt-sem table. 

2. Use coarse-grained knowledge and taxonomic knowledge to further 
restrict the hypotheses. 

3. If no interpretation is found, reject the collocate. If one or more 
interpretations is found, put the resulting CRC(s) on a temporary 
knowledge base of fine-grained knowledge. 

4. Generalize the result by replacing the concepts in the CRC with their 
closest supertypes, using the structural overcommitment principle 
(Webster 1989). Add the result to a temporary knowledge base of 
average-grained knowledge. 

5. Repeat steps 1-4 for all the collocates of the same syntactic type, or (user 
choice) those including the same word W. Further generalize one step up 
in the hierarchy, based on at least three examples. 

6. Present the results to the linguist for a final approval, then add to the 
permanent knowledge base. 

In a first, training phase, the linguist is requested to inspect the system output in 
step 3, to verify and refine the semantic bias. 

4.4 A Complete Example 
Figure 3 shows the output of step 3. On the left-hand side of window 1 (ok-sema) 
and window 2 (no-sema) flow the syntactic collocates acquired during the syntactic 
analysis of the corpus. Syntactic collocates are couples, like adj-noun, noun-verb, verb- 
noun, or triples, like verb-prep-noun (G_V__Pd'q), noun-prep-noun (G_N_P_N) etc. In 
Figure 3 the triples are shown with the preposition "in". 

For each collocate, the learner accesses the knowledge provided by the semantic 
bias and generates a CRC triple, corresponding to a plausible semantic interpretation 
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= File Edit Search Windows Fonts Eval Hermes KB DRL Learn 

Ok_sema 

G N ) N  - e o l ~ i ~ r e ~ z i o n e  in $ e r r ~  = c o l ~ i w ~ e  l u o 9 o  s t r r ~  e d i f l e i o  
G H_~_H - e . l ~ i w r e + Z i o n t  i n  s e r r ~  : e o l z i w o r e  l ~ o g o  s t r r ~ _ e d i f i e i o  
G N ~ H  - £ i o ~ e  in s¢~r~ : f i o r e  l u o 9 o  s t * r .  ¢ 4 i f l c l o  

G._H..~_H -- ~llew~e41~e~to in ~e<lu~ = ~ l l e~ re  luogo ~e~u~ 
G H_~_H - f~gi~lo in se~ol~ = f~giolo inelusione ~e~ol~ 
G.,_H_~_N - m~nuf~t, in ~be~e = t n ~ n u f ~ : ~ o  ~m~e~i~ ebez¢ 

G p p _ )  H - S u r ? i I ~ r e  i n  s c a t e l ~  = l u r g e l a r e  l u o g o  s e a z o l a  

G V ~ H  - uxi l izz~re in ~ziend~ = . ~ i l i x z ~ e  luogo ~zi~nJ~_¢~ifieio 
O V_~N - u t i l l zz~re  in ~zlen~ = u t i l i zz~r¢  luogo .zicnd~ ~dl f ic io 
Ù Y J N  - $urgel~e in $c~zol~ = $urgel~¢ luogo $c~zol. 
O V_~_H - surgel~re in se~ol~ = surgel.re ~ z o J i n ~ l e  sc~Zol~ 

No_sema K8 Filtro 
G N_I_N : f~angi~u~to in for~ = fl~ngitutto_b~ivi~a I form ( I ) 
G N_~ H : f*~ngi%u~zo i n  form~ = fr~ngi~utto_.~cchin~ I form~ ( 1 ) 
G R ~ _ H  : e o m m z r e i ~ r t  i n  f o z m ~  = © o m m e r c i ~ x .  / f . r , ~  ( 1 ) 
G N_~_H : ? r ~ n o  i n  n e g Q x l o  = 9 r ~ n o  / n t g o z l o  ~ i v i ~  ( 1 ) 
O H _ ~ N  : 9 r ~ n o  i n  n ¢ 9 . z i o  = 9 r ~ n o  / n e g o x i o  e d l f i ~ i o  ( 1 ) 
G RI_H : l ~ r o  i n  f e ~ y o  = l ~ v o r o _ ~ t ~ i v i ~  / £err6 ( 1 } 
G_V_I_H : p r o < l u r r e  i n  9 e n e , e  = p r o ~ u r r e  / 9 . , e r e  ( 3 ] 
G V I _ N  : u z i l l z z ~ r e  i n  ~ z i c n d ~  = u ~ i l t z x o r e  / m x i e n ~  ~ i y i ~  ( 1 ) 
G Y ~ H : . ~ i l i z z ~ r ¢  i ~  ~ z i e n ~ a  = u ~ i l i z z ~ r e  / ~ z i e n d ~ _ o r g ~ n i z z t z i o n e  ( 1 ) 
G - V ~ } - H  u % i l t + i  . . . . .  in ~ z l e n &  : u t i l e  /" ~zlen~ ~tivi~ ( 1 ) 
O V l _ H  : u ~ i l e + i z x ~ r e  i n  ~ z i e n ~  = u ~ i l e  / ~ z l e n d a  e d i f l e i o  ( 1 ) 
G _ V ~ N  : u ~ i l e + i z z ~ r e  i n  ~ z i e n d ~  = u t i l t  / ~ z i e n d ~  o x ~ n i z z ~ = i ~ n e  ( 1 ) 

