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Natural language interfaces to computers must deal with wide variation in real-world input. This 
paper proposes that, in order to handle real-world input robustly, a natural language interface should 
be constructed in accord with principles of integrated processing: processing syntax and semantics at 
the same time, processing syntax and semantics using the same mechanisms, and processing language 
and memory using the same mechanisms. This paper describes an experimental natural language inter- 
face constructed according to these principles which displays the desired robustness. The success of 
this interface suggests that future real-world interfaces could achieve robustness by performing inte- 
grated processing. 

1 INTRODUCTION 

Natural language interfaces to computers must deal with 
wide variation in real-word input. Since real-world input 
is often missing words and contains variant syntax, a 
useful natural language interface must understand such 
input. Unfortunately, the technology needed to provide 
this robustness is not fully mature, and there is uncertain- 
ty as to the directions in which such maturity lies. 

Part of this uncertainty centers around the relationship 
between syntax, semantics, and world knowledge in 
natural language processing. One theoretical position, 
the integrated processing hypothesis (Schank 1981), 
describes an approach to computer modelling of human 
language processing, based on the idea that these three 
sorts of knowledge must be applied together and interac- 
tively. Since human language understanding is robust, a 
computer model of human language processing based on 
this position should also be robust. 

This paper describes a research project designed to 
explore this conjecture, and describes a robust natural 
language interface, called MURPHY, which embodies the 
integrated processing hypothesis. It argues that integrated 
processing yields robustness and that this hypothesis 
therefore represents a promising approach to the 
construction of robust natural language interfaces. 
MURPHY has been developed within a limited domain, 
and questions remain about the generality of its tech- 

niques. Nonetheless, its performance within this domain 
suggests that generalization to a richer and more realistic 
domain is possible. 

This paper first defines the term robust as it will be 
used here, and introduces the MURPHY system. Second, 
it considers previous work on the problems of robustness. 
Third, it describes the integrated processing hypothesis 
and the motivation for the research strategy adopted 
here. Fourth, it describes the MURPHY system and its 
performance in detail, and then argues that this perform- 
ance derives from its implementation of the integrated 
processing hypothesis. Finally, it suggests that the inte- 
grated processing hypothesis is indeed a promising 
approach to the construction of robust natural language 
interfaces, and that MURPHY represents a successful first 
step. 

2 ROBUST UNDERSTANDING 

2.1 WHAT IS ROBUSTNESS? 

The broadest possible definition of robusmess on the part 
of a natural language interface would involve a language 
ability equal to or greater than that of a human; clearly 
this is too ambitious. Instead, the term robust will be used 
here to refer to a particular subset of human language 
abilities. This subset includes first the ability to under- 
stand utterances that are missing various words, and that 
contain words out of their grammatically preferred order. 
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Second, if an input is initially misunderstood, a robust 
natural language interface should converge on the correct 
understanding by continuing to infer the next most likely 
meaning based on the input and context. Finally, a robust 
natural language interface must be able to use corrections 
provided by the user to direct the inference of the next 
most likely meaning. Since the output of the understand- 
ing process in such an interface must be a representation 
of the meaning of the input, such an interface would thus 
be limited primarily by its semantic knowledge of the 
domain of discourse; it could not understand an utter- 
anee if the meaning of that utterance was not represent- 
able within its knowledge. Otherwise, it would eventually 
understand. These aspects of robustness are considered 
in more detail below. 

There are a number of situations in which an utterance 
can be missing words. First, users usually omit words 
whose meanings can be inferred from the general context 
by the listener. Second, the user can be deliberately 
employing ellipsis, intending the listener to complete his 
understanding using concepts drawn from conversational 
history. Third, the utterance can contain unknown words, 
which are "missing" as far as understanding is 
concerned. Finally, since no one has demonstrated a 
perfect technique for predicting which words are or are 
not going to be missing, a robust natural language under- 
stander must be prepared to understand utterances with 
arbitrary words omitted, albeit perhaps taking longer to 
converge in difficult cases. 

In addition to missing words, one cannot guarantee 
that the input will be syntactically well formed. Rather, it 
will sometimes be ill formed in various unpredictable 
ways. This paper will be concerned only with the 
simplest type of variant syntax, consisting of words posi- 
tioned incorrectly within the utterance. Note that the 
mispositioning can result in an input that is meaningful, 
even though this meaning is not what was intended. 
Further, the words can be correctly positioned with 
respect to the unintended utterance, even though they 
are mispositioned with respect to the intended utterance. 
This issue is considered in greater detail later. 

Under some conditions, however, any natural 
language understander will misunderstand, since alterna- 
tive interpretations may be equally preferable. A robust 
interface should address this problem by verifying its 
understanding with the user, and being prepared to 
"guess again" if it proved incorrect. Such an interface 
should be prepared to generate first its most likely inter- 
pretation, then its next most likely, and so on, until no 
further possibilities exist. This would guarantee that the 
interface will eventually understand the utterance, assum- 
ing, again, that the meaning of the utterance is within its 
domain of expertise. Note that the capacity to systemat- 
ically exhaust the possible meanings of an utterance is 
beyond the ability of human understanders. A human can 
produce many interpretations, but cannot be guaranteed 
to generate all possible interpretations due to factors 
such as memory limitations. Notwithstanding the current 

impossibility of equalling or exceeding the overall 
language ability of humans, a robust understander 
should, if possible, exceed human performance in this 
particular regard, if possible. 

This ability to infer the next most likely meaning of 
the input is important but incomplete. If the listener 
incorrectly infers the meaning of the speaker's utterance, 
the speaker does not usually say "n o "  and wait for the 
listener to infer a second meaning. Rather, the speaker 
usually supplies a correction. It is thus appropriate that a 
robust natural language interface not only be able to 
conjecture the next most likely interpretation but also 
that it be able to use corrections from the user when they 
are supplied. 

A robust understander should also display a number of 
other desirable characteristics beyond those discussed 
above. For  example, it must be able to handle words with 
multiple meanings. Further, it should be able to under- 
stand despite false starts, irrelevant interjections, and 
unknown words. Third, it should provide spelling 
correction and related support. Fourth, it should have a 
mixed-initiative conversational ability. Finally, it should 
be able to learn new word meaning and syntax. Such 
characteristics are beyond the scope of this paper. 
However,  section 8 argues that MURPHY possesses some 
of these characteristics as well. 

Thus, for the purposes of this paper, a robust under- 
stander is one that can be guaranteed to eventually 
understand input utterances despite arbitrary missing and 
out-of-order words, both with and without corrections, 
and including ellipsis, on the basis of semantics and 
syntax, domain knowledge, and context. 

2.2 A ROBUST UNDERSTANDER 

In order to address the problem of robust understanding, 
the MURPHY system was developed. MURPHY operates 
in conjunction with a robot assembly system (Engelberg 
1983; Engelberg, Levas, and Selfridge 1984; Levas 
1983; Levas and Selfridge 1984; Selfridge 1983). Both 
MURPHY and the robot assembly system are written in 
Franz Lisp on a V A X - l l / 7 8 0 .  MURPHY allows a user 
to question and direct the robot assembly system using 
natural language. Natural language can be used to speci- 
fy low-level image operations, ask high-level questions 
about the relationships between objects in the image, 
describe the appearance of unknown objects for future 
use by the system, and teach the manipulator how to 
perform new assembly tasks. 

The following example illustrates MURPHY's robust- 
ness. It concerns the recognition and assembly of three 
components of a simple electric switch - the base, the 
contact, and the post - into the completed switch. 
MURPHY knows the meaning of each word in this exam- 
ple, and has appropriate domain knowledge. Specifically, 
it knows that each component is a physical object that is 
part of the switch. Further, it has geometric models of 
each object required for planning robot motions. Finally, 
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it has knowledge about how the switch base and contact 
appear in the image. In order to demonstrate MURPHY's 
ability to learn new visual knowledge, however, the 
knowledge of how a switch post appears in the image has 
been removed, and the knowledge of how to translate the 
geometric model of the post into appearance information 
has also been removed. As will be seen, this is why the 
system can talk about the switch post without being able 
to visually recognize it, and allows MURPHY's abilities to 
be easily demonstrated. The user's inputs are shown in 
lower case, MURPHY's responses in upper case, and 
parenthetical notes have been added to describe system 
operation. 

(1) Display the current image workspace. 
DO YOU MEAN "Display the current workspace 

image"? 
>Yes. 
OK. 
(The system displays the image.) 

(2) >Threshold the image at fifty, and then apply 
boundary following for regions larger than thirty- 
five pixels. 
DO YOU MEAN "Threshold the current workspace 

image at fifty and then apply boundary following 
for regions larger than thirtyfive pixels in the 
current workspace image"? 

>Yes 
OK. 
(The system displays the operations occurring.) 

(3) >What  is in the image? 
A SWITCH BASE AND A SWITCH CONTACT. 
(The base and contact are outlined and labeled.) 

(4) >Where is the switch? 
DO YOU MEAN "Where is the switch post"? 
>No,  contact. 
THE SWITCH CONTACT IS NEXT TO THE SWITCH 

BASE. 

(5) >Is there a switch post? 
WHAT DOES A SWITCH POST LOOK LIKE? 

(6) > A  metal cylinder two inches long. 
DO YOU MEAN "A switch post is a metal cylinder 

two inches long"? 
>Yes. 
THERE IS A SWITCH POST NEXT TO THE SWITCH 

CONTACT. 
(The post is outlined and labeled.) 

(7) >Make a switch. 
OK 
(High-level planning drives the two manipulators 
to assemble the base, post, and contact into a 
completed switch.) 

