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The sentential theory of propositional attitudes is very attractive to AI workers, but it is difficult to use such a 
theory to assign semantics to English sentences about attitudes. The problem is that a compositional 
semantics cannot easily build the logical forms that the theory requires. We present a new notation for a 
sentential theory, and a unification grammar that builds logical forms in our notation. The grammar is 
implemented using the standard implementation of definite clause grammars in Prolog. 

1 LOGICAL FORMS FOR PROPOSITIONAL 
ATTITUDES 

The sentential theory of propositional attitudes claims that 
propositions are sentences of a thought language. It has an 
obvious appeal to AI workers, since their programs often 
contain sentences of an artificial language, which are sup- 
posed to represent the program's beliefs. These sentences 
can be true or false, and the program can make inferences 
from them, so they have two essential properties of beliefs. 
It is tempting to conclude that they are the program's 
beliefs, and that human beliefs are also sentences of a 
thought language. If we extend this to all propositional 
attitudes, we have a sentential theory of propositional 
attitudes. In such a theory, an English sentence expresses a 
proposition, and this proposition is itself a sentence--  
although in a different language. Other theories of atti- 
tudes hold that a proposition is a set of possible worlds, or a 
situation--something very different from a sentence. Moore 
and Hendrix (1979), Haas (1986), Perlis (1988), and 
Konolige (1986) have argued for sentential theories and 
applied them to artificial intelligence. 

Kaplan (1975) proposed an analysis of quantification 
into the scope of attitudes within a sentential theory, and 
other authors using sentential theories have offered varia- 
tions of his idea (Haas 1986; Konolige 1986). Most of these 
theories present serious difficulties for formal semantics. 
The problem is that they assign two very different logical 
forms to a clause: one form when the clause is the object of 
an attitude verb, and another when it stands alone. This 
means that the logical form of the clause depends on its 
context in a complicated way. It is difficult to describe this 
dependence in a formal grammar. The present paper aims 
to solve this problem--to present a grammar that assigns 
logical forms that are correct according to Kaplan's ideas. 

We also describe a parser that builds the logical forms 
required by the grammar. 

This grammar is a set of definite clauses written in the 
notation of Pereira and Warren (1980). However, it is not a 
definite clause grammar for two reasons. First, our gram- 
mar cannot be parsed by the top-down left-to-right method 
used for definite clause grammar (although it can be modi- 
fied to allow this). Second, we do not allow any of the 
nonlogical operations of Prolog, such as checking whether a 
variable is bound or free, negation as failure, and the rest. 
This means that our grammar is a set of ordinary first-order 
sentences (in an unusual notation) and its semantics is the 
ordinary semantics of first-order logic. So the grammar is 
declarative, in the sense that it defines a language and 
assigns logical forms without reference to any algorithm for 
parsing or generation. 

If we stick to the declarative semantics, a neglected 
problem demands our attention. We must choose the bound 
variables that appear in the logical forms generated by the 
grammar. Logic grammars that include semantics nearly 
always ignore this problem, using free variables of the 
meta-language to represent the bound variables of the 
logical form. This solution directly violates the declarative 
semantics of definite clauses, and we therefore reject it. We 
will see that this problem interacts with the semantics of 
NP conjunction and of quantification into attitudes. To 
untangle this knot and handle all three problems in one 
grammar is the goal of this paper. 

Section 1 of this paper will propose logical forms for 
sentences about propositional attitudes and explain the 
semantics of the logical forms in terms of certain relations 
that we take as understood. Section 2 presents a unification 
grammar for a fragment of English that includes quanti- 
tiers, NP conjunction, pronouns, and relative clauses. The 
grammar combines syntax and semantics and assigns one 
or more logical forms to each sentence that it generates. 
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Section 3 extends the grammar to include verbs that de- 
scribe propositional attitudes. Section 4 describes the imple- 
mentation and summarizes the results. 

1.1 KAPLAN'S ANALYSIS OF D E  RE BELIEF 
REPORTS 

Noun phrases in the scope of attitude verbs commonly have 
an ambiguity between de re and de dicto readings. Con- 
sider the example "John believes that Miss America is 
bald" (Dowty, Wall, and Peters 1981). Under the de re 

reading of "Miss America," this sentence says that John 
has a belief about a woman who in fact is Miss America, 
but it doesn't imply that John realizes she is Miss America. 
A sentential theorist might say that the sentence tells us 
that John has a belief containing some name that denotes 
Miss America, but it doesn't tell us what name. The other 
reading, called de dicto, says that John believes that who- 
ever is Miss America is bald. The de dicto reading, unlike 
the de re, does not imply that anyone actually is Miss 
America-- i t  could be true if the Miss America pageant 
closed down years ago, while John falsely supposes that 
someone still holds that title. 

Kaplan (1975) considered examples like these. He said 
that an agent may use many names that denote the same 
entity, but there is a subset of those names that represent 

the entity to the agent (this use of "represent" is different 
from the common use in AI). If an agent has a de re belief 
about an entity x, that belief must be a sentence containing, 
not just any term that denotes x, but a term that represents 
x to the agent. Thus if "person0" is a name that represents 
Miss America to John, and the thought language sentence 
"bald(person0)" is one of John's beliefs, then the sentence 
"John thinks Miss America is bald" is true (under the de re 

reading). 
Kaplan said that a name represents an entity to an agent 

if, first, it denotes that entity; second, it is sufficiently vivid; 
and, finally, there is a causal connection between the entity 
and the agent's use of the name. A name N is vivid to an 
agent if that agent has a collection of beliefs that mention 
N and give a good deal of relevant information about the 
denotation of N. What is relevant may depend on the 
agent's interests. 

Other authors have accepted the idea of a distinguished 
subset of names while offering different proposals about 
how these names are distinguished. I have argued that the 
distinguished names must provide information that the 
agent needs to achieve his or her current goals (Haas 
1986). Konolige (1986) proposed that for each agent and 
each entity, the set of distinguished names has exactly one 
member. In this paper, we adopt Kaplan's term "represent" 
without necessarily adopting his analysis of the notion. We 
assume that representation is a relation between an agent, a 
name, and the entity that the name denotes. If an agent has 
an attitude toward a thought-language sentence, and that 
sentence contains a name that represents a certain entity to 
the agent, then the agent has a de re attitude about that 
entity. Our grammar will build logical forms that are 

compatible with any sentential theory that includes these 
assumptions. 

One problem about the nature of representation should 
be mentioned. This concerns the so-called de se attitude 
reports. This term is attributable to Lewis (1979), but the 
clearest definition is from B6er and Lycan (1986). De se 
attitudes are "attitudes whose content would be formulated 
by the subject using the equivalent in his or her language of 
the first-person singular pronoun 'I '  " (B6er and Lycan 
1986). If John thinks that he is wise, and we understand 
this a,; a de se attitude, what name represents John to 
himself? One possibility is that it is his selfname. An 
agent's selfname is a thought-language constant that he 
standardly uses to denote himself. It was postulated in 
Haa,; (1986) in order to solve certain problems about 
planning to acquire information. To expound and defend 
this idea would take us far from the problems of composi- 
tional semantics that concern us here. We simply mention 
it as an example of the kinds of theories that are compatible 
with the logical forms built by our grammar. See also 
Rapal:,ort (1986) for another AI approach to de se atti- 
tudes. 

1.2 COMPOSITIONAL SEMANTICS AND LOGICAL 
FORMS 

Consider the logical form that Kaplan assigns for the de re 

reading of "John believes that some man loves Mary." 

(1) 
:t (y,man(y) & 

3 (c~,R(a,y,john) & 
believe(john,qove(~,mary)q))) 

The notation is a slight modification of Kaplan's (Kaplan 
1975). The predicate letter R denotes representation. The 
symbol o~ is a special variable ranging over names. The 
symbols r-and-1 are Quine's quasi-quotes (Quine 1947). If 
denotes a name t, then the expression "qove(a,mary) q' '  will 
denote the sentence "love(t,mary)." 

It is hard to see how a compositional semantics can build 
this representation from the English sentence "John be- 
lieves some man loves Mary."  The difficult part is building 
the representation for the VP "believes some man loves 
Mary."  By definition, a compositional semantics must build 
the representation from the representations of the constitu- 
ents of the VP: the verb "believe" and the embedded clause. 
Following Cooper's notion of quantifier storage (Cooper 
19821), we assume that the representation of the embedded 
clause has two parts: the wtT"love(y,mary)" and an existen- 
tial quantifier that binds the free variable y. Informally, we 
can write the quantifier as "some(y,man(y) & S)," where S 
stands for the scope of the quantifier. Applying this 
quanti!fier to the wff "love(y,mary)" gives the sentence 
"some(y,man(y) & love(y,mary))." In the present paper, 
the term "quantifier" will usually refer to this kind of 
object--not  to the symbols V and 3 of first-order logic, nor 
to the generalized quantifiers of Barwise and Cooper (1981). 

214 Comlmtational Linguistics Volume 16, Number 4, December 1990 



Andrew R. Haas Sentential Semantics for Propositional Attitudes 

In Section 2.2 we present a more precise formulation of our 
representation of quantifiers. 

When the clause "some man loves Mary"  forms an 
utterance by itself, the semantics will apply the quantifier 
to the wff " love(y,mary)"  to get the sentence "some 
(y,man(y) & love(y,mary))." The problem is that the wit 
"love(y,mary)" does not appear in Kaplan's representation. 
In its place is the expression "love(a,mary) ,"  containing a 
variable that ranges over names, not men. It might be 
possible to build this expression from the wff "love(y,mary)," 
but this sounds like a messy operation at best. Similar 
problems would arise if we chose another quotation device 
(such as the one in Haas 1986) or another scoping mecha- 
nism (as in Pereira and Shieber 1987). 

Konolige (1986) proposed a very different notation for 
quantifying in, one that would abolish the difficulty de- 
scribed here. His proposal depends on an ingenious non- 
standard logic. Unfortunately, Konolige's system has two 
important limitations. First, he forbids a belief operator to 
appear in the scope of another belief operator. Thus, he 
rules out beliefs about beliefs, which are common in every- 
day life. Second, he assumes that each agent assigns to 
every known entity a unique "id constant." When an agent 
has a belief about an object x, that belief contains the id 
constant for x. Using Kaplan's terminology, Konolige is 
saying that for any entity x and agent y, there is a unique a 
such that R(cqx,y). Kaplan never suggests that representa- 
tion has this property, and as Moore (1988) pointed out, 
the claim is hard to believe. Surely an agent can have many 
names for an entity, some useful for one purpose and some 
for another. Why should one of them be the unique id 
constant? We will propose a notation that has the advan- 
tages of Konolige's notation without its limitations. Section 
1.3 will present the new notation. In Section 1.4, we return 
to the problem of building logical forms for English sen- 
tences. 

1.3 A NEW NOTATION FOR QUANTIFYING IN 

Our logical forms are sentences in a first-order logic aug- 
mented with a quotation operator. We call this language 
the target language. Since the grammar  is a set of definite 
clauses, our notation is like Prolog's. The variables of the 
target language are u, v, w, x, y, z, etc. Constants, function 
letters, and atomic wffs are defined in the usual way. I f  p 
and q are wffs, then not(p),  and(p,q), and or(p,q) are wits. 
I f p  and q are wffs, x a variable, and t a term, the following 
are wffs: 

(2) some(x ,p ,q)  
(3) all(x,p,q) 
(4) unique(x,p ,q)  
(5) le t (x , t ,p)  

The first wff is true i f fp  and q are both true for some value 
of x. The second is true iff q is true for all values of x that 
make p true. The third is true iff there is exactly one value 
o f x  that makes p true, and q is true for that value ofx.  The 
last wit is true iff p is true when the value of x is set to the 

value of t. This language should be extended to include the 
iota operator, forming definite descriptions, since a definite 
description may often represent an entity to an agent. 
However, we omit definite descriptions for the time being. 