I~ modo "gestire a ~] 
noleggio" ~I I I 
f modo (' a' , II 
C svolgere attivita: : , II 
c oggettO economico::-:: ).1 I 
- 1" modo "commercio-al- 

% modo 

t6b_s_s_o('G_V_P_N',A,'a',B, liiiil 
modo,A,B). ~I 

% destinazione_beneficiarioI~ j 

Figure 3 
Production of CRC triples from syntactic collocates 

of the syntactic collocate ( shown to the right of the '=' in the w i n d o w  ok-sema). If 
an interpretation is not found, because the syntactic attachment is not semantically 
validated, the collocate is shown in the w i n d o w  no-sema, i.e., it is rejected. 5 

An example may clarify the steps: 

. 

. 

acquired syntactic collocate: "coltivazione in serra" (farming in 
greenhouse) 

possible subsumed conceptual relations (in Italian and in the specific 
domain) by the noun-"in'-noun collocation: 

luogo (location) (ex.: farming in greenhouse) 
stato_finale (final state) (ex.: trasformazione in vino = transformation in 

wine) 
materia (matter) (ex.: lavoro in ferro = craft in iron) 
luogo_figurato (figurative location) (ex.: intervento in settore = intervention 

in field) 
etc. 

5 Window "KB Filtro" shows an excerpt of coarse-grained knowledge of conceptual relations and the 
window "sint_sema Filtro" is an excerpt of the synt-sem table. 
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. 

. 

. 

coarse-grained knowledge used to select the most  plausible 
interpretation(s), expressed in Conceptual  Graph notation: 

1. [ACTIVITY] ~ (LOCATION) ~ [PLACE] 
2. [CHANGE] ~ (FINAL_STATE)~[PRODUCT] 
3. [ARTIFACT]--~ (MATTER)---+ [MATTER] 
4. [ACTIVITY]--+(FIGURATIVE_LOCATION)-* [AMBIT] 

generated fine-grained CRC (applying rule 1): 
[FARMING] ~ (LOCATION)--*[GREENHOUSE] 

generated average-grained CRC: 
[AGRICULTURAL_ACTIVITY]--+ (LOCATION) ~ [BUILDING _FOR_CULTIVA- 
TION] 

When the algorithm runs the first several times, the linguist user inspects the fine- 
grained output,  as shown in Figure 3, to verify a correct partit ion of the collocates 
among the two windows,  and a correct interpretation of the semantically plausible 
syntactic collocates. Errors are used to refine the bias. The bias is now stable, at least 
for what  concerns the 'known'  words (about 5000 root-form words). In our  domain,  
this took two or three round steps through the algorithm (i.e. run the algorithm, 
verify, and correct the bias), for each type of syntactic collocation. We believe that the 
(relatively) low semantic ambiguity of the domain sub-language and the availability 
of a well-defined set of conceptual relations contributed to the result. 

After this first system training phase, the linguist only overviews the average 
grained CRCs, which must  be tested before final acquisition in the knowledge base. 
Whether  and how human  intervention can still be reduced is unclear at the present 
stage of the experiment. Figure 4 shows a generalization session. Given one or more ex- 
amples, such as allevamento di pesce (fish breeding) that are interpreted by the PATIENT 
(=animate direct object) relation, the system proposes to acquire the rule (shown with 
a reverse video in Figure 4): 

Rule 1 
[BREED]-+ (PTNT)-,[ANIMAL_FOR_FEEDING] 

The user can acquire the rule by  clicking on the "Acquisisce" button, or test the rule 
before approval.  The test is performed by showing the possible implications of that 
rule. These are obtained by listing all low-level CRCs with non-zero probability of 
occurrence in the corpus, 6 shown in the lower w indow of Figure 4. 

