
INTEGRATED PROCESSING PRODUCES

ROBUST UNDERSTANDING

M a l l o r y S e l f r idge

Department of Electrical Engineering and Computer Sc ience
The University of Connect icut

Storrs, Connect icut 0 6 2 6 8

Natural language interfaces to computers must deal with wide variation in real-world input. This
paper proposes that, in order to handle real-world input robustly, a natural language interface should
be constructed in accord with principles of integrated processing: processing syntax and semantics at
the same time, processing syntax and semantics using the same mechanisms, and processing language
and memory using the same mechanisms. This paper describes an experimental natural language inter-
face constructed according to these principles which displays the desired robustness. The success of
this interface suggests that future real-world interfaces could achieve robustness by performing inte-
grated processing.

1 INTRODUCTION

Natural language interfaces to computers must deal with
wide variation in real-word input. Since real-world input
is often missing words and contains variant syntax, a
useful natural language interface must understand such
input. Unfortunately, the technology needed to provide
this robustness is not fully mature, and there is uncertain-
ty as to the directions in which such maturity lies.

Part of this uncertainty centers around the relationship
between syntax, semantics, and world knowledge in
natural language processing. One theoretical position,
the integrated processing hypothesis (Schank 1981),
describes an approach to computer modelling of human
language processing, based on the idea that these three
sorts of knowledge must be applied together and interac-
tively. Since human language understanding is robust, a
computer model of human language processing based on
this position should also be robust.

This paper describes a research project designed to
explore this conjecture, and describes a robust natural
language interface, called MURPHY, which embodies the
integrated processing hypothesis. It argues that integrated
processing yields robustness and that this hypothesis
therefore represents a promising approach to the
construction of robust natural language interfaces.
MURPHY has been developed within a limited domain,
and questions remain about the generality of its tech-

niques. Nonetheless, its performance within this domain
suggests that generalization to a richer and more realistic
domain is possible.

This paper first defines the term robust as it will be
used here, and introduces the MURPHY system. Second,
it considers previous work on the problems of robustness.
Third, it describes the integrated processing hypothesis
and the motivation for the research strategy adopted
here. Fourth, it describes the MURPHY system and its
performance in detail, and then argues that this perform-
ance derives from its implementation of the integrated
processing hypothesis. Finally, it suggests that the inte-
grated processing hypothesis is indeed a promising
approach to the construction of robust natural language
interfaces, and that MURPHY represents a successful first
step.

2 ROBUST UNDERSTANDING

2.1 WHAT IS ROBUSTNESS?

The broadest possible definition of robusmess on the part
of a natural language interface would involve a language
ability equal to or greater than that of a human; clearly
this is too ambitious. Instead, the term robust will be used
here to refer to a particular subset of human language
abilities. This subset includes first the ability to under-
stand utterances that are missing various words, and that
contain words out of their grammatically preferred order.

Copyright1986 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that
the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/86/020089-106503.00

Computational Linguistics, Volume 12, Number 2, April-June 1986 89

Mallory Self ridge Integrated Processing Produces Robust Understanding

Second, if an input is initially misunderstood, a robust
natural language interface should converge on the correct
understanding by continuing to infer the next most likely
meaning based on the input and context. Finally, a robust
natural language interface must be able to use corrections
provided by the user to direct the inference of the next
most likely meaning. Since the output of the understand-
ing process in such an interface must be a representation
of the meaning of the input, such an interface would thus
be limited primarily by its semantic knowledge of the
domain of discourse; it could not understand an utter-
anee if the meaning of that utterance was not represent-
able within its knowledge. Otherwise, it would eventually
understand. These aspects of robustness are considered
in more detail below.

There are a number of situations in which an utterance
can be missing words. First, users usually omit words
whose meanings can be inferred from the general context
by the listener. Second, the user can be deliberately
employing ellipsis, intending the listener to complete his
understanding using concepts drawn from conversational
history. Third, the utterance can contain unknown words,
which are "missing" as far as understanding is
concerned. Finally, since no one has demonstrated a
perfect technique for predicting which words are or are
not going to be missing, a robust natural language under-
stander must be prepared to understand utterances with
arbitrary words omitted, albeit perhaps taking longer to
converge in difficult cases.

In addition to missing words, one cannot guarantee
that the input will be syntactically well formed. Rather, it
will sometimes be ill formed in various unpredictable
ways. This paper will be concerned only with the
simplest type of variant syntax, consisting of words posi-
tioned incorrectly within the utterance. Note that the
mispositioning can result in an input that is meaningful,
even though this meaning is not what was intended.
Further, the words can be correctly positioned with
respect to the unintended utterance, even though they
are mispositioned with respect to the intended utterance.
This issue is considered in greater detail later.

Under some conditions, however, any natural
language understander will misunderstand, since alterna-
tive interpretations may be equally preferable. A robust
interface should address this problem by verifying its
understanding with the user, and being prepared to
"guess again" if it proved incorrect. Such an interface
should be prepared to generate first its most likely inter-
pretation, then its next most likely, and so on, until no
further possibilities exist. This would guarantee that the
interface will eventually understand the utterance, assum-
ing, again, that the meaning of the utterance is within its
domain of expertise. Note that the capacity to systemat-
ically exhaust the possible meanings of an utterance is
beyond the ability of human understanders. A human can
produce many interpretations, but cannot be guaranteed
to generate all possible interpretations due to factors
such as memory limitations. Notwithstanding the current

impossibility of equalling or exceeding the overall
language ability of humans, a robust understander
should, if possible, exceed human performance in this
particular regard, if possible.

This ability to infer the next most likely meaning of
the input is important but incomplete. If the listener
incorrectly infers the meaning of the speaker's utterance,
the speaker does not usually say "n o " and wait for the
listener to infer a second meaning. Rather, the speaker
usually supplies a correction. It is thus appropriate that a
robust natural language interface not only be able to
conjecture the next most likely interpretation but also
that it be able to use corrections from the user when they
are supplied.

A robust understander should also display a number of
other desirable characteristics beyond those discussed
above. For example, it must be able to handle words with
multiple meanings. Further, it should be able to under-
stand despite false starts, irrelevant interjections, and
unknown words. Third, it should provide spelling
correction and related support. Fourth, it should have a
mixed-initiative conversational ability. Finally, it should
be able to learn new word meaning and syntax. Such
characteristics are beyond the scope of this paper.
However, section 8 argues that MURPHY possesses some
of these characteristics as well.

Thus, for the purposes of this paper, a robust under-
stander is one that can be guaranteed to eventually
understand input utterances despite arbitrary missing and
out-of-order words, both with and without corrections,
and including ellipsis, on the basis of semantics and
syntax, domain knowledge, and context.

2.2 A ROBUST UNDERSTANDER

In order to address the problem of robust understanding,
the MURPHY system was developed. MURPHY operates
in conjunction with a robot assembly system (Engelberg
1983; Engelberg, Levas, and Selfridge 1984; Levas
1983; Levas and Selfridge 1984; Selfridge 1983). Both
MURPHY and the robot assembly system are written in
Franz Lisp on a V A X - l l / 7 8 0 . MURPHY allows a user
to question and direct the robot assembly system using
natural language. Natural language can be used to speci-
fy low-level image operations, ask high-level questions
about the relationships between objects in the image,
describe the appearance of unknown objects for future
use by the system, and teach the manipulator how to
perform new assembly tasks.

The following example illustrates MURPHY's robust-
ness. It concerns the recognition and assembly of three
components of a simple electric switch - the base, the
contact, and the post - into the completed switch.
MURPHY knows the meaning of each word in this exam-
ple, and has appropriate domain knowledge. Specifically,
it knows that each component is a physical object that is
part of the switch. Further, it has geometric models of
each object required for planning robot motions. Finally,

90 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Seffridge Integrated Processing Produces Robust Understanding

it has knowledge about how the switch base and contact
appear in the image. In order to demonstrate MURPHY's
ability to learn new visual knowledge, however, the
knowledge of how a switch post appears in the image has
been removed, and the knowledge of how to translate the
geometric model of the post into appearance information
has also been removed. As will be seen, this is why the
system can talk about the switch post without being able
to visually recognize it, and allows MURPHY's abilities to
be easily demonstrated. The user's inputs are shown in
lower case, MURPHY's responses in upper case, and
parenthetical notes have been added to describe system
operation.

(1) Display the current image workspace.
DO YOU MEAN "Display the current workspace

image"?
>Yes.
OK.
(The system displays the image.)

(2) >Threshold the image at fifty, and then apply
boundary following for regions larger than thirty-
five pixels.
DO YOU MEAN "Threshold the current workspace

image at fifty and then apply boundary following
for regions larger than thirtyfive pixels in the
current workspace image"?

>Yes
OK.
(The system displays the operations occurring.)

(3) >What is in the image?
A SWITCH BASE AND A SWITCH CONTACT.
(The base and contact are outlined and labeled.)

(4) >Where is the switch?
DO YOU MEAN "Where is the switch post"?
>No, contact.
THE SWITCH CONTACT IS NEXT TO THE SWITCH

BASE.

(5) >Is there a switch post?
WHAT DOES A SWITCH POST LOOK LIKE?

(6) > A metal cylinder two inches long.
DO YOU MEAN "A switch post is a metal cylinder

two inches long"?
>Yes.
THERE IS A SWITCH POST NEXT TO THE SWITCH

CONTACT.
(The post is outlined and labeled.)

(7) >Make a switch.
OK
(High-level planning drives the two manipulators
to assemble the base, post, and contact into a
completed switch.)

In this example, MURPHY enabled a user to interact
with the robot assembly system to assemble the electric
switch. The user first specified certain low-level image-
processing operations, and then asked a high-level ques-
tion that prompted the system to perform additional
bottom-up and top-down recognition processing in order

to generate an answer. The user then asked for additional
information, which was supplied. Next, the user asked
about the existence of an unreported object. The system
displayed mixed-initiative capabilities by responding with
a query about the appearance of that object. Instead of
supplying a description of the object 's appearance, the
user answered with a description of the object 's shape.
The system then inferred the appearance of the object,
reexamined the low-level image description, found the
object, and answered the user's original question. Finally,
the user commanded the system to assemble the parts
into a complete switch, which it did.