In this example, MURPHY enabled a user to interact 
with the robot assembly system to assemble the electric 
switch. The user first specified certain low-level image- 
processing operations, and then asked a high-level ques- 
tion that prompted the system to  perform additional 
bottom-up and top-down recognition processing in order 

to generate an answer. The user then asked for additional 
information, which was supplied. Next, the user asked 
about the existence of an unreported object. The system 
displayed mixed-initiative capabilities by responding with 
a query about the appearance of that object. Instead of 
supplying a description of the object 's appearance, the 
user answered with a description of the object 's shape. 
The system then inferred the appearance of the object, 
reexamined the low-level image description, found the 
object, and answered the user's original question. Finally, 
the user commanded the system to assemble the parts 
into a complete switch, which it did. 

Of specific importance to this paper, however, is the 
fact that in this interaction MURPHY displayed exactly 
the kind of robustness described in section 2. In (1) the 
words image and workspace were reversed. MURPHY 
understood correctly despite this variant syntax. In (4), 
the word contact is missing. MURPHY first infers that the 
missing word was post, but is corrected by the user and 
told that the missing word was contact. An additional 
example of MURPHY understanding despite missing 
words appears in (2). In (5), the system displays mixed- 
initiative in response to the user's question "Is there a 
switch post in the current workspace image?". It answers 
this question with another question, "What  does a switch 
post look like?". In (6), the user's reply is missing several 
words, including the primary frame-supplying word. 
MURPHY infers that the user meant "A switch post is a 
metal cylinder two inches long". This demonstrates the 
ability to infer the missing frame-supplying word is, and 
the ability to use conversational history to understand the 
elliptical reference to "A switch post". In these cases 
MURPHY meets the criteria established in section 2.1. 

Within the robot assembly domain MURPHY currently 
knows about fifty words and five phrases, and about 
seventy concepts of fifteen different types. In addition, it 
has been briefly tested in domains other than robot 
assembly. During a typical interaction, MURPHY usually 
responds within five or ten seconds. Occasionally it takes 
more than a minute on long test sentences. Its response 
time is acceptable for an initial implementation designed 
to address theoretical questions, and strongly suggests 
that with tuning MURPHY could provide responses in real 
time almost always when in realistic situations. 

3 PRIOR RESEARCH ON ROnUSTNESS 

Prior research has addressed the problem of robust 
understanding from a number of different perspectives. 
Hayes and Mouradian (1981) apply a grammar to utter- 
ances flexibly enough to interpret a variety of grammat- 
ical deviations. This is done using a bottom-up, pattern 
matching parser that employs parse suspension and 
continuation to the arcs of an ATN (Woods 1970). 
Besides optional pattern elements, flexibility is achieved 
by relaxing consistency constraints and allowing out-of- 
order matches. Kwasny and Sondheimer (1981) extend 
Hayes and Mouradian's approach by recording the 
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nature of the grammatical deviations. Their parser applies 
grammar relaxation techniques to arcs of an ATN. When- 
ever an arc of the normative grammar, specifying the 
structure of a well-formed utterance, cannot be trav- 
ersed, a deviance note is created and the arc is traversed 
anyhow. This note records how the utterance deviates 
from the expected grammatical form, and allows parsing 
to proceed in the presence of variant syntax. Addi- 
tionally, feature relaxation techniques allow an inappro- 
priate word to stand in place of a correct one. 

Both these works suffer from many of the same prob- 
lems. Although the intent of both is to focus on a specific 
subset of the overall problem, it is difficult to verify the 
success of either approach without a semantic compo- 
nent. Second, neither can infer a next interpretation if its 
initial conjecture was incorrect. Third, neither can handle 
arbitrary missing words. Finally, the ability of either to 
handle variant syntax is limited: they can handle vari- 
ations on only a subset of the total classes of syntax their 
parser handles. 

More recently, Weischedel and Sondheimer (1983) 
describe work that significantly extends some of the ideas 
reported by Kwasny and Sondheimer (1981). Their 
extension involves the use of meta-mles to deal with ill- 
formed input. These meta-rules are intended to recognize 
an instance of ill-formedness and prescribe actions that 
may provide understanding. Although the approach of 
using meta-rules appears to handle well-formedness and 
appears worthwhile, two characteristics distinguish the 
meta-rule approach from the present research. First, 
Weischedel and Sondheimer address themselves only to 
the problem of processing ill-formed input, and leave for 
later research the problem of integrating this approach 
with techniques for handling other aspects of robustness. 
Second, and more important, their approach to handling 
ill-formed input differs computationally from the parsing 
mechanism it overlays, while the research reported here 
explores the processing of ill-formed input using the same 
mechanism as that used for well-formed input. 

Hayes and Carbonell (1981) report research closer to 
that described in this paper. Their work combined a 
number of different approaches within two different 
experimental parsers. CASPAR combined a search for a 
semantic case frame with a linear pattern matcher to 
build a representation of the meaning of the input. 
DYPAR combined a context-free semantic grammar, a 
partial pattern matcher, and equivalence transformations 
for building a representation of the meaning of the utter- 
ance. [Note that the DYPAR program described by Hayes 
and Carbonell (1981) is entirely different from the 
DYPAR program described by Dyer (1982).] While both 
appear to incorporate promising techniques, neither 
CASPAR nor DYPAR displays a high degree of robust- 
ness. While CASPAR can handle 
• unexpected and unrecognizable interjections in the 

input, 
• missing case markers, 
• out-of-order cases, and 

• ambiguous cases, 
it cannot 
• understand if the word whose meaning builds the 

prirnary semantic case frame is missing, 
• guess again, 
• handle ellipsis, or 
• understand utterances with arbitrary out-of-order 

words and missing words. 
DYPAR seems similarly limited. Although it is embedded 
in an interesting database management system, the 
degree of robustness it displays is not clear. 

Carbonell and Hayes (1983) describe research 
extending that reported by Hayes and Carbonell (1981). 
They describe a number of "recovery strategies" that can 
enable understanding to proceed in the presence of what 
are termed "extragrammaticalities", and which are tested 
using CASPAR, DYPAR, and a parser called DYPAR-II. 
Although much of the approach taken is similar to that 
described here, much of it represents an alternative 
approach to solving similar problems that focuses on a 
number of difference processing mechanisms rather than 
on a single, integrated mechanism as described in the 
following section. Furthermore, no single program 
appears to use all the strategies described by the paper, 
and thus the utility of the strategies taken over-all is diffi- 
cult to assess. Finally, none of these programs appear 
capable of continuing to generate alternative interpreta- 
tions of an input until confirmed by the user; they are not 
guaranteed to eventually understand the input. 

Understanders built within other paradigms have also 
displayed various degrees of robustness. What might be 
termed "semantics-oriented" understanders have 
displayed high performance understanding, producing 
f rom an utterance a representation of the meaning of that 
utterance. For example, ELI and SAM (Riesbeck and 
Schank 1976, Cullingford 1978), CA (Birnbaum and 
Selfridge 1981), and ACE (Cullingford, Krueger, 
Selfridge, and Bienkowski 1981) are similar in spirit to 
MURPHY, in that each attempts to combine word mean- 
ings into a representation of the meaning of the utterance 
as a whole, and then allow later memory processing 
access to this understanding. However,  these programs 
can best be thought of as demonstrating the power of 
memory-based understanding while failing to fully exploit 
the potential of integrated processing. Each are relative- 
ly intolerant of missing words and variant syntax, 
although each has various abilities in these respects. 
Other approaches, such as the NOMAD system (Granger 
1984), and those reported by Wilks (1976) and Fass and 
Wilks (1983), are also related to the approach taken in 
this paper. However, these systems differ significantly in 
their approach to robustness. For  example, while the 
NOMAD system does present alternative interpretations 
of an imperfectly understood input, and does employ 
syntactic knowledge and world knowledge simultaneously 
during understanding, it is not guaranteed to eventually 
arrive at the intended meaning of an input (given 
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NOMAD's domain, this would be difficult in any event 
because input utterances do not originate with the user) 
and its language processing and memory processing do 
not appear to employ the same mechanism. Similarly, 
systems described by Wilks (1976) and Fass and Wilks 
(1984), while similar in their use of preferences to 
MURPHY, are not guaranteed to always eventually 
understand and employ different mechanisms for 
language and memory processing. 

Finally, it is important to consider high-performance 
knowledge-based understanding mechanisms, such as 
described by Dyer (1982) and Lebowitz (1980). These 
programs demonstrate impressive understanding abilities 
in the domains of understanding complex stories about 
interpersonal relationships and news stories about terror- 
ism, respectively. They convincingly demonstrate the 
power of high-level memory processing in difficult under- 
standing tasks. However, neither has concentrated on 
the question of robustness as the term is being used in 
this paper. A final answer to the question of robustness 
will certainly incorporate such high-performance memory 
processing. 

Each of the systems described in this section has 
certain robust aspects, but each leaves something to be 
desired. While it is possible to imagine extending some of 
these systems to remove various limitations, it is impossi- 
ble to judge the success of such extensions in the absence 
of actual implementations; no evaluation can be made on 
the basis of such hypothetical extensions. Thus, no previ- 
ous research has developed a natural language understan- 
der that is robust in all the ways being addressed here. 

4 THE INTEGRATED PROCESSING HYPOTHESIS 

In order to build a robust natural language interface, one 
must specify the relationships between syntax and 
semantics, and between language understanding and 
memory processing, because actual construction of an 
interface requires a commitment to specific relationships. 

Schank and Birnbaum (1981) address these issues in 
proposing the integrated processing hypothesis. General- 
izing from their discussion, these issues can be Summa- 
rized by the following three questions: 

Is syntax processed prior to semantics, or 
are syntax and semantics processed at the same time? 

Is syntax processed separately from semantics, or 
are they processed together by the same process? 

Are language processing and memory processing 
different processes, or 

are they fundamentally the same process? 