In case of exceptions, it is the choice of the linguist to reject the rule (button "Ri- 
fiuta"), or to explicitly account for the exception(s) in a negative-example knowledge 
base, by marking with an "n" the triples that are not semantically correct. The rule 
shown in Figure 4 above generates only correct associations. The subtypes of BREED, 
e.g. DRAIN and DRILL, would  in principle produce  odd, if not totally unreasonable,  
associations, such as "fish training." Such associations, however,  are not listed in the 
lower w indow of Figure 4 because the words "fish" and "drill" never occur in the 
corpus at a distance of +5. 

6 For very large corpora, as the one used here, producing the complete list of possible implications 
would generate in some case hundreds of examples, especially when both concepts in a CRC triple are 
not terminal nodes in the hierarchy. The linguist is therefore presented only with the list of collocates 
that have a non-zero probability of occurrence. This list is the list of all the collocations found in the 
(sub-)corpus using the -4-5 algorithm of Smadja (1989). 
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~_ File Edit Search Windows Fonts Eval Hermes KB DRL L e a r n  

Gruppo sintattico 

G_N_P_N = allevare+mento di pesce 

Relazione da acquisire 

(al levare)->[paziente]->(c_animale_alimentazione) 

Generalizzazioni 

Generalizza 
y - alle~re paziente pesce. 
y - allevare paziente suino. 
y - allevare pa~iente caprino. 
y - allevare paziente bovino. 
y - alle~re paziente ovino. 
y - allevare paziente cavallo. 
y - allevare paziente coniglio. 
y - allevare paziente maiale. 
y - allevare paziente gallina. 
y - allevare paziente pollo. 
y - allevare paziente magrone. 

Figure 4 
Example rule generalization session with the computer system 

4.5 Discussion 
This section describes the major problems and results of the acquisition algorithm. 

4.5.1 Definition of the Semantic Bias. The most difficult task, both in the domain 
described in this paper and in the press agency releases domain described in Velardi 
(1989), is to define at the appropriate level of generality the selectional restrictions on 
conceptual relations. If restrictions are very coarse, they give rise to errors or (more 
frequently) to multiple interpretations at the end of step 2 in Section 4.3. If they are 
very selective, we get back to the case of a hand-encoded semantic lexicon. 

In the first application (economy and finance) we used about 50 conceptual rela- 
tions. The language domain was quite rich, and often it was not possible to express a 
selectional restriction with a single CRC triple; on the average, 1.5 CRCs per relation 
were necessary. 

For example, the following are the selectional restrictions for the relation PARTIC- 
IPANT: 

[HUMAN _ENTITY],-- (PARTICIPANT),-- [FLYI,[SAILI,[MEETINGI,[AGREEMENT] 

Examples of phrasal patterns interpreted by this relation are: John flies (to New York); 
an agreement between Fiat and Nissan; a contract among the companies, the assembly 
of the administrators, etc. (In the third example, notice that the word "contract" was 
classified in the economy domain both as an AGREEMENT and as a DOCUMENT.) 
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As for the agricultural enterprises, about  20 conceptual relations could provide 
enough expressive power  to the semantic representation language. Most relations were 
defined by a single, coarse-grained CRC. Only a few required more detailed selectional 
restrictions, as for example the PART_OF relation: 

[ANIMATE]--* (PART_OF)--* [BODY_PART] 

[VEGETABLE ]--* (PART_OF) ~ [VEGETABLE _PART] 

[CONCRETE _OBJ] --* (PART _OF)--* [CONCRETE _OBJ] 

The major difficulty here is that a conceptual category is not always available to express 
a selectional restriction in a compact  form. For example, the third restriction above is 
intended to capture patterns such as: "the pages of the book; the engine of the car; the 
top of the hill, etc." To express the relations among word  couples such as (top, hill), 
(engine, car), (page,book) etc., a better CRC is: 

[CONCRETE_OBJ]--~(PART_OF)--*[OBJECT_PART] 

However,  the type hierarchy defined for the agricultural domain  does not have a class 
named OBJECT_PART, simply because this was not found useful, given the subworld 
lexicon. Hence, the third restriction looks very coarse, but  turned out to be selective 
enough for the sub-language. Errors are of course possible, but  remember  that: first, 
the output  of the acquisition process is supervised by a linguist for final approval  (step 
6 of Section 4.3); second, coarse-grained knowledge is used only for acquisition, not 
during the semantic interpretation of sentences. In other words,  coarse knowledge is 
only a bias from which a more refined semantic knowledge is acquired. 