Of specific importance to this paper, however, is the
fact that in this interaction MURPHY displayed exactly
the kind of robustness described in section 2. In (1) the
words image and workspace were reversed. MURPHY
understood correctly despite this variant syntax. In (4),
the word contact is missing. MURPHY first infers that the
missing word was post, but is corrected by the user and
told that the missing word was contact. An additional
example of MURPHY understanding despite missing
words appears in (2). In (5), the system displays mixed-
initiative in response to the user's question "Is there a
switch post in the current workspace image?". It answers
this question with another question, "What does a switch
post look like?". In (6), the user's reply is missing several
words, including the primary frame-supplying word.
MURPHY infers that the user meant "A switch post is a
metal cylinder two inches long". This demonstrates the
ability to infer the missing frame-supplying word is, and
the ability to use conversational history to understand the
elliptical reference to "A switch post". In these cases
MURPHY meets the criteria established in section 2.1.

Within the robot assembly domain MURPHY currently
knows about fifty words and five phrases, and about
seventy concepts of fifteen different types. In addition, it
has been briefly tested in domains other than robot
assembly. During a typical interaction, MURPHY usually
responds within five or ten seconds. Occasionally it takes
more than a minute on long test sentences. Its response
time is acceptable for an initial implementation designed
to address theoretical questions, and strongly suggests
that with tuning MURPHY could provide responses in real
time almost always when in realistic situations.

3 PRIOR RESEARCH ON ROnUSTNESS

Prior research has addressed the problem of robust
understanding from a number of different perspectives.
Hayes and Mouradian (1981) apply a grammar to utter-
ances flexibly enough to interpret a variety of grammat-
ical deviations. This is done using a bottom-up, pattern
matching parser that employs parse suspension and
continuation to the arcs of an ATN (Woods 1970).
Besides optional pattern elements, flexibility is achieved
by relaxing consistency constraints and allowing out-of-
order matches. Kwasny and Sondheimer (1981) extend
Hayes and Mouradian's approach by recording the

Computational Linguistics, Volume 12, Number 2, April-June 1986 91

Mallory Selfridge Integrated Processing Produces Robust Understanding

nature of the grammatical deviations. Their parser applies
grammar relaxation techniques to arcs of an ATN. When-
ever an arc of the normative grammar, specifying the
structure of a well-formed utterance, cannot be trav-
ersed, a deviance note is created and the arc is traversed
anyhow. This note records how the utterance deviates
from the expected grammatical form, and allows parsing
to proceed in the presence of variant syntax. Addi-
tionally, feature relaxation techniques allow an inappro-
priate word to stand in place of a correct one.

Both these works suffer from many of the same prob-
lems. Although the intent of both is to focus on a specific
subset of the overall problem, it is difficult to verify the
success of either approach without a semantic compo-
nent. Second, neither can infer a next interpretation if its
initial conjecture was incorrect. Third, neither can handle
arbitrary missing words. Finally, the ability of either to
handle variant syntax is limited: they can handle vari-
ations on only a subset of the total classes of syntax their
parser handles.

More recently, Weischedel and Sondheimer (1983)
describe work that significantly extends some of the ideas
reported by Kwasny and Sondheimer (1981). Their
extension involves the use of meta-mles to deal with ill-
formed input. These meta-rules are intended to recognize
an instance of ill-formedness and prescribe actions that
may provide understanding. Although the approach of
using meta-rules appears to handle well-formedness and
appears worthwhile, two characteristics distinguish the
meta-rule approach from the present research. First,
Weischedel and Sondheimer address themselves only to
the problem of processing ill-formed input, and leave for
later research the problem of integrating this approach
with techniques for handling other aspects of robustness.
Second, and more important, their approach to handling
ill-formed input differs computationally from the parsing
mechanism it overlays, while the research reported here
explores the processing of ill-formed input using the same
mechanism as that used for well-formed input.

Hayes and Carbonell (1981) report research closer to
that described in this paper. Their work combined a
number of different approaches within two different
experimental parsers. CASPAR combined a search for a
semantic case frame with a linear pattern matcher to
build a representation of the meaning of the input.
DYPAR combined a context-free semantic grammar, a
partial pattern matcher, and equivalence transformations
for building a representation of the meaning of the utter-
ance. [Note that the DYPAR program described by Hayes
and Carbonell (1981) is entirely different from the
DYPAR program described by Dyer (1982).] While both
appear to incorporate promising techniques, neither
CASPAR nor DYPAR displays a high degree of robust-
ness. While CASPAR can handle
• unexpected and unrecognizable interjections in the

input,
• missing case markers,
• out-of-order cases, and

• ambiguous cases,
it cannot
• understand if the word whose meaning builds the

prirnary semantic case frame is missing,
• guess again,
• handle ellipsis, or
• understand utterances with arbitrary out-of-order

words and missing words.
DYPAR seems similarly limited. Although it is embedded
in an interesting database management system, the
degree of robustness it displays is not clear.

Carbonell and Hayes (1983) describe research
extending that reported by Hayes and Carbonell (1981).
They describe a number of "recovery strategies" that can
enable understanding to proceed in the presence of what
are termed "extragrammaticalities", and which are tested
using CASPAR, DYPAR, and a parser called DYPAR-II.
Although much of the approach taken is similar to that
described here, much of it represents an alternative
approach to solving similar problems that focuses on a
number of difference processing mechanisms rather than
on a single, integrated mechanism as described in the
following section. Furthermore, no single program
appears to use all the strategies described by the paper,
and thus the utility of the strategies taken over-all is diffi-
cult to assess. Finally, none of these programs appear
capable of continuing to generate alternative interpreta-
tions of an input until confirmed by the user; they are not
guaranteed to eventually understand the input.

Understanders built within other paradigms have also
displayed various degrees of robustness. What might be
termed "semantics-oriented" understanders have
displayed high performance understanding, producing
f rom an utterance a representation of the meaning of that
utterance. For example, ELI and SAM (Riesbeck and
Schank 1976, Cullingford 1978), CA (Birnbaum and
Selfridge 1981), and ACE (Cullingford, Krueger,
Selfridge, and Bienkowski 1981) are similar in spirit to
MURPHY, in that each attempts to combine word mean-
ings into a representation of the meaning of the utterance
as a whole, and then allow later memory processing
access to this understanding. However, these programs
can best be thought of as demonstrating the power of
memory-based understanding while failing to fully exploit
the potential of integrated processing. Each are relative-
ly intolerant of missing words and variant syntax,
although each has various abilities in these respects.
Other approaches, such as the NOMAD system (Granger
1984), and those reported by Wilks (1976) and Fass and
Wilks (1983), are also related to the approach taken in
this paper. However, these systems differ significantly in
their approach to robustness. For example, while the
NOMAD system does present alternative interpretations
of an imperfectly understood input, and does employ
syntactic knowledge and world knowledge simultaneously
during understanding, it is not guaranteed to eventually
arrive at the intended meaning of an input (given

92 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Selfridge Integrated Processing Produces Robust Understanding

NOMAD's domain, this would be difficult in any event
because input utterances do not originate with the user)
and its language processing and memory processing do
not appear to employ the same mechanism. Similarly,
systems described by Wilks (1976) and Fass and Wilks
(1984), while similar in their use of preferences to
MURPHY, are not guaranteed to always eventually
understand and employ different mechanisms for
language and memory processing.

Finally, it is important to consider high-performance
knowledge-based understanding mechanisms, such as
described by Dyer (1982) and Lebowitz (1980). These
programs demonstrate impressive understanding abilities
in the domains of understanding complex stories about
interpersonal relationships and news stories about terror-
ism, respectively. They convincingly demonstrate the
power of high-level memory processing in difficult under-
standing tasks. However, neither has concentrated on
the question of robustness as the term is being used in
this paper. A final answer to the question of robustness
will certainly incorporate such high-performance memory
processing.

Each of the systems described in this section has
certain robust aspects, but each leaves something to be
desired. While it is possible to imagine extending some of
these systems to remove various limitations, it is impossi-
ble to judge the success of such extensions in the absence
of actual implementations; no evaluation can be made on
the basis of such hypothetical extensions. Thus, no previ-
ous research has developed a natural language understan-
der that is robust in all the ways being addressed here.

4 THE INTEGRATED PROCESSING HYPOTHESIS

In order to build a robust natural language interface, one
must specify the relationships between syntax and
semantics, and between language understanding and
memory processing, because actual construction of an
interface requires a commitment to specific relationships.

Schank and Birnbaum (1981) address these issues in
proposing the integrated processing hypothesis. General-
izing from their discussion, these issues can be Summa-
rized by the following three questions:

Is syntax processed prior to semantics, or
are syntax and semantics processed at the same time?

Is syntax processed separately from semantics, or
are they processed together by the same process?

Are language processing and memory processing
different processes, or

are they fundamentally the same process?

As discussed by Schank and Birnbaum (1981), there
are roughly two polar positions on these issues. One posi-
tion might be called the "separatist" position, while the
other can be termed the "integrated" position. Each posi-
tion can be characterized by its answer to these three
questions. The first question concerns the temporal
relationship between semantic and syntactic processing

during understanding. The separatist position suggests
that a syntactic analysis of an utterance is performed
prior to any semantic analysis, and that its output is a
syntactic description of the utterance. This output is then
passed to the semantic analysis process. In opposition to
this view is the integrated perspective. This proposes that
syntactic analysis is carried out at the same time as
semantic analysis. Thus the temporal order between
syntactic analysis and semantic analysis in language proc-
essing is a matter of disagreement, and must be
addressed when constructing a robust natural language
interface.

The second question concerns the nature of the mech-
anisms that process syntax and semantics. The separatist
view suggests that the mechanism that constructs a
syntactic description of an utterance is a different mech-
anism from that which builds a representation for the
meaning of the utterance. That is, this view suggests that
syntactic analysis operates according to a different algo-
rithm than semantic analysis. The integrated view, on
the other hand, proposes that syntax and semantics are
processed by the same mechanism. This mechanism oper-
ates equally well both on syntactic information and
semantic information. These two positions are thus quite
different, and constructing a robust natural language
interface requires a choice.