As discussed by Schank and Birnbaum (1981), there 
are roughly two polar positions on these issues. One posi- 
tion might be called the "separatist" position, while the 
other can be termed the "integrated" position. Each posi- 
tion can be characterized by its answer to these three 
questions. The first question concerns the temporal 
relationship between semantic and syntactic processing 

during understanding. The separatist position suggests 
that a syntactic analysis of an utterance is performed 
prior to any semantic analysis, and that its output is a 
syntactic description of the utterance. This output is then 
passed to the semantic analysis process. In opposition to 
this view is the integrated perspective. This proposes that 
syntactic analysis is carried out at the same time as 
semantic analysis. Thus the temporal order between 
syntactic analysis and semantic analysis in language proc- 
essing is a matter of disagreement, and must be 
addressed when constructing a robust natural language 
interface. 

The second question concerns the nature of the mech- 
anisms that process syntax and semantics. The separatist 
view suggests that the mechanism that constructs a 
syntactic description of an utterance is a different mech- 
anism from that which builds a representation for the 
meaning of the utterance. That is, this view suggests that 
syntactic analysis operates according to a different algo- 
rithm than semantic analysis. The integrated view, on 
the other hand, proposes that syntax and semantics are 
processed by the same mechanism. This mechanism oper- 
ates equally well both on syntactic information and 
semantic information. These two positions are thus quite 
different, and constructing a robust natural language 
interface requires a choice. 

The third question concerns the relationship between 
language processing and memory processing. The separa- 
tist position is that language processing is a special, 
specific function, largely unconnected from memory 
processes. In this view, memory is thought to be a rela- 
tively passive entity, with little active processing. The 
integrated position, however, holds a different view of 
the role of memory in language processing. It suggests 
that language processing is primarily a memory-based 
process, and further takes the position that language 
processing and memory processing are the same process. 
This question is of particular importance because a 
robust interface will presumably have to employ memory 
processing of some sort. 

Note that an intermediate position between the inte- 
grated and separatist positions is possible. One can hold 
the integrated position with respect to one or two ques- 
tions and the separatist position with respect to the rest. 
For example, Bobrow and Webber (1980) describe a 
natural language interface in which syntax and semantics 
are processed in a logically simultaneous, intermingled 
fashion, yet in which syntax and semantics are processed 
by different mechanisms and in which language and 
memory processing is performed by different mech- 
anisms. Nonetheless, the distinction represented by the 
two positions is useful. 

Schank and Birnbaum's integrated processing hypoth- 
esis is basically the hypothesis that the integrated posi- 
tion correctly characterizes human processing, and can 
be summarized by the following: 

Syntax and semantics are processed at the same time. 
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Syntax and semantics are processed by the same process. 

Language processing is fundamentally the same as 
memory processing. 

Sehank and Birnbaum present a detailed argument to 
justify the integrated processing hypothesis, but its 
primary impact here is its consequences as a model of 
human understanding. That is, if the integrated process- 
ing hypothesis in fact describes human processing, and 
since humans are robust language processors, then one 
way to build a robust natural language interface is to 
incorporate the integrated processing hypothesis into a 
natural language interface. This conjecture might be 
termed the "integrated processing produces robust 
understanding conjecture", or the IPPRU conjecture. 

It is important to understand what this conjecture does 
not say. The IPPRU conjecture does not claim that 
embodying the integrated processing hypothesis is neces- 
sary to produce robust understanding, only that it is one 
approach that does work. Although establishing the 
necessity of the integrated processing hypothesis to 
robust understanding would be desirable, this is not with- 
in the scope of this paper. Rather, the research reported 
here concerns a first step to the later establishment of 
necessity. Neither the Integrated Processing Hypothesis 
nor the IPPRU conjecture claim that syntactic knowledge 
is the same as semantic knowledge. While syntax is proc- 
essed at the same time as semantics, and by the same 
mechanism, this paper proposes a different breakdown 
between syntax and semantics. This breakdown is know- 
ledge-based instead of processing-based. That is, the 
difference between syntax and semantics in this view lies 
in the specific knowledge each represents rather than the 
order or processing mechanisms of each. 

Evaluating the IPPRU conjecture involves certain 
questions. How best can the integrated processing 
hypothesis be embodied in a program? What should the 
domain of that program be? How can its performance be 
evaluated? In order to address the question of embodying 
the integrated processing hypothesis within a program, an 
important distinction must be made between 
• a program that may have several modules but which 

embodies the integrated processing hypothesis by virtue 
of the algorithms it employs and the manner in which it 
manipulates its data, and 

• a program that not only embodies the integrated proc- 
essing hypothesis but which also is itself integrated, in 
the sense of being non-modular. 

Ideally, the integrated processing hypothesis should be 
embodied in a program that is actually integrated as well. 
However, the construction of such a fully integrated 
program is a lengthy process and requires a number of 
difficult design decisions. In order to gain information on 
which these design decisions can be made, the MURPHY 
system was developed as a rapid prototype, which, 
although not fully integrated, does embody the integrated 
processing hypothesis. Thus, MURPHY's performance 

does bear directly on the IPPRU conjecture, even though 
MURPHY itself is not fully integrated. 

The second question concerns the domain within 
which a natural language program operates. Ideally, the 
domain will be both large and realistic. However,  since 
effort on a large and realistic domain must be justified by 
high performance within a limited domain, it is appropri- 
ate to experiment with such a limited domain as a neces- 
sary first step to a large and realistic domain. This is the 
approach taken by others within this area of research 
(e.g. Hayes and Mouradian 1981. Kwasny and 
Sondheimer 1981, Hayes and Carbonell 1981, Dyer 
1982, Lebowitz 1980). The limited semantic domain 
chosen for this research is that of small-scale robotic 
assembly in a laboratory context. This domain is appro- 
priate because it is a subset of a potentially useful real- 
world domain and because it provides a measure of 
understanding - the degree to which the system success- 
fully carries out commands, answers questions, and 
remembers and uses declaratives. 

The third question concerns the criteria for evaluating 
the research. Under what conditions will it be considered 
a success? There appear to be basically two: First, does 
it in fact perform robustly within its domain? That is, 
does it fulfill the requirements described in section 2? 
Second, does it provide insight as to how its techniques 
might be applicable both to an expansion of the existing 
domain and to other domains? That is, are its limitations 
clear, are the areas in which research is needed apparent, 
and is there suggestive evidence that such additional 
research would be successful? Positive answers to both 
these questions would suggest that this research should 
be considered successful. 

5 MURPHY's  ARCHITECTURE 

This section describes the MURPHY system in detail. 
MURPHY is composed of four major component 
programs: 

• A natural language analyzer (NLA), which accesses a 
dictionary of words and phrases to perform low-level 
understanding of the words in the utterance; 

• An inferencer (Robust Back End, or RBE), which 
completes understanding using conversational history, 
context, and a body of domain knowledge; 

• A conversational control program (CCON), which 
performs inference on the input meanings of the user's 
utterances and provides a mixed-initiative conversa- 
tional ability, and which allows MURPHY to interact 
with the robot assembly system; 

• A natural language generator (Conceptual Generator,  
or CGEN), which accepts concepts and expresses them 
in English. 
A user's utterance to MURPHY is analyzed by NLA as 

far as possible. NLA then passes its understanding of the 
utterance to RBE, which completes the understanding 
process using domain knowledge and the conversational 
history. RBE then verifies its understanding with the user, 
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and if incorrect it infers the next most likely meaning, 
and so on until it either infers the intended meaning or 
exhausts the possibilities. If the latter, control is returned 
to NLA to produce its next most likely understanding of 
the utterance, which again is passed to RBE for inference. 
When the intended meaning is confirmed by the user, it is 
passed to CCON, which uses test-action rules to infer a 
response to the utterance. Some responses involve 
queries or answers directed to the user, some involve 
internal inferences, and some direct calls to the robot 
assembly system. Throughout, CGEN is used when need- 
ed to generate natural language responses. 

Almost every component of MURPHY is relevant to 
the question of robust understanding; NLA, RBE, CCON, 
the dictionary, context, and domain knowledge all have 
important roles. This section first describes each in turn, 
and then describes how these components embody the 
integrated processing hypothesis. 

5.1 REPRESENTING DOMAIN KNOWLEDGE AND CONTEXT 

MURPHY's domain knowledge consists of a set of seman- 
tic primitives appropriate to the domain, represented in 
Conceptual Dependency format (Schank 1975~ Schank 
and Abelson 1977; although MURPHY could be imple- 
mented with any of a wide variety of knowledge repre- 
sentation formalisms generally similar to Conceptual 
Dependency). Each semantic primitive, henceforth 
called a CD, consists of a header followed by a set of 
labelled slots. Together, the header and labelled slots 
comprise a CD frame. CDs can be combined with one 
another by placing one CD into a slot of another, accord- 
ing to certain restrictions: each CD has certain properties, 
and each slot in a CD can only accept other CDs with 
certain properties. For  example, (requires human) speci- 
fies that the slot filler is required to have the property 
(human). In addition, certain properties are preferable, 
but not essential. For  example, (prefers small) specifies 
that a filler that has the property (small) is preferable to 
one which does not; however, slot filling can still proceed 
even if the preferred property is absent. Note that this 
notation for restrictions on what CD can fill a slot in 
what other CD is not intended to be fully adequate but 
only to satisfy current needs. In a real-world system the 
use of simple concept attributes would prove insufficient. 
A real world domain requires complex reasoning to 
determine if a concept should be combined with another 
concept. However, it seems reasonable to conjecture 
that a rich system can be built around the idea that when 
such reasoning is completed its result will be an assertion 
similar to the current attributes. Thus, the current 
approach does not rule out the use of complex reasoning, 
and is upwardly compatible with such reasoning. Howev- 
er, the current limited domain requires only the existing 
simple predicates. Thus, the primary definition of a CD 
consists of the frame definition, the properties of the CD, 
and the restrictions that specify which kinds of CDs can 
fill each slot. For  example, the following shows a deft- 

nition for the CD that refers to the switch contact, 
object 1: 

define-concept 
frame-header: 
isa: 
frame: 
slot-restrictions: 

object l  
physicalobject 
(object l  partof (nil) ref (nil)) 
partof requires physicalobject 
ref requires determiner 

In addition to the information captured by definitions 
of this type, MURPHY's knowledge of the various CD 
predicates is also represented in a more distributed fash- 
ion throughout the system. For  example, MURPHY also 
knows object l  as a three-dimensional object in space, 
represented geometrically as a number of points defining 
the vertices of a planar solid. This representation is used 
by robot path planning and collision avoidance software, 
and is an essential part of the meaning of object l .  The 
other kind of additional knowledge MURPHY possesses 
about its meaning representation is possible inferences 
within the conversational control. Each conversational 
control rule matches some configuration of CDs, in order 
to implement inferences which may be drawn from the 
presence of a certain CD. Each rule thus encodes addi- 
tional knowledge of a CD. 