4.5.2 Semantic Ambiguity. A second issue is semantic ambiguity. The system inter- 
prets word associations outside a context. This may  give rise to several interpreta- 
tions for a single syntactic collocate, even though the domain  has very  little lexical 
ambiguity. 7 

A good example of what  could happen in a more general domain  is the fol- 
lowing: Consider the phrase " . . . r u n  towards the bank . . . , "  that gives rise to the 
V_towards_N triple "run, towards,bank." Without a context, two CRCs are created: 
[RUN]~(DIR)-*[RIVER_BANK] and [RUN]-*(DIR)--*[BANK_BUILDING]. The other 
interpretations, such as BANK_ORGANIZATION and BANK_ACTIVITY are rejected 
because their association in a "V_towards_N" position gives no plausible interpreta- 
tion, if the semantic bias is "smart" enough. Now, the very  fact that in the sentence 
from which the collocate was extracted "bank" was a river bank rather than a build- 
ing simply does not matter. We are learning more than what  the sentence was sug- 
gesting. In fact, we acquire two use types of the concepts RUN, RIVER_BANK and 
BANK_ACTIVITY (namely, that it is possible to run in the DIRection where a "*bank" 
is located), that are perfectly correct and can be used for semantic disambiguation. 
When a syntactic collocate is interpreted in a context, as during the semantic analysis 
of a sentence, the interpretation algorithm makes it possible to consider s imultaneously 

7 In fact, the word-to-concept table that maps words into concept names has fewer entries than the 
morphologic lexicon. For example, words that end with "zione" (tion) have the same concept type as 
the correspondent verb, e.g. production and produce. Other more complex examples of word to 
concept mappings are not mentioned for brevity. Ambiguous words are mostly those designating both 
an activity and a building where the activity takes place, as detailed in an example later on. But this is 
taken care of with a single metonymic rule (Lakoff 1987), rather than replicating the entries. 
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several restrictions (Velardi 1988); for example, the direct-indirect object relations, etc. 
It is in sentence interpretation that a full disambiguation is necessary, though not 
always possible. 

4.5.3 Syntactic Disambiguation. The semantic knowledge base (SKB) acquired by our 
system is a large set of selectional restrictions on word uses, expressed by CRCs, that 
can be ordered either around concepts or around conceptual relations. The represen- 
tation language is Conceptual Graphs, because we believe that this formalism has 
several advantages (Velardi 1988). However, standard logic could also be adopted. 
The majority of implemented NLP systems use selectional restrictions for syntactic 
and semantic disambiguation in a more or less standard way. We claim hence that the 
applicability of the algorithm presented in this paper does not depend upon the specific 
algorithm used for semantic interpretation, and the method can be adapted with minor 
changes to many NLP systems. 

For the sake of completeness, we provide hereafter a brief summary of the semantic 
algorithm used in the DANTE system and in a system for information retrieval of 
agricultural businesses descriptions, focusing on the important problem of syntactic 
ambiguity. Details are given in the referenced papers. 

The semantic interpreter proceeds bottom-up, in parallel with syntactic analysis. At 
the lower level nodes of the tree, it verifies whether it is possible to find the appropriate 
concepts and relations that interpret a given syntactic relation between words. While 
progressing up toward the root of the tree, it replaces syntactic relations between 
phrases by conceptual relations between partial Conceptual Graphs. It does this by 
following steps 1 and 2 of the acquisition algorithm (Section 4.3), but in step 2 rather 
than using selectional restrictions on conceptual relations (coarse-grained knowledge) 
it accesses the SKB. If at some point no interpretation is found, the system backtracks 
and selects a different syntactic attachment. For example, consider the following three 
sentences: 

1. produrre vino in bottiglia (*to produce wine in bottle) 

2. vendere uva alHngrosso (*to sell grapes at wholesale) 

3. produrre vino per i soci (*to supply wine for the shareholders). 