The third question concerns the relationship between
language processing and memory processing. The separa-
tist position is that language processing is a special,
specific function, largely unconnected from memory
processes. In this view, memory is thought to be a rela-
tively passive entity, with little active processing. The
integrated position, however, holds a different view of
the role of memory in language processing. It suggests
that language processing is primarily a memory-based
process, and further takes the position that language
processing and memory processing are the same process.
This question is of particular importance because a
robust interface will presumably have to employ memory
processing of some sort.

Note that an intermediate position between the inte-
grated and separatist positions is possible. One can hold
the integrated position with respect to one or two ques-
tions and the separatist position with respect to the rest.
For example, Bobrow and Webber (1980) describe a
natural language interface in which syntax and semantics
are processed in a logically simultaneous, intermingled
fashion, yet in which syntax and semantics are processed
by different mechanisms and in which language and
memory processing is performed by different mech-
anisms. Nonetheless, the distinction represented by the
two positions is useful.

Schank and Birnbaum's integrated processing hypoth-
esis is basically the hypothesis that the integrated posi-
tion correctly characterizes human processing, and can
be summarized by the following:

Syntax and semantics are processed at the same time.

Computational Linguistics, Volume 12, Number 2, April-June 1986 93

Mallory Selfridge Integrated Processing Produces Robust Understanding

Syntax and semantics are processed by the same process.

Language processing is fundamentally the same as
memory processing.

Sehank and Birnbaum present a detailed argument to
justify the integrated processing hypothesis, but its
primary impact here is its consequences as a model of
human understanding. That is, if the integrated process-
ing hypothesis in fact describes human processing, and
since humans are robust language processors, then one
way to build a robust natural language interface is to
incorporate the integrated processing hypothesis into a
natural language interface. This conjecture might be
termed the "integrated processing produces robust
understanding conjecture", or the IPPRU conjecture.

It is important to understand what this conjecture does
not say. The IPPRU conjecture does not claim that
embodying the integrated processing hypothesis is neces-
sary to produce robust understanding, only that it is one
approach that does work. Although establishing the
necessity of the integrated processing hypothesis to
robust understanding would be desirable, this is not with-
in the scope of this paper. Rather, the research reported
here concerns a first step to the later establishment of
necessity. Neither the Integrated Processing Hypothesis
nor the IPPRU conjecture claim that syntactic knowledge
is the same as semantic knowledge. While syntax is proc-
essed at the same time as semantics, and by the same
mechanism, this paper proposes a different breakdown
between syntax and semantics. This breakdown is know-
ledge-based instead of processing-based. That is, the
difference between syntax and semantics in this view lies
in the specific knowledge each represents rather than the
order or processing mechanisms of each.

Evaluating the IPPRU conjecture involves certain
questions. How best can the integrated processing
hypothesis be embodied in a program? What should the
domain of that program be? How can its performance be
evaluated? In order to address the question of embodying
the integrated processing hypothesis within a program, an
important distinction must be made between
• a program that may have several modules but which

embodies the integrated processing hypothesis by virtue
of the algorithms it employs and the manner in which it
manipulates its data, and

• a program that not only embodies the integrated proc-
essing hypothesis but which also is itself integrated, in
the sense of being non-modular.

Ideally, the integrated processing hypothesis should be
embodied in a program that is actually integrated as well.
However, the construction of such a fully integrated
program is a lengthy process and requires a number of
difficult design decisions. In order to gain information on
which these design decisions can be made, the MURPHY
system was developed as a rapid prototype, which,
although not fully integrated, does embody the integrated
processing hypothesis. Thus, MURPHY's performance

does bear directly on the IPPRU conjecture, even though
MURPHY itself is not fully integrated.

The second question concerns the domain within
which a natural language program operates. Ideally, the
domain will be both large and realistic. However, since
effort on a large and realistic domain must be justified by
high performance within a limited domain, it is appropri-
ate to experiment with such a limited domain as a neces-
sary first step to a large and realistic domain. This is the
approach taken by others within this area of research
(e.g. Hayes and Mouradian 1981. Kwasny and
Sondheimer 1981, Hayes and Carbonell 1981, Dyer
1982, Lebowitz 1980). The limited semantic domain
chosen for this research is that of small-scale robotic
assembly in a laboratory context. This domain is appro-
priate because it is a subset of a potentially useful real-
world domain and because it provides a measure of
understanding - the degree to which the system success-
fully carries out commands, answers questions, and
remembers and uses declaratives.

The third question concerns the criteria for evaluating
the research. Under what conditions will it be considered
a success? There appear to be basically two: First, does
it in fact perform robustly within its domain? That is,
does it fulfill the requirements described in section 2?
Second, does it provide insight as to how its techniques
might be applicable both to an expansion of the existing
domain and to other domains? That is, are its limitations
clear, are the areas in which research is needed apparent,
and is there suggestive evidence that such additional
research would be successful? Positive answers to both
these questions would suggest that this research should
be considered successful.

5 MURPHY's ARCHITECTURE

This section describes the MURPHY system in detail.
MURPHY is composed of four major component
programs:

• A natural language analyzer (NLA), which accesses a
dictionary of words and phrases to perform low-level
understanding of the words in the utterance;

• An inferencer (Robust Back End, or RBE), which
completes understanding using conversational history,
context, and a body of domain knowledge;

• A conversational control program (CCON), which
performs inference on the input meanings of the user's
utterances and provides a mixed-initiative conversa-
tional ability, and which allows MURPHY to interact
with the robot assembly system;

• A natural language generator (Conceptual Generator,
or CGEN), which accepts concepts and expresses them
in English.
A user's utterance to MURPHY is analyzed by NLA as

far as possible. NLA then passes its understanding of the
utterance to RBE, which completes the understanding
process using domain knowledge and the conversational
history. RBE then verifies its understanding with the user,

94 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Seffridge Integrated Processing Produces Robust Understanding

and if incorrect it infers the next most likely meaning,
and so on until it either infers the intended meaning or
exhausts the possibilities. If the latter, control is returned
to NLA to produce its next most likely understanding of
the utterance, which again is passed to RBE for inference.
When the intended meaning is confirmed by the user, it is
passed to CCON, which uses test-action rules to infer a
response to the utterance. Some responses involve
queries or answers directed to the user, some involve
internal inferences, and some direct calls to the robot
assembly system. Throughout, CGEN is used when need-
ed to generate natural language responses.

Almost every component of MURPHY is relevant to
the question of robust understanding; NLA, RBE, CCON,
the dictionary, context, and domain knowledge all have
important roles. This section first describes each in turn,
and then describes how these components embody the
integrated processing hypothesis.

5.1 REPRESENTING DOMAIN KNOWLEDGE AND CONTEXT

MURPHY's domain knowledge consists of a set of seman-
tic primitives appropriate to the domain, represented in
Conceptual Dependency format (Schank 1975~ Schank
and Abelson 1977; although MURPHY could be imple-
mented with any of a wide variety of knowledge repre-
sentation formalisms generally similar to Conceptual
Dependency). Each semantic primitive, henceforth
called a CD, consists of a header followed by a set of
labelled slots. Together, the header and labelled slots
comprise a CD frame. CDs can be combined with one
another by placing one CD into a slot of another, accord-
ing to certain restrictions: each CD has certain properties,
and each slot in a CD can only accept other CDs with
certain properties. For example, (requires human) speci-
fies that the slot filler is required to have the property
(human). In addition, certain properties are preferable,
but not essential. For example, (prefers small) specifies
that a filler that has the property (small) is preferable to
one which does not; however, slot filling can still proceed
even if the preferred property is absent. Note that this
notation for restrictions on what CD can fill a slot in
what other CD is not intended to be fully adequate but
only to satisfy current needs. In a real-world system the
use of simple concept attributes would prove insufficient.
A real world domain requires complex reasoning to
determine if a concept should be combined with another
concept. However, it seems reasonable to conjecture
that a rich system can be built around the idea that when
such reasoning is completed its result will be an assertion
similar to the current attributes. Thus, the current
approach does not rule out the use of complex reasoning,
and is upwardly compatible with such reasoning. Howev-
er, the current limited domain requires only the existing
simple predicates. Thus, the primary definition of a CD
consists of the frame definition, the properties of the CD,
and the restrictions that specify which kinds of CDs can
fill each slot. For example, the following shows a deft-

nition for the CD that refers to the switch contact,
object 1:

define-concept
frame-header:
isa:
frame:
slot-restrictions:

object l
physicalobject
(object l partof (nil) ref (nil))
partof requires physicalobject
ref requires determiner

In addition to the information captured by definitions
of this type, MURPHY's knowledge of the various CD
predicates is also represented in a more distributed fash-
ion throughout the system. For example, MURPHY also
knows object l as a three-dimensional object in space,
represented geometrically as a number of points defining
the vertices of a planar solid. This representation is used
by robot path planning and collision avoidance software,
and is an essential part of the meaning of object l . The
other kind of additional knowledge MURPHY possesses
about its meaning representation is possible inferences
within the conversational control. Each conversational
control rule matches some configuration of CDs, in order
to implement inferences which may be drawn from the
presence of a certain CD. Each rule thus encodes addi-
tional knowledge of a CD.

5.2 REPRESENTING LANGUAGE KNOWLEDGE

MURPHY's knowledge of words is contained in a diction-
ary. A word definition consists of the word's meaning
and its syntax. The meaning is a single CD or a complex
of nested CDs from domain knowledge. That is,
MURPHY's word meanings are pointers into its know-
ledge of the world. Each word meaning may have several
empty slots. For each empty slot, the word definition
includes syntactic knowledge about where in the utter-
ance a slot filler is expected to be. This syntactic know-
ledge is expressed as a set of independent syntactic
features. These features are formed from the positional
predicates PRECEDES and FOLLOWS, which are applied
to the short term memory around which NLA's process-
ing focuses. This short term memory contains, in order,
the input words, their meanings, and the slots these
meanings fill in other meanings. PRECEDES and
FOLLOWS relate the position in the input of a potential
slot filler to either the meaning containing the slot, a filler
of another slot in that word's meaning, or a lexical func-
tion word. To represent the knowledge that the filler is
found following the meaning containing the slot, the
word definition includes the predicate "follows parent"
indexed under that slot. Similarly, the predicate
"precedes (slot object)" represents the knowledge that
the filler is found preceding the filler of the (slot name)
slot, and "follows (fw (function word))" represents the
knowledge that the filler is found following the function
word (function word). Several predicates are used to
completely describe the position of a filler in an utter-
ance. Thus, each slot in a word meaning has associated
with it a collection of features describing where in the

Computational Linguistics, Volume 12, Number 2, April-June 1986 95

Mallory Seffridge Integrated Processing Produces Robust Understanding

utterance a filler is expected to be. For example, in the
definition of the word contact (as in the switch contact)
there is a CD that represents its meaning, and a collection
of syntactic features specifying where the fillers of the
empty slots are expected to be.

define-word
word: contact
meaning: (object l partof (nil) ref (nil))
syntax: partof-filler precedes parent

follows re f-filler
ref-filler precedes parent

precedes partof-filler

Most likely, this representation of syntax cannot hope
to encompass an entire natural language. It is used here
because it is powerful enough to describe the syntax of
the natural language capabilities of interest. However, it
has demonstrated reasonable expressiveness in a number
of different applications (Birnbaum and Selfridge 1981,
Cullingford, Krueger, Selfridge, and Bienkowski 1981;
Selfridge 1980, Selfridge 1981a; Selfridge 1981b;
Selfridge 1982) and thus its use here is not entirely ad
hoe.