5.2 REPRESENTING LANGUAGE KNOWLEDGE 

MURPHY's knowledge of words is contained in a diction- 
ary. A word definition consists of the word's meaning 
and its syntax. The meaning is a single CD or a complex 
of nested CDs from domain knowledge. That is, 
MURPHY's word meanings are pointers into its know- 
ledge of the world. Each word meaning may have several 
empty slots. For  each empty slot, the word definition 
includes syntactic knowledge about where in the utter- 
ance a slot filler is expected to be. This syntactic know- 
ledge is expressed as a set of independent syntactic 
features. These features are formed from the positional 
predicates PRECEDES and FOLLOWS, which are applied 
to the short term memory around which NLA's process- 
ing focuses. This short term memory contains, in order, 
the input words, their meanings, and the slots these 
meanings fill in other meanings. PRECEDES and 
FOLLOWS relate the position in the input of a potential 
slot filler to either the meaning containing the slot, a filler 
of another slot in that word's meaning, or a lexical func- 
tion word. To represent the knowledge that the filler is 
found following the meaning containing the slot, the 
word definition includes the predicate "follows parent" 
indexed under that slot. Similarly, the predicate 
"precedes (slot object)"  represents the knowledge that 
the filler is found preceding the filler of the (slot name) 
slot, and "follows (fw (function word))"  represents the 
knowledge that the filler is found following the function 
word (function word). Several predicates are used to 
completely describe the position of a filler in an utter- 
ance. Thus, each slot in a word meaning has associated 
with it a collection of features describing where in the 
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utterance a filler is expected to be. For  example, in the 
definition of the word contact (as in the switch contact) 
there is a CD that represents its meaning, and a collection 
of syntactic features specifying where the fillers of the 
empty slots are expected to be. 

define-word 
word: contact 
meaning: (object l  partof  (nil) ref (nil)) 
syntax: partof-filler precedes parent 

follows re f-filler 
ref-filler precedes parent 

precedes partof-filler 

Most likely, this representation of syntax cannot hope 
to encompass an entire natural language. It  is used here 
because it is powerful enough to describe the syntax of 
the natural language capabilities of interest. However,  it 
has demonstrated reasonable expressiveness in a number 
of different applications (Birnbaum and Selfridge 1981, 
Cullingford, Krueger, Selfridge, and Bienkowski 1981; 
Selfridge 1980, Selfridge 1981a; Selfridge 1981b; 
Selfridge 1982) and thus its use here is not entirely ad 
hoe. 

5.3 THE NLA PROGRAM 

When the user types an utterance to MURPHY, the utter- 
ance is first processed by the NLA program. NLA is a 
descendant of the CA program (Birnbaum and Selfridge 
1981), and also uses concepts derived from Wilks 
(1976). Its role in the understanding process is to create 
as complete a CD representation of an utterance's mean-  
ing as possible using only the meanings of the words in 
the utterance. NLA's processing centers around a short- 
term memory called the C-LIST. During analysis, the 
meaning of each input word is placed on the C-LIST 
(currently, NLA is limited to words with only a single 
meaning; it cannot disambiguate among multiple words 
senses). The syntactic and semantic features associated 
with slots in the meanings of each word on the C-LIST 
are then checked to see if the meaning of any other 
words on the C-LIST can fill any of them. If so, the CD 
that most satisfies the syntactic and semantic features 
associated with a particular slot is placed in the slot. This 
process is repeated for each CD on the C-LIST. When 
completed, what remains on the C-LIST is one or more 
CDs constructed by combining the meanings of the words 
in the utterance. The CD or CDs represent as much 
understanding of the utterance as could be achieved by 
examining only the meanings of the utterance words. 
More formally, NLA's basic algorithm is as follows: 

(1) Place the CD meaning of each utterance word or 
phrase on the C-LIST. 

(2) For  each empty slot in each CD on the C-LIST, 
collect the syntactic and semantic features associ- 
ated with that slot. 

(3) Search the C-LIST, and retrieve all the CDs that 
satisfy that slot's semantic requirements. These CDs 
are candidate slot fillers. 

(4) Order  the candidates by preference value (the 
number  of semantic preferences and syntactic 
features a candidate satisfies). 

(5) Examine the candidate with the highest preference 
value. If the CD is not marked "used",  then fill the 
current slot with it and mark it "used".  

(6) If the candidate is marked "used"  and its prefer-  
ence value for the slot it already fills is higher than 
the current preference value, then reject it and 
examine the candidate with the next highest prefer-  
ence value. 

(7) If  the candidate is marked "used"  and its prefer-  
ence value for the slot it already fills is lower than 
the preference value associated with that other slot, 
then remove it f rom the other slot and fill the" 
current slot with it, and recursively call NLA to refill 
the other slot. 

In addition to the above algorithm, NLA performs 
additional work. This additional work is needed to allow 
NLA to produce a next most likely interpretation of the 
input. It  does this by keeping track of all the candidates 
for each slot and their preference values, and by main- 
taining a list of rejected interpretations. When called 
upon to generate the next most likely interpretation, it 
does so by finding the most preferred interpretation that 
does not appear  on the list of rejected interpretations. In 
this way, NLA can provide all possible interpretations of 
the input (in conjunction with the RBE program, 
described in the following subsection), ranked according 
to likelihood. It should be noted that the technique of 
keeping track of rejected interpretations is crude yet 
functional; future work will address the question of 
improving this implementation. 

Since section 5.6 argues that both  NLA and RBE use 
essentially the same mechanism, an abstract  description 
of each is important.  A number  of alternative 
descriptions exist; viewing NLA's understanding process 
as tree search is best for the current purposes. The interi- 
or nodes of this tree represent partial understandings of 
the input, while leaves represent complete under- 
standings. That  is, interior nodes are CDs that contain 
empty slots, while leaves are CDs that do incorporate 
every word meaning. The root of this tree is a start node, 
whose descendants are the CDs from the utterance that 
have empty slots. Given that the search process has a 
current node, generating the descendants of that node 
involves choosing an empty slot, retrieving its tests, using 
those tests to retrieve from the C-LIST all possible candi- 
date fillers, creating a copy of the CD at the current node 
for each candidate and filling the slot with a candidate 
filler, and finally building a new node for each such CD. 
The CD at each new node will thus have one less empty  
slot. The new current node is then chosen to be the 
unvisited node whose filler had the highest preference 
value for that slot. Search proceeds until a leaf is reached 
in which all possible slots have been filled f rom CDs on 
the C-LIST. Since NLA first chooses slot fillers that best 
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satisfy the syntax and semantics associated with a slot, its 
processing strategy implements a kind of local best-first 
search (Nilsson 1971). 

The following example describes part of NLA's proc- 
essing of the sentence put the post on the base. In order to 
illustrate preference, this example focuses on filling the 
VAL slot in the meaning of on, in the middle of process- 
ing the input. Of the two candidate fillers available at 
this point for the VAL slot (the meanings of post and 

base) the meaning of base is currently being used as the 
filler of the OBJECT slot. However, preference overrides 
this prior slot filling, moves the meaning of base to the 
VAL slot, and finds the next best filler for the object slot. 
The example begins with the state of the C-LIST at that 
point, then shows the selection of the filler of the VAL 
slot, and finally shows the selection of the next-best filler 
for the object slot. 

C-LIST: (PTRANS ACTOR (NIL) 
OBJECT (PHYS-OBJ TYPE (BASE) 

PART-OF (NIL) 
REF (NIL)) 

TO (TOP VAL (NIL))) 
(REF) -- used 
(PHYS-OBJ TYPE (POST) PART-OF (NIL) 
(TOP VAL (NIL)) -- used 
(REF) 
(PHYS-OBJ TYPE (BASE) PART-OF (NIL) 

REF (DEF)) 

REF (NIL)) -- used 

EXAMINING: (TOP VAL (NIL)) 

CHECKING VAL SLOT: requires phys-obj 
follows "on", "put", object-filler 

VAL CANDIDATES: (PHYS-OBJ TYPE (POST) PART-OF (NIL) REF (NIL)) 
preference value I: follow "put", 
(PHYS-OBJ TYPE (BASE) PART-OF (NIL) REF (NIL)) 
preference value 2: follows "on", "put" 

PREFERRED FILLER: (PHYS-OBJ TYPE (BASE) PART-OF (NIL) REF (NIL)) 

REMOVING FILLER OF OBJECT SLOT 

RE-CHECKING OBJECT SLOT: 

OBJECT CANDIDATES: 

PREFERRED FILLER: 

requires phys-obj 
follows "put", precedes to-filler 

(PHYS-OBJ TYPE (POST) PART-OF (NIL) REF (NIL)) 
preference value 2: follows "put" 

precedes to-filler 
(PHYS-OBJ TYPE (BASE) PART-OF (NIL) REF (NIL)) 
preference value I: follows "put" 

(PHYS-OBJ TYPE (POST) PART-OF (NIL) REF (NIL)) 