Fcr any expression e of the target language, q(e) is a 
constant of the target language. Therefore we have a 
countable infinity of constants. The intended models of our 
language are all first-order models in which the domain of 
discourse includes every expression of the language, and 
each constant q(e) has the expression e as its denotation. 
Models of this kind are somewhat unusual, but they are 
perfectly consistent with standard definitions of first-order 
logic, which allow the universe of discourse to be any 
nonempty set (Enderton 1972). Our language does depart 
from standard logic in one way. We allow a variable to 
appear inside a constant--for  example, since v is a variable, 
q(v) is a constant that denotes the variable v. Enderton 
explicitly forbids this: "no symbol is a finite sequence of 
other symbols" (p. 68). However, allowing a variable to 
appear inside a constant is harmless, as long as we are 
careful about the definition of a free occurrence of a 
variable. We modify Enderton's definition (p. 75) by chang- 
ing his first clause, which defines free occurrences of a 
variable in an atomic wff. We say instead that a variable v 
appears free in variable w iff v = w; no variable occurs free 
in any constant; a variable v occurs free in the term 
f(t 1 . . .  tn) iff it occurs free in one of t I . . .  tn; and v occurs 
free in the atomic wff p(t 1 . . .  tm) iff it occurs free in one of 
t I . . .  t,,,. Under this definition x does not occur free in the 
constant q(red(x)), although it does occur free in the wff 
red(x). 

As usual in a sentential theory of attitudes, we assume 
that an agent's beliefs are sentences of thought language 
stored in the head, and that knowledge consists of a subset 
of those sentences. Then simple belief is a relation between 
an agent and a sentence of thought language. To represent 
de re belief reports, we introduce a predicate of three 
arguments, and we define its extension in terms of simple 
belief and the notion of representation. I f  [p,l,w] is a triple 
in the extension of the predicate "believe," then p is the 
agent who has the belief, l is a list of entities x ~ . . .  xn that 
the belief is about, and w is a wff of the target language. 
The free variables in w will stand for unspecified terms that 
represent the entities x I . . .  x n to the agent p. These free 
variables are called d u m m y  variables. I f  John believes of 
Mary that she is a fool, then, using Prolog's notation for 
lists we write 

(6) believe(john, [mary],q(fool(x))). 

The constant "mary"  is called a de re argument  of the 
predicate "believe." The free occurrence of x in fool(x) 
stands for an unspecified term that represents Mary to 
John. This means that there is a term t that represents 
Mary to John, and John believes fool(t), x is the dummy 
variable for the de re argument "mary ."  This notation is 
inspired by Quine (1975), but we give a semantics quite 
different from Quine's. Note that the symbol "believe" is 
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an ordinary predicate letter, not a special operator• This is a 
minor technical advantage of the sentential approach: the 
quotation operator eliminates the need for a variety of 
special propositional attitude operators• 

To define this notation precisely, we must have some way 
of associating dummy variables with the de re arguments• 
Suppose we have the wff believe(x,[t 1 . . .  t , ] ,q(p)) .  Let v 1 
• . .  v, be a list of the free variables o fp  in order of their first 
occurrence. Then v~ will be the dummy variable for t;. In 
other words, the dummy variable for i-th de re argument 
will be the i-th free variable ofp.  This method of associat- 
ing dummy variables with de re arguments is somewhat 
arbi trary--another  possibility is to include an explicit list 
of dummy variables• Our choice will make the notation a 
little more compact. 

Then the extension of the predicate "believe" is defined 
as follows• Let s be an agent, [ x~ . . .  x,] a list of entities 
from the domain of discourse, and p a wff of the target 
language• Suppose that p has exactly n free variables, and 
let v I . . .  v, be the free variables o f p  in order of their first 
occurrence• Suppose that t ~ . . .  t n are closed terms such that 
t i represents x~ to s, for i from 1 to n. Suppose the simple 
belief relation holds between s and the sentence formed by 
substituting t 1 . . .  t, for free occurrences v 1 . . .  v, in p. Then 
the extension of the predicate "believe" includes the triple 
containing s, [x I . . .  x,], and p. 

As an example, suppose the term "personl" represents 
Mary to John, and John believes "fool(personl)." Then, 
since substituting "person l"  for "x" in "fool(x)" produces 
the sentence "fool(person 1)," it follows that 

(7) believe(john,[mary],q(fool(x))) 

is true in every intended model where "believe" has the 
extension defined above• 

Consider an example with quantifiers: "John believed a 
prisoner escaped•" The reading with the quantifier inside 
the attitude is easy: 

(8) believe(john, [],q(some(x,prisoner(x),escaped(x)))). 

In this case the list of de re arguments is empty• For the 
"quantifying in" reading we have: 

(9) some(x,prisoner(x),believe(john, [x],q(escaped(y)))). 

This says that for some prisoner x, John believes ofx  that he 
escaped• The dummy variable y in the wff escaped(y) 
stands for an unspecified term that occurs in one of John's 
beliefs and represents the prisoner x to John. 

Let us consider nested beliefs, as in the sentence "John 
believed Bill believed Mary was wise." Here the de re~de 

dicto ambiguity give rise to three readings• One is a straight- 
forward de dicto reading: 

(10) believe(john, [] ,q(believe(bill, [] ,q(wise(mary))))). 

To understand examples involving nested beliefs, it is help- 
ful to write down the sentence that each agent believes• 

Since this example does not involve quantifying in, it is easy 
to write down John's bel ief~we just take the quotation 
mark off the last argument of "believe": 

( 11 ) believe(bill, [] ,q(wise(mary))). 

If this belief of John's is true, then Bill believes 

(12) wise(mary). 

In the next reading, the name "Mary"  is de dicto for John, 
but de re for Bill: 

(13) believe(john, [] ,q(believe(bill, [mary] ,q(wise(x))))). 

Here, John is using the constant "mary"  to denote Mary, 
but ihe does not necessarily think that Bill is using the same 
constant--he only thinks that some term represents Mary 
to Bill The sentence that John believes is 

(14) believe(bill, [mary],q(wise(x))). 

If John is right, Bill's belief is formed by substituting for 
the :free variable x in "wise(x)" some term that represents 
Mary to Bill. Suppose this term is "person0," then Bill's 
belief would be 

(15) wise(person0). 

Finally, there is a reading in which "Mary"  is de re for both 
agents: 

(16) believe(john,[mary],q(believe(bill,[x],q(wise(y))))). 

Here there is a name that represents Mary to John, and 
John thinks that there is a name that represents Mary to 
Bill. Again, John does not necessarily believe that Bill uses 
the same name that John uses. Suppose "person3" is the 
term that represents Mary to John, then John's belief 
would, be 

(17) believe(bill, [person3] ,q(wise(y))). 

If "pe, rson4" is the term that represents Mary to Bill, then 
Bill's belief would be 

(18) wise(person4). 

One might expect a fourth reading, in which "Mary"  is 
de re for John and de dicto for Bill, but our formalism 
cannot represent such a reading. To see why, let us try to 
construct a sentence that represents this reading• In our 
notation a nonempty list of de re arguments represents a de 

re belief, while an empty list of de re arguments represents 
a de dicto belief. Therefore the desired sentence should 
have a nonempty list of de re arguments for John's belief, 
and a:a empty list for Bill's belief• This would give 

(19) believe(john, [mary],q(believe(bill, [],q(wise(x))))) 

This sentence does not assert that John believes Bill has a 
de dicto belief about Mary. To see this, consider John's 
belief. If he uses the constant "personl"  to denote Mary, 
the belief is 
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(20) believe(bill, [],q(wise(x))). 

In forming John's belief we do not substitute "personl"  for 
the occurrence of x under the quotation operator--because 
by our definitions this is not a free occurrence of x. Thus 
John's belief says that Bill has a belief containing a free 
variable, which our theory forbids. 

It is not clear to me whether the desired reading exists in 
English, so I am not certain if this property of the notation 
is a bug or a feature. In either case, other notations for 
describing attitudes have similar properties. For example, 
in a modal logic of attitudes we use the scope of quantifiers 
to represent de re~de dicto distinctions. If a quantifier 
appears in the scope of an attitude operator, we have a de 
dicto reading, and if it appears outside the scope (while 
binding a variable inside the scope) we get a de re reading. 
In a sentence like "John thinks Bill thinks Mary saw a 
lion," there are three places to put the existential quanti- 
fier: in the scope of Bill's belief operator, in the scope of 
John's operator but outside Bill's, or outside both. These 
give the same three readings that our formalism allows. To 
make "a lion" be de re for John and de dicto for Bill, we 
would have to put the quantifier outside the scope of John's 
belief operator, but inside the scope of Bill's belief operator. 
Since Bill's belief operator is in the scope of John's, that is 
impossible. 

The same method applies to other att i tudes--for exam- 
ple, knowledge. Given a simple knowledge relation, which 
expresses de dicto readings of sentences with "know," one 
can define the predicate "know," which expresses both de 
re and de dicto readings. "Know" will take three argu- 
ments just as "believe" does. 

Next we consider examples like "John knows who likes 
Mary," in which "know" takes a wh noun phrase and a 
sentence containing a gap. The intuition behind our analy- 
sis is that John knows who likes Mary if there is a person s 
such that John knows that s likes Mary. This is of course a 
de re belief report, and its logical form should be 

(21) some(x,person(x),know(john, [x],q(like(y,mary)))). 

As an example, suppose the sentence 

(22) like(bill,mary) 

is one of John's beliefs, and it belongs to the subset 
of beliefs that constitute his knowledge. If the constant 
"bill" represents Bill to John, then since substituting 
"bill" for "y"  in " l ikes(y,mary)"  gives the sentence 
"like(bill,mary)," we have 

(23) know(john,[bill],q(like(y,mary))) 

and therefore 

(24) some(x,person(x),know(john, [x],q(like(y,mary)))). 

This proposed analysis of "knowing who" is probably too 
weak. As a counter example, suppose a night watchman 
catches a glimpse of a burglar and chases him. Then the 
night watchman has formed a mental description of the 

burglar--a  description that he might express in English as 
"the man I just saw sneaking around the building." The 
burglar might say to himself, "He  knows I 'm in here." This 
is a de re belief report, so it follows that the night watch- 
man's mental description of the burglar must represent the 
burglar to the watchman (by our assumption about repre- 
sentation). Yet the night watchman surely would not claim 
that he knows who is sneaking around the building. It 
seems that even though the watchman's mental description 
represents the burglar, it is not strong enough to support 
the claim that he knows who the burglar is. 

It would be easy to extend our notation to allow for a 
difference between "knowing who" and other cases of 
quantification into attitudes. It would be much harder to 
analyze this difference, B/Ser and Lycan (1986) have ar- 
gued that when we say someone knows who N is, we always 
mean that someone knows who N is for some purpose. This 
purpose is not explicitly mentioned, so it must be under- 
stood from the context of the utterance in which the verb 
"know" appears. Then the predicate that represents "know- 
ing who" must have an extra argument whose value is 
somehow supplied by context. These ideas look promising, 
but to represent this use of context in a grammar is a hard 
problem, and outside the scope of this work. 

Next we consider intensional transitive verbs like "want," 
as in "John wants a Porsche." The intuition behind the 
analysis is that this sentence is roughly synonymous with 
"John wishes that he had a Porsche"--under  a reading in 
which "he"  refers to John. Then the logical form would be 

(25) wish(john,[],q(some(x,porsche(x),have(john,x)))) 

for a de dicto reading, and 

(26) some(x,porsche(x),wish(john, [x],q(have(john,y)))) 

for a de re reading. The predicate letter "wish" need not be 
identical to the one that translates the English verb 
"wish"-- i t  might only be roughly synonymous. The predi- 
cate letter "have" probably is the same one that translates 
the verb "have"---or rather, one of many predicates that 
can translate this highly ambiguous verb. For the present 
purpose let us assume that the predicate "have" represents 
a sense of the verb "have" that is roughly synonymous with 
"possess," as in "John has a Porsche." Another sense of 
"have" is relational, as in "John has a son," and "want" has 
a corresponding sense, as in "John wants a son." The 
present paper will not analyze this relational sense. 

This grammar will express the meanings of intensional 
verbs in terms of propositional attitudes. This may not work 
for all intensional verbs. For example, it is not clear that 
"the Greeks worshipped Zeus" is equivalent to any state- 
ment about propositional attitudes. Montague (1974a) rep- 
resented intensional verbs more directly, as relations be- 
tween agents and the intensions of NP's. A similar analysis 
is possible in our framework, provided we extend the target 
language to include typed lambda calculus. Suppose the 
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variable p ranges over sets of individuals. Then we could 
represent the de  d i c t o  reading of"John wants a Porsche" as 

(27) want(john,q(lambda(p,some(x,porsche(x),x e p)))). 

Here the predicate "want" describes a relation between a 
person and an expression of thought language, but that 
expression is not a wff. Instead it is a closed term denoting a 
set of sets of individuals. Certainly this is a natural general- 
ization of a sentential theory of attitudes. If agents can 
have attitudes toward sentences of thought language, why 
shouldn't they have attitudes toward other expressions of 
the same thought language? 