5.3 THE NLA PROGRAM

When the user types an utterance to MURPHY, the utter-
ance is first processed by the NLA program. NLA is a
descendant of the CA program (Birnbaum and Selfridge
1981), and also uses concepts derived from Wilks
(1976). Its role in the understanding process is to create
as complete a CD representation of an utterance's mean-
ing as possible using only the meanings of the words in
the utterance. NLA's processing centers around a short-
term memory called the C-LIST. During analysis, the
meaning of each input word is placed on the C-LIST
(currently, NLA is limited to words with only a single
meaning; it cannot disambiguate among multiple words
senses). The syntactic and semantic features associated
with slots in the meanings of each word on the C-LIST
are then checked to see if the meaning of any other
words on the C-LIST can fill any of them. If so, the CD
that most satisfies the syntactic and semantic features
associated with a particular slot is placed in the slot. This
process is repeated for each CD on the C-LIST. When
completed, what remains on the C-LIST is one or more
CDs constructed by combining the meanings of the words
in the utterance. The CD or CDs represent as much
understanding of the utterance as could be achieved by
examining only the meanings of the utterance words.
More formally, NLA's basic algorithm is as follows:

(1) Place the CD meaning of each utterance word or
phrase on the C-LIST.

(2) For each empty slot in each CD on the C-LIST,
collect the syntactic and semantic features associ-
ated with that slot.

(3) Search the C-LIST, and retrieve all the CDs that
satisfy that slot's semantic requirements. These CDs
are candidate slot fillers.

(4) Order the candidates by preference value (the
number of semantic preferences and syntactic
features a candidate satisfies).

(5) Examine the candidate with the highest preference
value. If the CD is not marked "used", then fill the
current slot with it and mark it "used".

(6) If the candidate is marked "used" and its prefer-
ence value for the slot it already fills is higher than
the current preference value, then reject it and
examine the candidate with the next highest prefer-
ence value.

(7) If the candidate is marked "used" and its prefer-
ence value for the slot it already fills is lower than
the preference value associated with that other slot,
then remove it f rom the other slot and fill the"
current slot with it, and recursively call NLA to refill
the other slot.

In addition to the above algorithm, NLA performs
additional work. This additional work is needed to allow
NLA to produce a next most likely interpretation of the
input. It does this by keeping track of all the candidates
for each slot and their preference values, and by main-
taining a list of rejected interpretations. When called
upon to generate the next most likely interpretation, it
does so by finding the most preferred interpretation that
does not appear on the list of rejected interpretations. In
this way, NLA can provide all possible interpretations of
the input (in conjunction with the RBE program,
described in the following subsection), ranked according
to likelihood. It should be noted that the technique of
keeping track of rejected interpretations is crude yet
functional; future work will address the question of
improving this implementation.

Since section 5.6 argues that both NLA and RBE use
essentially the same mechanism, an abstract description
of each is important. A number of alternative
descriptions exist; viewing NLA's understanding process
as tree search is best for the current purposes. The interi-
or nodes of this tree represent partial understandings of
the input, while leaves represent complete under-
standings. That is, interior nodes are CDs that contain
empty slots, while leaves are CDs that do incorporate
every word meaning. The root of this tree is a start node,
whose descendants are the CDs from the utterance that
have empty slots. Given that the search process has a
current node, generating the descendants of that node
involves choosing an empty slot, retrieving its tests, using
those tests to retrieve from the C-LIST all possible candi-
date fillers, creating a copy of the CD at the current node
for each candidate and filling the slot with a candidate
filler, and finally building a new node for each such CD.
The CD at each new node will thus have one less empty
slot. The new current node is then chosen to be the
unvisited node whose filler had the highest preference
value for that slot. Search proceeds until a leaf is reached
in which all possible slots have been filled f rom CDs on
the C-LIST. Since NLA first chooses slot fillers that best

96 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Sell'ridge Integrated Processing Produces Robust Understanding

satisfy the syntax and semantics associated with a slot, its
processing strategy implements a kind of local best-first
search (Nilsson 1971).

The following example describes part of NLA's proc-
essing of the sentence put the post on the base. In order to
illustrate preference, this example focuses on filling the
VAL slot in the meaning of on, in the middle of process-
ing the input. Of the two candidate fillers available at
this point for the VAL slot (the meanings of post and

base) the meaning of base is currently being used as the
filler of the OBJECT slot. However, preference overrides
this prior slot filling, moves the meaning of base to the
VAL slot, and finds the next best filler for the object slot.
The example begins with the state of the C-LIST at that
point, then shows the selection of the filler of the VAL
slot, and finally shows the selection of the next-best filler
for the object slot.

C-LIST: (PTRANS ACTOR (NIL)
OBJECT (PHYS-OBJ TYPE (BASE)

PART-OF (NIL)
REF (NIL))

TO (TOP VAL (NIL)))
(REF) -- used
(PHYS-OBJ TYPE (POST) PART-OF (NIL)
(TOP VAL (NIL)) -- used
(REF)
(PHYS-OBJ TYPE (BASE) PART-OF (NIL)

REF (DEF))

REF (NIL)) -- used

EXAMINING: (TOP VAL (NIL))

CHECKING VAL SLOT: requires phys-obj
follows "on", "put", object-filler

VAL CANDIDATES: (PHYS-OBJ TYPE (POST) PART-OF (NIL) REF (NIL))
preference value I: follow "put",
(PHYS-OBJ TYPE (BASE) PART-OF (NIL) REF (NIL))
preference value 2: follows "on", "put"

PREFERRED FILLER: (PHYS-OBJ TYPE (BASE) PART-OF (NIL) REF (NIL))

REMOVING FILLER OF OBJECT SLOT

RE-CHECKING OBJECT SLOT:

OBJECT CANDIDATES:

PREFERRED FILLER:

requires phys-obj
follows "put", precedes to-filler

(PHYS-OBJ TYPE (POST) PART-OF (NIL) REF (NIL))
preference value 2: follows "put"

precedes to-filler
(PHYS-OBJ TYPE (BASE) PART-OF (NIL) REF (NIL))
preference value I: follows "put"

(PHYS-OBJ TYPE (POST) PART-OF (NIL) REF (NIL))

C-LIST: (PTRANS ACTOR (NIL)
OBJECT (PHYS-OBJ TYPE (POST)

PART-OF (NIL)
REF (NIL))

TO (TOP VAL (PHYS-OBJ TYPE (BASE)
PART-OF (NIL)
REF (NIL))))

(REF) -- used
(PHYS-OBJ TYPE
(TOP VAL (NIL))
(REF)
(PHYS-OBJ TYPE

(POST) PART-OF (NIL) REF (NIL)) -- used
-- used

(BASE) PART-OF (NIL) REF (NIL)) -- used

The understanding process is complete when the
remaining slots in the meaning of base have been exam-
ined and the REF slot filled with the meaning of the

second the. At this point, all the "used" concepts are
removed from the C-LIST; those concepts remaining
constitute NLA's best understanding of the input:

C-LIST : (PTRANS ACTOR (NIL)
OBJECT (PHYS-OBJ TYPE (POST)

PART-OF (NIL)
REF (DEE))

TO (TOP VAL (PHYS-OBJ TYPE (BASE)
PART-OF (NIL)
REF (DEF))))

Computational Linguistics, Volume 12, Number 2, April-June 1986 97

Mallory Self ridge Integrated Processing Produces Robust Understanding

At this point, NLA has produced its best understand-
ing of the input. Since this understanding contains empty
slots, it would require additional processing by RBE. If
NLA were asked to produce its next best interpretations,
it would reprocess the input for an alternative meaning,
and fill the OBJECT slot with the meaning of base and the
VAL slot with the meaning of post.

5.4 THE RBE PROGRAM

When NLA has concluded processing an input, it may not
have been fully understood. If the input was missing
words, the C-LIST can contain CDs with unfilled slots
and several CDs that have not been combined into a
single CD. In these cases, RBE is called to complete
understanding. When RBE must fill empty slots in a CD,
it infers fillers from domain knowledge. When RBE must
combine several CDs into a single CD, it searches domain
knowledge for a CD whose empty slots could be filled by
them. Once it has filled all the empty slots with potential-
ly correct fillers, and has combined all the uncombined
CDs into one, the result is a complete understanding of
the meaning of the utterance. Before passing this mean-
ing to the conversational control, RBE verifies its under-
standing is the one intended by the user by generating it
in English. If the user disagrees with the interpretation,
RBE searches domain knowledge further, produces the
next most likely interpretation, and so on until it either
infers the intended meaning or has exhausted all possibil-
ities. In general, RBE prefers to fill a slot with a C-LIST
element whenever possible. This is because the user
presumably included a word in an utterance because its
meaning was intended to contribute to the meaning of
that utterance. If no C-LIST elements are appropriate slot
fillers, RBE searches corrections, conversational history,
and domain knowledge. Thus RBE will infer concepts in
the order of reasonable likelihood.