C-LIST: (PTRANS ACTOR (NIL) 
OBJECT (PHYS-OBJ TYPE (POST) 

PART-OF (NIL) 
REF (NIL)) 

TO (TOP VAL (PHYS-OBJ TYPE (BASE) 
PART-OF (NIL) 
REF (NIL)))) 

(REF) -- used 
(PHYS-OBJ TYPE 
(TOP VAL (NIL)) 
(REF) 
(PHYS-OBJ TYPE 

(POST) PART-OF (NIL) REF (NIL)) -- used 
-- used 

(BASE) PART-OF (NIL) REF (NIL)) -- used 

The understanding process is complete when the 
remaining slots in the meaning of base have been exam- 
ined and the REF slot filled with the meaning of the 

second the. At this point, all the "used" concepts are 
removed from the C-LIST; those concepts remaining 
constitute NLA's best understanding of the input: 

C-LIST : (PTRANS ACTOR (NIL) 
OBJECT (PHYS-OBJ TYPE (POST) 

PART-OF (NIL) 
REF (DEE)) 

TO (TOP VAL (PHYS-OBJ TYPE (BASE) 
PART-OF (NIL) 
REF (DEF)))) 
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At this point, NLA has produced its best understand- 
ing of the input. Since this understanding contains empty 
slots, it would require additional processing by RBE. If 
NLA were asked to produce its next best interpretations, 
it would reprocess the input for an alternative meaning, 
and fill the OBJECT slot with the meaning of base and the 
VAL slot with the meaning of post. 

5.4 THE RBE PROGRAM 

When NLA has concluded processing an input, it may not 
have been fully understood. If  the input was missing 
words, the C-LIST can contain CDs with unfilled slots 
and several CDs that have not been combined into a 
single CD. In these cases, RBE is called to complete 
understanding. When RBE must fill empty slots in a CD, 
it infers fillers from domain knowledge. When RBE must 
combine several CDs into a single CD, it searches domain 
knowledge for a CD whose empty slots could be filled by 
them. Once it has filled all the empty slots with potential- 
ly correct fillers, and has combined all the uncombined 
CDs into one, the result is a complete understanding of 
the meaning of the utterance. Before passing this mean- 
ing to the conversational control, RBE verifies its under- 
standing is the one intended by the user by generating it 
in English. If the user disagrees with the interpretation, 
RBE searches domain knowledge further, produces the 
next most likely interpretation, and so on until it either 
infers the intended meaning or has exhausted all possibil- 
ities. In general, RBE prefers to fill a slot with a C-LIST 
element whenever possible. This is because the user 
presumably included a word in an utterance because its 
meaning was intended to contribute to the meaning of 
that utterance. If no C-LIST elements are appropriate slot 
fillers, RBE searches corrections, conversational history, 
and domain knowledge. Thus RBE will infer concepts in 
the order of reasonable likelihood. 

RBE's search process could not be guaranteed to 
terminate if RBE were as just described. Under  some 
conditions, it searches context and domain knowledge for 
a CD with empty slots, intending to fill them with the 
results of partial understanding. That  is, RBE must infer a 
CD with a slot that can be filled by a CD currently on the 
C-LIST. Unfortunately, this process can proceed indefi- 
nitely: how does RBE know when to stop inferring 
increasingly inclusive CDs? The function of RBE's infer- 
ence provides an answer: RBE stops when it has inferred 
a CD to which CCON can respond. Since RBE continues 
the inference process until it fills all the slots in a CD to 
which CCON can respond, these CDs serve as goals to 
RBE. Consequently, they are termed goal concepts. Now, 
there are several possible implementations that allow 
CCON to communicate goal-concepts to RBE. The 
current implementation is the simplest: annotate goal 
concepts as such, and have RBE's search be top-down 
beginning with a goal concept. If the first goal concept 
chosen proves incorrect, RBE uses the next one, and so 
on, until it finds the correct one. Future work will explore 
more sophisticated search strategies. 

RBE's algorithm focuses around a data structure called 
the NODE-list, initially empty,  and is given below: 

(1) If there is no goal concept on the C-LIST, collect 
from conversational history and domain knowledge 
all goal concepts and place them on NODE-list. 
Otherwise, place all goal concepts f rom the C-LIST 
on NODE-list. 

(2) For  each empty slot within the first NODE-list 
element, retrieve f rom context and domain know- 
ledge all the candidate fillers that satisfy that slot's 
semantic requirements. Order all candidates from 
user's corrections before those f rom conversational 
history, and order all those f rom conversational 
history before those obtained f rom domain know- 
ledge. Within each group, order candidates accord- 
ing to the number  of semantic preferences they 
satisfy. 

(3) For  each candidate, create a copy of the top of 
NODE-list and place that candidate into the slot of 
the copy, and place the resulting CD back onto 
NODE-list. 

(4) If the CD at the beginning of NODE-list has empty 
slots, go to (2). If  the CD has no empty slots, send 
it to CGEN to query the user whether it is correct or 
not. 

(5) If the user confirms the CD, send it to CCON for 
response. If not, remove the CD from NODE-list 
and go to (2). 

Just as NLA's processing can be characterized as tree 
search, RBE's operation can be described the same way. 
That  is, RBE takes the best understanding provided by 
NLA as the root node, and descendants are nodes at 
which CDs have additional slots filled. Leaf  nodes are 
those that have no empty slots at all. Generat ing the 
descendants of a node involves 
• choosing an empty slot; 
• retrieving its semantic requirements and preferences; 
• retrieving all possible candidates f rom domain know- 

ledge, conversational history, and user corrections that 
satisfy the requirements; 

• creating a copy of the CD at the current node for each 
candidate and filling the slot with a candidate filler; 
and, finally, 

• building a new node for each such CD. 
The CD at each new node will thus have a formerly 
empty slot filled. The filler will often have empty slots of 
its own, and these will be filled in their turn. Infinite 
regress is stopped at an arbitrary fixed level to assure 
termination. (An alternate approach would be breadth- 
first, and would require no such arbitrary limitation.) The 
new current node is then chosen to be the unvisited node 
whose filler had the highest preference value for that slot. 
Search proceeds until a leaf is reached at which there are 
no empty slots at all. At this point, the understanding 
represented by the CD at that leaf is generated in natural 
language, and the user is asked to verify the understand- 
ing. If it was correct, then the search is over. If  not, then 
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RBE backs up and continues the search at the point at 
which it was halted. This process continues until RBE has 
searched the entire tree of possibilities. 

If the intended meaning has still not been inferred, 
then NLA is called to generate its next most likely inter- 
pretation of the words in the input, and RBE begins again 
to infer fillers for empty slots in this CD. Thus, RBE 
continues the search for a complete understanding begun 
by NLA, using essentially the same local best-first search- 
ing process to do so; if its search fails, it returns control 
to NLA to generate its next most plausible interpretation 
of the input, and RBE again continues the search. Thus, 
the best-first search processes of NLA and RBE together 

perform a unified best-first search. This unified search 
process exhaustively searches the space of possible 
meanings of the input utterance, ordered by likelihood as 
described, and will eventually find any finite CD (Nilsson 
1971). Since any intended meaning is assumed to be 
represented by a finite CD, the search performed by NLA 
and RBE is guaranteed to eventually infer the intended, 
meaning. 

The following example illustrates RBE's processing on 
the understood meaning of put the post on the base. RBE 
begins when it receives NLA's best understanding of this 
sentence and places it on NODE-list, as shown below. 

NODE-list: (PTRANS ACTOR (NIL) 
OBJECT (PHYS-OBJ TYPE (POST) 

PART-OF (NIL) 
REF (DEF)) 

TO (TOP VAL (PHYS-OBJ TYPE (BASE) 
PART-OF (NIL) 
REF (DEF)))) 

RBE removes the first CD in NODE-list - the one 
shown above - and notes that it has an empty ACTOR 
slot. It retrieves the semantic requirements and prefer- 
ences for the ACTOR slot, which specify that the filler is 
required to be an animate being. Since, in this example, 
there are assumed to be no corrections or conversational 
history, RBE searches only domain knowledge for such a 
filler. It retrieves the concepts for itself and that of the 

user, creates copies of the CD with these as ACTOR 
fillers, and pushes them onto NODE-list. The copy 
containing the concept of MURPHY itself is on the front 
of NODE-list because it was found first in domain know- 
ledge; this order reflects the knowledge that MURPHY is 
more likely to be the intended actor. The new NODE-list 
is shown below: 

NODE-list: (PTRANS ACTOR (MURPHY) 
OBJECT (PHYS-OBJ TYPE (POST) 

PART-OF (NIL) 
REF (DEF)) 

TO (TOP VAL (PHYS-OBJ TYPE (BASE) 
PART-OF (NIL) 
REF (DEF)))) 

(PTRANS ACTOR (USER) 
OBJECT (PHYS-OBJ TYPE (POST) 

PART-OF (NIL) 
REF (DEF)) 

TO (TOP VAL (PHYS-OBJ TYPE (BASE) 
PART-OF (NIL) 
REF (DEE)))) 

The cycle continues when RBE again removes the first 
CD and again examines it for empty slots. The next 
empty slot it finds is the first PART-OF slot. The only 
possible filler from domain knowledge is the CD 
(COMPOUND-OBJ TYPE (SWITCH)). This is used to fill 
the first PART-OF slot, and the resulting CD is pushed 

back on NODE-list. During the next cycle, the just-modi- 
fied CD is removed from the top of NODE-list and the 
second PART-OF slot is found to be empty,  and is like- 
wise filled with (COMPOUND-OBJ TYPE (SWITCH)). The 
resulting NODE-list is shown below: 

NODE-list: (PTRANS ACTOR 
OBJECT 

TO 

(MURPHY) 
(PHYS-OBJ TYPE (POST) 

PART-OF (COMPOUND-OBJ 
TYPE (SWITCH)) 

REF (DEF)) 
(TOP VAL (PHYS-OBJ TYPE (BASE) 

PART-OF (COMPOUND-OBJ 
TYPE (SWITCH)) 

REF (DEF)))) 
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(PTRANS ACTOR (USER) 
OBJECT (PHYS-OBJ TYPE (POST) 

PART-OF (NIL) 
REF (DEF)) 

TO (TOP VAL (PHYS-OBJ TYPE (BASE) 
PART-OF (NIL) 
REF (DEE)))) 

At this point the first CD on NODE-list has no empty 
slots, and furthermore is a known goal concept. RBE calls 
the generator to ask the user if this was his intended 
meaning. If the user verifies this as his intended meaning, 
RBE has successfully completed the understanding proc- 
ess. If not, then RBE removes this CD from NODE-list 
and proceeds to cycle further. In the case described 
above, this would amount to RBE inferring that possibly 
the intended filler of the ACTOR slot was the user rather 
than MURPHY itself. 