1.4 COMPOSITIONAL SEMANTICS AGAIN 

We now return to the problem of building logical forms 
with a compositional semantics. Consider the formula 

(28) some(x,prisoner(x),believe(john,[x],q(escaped(y)))). 

Following Cooper as before, we assume that the semantic 
features of the clause "a prisoner escaped" are a wff 
containing a free variable and an existential quantifier that 
binds the same variable. In formula (28) the existential 
quantifier does not bind the variable that appears in the wff 
"escaped(y)"-- i t  binds another variable instead. Therefore 
we have the same problem that arose for Kaplan's represen- 
t a t i o n - i t  is not clear how to build a representation for the 
belief sentence from the representations of its constituents. 

The choice of bound variables is arbitrary, and the choice 
of dummy variables is equally arbitrary. Thus, there is an 
obvious solution: let the de  re arguments and the dummy 
variables be the same. Thus, the wide scope reading for 
"John believes a prisoner escaped" is not (28), but 

(29) some(x,prisoner(x),believe(john,[xl,q(escaped(x)))). 

Here the variable x serves two purposes--it  is a d e  re 

argument, and also a dummy variable. When it occurs as a 
de  re argument, it is bound by the quantifier in the usual 
way. When it occurs as a dummy variable, it is definitely 
not bound by the quantifier. In fact the dummy variable is a 
mention of the variable x, not a use, because it occurs under 
a quotation mark. 

Formula (29) may be a little confusing, since the same 
variable appears twice with very different semantics. This 
formula has a major advantage over formula (28), how- 
ever-- i t  contains the wff "escaped(x)" and a quantifier 
that binds the free variable of that wff. Since these are 
precisely the semantic features of the clause "a prisoner 
escaped," it is fairly easy to build the logical form (29) 
from the sentence "John believed a prisoner escaped." 

We can describe this technique as a convention govern- 
ing the logical forms that our grammar assigns to English 
phrases. In any wff of the form believe(x,[tl • • • t~], q(p)), 
the nth de  re argument is equal to its own dummy variable. 
Then the nth d e  re argument t~ is equal to the nth free 
variable ofp.  In other words, the list [t I . . .  t~] is just a list 

of the free variables of p in order of occurrence. The same 
convention holds for all predicates that represent attitudes. 

Finally, note that the convention holds only for the 
logical forms that the grammar assigns to sentences. Once 
the grammar has built a logical form, inference procedures 
can fi:eely violate the convention. For example, consider the 
logical form of the sentence "Every man believes that Mary 
loves him": 

(30) all(x,man(x),believe(x, [x],q(love(mary,x)))). 

From this sentence and the premise man(bill) we can infer 

(31) believe(bill, [bill],q(love(mary,x))) 

by substituting for a universal variable as usual. The occur- 
rence of the variable under the quotation mark is naturally 
unaffected, because it is not a free occurrence of x. 

1.5 SELF-REFERENCE AND PARADOX 

Other writers (cited above) have already expounded and 
defended sentential theories of attitudes. This paper takes a 
sentential theory as a starting point, and aims to solve 
certain problems about the semantics of attitude reports in 
such a theory. However, one problem about sentential 
theories deserves discussion. The results of Montague 
(1974b) have been widely interpreted as proof that senten- 
tial theories of attitudes are inconsistent and therefore 
useless. Montague did indeed show that certain sentential 
theories of knowledge produce self-reference paradoxes, 
and are therefore inconsistent. However, he did not show 
that these were the only possible sentential theories. Re- 
cently des Rivi6res and Levesque (1986) have constructed 
sentential theories without self-reference and proved them 
consiistent. Thus they showed that while Montague's theo- 
rem was true, its significance had been misunderstood. 
Perlis (1988) has shown that if we introduce self-reference 
into a modal theory, it too can become inconsistent. In 
short, there is no special connection between sentential 
theories and paradoxes of self-reference. A sentential the- 
ory may or may not include self-reference; a modal theory 
may or may not include self-reference; and in either case, 
self-reference can lead to paradoxes. 

Kripke (1975) has shown that even the most common- 
place utterances can create self-reference if they occur in 
unusual circumstances. Therefore the problem is not to 
avoid self-reference, but to understand it. The problem for 
advocates of sentential theories is to find a sentential analy- 
sis of the self-reference paradoxes that is, if not wholly 
satisfactory, at least as good as nonsentential analyses. For 
the purposes of AI, a successful analysis must avoid para- 
doxical conclusions, without sacrificing axioms or rules of 
inference that have proved useful in AI programs. 

One idea is that ordinary human intuitions about self- 
reference are inconsistent. To most people, it appears that 
the ..sentence "This statement is false" must be both true 
and false, yet it cannot be both. The only error in the formal 
analyses is that having derived a contradiction, they allow 
us to derive any conclusion whatever. This happens because 
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standard logic allows no inconsistent theories except trivial 
ones, containing every sentence of the language. Therefore 
we need a new kind of logic to describe the inconsistent 
intuitions of the ordinary speaker. Priest (1989) attempted 
th is - -he  constructed an inconsistent but nontrivial theory 
of truth using a paraconsistent logic. Priest's theory in- 
cludes the T-scheme, written in our notation as 

(32) P ~ true(q(P)). 

P is a meta-variable ranging over sentences of the lan- 
guage. Tarski (1936) proposed this scheme as capturing an 
essential intuition about truth. Unfortunately, the rule of 
modus ponens is invalid in Priest's system, which means 
that most of the standard AI reasoning methods are invalid. 
Priest considers various remedies for this problem. 

Another approach is to look for a consistent theory of 
self-reference. Such a theory will probably disagree with 
speakers' intuitions for paradoxical examples like "This 
statement is false." Yet these examples are rare in practice, 
so a natural language program using a consistent theory of 
self-reference might agree with speakers' intuitions in the 
vast majority of cases. Kripke (1975) proposed such a 
theory, based on a new definition of truth in a model - -an  
alternative to Tarski 's definition. Kripke's definition allows 
truth-value gaps: some sentences are neither true nor false. 
Suppose P is a sentence; then the sentence true(q(P)) is 
true iff P is true, and false iff P is false. Therefore if P is 
neither true nor false, true(q(P)) also has no truth value. In 
other respects, Kripke's definition of truth resembles Tar- 
ski ' s - - i t  assigns the same truth values to sentences that do 
not contain the predicate "true,"  and it never assigns two 
different truth values to one sentence. Suppose that a model 
of this kind contains a sentence that says " I  am not true." 
Formally, suppose the constant c denotes the sentence 
--7 true(c). What  truth value can such a sentence have under 
Kripke's definition? Just as in standard logic, m true(c) is 
true iff true(c) is false. True(c) in turn is false iff c is false. 
Since c is the sentence m true(c), we have shown that c is 
true iff c is false. Since no sentence has two truth values, it 
follows that c has no truth value. 

Once again, problems arise because the system is too 
weak. If  P is a sentence with no truth value, then the 
sentence P V m P has no truth value, even though it is a 
tautology of first-order logic. One remedy for this appears 
in the system of Perlis (1985). Perlis considers a first-order 
model M containing a predicate "true,"  whose extension is 
the set of sentences that are true in M by Kripke's defini- 
tion. He accepts as theorems all sentences that are Tarski- 
true in every model of this kind. Thus Perlis's system uses 
two notions of truth: P is a theorem only if P is Tarski-true, 
but true(q(P)) is a theorem only if P is Kripke-true. 
Suppose we have P ~ m true(q(P)); then Perlis's system 
allows us to prove both P and m true(q(P)). This certainly 
violates the intuitions of ordinary speakers, but such viola- 
tions seem to be the inevitable price of a consistent theory 
of self-reference. Perlis devised a proof system for such 
models, using standard first-order proof and an axiom 

schema GK for the predicate "true."  Perlis proved that if L 
is any consistent set of first-order sentences that does not 
mention the predicate "true," then the union of L and GK 
has a model M in which the extension of " t rue"  is the set of 
sentences that are Kripke-true in M. Perlis's system has 
one important advantage over Kripke's: since the formal- 
ism is just a standard first-order theory, we can use all the 
familiar first-order inference rules. In this respect, Perlis's 
system is better suited to the needs of AI  than either 
Kripke's or Priest's. However, it still excludes some infer- 
ences that are standard in everyday reasoning. For exam- 
ple, we have true(q(P)) ~ P for every P, but P ~ true(q(P)) 
is not a theorem for certain sentences P - - in  particular, 
sentences that are self-referential and paradoxical. 

An adequate account of self-reference must deal not only 
with the Liar, but also with paradoxes arising from proposi- 
tional a t t i tudes--for  example, the Knower Paradox (Mon- 
tague and Kaplan 1974), and Thomason's paradox about 
belief (Thomason 1980). Perlis (1988) has considered the 
treatment of attitudes within his system, and Asher and 
Kamp (1986) have treated both paradoxes using ideas akin 
to Kripke's (their treatment is not sentential, but they 
claim that it could be extended to a sentential treatment).  

Let us briefly consider the treatment of the Knower 
paradox within Perlis's system. To simplify the treatment, 
we will assume that knowledge is true belief. I f  we are 
working in Perlis's system, this naturally means that knowl- 
edge is Kripke-true belief. We write "the agent knows that 
P"  as true(q(P)) A believe(q(P)). The paradox arises from 
a sentence R that says "The agent knows --hR." Formally, 

(33) R ,---, ( true(q(mR)) A believe(q(mR))). 

Since true(q(mR)) ~ mR is a theorem of Perlis's system, 
(33) implies --hR. Now suppose that the agent believes (33); 
then with modest powers of inference the agent can con- 
clude mR, so we have believe(qmR). Combining this with 
(33) gives 

(34) R ~ true(q(mR)), 

which at once implies that --nR is not Kripke-true. It  follows 
that although mR is a theorem of the system, and the agent 
believes it, the agent does not know i t - -because it is not 
Kripke-true, and only a sentence that is Kripke-true can be 
known. The Knower paradox arises if we insist that the 
agent does know mR. This example brings out a counter- 
intuitive property of Perlis's system: a sentence may follow 
directly from Perlis's axioms, yet he refuses to call it true, 
or to allow that any agent can know it. Strange though this 
appears, it is a natural consequence of the use of two 
definitions of truth in a single theory. 

Belief is different from knowledge because it need not be 
true. This makes it surprising that Thomason's paradox 
involves only the notion of belief, not knowledge or truth. In 
fact the paradox arises exactly because Thomason's agent 
thinks that all his beliefs are true. This is stated as 

(35) a(<  a(< ¢ >) --~ ~ >) 
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(Thomason 1980). The notation is as follows: ~P is a vari- 
able ranging over all formulas of the language, < ~P > is a 
constant denoting (the G6del number of) ~P, and a ( <  ~P >) 
means that the agent believes ~P. This axiom says that for 
every formula ~o, the agent believes 

(36) a ( <  ~o >) ~ ~p. 

This sentence says that if the agent believes ~o, ~o must be 
true. Since ~o ranges over all sentences of the language, the 
agent is claiming that his beliefs are infallible. This leads 
the agent into a paradox similar to the Knower, and his 
beliefs are therefore inconsistent. Asher and Kamp showed 
that one can avoid this conclusion by denying (35) in 
certain cases where 4~ is a self-referential sentence. Another 
alternative is to dismiss (35) completely. It  is doubtful that 
human beings consider their own beliefs infallible, and 
Perlis (1986) has argued that a rational agent may well 
believe that some of his or her beliefs are false. 

We have looked at three sentential analyses of the self- 
reference paradoxes, and each one sacrifices some principle 
that seems useful for reasoning in an AI program. The 
alternative is an analysis in which propositions are not 
sentences. Thomason (1986) considers such analyses and 
finds that they have no clear advantage over the sentential 
approaches. The unpleasant truth is that paradoxes of 
self-reference create equally serious problems for all known 
theories of attitudes. It  follows that they provide no evi- 
dence against the sentential theories. 

2 THE BASIC GRAMMAR 

2.1 NOTATION 

The rules of our g rammar  are definite clauses, and we use 
the notation of definite clause grammar  (Pereira and War- 
ren 1980). This notation is now standard among computer 
scientists who study natural language and is explained in a 
textbook by Pereira and Shieber (1987). Its advantages 
are that it is well defined and easy to learn, because it is a 
notational variant of standard first-order logic. Also, it is 
often straightforward to parse with grammars  written in 
this notation (although there can be no general parsing 
method for the notation, since it has Turing machine 
power). DCG notation lacks some useful devices found in 
linguistic formalisms like G P S G - - t h e r e  are no default 
feature values or general feature agreement principles 
(Gazdar et al. 1985). On the other hand, the declarative 
semantics of the DCG notation is quite clear--unlike the 
semantics of GPSG (Fisher 1989). 