RBE's search process could not be guaranteed to
terminate if RBE were as just described. Under some
conditions, it searches context and domain knowledge for
a CD with empty slots, intending to fill them with the
results of partial understanding. That is, RBE must infer a
CD with a slot that can be filled by a CD currently on the
C-LIST. Unfortunately, this process can proceed indefi-
nitely: how does RBE know when to stop inferring
increasingly inclusive CDs? The function of RBE's infer-
ence provides an answer: RBE stops when it has inferred
a CD to which CCON can respond. Since RBE continues
the inference process until it fills all the slots in a CD to
which CCON can respond, these CDs serve as goals to
RBE. Consequently, they are termed goal concepts. Now,
there are several possible implementations that allow
CCON to communicate goal-concepts to RBE. The
current implementation is the simplest: annotate goal
concepts as such, and have RBE's search be top-down
beginning with a goal concept. If the first goal concept
chosen proves incorrect, RBE uses the next one, and so
on, until it finds the correct one. Future work will explore
more sophisticated search strategies.

RBE's algorithm focuses around a data structure called
the NODE-list, initially empty, and is given below:

(1) If there is no goal concept on the C-LIST, collect
from conversational history and domain knowledge
all goal concepts and place them on NODE-list.
Otherwise, place all goal concepts f rom the C-LIST
on NODE-list.

(2) For each empty slot within the first NODE-list
element, retrieve f rom context and domain know-
ledge all the candidate fillers that satisfy that slot's
semantic requirements. Order all candidates from
user's corrections before those f rom conversational
history, and order all those f rom conversational
history before those obtained f rom domain know-
ledge. Within each group, order candidates accord-
ing to the number of semantic preferences they
satisfy.

(3) For each candidate, create a copy of the top of
NODE-list and place that candidate into the slot of
the copy, and place the resulting CD back onto
NODE-list.

(4) If the CD at the beginning of NODE-list has empty
slots, go to (2). If the CD has no empty slots, send
it to CGEN to query the user whether it is correct or
not.

(5) If the user confirms the CD, send it to CCON for
response. If not, remove the CD from NODE-list
and go to (2).

Just as NLA's processing can be characterized as tree
search, RBE's operation can be described the same way.
That is, RBE takes the best understanding provided by
NLA as the root node, and descendants are nodes at
which CDs have additional slots filled. Leaf nodes are
those that have no empty slots at all. Generat ing the
descendants of a node involves
• choosing an empty slot;
• retrieving its semantic requirements and preferences;
• retrieving all possible candidates f rom domain know-

ledge, conversational history, and user corrections that
satisfy the requirements;

• creating a copy of the CD at the current node for each
candidate and filling the slot with a candidate filler;
and, finally,

• building a new node for each such CD.
The CD at each new node will thus have a formerly
empty slot filled. The filler will often have empty slots of
its own, and these will be filled in their turn. Infinite
regress is stopped at an arbitrary fixed level to assure
termination. (An alternate approach would be breadth-
first, and would require no such arbitrary limitation.) The
new current node is then chosen to be the unvisited node
whose filler had the highest preference value for that slot.
Search proceeds until a leaf is reached at which there are
no empty slots at all. At this point, the understanding
represented by the CD at that leaf is generated in natural
language, and the user is asked to verify the understand-
ing. If it was correct, then the search is over. If not, then

98 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Selfridge Integrated Processing Produces Robust Understanding

RBE backs up and continues the search at the point at
which it was halted. This process continues until RBE has
searched the entire tree of possibilities.

If the intended meaning has still not been inferred,
then NLA is called to generate its next most likely inter-
pretation of the words in the input, and RBE begins again
to infer fillers for empty slots in this CD. Thus, RBE
continues the search for a complete understanding begun
by NLA, using essentially the same local best-first search-
ing process to do so; if its search fails, it returns control
to NLA to generate its next most plausible interpretation
of the input, and RBE again continues the search. Thus,
the best-first search processes of NLA and RBE together

perform a unified best-first search. This unified search
process exhaustively searches the space of possible
meanings of the input utterance, ordered by likelihood as
described, and will eventually find any finite CD (Nilsson
1971). Since any intended meaning is assumed to be
represented by a finite CD, the search performed by NLA
and RBE is guaranteed to eventually infer the intended,
meaning.

The following example illustrates RBE's processing on
the understood meaning of put the post on the base. RBE
begins when it receives NLA's best understanding of this
sentence and places it on NODE-list, as shown below.

NODE-list: (PTRANS ACTOR (NIL)
OBJECT (PHYS-OBJ TYPE (POST)

PART-OF (NIL)
REF (DEF))

TO (TOP VAL (PHYS-OBJ TYPE (BASE)
PART-OF (NIL)
REF (DEF))))

RBE removes the first CD in NODE-list - the one
shown above - and notes that it has an empty ACTOR
slot. It retrieves the semantic requirements and prefer-
ences for the ACTOR slot, which specify that the filler is
required to be an animate being. Since, in this example,
there are assumed to be no corrections or conversational
history, RBE searches only domain knowledge for such a
filler. It retrieves the concepts for itself and that of the

user, creates copies of the CD with these as ACTOR
fillers, and pushes them onto NODE-list. The copy
containing the concept of MURPHY itself is on the front
of NODE-list because it was found first in domain know-
ledge; this order reflects the knowledge that MURPHY is
more likely to be the intended actor. The new NODE-list
is shown below:

NODE-list: (PTRANS ACTOR (MURPHY)
OBJECT (PHYS-OBJ TYPE (POST)

PART-OF (NIL)
REF (DEF))

TO (TOP VAL (PHYS-OBJ TYPE (BASE)
PART-OF (NIL)
REF (DEF))))

(PTRANS ACTOR (USER)
OBJECT (PHYS-OBJ TYPE (POST)

PART-OF (NIL)
REF (DEF))

TO (TOP VAL (PHYS-OBJ TYPE (BASE)
PART-OF (NIL)
REF (DEE))))

The cycle continues when RBE again removes the first
CD and again examines it for empty slots. The next
empty slot it finds is the first PART-OF slot. The only
possible filler from domain knowledge is the CD
(COMPOUND-OBJ TYPE (SWITCH)). This is used to fill
the first PART-OF slot, and the resulting CD is pushed

back on NODE-list. During the next cycle, the just-modi-
fied CD is removed from the top of NODE-list and the
second PART-OF slot is found to be empty, and is like-
wise filled with (COMPOUND-OBJ TYPE (SWITCH)). The
resulting NODE-list is shown below:

NODE-list: (PTRANS ACTOR
OBJECT

TO

(MURPHY)
(PHYS-OBJ TYPE (POST)

PART-OF (COMPOUND-OBJ
TYPE (SWITCH))

REF (DEF))
(TOP VAL (PHYS-OBJ TYPE (BASE)

PART-OF (COMPOUND-OBJ
TYPE (SWITCH))

REF (DEF))))

Computational Linguistics, Volume 12, Number 2, April-Jane 1986 99

Mallory Selfridge Integrated Processing Produces Robust Understanding

(PTRANS ACTOR (USER)
OBJECT (PHYS-OBJ TYPE (POST)

PART-OF (NIL)
REF (DEF))

TO (TOP VAL (PHYS-OBJ TYPE (BASE)
PART-OF (NIL)
REF (DEE))))

At this point the first CD on NODE-list has no empty
slots, and furthermore is a known goal concept. RBE calls
the generator to ask the user if this was his intended
meaning. If the user verifies this as his intended meaning,
RBE has successfully completed the understanding proc-
ess. If not, then RBE removes this CD from NODE-list
and proceeds to cycle further. In the case described
above, this would amount to RBE inferring that possibly
the intended filler of the ACTOR slot was the user rather
than MURPHY itself.

When RBE has successfully verified its understanding
with the user, it passes this completed understanding to
the CCON program, which will, in turn, infer a response
to the input. In addition, RBE also updates the conversa-
tional history with the concepts that comprise the
completed understanding. Since RBE uses candidates
from conversational history before those from domain
knowledge, it uses potentially, more relevant concepts
before less relevant ones. In particular, RBE can infer
goal concepts as a function of context. Given an identi-
cal input utterance, MURPHY will understand it one way
in one conversational context, and another way in anoth-
er context, since it can obtain a goal concept from
conversational history.

5.5 THE CCON PROGRAM

The CCON program is invoked when NLA and RBE have
understood the input to the user's satisfaction. It uses a
set of "if- then" conversational rules to respond to that
understanding. The complete CD representing the mean-
ing of the input is placed on a stack, and the rules are
checked to see if the test of any matches the CD on top
of the stack. If so, the action of that rule is executed. The
action can send commands to the robot system, add CD
inferences to the stack, query MURPHY's knowledge
base, and ask the user questions by sending concepts to
CGEN to be generated. Thus, CCON is partly a rule-
based system, partly a problem-reduction problem solver,
and partly a knowledge-based inference engine. The
following algorithm describes its operation:

(1) Begin when a goal concept is placed on the stack.
(2) Find the first rule whose test matches the concept

on the top of the stack; if the stack is empty, return
control to NLA to seek another user input.

(3) Pop the stack and execute the action of that rule.
(4) Go to 2.

Although CCON does no significant searching as far as
the understanding process is concerned, it is consistent to
note that it can as well be seen as performing a search
process. Since the action of a rule can place concepts on
the stack, CCON can in fact traverse a tree of concepts,

and thus perform essentially the same process as NLA
and RBE.

5.6 HOW MURPHY EMBODIES THE INTEGRATED PROCESS-
ING HYPOTHESIS

It is important now to consider the way in which
MURPHY embodies the integrated processing hypothesis.
Three questions must therefore be addressed. First, how
does MURPHY process syntax and semantics simultane-
ously? Second, how are syntax and semantics processed
by the same mechanism? Third, how is language proc-
essing fundamentally the same as memory processing?
These questions are addressed in turn.

To understand how MURPHY processes syntax and
semantics simultaneously, consider how NLA processes
input. When NLA is understanding the input as well as
possible, it is filling slots in one word meaning with
another word meaning. To determine the degree to which
a filler is appropriate for a slot, NLA performs a set of
tests on the potential filler. These tests derive from the
slot, and include semantic requirements, semantic prefer-
ences, and syntactic features. As described earlier, NLA
first collects all the tests, and then evaluates them togeth-
er. No distinction is made between semantic and syntac-
tic tests during the evaluation process, and no test 's
output depends on the result of any other test. Since they
are independent, the tests are logically simultaneous, and
thus NLA processes syntax and semantics simultaneously.

