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Our research has three chief goals: to handle connected 
discourse instead of sentences in isolation, to discover the 
intentions behind discourse as well as its literal meaning, 
and to handle failures (by the program or its user) grace- 
fully. To achieve these we must make progress in other 
areas - planning and knowledge representation. I will 
survey our work in computational linguistics and then 
consider the supporting efforts in related areas of AI. 

Personnel:  Robert  Bobrow, Madeleine Bates, Candace 
Sidner, N. S. Sridharan, Remko Scha, Ralph Weischedel, 
Marc Vilain, Andrew Haas, David Stallard, Marie 
Macaissa, Margaret Moser, Robert  Ingria, Jos De Bruin, 
Bradley Goodman,  James Schmolze. 

1. Natural Language 

1.1 Parsing and semantic interpretation 

How can semantics be incorporated into parsing without 
sacrificing the generality and transportability of the 
grammar and the parser? Semantic grammars are effi- 
cient because they mix syntax and semantics. Syntactic 
results are checked for semantic correctness continuous- 
ly, and no time is wasted building syntactic structure that 
later turns out to be semantically absurd. Semantic gram- 
mars also pay a high price for this efficiency. Their 
syntactic knowledge is hard to modify because it is not 
stated in a general way - the program knows about 
"Noun Phrases Denoting People",  and "Noun  Phrases 
Denoting Books" and so on, but not about noun phrases. 
And since the syntactic and semantic knowledge are 
intertwined, there is no hope of transporting the syntactic 
knowledge to a new domain. 

We have been developing a parser that cleanly sepa- 
rates syntax and semantics, but is as efficient as a seman- 
tic grammar. We achieve this partly through a control 
structure called a cascade that links the parser and 
semantic interpreter, partly through proper represen- 
tation of semantic knowledge. Like others, our parser 
calls semantics to check that newly built constituents are 
OK; but it also calls semantics each time it attaches a 
newly built constituent to a higher constituent. Thus 
semantic checking of a proposed attachment for a prepo- 
sitional phrase does not wait until the clause is finished. 

We represent a mixture of semantic and syntactic 
knowledge in a KL-2 taxonomy. Like a semantic gram- 
mar, our system has concepts such as "Noun Phrase 
Denoting a Person" and "Noun Phrase Denoting a 
Book". Unlike a semantic grammar, our system does not 
take them as primitive - they are defined in terms of 
concepts like "Noun Phrase", "Person",  and 
"Denotat ion".  An efficient algorithm uses these defi- 
nitions to classify incoming constituents, and once they 

are classified we can retrieve the rules that build their 
semantic interpretations. 

This work is being done by Robert  J. Bobrow and 
Madeleine Bates, supported by David Stallard, Margaret 
Moser, and Robert  Ingria. 

1.2 Plans and discourse 

We believe that the goals of understanding connected 
discourse and responding to unspoken intentions are 
closely related, because the structure of discourse reflects 
the intentions behind it. A discourse consists of units, 
and each unit expresses one intention of the user. To find 
the intentions one must divide the discourse into units. 

We aim to build a plan parser - a program that takes a 
set of possible plans and a series of parsed sentences, and 
discovers the speaker 's  plans. The parser will use surface 
cues to detect the boundaries of discourse units - for 
example, sentences starting with " O K "  or "Anyway" .  It 
will also rely on the speaker to make his meaning plain. If 
it reaches a point where several plans are consistent with 
the evidence, it doesn' t  undertake an elaborate search in 
an effort to rule some of them out. It assumes that the 
user will make his purpose clear later on, and waits for 
further input. 

As an example, suppose the system is displaying a 
semantic net on the user's screen, and the concept "bird"  
is in the middle of the screen. We might get the following 
dialogue: 

User: I can' t  fit a new concept below it. Can you move 
it up? 

(System moves concept higher on the screen.) 

User: OK, now put the concept "eagle" below it. 

The word " O K "  indicates that one of the user's 
intentions has been fulfilled, and marks the end of a unit 
of discourse concerned with that intention. "now"  intro- 
duces a new unit, concerned with the user's intention to 
place the concept "eagle" below "bird".  This work is 
being done by Candy Sidner. 