The grammar  is a set of meta-language sentences describ- 
ing a correspondence between English words and sentences 
of the target language. Therefore, we must define a nota- 
tion for talking about the target language in the meta- 
language. Our choice is a notation similar to that of Haas  
(1986). I f  f is a symbol of the target language, ' f  is a symbol 
of the meta-language. Suppose f is a constant or a variable, 
taking no arguments. Then ' f  denotes f. Thus 'john is a 

meta-language constant that denotes a target-language 
constant, while 'x is a meta-language constant that denotes 
a target-language variable. Suppose f is a functor of the 
target language and takes n arguments. Then ' f  is a meta- 
language function letter, and it denotes the function that 
maps n expressions of the target language el • • • en to the 
target-language expression f ( e l . . ,  en). Thus 'not is a meta- 
language function letter, and it denotes the function that 
maps a target language wff to its negation. In the same 
way, 'or is a meta-language function letter, and it denotes 
the function that maps two target-language wffs to their 
disjunction. 

Given these denotations, it is easy to see that if p(a,b) is 
an atomic sentence in the target language, then 'p( 'a , 'b)  is 
a term in the meta-language, and it denotes the wff p(a,b) 
in the target language. Suppose that Wffl  and Wff2 are 
meta-language variables ranging over wffs of the target 
language. Then 'or(Wffl ,Wff2)  is a meta-language term, 
and since the variables Wffl  and Wff2 range over all wffs of 
the target language, the value of 'or(Wffl ,Wff2)  ranges 
over all disjunctions in the target language. These ideas 
about the relation between meta-language and target lan- 
guage are not new or difficult, but it is worth the time to 
explain them, because some influential papers about seman- 
tics in unification g rammar  have confused the target lan- 
guage and meta-language (see Section 2.4). For the sake of 
legibil i ty,  we omit  the quota t ion  m a r k s - - s o  when 
or(Wffl ,Wff2) appears in a rule of the grammar,  it is an 
abbreviation for 'or(Wffl ,Wff2).  

2.2 REPRESENTING QUANTIFIERS 

Noun phrases in the grammar  contribute to logical form in 
two ways, and therefore they have two semantic features. 
The first feature is a variable, which becomes a logical 
argument of a verb. This produces a wiT, in which the 
variaN, e appears free. The second feature is a quantifier 
that binds the variable. By applying the quantifier to the 
wff, we eliminate free occurrences of that particular vari- 
able. After applying all the quantifiers, we have a wff 
without free var iables- -a  sentence. This is the logical form 
of an utterance. 

In Montague's system (Montague 1974a), the logical 
form of an NP  is an expression denoting a quantifier. This 
kind of analysis is impossible in our system, because the 
target language is first-order. It  contains no expressions 
that denote quantifiers. Therefore the representation of an 
NP  cannot be an expression of the target language. Instead 
of using Montague's approach, we associate with every 
quantifier a function that maps wffs to wffs. For the N P  
"every man," we have a function that maps any wff Wffl  to 
the wff 

(37) al l (V,man(V),Wffl)  

where V is a variable of the target language. Notice that if 
we took Montague's representation for the quantified NP, 
applied it to the lambda expression lambda(V,Wffl) ,  and 
then simplified, we would get an alphabetic variant of (37). 
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We will call this function the application function for the 
quantified NP. 

To represent application functions in a unification gram- 
mar, we use a device from Pereira and Warren (1980). We 
assign to each NP an infinite set of readings----one for each 
ordered pair in the extension of the application function. 
The first and second elements of the ordered pair are 
semantic features of the NP, and the bound variable of the 
quantifier is a third feature. For the NP "every man" we 
have 

(38) np(V,Wffl,all(V,man(V),Wffl)) ---- [every man]. 

This says that for any variable V and wff Wffl,  the string 
"every man" is an NP, and if it binds the variable V, then 
the pair [Wffl,all(V,man(V),Wffl)] is in the extension of 
its application function. It follows that the application 
function maps Wffl to the wff all(V,man(V),Wffl).  When 
other rules fix the values of the variables V and Wffl ,  the 
result of the mapping will be fixed as well. A more complex 
example is 

(39) np(V,Wff l ,and(some(V,man(V) ,Wff l ) , some(V,  
woman(V),Wffl)))  ~ [a man and a woman]. 

Here the application function's output includes two copies 
of the input. 

It is important to consider the declarative semantics of 
these rules. Each one states that a certain NP has an 
infinite set of possible readings, because there are infinitely 
many wffs in the target language. Thus we might say that 
the NP in isolation is infinitely ambiguous. This "ambiguity" 
is purely formal, however; in any actual utterance the value 
of the variable Wffl will be supplied by other rules, so that 
in the context of an utterance the ambiguity is resolved. In 
the same way, the VP "liked Mary" is ambiguous in person 
and number--but  in the context of the utterance "John 
liked Mary," its person and number are unambiguous. 

In one respect the declarative semantics of these rules is 
not quite right. The variable V is supposed to range over 
variables of the target language, and the variable Wffl is 
supposed to range over wffs of the target language. Yet we 
have not defined a type system to express these range 
restrictions. However, such a type system could be added, 
for example, using the methods of Walther (1987). In fact, 
the type hierarchy would be a tree, which allows us to use a 
simplified version of Walther's methods. For brevity's sake 
we will not develop a type system in this paper. Except for 
this omission, the declarative semantics of the above rules is 
quite clear. 

Typed variables have mnemonic value even if we do not 
use a typed logic. Therefore we adopt the following conven- 
tions. The meta-language variables V, V0, V1 . . .  range 
over target language variables. Wff, Wffl ,  W f f 2 . . .  range 
over target language wffs. Q, Q1, Q2 . . .  range over 
quantifiers. QL, QL1, QL2 . . .  range over lists of quanti- 
tiers. When a wff forms the range restriction of a quantifier, 
we will sometimes use the variables Range, R a n g e l . . .  for 
that wiT. 

2.3 SCOPING AND QUANTIFIER STORAGE 

Given a means of describing quantifiers, we must consider 
the order of application. Cooper (1983) has shown how to 
allow for different orders of application by adding to NPs, 
VPs, and sentences an extra semantic feature called the 
quantifier store. The store is a list of quantifiers that bind 
the free variables in the logical form of the phrase. The 
grammar removes quantifiers from the store and applies 
them nondeterministically to produce different logical forms, 
corresponding to different orders of application. If a sen- 
tence has a logical form p and a quantifier store 1, then 
every free variable in p must be bound by a quantifier in 
/--otherwise the final logical form would contain free 
variables. 

Our treatment of quantifier storage is different from 
Cooper's in two ways. First, Cooper's grammar maps 
phrases to model-theoretic denotations, not logical forms. 
This sounds like a bigger difference than it is. The basic 
technique is to put quantifiers in a store, and use some kind 
of marker to link the stored quantifiers to the argument 
positions they must bind. Whether we work with the logical 
forms or with their denotations, much the same problems 
arise in applying this technique. 

A second difference is that in Cooper's grammar, each 
NP has two readings---one in which the NP's quantifier is 
in the store, and one in which it is not. The first reading 
leads to wide-scope readings of the sentence, while the 
second leads to narrow-scope readings. In our grammar 
only the first kind of reading for an NP exists--that is, the 
quantifier of an NP is always in the store. We generate both 
wide- and narrow-scope readings by applying the quanti- 
tiers from the store in different orders. 

We represent a quantifier as a pair p(Wffl,Wff2), where 
the application function of the quantifier maps Wffl to 
Wff2. We represent a quantifier store as a list of such pairs. 
The predicate apply_quants(QLI,Wffl,QL2,Wff2) means 
that QL1 is a list of quantifiers, Wffl is a wff, Wff2 is the 
result of applying some of the quantifiers in QL1 to Wffl,  
and QL2 contains the remaining quantifiers. The first 
axiom for the predicate says that if we apply none of the 
quantifiers, then QL2 = QL1 and Wff2 = Wffl:  

(40) apply_quants(QL,Wff, QL,Wff). 

The second axiom uses the predicate choose(L1,X,L2), 
which means that X is a member of list L1, and L2 is 
formed by deleting one occurrence of X from L1. 

(41) 
apply_quants(QLl,Wffl,QL3,Wff3) 
:- choose(QL 1,p(Wffl,Wff2),QL2), 

apply_quants(QL2,Wff2,QL3,Wff3). 

Consider the first literal on the right side of this rule. It says 
that p(Wffl,Wff2) is a member of QL1, and deleting 
p(Wffl,Wff2) from QL1 leaves QL2. By definition, if the 
pair p(Wffl,Wff2) is in the extension of the application 
function for a certain quantifier, the application function 
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maps Wffl to Wff2. The second literal says that applying a 
subset of the remaining quantifiers QL2 to Wff2 gives a 
new wff Wff3 and a list QL3 of remaining quantifiers. Then 
applying a subset of QL1 to Wffl gives Wff3 with remain- 
ing quantifiers QL3. 

Suppose that QL1 is 

(42) [p(Wffl ,all(V 1 ,man(V 1 ),Wffl)),p(Wff2,some(V2, 
woman(V2),Wff2) )]. 

Then solutions for the goal 

(43) :- apply_quants(QLl,loves(V1,V2),QL3,Wff3) 

include 

(44) 
Wff3 = all(V 1,man(V 1), 

some(V2,woman(V2),loves(V 1 ,V2))) 
QL3 = [] 

and also 

(45) 
Wff3 = some(V2,woman(V2), 

all(Vl,man(V1),loves(V1,V2))) 
QL3 = []. 

There are also solutions in which some quantifiers remain 
in the store: 

(46) 
Wff3 = all(V 1 ,man(V 1 ),loves(V 1 ,V2)) 
QL3 = [p(Wff2,some(V2,woman(V2),Wff2))]. 

These solutions will be used to build wide-scope readings 
for propositional attitude reports. 

2.4 THE PROBLEM OF ASSIGNING DISTINCT 
VARIABLES TO QUANTIFIERS 

The rules we have given so far do not tell us which target 
language variables the quantifiers bind. These rules contain 
meta-language variables that range over target language 
variables, rather than meta-language constants that denote 
particular variables of the target language. In choosing the 
bound variables it is sometimes crucial to assign distinct 
variables to different quantifiers. The logical form of"Some 
man loves every woman" can be 

(47) some(x,man(x),all(y,woman(y),loves(x,y))) 

but it cannot be 

(48) some(y,man(y),all(y,woman(y),loves(y,y))). 

This reading is wrong because the inner quantifier captures 
the variables that are supposed to be bound by the outer 
quantifier. To be more precise: the outer quantifier binds 
the variable y, but not all occurrences of y in the scope of 
the outer quantifier are bound by the outer quantifier. 
Some of them are bound instead by the inner quantifier. In 
this situation, we say that the inner quantifier shadows the 
outer one. We require that no quantifier ever shadows 
another in any logical form built by the grammar. This 

requirement will not prevent us from finding logical forms 
for English sentences, because any first-order sentence is 
logically equivalent to a sentence without shadowing. 

The same problem arises in cases of quantification into 
the ,;cope of attitudes. Consider the sentence "John thinks 
some man loves every woman," and suppose that "some 
man" has wide scope and "every woman" has narrow 
scope. The logical form can be 

(49) 
some(x,man(x), 

thinks(john,[x],q(all(y,woman(y),loves(x,y))))) 

but it cannot be 

(50) 
some(y,man(y), 

thinks(john,[y],q(all(y,woman(y),loves(y,y))))). 

In this formula, the inner quantifier captures a variable 
that is supposed to be a dummy variable. In this case also, 
we say that the inner quantifier shadows the outer one. 