When RBE has successfully verified its understanding 
with the user, it passes this completed understanding to 
the CCON program, which will, in turn, infer a response 
to the input. In addition, RBE also updates the conversa- 
tional history with the concepts that comprise the 
completed understanding. Since RBE uses candidates 
from conversational history before those from domain 
knowledge, it uses potentially, more relevant concepts 
before less relevant ones. In particular, RBE can infer 
goal concepts as a function of context. Given an identi- 
cal input utterance, MURPHY will understand it one way 
in one conversational context, and another way in anoth- 
er context, since it can obtain a goal concept from 
conversational history. 

5.5 THE CCON PROGRAM 

The CCON program is invoked when NLA and RBE have 
understood the input to the user's satisfaction. It uses a 
set of "if- then" conversational rules to respond to that 
understanding. The complete CD representing the mean- 
ing of the input is placed on a stack, and the rules are 
checked to see if the test of any matches the CD on top 
of the stack. If so, the action of that rule is executed. The 
action can send commands to the robot system, add CD 
inferences to the stack, query MURPHY's knowledge 
base, and ask the user questions by sending concepts to 
CGEN to be generated. Thus, CCON is partly a rule- 
based system, partly a problem-reduction problem solver, 
and partly a knowledge-based inference engine. The 
following algorithm describes its operation: 

(1) Begin when a goal concept is placed on the stack. 
(2) Find the first rule whose test matches the concept 

on the top of the stack; if the stack is empty, return 
control to NLA to seek another user input. 

(3) Pop the stack and execute the action of that rule. 
(4) Go to 2. 

Although CCON does no significant searching as far as 
the understanding process is concerned, it is consistent to 
note that it can as well be seen as performing a search 
process. Since the action of a rule can place concepts on 
the stack, CCON can in fact traverse a tree of concepts, 

and thus perform essentially the same process as NLA 
and RBE. 

5.6 HOW MURPHY EMBODIES THE INTEGRATED PROCESS- 
ING HYPOTHESIS 

It is important now to consider the way in which 
MURPHY embodies the integrated processing hypothesis. 
Three questions must therefore be addressed. First, how 
does MURPHY process syntax and semantics simultane- 
ously? Second, how are syntax and semantics processed 
by the same mechanism? Third, how is language proc- 
essing fundamentally the same as memory  processing? 
These questions are addressed in turn. 

To understand how MURPHY processes syntax and 
semantics simultaneously, consider how NLA processes 
input. When NLA is understanding the input as well as 
possible, it is filling slots in one word meaning with 
another word meaning. To determine the degree to which 
a filler is appropriate for a slot, NLA performs a set of 
tests on the potential filler. These tests derive from the 
slot, and include semantic requirements, semantic prefer- 
ences, and syntactic features. As described earlier, NLA 
first collects all the tests, and then evaluates them togeth- 
er. No distinction is made between semantic and syntac- 
tic tests during the evaluation process, and no test 's 
output depends on the result of any other test. Since they 
are independent, the tests are logically simultaneous, and 
thus NLA processes syntax and semantics simultaneously. 

It could be argued, however, that since RBE uses 
semantic information too, and does so after syntax has 
been used by NLA, this later use of semantics constitutes 
a departure from the simultaneity of syntactic and 
semantic processing. However,  at this point language 
knowledge is not being used, since fillers cannot  be 
found from the C-LIST. Thus it is not appropriate to 
consider syntactic knowledge, since nothing but input 
could usefully be processed syntactically. Furthermore,  
since RBE sometimes returns control to NLA, syntactic 
processing can be seen as interspersed with semantic and 
memory processing, and thus embodying a form of simul- 
taneity of syntactic processing and semantic processing. 
Nonetheless, unifying NLA and RBE to provide for 
complete simultaneity would be desirable, and remains 
for future research. 

To understand how syntax and semantics are proc- 
essed by the same mechanism, consider again NLA's 
processing of the input. When syntax and semantics are 
being processed by NLA, not only are they being proc- 
essed simultaneously but the same mechanism within 
NLA is also performing the processing. This mechanism is 
the one that takes each feature test in turn, regardless of  
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whether it is a semantic requirement, semantic prefer- 
ence, or syntactic feature, and evaluates it with respect to 
a candidate filler to determinate whether to fill the slot 
with that filler or not. Thus NLA applies the same mech- 
anism to evaluate syntax as semantics. Furthermore,  RBE 
uses this same mechanism when inferring CDs from 
context and domain knowledge. It retrieves candidate 
slot fillers based on the degree to which they satisfy 
semantic requirements and preferences, using exactly the 
same mechanism as NLA uses to evaluate candidate slot 
fillers from the C-LIST. It is this mechanism, used by 
both NLA and RBE, that processes both syntax and 
semantics in the same manner. 

To understand how language processing is fundamen- 
tally the same as memory processing within MURPHY, 
compare the algorithms being executed by NLA and RBE. 
Within MURPHY, NLA performs "language processing" 
while RBE performs "memory  processing". As described 
above, each uses essentially the same form of best-first 
search, and together they combine to form a single 
unified best-first search. Further, each are manipulating 
the same CDs in the same way, and control passes back 
and forth between them. NLA chooses to fill a slot in a 
CD with a candidate filler CD if that candidate filler satis- 
fies the most syntactic features and semantic require- 
ments and preferences of the CDs in the C-LIST. RBE 
chooses to fill a slot in a CD from candidate fillers drawn 
from conversational history and domain knowledge if 
that candidate filler satisfies the most semantic require- 
ments and preferences of the CDs retrieved. Both NLA 
and RBE determine the most likely filler for a slot, and 
hence ultimately the most likely interpretation of the 
input, by choosing the filler that satisfies the greatest 
number of syntactic and semantic features and prefer- 
ences. Thus, both language and memory processing are 
carried out by the same mechanism of search, evaluation 
of features, requirements and preferences, and choice of 
the CD satisfying the greatest number. 

6 ROBUST UNDERSTANDING 

It is important to analyze the relationship between 
MURPHY's performance and its implementation of the 
integrated processing hypothesis, and to assess that 
performance overall. This section will consider the 
relationship between each aspect of robustness and each 
component  of the integrated processing hypothesis, and 
will also discuss two general measures of performance. 

6.1 UNDERSTANDING INPUT WITH VARIANT SYNTAX 

To describe how MURPHY understands input with vari- 
ant syntax, consider again interaction (1) from the exam- 
ple of section 2. In this interaction, the user typed Display 
the current image workspace, in which image and work- 
space are reversed. To understand this, NLA combines 
the meanings of the words in the utterance together, as 
well as possible, by evaluating the semantic and syntactic 
features of each slot in a word's  meaning with respect to 

the remaining meanings, which are candidate slot fillers, 
and choosing as a filler the meaning that satisfies the 
most features. Even though in the user 's utterance the 
word workspace was out of position, and hence not all 
features were true, its meaning still satisfied the most 
features, and was hence chosen as the filler of the 
SOURCE slot. At this point, NLA has produced a single 
CD containing no empty slots. This CD is verified to be a 
goal concept, and understanding is complete. 

Now, in interaction (1) a filler was out of position 
with respect to the meaning that contained the slot. 
Consider the following more complex example not 
contained in the example on page 91. 

> The display current workspace image. 
DO YOU MEAN "Display the current workspace image"? 
> Yes. 
OK (The system displays the image.) 

In the user 's utterance the word the is out of position. 
However,  the system correctly understands that the 
meaning of the is intended to fill the REF slot in the 
meaning of image, and demonstrates its knowledge of the 
correct position in its query to the user. Correct under- 
standing occurs because although not all of the syntactic 
and semantic features associated with the REF slot are 
true, the meaning of the is nonetheless the best filler 
available. Syntactic features are retrieved from the defi- 
nition of image, and from the definition of display as well, 
since the meaning of image is understood to fill the 
OBJECT slot of the meaning of display and MURPHY 
propagates syntax downward f rom parent to filler. These 
features are then evaluated with respect to the meaning 
of the. Although not all syntactic features are true, 
MURPHY fills the REF slot with the meaning of the as the 
best available. These features and their evaluations are 
shown here: 

origin of feature 

meaning of image 
definition of image 

definition of display 

feature value 

ref requires ref-spec T 
ref-filler precedes parent T 
ref-filler precedes subject-filler T 
ref-filler precedes time-filler T 
ref-filler follows meaning of display F 

Each of the examples considered above assumes that 
the utterance containing the out-of-order  words does not 
have an alternate interpretation for which the words are 
not out of order. For  example, in Display the current 
image workspace, it was assumed that workspace was not 
something that could be displayed. If it was, then the 
utterance makes sense as it is, and MURPHY would have 
to decide which interpretation was correct, the one in 
which it was the workspace being displayed or the one in 
which the image is to be displayed. As far as MURPHY is 
concerned, there are two distinct situations in which an 
utterance with variant syntax can have two different 
meanings. MURPHY can handle one, while the other is 
beyond its current capabilities. The first is one in which 
there are two empty slots, each of which can accept the 
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other's filler. In this situation, MURPHY will assume that 
the most preferred interpretation is correct, even if the 
user mispositioned words and actually intended the other. 
If the user objects, however, MURPHY will infer the 
alternate interpretation as the next most preferred mean- 
ing. The second situation arises when the word that is out 
of position has multiple meanings, and while it is out of 
position with respect to its intended meaning, it is in a 
correct position with respect to an alternate meaning. For  
example, workspace in the above example has two differ- 
ent meanings, one in which it describes the contents of 
image, and one a spatial area which can itself be 
displayed. MURPHY cannot handle this second type of 
input since it cannot disambiguate multiple word senses. 
However,  current research is directed toward including 
the ability to handle arbitrary numbers of word senses, as 
demonstrated by Dawson (1984), and future research 
must address this problem. 