I said above that discourse gets its structure from the 
intentions of the speaker. Discourse also follows certain 
rules of its own, and we are investigating this structure 
also. If I say "I t ' s  snowing", the word " i t"  does not refer 
to anything. It is there because English syntax demands 
that sentences have subjects. In the same way, discourse 
has a syntax independent of the user's plans and goals. In 
narrative, for example, successive clauses describe 
successive events. If we read "He  went to the window 
and pulled aside the curtains", we understand that he 
pulled the curtains aside after going to the window. One 
might suppose that this is a matter  of pragmatics rather 
than discourse rules - obviously one must go to the 
window before pulling aside the curtains. We can see 
this is wrong by reversing the clauses. " H e  pulled aside 
the curtains and went to the window" sounds strange 
because discourse rules tell us that he must have pulled 
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aside the curtain before going to the window, but prag- 
matics rejects this. Thus we can see that discourse rules 
have a life of their own. We intend to devise a formal 
syntax and semantics of discourse along these lines. Ulti- 
mately we hope to combine both approaches to 
discourse, showing how speaker 's intentions operate 
within the framework of discourse rules. This is the work 
of Remko Scha collaborating with Livia Polanyi of the 
University of Amsterdam. 

1.3 Planning utterances 

The first step in planning a response is to classify the 
current discourse situation. Perhaps the user has made an 
error, and the system must explain the problem; perhaps 
the system failed to understand the user, and needs clar- 
ification; perhaps we have a simpler situation, such as a 
question that demands a direct answer. 

Attached to each class of situation is a content selec- 
tor. This program will choose the system's discourse 
goals - goals like answering the user's question, inform- 
ing the user that there's a problem, or asking the user 
what he meant. Its choice will depend on the user 's plans 
and the information the user needs to carry out those 
plans. Suppose. the user asks the system to display some- 
thing, but there is no room. The system shouldn't just 
inform the user of the problem - it should offer some 
solutions. If it knows the user's current plan it may real- 
ize that some of the information on the screen is no long- 
er useful, and offer to erase it. 

When the system has decided what speech acts to 
perform, it must organize them into a coherent piece of 
discourse. They must be placed in order, and appropriate 
discourse markers added. To produce smooth text we 
must refer to objects by pronouns, not names or 
descriptions, as much as possible; but we can' t  refer to an 
object by a pronoun until it 's brought into focus. We will 
order the sentences so that we can use pronouns as much 
as possible. We can also convey some information by the 
ordering of sentences. Consider the following dialogue: 

User: I want to display the concept "bird".  

System: There 's  no room on the screen. I can move the 
current display up, or erase it and save it. 

The user understands that the system's first sentence 
describes a problem, and the second offers two solutions. 
The order of the sentences is crucial - think how odd it 
would sound if the system had used the same two 
sentences in the other order. 

When the information has been ordered, and discourse 
markers inserted, we have a message plan. This plan will 
be turned into English text by NIGEL - a generation 
program written by William Mann of USC/Informat ion  
Sciences Institute. This work is being done by Margaret  
Moser and Robert  Ingria. 

1.4 Ill-formed input 

Many workers agree that handling ill-formed input is a 
crucial problem for natural language research. They disa- 
gree about what " i l l - formed" means - is it ill-formed by 
native speakers'  standards, or by the program's stand- 
ards? We take the latter position. This means that some 
of what we treat as ill-formed may be perfectly good by 
human standards. This seems a little odd, but the same 
thing happens to people when they talk to a speaker of 
another dialect. His language is well-formed by the stan- 
dards of his community, but until you learn their dialect 
you must treat it as ill-formed by the only standard you 
know. 

We intend to handle ill-formed input by using 
discourse context, which consists of the plans and goals 
conveyed by the speaker 's  discourse. The speaker has 
high-level goals (like registering for a class, or finding out 
where the best housing is) and discourse goals (like 
answering a question, or clarifying something he doesn ' t  
understand). For example, consider the following 
dialogue: 

User: I 'm  interested in housing in the Rolling Hills 
area. What grade school do they attend? 

System: P.S. 32. 

User: Any swimming pools nearby? 

Suppose the user's last utterance is beyond the system's 
ability to parse. It knows that the user is trying to decide 
whether he should buy a house in Rolling Hills, and this 
gives a clue to the meaning of the utterance. This work is 
being done by Ralph Weischedel at BBN, by Sandra 
Carberry (working on ellipsis) and by Lance Ramshaw 
(studying impossible requests), both at the University of 
Delaware. 