Pereira and Warren (1980) prevented shadowing by 
using Prolog variables to represent variables of the object 
language. Thus, their translation for "Some man loves 
every woman" is 

(51) exists(Y) : (man(Y) & all(X) : (woman(X) =~ 
loves(Y,X))) 

where X and Y are Prolog variables. This works, but it 
violates the declarative semantics of Prolog. According to 
that semantics every variable in an answer is universally 
quantified. Thus if Prolog returns (51) as a description of 
the logical form of a sentence, this means that for all values 
of X and Y the expression (51) denotes a possible logical 
form tbr that sentence. This means that if v is a variable of 
the object language, then 

(52) exists(v) : (man(v) & all(v) : (woman(v) =~ 
loves(v,v))) 

is a possible translation, which is clearly false. Thus, accord- 
ing to the declarative interpretation, Pereira and Warren's 
grammar does not express the requirement that no quanti- 
fier can shadow another quantifier. Pereira and Shieber 
(198;7) pointed out this problem and said that while for- 
mally incorrect the technique was "unlikely to cause 
problems." Yet on p. 101 they describe the structures built 
by their grammar as "unintuitive" and even "bizarre." 
This confirms the conventional wisdom: violating the declar- 
ative ,;emantics makes logic programs hard to understand. 
Therefore, let us look for a solution that is formally correct. 

Warren (1983) suggested one possible solution. We can 
use a global counter to keep track of all the variables used 
in the logical form of a sentence, and assign a new variable 
to every quantifier. Then no two quantifiers would bind the 
same variable, and certainly no quantifier would shadow 
another. This solution would make it easier to implement 
our treatment of de re attitude reports, but it would also 
create, serious problems in the treatment of N P  conjunction 
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and disjunction (see Section 2.5). Therefore we consider 
another possibility. 

Let us rewrite the definition of "apply_quants," adding 
the requirement that each quantifier binds a variable that is 
not bound in the scope of that quantifier. For each integer 
N, let v(N) be a variable of the target language. If N is not 
equal to M, then v(M) and v(N) are distinct variables. We 
represent the integers using the constant 0 and the function 
"s" for "successor" in the usual way. The predicate 
highest_bound_var(Wffl,N) means that N is the largest 
number such that v(N) is bound in Wffl.  To define this 
predicate, we need one axiom for each quantifier, connec- 
tive, and predicate letter of the target language. These 
axioms are obvious and are therefore omitted. 

We also need the predicate binds(Wffl,V), which means 
that the outermost quantifier of Wffl binds the variable V. 
To define this predicate we need an axiom for each quanti- 
fier and connective. Typical axioms are: 

(53) binds(all(V,Wffl,Wff2),V). 
(54) binds(and(Wffl,Wff2),V) :- binds(Wffl,V). 

The second axiom applies to complex quantifiers arising 
from conjoined NPs. In this case there are two branches, 
but each branch binds the same variable (the rules for NP 
conjunction ensure that this is so). Therefore, we recur- 
sively check the first branch to find the bound variable. 

Given these predicates, we can rewrite the second axiom 
for "apply_quants": 

(55) 
apply_quants(QLl,Wffl,QL3,Wff3) 
:- choose(QL 1 ,p(Wffl ,Wff2),QL2), 

highest_bound_var(Wffl,N), 
binds(Wff2,v(s(N))), 
apply_quants(QL2,Wff2,QL3,Wf3). 

Wffl is the scope of the quantifier, and v(N) is the highest 
bound variable of Wffl.  The new quantifier binds the 
variable v(s(N)), which is different from every bound 
variable in the scope Wffl.  Therefore, the new quantifier is 
not shadowed by any lower quantifier. 

As an example, suppose that QL1 is 

(56) [p(Wff2,all(V2,woman(V2),Wff2))]. 

Then solutions for the goal 

(57) :- apply_quants(QLl,loves(V1,V2),QL3,Wff3) 

include 

(58) 
Wff3 = all(v( 1 ),woman(v( 1 )),loves(v( 1 ),V2))) 
QL3 = []. 

(We have reverted to standard notation for integers.) Sup- 
pose that QL1 is 

( 5 9 )  [p (Wff l , some(V 1,man(V 1) ,Wff l ) ) ,p (Wff2 ,a l l  
(V2,woman(V2), Wff2) )]. 

Then solutions for the goal 

(6O) 
:- apply_quants(QL 1 ,loves(V 1,V2),QL3,Wff3). 

include 

(61) 
Wff 3 = some(v(2),man(v(2), 

all(v(1),woman(v(1),loves(v(Z),v(1)))) 
QL3 = []. 

The inner quantifier binds the variable v(1), and the outer 
quantifier binds the variable v(2). This notation for vari- 
ables is very hard to read, so in the rest of the paper we will 
use the constants x, y, and z to represent variables of the 
target language. 

2.5 RULES FOR NOUN PHRASES 

The following grammar is very similar to the work of 
Pereira and Shieber (1987, Sections 4.1 and 4.2). There are 
two major differences, however, First, the treatment of 
quantifiers and scoping uses a version of Cooper's quanti- 
fier storage, instead of the "quantifier tree" of Pereira and 
Shieber. Second, Pereira and Shieber started with a seman- 
tics using lambda calculus, which they "encoded" in Pro- 
log. In the present grammar, unification semantics stands 
on its own--i t  is not a way of encoding some other formal- 
ism. 

Formula numbering uses the following conventions. The 
rules of the grammar are numbered (R1), (R2), etc. En- 
tries in the lexicon are numbered (L 1), (L2), etc. Formulas 
built in the course of a derivation get numbers without a 
prefix. Groups of related rules are marked by lower case 
letters: (Lla) ,  (Llb) ,  and so forth. 

Every noun phrase has a quantifier store as one of its 
semantic features. If the NP is a gap, the store is empty; if 
the NP is not a gap, the first element of the store is the 
quantifier generated by the NP (in the present grammar, 
the quantifier store of an NP has at most one quantifier). 
We represent the quantifier store as a difference list, using 
the infix operator "-".  Thus if L2 is a tail of L1, L1-L2 is 
the list difference of L 1 and L2: the list formed by removing 
L2 from the end of L1. Therefore a noun phrase has the 
form np(V,QL1-QL2,Fx-Fy,VL). V is the bound variable 
of the NP. QL1-QL2 is the quantifier store of the NP. We 
describe wh-movement using the standard gap-threading 
technique (Pereira and Shieber 1987), and Fx-Fy is the 
filler list. Finally, VL is a list of target-language variables 
representing NPs that are available for reference by a 
pronoun, which we will call the pronoun reference list. 

Consider an NP consisting of a determiner and a head 
noun: "every man," "no woman," and so forth. The head 
noun supplies the range restriction of the NP's quantifier, 
and the determiner builds the quantifier given the range 
restriction. The bound variable of the NP is a feature of 
both the determiner and the head noun. Then the following 
rule generates NPs consisting of a determiner and a head 
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noun: 

(R1) 
np(V,[Q[ QL]-QL,Fx-Fx,VL) 
---- det(V,Wffl,Q),n(V,Wffl ). 

The quantifier list [Q[QL] - QL = [Q] contains the 
quantifier for the NP. We have the following rules for 
common nouns: 

(R2a) n(Vl,pizza(V1)) ~ [pizza] 
(R2b) n(Vl,man(V1))--* [man] 
(R2c) n(Vl ,woman(V1))~ [woman]. 

Recall that p(Wffl,Wff2) is a quantifier that maps Wffl to 
Wff2. Then for determiners we have 

(R3a) det(V2,Range,p(Wffl,some(V2,Range,Wffl))) ---~ 
[a] 

(R3b) det(V2,Range,p(Wffl,all(V2,Range,Wffl))) --* 
[every] 

(R3c) det(V2,Range,p(Wffl,unique(V2,Range, Wffl))) 
[the] 

(R3d) det (V2,Range,p(Wff l ,not  (some(V2,Range,  
Wffl))))---- [no]. 

Then we get 

(62) np(V,[p(Wffl,all(V,man(V),Wffl))[ QL]-QL,Fx- 
Fx,L) ~ [every man] 

(63) np(V,[p(Wffl ,not(some(V,woman(V),Wffl)))[  
QL]-QL,Fx-Fx,L) ~ [no woman]. 

Thus "every man" is an NP that binds the variable V and 
maps Wffl to all(V,man(V),Wffl). 

Following Moore (1988), we interpret the proper name 
"John" as equivalent to the definite description "the one 
named "John." " 

(R4) 
np(V,[p(Wff, unique(V,name(V,C),Wff)) I QL]- 
QL,Fx-Fx,VL) 

[Terminal], { proper_noun(Terminal,C) }. 

The wff proper_noun(X,Y) means that X is a proper noun 
and Y is its logical form. Our lexicon includes the axioms 

(Lla) proper_noun(john,john) 
(Llb) proper_noun(mary,mary) 
(L1 c) proper_noun(bill,bill). 

These axioms use the constant "john" to denote both a 
terminal symbol of the grammar and a constant of the 
target language--a convenient abuse of notation. Using 
(Lla) we get 

(64) np(V, [p(Wffl,unique(V,name(V,john),Wffl))[ QL]- 
QL,Fx-Fx,VL)---, [john]. 

That is, "john" is an NP that binds the variable V and maps 
Wffl to the wff unique(V,name(V,john),Wffl). 

Pronouns use the "let" quantifier. We have 

(R5) 
np(V2, [p(V2,Wffl ,let(VE,V,Wffl ))l QL]-QL,Fx- 
Fx,VL) 
---- [he], {member(V,VL)}. 

If V is a variable chosen from the pronoun reference list 
VL, then "he" is an NP that binds the variable V2 and 
maps Wffl to let(V2,V,Wffl). Thus, the pronoun refers 
back to a noun phrase whose bound variable is V. Later, we 
wi',] see the rules that put variables into the list VL. As an 
example, we have 

(65) np(V2,[p(Wffl, let(V2,Vl,Wffl))[  QL]-QL,Fx- 
Fx,[V1]) ~ [he]. 

The "let" quantifier in pronouns looks redundant, but it 
is useful because it makes the semantics of NPs uniform-- 
ew~ry NP (except gaps) has a quantifier. This is helpful in 
describing conjoined NPs. Suppose that NP1 binds vari- 
able V and maps Wffl to Wff2. Suppose NP2 also binds 
variable V and maps the same Wffl to Wff3. Then the 
conjunction of NP1 and NP2 binds V and maps Wffl to 
and(Wff2,Wff3): 

(R6) np(V,[p(Wffl,and(Wff2,Wff3))[ QL1]-QL3,Fx- 
Fx,VL) 
---, np(V,[p(Wffl,Wff2)l QL1]-QL2,Fz-Fz,VL), 

[and], 
np(V,[p(Wffl,Wff3)[ QL2]-QL3,Fy-Fy,VL). 

As an example we have 

(66) 

(6"7) 

(68) 

np(V, [p(Wffl ,all(V,man(V),Wffl ))1QL 1 ] -QL 1,Fx- 
Fx,L) --, [every man] 
np(V, [p(Wffl ,all(V,woman(V),Wffl))[  QL2]- 

QL2,Fx-Fx,L) --, [every woman] 

np(V, 
[p(Wffl,and(all(V,man(V),Wffl),all(V,woman 

(V),Wffl))) [ QL1]-QL1, 
Fx-Fx,VL) 

--~[every man and every woman]. 

That is, "every man and every woman" is an NP that binds 
variable V and maps Wffl to 

(6!)) and(all(V,man(V),Wffl),all(V,woman(V),Wffl)). 

We also have 

(70) np(V,[p(Wffl,let(V,V1,Wffl))[ QL1]-QL1,Fx- 
Fx,[V1])---- [he] 

(71) np(V, [p(Wffl ,unique(V,name(V,john),Wffl))l  
QL2]-QL2,Fx-Fx,VL)--, [john] 

(72) np(V, [p(Wffl ,and(let(V,V 1,Wffl),unique(V,name 
(V,john) ,Wffl )))1 QL 1 ] -QL l, 

Fx-Fx,[V1]) 
[he and john]. 

That is, "he and John" is an NP that binds V and maps 
Wffl to 

(7:3) and(let(V,V 1,Wffl),unique(V,name(V,john),Wffl) 
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where V1 is chosen from the pronoun reference list. Thus 
the conjunction rule works for pronouns and proper nouns 
exactly as it does for NPs with determiners. There is a 
similar rule for disjunction of NPs. 

In conjoining two NPs we combine their quantifiers, 
which are the first elements of their quantifier stores. We 
must also collect the remaining elements of both quantifier 
stores. The above rule achieves this result by concatenating 
difference lists in the usual way: if QL1-QL2 is the tail of 
the first NP's quantifier list, and QL2-QL3 is the tail of the 
second NP's quantifier list, then QL 1-QL3 is the concatena- 
tion of the tails. In the present grammar both tails are 
empty, because the quantifier store of an NP contains at 
most one quantifier, but in a more general grammar the 
tails might contain quantifiers--for example, quantifiers 
from prepositional phrases modifying the NP. Thus the 
Montague-style semantics for NP conjunction and disjunc- 
tion requires an extension of standard Cooper storage. 
When the quantifier store of an NP contains several quanti- 
tiers, we must be able to identify the one that represents the 
NP itself (as opposed to quantifiers that arise from at- 
tached PPs, for example). We must then be able to remove 
this quantifier from the store, build a new quantifier, and 
put the new quantifier back into the store. 