It could be argued, however, that since RBE uses
semantic information too, and does so after syntax has
been used by NLA, this later use of semantics constitutes
a departure from the simultaneity of syntactic and
semantic processing. However, at this point language
knowledge is not being used, since fillers cannot be
found from the C-LIST. Thus it is not appropriate to
consider syntactic knowledge, since nothing but input
could usefully be processed syntactically. Furthermore,
since RBE sometimes returns control to NLA, syntactic
processing can be seen as interspersed with semantic and
memory processing, and thus embodying a form of simul-
taneity of syntactic processing and semantic processing.
Nonetheless, unifying NLA and RBE to provide for
complete simultaneity would be desirable, and remains
for future research.

To understand how syntax and semantics are proc-
essed by the same mechanism, consider again NLA's
processing of the input. When syntax and semantics are
being processed by NLA, not only are they being proc-
essed simultaneously but the same mechanism within
NLA is also performing the processing. This mechanism is
the one that takes each feature test in turn, regardless of

| 0 0 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Seffridge Integrated Processing Produces Robust Understanding

whether it is a semantic requirement, semantic prefer-
ence, or syntactic feature, and evaluates it with respect to
a candidate filler to determinate whether to fill the slot
with that filler or not. Thus NLA applies the same mech-
anism to evaluate syntax as semantics. Furthermore, RBE
uses this same mechanism when inferring CDs from
context and domain knowledge. It retrieves candidate
slot fillers based on the degree to which they satisfy
semantic requirements and preferences, using exactly the
same mechanism as NLA uses to evaluate candidate slot
fillers from the C-LIST. It is this mechanism, used by
both NLA and RBE, that processes both syntax and
semantics in the same manner.

To understand how language processing is fundamen-
tally the same as memory processing within MURPHY,
compare the algorithms being executed by NLA and RBE.
Within MURPHY, NLA performs "language processing"
while RBE performs "memory processing". As described
above, each uses essentially the same form of best-first
search, and together they combine to form a single
unified best-first search. Further, each are manipulating
the same CDs in the same way, and control passes back
and forth between them. NLA chooses to fill a slot in a
CD with a candidate filler CD if that candidate filler satis-
fies the most syntactic features and semantic require-
ments and preferences of the CDs in the C-LIST. RBE
chooses to fill a slot in a CD from candidate fillers drawn
from conversational history and domain knowledge if
that candidate filler satisfies the most semantic require-
ments and preferences of the CDs retrieved. Both NLA
and RBE determine the most likely filler for a slot, and
hence ultimately the most likely interpretation of the
input, by choosing the filler that satisfies the greatest
number of syntactic and semantic features and prefer-
ences. Thus, both language and memory processing are
carried out by the same mechanism of search, evaluation
of features, requirements and preferences, and choice of
the CD satisfying the greatest number.

6 ROBUST UNDERSTANDING

It is important to analyze the relationship between
MURPHY's performance and its implementation of the
integrated processing hypothesis, and to assess that
performance overall. This section will consider the
relationship between each aspect of robustness and each
component of the integrated processing hypothesis, and
will also discuss two general measures of performance.

6.1 UNDERSTANDING INPUT WITH VARIANT SYNTAX

To describe how MURPHY understands input with vari-
ant syntax, consider again interaction (1) from the exam-
ple of section 2. In this interaction, the user typed Display
the current image workspace, in which image and work-
space are reversed. To understand this, NLA combines
the meanings of the words in the utterance together, as
well as possible, by evaluating the semantic and syntactic
features of each slot in a word's meaning with respect to

the remaining meanings, which are candidate slot fillers,
and choosing as a filler the meaning that satisfies the
most features. Even though in the user 's utterance the
word workspace was out of position, and hence not all
features were true, its meaning still satisfied the most
features, and was hence chosen as the filler of the
SOURCE slot. At this point, NLA has produced a single
CD containing no empty slots. This CD is verified to be a
goal concept, and understanding is complete.

Now, in interaction (1) a filler was out of position
with respect to the meaning that contained the slot.
Consider the following more complex example not
contained in the example on page 91.

> The display current workspace image.
DO YOU MEAN "Display the current workspace image"?
> Yes.
OK (The system displays the image.)

In the user 's utterance the word the is out of position.
However, the system correctly understands that the
meaning of the is intended to fill the REF slot in the
meaning of image, and demonstrates its knowledge of the
correct position in its query to the user. Correct under-
standing occurs because although not all of the syntactic
and semantic features associated with the REF slot are
true, the meaning of the is nonetheless the best filler
available. Syntactic features are retrieved from the defi-
nition of image, and from the definition of display as well,
since the meaning of image is understood to fill the
OBJECT slot of the meaning of display and MURPHY
propagates syntax downward f rom parent to filler. These
features are then evaluated with respect to the meaning
of the. Although not all syntactic features are true,
MURPHY fills the REF slot with the meaning of the as the
best available. These features and their evaluations are
shown here:

origin of feature

meaning of image
definition of image

definition of display

feature value

ref requires ref-spec T
ref-filler precedes parent T
ref-filler precedes subject-filler T
ref-filler precedes time-filler T
ref-filler follows meaning of display F

Each of the examples considered above assumes that
the utterance containing the out-of-order words does not
have an alternate interpretation for which the words are
not out of order. For example, in Display the current
image workspace, it was assumed that workspace was not
something that could be displayed. If it was, then the
utterance makes sense as it is, and MURPHY would have
to decide which interpretation was correct, the one in
which it was the workspace being displayed or the one in
which the image is to be displayed. As far as MURPHY is
concerned, there are two distinct situations in which an
utterance with variant syntax can have two different
meanings. MURPHY can handle one, while the other is
beyond its current capabilities. The first is one in which
there are two empty slots, each of which can accept the

Computational Linguistics, Volume 12, Number 2, April-June 1986 101

Mallory Seffridge Integrated Processing Produces Robust Understanding

other's filler. In this situation, MURPHY will assume that
the most preferred interpretation is correct, even if the
user mispositioned words and actually intended the other.
If the user objects, however, MURPHY will infer the
alternate interpretation as the next most preferred mean-
ing. The second situation arises when the word that is out
of position has multiple meanings, and while it is out of
position with respect to its intended meaning, it is in a
correct position with respect to an alternate meaning. For
example, workspace in the above example has two differ-
ent meanings, one in which it describes the contents of
image, and one a spatial area which can itself be
displayed. MURPHY cannot handle this second type of
input since it cannot disambiguate multiple word senses.
However, current research is directed toward including
the ability to handle arbitrary numbers of word senses, as
demonstrated by Dawson (1984), and future research
must address this problem.

It is important to describe how MURPHY's ability to
understand despite variant syntax derives from the inte-
grated processing hypothesis. Syntactic knowledge is
used by NLA during slot filling to help decide which CD
on the C-LIST should fill a given slot. The syntactic
features for a slot are grouped with the semantic prefer-
ences and semantic requirements for that slot, and candi-
date fillers are scored to see which features, preferences,
and requirements each satisfies. The slot is filled with the
candidate that (a) satisfies the most with the highest
score and (b) is not already filling another slot with a
higher score. This means that even though certain
features or preferences may not be satisfied by a candi-
date, if that candidate nonetheless has the highest score it
will be chosen as the filler. In particular, it means that a
filler can be chosen even though some of the syntactic
features that describe its intended position are false, as
would be the case if the filler was out of position. In this
case, the combination of the remaining true syntactic
features, the semantic preferences, and the semantic
restrictions supply enough information to determine the
correct meaning of the utterance even though the word is

out of position. Thus, the ability to understand input with
variant syntax is a direct consequence of MURPHY's
processing syntax and semantics simultaneously and of its
processing syntax and semantics with the same mech-
anism.

6.2 UNDERSTANDING INPUT WITH MISSING WORDS

Incomplete input prevents NLA from combining the
C-LIST elements into a single CD and causes the C-LIST
elements to have unfilled slots. When this occurs, RBE
completes the understanding process by inferring addi-
tional concepts. To understand this inference process,
consider the following example, similar to (2) in the
example on page 91.

> Threshold the current image at fifty.
DO YOU MEAN "threshold the current workspace image

at f if ty"?

> Yes.
OK
(The system displays the operation occurring.)

In this example, the user 's utterance was missing the
word workspace. NLA understands this utterance as well
as possible, but fails to find a filler for the SOURCE slot
in the meaning of image. RBE is called to infer a filler.
First, the semantic requirements of the SOURCE slot are
collected: the filler is required to be a possible image
source. Then, RBE first searches the C-LIST for concepts
whose attributes match this requirement. Not finding any
on the C-LIST, RBE searches domain knowledge, and
finds the meaning of workspace. This candidate is
inserted into the empty slot, and the overall meaning is
verified by the user.

The previous paragraph described the case in which
the meanings of the missing words were slot fillers in
frames supplied by other words contained in the utter-
ance. What if one or more of those frame-supplying
words were missing? For example, suppose the utterance
did not contain the main concept word. In this case,
NLA's partial understanding of the input will be in the
form of several uncombined CDs. In this case, RBE must
do more than merely fill empty slots. It must infer an
entire additional CD which itself has empty slots that can
be filled by the various CDs produced by NLA, as well as
infer fillers for any remaining empty slots. This entire
additional CD is inferred from context and domain know-
ledge. For example, consider interaction (6) f rom the
example of section 2. In this interaction, MURPHY asked
the user What does a switch post look like?, and the user
responded A metal cylinder two inches long. The user 's
response is thus missing several words, including the
main frame-building word is. NLA's best understanding is
two isolated CDs representing the meaning of the phrases
a metal cylinder, and two inches long. In order to under-
stand the utterance as a whole, RBE must infer the mean-
ing of the word is, which has slots for the meanings of
these phrases, and must also fill a third slot in the mean-
ing of is from domain knowledge with the meaning of the
phrase a switch post. Note specifically that it is the mean-
ing of the word is that is the main concept of the utter-
ance, yet is was missing from the utterance. MURPHY
does infer the meaning of is, fills two of its three empty
slots with the meanings of the phrases understood by
NLA, and fills the third with the meaning of A switch post.
The user verifies this understanding, and thus MURPHY
has understood despite a missing frame-building word.