All the above three phrases give rise to syntactic ambiguity, and precisely: I:((V-N1)- 
prep-N2) or 2:(V-(Nl-prep-N2)). For sentence I and tree 1, the interpreter first generates 
the graph: [PRODUCE]~(OBJ)~[WINE]. Then, a join is attempted between the head 
of the graph, [PRODUCE], with the rest of the sentence (in bottle). The preposition 
"in" corresponds to several conceptual relations (see the example in Section 4.4), but 
the selectional restrictions on concept uses available in the SKB do not suggest any 
valid interpretation. As no complete Conceptual Graph can be produced for tree 1, 
tree 2 is explored. Tree 2 generates first the graph: 

[WINE]--* (LOCATION) ~ [BOTTLE] 

where the head concept is [WINE]. Then, a join is attempted between [PRODUCE] 
and [WINE]. This produces the final graph: 

[PRODUCE]--,(OBJ)~[WINE]--,(LOCATION)--*[BOTTLE]. 
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Through a similar process, tree 1 is selected for sentence 2, that gives the graph: 

[SALE] --* (OBJ)-,[GRAPE] 

--* (MANNER)--*[WHOLESALE] 

In sentence 3, both trees are indeed plausible: the shareholders are the DESTI- 
NATION both of the wine and of the supply. In this case, for information retrieval 
purposes, it really does not matter which solution is preferred. 

4.5.4 A First Evaluation. After some training and changes due to refinements in bias, 
the system was used to acquire the SKB for a prototype system for semantic codifi- 
cation of a test-bed set of agricultural texts, different from the one used for defining 
and testing the bias. The NLP system is described in Fasolo (1990) and is similar to 
the one described in Velardi (1988) and Antonacci (1989) and in the other papers on 
the DANTE system, except for the use of shallow methods in syntax and the ability 
to produce partial interpretations if parts of a text are not understood. 

Many parts of this NLP system are still under development, but for what con- 
cerns the adequacy of the semantic knowledge base, the results are very encouraging. 
Currently, the test runs on about 3000 collocates, but these numbers keep changing. 
We plan to produce more accurate statistics after one full-year experimentation. The 
following is a very partial discussion of the results, useful for pinpointing the major 
problems. 

1. About 10% of the syntactic collocates are rejected because one or both 
the words were unknown (no morphologic entry). Some of these are 
typos or abbreviations, and the others are really unknown. A major 
effort is being devoted toward an extension of the morphologic lexicon 
and the introduction of error correction algorithms. Recovery procedures 
such as the use of semantic information attached to word endings (e.g. 
"zione"="tion" always indicate an action, "x-ficio" is always a building 
for making some product x, etc.) can also be introduced. 

2. Only about 1-2% correct syntactic collocates produce two interpretations 
where one is incorrect in whatever context. This is to some extent 
unavoidable, because the selectional restrictions on conceptual relations 
have obviously many exceptions, even though the probability of actually 
encountering such exceptions is low. It is unclear to what extent the 
presence of errors in the semantic knowledge base can induce errors in 
sentence interpretation, when multiple constraints are analyzed together. 
Currently, errors are purged by the linguist before final acquisition. 

3. No incorrect syntactic collocates are erroneously given an interpretation. 

4. Some collocates were rejected because they included pronouns. 
Anaphoric references are not handled in the current version of the NLP 
system. 

5. One correct collocate was erroneously rejected showing the need for a 
new conceptual relation, FIGURATIVE_LOCATION (see Section 4.4). 

There is no doubt that in order to fully validate this experiment we need to analyze 
thousands of texts, not hundreds. 
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This requires: first, that the morphologic lexicon be extended; second, that the 
NLP system that uses the acquired semantic knowledge be completed in several parts, 
primarily the question-answering module; third, and more importantly, that several 
linguistic issues be given more thorough solutions, in particular the definition and 
acquisition of conceptual categories. 

5. Related Research 

The method presented in this paper is at the frontier between machine learning and 
computational linguistics. It is closely related to two research areas: concept formation 
and lexical acquisition. 