Rule (R6) requires that the two NPs being conjoined 
should have quantifiers that bind the same variable. Sup- 
pose we had chosen the bound variables in the logical forms 
by using a global counter to ensure that no two quantifiers 
ever bind the same variable (as suggested in Section 2.4). 
Then (R6) could never apply. Thus our treatment of NP 
conjunction forces us to choose the bound variables after 
the quantifiers from conjoined NPs have been combined 
into a single quantifier, as described in Section 2.4. This 
choice in turn creates difficulties in implementing our 
treatment of de re attitude reports, as we will see in Section 
3.1. 

In this grammar, a conjunction of quantified NPs pro- 
duces a logical form in which the two quantifiers are in 
separate wffs, and these wffs are joined by the connective 
and. Thus, neither quantifier is in the scope of the other. 
This gives the desired reading for a sentence such as "John 
has no house and no car": 

(74) and(not(some(x,house(x),has(john,x))) ,not(some 
(x,car(x), has(john,x)))). 

However, consider the sentence "John met a farmer and his 
wife" and suppose the pronoun "his" refers to "a farmer." 
Under our analysis, the quantifier from "a farmer" cannot 
bind a variable in the range restriction of the other quanti- 
tier--because its scope does not include the other quanti- 
fier. Thus, the Montagovian analysis of NP conjunction is 
certainly correct in some cases, but it cannot be the whole 
story. 

2.6 VERB PHRASE AND SENTENCE RULES 

Our grammar includes two kinds of transitive verbs: ordi- 
nary verbs like "eat"  and "buy," and propositional attitude 

verbs like "want" and "seek." Only verbs of the second 
kind have de dicto readings. There is a de dicto reading for 
"John wants a Ferrari," which does not imply that there is 
any particular Ferrari he wants. There is no such reading 
for "John bought a Ferrari." To build a de dicto reading, a 
verb like "want" must have access to the quantifier of its 
direct object. Verbs like "buy" do not need this access. This 
leads to a problem that has been well known since Mon- 
tague. The two kinds of verbs, although very different in 
their semantics, seem to be identical in their syntax. We 
would like to avoid duplication in our syntax by writing a 
single rule for VPs with transitive verbs. This rule must 
allow for both kinds of semantics. 

Montague's solution was to build a general semantic 
representation, which handles both cases. When the verb is 
"eat"  or "buy," one uses a meaning postulate to simplify 
the representation. Our solution is similar: we allow every 
transitive verb to have access to the quantifier of its direct 
object, and then assert that some verbs don't actually use 
the quantifier. However, our solution improves on Mon- 
tague and Cooper by avoiding the simplification step. In- 
stead, we build a simple representation in the first place. 

A verb has one feature, the subcategorization frame, 
which determines what arguments it will accept and what 
logical form it builds. The rule for verbs says that if a 
terminal symbol has a subcategorization frame Subcat, 
then it is a verb: 

(R7) v ( S u b c a t ) ~  [Terminal], { has_subcat(Terminal, 
Subcat) }. 

A subcategorization frame for a transitive verb has the 
form 

(75) trans(V 1,V2,QL1,QL2,Wffl). 

V1 is a variable representing the subject, and V2 is a 
variable representing the object. QL1 is the quantifier store 
of the object. QL2 is a list of quantifiers remaining after the 
verb has built its logical form. For an ordinary transitive 
verb, QL2 equals QL 1. Wffl is the logical form of the verb. 

In the case of ordinary transitive verbs, we would like to 
assert once and for all that QL1 = QL2. Therefore, we 
write 

(L2) 
has_subcat(Terminal,trans(V1,V2,QL1,QLl,WtT)) 
:- ordinary_trans(Terminal,V 1,V2,Wff). 

This axiom says that for an ordinary transitive verb, the 
two lists of quantifiers are equal, and the values of the other 
features are fixed by the predicate "ordinary_trans." We 
have 

(L3a) ordinary_trans(saw,V 1,V2,saw(V 1,V2)) 
(L3b) ordinary_trans(ate,V 1 ,V2,ate(V 1,V2)). 

From (R7), (L2), and (L3a) we get 

(76) v ( t rans (Vl ,V2 ,QL1,QLl , saw(Vl ,V2) ) )~  [saw]. 
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The features of a verb phrase are a variable (representing 
the subject), a wff (the logical form of the VP), a quantifier 
store, a list of fillers, and a pronoun reference list. The rule 
for a verb phrase with a transitive verb is 

(R8)  
vp(V1,Wffl,QL2,Fx-Fy,L) 
--, v(trans(V 1,V2,QL1,QL2,Wffl)), 

np(V2,QL1,Fx-Fy,L). 

If the verb is an ordinary transitive verb, then QL1 = QL2, 
so the quantifier store of the VP is equal to the quantifier 
store of the direct object. From (R1), (R3a), and (R2b) we 
have 

(77) np(V,[p(Wffl,some(V,man(V),Wffl))l QL]-QL,Fx- 
Fx,L) ----, [a man]. 

Resolving (76) and (77) against the right side of R8 gives 

(78) 
vp(V 1 ,saw(V 1 ,V2), [p(Wffl  ,some (V2,man (V2), 
Wffl))l  QL]-QL,Fx-Fx,L) 

[saw a man]. 

The quantifier store contains the quantifier of the NP "a 
man." 

A sentence has four features: a wff, a quantifier store, a 
list of fillers, and a pronoun reference list. The rule for a 
declarative sentence is 

(R9) 
s(Wff2,QL4,Fx-Fz,L) ---. 
np(V,QL I-QL2,Fx-Fy,L), 
vp(V,Wffl ,QL2-QL3,Fy-Fz,L),  
{ apply_quants(QL 1 -QL3,Wffl ,QL4,Wff2) }. 

The variable V represents the subject, so it becomes the 
first argument of the VP. QL1-QL3 is the concatenation of 
the quantifier stores from the subject and the VP. 
"Apply_quants" will apply some of these quantifiers to the 
logical form of the VP to produce the logical form Wff2 of 
the sentence. The list QL4 of remaining quantifiers be- 
comes the quantifier store of the sentence. We have 

(79) 
np(V 1, [p(Wff0,all(V 1 ,woman(V 1),Wff0))] QL 1 ]- 
QL1,Fx-Fx,L) 
--~ [every woman]. 

From (R9), (79), and (78), we get 

(8o) 
s(Wff2,QL4,Fx-Fx,L) 

[every woman saw a man], 
{apply_quants([p(Wff0,all(Vl,woman(V1),Wff0)), 

p(Wffl,some(V2,man(V2),Wffl))[ QL3]- 
QL3, 
saw(V1,V2), 
QL4, 
Wff2) 

The., "apply_quants" subgoal has several solutions. Choos- 
ing the one in which "every woman" outscopes "a man," we 
get 

(81) s(all(x,woman(x),some(y,man(y),saw(x,y))),QL3- 
QL3,Fx-Fx,L) ~ [every woman saw a man]. 

The; derivation is not yet complete, because "s" is not the 
start symbol of our grammar. Instead we use a special 
symbol "start ," which never appears on the right side of a 
rule. Thus, the start symbol derives only top-level sen- 
tenees--it  cannot derive an embedded sentence. This is 
useful because top-level sentences have a unique semantic 
property: their logical forms must not contain free vari- 
ables. It might seem that one can eliminate free variables 
simp]',y by applying all the quantifiers in the store. Hobbs 
and Shieber (1987) pointed out that this is not so-- i t  is 
essential to apply the quantifiers in a proper order. Con- 
sider the sentence "every man knows a woman who loves 
him," with "him" referring to the subject. The subject 
quantifier binds a variable that occurs free in the range 
restriction of the object quantifier, so one must apply the 
object quantifier first in order to eliminate all free vari- 
ables. 

Therefore our grammar includes a filter that eliminates 
readings of top-level sentences containing free variables. 
Let free_vars(Wffl,L) mean that L is a list of the free 
variables of Wffl in order of first occurrence. We omit the 
easy definition of this predicate. The rule for top-level 
sentences is: 

(R 10) start(Wffl)  ---, s(Wffl ,QL-QL,Fx-Fx,[]) ,  
{ free_vars(Wffl, []). 

The goal free_vars(Wffl,[]) filters out readings with free 
variables. The above rule allows us to complete the deriva- 
tion for "every woman saw a man": 

(82) start(all(x,woman(x),some(y,man(y),saw(x,y)))) 
[every woman saw a man]. 

Having treated sentences, we can now consider gaps and 
relative clauses. The rule for gaps follows Pereira and 
Schieber (1987): 

(R11) np(V,QL-QL,[gap(V)I Fx]-Fx,VL) ~ []. 

This rule removes the marker gap(V) from the filler list, 
and makes the associated variable V the variable of the 
empty NP. The list difference QL-QL is the empty list, so 
the quantifier store of the gap is empty. 

The rule that generates NPs with relative clauses is 

(R :: 2) 
np(V,[QI QL]-QL,Fx-Fx,L) 
--~ det(V,and(Range 1 ,Range2),Q), 

n(V,Rangel) ,  
[that], 
s(Range2,QL1-QLl,[gap(V)]-[] ,[]) .  
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The relative clause is a sentence containing a gap, and the 
logical form of the gap is the variable V- - the  same variable 
that the quantifier binds. The logical form of the relative 
clause becomes part of the range restriction of the quanti- 
fier. We have 

(83) s(some(x,pizza(x),ate(V,x)),QL-QL,[gap(V)[ Fx]- 
Fx,[]) ~ [ate a pizza]. 

The derivation of this sentence is much like the one for 
"every woman saw a man" above, except that in place of 
the subject "every woman" we have a gap as a subject. The 
rule for gaps above ensures that the variable of the gap is V, 
the only variable in the filler list, and its quantifier store is 
empty. Therefore, V appears as the first argument of the 
predicate "ate." Continuing the derivation we get 

(84) np(V,[p(Wffl ,some(V,and(man(V),some(x,pizza 
(x),ate(V,x))),Wffl))[ QL]-QL,Fx-Fx,[]) 
----[a man that ate a pizza]. 

The string "a man that ate a pizza" is an NP that binds V 
and maps Wffl to the wff 

(85) some(V,and(man(V),some(x,pizza(x),ate(V,x))) ,  
Wffl) .  

Notice that in the rule for NPs with relative clauses, the 
quantifier store of the relative clause is empty. This means 
that no quantifier can be raised out of a relative clause. 
Thus there is no scope ambiguity in "I  saw a man that loves 
every woman." According to Cooper (1979), this is correct. 
The restriction is easy to state because in our grammar, 
quantifier raising is combined with syntax and semantics in 
a single set of rules. It would be harder to state the same 
facts in a grammar like Pereira and Shieber's (1987), 
because quantifier raising there operates on a separate 
representation called a quanti f ier  tree. This tree leaves out 
syntactic information that is needed for determining 
scopes--for example, the difference between a relative 
clause and a prepositional phrase. 

3 PROPOSITIONAL ATTITUDES IN THE 
GRAMMAR 

3.1 ATTITUDE VERBS TAKING CLAUSES 

The following rule introduces verbs such as "believe" and 
"know," which take clauses as their objects. 

(R13) 
vp(Vl,Wffl ,QL1,Fx,L) 
--~ v(takes_s(V 1 ,Wff2,Wffl )), 

s(Wff2,QLl,Fx,[V1 [L]). 

The verb takes the logical form Wff2 of the object clause 
and the subject variable V1, and builds the wff Wffl 
representing the VP. This rule also adds the subject vari- 
able to the pronoun reference list of the object clause. For 
the verb "thought," we have the following subcategoriza- 

tion frame: 

(L4) 
has_subcat(thought, 

takes_s(V 1,Wffl, 
thought(Vl,Varsl ,q(Wffl))))  

:- free_vars(Wffl,Varsl). 