It  is important to describe how MURPHY's ability to 
understand despite variant syntax derives from the inte- 
grated processing hypothesis. Syntactic knowledge is 
used by NLA during slot filling to help decide which CD 
on the C-LIST should fill a given slot. The syntactic 
features for a slot are grouped with the semantic prefer- 
ences and semantic requirements for that slot, and candi- 
date fillers are scored to see which features, preferences, 
and requirements each satisfies. The slot is filled with the 
candidate that (a) satisfies the most with the highest 
score and (b) is not already filling another slot with a 
higher score. This means that even though certain 
features or preferences may not be satisfied by a candi- 
date, if that candidate nonetheless has the highest score it 
will be chosen as the filler. In particular, it means that a 
filler can be chosen even though some of the syntactic 
features that describe its intended position are false, as 
would be the case if the filler was out of position. In this 
case, the combination of the remaining true syntactic 
features, the semantic preferences, and the semantic 
restrictions supply enough information to determine the 
correct meaning of the utterance even though the word is 

out of position. Thus, the ability to understand input with 
variant syntax is a direct consequence of MURPHY's 
processing syntax and semantics simultaneously and of its 
processing syntax and semantics with the same mech- 
anism. 

6.2 UNDERSTANDING INPUT WITH MISSING WORDS 

Incomplete input prevents NLA from combining the 
C-LIST elements into a single CD and causes the C-LIST 
elements to have unfilled slots. When this occurs, RBE 
completes the understanding process by inferring addi- 
tional concepts. To understand this inference process, 
consider the following example, similar to (2) in the 
example on page 91. 

> Threshold the current image at fifty. 
DO YOU MEAN "threshold the current workspace image 

at f if ty"? 

> Yes. 
OK 
(The system displays the operation occurring.) 

In this example, the user 's utterance was missing the 
word workspace. NLA understands this utterance as well 
as possible, but fails to find a filler for the SOURCE slot 
in the meaning of image. RBE is called to infer a filler. 
First, the semantic requirements of the SOURCE slot are 
collected: the filler is required to be a possible image 
source. Then, RBE first searches the C-LIST for concepts 
whose attributes match this requirement. Not  finding any 
on the C-LIST, RBE searches domain knowledge, and 
finds the meaning of workspace. This candidate is 
inserted into the empty slot, and the overall meaning is 
verified by the user. 

The previous paragraph described the case in which 
the meanings of the missing words were slot fillers in 
frames supplied by other words contained in the utter- 
ance. What  if one or more of those frame-supplying 
words were missing? For  example, suppose the utterance 
did not contain the main concept word. In this case, 
NLA's partial understanding of the input will be in the 
form of several uncombined CDs. In this case, RBE must 
do more than merely fill empty slots. It  must infer an 
entire additional CD which itself has empty  slots that can 
be filled by the various CDs produced by NLA, as well as 
infer fillers for any remaining empty slots. This entire 
additional CD is inferred from context and domain know- 
ledge. For  example, consider interaction (6) f rom the 
example of section 2. In this interaction, MURPHY asked 
the user What does a switch post look like?, and the user 
responded A metal cylinder two inches long. The user 's 
response is thus missing several words, including the 
main frame-building word is. NLA's best understanding is 
two isolated CDs representing the meaning of the phrases 
a metal cylinder, and two inches long. In order to under- 
stand the utterance as a whole, RBE must infer the mean- 
ing of the word is, which has slots for the meanings of 
these phrases, and must also fill a third slot in the mean- 
ing of is from domain knowledge with the meaning of the 
phrase a switch post. Note specifically that it is the mean- 
ing of the word is that is the main concept of the utter- 
ance, yet is was missing from the utterance. MURPHY 
does infer the meaning of is, fills two of its three empty 
slots with the meanings of the phrases understood by 
NLA, and fills the third with the meaning of A switch post. 
The user verifies this understanding, and thus MURPHY 
has understood despite a missing frame-building word. 

The final example of understanding utterances that are 
missing words is the case in which the inferred slot filler 
itself has empty slots. For  example, suppose the user 's 
input is merely the utterance Display, as in the following 
example: 
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> Display. 
DO YOU MEAN "Display the current workspace image"? 
> Yes. 
OK 
(The system displays the image.) 

Now, the meaning of display has one empty slot, that 
which is to be displayed, and MURPHY must infer this 
filler. However,  suppose that the inferred filler is the 
meaning of image. In this case, there are additional slots 
to fill, namely the REF, TIME, and SOURCE slots, before 
the utterance will be completely understood. In order to 
understand the utterance Display, NLA first understands 
as well as possible. This results merely in the meaning of 
display, which is passed to RBE. RBE then searches 
context and domain knowledge for fillers of the IMAGE 
slot. It finds the meaning of image, which itself has empty 
REF, TIME, and SOURCE slots. RBE searches context 
and domain knowledge for fillers for these slots, and 
finds the meanings of the, current, and workspace. The 
user verifies these inferences, and understanding has 
been successful. 

There is a second case, however, in which the fillers of 
the to-be-inferred CD have been supplied in the utter- 
ance. For example, consider the following: 

> Display the current workspace. 
DO YOU MEAN "Display the current workspace image"? 
> Yes. 
OK 
(The system displays the image.) 

In the user 's input, the meaning of display has an 
empty IMAGE slot, which is to be filled by the inferred 
meaning of image, as before. The meaning of image, in 
turn, has empty REF, TIME, and SOURCE slots. Since 
RBE checks C-LIST elements before checking domain 
memory,  it finds the fillers for these slots in the meanings 
of the input words current and workspace without search- 
ing domain knowledge. 

How does this performance derive from the integrated 
processing hypothesis? Consider the case in which the 
utterance is missing one or more words. In this case, 
NLA will give RBE a CD containing one or more empty 
slots to be filled. RBE searches context and domain 

knowledge  for appropriate fillers for each empty slot, and 
for empty slots in those fillers, and so on, until it builds a 
CD with no empty slots. If  the user confirms the CD, RBE 
is done. If not, RBE resumes searching to infer the next 
most likely set of fillers. Since RBE evaluates the suit- 
ability of fillers for slots in the same way NLA does, it is 
the fact that language processing is fundamentally the 
same as memory processing that allows MURPHY to 
understand despite missing words. Moreover,  this identity 
allows MURPHY to understand utterances in which the 
missing word's meaning contains a slot that must be filled 
by the meaning of a word that was present in the input. 
Since, presumably, meanings derived from input words 
should be used before meanings not so derived, RBE 
merely searches the C-LIST before searching context and 

domain knowledge, and gives preference to candidates 
found there. Thus processing language and memory  using 
the same mechanism enables MURPHY to infer the 
meanings of missing words yet give preference to mean-  
ings derived from input words. 

6.3 UNDERSTANDING ELLIPSES 

Understanding ellipses requires that knowledge of the 
conversation be established, f rom which MURPHY can 
infer what was omitted. MURPHY maintains a conversa- 
tional history by decomposing the meaning of each input 
into its component  parts and appending them to domain 
knowledge. Thus conversational history is the initial part  
of domain knowledge, with the meanings of the most 
recent inputs first. Thus when RBE searches domain 
knowledge to complete understanding of an incomplete 
input, it first finds concepts derived from the meanings of 
the most recent user inputs. If any of these concepts are 
appropriate for understanding, then they will be part  of 
the most likely interpretation of the input. Consider the 
following example: 

> Where is the switch contact? 
THE SWITCH CONTACT IS NEXT TO THE SWITCH BASE 
> The switch post? 
DO YOU MEAN "Where is the switch post?"  
> Yes. 

After MURPHY answers the user 's first question, it 
adds the meanings of where and is to conversational 
history (as well as the rest of the component  meanings of 
the question). When the user subsequently asks The 
switch postL NLA first understands this phrase in 
isolation. The resulting meaning is not a goal concept, so 
RBE retrieves goal concepts from conversational history, 
finds the meaning of is previously placed there, and fills 
its OBJECT slot with the meaning of The switch post. It  
then examines the result to find additional empty slots, 
finds the VAL slot, and fills it with the meaning of where 
also retrieved from conversational history. MURPHY 
understood an elliptical input, and has used its conversa- 
tional history to do so more rapidly than it would have 
otherwise. 