The final example of understanding utterances that are
missing words is the case in which the inferred slot filler
itself has empty slots. For example, suppose the user 's
input is merely the utterance Display, as in the following
example:

102 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Self ridge Integrated Processing Produces Robust Understanding

> Display.
DO YOU MEAN "Display the current workspace image"?
> Yes.
OK
(The system displays the image.)

Now, the meaning of display has one empty slot, that
which is to be displayed, and MURPHY must infer this
filler. However, suppose that the inferred filler is the
meaning of image. In this case, there are additional slots
to fill, namely the REF, TIME, and SOURCE slots, before
the utterance will be completely understood. In order to
understand the utterance Display, NLA first understands
as well as possible. This results merely in the meaning of
display, which is passed to RBE. RBE then searches
context and domain knowledge for fillers of the IMAGE
slot. It finds the meaning of image, which itself has empty
REF, TIME, and SOURCE slots. RBE searches context
and domain knowledge for fillers for these slots, and
finds the meanings of the, current, and workspace. The
user verifies these inferences, and understanding has
been successful.

There is a second case, however, in which the fillers of
the to-be-inferred CD have been supplied in the utter-
ance. For example, consider the following:

> Display the current workspace.
DO YOU MEAN "Display the current workspace image"?
> Yes.
OK
(The system displays the image.)

In the user 's input, the meaning of display has an
empty IMAGE slot, which is to be filled by the inferred
meaning of image, as before. The meaning of image, in
turn, has empty REF, TIME, and SOURCE slots. Since
RBE checks C-LIST elements before checking domain
memory, it finds the fillers for these slots in the meanings
of the input words current and workspace without search-
ing domain knowledge.

How does this performance derive from the integrated
processing hypothesis? Consider the case in which the
utterance is missing one or more words. In this case,
NLA will give RBE a CD containing one or more empty
slots to be filled. RBE searches context and domain

knowledge for appropriate fillers for each empty slot, and
for empty slots in those fillers, and so on, until it builds a
CD with no empty slots. If the user confirms the CD, RBE
is done. If not, RBE resumes searching to infer the next
most likely set of fillers. Since RBE evaluates the suit-
ability of fillers for slots in the same way NLA does, it is
the fact that language processing is fundamentally the
same as memory processing that allows MURPHY to
understand despite missing words. Moreover, this identity
allows MURPHY to understand utterances in which the
missing word's meaning contains a slot that must be filled
by the meaning of a word that was present in the input.
Since, presumably, meanings derived from input words
should be used before meanings not so derived, RBE
merely searches the C-LIST before searching context and

domain knowledge, and gives preference to candidates
found there. Thus processing language and memory using
the same mechanism enables MURPHY to infer the
meanings of missing words yet give preference to mean-
ings derived from input words.

6.3 UNDERSTANDING ELLIPSES

Understanding ellipses requires that knowledge of the
conversation be established, f rom which MURPHY can
infer what was omitted. MURPHY maintains a conversa-
tional history by decomposing the meaning of each input
into its component parts and appending them to domain
knowledge. Thus conversational history is the initial part
of domain knowledge, with the meanings of the most
recent inputs first. Thus when RBE searches domain
knowledge to complete understanding of an incomplete
input, it first finds concepts derived from the meanings of
the most recent user inputs. If any of these concepts are
appropriate for understanding, then they will be part of
the most likely interpretation of the input. Consider the
following example:

> Where is the switch contact?
THE SWITCH CONTACT IS NEXT TO THE SWITCH BASE
> The switch post?
DO YOU MEAN "Where is the switch post?"
> Yes.

After MURPHY answers the user 's first question, it
adds the meanings of where and is to conversational
history (as well as the rest of the component meanings of
the question). When the user subsequently asks The
switch postL NLA first understands this phrase in
isolation. The resulting meaning is not a goal concept, so
RBE retrieves goal concepts from conversational history,
finds the meaning of is previously placed there, and fills
its OBJECT slot with the meaning of The switch post. It
then examines the result to find additional empty slots,
finds the VAL slot, and fills it with the meaning of where
also retrieved from conversational history. MURPHY
understood an elliptical input, and has used its conversa-
tional history to do so more rapidly than it would have
otherwise.

MURPHY's ability to understand ellipses derives f rom
the fact that it processes language and memory using the
same mechanism. When the user 's input is elliptical,
NLA's understanding is incomplete. In order to fill empty
slots and combine uncombined CDs, RBE searches
domain knowledge. Since the first part of domain know-
ledge contains conversational history, RBE will search
conversational history as it at tempts to complete the
understanding. Thus, if the utterance is elliptic, the
appropriate concepts from conversational history will be
found by RBE during its normal search. Since this search
is the same process as that used by NLA and by RBE as it
searches domain knowledge proper, MURPHY's ability to
understand elliptic utterances derives f rom the fact that it
processes language and memory using the same mech-
anism.

Computational Linguistics, Volume 12, Number 2, April-June 1986 103

Mallory Seffridge Integrated Processing Produces Robust Understanding

6.4 CORRECTABILITY

MURPHY's ability to enable the user to correct incorrect
inferences operates very similarly to its ability to under-
stand elliptical utterances. This ability is needed when
MURPHY performs inferences in response to an incom-
plete input. Instead of merely saying "no" to MURPHY
when it asks if its interpretation is correct, the user can
provide a correction. MURPHY invokes NLA to under-
stand the correction, and then adds its understood mean-
ing to domain knowledge as if it were conversational
history. Then, when RBE is searching further to infer the
next possible interpretation for the user 's original utter-
ance, the first possibility found will be the meaning of the
correction. Assuming the correction was indeed correct,
RBE's next inference will contain the correction, the user
will verify it, and understanding will be complete.

For example, suppose the user intended to type Where
is the switch contact? but omitted the word contact and
typed instead Where is the switch? Since the switch has
not been assembled yet, NLA does not understand this
utterance as referring to the switch as a whole. Rather, it
understands only that the user is asking for the location
of something, and does not know what role the meaning
of switch plays in the utterance. Therefore RBE must
infer the object whose location is being asked, and must
try to use the meaning of switch to fill a slot in that
inferred object 's CD. It happens that in this case it would
first find the meaning of post, then of base, and finally of
contact, and use the meaning of switch to fill the PARTOF
slot in each:

> Where is the switch?
DO YOU MEAN "Where is the switch post"?
> No
DO YOU MEAN "Where is the switch base"?
> No
DO YOU MEAN "Where is the switch contact"?
> Yes.
THE SWITCH CONTACT IS NEXT TO THE SWITCH

BASE.

Thus MURPHY eventually understands, but conjectures
two incorrect meanings before conjecturing the correct
one. However, if the user offers a correction, RBE's
search is concluded more quickly, as shown below.

> Where is the switch?
DO YOU MEAN "Where is the switch post"?
> No, contact.
THE SWITCH CONTACT IS NEXT TO THE SWITCH

BASE.

MURPHY's ability to generate a series of possible
input meanings ordered by likelihood is a consequence of
the fact that the processing performed by NLA and RBE
is a best-first search through a tree of semantic struc-
tures. Leaves of the tree are possible meanings of the
input; since processing is best-first, MURPHY produces
the most likely meaning first. However, if the first mean-
ing is incorrect, the search can be resumed and the next

most likely meaning obtained. Further, the fact that the
appropriate data structures are maintained during search
allows the understood meanings of corrections to be
inserted when available, and yields a biased search in
favor of the corrections if the first conjecture was incor-
rect. Since MURPHY's ability to perform best-first under-
standing results f rom the fact that NLA and RBE
cooperate to perform best-first search, and since this is a
consequence of the fact that both implement the same
algorithm, MURPHY's ability stems f rom its use of the
same mechanism for both language and memory process-
ing, and hence f rom the integrated processing hypothesis.

6.5 OVERALL PERFORMANCE

MURPHY can be evaluated with respect to two further
measures of performance. The first is the number of
incorrect understandings MURPHY must generate before
inferring the intended meaning. This depends on the
number of concepts that must be inferred to complete
understanding, the number of candidate fillers for those
slots that exist in domain knowledge, and the number of
alternative assignments of fillers to slots within those
meanings deriving f rom the input words. The product of
these parameters is the number of possible meanings of a
given input, and the order in which these are generated is
a function of the order of concepts in conversational
history and domain knowledge and an ordering imposed
by semantic preferences during search. Since the
intended meaning is one of the possible meanings and
hence has a position in this order, the number of incor-
rect meanings which must be generated are those that lie
before the correct meaning in this order. In practice
MURPHY usually generates from zero to three incorrect
meanings before inferring the correct meaning; generally
the constraints imposed by the knowledge representation
renders tractable the combinatorially explosive number
of possibilities. (Scaling the approach to richer environ-
ments will require much more sophisticated models of
context - not the focus of the research reported here.) If
a correction is given, of course, then the very next mean-
ing is usually correct.

The second measure of performance is the question of
whether MURPHY really understands all cases of missing
words, ellipses, and out-of-order words. Although
MURPHY has not been tested on every possible input, its
understanding mechanisms implement a best-first search
mechanism (Nilsson 1971) that exhaustively searches the
space of possible meanings of an input utterance in an
order determined by the meanings of input words,
conversational history, and domain knowledge as
described earlier. Thus, since "unders tand" means
"eventually understand" in this paper, and since the
search is exhaustive, MURPHY will understand any input,
including all cases of missing words, ellipses, and out-of-
order words, as long as that meaning is representable
within the CDs MURPHY knows about ,Indeed, MURPHY
will at tempt to make sense of deliberate nonsense, and if
it can do so using the concepts in the input, conversa-

104 Computational Linguistics, Volume 12, Number 2, April-June 1986

Mallory Selfridge Integrated Processing Produces Robust Understanding

tional history and domain knowledge, and if the user
confirms its interpretation at some point, it will succeed.
Given this processing strategy, however, what prevents
MURPHY from generating almost any conceivable CD in
its attempt to correct errors, and thus generating wildly
unreasonable guesses? In fact, wildly unreasonable
guesses are not ruled out at all; MURPHY must be able to
generate such guesses in case they represent the intended
meaning. However, since MURPHY generates possible
understandings according to preference, it will only
generate wildly unreasonable guesses if the user has
failed to verify all of the more reasonable guesses, in
which case such a guess has actually become the most
reasonable remaining.