The subject variable becomes the first argument of the 
predicate "thought." The logical form of the object clause 
is Wffl,  and it appears under a quotation mark as the third 
argument of "thought." The second argument of "thought" 
is the de re argument list, and the predicate "free_vars" 
ensures that the de re argument list is a list of the free 
variables in Wffl,  as required by our convention. From the 
rule (R8) for verbs and (L4), we get 

(86) 
v(takes_s(Vl,Wff2,thought(V1,Varsl,q(Wff2)))) 

[thought], { free_vars(Wff2,Varsl) }. 

The "free_vars" subgoal has not been solved--it has been 
postponed. Indeed it must be postponed, because as long as 
its first argument is a variable, it has an infinite number of 
solutions--one for each wit of our language. 

Consider the example "John thought Mary ate a pizza." 
We consider two readings. "A pizza" is understood de dicto 
in both readings, but "Mary"  is de re in one reading and de 
dicto in the other. The ambiguity arises from the embedded 
sentence, because the predicate "apply_quants" can either 
apply the quantifiers or leave them in the store. If it applies 
the quantifiers from "Mary"  and "a pizza" in their surface 
order, we get 

(87) 
s ( u n i q u e ( y , n a m e ( y , m a r y ) , s o m e ( x , p i z z a ( x ) , a t e  
(y,x)),QL-QL, Fx-Fx,L) 
---, [mary ate a pizza]. 

From (R13), (86), and (87) we get 

(88) 
vp(Vl, 

thought(V1,Varsl, 
q (un ique (y ,name(y ,mary ) , some(x ,p i zza  

(x),ate(y,x))))), 
QL-QL,Fx-Fx,L) 

--* [thought Mary ate a pizza], 
{free_vars(unique(y,name(y,mary),some(x,piz- 

za(x), ate(y,x))),Vars 1 ) }. 

Since the first argument of "free_vars" is now a ground 
term, we can solve the "free_vars" subgoal, getting 
Varsl = []. Then we have 

(89) 
vp(V1, 

thought(Vl,[],q(unique(y,name(y,mary),some(x, 
pizza(x),ate(y,x))))), 

QL-QL,Fx-Fx,L) 
--~ [thought Mary ate a pizza]. 
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If we combine this VP with the subject "John" we get a 
sentence whose logical form is 

(90) 
unique(z,name(z,john), 

thought(z, [] ,q(unique(y,name(y,mary),some 
(x,pizza(x),ate(y,x)))))). 

Now for the reading in which "mary" is de re. Once again, 
consider the embedded sentence "Mary ate a pizza." Sup- 
pose that the predicate "apply_quants" applies the quanti- 
fier from "a pizza" and leaves the one from "Mary"  in the 
store. We get 

(91 ) s(some(x,pizza(x),ate(V 1 ,x)), 
[p(Wffl,unique(Vl,name(Vl,mary),Wffl))[ 
QL]-QL, 
Fx-Fx, 
L) 

--, [Mary ate a pizza]. 

Vl is the bound variable of the NP "Mary."  The predicate 
"apply_quants" will choose a value for Vl when it applies 
the quantifier. From (R13), (86), and (91), we get 

(92) 
vp(V2, 

thought (V 2,Vars 1 ,q(some(x,pizza (x),ate (V 1, 
x))))), 
[p (W ff 1 ,unique (V 1 ,name (V 1 ,mary) ,Wff l  ) )1 
QL]-QL, 
Fx-Fx, 
L) 
--, [thought Mary ate a pizza], 

{ free_vars(some(x,pizza (x),ate(V 1 ,x)),Vars 1) }. 

In this case, the first argument of "free_vars" contains the 
meta-language variable V1. Then the "free_vars" subgoal 
has an infinity of solutions---one in which V 1 = x and there 
are no free variables, and an infinite number in which V1 = 
y, for some y not equal to x, and the list of free variables is 
[y]. Therefore, it is necessary to postpone the "free_vars" 
subgoal once more. The standard technique for parsing 
DCGs does not allow for this postponing of subgoals, and 
this will create a problem for our implementation. 

This problem would be greatly simplified if we had 
chosen to assign a different variable to every quantifier by 
using a global counter. The DCG parser would work from 
left to right and assign a target-language variable to each 
NP as soon as it parsed that NP. In the above example, 
"Mary"  and "a pizza" would both have their variables 
assigned by the time we reached the right end of the VP. 
Then we could handle the "free_vars" subgoals by rewriting 
the grammar as follows: remove the "free_vars" subgoals 
from the lexical entries for the attitude verbs, and place a 
"free_vars" subgoal at the right end of each VP rule that 
introduces an attitude verb (( R [ 3), (R 15), and (R8)). This 
would ensure that when the parser attempted to solve the 
"free_vars" subgoal, its first argument would be a ground 
term. However, this solution would make it impossible to 

use the rule (R6) for NP conjunction (see Section 2.5). If 
we pick one solution for the problem of choosing bound 
variables, we have problems with NP conjunction; if we 
pick the other solution we get problems in implementing 
our analysis of de re attitude reports. This is the kind of 
difficulty that we cannot even notice, let alone solve, until 
we write formal grammars that cover a reasonable variety 
of phenomena. 

Continuing our derivation, we combine the VP with the 
subject "John," apply the quantifier from "Mary,"  and get 

(93) s(unique(z,name(z,john), 
unique(y,name(y,mary), 

thought(z,Varsl ,q(some(x,pizza(x),ate 
(y,x)))))), 
QL-QL,Fx-Fx,L) 

---- [John thought Mary ate a pizza], 
{ free_vars(some(x,pizza(x),ate(y,x)),Vars 1) }. 

Now the first argument of "free_vars" is a ground term, 
because applying the quantifier that arose from "Mary"  
includes choosing the target language variable that the 
quantifier binds. The "free_vars" subgoal now has only one 
solution, Varsl = [y]. Then the logical form of the sen- 
tence is 

(94) unique(z,name(z,john), 
unique(y,name(y,mary), 

thought(z,[y],q(some(x,pizza(x), 
ate(y,x)))))). 

This means that there is a term T that represents Mary to 
John, and John believes the sentence 

(95) some(x,pizza(x),ate(T,x)). 

For the sentence "John thought he saw Mary," our limited 
treatment of pronouns allows only one reading, in which 
"he" refers to John. Using (R9), we get the following 
reading for the embedded clause: 

(96) 
s(let(y,V 1,unique(x,name(x,mary),saw(y,x)),QL- 
QL,Fx-Fx,[V1]) 
--~ [he saw Mary]. 

The pronoun "he" gives rise to a "let" quantifier, which 
binds the variable y to V1, the first member of the pronoun 
reference list. From (R13), (86), and (96) we get 

(97) 
vp(V2,thought (V2,Vars 1 ,q(let (y,V2,unique(x,name 
(x,mary), saw(y,x)), 

QL-QL,Fx-Fx,[]) 
---* [thought he saw Mary], 

{free_vars(let(y,V2,unique(x,name(x,mary),saw 
(y,x))),Varsl) }. 

The VP rule (R13) unifies the subject variable V2 with the 
first element of the pronoun reference list of the embedded 
clause, so the "let" quantifier now binds the variable y to 
the: subject variable. Once again, we postpone the "free_vars" 
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goal until its first argument is a ground term. Combining 
this VP with the subject "John" gives 

(98) 
s(unique(z,name(z,john), 

thought(z,Vars 1 ,q(let (y,z,unique(x,name(x,mary), 
saw(y,x)))))), 

QL-QL,Fx-Fx,VL) 
--~ [John thought he saw Mary], 

{free_vars(let(y,z,unique(x,name(x,mary),saw(y~x))), 
Varsl) }. 

The first argument of"free_vars" is now a ground term, and 
solving the "free_vars" subgoal gives Varsl = [z]. The 
logical form of the sentence is 

(99) 
unique(z,name(z,john), 

thought(z,[z],q(let(y,z, 
unique(x,name(x,mary), 

saw(y,x)))))). 

The dummy variable z stands for a term T that represents 
John to himself. Then John's belief looks like this: 

(100) 
let(y,T, 

unique(x,name(x,mary), 
saw(y,x))). 

If John simplifies this belief, he will infer 

(101 ) unique(x,name(x,mary),saw(T,x)). 

3.2 ATTITUDE VERBS TAKING A CLAUSE 
WITH A GAP 

We proposed the following logical form for "John knows 
who Mary likes": 

(102) some(x,person(x),know(john, [x],q(like(mary,x)))). 

The grammar will generate a similar logical form, except 
for the translations of the proper nouns. The existential 
quantifier comes from the word "who." The rules for 
"who" and "what" are 

(R14a)  wh(V 1, [p(Wff l , some(V 1,and(person(V 1), 
Wffl)))l Q L ] - Q L ) ~  [who] 

(R14b)  wh(V 1, [p (Wff l , some(V 1,and( th ing(V 1), 
Wffl)))] QL]-QL) ~ [what]. 

The semantic features of a wh word are a variable, and a 
list containing a quantifier that binds that variable. 

The following rule builds VPs in which the verb takes a 
wh word and a clause as its objects: 

(R15) 
vp(VI,Wff3,QL1,Fx-Fx,L) 

v(takes_wh(V 1,Wffl,Wff2)), 
wh(V,QL0), 
s(Wffl,QLl,[gap(V)]- [],[V1 I L]), 
{ apply_quants(QL0,Wff2,QL-QL,Wff3) }. 

The embedded S contains a gap, and the variable of that 
gap is the one bound by the quantifier from the wh word. 
The main verb takes the subject variable and the logical 
form of the embedded S and builds a wff Wff2. The rule 
finally calls "apply_quants" to apply the quantifier from the 
wh word to Wff2. "Apply_quants" can apply any subset of 
the quantifiers in its first argument, but the rule requires 
the output list of quantifiers to be empty, and this guaran- 
tees that the quantifier from the wh word will actually be 
applied. The resulting wff becomes the logical form of the 
VP. 

The rule requires a verb whose subcategorization frame 
has the form takes_wh(Vl,Wffl,Wff2). "Know" is such a 
verb: 

(L5) 
has_subcat(knows, 

takes_wh(Vl,Wffl,know(V1,Varsl,q(Wffl)))) 
:- free_vars(Wffl,Varsl). 

Combining this clause with the rule (R7) for verbs gives 

(103) 
v(takes_wh(V1,Wffl,know(V1,Varsl,q(Wffl)))) 

[knows], { free_vars(Wffl,Varsl) }. 

Consider the example "John knows who Mary likes," and 
suppose "Mary" is understood de dicto. The embedded S 
has the following reading: 

(104) 
s(unique(x,name(x,mary),l ike(x,V 1)),QL-QL, 
[gap(V l) ]Fx]-Fx,L) 
--~ [Mary likes]. 

The object of "likes" is a gap, so the variable V1 from the 
filler list becomes the second argument of the predicate 
"like." Resolving (103), (R14a), and (104) against the 
right side of (R 15) gives 

(105) 
vp(V2,Wff3,QL-QL,Fx-Fx,L) 

[knows who Mary likes], 
{ apply_quants([p(Wffl,some(Vl,person(V1), 

Wffl)) 
I QL]-QL, 

know (V2,Vars 1 ,q (unique (x,name(x,mary), 
like(x,Vl))), 

QL-QL, 
Wff3), 

{free_vars(unique(x,name(x,mary),like(x,V 1)), 
Vars 1) }. 

Solving the "apply_quants" subgoal gives 

(106) 
Wff3 ----- some(y,person(y), 

know(V2,Var s 1 ,q (u nique (x,name (x,mary) ,  
like (x,y))))). 

Solving the "free_vars" subgoal gives Varsl = [y], and we 
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then have 

(107) 
Wff3 =some(y,person(y), 

k n o w ( V 2 , [ y ] , q ( u n i q u e ( x , n a m e ( x , m a r y ) ,  
like(x,y))))). 

Therefore 

(108) 
vp(V2, 

some (y,person(y), 
know(V2,[y],q(unique(x,name(x,mary),like 
(x,y))))), 

QL- QL,Fx-Fx,L) 
---- [knows who Mary likes]. 

This VP combines with the subject "John" in the usual way 
to give a sentence whose logical form is 

(109) 
unique(z,name(z,john), 

some(y,person(y), 
know(z,[y],q(unique(x,name(x,mary), 

like(x,y)))))). 

3.3 ATTITUDE VERBS TAKING A NOUN PHRASE 

Finally, we consider an example with "want." This verb is 
semantically very different from most transitive verbs, but 
syntactically it is an ordinary transitive verb, introduced by 
the rule already given: 

(R8) 
vp(V1,Wffl,QL2,Fx-Fy,L) 
--~ v(trans(V 1,V2,QL 1,QL2,Wffl)), 

np(V2,QL1,Fx-Fy,L). 