The similarities and differences of the problem discussed in this paper with that of 
concept formation are better understood by comparing our objectives with the formal 
tasks of concept formation (Fisher 1985; Gennari 1989): 

1. Given: a sequential presentation of instances and their associated 
descriptions; 

2. Find: a clustering of those instances in categories; 

3. Find: an intensional definition for each category; 

4. Find: a hierarchical organization for those categories. 

Unlike the work on concept formation, instances (words in contexts) are not associated 
with descriptions (CRC triples), hence (1) is only in part a given. Conversely, (2) and 
(4) are a "given" rather than a "find." In summary: 

1. Given: a sequential presentation of word associations; 

2. Given: a many to many mapping from words to concept types; 

3. Given: a hierarchical ordering of concept types; 

4. Find: for each observation (two associated words), the concept types and 
the conceptual relation that interpret that observation (CRC); 

5. Find: a definition for each concept that summarizes its instances (derived 
CRCs). 

The more substantial difference is that the typical application dealt with in concept 
formation is clustering natural kinds (animals, biological species, etc.), whereas most of 
the terms we deal with are nominal kinds (verbs, etc.) and artifacts. Natural kinds are 
more easily described in terms of defining (internal) features, and their origin seem 
more basic to their "kindhood" (Keil 1989) than does the origin of nominal kinds. 
The latter are better described by their external relations with other objects. In other 
words, finding a type hierarchy is less basic but much more difficult for nominal kinds 
and artifacts than for natural kinds. This justifies the focus given to the derivation of 
concept descriptions rather than to conceptual clustering, even though we are aware 
that the hand-entering of the type hierarchy is the major limitation of our algorithm. 

A second research area related to our work is lexical acquisition. An up-to-date 
survey of the most recent papers in this area is found in Computational Linguistics 
(1987) and Zernik (forthcoming). Many of the papers collected in the above two issues 
are more relevant to the fields of lexicography and cognition than to NLP. One of the 
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few lexical knowledge acquisition systems for NLP is described in Jacobs (1988) and 
Zernik (1989). When an unknown word is encountered, the system uses pre-existing 
knowledge of the context in which the word occurred to derive its conceptual category. 
The context is provided by on-line texts in the economic domain. For example, the 
unknown word merger in "another merger offer" is categorized as merger-transaction 
using semantic knowledge of the word offer and of pre-analyzed sentences referring to 
a previous offer event, as suggested by the word another. This method is interesting but 
allows a conceptual typing of unknown words only when everything else is known. It 
does not attack the problem of extensive lexical acquisition, but rather that of robust 
language processing. 

In Binot (1987) prepositional attachments found in dictionary definitions are in- 
terpreted in terms of conceptual relations (e.g. WITH=INSTRUMENT) and used to 
solve syntactic ambiguity in parsing. The problem is that the information necessary 
to disambiguate is often not found, or requires several complex searches through the 
dictionary because of circularity and cross-references. 

In Smadja (1989) the system EXTRACT, which uses shallow methods to extensively 
derive collocates from corpora, is described. The system produces a list of tuples 
(wl,w2,f), where wl  and w2 are two co-occurring words and f is the frequency of 
appearance in the corpus. No semantic interpretation is attempted, but it is claimed 
that mere co-occurrence knowledge can help language generators to correctly handle 
collocationally restricted sentences. 

6. Concluding Remarks 

The algorithm presented in this paper automatically detects co-occurrences in contexts 
and provides a semantic interpretation of the meaning relation between co-occurring 
words. Interpreted co-occurrences are used to build a semantic lexicon based on col- 
locative meaning descriptions. The acquired concepts are syncategorematic; e.g., are 
completely defined by their pattern of use. It is assumed that such knowledge is suffi- 
cient to produce a surface semantic interpretation of raw text, i.e. a Conceptual Graph 
where content words and syntactic relations are replaced by the appropriate concept 
types and conceptual relations. This assumption indeed proved reasonable in our pre- 
vious work on semantic interpretation, where the same type of semantic knowledge 
was hand-entered. 

The observation of co-occurrences is language-dependent, context-dependent; the 
interpretation algorithm is (to some extent) language-independent, but relies upon 
human-derived primitives and relations that are in general context-dependent. No 
language model can prove to be objective, or even plausible. In principle, language 
rules and primitives do not exist. But even though symbols are arbitrary, their role is 
not to mimic human comprehension, but rather to produce some formal description of 
raw textual input, in a form that is ultimately useful for some relevant NLP application. 

We feel that no human-invented semantic language will ever provide a full inter- 
pretation of language phenomena. We also strongly believe that more shallow methods 
such as the one discussed in this paper must be devised to give current NLP systems 
more breadth, as this will ultimately determine how widespread the use of NLP tech- 
nology will be in the near future. 
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