6.6 ROBUST UNDERSTANDING

This section has described MURPHY's performance on
inputs with variant syntax, missing words, ellipsis, with
and without corrections. It has further considered its
response time, the number of incorrect guesses it makes,
and the degree to which it eventually understands all
cases of such inputs. It appears that MURPHY displays
the characteristics of robustness described in section 2.

7 INTEGRATED PROCESSING PRODUCES

ROBUST UNDERSTANDING

This paper has described research based on the conjec-
ture that, since the integrated processing hypothesis is a
model of how people understand language, and since
people are known to understand robustly, then a natural
language interface incorporating the integrated process-
ing hypothesis should prove robust. It appears that this
approach has validity, since MURPHY is indeed robust,
and this robustness derives from its embodiment of the
integrated processing hypothesis. Specifically, MURPHY
appears to be robust in the areas described in section 2.
It successfully understands utterances that are missing
words and have variant syntax, both without and with
corrections. This performance thus supports the IPPRU
conjecture.

However, MURPHY is not fully robust in the broadest
sense. There remain other characteristics of real-world
input which have not been considered here, such as false
starts, unknown words, irrelevant interjections, and
learning new words. In fact, however, MURPHY can
already understand input with some of these character-
istics, and extensions to those remaining appear possible.
Selfridge (1980, 1981a, 1981b, 1982) describes the
CHILD program which models child language learning.
CHILD readily understands utterances that contain
unknown words, and it readily learns new word meaning
and syntax. Since MURPHY and CHILD use the same
understanding and inference programs, MURPHY can
also understand input with unknown words and can learn
new word meanings and syntax. Understanding false
starts and irrelevant interjections are really the same
problem, and it appears that MURPHY can easily under-

stand despite them. To see this, recall the basic slot-fill-
ing mechanism MURPHY uses, and consider how the
search for candidate fillers is carded out: those CDs that
fail to satisfy the semantic requirements are not consid-
ered further. Since in all likelihood the meaning of false
starts and interjections will fail to satisfy any require-
ments, most of the time they will be ignored and under-
standing will proceed as if they were not present. In
those rare cases in which the meaning of a false start or
interjection can incorrectly, but plausibly, be incorpo-
rated into the understood meaning of the utterance, the
user will fail to verify it and MURPHY will generate
another, eventually correct, understanding. MURPHY's
robustness thus extends considerably beyond that
reported in this paper, and it appears to represent a
promising approach for future work.

Such future work will concentrate in several specific
areas. First, of course, is the complete unification of NLA
and RBE, including as much interaction as possible with
CCON. This represents the step from merely embodying
the integrated processing hypothesis to actually being
integrated. In addition, the ability to handle multiple
word senses is critical; Dawson (1984) has extended the
preference algorithms described here to handle multiple
word senses, and it remains only to incorporate them in
MURPHY. Further, MURPHY's representation of syntax
is probably inadequate for utterances of significantly
greater complexity than those currently handled. This
representation will either have to be extended, or a new
representation developed. Its representation of semantics
is similarly weak. The technique of characterizing
concepts by whether they satisfy semantic requirements
and preferences is too simple, and should be extended to
include complex reasoning about concepts. Finally,
MURPHY's search algorithms require improvement.
While they will certainly work in realistically large
domains, they will probably prove unreasonably slow to
infer the intended meaning. Indeed, while human
language processing is integrated (Schank and Birnbaum
1981), humans are not capable of generating a complete
sequence of possible meanings in order of likelihood
(Kolodner 1980). Rather, humans employ high-level
reasoning and inference within a rich and highly struc-
tured memory, and usually infer the intended meaning
quickly. It would be desirable to integrate MURPHY with
a system employing such a memory (Dyer 1982, Lebow-
itz 1980) in order to improve its understanding and infer-
ence mechanisms.

Since MURPHY is robust in the desired ways, and its
limitations appear clear, it appears that further explora-
tions of the role of the integrated processing hypothesis
in robust natural language interfaces should prove fruit-
ful.

AKNOWLEDGEMENT

Roger Schank originated the paradigm within which the
research presented here took place; thanks to Larry

Computational Linguistics, Volume 12, Number 2, April-June 1986 105

Mallory Seffridge Integrated Processing Produces Robust Understanding

Birnbaum for extensive discussions of the issues of inte-
grated processing and for critically reading an earlier
draft; thanks to Howard Blair for critically reading an
earlier draft.

REFERENCES

Birnbaum, L. and Selfridge, M. 1981 Conceptual Analysis. In:
Schank, R. and Riesbeck, C.K., Eds., Inside Computer Understand-
ing: Five Programs plus Miniatures. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, USA: 318-353.

Bobrow, R.J. and Webber, B.L. 1980 Knowledge Representation for
Syntactic/Semantic Processing. Proceedings of the First Annual
Conference of the AAAL Stanford University, California: 316-323.

CarboneU, J.G. and Hayes, P.J. 1983 Recovery Strategies for Parsing
Extragrammatieal Language. American Journal of Computational
Linguistics 9(3-4): 123-146

Cullingford, R. 1978 Script Application: Computer Understanding Of
Newspaper Stories. Research Report No. 116, Department of
Computer Science, Yale University, New Haven, Connecticut.

Cullingford, R.; Krueger, M.; Selfridge, M.; and Bienkowski, M. 1981
Automated Explanations as a Component of a CAD System. IEEE
Transactions on Systems, Man and Cybernetics. SMC-12.

Dawson, B. 1984 Preference Analysis with Arbitrary Numbers of
Word Senses. MS Thesis, Department of Electrical Engineering and
Computer Science, University of Connecticut, Storrs, Connecticut.

Dyer, M. 1982 In-Depth Understanding: A Computer Model Of Inte-
grated Processing For Narrative Comprehension. Research Report
No. 219, Department of Computer Science, Yale University, New
Haven, Connecticut.

Engeiberg, J. 1983 Integrated Processing Produces Robust Under-
standing. MS Thesis, Department of Electrical Engineering and
Computer Science, University of Connecticut, Storrs, Connecticut.

Engelberg, J.; Levas, A.; and Selfridge, M. 1984 A Natural Language
Interface to a Robot Assembly System. Proceedings of the IEEE
International Conference on Robotics. Atlanta, Georgia: 400-403.

Fass, D. and Wilks, Y. 1983 Preference Semantics, Ill-formedness, and
Metaphor. American Journal of Computational Linguistics. 9(3-4):
178-187.

Granger, R.H. 1984 The NOMAD System: Expectation-Based
Detection and Correction of Errors During Understanding of
Syntactically and Semantically Ill-formed Text. American Journal of
Computational Linguistics 9(3-4): 188-198.

Hayes, P.J. and Carbonell, J.G. 1981 Multi-Strategy Parsing and its
Role in Robust Machine Communications. CMU-CS-81-118,
Carnegie':Melion University, Pittsburgh, Pennsylvania.

Hayes, P.J. and Mouradian, G.V. 1981 Flexible Parsing. American
Journal of Computational Linguistics 7(4): 232-242.

Kolodner, J. 1980 Retrieval and Organizational Strategies in Concep-
tual Memory: A Computer Model. Research Report No. 187, Yale
University, Dept. of Computer Science, New Haven, Connecticut.

Kwasny, S.C. and Sondheimer, N.K. 1981 Relaxation Techniques for
Parsing Grammatically Ill-Formed Input in Natural Language
Understanding Systems. American Journal of Computational Linguis-
tics, 7(2): 99-108.

Lebowitz, M. 1980 Generalization and Memory in an Integrated
Understanding System. Research Report No. 186, Department of
Computer Science, Yale University, New Haven, Connecticut.

Levas, A. 1983 Teaching Robots Assembly Plans By Example. MS
Thesis, Department of Electrical Engineering and Computer
Science, University of Connecticut, Storrs, Connecticut.

Levas, A. and Selfridge, M. 1984 A User-Friendly High-level Robot
Teaching System. Proceedings of the IEEE International Conference on
Robotics. Atlanta, Georgia: 413-416.

Nilsson, Nils. 1971 Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, New York.

Riesbeek, C. and Schank, R. 1976 Comprehension by Computer:
Expectation-Based Analysis of Sentences in Context. Research
Report No. 78, Department of Computer Science, Yale University,
New Haven, Connecticut.

Schank, R. 1975 Conceptual Information Processing. Elsevier-North
Holland, New York.

Schank, R. and Abelson, R. 1977 Scripts, Plans, Goals and Understand-
ing: An Inquiry into Human Knowledge Structures. Lawrence Erl-
baum Assoc., Hillsdale, New Jersey.

Schank, R. and Birnbaum, L. 1981 Memory, Meaning, and Syntax.
Research Report No. 189, Department of Computer Science, Yale
University, New Haven, Connecticut.

Selfridge, M. 1980 A Process Model of Language Acquisition. Ph.D
Dissertation, Research Report No. 172, Department of Computer
Science, Yale University, New Haven, Connecticut.

Selfridge, M. 1981a Why Do Children Say "Goed"? A Computer
Model of Child Generation. Proceedings of the Third Annual Meeting
of the Cognitive Science Society. Berkeley, California: 131-133.

Selfridge, M. 1981b A Computer Model of Language Acquisition.
Proceedings of the 7th International Joint Conference on Artificial
Intelligence, Vancouver, British Columbia: 92-96.

Selfridge, M. 1982 Why Do Children Misunderstand Reversible
Passives? The CHILD Program Learns to Understand Passive
Sentences. Proceedings of the Third Annual Conference of the AAAL
Pittsburgh, Pennsylvania: 251-254.

Selfridge, M. 1983 Natural Language Interfaces to Image Analysis
Systems. Proceedings of Trends and Applications, 1983. Silver Spring,
Maryland: 248-251.

Weischedel, R.M. and Sondheimer, N.K. 1983 Meta-rules as a Basis
for Processing Ill-Formed Output. American Journal of Computa-
tional Linguistics. 9(3-4): 161-177

Wiiks, Y. 1976 Parsing English 1I. In Wilks, Y. and Charniak, E., Eds.,
Computational Semantics. North-Holland Publishing Co., New York,
New York: 155-184.

Woods, W.A. 1970 Transition Network Grammars for Natural
Language Analysis. Communications of the ACM 13(10): 591-606.

106 Computational Linguistics, Volume 12, Number 2, April-June 1986