The difference between "want" and other transitive verbs is 
in its subcategorization frame: 

(L6) 
has_subcat(wants, 

trans(V 1 ,V2,QL 1 ,QL2,wish (V 1 ,Vars 1 ,q 
(Wffl)))) 

:- apply_quants(QL 1 ,ha,~e(V 1 ,V2),QL2,Wffl ), 
free_vars(Wffl,Varsl). 

Resolving this rule against the verb rule (R7) gives the 
following rule for the verb "wants": 

(110) 
v(trans(V1,V2,QL1,QL2,wish(V1,Varsl,q(Wffl)))) 
---- [wants], 

{ apply_quants(QL 1 ,have(V 1 ,V2),QL2,Wffl ), 
free_vars(Wffl,Varsl) 
}. 

The quantifier list QL1 contains the quantifier from the 
object NP. The predicate "apply_quants" may or may not 
apply this quantifier to the wff have(VI,V2), and this 
nondeterminism gives rise to a de re~de dicto ambiguity. If 
"apply_quants" does not apply the object quantifier, then 

QL2 = QL1, so the object quantifier is passed up for later 
application. Otherwise, QL2 is the empty list. As usual, the 
predicate "free_vars" ensures that the de re arguments obey 
our convention. 

Consider the VP "wants a Porsche." The object "a 
Po:rsche" has the following interpretation: 

(11.1) 
np(V2,[p,(Wff0,some(V2,porsche(V2),Wff0))] QL]- 
QL,Fx-Fx,VL) 
--, [a porsche]. 

Resolving (110) and (111) against the left side of (R7) 
give,; 

(112) 
vp(V 1 ,wish(V 1 ,Vars 1 ,q(Wffl ) ),QL2,Fx- Fx,VL) 
---- [wants a porsche], 
{apply_quants([p(Wff0,some(V2,porsche(V2), 

Wff0))l QL]-QL, 
have(V1,V2), 
QL2, 
Wffl), 

free_vars(Wffl,Varsl) 
I. 

One solution of the "apply_quants" subgoal is 

(113) 
Wffl = some(x,porsche(x),have(Vl,x)) 
QL2 = QL0-QL0. 

Given this solution, the logical form of the VP is 

(1 :t4.) wish(V1,Varsl,q(some(x,porsche(x),have(V 1,x)))) 

where V1 is the subject variable and the "free_vars" sub- 
goal has been postponed. We can combine this VP with the 
subject "John" to get a sentence whose logical form is 

(115) 
unique(y,name(y,john), 

wish(y ,Vars l  ,q (some(x ,porsche(x) ,have  
(y,x))))). 

Solving the "free_vars" subgoal will then give Varsl = [y], 
so tP~e final logical form is 

(116) 
unique(y,name(y,john), 

wish(y,[y],q(some(x,porsche(x),have(y,x))))). 

This means that there is a term T that represents John to 
hirn,;elf, and the sentence that John wishes to be true is 

(117) some(x,porsche(x),have(T,x)). 

This is a de dicto reading--there is not any particular 
Porsche that John wants. 

'Fhe other solution for the "apply_quants" subgoal is 

(118) 
Wffl = have(V1,V2) 
QL2 = [p(WffO,some(V2,porsche(V2),WffO))l 
QL]-QL. 
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In this case, the logical form of the VP is 

(119) wish(V1,Varsl,q(have(V1,V2))) 

and its quantifier store is equal to QL2. Combining this VP 
with the subject "John" and applying the quantifiers gives 
a sentence whose logical form is 

(120) 
unique(y,name(y,john), 

some(x,porsche(x), 
wish(y,Varsl,q(have(y,x))))). 

Solving the "free_vars" subgoal gives Varsl = [y,x] so the 
final logical form is 

(121) 
unique(y,name(y,john), 

some(x,porsche(x), 
wish (y,[y,x],q(have(y,x))))). 

This means that there exist terms T1 and T2 such that T1 
represents John to himself, T2 represents some Porsche to 
John, and the sentence John wishes to be true is 

(122) have(T1,T2) 

This is a de re reading, in which John wants some particular 
Porsche. 

The rules for verbs that take clauses as complements did 
not need to call "apply_quants," because the rules that 
build the clauses will call "apply_quants" and so create the 
desired ambiguity. In Cooper's grammar, all NPs have the 
option of applying their quantifiers, and so there is no need 
for verbs like "want" to apply quantifiers--they can rely on 
the rule that built the verb's object, just as other intensional 
verbs do. This is a minor advantage of Cooper's grammar. 

4 IMPLEMENTATION AND CONCLUSIONS 

4.1 IMPLEMENTATION 

The implementation uses the standard Prolog facility for 
parsing definite clause grammars. This facility translates 
the grammar into a top-down, left-to-right parser. This 
order of parsing leads to problems with the predicates 
"apply_quants" and "free_vars." We cannot run "free_vars" 
until its first argument is a ground term---otherwise we 
might get an infinite number of solutions. In our exposition, 
we solved this problem by delaying the execution of 
"free_vars." The standard DCG parser has no built-in 
facility for such delaying. As usual in such situations, there 
are two options: rewrite the predicates so that the existing 
interpreter works efficiently, or define a more general inter- 
preter that allows the desired order of execution. The 
second approach is more desirable in the long run, because 
it achieves a central goal of logic programming: to use 
logical sentences that express our understanding of the 
problem in the clearest way. However, defining new inter- 
preters is hard. The present implementation takes the low 
road-- that  is, the author rewrote the predicates so that the 

standard parser becomes efficient. In particular, the rule 
for top-level clauses calls a Prolog predicate that finds all de 

re argument lists in the final logical form and calls 
"free_vars" for each one. 

There  is a similar problem about  the predicate  
"apply_quants" in the rule for "want." Since the parser 
works left to right, the quantifier from the object of "want" 
is not available when the logical form for the verb is being 
constructed. This means that the first argument of 
"apply_quants" is a free variable--so it has an infinite 
number of solutions. Here the implementation takes advan- 
tage of Prolog's "call" predicate, which allows us to delay 
the solution of a subgoal. The "apply_quants" subgoal is an 
extra feature of the verb "want" (in the case of an ordinary 
transitive verb, this feature is set to the empty list of goals). 
The rule for VPs with transitive verbs uses the "call" 
predicate to solve the subgoal--after the object of the verb 
has been parsed. At this point the first argument is properly 
instantiated and the call produces a finite set of solutions. 

The grammar given above contains the rule NP --, NP  
[and] NP, which is left recursive and cannot be parsed by 
the standard DCG parser. The implementation avoids this 
problem by adding a flag that indicates whether an NP is 
conjunctive. This gives the rule 

(123) NP(+conj )  ~ N P ( - c o n j )  [and] NP(Conj), 

which is not left recursive--it  assigns a right-branching 
structure to all conjunctions of NPs. These are the only 
differences between the grammar presented here and the 
Prolog code. The implementation was easy to write and 
modify, and it supports the claim that Prolog allows us to 
turn formal definitions into running programs with a mini- 
mum of effort. 

4.2 CONCLUSIONS AND FUTURE WORK 

This paper has presented a new notation for a sentential 
theory of attitudes, which unlike most existing notations 
makes it possible to give a compositional semantics for 
attitude reports. Our notation distinguishes between the de 

re arguments of an attitude operator and the dummy 
variables, which stand for unspecified terms that represent 
the values of the de re arguments. The choice of dummy 
variables is quite arbitrary--just  as the choice of bound 
variables in first-order logic is arbitrary. This allows us to 
impose a convention, which says that in fact the dummy 
variables are equal to the de re arguments. Given this 
convention, the logical form of a clause is the same whether 
it stands alone or appears as the argument of an attitude 
verb. 

This is a simple proposal, and it would be easy to write 
and implement a grammar that applies the proposal to a 
few examples. The  real question is whether the proposal is 
robust--whether it can function in a grammar that covers a 
variety of phenomena. We chose definite clauses and a 
first-order object language as our semantic formalism. We 
found a nonobvious interaction between our proposal for de 

re attitude reports, and two other problems about quantifi- 
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cation: the choice of bound variables in a logical form, and 
the conjunction and disjunction of quantified NPs. We 
considered two possibilities for choosing the bound vari- 
ables: assigning a different variable to every NP  using a 
global counter, or requiring each quantifier to bind a 
variable that is not bound by any quantifier within its scope. 
The first approach makes it impossible to use our rules for 
NP  conjunction and disjunction, while the second creates 
implementation problems for the de re argument lists. We 
resolved the dilemma by picking the second approach, and 
then rewriting the g rammar  to solve the implementation 
problems. Thus we have shown that the proposal for de re 

attitude reports is not just a plausible notion--i t  can be 
made to work in a g rammar  that is not trivial. 

The grammar  handles three kinds of attitude construc- 
tions: an attitude verb taking a clause as its object ("John 
thought he saw Mary") ,  an attitude verb taking a clause 
with a gap ("John knows who Mary likes"), and an attitude 
verb taking a noun phrase as its object ("John wants a 
Porsche"). The g rammar  includes de re~de dicto ambigu- 
ities, conjunction of NPs, and a very limited treatment of 
pronouns. 

Another contribution of our work is that it seems to be 
the first unification grammar  that builds logical forms, and 
at the same time respects the declarative semantics of the 
notation. We explicitly choose the bound variables of the 
logical form, instead of using meta-language variables. We 
also explain the semantics of our representation for quanti- 
fied NPs: each NP  has an infinite set of readings, one for 
each ordered pair in the extension of the application func- 
tion. Several authors treat unification grammars  with se- 
mantics as poor relations of Montague grammar.  Pereira 
and Shieber (1987) propose to "encode" Montague's ideas 
in unification grammar,  while Moore (1989) fears that 
building logical forms with unification grammar  is "unprin- 
cipled feature hacking." We claim that these problems 
arise not from shortcomings of unification grammar,  but 
from failure to take unification grammar  seriously--which 
means respecting its declarative semantics. 

The most obvious line for future work is to extend the 
grammar.  It would be fairly easy to include complex wh 
noun phrases, such as "whose cat" or "how many children" 
(Cooper's g rammar  handled these). A more difficult prob- 
lem arises when a gap is the object of an intensional 
verb---as in "John knows what Mary wants." The grammar  
can generate this sentence, but it assigns only a de re 

reading: 

unique(x,name(x,john), 
some(y,thing(y), 

know(x,[y],q(unique(z,name(z,mary), 
wish(z,[z,y],q(have(z,y)))))))).  

This is the only reading because the gap has an empty 
quantifier s tore-- there  is no quantifier available to be 
applied to the wff "have(z,y)." Yet there are examples in 
which such sentences do have de dicto readings. For exam- 
ple, consider "What  John wants is a Porsche." Surely this 

sentence has a de dicto reading--yet  the object o f "want"  is 
a gap, not a quantified NP. Cooper discusses this problem, 
but his grammars  could not handle it, and neither can ours. 

Hirst and Fawcett (1986) have argued that the ambigu- 
ities in attitude reports are more complex than the familiar 
distinction between de re and de dicto readings. They claim 
that the sentence "Nadia  wants a dog like Ross's" has a 
reading in which Nadia doesn't want a particular dog (so 
the qaantifier 3 is inside the scope of the attitude operator), 
but the description "dog like Ross's" is the speaker's, not 
Nadia 's  (so the description is outside the scope of the 
attitude operator). This reading is certainly different from 
the usual de re and de dicto readings, in which either the 
whole logical form of the NP  is under the attitude, or none 
of it is. To represent it, we must be able to separate the 
logical form of the NP  "a dog like Ross's" into two parts 
(the quantifier 3 and its range restriction), and we must be 
able to move the range restriction out of the scope of the 
attitude without moving the quantifier. This will mean that 
we cannot use the same mechanism for both quantifier 
scope ambiguities and the ambiguities that arise from 
attitudes. These extensions appear feasible, but they amount 
to a major change in the formalism. 

Another possibility for future work is to incorporate the 
exi,;t!,ng implementation into a question-answering pro- 
grant. This requires finding a way to reason about proposi- 
tional attitudes efficiently without assuming unique stan- 
dard designators--which means a substantial generalization 
of the work of Konolige. It also requires us to make much 
stronger claims about the properties of 'representation' 
than we have made in this paper. I f  these problems can be 
solved, it should be possible to build a natural language 
question-answering program that can describe the extent of 
its own knowledge--answering questions like "Do you 
know the salary of every employee?" 
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