We are working on another kind of ill-formed input: 
definite descriptions that contain errors. We have 
studied a large corpus of natural dialogues, in which one 
person tells another how to assemble a toy water pump. 
It 's hard to describe the parts of the pump accurately, but 
the assembler has the parts in front of him and often 
manages to find the right part despite the other person's 
mistakes. These examples suggest a strategy of relaxa- 
tion: weakening the given description until it fits one of 
the known objects. The trick is deciding which parts of 
the description to weaken, and how. This requires know- 
ledge of common errors - for example, color names are 
easily confused. We have a taxonomy that includes a 
large class of errors, for noun phrases and other 
constructs. We plan to complete the implementation of 
an algorithm that corrects errors in definite descriptions, 
and to explore techniques for dealing with the other 
classes of errors. This work is Bradley Goodman's .  
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2. Knowledge Representation and Planning 

Progress in these areas requires progress in the closely 
related areas of knowledge representation and planning. 
To assign semantic interpretations to sentences we need 
a knowledge representation language rich enough to 
express the content of those sentences. To detect seman- 
tically impossible parses we need an inference engine 
complete enough to detect conflicts between proposed 
interpretations and the system's knowledge of the 
domain. In order to analyse and synthesize discourse, we 
need programs that plan utterances and that recognize 
the plans behind another 's  utterances. Finally, we must 
consider parallel computation - both for efficiency and 
for the insights that come from thinking in this way. 

2.1 Hybrid systems 

In knowledge representation, our goal is a domain-inde- 
pendent inference engine that handles an expressive 
language without sacrificing efficiency. We can do this 
with a hybrid system: one with several components, each 
specialized to a particular kind of inference, and each 
supplying the others with the information they need. The 
individual components can be efficient because they are 
specialized; the whole system is expressive because its 
language includes several kinds of representation devices. 
The trick is to make sure that each component  supplies 
the others with the information they need, without 
drowning them in a flood of facts. 

We have built a hybrid system called KL-TWO, with 
two components. One (called PENNI) is a version of 
David McAllester's RUP. It handles propositional logic, 
equality, and truth maintenance. The other component  
(NIKL) handles inheritance in a hierarchy of properties. 
In NIKL we can assert that a husband is (by definition) a 
married man. If we then assert in PENNI that John is a 
man and John is married, the system will combine these 
two assertions into a single property, which sums up its 
knowledge of John. Using lambda notation, we can write 
the property as 

(lambda x. (man x) & (married x)) 

NIKL now attempts to fit this property into its hierarchy 
of properties. It discovers that the property is identical to 
the known property of being a husband, and adds to 
PENNI's data base the statement 

(man John) & (maried John) -] (husband John) 

from which PENNI can infer that John is a husband. 
Notice that the full quantification mechanism of first- 
order logic does not exist in this system, which simplifies 
its search problem enormously. Yet we can use NIKL to 
define a husband as a married man, which is equivalent 
to saying (all x (man x) & (married x) [-] (husband x)). 
Thus we get a limited form of quantification - limited 
enough to be tractable, and not too limited to be useful. 

In the future we will add more components to this 
system, such as a program for reasoning about time. 
Marc Vilain and Marie Macaissa are building our hybrid 
system at BBN. The development of NIKL has been 
joint work with USC/ In fo rmat ion  Sciences Institute, 
principally involving Tom Lipkis and William Mark. 

2.2 Planning 

Natural language programs need to plan their own speech 
acts and to perceive the plans behind the user's speech 
acts. The standard situation calculus planners cannot do 
these jobs, for two reasons. First, they assume that no 
two actions can overlap in time; one must finish before 
the other begins. This is not realistic if there are two 
agents (the system and the user) - the user might begin 
an action while the system is in the middle of another 
action. Second, these planners can make only hypothet-  
ical statements about the future - statements like "if the 
robot were to put block A on block B, then block A 
would be above block C".  They cannot make factual 
statements like "the robot will put block A on block B". 
But the user has factual beliefs about the system's future 
actions. If he orders the system to print a report on the 
line printer tomorrow morning, he believes that the 
system is going to do this - and the system must under- 
stand that he believes it. 