MURPHY's ability to understand ellipses derives f rom 
the fact that it processes language and memory  using the 
same mechanism. When the user 's input is elliptical, 
NLA's understanding is incomplete. In order to fill empty 
slots and combine uncombined CDs, RBE searches 
domain knowledge. Since the first part  of domain know- 
ledge contains conversational history, RBE will search 
conversational history as it at tempts to complete the 
understanding. Thus, if the utterance is elliptic, the 
appropriate concepts from conversational history will be 
found by RBE during its normal search. Since this search 
is the same process as that used by NLA and by RBE as it 
searches domain knowledge proper, MURPHY's ability to 
understand elliptic utterances derives f rom the fact that it 
processes language and memory  using the same mech- 
anism. 
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6.4 CORRECTABILITY 

MURPHY's ability to enable the user to correct incorrect 
inferences operates very similarly to its ability to under- 
stand elliptical utterances. This ability is needed when 
MURPHY performs inferences in response to an incom- 
plete input. Instead of merely saying "no"  to MURPHY 
when it asks if its interpretation is correct, the user can 
provide a correction. MURPHY invokes NLA to under- 
stand the correction, and then adds its understood mean-  
ing to domain knowledge as if it were conversational 
history. Then, when RBE is searching further to infer the 
next possible interpretation for the user 's original utter- 
ance, the first possibility found will be the meaning of the 
correction. Assuming the correction was indeed correct, 
RBE's next inference will contain the correction, the user 
will verify it, and understanding will be complete. 

For  example, suppose the user intended to type Where 
is the switch contact? but omitted the word contact and 
typed instead Where is the switch? Since the switch has 
not been assembled yet, NLA does not understand this 
utterance as referring to the switch as a whole. Rather, it 
understands only that the user is asking for the location 
of something, and does not know what role the meaning 
of switch plays in the utterance. Therefore RBE must 
infer the object whose location is being asked, and must 
try to use the meaning of switch to fill a slot in that 
inferred object 's  CD. It  happens that in this case it would 
first find the meaning of post, then of base, and finally of 
contact, and use the meaning of switch to fill the PARTOF 
slot in each: 

> Where is the switch? 
DO YOU MEAN "Where is the switch post"?  
> No 
DO YOU MEAN "Where is the switch base"?  
> No 
DO YOU MEAN "Where is the switch contact"? 
> Yes. 
THE SWITCH CONTACT IS NEXT TO THE SWITCH 

BASE. 

Thus MURPHY eventually understands, but conjectures 
two incorrect meanings before conjecturing the correct 
one. However,  if the user offers a correction, RBE's 
search is concluded more quickly, as shown below. 

> Where is the switch? 
DO YOU MEAN "Where is the switch post"?  
> No, contact. 
THE SWITCH CONTACT IS NEXT TO THE SWITCH 

BASE. 

MURPHY's ability to generate a series of possible 
input meanings ordered by likelihood is a consequence of 
the fact that the processing performed by NLA and RBE 
is a best-first search through a tree of semantic struc- 
tures. Leaves of the tree are possible meanings of the 
input; since processing is best-first, MURPHY produces 
the most likely meaning first. However,  if the first mean- 
ing is incorrect, the search can be resumed and the next 

most likely meaning obtained. Further, the fact that the 
appropriate data structures are maintained during search 
allows the understood meanings of corrections to be 
inserted when available, and yields a biased search in 
favor of the corrections if the first conjecture was incor- 
rect. Since MURPHY's ability to perform best-first under- 
standing results f rom the fact that NLA and RBE 
cooperate to perform best-first search, and since this is a 
consequence of the fact that both implement the same 
algorithm, MURPHY's ability stems f rom its use of the 
same mechanism for both language and memory  process- 
ing, and hence f rom the integrated processing hypothesis. 

6.5 OVERALL PERFORMANCE 

MURPHY can be evaluated with respect to two further 
measures of performance.  The first is the number  of 
incorrect understandings MURPHY must generate before 
inferring the intended meaning. This depends on the 
number  of concepts that must be inferred to complete 
understanding, the number  of candidate fillers for those 
slots that exist in domain knowledge, and the number  of 
alternative assignments of fillers to slots within those 
meanings deriving f rom the input words. The product of 
these parameters  is the number  of possible meanings of a 
given input, and the order in which these are generated is 
a function of the order of concepts in conversational 
history and domain knowledge and an ordering imposed 
by semantic preferences during search. Since the 
intended meaning is one of the possible meanings and 
hence has a position in this order, the number  of incor- 
rect meanings which must be generated are those that lie 
before the correct meaning in this order. In practice 
MURPHY usually generates from zero to three incorrect 
meanings before inferring the correct meaning; generally 
the constraints imposed by the knowledge representation 
renders tractable the combinatorially explosive number  
of possibilities. (Scaling the approach to richer environ- 
ments will require much more sophisticated models of 
context - not the focus of the research reported here.) If  
a correction is given, of course, then the very next mean- 
ing is usually correct. 

The second measure of performance is the question of 
whether MURPHY really understands all cases of missing 
words, ellipses, and out-of-order  words. Although 
MURPHY has not been tested on every possible input, its 
understanding mechanisms implement a best-first search 
mechanism (Nilsson 1971) that exhaustively searches the 
space of possible meanings of an input utterance in an 
order determined by the meanings of input words, 
conversational history, and domain knowledge as 
described earlier. Thus, since "unders tand"  means 
"eventually understand" in this paper, and since the 
search is exhaustive, MURPHY will understand any input, 
including all cases of missing words, ellipses, and out-of-  
order words, as long as that meaning is representable 
within the CDs MURPHY knows about ,Indeed,  MURPHY 
will at tempt to make sense of deliberate nonsense, and if 
it can do so using the concepts in the input, conversa- 
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tional history and domain knowledge, and if the user 
confirms its interpretation at some point, it will succeed. 
Given this processing strategy, however, what prevents 
MURPHY from generating almost any conceivable CD in 
its attempt to correct errors, and thus generating wildly 
unreasonable guesses? In fact, wildly unreasonable 
guesses are not ruled out at all; MURPHY must be able to 
generate such guesses in case they represent the intended 
meaning. However, since MURPHY generates possible 
understandings according to preference, it will only 
generate wildly unreasonable guesses if the user has 
failed to verify all of the more reasonable guesses, in 
which case such a guess has actually become the most 
reasonable remaining. 

6.6 ROBUST UNDERSTANDING 

This section has described MURPHY's performance on 
inputs with variant syntax, missing words, ellipsis, with 
and without corrections. It has further considered its 
response time, the number of incorrect guesses it makes, 
and the degree to which it eventually understands all 
cases of such inputs. It appears that MURPHY displays 
the characteristics of robustness described in section 2. 

7 INTEGRATED PROCESSING PRODUCES 

ROBUST UNDERSTANDING 

This paper has described research based on the conjec- 
ture that, since the integrated processing hypothesis is a 
model of how people understand language, and since 
people are known to understand robustly, then a natural 
language interface incorporating the integrated process- 
ing hypothesis should prove robust. It appears that this 
approach has validity, since MURPHY is indeed robust, 
and this robustness derives from its embodiment of the 
integrated processing hypothesis. Specifically, MURPHY 
appears to be robust in the areas described in section 2. 
It successfully understands utterances that are missing 
words and have variant syntax, both without and with 
corrections. This performance thus supports the IPPRU 
conjecture. 

However, MURPHY is not fully robust in the broadest 
sense. There remain other characteristics of real-world 
input which have not been considered here, such as false 
starts, unknown words, irrelevant interjections, and 
learning new words. In fact, however, MURPHY can 
already understand input with some of these character- 
istics, and extensions to those remaining appear possible. 
Selfridge (1980, 1981a, 1981b, 1982) describes the 
CHILD program which models child language learning. 
CHILD readily understands utterances that contain 
unknown words, and it readily learns new word meaning 
and syntax. Since MURPHY and CHILD use the same 
understanding and inference programs, MURPHY can 
also understand input with unknown words and can learn 
new word meanings and syntax. Understanding false 
starts and irrelevant interjections are really the same 
problem, and it appears that MURPHY can easily under- 

stand despite them. To see this, recall the basic slot-fill- 
ing mechanism MURPHY uses, and consider how the 
search for candidate fillers is carded out: those CDs that 
fail to satisfy the semantic requirements are not consid- 
ered further. Since in all likelihood the meaning of false 
starts and interjections will fail to satisfy any require- 
ments, most of the time they will be ignored and under- 
standing will proceed as if they were not present. In 
those rare cases in which the meaning of a false start or 
interjection can incorrectly, but plausibly, be incorpo- 
rated into the understood meaning of the utterance, the 
user will fail to verify it and MURPHY will generate 
another, eventually correct, understanding. MURPHY's 
robustness thus extends considerably beyond that 
reported in this paper, and it appears to represent a 
promising approach for future work. 

Such future work will concentrate in several specific 
areas. First, of course, is the complete unification of NLA 
and RBE, including as much interaction as possible with 
CCON. This represents the step from merely embodying 
the integrated processing hypothesis to actually being 
integrated. In addition, the ability to handle multiple 
word senses is critical; Dawson (1984) has extended the 
preference algorithms described here to handle multiple 
word senses, and it remains only to incorporate them in 
MURPHY. Further, MURPHY's representation of syntax 
is probably inadequate for utterances of significantly 
greater complexity than those currently handled. This 
representation will either have to be extended, or a new 
representation developed. Its representation of semantics 
is similarly weak. The technique of characterizing 
concepts by whether they satisfy semantic requirements 
and preferences is too simple, and should be extended to 
include complex reasoning about concepts. Finally, 
MURPHY's search algorithms require improvement. 
While they will certainly work in realistically large 
domains, they will probably prove unreasonably slow to 
infer the intended meaning. Indeed, while human 
language processing is integrated (Schank and Birnbaum 
1981), humans are not capable of generating a complete 
sequence of possible meanings in order of likelihood 
(Kolodner 1980). Rather, humans employ high-level 
reasoning and inference within a rich and highly struc- 
tured memory, and usually infer the intended meaning 
quickly. It would be desirable to integrate MURPHY with 
a system employing such a memory (Dyer 1982, Lebow- 
itz 1980) in order to improve its understanding and infer- 
ence mechanisms. 

Since MURPHY is robust in the desired ways, and its 
limitations appear clear, it appears that further explora- 
tions of the role of the integrated processing hypothesis 
in robust natural language interfaces should prove fruit- 
ful. 
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