We can allow actions to overlap if we say that actions 
happen during intervals of time. Likewise conditions hold 
during intervals. In situation calculus a possible future is 
a series of situations and actions. Having abolished situ- 
ations, we take possible futures as primitive objects. One 
of the possible futures is the actual future. We can assert 
that the system will actually print a document at 9 tomor- 
row morning by asserting that in the actual future, the 
printing action will happen during an interval that starts 
at 9. We can also assert that if the system does not print 
this document, the user will get fired. This means that in 
every possible future where the system fails to print this 
document, the user gets fired. This research is b~¢ Andrew 
Haas, who is also working on a planning program that 
uses these ideas. 

The natural language programs we aim at must help 
the user without demanding that he state his goals 
completely and correctly at the beginning of the dialogue. 
He may leave out something important in his first 
remarks, or change his mind. This is quite different from 
the usual situation in planning, where a goal is given 
completely and correctly in each problem statement. The 
planner must be able to begin planning with a partial goal 
statement, and ask the user for more detail when needed. 
If the user changes his mind, the planner must salvage 
parts of the old plan that are still helpful in achieving the 
revised goal. Other workers have looked at planning with 
incomplete or inaccurate knowledge of the environment. 
We aim to extend this to handle incomplete and inaccu- 
rate knowledge of goals. This work is Marc Vilain's. 
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2.3 Paral le l  c o m p u t a t i o n  

The obvious reason for parallelism is speed - we would 
like our programs to carry on  dialogue in real time. If we 
allow ill-formed input,  we have more possibilities to look 
at, and this demands  even more computat ion.  

The obvious way to use parallelism is to have the 
major  components  of the system - parser, semantic  inter-  
preter, etc. - run in parallel. We have devised a control  
structure called a cascade that allows programs to 
produce output  cont inuously,  rather than in a single 
batch when  they finish a problem. So the semantic  inter-  
preter  can begin work as soon as the parser produces a 
significant hypothesis about  the input.  Thus we can start 
interpret ing the user 's  u t terance as soon as he starts to 
type, instead of waiting unti l  he 's  finished. 

This kind of parallelism is useful, but  it can only speed 
up the system a little because there are only a few major  
components .  In  order tO use parallelism more fully, we 
are designing a parallel programming language. It is a 
general-purpose programming language, leaning towards 
the special needs of AI. Unlike some parallel languages, 
the user does not  turn  on  the parallelism by calling a 
special parallel construct.  In  this language parallel 
computa t ion  is normal  - you have to go out of your  way 
to turn  it off. Even  without  a parallel implementa t ion ,  
this language will be useful for learning to think in paral-  
lel. If you assume that  your  program will run in parallel, 

you are forced to consider  which parts of the solut ion 
depend  on which other  parts. This of ten  leads to a bet ter  
algorithm even if you end up using a serial machine.  This 
work is by N. S. Sridharan. BBN is building the Butterf ly 

- a parallel machine  with 128 processors - so we have a 
chance to test our ideas with an implementa t ion .  

R e f e r e n c e s  

Bobrow, R.J. and Webber, B.L. 1981 Architectures for Semantic and 
Syntactic Interaction. In: Woods, W.A. et al., Eds., Research In 
Knowledge Representation for Natural Language Understanding. 
Annual Report (September 1980 to August 198l). Report No. 
4785. BBN Laboratories: 65-113. 

Goodman, Bradley 1984 Repairing Reference Identification Failures 
by Relaxation. In: Sidner et al.: 135-184. 

Haas, Andrew 1984 Planning in a Changing World. In: Sidner et al.: 
45-75. 

Polyani, Livia and Scha, Remko 1984 A Syntactic Approach to 
Discourse Semantics. In Proceedings of the 1984 International 
Conference on Computational Linguistics. Stanford, California. 

Sidner, Candace 1984 Speakers' Plans and Discourse. In Sidner et al.: 
101-133. 

Sidner, C.L. et al., Eds. 1984 Research In Knowledge Representation 
for Natural Language Understanding. Annual Report (September 
1983 to August 1984). Report No. 5694. BBN Laboratories. 

Sridharan, N.S. forthcoming A Semi-Applicative Language for Artifi- 
cial Intelligence. 

Vilain, Marc 1984 KL-TWO, A Hybrid Knowledge Representation 
System. In: Sidner et al.: 1-29. 

Weischedel, Ralph M. and Sondheimer, Norman K. 1983 Meta-Rules 
as a Basis for Processing Ill-Formed Input. American Journal of 
Computational Linguistics 9(3-4): 161-177. 

218 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 


